10

David Teplow

TUGDboat, Volume 38 (2017), No. 1

What’s a Professor of Neurology doing
using BTEX?
David B. Teplow, Ph.D.

Abstract

In the general biomedical and academic research
communities, most people have never heard of INTEX.
Students and professors in the humanities, social
sciences, biological sciences, and clinical medicine
who have heard of IMTEX often don’t appreciate the
value of such a sophisticated and elegant typesetting
engine. Instead, as with most of the world, they
succumb to the forces of the Dark Side (traditionally
Microsoft Corporation) and use expensive, inflexible,
closed source, and relatively primitive programs to
compose documents. They also suffer the continuing
frustrations of doing so. I discuss here my own
journey out of the darkness and into the light of

BIREX.!
1 Introduction

My first exposure to document creation, like most
in my generation, was in English class in elementary
school. Documents all were hand written and one
was graded on “penmanship.” As one got older, one
was expected to use a typewriter to produce pro-
fessional looking documents. It was not until the
80s, with the introduction of the IBM PC (personal
computer) in 1981 and the Apple Macintosh 128K
in 1984, that the average consumer could compose
documents electronically and print them using line
printers or dot matrix devices. I remember my ex-
citement running WordPerfect or WordStar on my
IBM PC and MacWrite on my Macintosh Plus (with 1
MB of memory and a 20 MB disk drive large enough
to use as a crane counterweight). One actually could
“program” how individual letters, sentences, para-
graphs, or document sections should look. This was
done using keyboard commands embedded in the
text. WYSIWYG GUIs came later and were seen as
revolutionary. One no longer had to guess how their
typescript would look. It was right there in front of
you on the screen.

Development of personal computers and soft-
ware has continued during the almost four decades
since a vision for personal computing occurred at
IBM. The most important software design principle
was “do more and make it easier.” Unfortunately,

1 The reader is cautioned that what follows is my personal
perspective on IATEX. This perspective is not meant to be,
nor is it, a definitive review of INTEX and its uses. I ask the
indulgence of TUGboat readers if they find any inaccuracies
in this article and would be grateful if these inaccuracies were
brought to my attention.

TUGboat, Volume 38 (2017), No. 1

and particularly in the case of Microsoft Word, do-
ing more and making it easier actually meant “make
it more complicated, inflexible, and buggy.” When
the Unix-based Mac OS X operating system came to
the Macintosh platform with its protected memory
and preemptive multitasking architecture, software
programming errors only crashed the application in
use, not the entire computer and not that often. The
exception, of course, was Microsoft Word, which to
this day can be counted on to crash at the least
opportune moments, often making one’s prior work
unrecoverable.

As a professor, I had to continually compose
documents, be they notes, letters, grant applications,
or manuscripts to be published in academic journals.
Text processing capability was mandatory and Word
was the de facto standard for this purpose. This
meant that year after year, decade after decade, I,
like others, had to suffer the frustrations inherent in
trying to get text processing “bloatware” to do what
one wanted it to do. These frustrations included,
among many, application crashes, the well known
“Word has insufficient memory” error messages when
one tries to save a file, difficulties embedding images
and maintaining their location during subsequent
editing, problems formatting tables, bizarre place-
ment of equations constructed using MathType or
Equation Editor, and an inability to stop the pro-
gram from “helping” you by automatically changing
formatting, word spelling, and other aspects of doc-
ument creation.

These computing and composition experiences
made clear a desperate need for a better method of
document composition. Enter BTEX.

