TUGboat, Volume 38 (2017), No. 2

Ten years of work in Wiadomosci
Matematyczne — an adventure with
ETEX and Emacs hacking

Marcin Borkowski

Abstract

Since 2007 I have been working for the “Wiadomosci
Matematyczne” journal (http://wydawnictwa.ptm.
org.pl/index.php/wiadomosci-matematyczne),
where I am responsible for —among other things —
ITEX-based typesetting. This is enough time to
form some habits, and also to make some predictions.
I would like to share them with my TEX friends.

1 Introduction

This year marks the tenth anniversary of my work
in Wiadomosci Matematyczne, a (sort of) newslet-
ter of the Polish Mathematical Society. (“Sort of”
meaning it appears twice a year, so the “news” in
“newsletter” is sometimes more like “olds”.) Together
with a friend, we were appointed “secretaries”, which
(at varying points in time) meant everything from
handling email, to designing the look-and-feel of the
printed issues, to hacking together XTEX classes to
accomplish that design, to proofreading and type-
setting papers, making corrections suggested by the
authors (or argue why they cannot be made), to
actually driving to the post office to send out freshly
printed issues to people.

Needless to say, using IATEX (but also other
tools, most notably Emacs) is a large part of this
undertaking. In the present paper, I would like to
share some experiences and thoughts on the matter.

This paper — or tale, if you will—is organized
as follows. First, I explain some of the assump-
tions and policies we set up at the very beginning
(surprisingly, many of them did not change). Then
I proceed to what is perhaps the most interest-
ing for the typesetting-oriented readers: the KTEX
classes we developed to prepare our pdfs. For the
most part I abstain from quoting actual source code;
an interested reader may find it on my website at
http://mbork.pl/wiadmatfiles.zip, so that this
paper does not get too TEXnical. Next, I describe
some Emacs functions which we use in our editing
work; some of them are general enough to be of use
for the wider public. Finally, I try to summarize my
experience with a few general rules of thumb I found
out to be useful.

In the paper I sometimes say “I” and sometimes
“we”. The former means the author; the latter usually
means the author together with the other secretary,
Pawel Mleczko.

255

2 Assumptions and policies

When we started working on Wiadomosci Matema-
tyczne, we did not know much about what we are
exactly expected to do. We knew that proofreading
would be our primary duty. Soon it turned out that
it was quite frustrating when the proofreaders and
the typesetter did not remain in strict contact; in
fact, the person responsible for typesetting lived in
another city. We quickly figured out that if we did
the typesetting (which we were confident we were
capable of, and which we both liked to do), things
would go much more smoothly. We also suggested
to the editors that a visual overhaul would not be a
bad idea.

That meant that we needed to do a few things,
even before we dived into coding our KXTEX classes.
One of them was deciding how we are going to keep
all the incoming files in order. To this end, we
adopted a very strict set of rules. It turned out that
this was a good idea (and that an even stricter one
would be even better!). First, I estimated the over-
all number of papers we may be dealing with over
the course of several years; my estimation was that
the number should not exceed a thousand within
foreseeable future. Therefore we settled on 4-digits
identifiers, just in case. (As of this writing, we are at
521.) Each paper was to get an identifier of the form
art-0000-name, with the right number in place of
the zeros (so we started with art-0001-...), and
name was to be the family name of the (alphabeti-
cally) first author, folded to pure ASCII and in low-
ercase. That way, the identifiers are more-or-less
human-readable, too—we humans are not as good
as computers in remembering much numerical stuff.

Further, this means that each paper lands in
a separate directory called art-0000-name, and this
directory should contain a BTEX file (unsurprisingly
called art-0000-name. tex) and possibly other files,
like art-0000-name-photo-1, etc. Also, each of
these directories is a repository for a version control
system (we settled on Mercurial). Finally, along-
side those directories, we create directories named
like wm-53-1, containing issue 1 of volume 53 of
Wiadomosci Matematyczne, with an appropriately
named (and version-controlled) IWTEX file inside.
With the help of a web-savvy friend we set up a server
for all these repositories, so that we could easily pull
each other’s changes and push our own. After some
time, I also wrote a few shell scripts: one for exe-
cuting some action (like pull or update) on all (ap-
propriately named) repositories in a local directory,
another one for cloning all repositories not present
on my computer, etc.

Ten years of editorial work

http://wydawnictwa.ptm.org.pl/index.php/wiadomosci-matematyczne
http://wydawnictwa.ptm.org.pl/index.php/wiadomosci-matematyczne
http://mbork.pl/wiadmatfiles.zip

256

Having that (and a few other things, like de-
ciding on the encoding system —we started with
cp-1250 and at some point moved to UTF-8), we
started to think about what we would need our BTEX
classes to do. (It turned out much later that many of
our assumptions were wrong.) The initial list looked
more or less like this.

e Each paper should be typesettable separately,
but we need a way to typeset the whole issue,
too.

e We need to collect a very specific set of metadata
about the paper and the authors, much beyond
ETEX’s default trio of title, author’s name and
date.

e We really want grid typesetting, so we need e.g.
heavily customized sectioning, enumerate and
theorem-like commands.

e We want I4TEX to do as much as possible for us,
but we want a way to influence things manually
if needed.

