
TUGboat, Volume 38 (2017), No. 1 7

Interview: Scott Pakin

David Walden

Scott Pakin has developed many LATEX packages and
other TEX-related tools.

Dave Walden, interviewer : Please tell me a bit
about yourself.

Scott Pakin, interviewee : I’m 46 years old and
have lived my whole life in the United States. I grew
up in Chicago, Illinois (population: 2,700,000) and,
after graduating high school, moved repeatedly to
successively smaller cities and towns: Pittsburgh,
Pennsylvania (population: 304,000) for my under-
graduate degree at Carnegie Mellon University, then
Champaign, Illinois (population: 232,000) for my
Master’s and PhD at the University of Illinois at
Urbana-Champaign, and finally to Los Alamos, New
Mexico (population: 18,000) to work at Los Alamos
National Laboratory (LANL), where I’m still em-
ployed.

I knew from an early age I wanted to work with
computers. I started programming in BASIC at age 9
on an obscure computer at my parents’ company: an
SDS 420 from Scientific Data Systems. (It used a
1 MHz 6502 processor and took 8-inch floppy disks,
which contained maybe a hundred kilobytes of ca-
pacity.) When I was in high school, I wrote, in
8088 assembly language, a screen-dump utility called
DumpHP that printed a screen of CGA graphics to an
HP LaserJet printer. A small company named Orbit
Enterprises licensed the code from me, incorporated
it into their commercial LaserJet setup program,
SetHP, and paid me royalties. Over the next few
years, I made US$3000 in royalties — not bad for a
teenager. I had no trouble deciding I wanted to get
a bachelor’s, master’s, and eventually a doctoral de-
gree in Computer Science. Along the way, I realized I
especially enjoyed working with novel hardware and
high-performance computers, and LANL has some of
the world’s fastest.

DW : Can you say something about the kinds of
computing you do at LANL?

SP : At LANL, I’ve worked on a variety of research
projects including tools for analyzing and improving
the performance of supercomputers and the applica-
tions that run on them. I’m currently having great
fun experimenting with a supercomputer we just
bought from D-Wave Systems, Inc., that exploits
quantum effects to solve a specific type of optimiza-
tion problem. Think of TEX’s paragraph-building
algorithm, for example: It tries to find the best way
to break paragraphs into lines to minimize the total
penalty for awkward spacing. The research ques-
tion I’m currently investigating is if it’s possible to
transform more-or-less ordinary looking computer
programs into optimization problems suitable for
running on a D-Wave system.

DW : How did you first come in contact with TEX?

SP : I began using the WordPerfect word processor
(under DOS) to write documents. (WordStar was
already losing popularity, and Microsoft Word hadn’t
yet caught on.) In my opinion, the best thing about
WordPerfect was its “reveal codes” feature, which let
one see the formatted document — calling it WYSI-

WYG would be overly generous — and the underlying
markup (begin bold, end bold, begin italic, end italic,
etc.) in a split-screen layout. Both were editable, but
I really liked the precise control provided by the
markup pane so I favored using that.

I hadn’t heard about TEX until college, where a
math-major friend who had recently learned LATEX
was excitedly talking about it. However, I didn’t
bother trying it out myself at the time. Once I
began writing research papers in graduate school, I
took the time to read through Lamport’s book (first
edition, of course) and learn LATEX. Having been
weaned on WordPerfect’s “reveal codes” feature, I
found LATEX very natural to use.

Like most LATEX newcomers, I managed to slop-
pily hack my way through whatever typesetting chal-
lenges I encountered. It wasn’t until I started writing
my dissertation that I decided to spend some effort
on really learning how LATEX works, how to use it
more efficiently, and how to more precisely control
its behavior. While doing so, I picked up TEX and
LATEX programming aspects and even wrote my first
LATEX package, bytefield, which I used in my dis-
sertation.

DW : What was your dissertation topic?

SP : My PhD thesis considered processors distrib-
uted over a high-speed network working together to
perform a computation fast. I presented an approach

Interview: Scott Pakin

8 TUGboat, Volume 38 (2017), No. 1

for robustly synchronizing large numbers of such pro-
cessors such that a few laggards don’t necessarily
slow everyone else down.

DW : You have a bunch of useful tools at CTAN1.
Trying to grasp what is there, I can divide them
into several categories: LATEX packages; LATEX meta-
things (e.g., ctanify, dtxtut, bundledoc); Post-
Script, EPS, and PDF related tools; tools for moving
fonts into the TEX world (including some Metafont
aspects), and combining TEX with other languages
(Perl and Python). On your own website2 you catego-
rize things as packages, script, and documents. What
motivated you to create all these different tools?

SP : Most of my LATEX packages and programs were
written to satisfy some typesetting need I had. Then,
figuring that others might have the same need, I
polished the code, documented it, and released it to
CTAN.