2 How I met BKTEX and why I fell in love
with it

My first exposure to ITEX occurred in the context
of a collaborative effort to understand the mechanis-
tic bases of Alzheimer’s disease. The collaboration
integrated biochemical and computational studies of
protein aggregation. My laboratory carried out the
biochemistry work while the computational studies
were done by physicists. When our studies were com-
plete, we discussed how and where to publish our
results. I had assumed that our manuscript would
be composed using Word, which I suggested to my
physicist colleagues. To my surprise, the leader of
the physics group, a world authority in the field of
statistical physics, told me that he did not know
what Microsoft Word was! All word processing in
his group was done using KTEX, which I had never
heard of. The composition and publishing of scien-
tific manuscripts is an arduous process that requires

11

tremendous attention to detail and many, many it-
erations during initial manuscript creation and the
peer review process. Authors must use the same
text processing platform during this process. It thus
appeared that either my learned colleague and his
group would have to learn Word or I would have to
learn KTEX.

I chose to be the one to learn a new document
preparation system. I did so for a number of reasons,
some practical and some personal. The practical rea-
son is that professors tend to become ossified as they
age, which means that change can be difficult. It
would be easier for me, as a new Assistant Professor,
to learn a new system than it would for my senior
colleague, a distinguished Professor of Physics. The
second reason was my high regard for the academic
acumen of most physicists, which suggested that the
tools they used in their research, including those
for document preparation, likely would be powerful
and elegant. As I mentioned above, the introduction
of the Unix-based Mac OS X operating system made
the Mac platform remarkably powerful because now
one could take advantage of the huge reservoir of
expertise and software associated with Unix, which
of course included IWTEX. I quickly learned that the
IXTEX source files were simple ASCII text files. I
could work on my Mac, either inside a BTEX GUI or
in Terminal, while my colleagues could use their PCs
and we could easily exchange files and be certain they
would compile,? regardless of platform. This elimi-
nated the continuing problem of format alterations
in Word files caused by file movement between Mac
and PC platforms. I was tremendously impressed
with the professional layouts of our manuscript af-
ter source file compilation. For the first time in my
academic life, I could create manuscripts that, es-
sentially, were already typeset. They were beautiful.
Finally, from the perspective of a science nerd, I
found the prospect of learning what essentially is a
programming language to be very exciting.

As I became more adept at using ETEX, I re-
alized that it provided many capabilities that were
superior to those of standard word processing pro-
grams. One of the biggest headaches in the composi-
tion of scientific manuscripts is the need to change
figure and table numbers if such items are added
or deleted from manuscript drafts. One can do this
manually if one is particularly attentive to detail,
or automatically using search and replace functions.
However, this is time consuming and often results
in multiple figures or tables having the same num-
ber, which is confusing — especially to peer reviewers

2 Assuming no trivial coding errors existed.

What’s a Professor of Neurology doing using IATEX?

12

and editors who decide if your manuscript will be
accepted for publication. Enter the IXTEX \label{}
command! What an easy and elegant way to en-
sure that any editorial changes result in automatic,
accurate renumbering of figures and tables.

I was equally, if not more, delighted by BIBTEX,
especially after struggling with EndNote for so many
decades. I could now create a single library and for-
mat my bibliography using pre-existing bibliography
style .bst files—no more hassles with constantly
having to edit EndNote output styles. I could edit
my library in any text editor or use one of the many
reference management programs available. I've used
JabRef and BibDesk, among others, and find JabRef
particularly useful.

The use of pre-existing class and style files il-
lustrates the power, ease of use, and time efficiency
of the WTEX platform. If I am required to use a
particular class for a publication, I simply download
it from the web or get it from the publisher (as I
did for the 1tugboat class used for this article). I
can compose my source file without any concerns
about it being properly rendered. Of course, as TUG-
boat readers well know, and as neophyte IXTEX users
rapidly learn, TEX and its derivatives are designed to
enable writers to focus on the content of their work
as opposed to its formatting. I no longer have to
spend time carefully reading document formatting
instructions from a publisher or agency to whom I
am submitting a grant application and then convert-
ing these instructions into an acceptably formatted
Word document. The class and style files do it all
for me.