With those (and a few other) things in mind, I started
developing the classes. It took maybe a few weeks to
get some working prototypes/proofs of concept, and
soon we had working TEX classes. Obviously, in
the course of actually using them, it turned out that
they were not exactly ideal. After about five years
we decided that our technological debt had risen to
an unacceptable level and I decided to rewrite the
classes (almost) from scratch. That turned out to
be a good decision —the “new” classes, while still
fairly complex, are much better to handle. The main
goal when writing the “new” classes was simplicity.
It turns out that if some obscure case comes up
once in, say 20 or 50 articles (or even 10), coding
a dozen or more lines of code to cater for that was
a mistake. It’s much better to deal with such rare
cases manually. Of course, if we aimed at total
automation of typesetting, the situation would be
different; but since we carefully proofread each and
every article ourselves anyway, it’s more effective
to have a simpler, more manageable codebase with
clear ways to manually override the default behavior
instead of some clever way for TEX to do it itself
without any way to influence its decisions.

3 KTEX classes

As I'said, I will not go through the code of our classes
in extenso; they are shy of 1800 lines of KTEX code,
and it would be too boring anyway. Instead, I am
going to highlight a few issues I think are interesting,
in a kind of broad view perspective. Anyone wishing
to see the nitty-gritty details is invited to look at the
class code. It should be available on CTAN at some

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2

point; meanwhile, I uploaded all code discussed here
on my personal web page.

3.1 Documenting classes

From the very beginning I knew that I'd like my
classes well-documented. The first version was writ-
ten using the gmdoc class by Grzegorz Murzynowski.
It later had some issues with pdfEATEX (as opposed
to XgIXTEX), so I dropped it in favor of the classi-
cal 1txdoc. This turned out to be a not-so-good
decision; doc is rather unwieldy with the four spaces
before \end{macrocode}, etc. I would gladly return
to gmdoc at some point in time.

3.2 One or more?

At first, I decided to have one class for each type of
article (a regular paper, an obituary, a book review,
etc.) and one for the whole issue. This turned out
to be a bad decision. (I was so eager to try out the
docstrip’s selective inclusion of various source file
fragments in various resulting files that I apparently
didn’t think that through well enough ...) The
benefits of this approach were infinitesimal (in fact,
I can think of one only: compiling individual articles
must have been faster by a fraction of a second),
and the resulting complexity was very difficult to
handle. In the “new” classes, I reduced the number of
classes dramatically, and instead decided to select the
article type with a class option, which works much
better —especially since all the code specific to any
type of article must be present in the whole-issue
class anyway.

3.3 Packages we use

We rely heavily on a number of packages. Here’s
what they are with a short explanation/rationale for
using each of them.

e xparse, which helps define commands with com-
plicated syntax,

e etoolbox, which makes \expandafter and com-
pany almost unnecessary,

e amsmath, which is fairly obvious for the mathe-
matical content. We use the intlimits option
with it to preserve Polish typesetting tradition,

e mathtools, which I find essential (in fact, I don’t
know why it’s not part of amsmath!),

e pgfkeys and pgfopts, which help define the
class options,

e amsrefs, which is nicer to use for bibliographies
than BIBTEX or BIBRTEX: it lets us keep the
bibliography in the same file as the rest of the
paper, and more importantly, changing the look
of the bibliography with it is very easy. We use

TUGboat, Volume 38 (2017), No. 2

the nobysame and initials options, which for
some strange reason are not the default,

e MinionPro, since this is the font we use,
e polski, since we typeset in Polish,
e geometry, which is a pretty obvious choice,

e ifpdf, so that the journal logo in eps format
can be used when producing a dvi file (does
anyone still use dvi, by the way?)

e graphicx, since we often include pictures, and
tikz, since we often create them ourselves,

e multicol, since book reviews are typeset in two
columns,

e fancyhdr, which (again, for some strange rea-
son) is not included in BTEX itself,

e enumitem, for obvious reasons (and more on
that later),

e booktabs, for obvious reasons,
e adforn, since we want some decorations,

e microtype —very useful, especially that the
pages are rather narrow,

e upref, for obvious reasons,
e nicefrac, which is occasionally useful,

e url —we need urls in bibliographies and some-
times elsewhere,

e pdfpages and hyperref, which are needed to
prepare pdfs with separate articles for the web-
site (they are made from the whole issue’s pdf).

As you can see, the list is quite impressive. This
really shows that bare-bones KTEX is not extremely
useful without a host of packages; I feel that many
of them should in fact be part of the KTEX core.

3.4 Docstrip guards

As T mentioned, in the first iteration of the classes
we used docstrip to generate separate classes for
various article types. Currently, however, we have
basically two classes: wm-art (for typesetting a single
article) and wm-issue (for typesetting the whole
issue). (There is one more, but we will cover that
later.) We use article and issue docstrip guards
to differentiate the code suitable for only one of those.
Most of the code is shared between the two.