It’s always interesting to see which packages
and programs have really caught on, and which
quickly faded into obscurity. In fact, even I get
surprised when I look over my list of CTAN contri-
butions and find things I haven’t used in years and
barely even remember writing. From what I can
tell, my savetrees package, which tries to squeeze
a document into as few pages as possible, is wildly
popular with researchers trying to stay within a man-
dated page limit for publication; and attachfile,
which facilitates embedding arbitrary files within a
document, and hyperxmp, which lets one include a
large amount of metadata in a document, also seem
to get a fair amount of attention. On the other hand,
spverbatim, which enables verbatim text to wrap
at spaces; listliketab, which typesets lists that
arrange data in columns; and the newcommand script,
which generates \newcommand templates for macros
with complex juxtapositions of required and optional
arguments, apparently get little or no use. Heck, I
don’t think anyone has ever used dashrule, which
draws dashed horizontal lines.

DW : You may be too pessimistic about dashrule;
it’s recommended at http://tex.stackexchange.

com/a/125503 and is mentioned in many other places
on that website.

DW : Both the Visual LATEX FAQ and the Compre-
hensive LATEX symbol list seem like they must have
been enormous efforts. How have you gone about
creating each of these?

SP : Indeed, the Visual LATEX FAQ required quite a
bit of effort to create, and the Comprehensive LATEX
Symbol List required substantially more. In both
cases, one big challenge was to incorporate mutually

conflicting elements in the same document. The sym-
bol list, which tabulates a vast number of symbols
that LATEX documents can typeset, started with rel-
atively few packages — base LATEX, AMS, St Mary’s
Road, wasy — so it began being reasonably man-
ageable. However, each new symbol package that
gets added brings a new source of woe. Perhaps
the biggest headache is that TEX has a hard-wired
limit of 16 math alphabets. I typically have to access
math fonts as if they were text fonts in order not to
overflow that limit. Even worse, I’ve recently been
encountering newer symbol packages that require
LuaLATEX or X ELATEX, while some older packages
break when using those TEX engines. Each new re-
lease of some symbol package seems to introduce a
new conflict with some other package. As a result,
the symbol list has become almost completely un-
maintainable. I’ve begun work on a complete rewrite
that should be robust to those issues, but that effort
is slow-going and is still many years away from being
usable.

DW : Please tell me your thoughts on the overall
TEX infrastructure and whether you think it can be
made better given practical limitations.

SP : TEX and LATEX have a thriving infrastructure
in terms of the sheer number of readily available
LATEX packages and the great strides being made in
recent years enhancing the underlying TEX engine
with improved support for system fonts and improved
automation using Lua.

A practical limitation is getting new users to
adopt the TEX ecosystem. Despite being only four
years older than Microsoft Word, TEX has a far
more “old-school” feel to it. Yes, TEX installation
has improved over the years; and yes, GUIs do
exist to simplify usage, obviate the need to learn
control sequences, and provide word-processor-like
synchronous editing. However, (LA)TEX’s lack of
integration is a huge shortcoming relative to a word
processor. If a user wants to typeset a table in a
particular form, does he/she use an ordinary tabular
environment or load one or more of the array,
bigtabular, booktabs, btable, calls, colortab,
colortbl, ctable, dcolumn, easytable, hvdashln,
longtable, ltablex, makecell, mdwtab, multirow,
polytable, sltables, stabular, supertabular,
tables, tabls, tabu, tabularborder, tabularew,
tabularht, tabularkv, tabularx, tabulary,
threeparttable, threeparttablex, or xtab pack-
ages? Even worse, many packages conflict with each
other either explicitly (giving an error message) or
implicitly (screwing up some unrelated aspect of the
document in some hard-to-diagnose manner). Worse

David Walden

TUGboat, Volume 38 (2017), No. 1 9

still, the set of conflicts can change from version to
version of any given package.

Another example of (LA)TEX’s lack of integration
relative to a word processor is that a word-processing
document is stored in a single file that can easily
be transmitted to colleagues. My bundledoc script
helps with this on the LATEX side by bundling to-
gether all the separate document files, style files,
class files, graphics files, etc. into a single .tar or
.zip file, but usage is still a bit clunkier than what
an integrated tool can provide.

Word processors have been improving their type-
setting quality, support for mathematics, support for
international scripts, logical structure, and other
features that have traditionally lain in TEX’s wheel-
house. For most users, word processors are good
enough tools for the jobs they have. I think the
wrong approach is to try to turn (LA)TEX into a word
processor. It lacks the foothold of, say, Microsoft
Word and is unlikely ever to become a dominant form
of document interchange. Instead, (LA)TEX infra-
structure enhancements should focus on the system’s
core strengths: ease of making global, structural
changes to an entire document; ease of automation;
and ready and convenient support for a variety of
specialized typesetting requirements in areas such as
linguistics, mathematics, and natural sciences.