Experienced computer users know that it is most
time efficient to operate your computer by leaving
your fingers on the keyboard, as opposed to con-
stantly having to manipulate a mouse or other input
device. This is no more evident than when one is
creating mathematical formulas. Although Equa-
tion Editor and MathType are useful point-and-click
formula creation applications that interface seam-
lessly with Word, one must invoke either one and
then click, click, click ... to create the formula, which
then is inserted, often with bizarre vertical alignment
within text lines, into the document. In addition, it
is common to find that these formulas are rendered
improperly once the file has been typeset by a pub-
lisher. When I create formulas in BTEX, I can do
so without lifting my hands off the keyboard and
I do not experience any subsequent formatting or
rendering errors.

Anyone who has tried to create lists using stan-
dard word processors likely has encountered problems
with indentation, nesting of list elements, and most

David Teplow

TUGDboat, Volume 38 (2017), No. 1

vexing, stopping the program from adding new text
to the end of an existing list. The fine control of
the list environments in IXTEX eliminates these prob-
lems. Similar advantages exist with respect to table
creation. I am an experienced Word user (unfortu-
nately), but I still can’t figure out how to format and
align tables in a reasonable amount of time.

I find that figure and caption placement can be
problems both for word processor and I#TEX users.
One also encounters figures that mysteriously change
their positions within a document. In Word, these
problems are exacerbated by the fact that figures
and captions are entered independently.

3 How I learned BTEX

As we all know, I4TEX, in essence, is a program-
ming language. Its code may be less complicated
than C++, Fortran,® Objective-C et al., but it nev-
ertheless requires the user to create source code that
instructs a compiler how to produce a properly ren-
dered document. One of the beauties of IXTEX is
that a new user need not know anything to begin
using IXTEX other than how to open a .tex file in a
text processor. This was how I began the learning
process, by simply editing the text within the source
files created by my collaborators. It was easy to
learn how to encode underlined, italicized, or bolded
text. After all, how hard is it to “escape” the obvious
“bf” abbreviation for bold font and type \bf?* In
the process of assimilating this simple syntactical
information, one begins to get a sense of how IXTEX
programming works and this sense then provides a
framework for adding new skills to one’s repertoire.
“Environments” then are encountered that require
learning how they are parameterized and about what
can and cannot be done within them. At this point,
the neophyte IXTEX user needs to begin studying the
language more deeply.

I found myself doing what any self-respecting
academic would —1I bought books. The first two are
well known in the TUG community, namely Guide to
IATEX by Kopka and Daly and The IMTEX Compan-
ion by Mittelbach and Goossens. These two volumes
became my “go to” references for questions. I also
found First Steps in IXTEX by Gratzer, INTEX Line
by Line by Diller, and Learning IMTEX by Griffiths
and Higham to be useful. Scientific publications usu-
ally contain tables and figures. In the beginning, as
I began creating my own .tex files, it was simple to
copy and paste a figure environment from a file of
my collaborators and just insert the path to my own

3 Including Fortran 4, which I used a half century ago!
4 Interestingly and ironically, I just now learned how to
escape the backslash so all the following text was not bold!

.bst
.tex
.tex

TUGboat, Volume 38 (2017), No. 1

figure. This got me started. I also cut and paste
table environments. However, to gain more expertise
in managing these environments, I added Typesetting
Tables with I TEX by Vofs, and The IMTEX Graph-
ics Companion by Goossens, Rahtz, and Mittelbach,
to my “go to” references. These days, however, I
rarely consult these references, not because they are
uninformative, but because so much detailed infor-
mation is available on the web. I routinely access
tex.stackexchange if I need help, download pack-
age manuals, or access other sources found through
web searches. It’s remarkable how many preamble
lines, environments, minipage formats, and other
bits of code one can simply cut from web pages and
paste into their source file to achieve a particular
typesetting goal without any pre facto syntactical
knowledge.