3.5 Class options

I decided to use pgfopts for options support. Even
though we don’t actually use key/value type options,
it’s nice to use pgf even for simple options which
should just execute some piece of code when used.
It turns out that option handling with pgf is pretty
clever, and even though the learning curve is a bit
steep, it is definitely worth the effort.

257

Each article type has its own option, setting
a relevant Boolean switch. There are also other
class options, like proof (which enables cropmarks),
ebook (which sets the page geometry with minimal
margins), etc.

3.6 Macros for typesetting the whole issue

We define two hooks named \AtBeginArticle and
\AtEndArticle. In the case of a single article, they
just fall back to etoolbox’s \AfterEndPreamble and
\AtEndDocument; in the case of the whole issue, they
add their argument to macros \everybeginarticle
and \everyendarticle (using etoolbox’s \appto).
Also, we define two macros named \ArticleOnly
and \IssueOnly, each accepting one argument and
expanding to that argument or nothing in respective
situations.

Next, we define (only in wm-issue) commands
like \Year and \Volume so that we can typeset these
in each article’s header.

Now comes the fun part. We cannot assume that
two articles will not have the exact same \labels,
so we have to do something about this. We use \let
to save the original meaning of \label and \ref
and define our versions, using a prefix \subjobname.
That prefix identifies the article (it is set in the
wm-issue class to be the article filename sans ex-
tension). Also, we make sure that the references
use lining (i.e., non-oldstyle) numerals. Of course,
we also handle \pageref, \eqref and \cite, all in
a similar manner. (The citations are slightly more
difficult due to some amsrefs quirks.)

Since at the beginning of each article we want
to typeset a header containing (among others) the
page range for this article, we need the number of
its last page. This amounts (more or less) to
\AtEndArticle{\origlabel{\subjobname:end}}
Again, in reality this is slightly more complicated,
since the \origlabel must be put somewhere else
for reviews (they are typeset in two columns).

Next up are the macros facilitating loading ar-
ticles into the whole issue. This is a bit tricky,
since each article has its own \documentclass and
\begin{document} ... \end{document}. (Nowa-
days, we have things like docmute and combine,
which help with such issues. When I was writing the
classes for Wiadomosci Matematyczne, they didn’t
exist, or at least I didn’t know about them.)

First we define the macros \wmndocumentclass,
\wmdocument, \wmenddocument and \wmusepackage,
which will be substituted for the respective built-
ins. The \wmdocumentclass must set up the article
type, reset all the counters like section, footnote,
etc., and make sure we start a new page. (The

Ten years of editorial work

258

new page thing again is quite tricky, since one of
the quirks of Wiadomos$ci Matematyczne is that an
article can start on the same page as the previous
one’s end. We achieve this by setting a Boolean
switch newpage to true, but only for those arti-
cles that actually need it.) Since we usually need
\DeclareMathOperator (which is normally defined
as a preamble-only command) in individual arti-
cles, we reset it to the previously remembered value.
(Preamble-only commands work by being set to a spe-
cial command telling the user that this can only be
used in the preamble. To mitigate that, one needs to
save the original command to something (with \1let),
then — after the preamble — \1let the command back
to what it was saved to.)

The commands \wmdocument, \wmenddocument
and \wmusepackage are pretty simple. The first two
just typeset everything saved with \AtBeginArticle
and \AtEndArticle respectively; \wmusepackage is
just a no-op (articles actually needing external pack-
ages are a very rare thing, and in such cases we
\usepackage them in the preamble of the whole is-
sue manually).

As mentioned, one serious complication arises
from the fact that there are some “article groups’
with individual articles not starting on a new page.
We handle that by means of a Group environment
and two Boolean switches, whose names are self-
explanatory: \ifingroup and \iffirstingroup.

The next big thing is the table of contents. This
is basically a big mess (just like in BTEX itself, al-
though I redid it from scratch insead of trying to
coerce the original to work my way). One reason is
that we have to cater for the article groups. Another
one is that we actually want two tables of contents:
a Polish one and an English one. Of course, the
title version in the ToC may be different than the
one in the article and/or its running head. Yet an-
other complication is connected with the so-called
“vacats”. These are empty pages before an article
(they arise naturally when each new article starts
on the right, i.e., odd-numbered page, and when
the previous article had an odd number of pages).
A long-standing tradition in our journal is to put
various things on those pages, ranging from pictures
of mathematicians’ monuments to conference posters
to funny quotations. They appear in the ToC, at its
end, under a “Miscellanea” section, with all the page
numbers put together. Finally, since we may have
a lot of UTF-8-only characters in the title, and we do
not want inputenc’s macro expansions to get into
the .toc file, we have to make sure that the \@title
macros and their like are expanded exactly once. All
that means a pile of \expandafters, \unexpandeds,

)

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2

etc., which could probably be simplified a lot —but
it ain’t broken, so I'm rather hesitant to fix it. (I as-
sume I4TEX3 might help a lot with these issues, but
I was not brave enough to use it.)