DW : Given you’ve built various PostScript, EPS,
and PDF tools (such as purifyeps), do you have
thoughts on what might practically be done with
(LA)TEX to make them more suitable for integrating
with PDF et al.?

SP : I guess I don’t have any grand vision for better
integration of (LA)TEX with the PDF world. That
said, native support for PDF/A-1a generation and
fully tagged PDF would be nice. The former guaran-
tees a high degree of portability, and the latter facili-
tates reflowing text on a tablet and improves mechan-
ical reading of a document to the vision-impaired.

DW : At the 2014 TUG annual conference in Port-
land, Mertz, Slough and Van Cleave presented a
paper3 that included a significant discussion of your
bytefield package. Also, Mertz and Slough previ-
ously presented a lengthy discussion4 of your PerlTEX
system. I am interested in how you feel about other
people describing your work and whether they inter-
acted with you as they wrote their papers.

SP : I’m always eager for people to use my tools.
It’s wonderful to know that I helped someone get the
typesetting they were looking for or automate some
tedious task.

I was not contacted by the authors of the papers
you cite above, but that’s probably a good sign; it

says the authors were able to get bytefield and
PerlTEX to work without extra help. For PerlTEX,
which lets users write LATEX macros in Perl, that’s
especially encouraging. PerlTEX was extremely chal-
lenging to develop and is therefore likely to be a lot
more fragile than a typical LATEX tool. It requires
a lot of TEX trickery to process what could be con-
sidered syntactically incorrect TEX but syntactically
correct Perl from within TEX, and it takes a Com-
puter Science-y distributed-systems-style protocol to
implement correct, two-way communication between
TEX and a Perl wrapper script given TEX’s limited
ability to communicate with the outside world in a
safe (i.e., not-\write18) and portable manner. It’s
great that PerlTEX works fine for Mertz and Slough
and that they were able to perform some interesting
and creative tasks with it.

DW : Do you still see a role for PerlTEX with LuaTEX
now available?

SP : Not so much. LuaTEX deeply integrates Lua
with the TEX engine while PerlTEX is more loosely
coupled. Consequently, there are things LuaTEX can
do that PerlTEX can’t (e.g., directly manipulating
some of TEX’s internal representations). On the
other hand, I find PerlTEX’s \perlnewcommand and
\perlnewenvironment macros very convenient. Per-
haps I should write a package that provides the anal-
ogous \luanewcommand and \luanewenvironment

macros

DW : You’ve also developed lots of other tools, such
as those listed on your personal website (readers:
see http://www.pakin.org/~scott/). Perhaps you
also do not hesitate to build a new tool in the course
of accomplishing your work at LANL5. Can you speak
about tradeoff between (a) just doing what you have
to do to accomplish some primary task, and (b) first
building a tool to help you with the primary task
and then applying it to accomplish the task?

SP : I write lots of tools, and I always learn some-
thing new when I do. It’s always a good idea, though,
to perform a task manually the first few times to
determine what aspects are suitable for generaliza-
tion and automation — and to convince yourself that
the task is in fact something that gets performed
sufficiently often as to warrant building a tool for it.
I suppose the following are a good set of questions
a tool-builder might ask himself before embarking
on developing a new tool or, in the context of this
discussion, a new LATEX package:

• Is the task sufficiently common as to warrant
building a tool for it?

Interview: Scott Pakin

10 TUGboat, Volume 38 (2017), No. 1

• Is the task sufficiently complex for users to be
willing to install and learn a new tool rather
than perform the task manually?

• Is the task sufficiently general for a tool to per-
form it without having to be so parameterized
that it becomes almost as difficult to learn and
use as it is to perform the task manually?

DW : Were any of these tools particularly more fun
to work on?

SP : It’s hard to pick a single, most fun piece of
LATEX development. PerlTEX is the most sophisti-
cated LATEX-related tool I’ve ever created, and it was
exciting when I finally got that to work. My three
standalone documents — The Comprehensive LATEX
Symbol List, The Visual LATEX FAQ, and How to
Package Your LATEX Package — all required a fair
amount of thought to produce, and I learned quite a
bit from each one. I guess the common thread is that
tools, packages, and documents that were intellectu-
ally challenging to develop are more rewarding than
those that required only straightforward coding.

DW : Thank you for taking the time to participate in
this interview. You are working on a lot of fascinating
things.

[Interview completed 2017-02-05]

Links
1 https://www.ctan.org/author/pakin
2 http://www.pakin.org/~scott/latex-stuff.html
3 https://www.tug.org/TUGboat/tb35-2/tb110mertz.pdf
4 https://www.tug.org/TUGboat/tb28-3/tb90mertz.pdf
5 https://ccsweb.lanl.gov/~pakin/

� David Walden
http://tug.org/interviews

David Walden