I find “playing” with IATEX to be a lot of fun. It’s
often a challenge to render and position text, figures,
and tables in a specific way. I like trying different
things and seeing the output. I might switch between
standard figure and wrapfigure environments, use
minipages, or try other methods to achieve a particu-
lar document rendering. The process of self-directed
investigation provides rich rewards in terms of better
understanding how ATEX works and how to ma-
nipulate output, as opposed to memorizing how to
perform a single task. One is able to develop an
intuition that facilitates learning and accelerates the
process of problem solving.

4 How I use BTEX
“If you got a terminal, you can use I4TEX.”

This certainly is true for those who are *nix (Unix,
Linux et al.) savvy or love the command line. How-
ever, the majority of the world’s computer users
interact with their computers through GUIs. A ma-
jor advance for the general ITEX community, one
that made the use of these programs much more
attractive to the average computer user, was the
introduction of GUI front ends to IATEX compilers.
Users were able to run ETEX by pointing and clicking
with their mice. No knowledge of xnix commands
and syntax were required. What was required, both
for command line users and GUI users, were multiple
steps before a finished document could be viewed.
For academicians, for whom extensive referencing
is required, the process included triple compilation
(BWTEX —BIBTEX—HKTEX) so that references were
numbered correctly and a bibliography was created.
Multiple steps also were required to produce an out-
put file that could be easily shared with others who
might be relatively computer illiterate or worked us-
ing different platforms and operating systems (e.g.,

13

Mac and MacOS, PC and Windows, terminals and
*nix). This typically involved a tex—dvi—pdf com-
pilation and conversion process. One also could
produce output files in other formats, including post-
script, html, or rtf, but pdf was the most useful for
collaborations and submission of manuscripts to most
journals. These processes were not onerous in na-
ture, but they were burdensome and time-consuming.
For those used to WYSIWYG document composition,
this need to first compile the source code before see-
ing the finished work product was a bit off-putting.
However, with the advent of three-panel application
interfaces (file directory, source file, rendered output)
and automatic file compilation, users can immedi-
ately see the results of their work. This has been an
important development because it has streamlined
the document preparation process for the average
computer user, eliminating the need to understand
the source file—compiler—output file process.

My initial IMTEX front end was TeXShop, which
provided a simple, useful method for compiling source
files and viewing their output. As one who enjoys
determining if newly developed or updated applica-
tions might offer an easier or more powerful user
experience, I also have used Texmaker, TeXworks,
TeXnicle, Texpad, TeXstudio, and Latexian, as well
as web-based document creation and compilation en-
gines like Overleaf (formerly writeLaTeX) and Share-
LaTeX. LyX is unique among these front ends in
that its default document view hides the source code
from the user and its interface looks more like the
icon-based interfaces of non-TEX-based word proces-
sors. It also requires the user to port the output file
to a different application (e.g., Adobe Acrobat) to
view the rendered output. I found this type of GUI
to be an unhappy medium between the extremes of
document preparation, i.e., using a terminal or using
a standard word processor (e.g., Word).

I am composing this document using Texpad,
which is my current favorite. A helpful feature of
Texpad and other programs is their handling of com-
pilation errors. Error and output logs are instantly
available for user review either within the main ap-
plication window itself or by a simple click on an
icon. In addition, the user is provided the means
to rapidly edit offending syntax simply by clicking
on a particular error message in the message viewer,
which then moves the focus of the keyboard to the
offending line of code. This saves a lot of time during
the error correction process. Other features of these
front ends that are particularly useful are code com-
pletion, flash bulb-like highlighting of beginning and
ending characters (e.g., curly braces), and syntax
highlighting.

What’s a Professor of Neurology doing using I¥TEX?

tex.stackexchange
figure
wrapfigure

14

To further facilitate document creation, and to
deal with the progressive memory loss experienced
by Professor Emeriti, I also create a variety of pre-
ambles, tables, and figure environments and store
them in a special directory. I then can simply cut and
paste the code into new documents without having to
remember any special syntax that I might have used
in the past. For example, as a professor, I am asked
to compose many different kinds of recommendation
letters, including those for undergraduates, graduate
students, postdoctoral fellows, different professorial
ranks, etc. To do so, I have created a directory in
which boilerplate letters for each type of recommen-
dation exist. When I need a template, I can rapidly
access these pre-made files. This has made compo-
sition of new letters trivial. The same strategy is
used for grant application preambles, be they for the
National Science Foundation, the National Institutes
of Health, or other agencies.