3.7 Gathering metadata

In standard KTEX, you have the \title, \author
and \date macros. This is far from enough in
Wiadomosci Matematyczne. While we actually do
not need the date, we need a lot of additional stuff.
For “regular” articles, we need the English title (and
also we occasionally want to differentiate between
the “normal” title, the title in the running head and
the version in the ToC). Also, we have many other
types of articles, such as obituaries (where we need
the name of the late person, their date of birth and
death, a picture and a scan of their signature), ar-
ticles about prize laureates (which is more or less
similar — without the dates, of course, and the sig-
nature, but with the prize name instead) and book
reviews (with lots of data about the book itself, in-
cluding a scan of the cover). Since we need a lot
of similar \title-like macros, I decided to write
a macro to write them for me:

\newcommand{\DefineDataGrabber} [1]{¥
\csdef{#1}##1{\csdef{0#1}{##1}}}

Now, issuing a command like \Def ineDataGrabber
{title} is more or less equivalent to \def\title#1
{\def\@title{#1}}, which is kind of cool (and quite
Lispy, in fact).

Another interesting thing about gathering ar-
ticle metadata is the collection of author names.
Obviously, we need support for more than one au-
thor, but how their data are typeset may differ in
various places. We need at least four ways of doing
that. At the beginning of each article, we just list the
author names together with their cities (another tra-
dition of the journal). If any author has a nonempty
\authornote, we include a footnote mark here, too.
Also on the first page we want to actually put the
author footnotes. At the very end of each article we
typeset their names, institutions and emails. Finally,
we need the author names (in their “short” form) in
the ToC.

The way we handle this is as follows. We define
a command \makeauthorlist, which (when run)
creates an auxiliary macro \authorlist, containing
first an invocation of \firstauthor (with nine pa-
rameters corresponding to the author’s data), then
(if needed) subsequent invocations of an analogous
macro \nextauthor. Then, \makeauthorlist is
called \AtBeginArticle. When we want to typeset
something for each author, we define \firstauthor

TUGboat, Volume 38 (2017), No. 2

and \nextauthor to do what we need (e.g., type-
set the names and the cities, or typeset the author
footnotes, etc.) and run the \authorlist command.

3.8 Design and implementation

With the design, I figured that the hard part was
the design itself. When that is done, the ITEX side
of things is usually rather easy.

Well, T was wrong.

The first thing is the font choice. We typeset
with Minion Pro, but we make our class available
to authors, who don’t necessarily have that font
installed. Hence we check (using \IfFileExists for
the existence of the file MinionPro.sty, and only
use that font if this file is present.

We use oldstyle numerals in text, but references
are typeset with lining numerals and sometimes their
“tabular” version, so we need commands to turn them
on when needed. Also, we use Polish-style inequali-
ties (with slanted lines).

We redefine quite a few of IXTEX’s skips, like
\baselineskip. (For some reason, KTEX redefines
the skips \AtBeginDocument, so we need to give
them twice: once within that command and once
without it, since we sometimes need to typeset some
material before \begin{document}.) We redefine
\smallskip, \medskip and \bigskip to be equal
to a quarter, a half and a whole \baselineskip.
We also define \smallskipneg, \medskipneg and
\bigskipneg — just in case — and much more seldom
used “stretch” and “shrink” variants (i.e., zero-length
skips with possibility of stretching or shrinking the
same amounts). Finally, we redefine skips around
displayed equations to be much smaller than the de-
faults. Again, this must be done \AtBeginDocument.

Actually, vertical skips were one of the hardest
parts of our classes. You may ask, what is difficult
with that? Well, we try to typeset on a grid. This
means that we take some care for many things to have
the height equal to some multiple of \baselineskip.
This includes section titles (moderately easy), theo-
rems (rather easy), figures (difficult); when we have
displayed equations or quotations, we drop the grid
requirement on that page. Since many articles in
Wiadomosci Matematyczne do not contain a lot of
math, this works quite well. Unfortunately, vertical
skips, page layout and page breaking are one of the
darker TEX corners, and I have to admit that TEX
behavior in that regard is often a mystery to me.

The next thing in the design department is the
page layout. This is accomplished with the help of
the geometry package. A small complication arises
from the fact that — depending on the class options —
we want the options to be slightly different. It turned

259

out that a simple \ifbool within the options works
well. (For clarity, I avoid plain TEX’s \ifs, using
etoolbox’s \ifbool’s instead.)

Each article has a special “header” on its first
page. It contains the journal logo, journal name,
volume and issue numbers and page numbers for the
article. This is all simple: page numbers are there
thanks to \labels at the beginning and end, the
logo is in a pdf file (we use \IfFileExists so that
the authors using our class who do not have that file
can use the class anyway), and absolute positioning
on the page is done by the wonderful tikz package.

The title and authors are a bit more work,
but this work is not difficult, only tedious: we put
all that stuff in a box of fixed height (equal to
24\baselineskip) so that the grid won’t be dis-
turbed. One nice touch is that “author footnotes” are
distinguished from the usual footnotes by the number-
ing system: they are “numbered” with Greek letters.
Here we also make use of the \authorlist mentioned
earlier. One thing worth noting is that we need to
test if some data (like the author footnotes, for exam-
ple) is undefined or empty; etoolbox’s \ifdefvoid
is very useful for that.

For articles about prize laureates, new professors
and book reviews we want to wrap an image with text.
This is notoriously difficult in TEX, but we went the
easy way and decided that one paragraph will always
be long enough to fill the space around the (rather
small) picture. This way, we just set \hangafter and
\hangindent to suitable values, and put the picture
in a zero-height \vbox within \vadjust (taking care
of vertical dimensions for everything). If the first
paragraph is extremely short (which can happen
from time to time), we have a simple remedy:

\newcommand{\fakepar}
{\leavevmode\nobreak\hfil\break}

(Notice the lack of \indent; this is intentional. Since
the \fakepar needs to be inserted manually anyway,
I wanted it to be general enough to support unin-
dented paragraphs, like sections, etc.)

Finally, \AtEndArticle we typeset the author
information (it looks slightly different among the var-
ious article types, but that is trivial to accomplish).

Some additional care needs to be taken when
typesetting section and subsection titles. A section
title takes up space equal to three lines (or more
in case of long section titles, which we discourage
and which seem to never happen anyway). We want
1.5\baselineskip above and a half below. However,
if a section begins at the top of a page, we do not want
any vertical skips above it (and hence also below, be-
cause ... grid!). This is hard or impossible to achieve

Ten years of editorial work

260

automatically, so we have the macro \attoppage, set-
ting a suitable switch to true. Also, the \section
macro has to behave differently at the very begin-
ning of the article: the skip above is then smaller
(because we don’t need it anyway). It is similar
with subsections: normally, a subsection has one full
\baselineskip above, but not if it directly follows
a \section. All this is accomplished through special
values of \penaltys and checks for \lastpenalty.
(In the initial version of the classes, this mechanism
was used much more often, e.g., with theorems; in
the current iteration of the class, I decided that was
too tricky and decided to go for a simpler solution,
with a possibility of easy inserting manual skips, both
positive and negative.)

Running headers is the next thing. No surprises
here — we use fancyhdr, we set up the pagestyles
for the first page of the article and for the rest of
them, and we define macros \theleftrunninghead
and \therightrunninghead so that the user can
easily override them manually.

Theorem-like environments are a much more
complicated business. For various reasons I was not
satisfied with the IXTEX defaults. In my own papers
I usually use amsthm, but for Wiadomosci Matema-
tyczne 1 decided to go my own way and do all the
theorems from scratch. One reason is grid typeset-
ting. A more important one is that by default, the
theorem’s optional argument is typeset in a TEX box,
so its spaces are fixed. With rather short lines this
tends to look ugly if the rest of the line happens to
be very loose in TEX’s terms, i.e., its spaces are much
wider than usual.

Since I did theorems from scratch anyway, I de-
cided to do them my way. For starters, \newtheorem
always creates a numbered and a non-numbered
(starred) variant. Another thing is the handling
of the optional argument. Oftentimes it consists
only of a call to \cite or \citelist; in such a case,
KTEX puts the bracketed output of \cite in paren-
theses, which I don’t like. In our case, if the optional
argument begins with \cite, the parentheses are
dropped. Again, this can be manually overridden by
using the \relax command (which is a no-op, but
is different than \cite, etc.). Since it is conceivable
that someone might want to drop the parentheses for
a different reason, we provide a \noparen command
(a no-op again, but also recognized by the theorem
environment, along with \cite and \citelist). Fi-
nally, we define a slew of theorem-like environments
by default.

The next thing is enumerations, which are easy:
I employ the great enumitem package. One unortho-
dox thing we do in Wiadomosci Matematyczne is

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2

the following. We strongly discourage more than
one level of enumerations (and totally forbid more
than two), and instead we use various item styles to
distinguish between various semantics. For instance,
if the items form a conjunction, they are marked
with arabic numerals in parentheses; if they form an
alternative, they are marked with lowercase Roman
numerals with a dot afterwards, etc. I’'m not sure
whether anyone notices, but I like it that way.

The next topic is bibliographies. The code re-
sponsible for them is quite large, but this is mainly
because we need to define a lot of bibliography types.
As I mentioned, we use amsrefs, which I like a lot.
One of the greatest things about this package is that
defining a new bibliography style is so easy. One
of less great things is that it messes internally with
the catcode of the apostrophe, which conflicts with
the usage of the \’ macro. We need to resort to
some \xdef hackery because of that when defining
the coauthor. (We have a special kind of a bib-
liography in Wiadomosci Matematyczne: a list of
publications by one person. In such a case, the
author field is not typeset, although we introduce
a coauthor field, which is typeset at the very end in
the form of “(coauthor: ...)” or “(coauthors: ...)"
The internal macro containing the coauthor field
is called \bib’coauthor, with the apostrophe as
a letter; on the other hand, we need the \’ control
symbol to typeset the Polish word for “coauthor”,
“wspétautor”.) Finally, we define an environment
bibliography with two optional arguments: the
first one is the title of the bibliography (the default
dependent on the article type) and the second being
a prefiz, so that we can have two bibliographies in
one article, the first one with entries numbered [1],
[2], etc., and the second one with entries numbered
e.g. [Al], [A2], etc. (this is sometimes needed). Any-
way, the main takeaway here is: amsrefs is very nice
to use and quite hard to hack on.