5 Using BTEX in a non-BTEX world

Readers of this article already know, and likely much
better than I, how powerful, flexible, and efficient
IATEX is. These are some of the reasons we choose
to use this document preparation system. Unfortu-
nately, the rest of the world either is not aware of
the existence of IATEX or is precluded from using it
due to restrictions on how document preparation is
to be done. The latter restriction usually is imposed
on employees to ensure company-wide consistency
in document preparation, which is a reasonable con-
cern. Establishing a standard application for docu-
ment preparation allows diverse groups of people to
seamlessly exchange documents.’

Microsoft Word has become the de facto stan-
dard document preparation application. There are
many reasons for this, all of which can be debated
among computer users, businesses, the general pub-
lic, educators, sociologists et al., but one of the key
reasons, vis-a-vis why TEX is not a standard, is
that Word uses a GUI as opposed to the command
line interface of IX¥TEX. This makes Word easier to
learn for the vast majority of computer users, who
are not capable of using the command line for doc-
ument preparation or simply may not want to do
so. As a realist, I do not expect this situation to
change. I also think it unlikely that proselytizing for
IXMTEX converts will be particularly effective, espe-
cially in a world in which OUIs (“oral user interfaces”)
appear destined to supplant keyboard, mouse, and

5 Of course, though seamless in theory, cross-platform
(MacOS vs. Windows) document preparation and management
using Microsoft Word (or PowerPoint) remains problematic
and vexing in practice.

David Teplow

TUGDboat, Volume 38 (2017), No. 1

other data entry methods, as well as supplant many
aspects of application and system control.®

Where then do these facts leave the HTEX com-
munity as a whole? I suggest, in the future, that
the community will continue to thrive, as it is now.
There are myriad reasons for this, many of which
have been discussed above. The most important
of these is that for many applications, especially in
mathematics, physics, and engineering, ITEX is a
superior document preparation system.” Given this
fact, those who choose to prepare their own docu-
ments using TEX, but who also work in the larger
world of Word and other document preparation ap-
plications, must implement strategies for interfacing
these two “worlds.”

The specific strategies depend on a number of
factors, the most important of which are how the
master document is to be prepared and what the
final output file format must be. The first factor
depends primarily on whether document preparation
is done by a single person or in the context of a
collaboration. The second generally is dictated by
the requirements of the end-user of the document,
e.g., a publisher. Publishers specify the file types
accepted for publication, which increasingly include
PDF. The beauty of I#TEX is the facile compilation
of the source code as a PDF file, which renders moot
the original document preparation system. This PDF
output also circumvents problems with providing
documents to those working with computer hardware
or OSs different from one’s own.

If manuscripts can be submitted for publication
using one of many file types, e.g., .tex, .doc, or
.docx, and the manuscripts present collaborative
work, the decision about source file type can be
pre-determined among collaborators, usually using a
metric based on ease of group composition. Practical
considerations also may factor into this decision. For
example, if the contributing author, the one who is
responsible for the actual compilation of the man-
uscript and its submission for publication, is not
familiar with A TEX, then Word often becomes the
default document preparation application. However,
if I am the contributing author and I want to prepare
the manuscript using ITEX, I can do so by adding
files from my collaborators into my .tex source file.
The easiest way to do this is to ask for . txt files. Sur-
prisingly, I often encounter collaborators who don’t

6 In fact, there is no reason, theoretically, why such OUIs
could not be implemented for source file creation in IATEX.

7 It should be noted that IATEX is not restricted to these
fields. It has been used effectively in a broad range of fields,
including philosophy, economics, theology, the law, and neu-
rology.