The last difficult thing is inserting figures and ta-
bles. We do not use floats, since we prefer to have full
manual control over the placement of “floating” ma-
terial. Therefore we redefine the figure and table
environments. While we are at it, we provide some
machinery to control the captions: the figure* en-
vironment makes them unnumbered, and the figure
prefix (like “Fig.”) empty by default, but redefin-
able through \renewcommand. We put the figure
(with caption) into a \vbox of depth zero, measure
its height, round it up to the nearest multiple of
\baselineskip and repackage it into another \vbox
of the computed size. This way we can retain grid
typesetting. If the figure environment (or similar)
starts in horizontal mode, we use \vadjust.

TUGboat, Volume 38 (2017), No. 2

The rest is, happily, much easier. We slightly
modify the default design of footnotes, we define
a custom quotation environment, a simple modifi-
cation of equation numbers (we want them in tab-
ular numerals, and we provide an \eqrefr macro
for equation ranges, like “(1-3)”), we define some
Polish-specific dashes, etc. One interesting thing is
that we have \emergencystretch set to 1 pt. This
is very useful for narrow columns. We also define
some very narrow horizontal skips (half of \, and
its negative counterpart). We also have a few last-
emergency macros for influencing the typesetting.
These are \manualshortenthispage (expanding by
default to \enlargethispage{-1\baselineskip}),
\manuallooser (basically, setting \looseness) and
the following two:

\newcommand{\manualfillpar}
{{\setlength{\parfillskip}{Opt}\par}}

\newcommand{\manualindentfillpar}
{{\setlength{\parfillskip}{\parindent},
\par}}

which allow us to fight very short or very long last

lines of a paragraph.

3.9 Making pdf files for individual articles

After typesetting, printing and sending out the whole
issue, when the dust settles, we need to prepare a pdf
file of every article to put on the website and send to
the authors. This is not as easy as typesetting every
article separately, since we want the page numbers to
be exactly like in the printed issue; also, that would
not work in case of articles beginning in the middle
of a page. Hence we use pdfpages to include the
relevant pages from the pdf of the issue.

Our solution is as follows: when the issue is
typeset with a special option, generatefiles, we
invoke a special macro \generatefile for each arti-
cle (using \AtBeginArticle). This macro takes the
page numbers from the labels and writes out a file
named wm-11-2-333-444.tex, where 11 stands for
the volume number, 2 for the issue number and 333
and 444 for the begin and end pages of the article.
This file is very short and consists of setting the
pdf metadata and including the relevant pages from
wm-11-2.pdf. (Also, it uses a special, very simple
third class generated from the dtx file.)

There are two main difficulties here. One is
that the second issue each year has page numbers
resuming where the first one ends, so we need to
take care of page number arithmetic. Another is
that we don’t want to have e.g. ties in pdf title, so
we redefine a few standard commands to generate
their ASCII equivalents (most notably, both ~ and
\\ expand to a space in this context). Last but not

261

least, we \usepackage{hyperref} so that the page
numbers in the pdf file matches the ones printed on
each page (instead of starting from 1).

4 Emacs editing functions

ITEX classes and general workflow is one thing. Ac-
tually editing files is another. We use Emacs to get
the full editing power available to humanity. Even
though it has its flaws, it is an extremely flexible tool.
Customizing Emacs to work better for Wiadomosci
Matematyczne is an ongoing effort; currently, I am
writing functions to automatically generate article
templates, help with filling them with some meta-
data and upload them to our Mercurial repository,
all with minimal manual intervention.

In this section, I would like to briefly describe
the Emacs tools I've made so far, which turn out to
be quite general and possibly useful for others.

4.1 Automatic replacement of strings

The first thing is automatic replacement of strings.
There are some things that just need to be changed to
reasonable defaults. One of them is Polish diacritical
signs. We clearly do not want our source code to
be littered with things like \.z\’o\1{}w instead of
proper UTF-8 “z6tw”. Another is dollar signs (single
and double), which we want to be converted to \(,
\), \[and \]. Yet another is \-, which should be
just deleted everywhere, or ties, which need to be
inserted after one-letter words and in a few other
places and deleted from math mode.

For this, I developed an Emacs command called
mrr-auto-replace. It is configured by means of
a list of lists. Each of these lists consists of a regex,
optionally followed by a predicate (i.e., a function re-
turning a Boolean value) and by one or more strings.
This works as follows: Emacs walks through the en-
tire file (buffer, to be more precise) looking for the
given regexen, and if the predicate is satisfied in any
of the places found, the part matching the regex is
replaced by one of the strings given. The strings are
cycled, so we can e.g. have the regex \$\$ (match-
ing two dollar signs) replaced alternately by \ [and
\]. The predicate option is useful for distinguish-
ing between math and text modes; AUCTEX (which
is an Emacs package for interacting with TEX and
friends) has a function called texmathp, returning
a true value if the cursor (“point”, in Emacs-speak)
is in math mode.

It seems simple (and so it is— the source code
for mrr-auto-replace is less than 20 lines), but it is
extremely useful. It is usually one of the first things
we run on any IATEX file received.

Ten years of editorial work

262

4.2 Semi-automatic replacement of strings

Sometimes, however, we cannot trust a machine to
do the right thing. For such cases, we have the
mrr-replace-mode Fmacs minor mode (i.e., some-
thing we can turn on or off in a given buffer). It is
configured by means of another list (with a similar
structure as previously, though a bit more elaborate
here). This time, however, whenever we find an oc-
currence of any of the regexen from our list, we stop,
highlight it and give the user a chance to select one
of the possible replacements. The use-case should be
obvious —one of the possibilities is changing things
like =+ to one of -, == or —-—-. Indeed, we have more
than forty such replacement possibilities, and while
going through the file using this utility is tedious, it
is much less so than if we did that manually. Also,
this was much more complicated to code; it takes up
more than a hundred lines of code (and as of writing
this, it also contains a few minor bugs).

Being a minor mode has the additional advan-
tage that this is non-modal in a sense: after turning
mrr-replace-mode on, only a few keys behave in
a special way: TAB cycles through the possible re-
placements (including the original version), RET (En-
ter on modern keyboards) looks for the next place to
replace, and C-g (Control-g) quits the mode. This
way, if we decide that we have to make some edits
other than the ones defined in our list of potential
replacements, there is nothing to stop us without
exiting the replacement mode.

4.3 Various small hacks

Apart from the two bigger things mentioned above,
we have a few smaller tools. For instance, I noticed
that if I insert a tie, I almost always delete any space
at that point first. Hence I bound the tilde key
to a custom Emacs command I wrote which does
exactly this. Another thing I often do when editing
files (as opposed to writing them from scratch) is
inserting commas and dashes (the latter often in
pairs!). Therefore, I modified the comma-inserting
command so that if I type it when after a space,
Emacs inserts it before that space anyway. It’s very
simple, but a very nice time-saver.

For dashes, I have something special. Since usu-
ally, when I insert a dash, I need to remove any
punctuation in that place (usually a comma), I de-
fined another command to do just that. But more
often than not, I want to enclose a fragment of text in
dashes. Therefore, when I first select some text and
then invoke my command, two dashes are inserted
around the selection (“region” in Emacs language).
Yet another simple command (11 lines of code) mak-
ing editing much nicer.

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2

4.4 Plans for the future

This is of course not everything Emacs can do for
us. I noticed that there are numerous repetitive
activities I perform when working on articles for
Wiadomosci Matematyczne. One of them is sending
emails to the rest of the editors with e.g. pdfs for
proofreading. Since I use Emacs as my email client
(obviously!), T plan to write a command to prepare
such an email (with a template text and the pdf
attached) automatically. Another one I plan to do
one day is a command which would walk across all
the articles we are working on and display a summary
with each article’s status (like “after converting to
our class, but before proofreading” or “after sending
to the author for proofreading/confirmation”). The
possibilities are vast, Emacs Lisp is a nice language
to work with—1it is only a question of time to mold
Emacs into a system customized to this particular
journal’s workflow.

5 Summary

As can be seen from this tale, working on a journal
is a complicated (but rewarding!) business. From
the TEXnical standpoint, there seem to be a few
general recurring themes here. The most important
(at least for TEXnicians) is that there is no point
in trying to force TEX to do everything automati-
cally; it is much better to cover, say, 90% of cases
automatically and have facilities for manual override
for the remaining 10%. Also, when writing classes
for a journal, good knowledge of TEX is very useful.
Expansion control and vertical mode are especially
important. Moreover, it is usually a good idea to use
packages instead of reinventing the wheel whenever
possible. And when we have full control over what-
ever comes into the journal (i.e., we heavily edit all
incoming files), redefining even basic I#TEX macros
and environments (like, say, the document or figure
environments or the \usepackage macro) should not
scare anyone away. On the other hand, to minimize
the editing effort, it is probably a good idea not to
mess around with ITEX guts. The results will be
less appealing aesthetically, though, since authors
often make horrible design decisions.

Two paths I didn’t follow —and which seem
worth trying — are using I#TEX3 and restricting what
authors can do. The former is obvious—1I would
expect IATEX3 to reduce the need for things like
etoolbox or plain old \expandafters and friends.
The latter might be useful, since some authors use
KTEX in an extremely, shall we say, creative way (like
numbering all footnotes manually or defining dozens
of macros making the source file slightly shorter and
totally unreadable, or using the very same KTEX 2.09

TUGboat, Volume 38 (2017), No. 2

style preamble with lots of unnecessary stuff and
cargo-cult coding artifacts for all their documents,
etc.). Since our authors are mathematicians, they
are unfortunately accustomed to using IATEX; if that
were not the case, we might prefer Markdown or
something similar to restrict the authors’ freedom to
break things.