.tex
.doc
.docx
.tex
.txt

TUGboat, Volume 38 (2017), No. 1

know how to create .txt files and instead provide
.doc or .rtf files. These then must be converted
into plain text.

Conversion can be done automatically using a
variety of programs or web-based conversion utilities,
although I have found that the fidelity of conversion
often is lacking. Post-conversion processing of the re-
sulting text file thus is required to remove hidden or
special characters that create serious or fatal errors
during IMTEX compilation. I have found that utilities
that clean up text, e.g., by removing extra spaces,
carriage returns, tabs, or forwarding characters, are
especially useful in this regard. Once clean, I then
execute a second post-conversion process, usually
using global find-and-replace functions, to make sure,
among other things, that quotation marks will be
rendered properly (i.e., converting “ and ” into "~ and
"), percentage symbols are escaped (% to \%), Greek
characters are encoded properly, and one-, two-, and
three-em dashes will appear correctly. These conver-
sions can be done quite rapidly, after which the plain
text can be pasted into the source file. Additional
edits, which usually are minor, then are done in the
source file after compilation if error messages are
displayed or rendering problems exist.

“Cross-world” bibliography creation and man-
agement is a bit more cumbersome, if one defines
cumbersome as an author needing more than one
library. I maintain two comprehensive reference li-
braries, one in .bib format and one in EndNote
format (.enlp). In collaborative work in KTEX,
the collaborators agree about whose library will be
used and simply upload it to a shared directory con-
taining the manuscript source file. This is trivial.
If T must incorporate citation markers from Word
documents, regardless of their provenance (Word,
Bookends, Mendeley), then I do so manually. This
requires a significant amount of program switching
(X TEX<»JabRef), but with the powerful search ca-
pabilities of library management software, and pa-
tience, the process is straightforward. It should be
mentioned that neither world is free of typographical
problems within rendered bibliographies. Surpris-
ingly, special symbols, capitalizations, and especially
Greek characters, are usually not coded properly in

15

references downloaded from the web, especially in
the case of EndNote. I automatically examine each
downloaded reference to ensure that the bibliography
created by BIBTEX or Endnote is an exact rendering
of the reference as originally published. After hav-
ing done this for so many decades, this process has
become almost autonomic.

The fundamental principle guiding my cross-
world collaborations is “I#TEX takes anything and
Word takes nothing.” This means that if a manu-
script is composed in IMTEX, I can take content from
essentially any file type provided by a collaborator
and incorporate it into my source file. In contrast, if
manuscript composition is to be done in Word, then
IXTEX is not used at all.

6 Concluding remarks

Among the community of computer users who are
free to choose their hardware, software, and style of
use, adherence to their choices may have the flavor of
religious fanaticism. This long has been true in the
Mac community, not even considering Apple’s efforts
to portray Mac users as “cool,” “with it,” or “differ-
ent.” I am a long-time Mac fanatic, not because of
such superficial characterizations but rather because
of my recognition of a superior operating system
and how it makes my computational efforts easier
and more efficient. My extensive experience with
document processing systems has led me to the same
recognition with respect to IWTEX. I look forward to
a time when this recognition will be universal.

Acknowledgement

The author gratefully acknowledges Dr. Eric Hayden
(UCLA) for helpful comments on this manuscript.

¢ David B. Teplow, Ph.D.
Professor Emeritus
Department of Neurology
David Geffen School of Medicine at UCLA
635 Charles E. Young Drive South
Los Angeles, CA 90095
USA
dteplow (at) mednet dot ucla dot edu
http://teplowlab.neurology.ucla.edu/

What’s a Professor of Neurology doing using IXTEX?

.txt
.doc
.rtf
.bib
.enlp

	Introduction
	How I met LaTeX and why I fell in love with it
	How I learned LaTeX
	How I use LaTeX
	Using LaTeX in a non-LaTeX world
	Concluding remarks