From the point of view of an editor who works
with text files written by someone else, the obvious
takeaway is that you need to use a serious text edi-
tor. Which one of the two you choose may be less
important: while Vim is difficult to beat in terms of
using as few keystrokes as possible to achieve a given
transformation of text (a sport known as vimgolf),
Emacs shines in the flexibility /programmability de-
partment, and also offers a more comprehensive en-
vironment, such as email clients, shell buffers, and
a time-tracking/organizational application (the fa-
mous Org-mode).

In any case, being a secretary of a journal and
using I TEX and Emacs is an ongoing adventure that
I hope to last for at least another decade.

¢ Marcin Borkowski

Faculty of Mathematics
and Computer Science

Adam Mickiewicz University
ul. Umultowska 87
61-614 Poznan, Poland
mbork (at) amu dot edu dot pl
http://mbork.pl

Production notes

Karl Berry

This seems an opportune place to say a few words about
TUGboat production. In general, our process is nothing
like as regularized as that described by Marcin.

One immediate difference is that TUGboat, by its
nature, has to handle articles using any TEX engine. We
use pdf(I4)TEX by default, which can handle the majority
of articles, but it’s typical and reasonable for an article
about LuaTEX to require LuaTgX, etc.

So, we can’t create an entire TUGboat issue in one
run. Instead, each article is processed separately into its
own PDF. We then concatenate the individual PDFs to
make the full-issue PDF to be uploaded to our printer.

To do the concatenation, we’ve used a variety of

tools, most commonly Ghostscript and pdfjam (ctan.

org/pkg/pdf jam) of late. ConTEXt and pdftk have also
been useful. Different tools are needed as years go by and
software and systems change (for no convincing reason).

The same tools can select PDF pages when splicing
two articles together, that is, when one article ends and
another begins on the same page. We try to avoid this,
partly because of the extra production trouble, but pri-

263

marily because it is better for readers to find new articles
starting on new pages. But content must dictate form,
so we make it work out when it’s needed. (Incidentally,
another PDF check is for all fonts being embedded, using
pdffonts from Xpdf, foolabs.com/xpdf.)

The trickiest part of producing the whole issue as a
concatenation is the page numbering. We have a control
file which lists all the articles in the order in which they
will appear, as well as the beginning page number for
the issue. Then each article writes its beginning and
ending (\AtEndDocument) page numbers into external
files, where the next article can read them. The two
tables of contents use the same external files, so as to
ensure consistency of the page numbers.

Unfortunately, nothing comparable keeps titles and
authors consistent among the tables of contents and arti-
cles. Partly this is due to inertia, partly because it would
be hard to implement in full generality, and partly be-
cause sometimes there are intentional differences among
the three places—forced line breaks, abbreviations, etc.

Back to issue production: the compilation of each ar-
ticle, and the overall process, is done with GNU Make, via
a single included Makefile fragment which defines nearly
all needed actions. The per-article Makefiles merely give
the name of the file, the engine to use (if not pdflatex),
etc.; the goal being, naturally, to eliminate redundancy
wherever possible.

We use GNU Aspell (gnu.org/s/aspell) with some
sed preprocessing to do spell checking: aspell list \

--mode=tex --add-extra-dicts=‘pwd‘/.dict.pws\
| sort -fu. The idea being that a given article can have
a .dict.puws file with the spelling exceptions needed that
don’t make sense to add to the global exception list
(unusual proper names, one-off neologisms, etc.).

Besides spell checking, we’ve implemented several
custom checks across an entire issue, again done in
the central Makefile: doubled words (math.utah.edu/
~beebe/software/file-tools.html#dw), lowercase let-
ters inside \acro, tripled letters (“eee”), etc. More glob-
ally, we check that the tables of contents aren’t missing
an article processed in the central control file. Of course,
besides the automated checks, humans review each and
every word, line, and page that goes out.

Character encodings are an unending hassle. We
receive many articles in UTF-8 these days, often with
confusion or incorrect usage of accents, dashes, etc., or
garbled in transmission. Other articles still use Latin-1
or similar. For articles which have only a few “special”
characters, we strongly recommend taking advantage of
TEX’s inherent capability, and sticking to 7-bit ASCII.

One final point is that all production work is done
on Unix (CentOS 7 these days), using TEX Live. Thanks
to the well-known portability of TEX documents, there
is rarely a problem with an author obtaining different re-
sults than the production run, with one glaring exception:
when fonts are found by XH{TEX or LuaTgX via system
lookup, instead of by filename. This makes the document
immediately and completely unportable—so I implore
everyone, please don’t do this in TUGboat articles!

Ten years of editorial work

	Introduction
	Assumptions and policies
	LaTeX classes
	Documenting classes
	One or more?
	Packages we use
	Docstrip guards
	Class options
	Macros for typesetting the whole issue
	Gathering metadata
	Design and implementation
	Making pdf files for individual articles

	Emacs editing functions
	Automatic replacement of strings
	Semi-automatic replacement of strings
	Various small hacks
	Plans for the future

	Summary

