
TUGboat, Volume 37 (2016), No. 3 337

Localisation of TEX documents: tracklang

Nicola L. C. Talbot

Abstract

TEX is an excellent typesetting system, but its an-
cient (in computing terms) origin means that it lags
behind modern competition in terms of localisation.

Word processors and spreadsheet applications
can query the operating system’s localisation-related
environment variables to determine how to format
information, such as dates, times or currency. If
the user is writing a single-language document in
their own native language, there’s no need to keep
stating their language and region every time they
create a new spreadsheet or word processor document.
Whereas with TEX (in its various formats), users may
find themselves having to provide this information
repeatedly within a single document.

This article describes the development of the
tracklang [8] package, which can be used in LATEX or
input as a generic TEX file. It attempts to keep track
of the localisation setting so that the user doesn’t
have to redundantly supply information.

1 Introduction

Let’s consider two hypothetical people, Alice and
Bob. Alice lives in the United Kingdom (UK) and
speaks English. Bob lives in Canada and speaks
French as his primary language, but is also fluent in
English. Alice has her computer set up so that the
operating system environment variables include:

LANG=en_GB.utf8
LC_ALL=POSIX

Bob has something similar, but for some reason he
likes to have his messages in English:

LANG=fr_CA.utf8
LC_MESSAGES=en_CA.utf8

Both Alice and Bob have to send out invoices from
time to time. They could just use a spreadsheet
which will conveniently look up the localisation vari-
ables and format the date using their own regional
format (British for Alice and French Canadian for
Bob) and will format the currency column according
to their region (GBP £ for Alice and CAD $ for Bob).
However, Alice and Bob both want to use LATEX, and
they’ve discovered a package called, say, easyinvoice
that looks promising.

Alice wants to invoice someone for a DVD cost-
ing £5. Rather bizarrely, and with no regard for
exchange rates, Bob is coincidentally invoicing some-
one for a DVD costing C$5. Both start with the same
document:

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

In both cases this produces the same result:

Invoice Date: June 14, 2016.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This isn’t suitable for either Alice or Bob. It’s
closer to Alice’s requirements as it’s in English, but
the currency is incorrect and the date uses the Amer-
ican style. Alice and Bob both remember about
the babel package [1] and decide to load it before
easyinvoice. In Alice’s case, she does:
\usepackage[british]{babel}

and Bob does:
\usepackage[canadien]{babel}

Unfortunately for both of them, this only has a minor
change. For Alice, the result is now:

Invoice Date: 14th June 2016.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

For Bob, the result is now:

Invoice Date: 14 juin 2016.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

So in both cases, the only thing that has changed is
the date format. The code for easyinvoice.sty is
as follows:
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{easyinvoice}

\providecommand*{\@date}{\today}
\newcommand{\invoicedatename}{Invoice Date}
\newcommand{\invoiceitemname}{Item}
\newcommand{\invoicepricename}{Price}
\newcommand{\invoicecurrencyname}{EUR}
\newcommand{\invoicepaymentblurb}{Please
pay within 28 days of invoice date.}

Localisation of TEX documents: tracklang

338 TUGboat, Volume 37 (2016), No. 3

\newcommand*{\itemrow}[2]{\\#1}

\newenvironment{invoice}%
{%

\par\hfill\invoicedatename: \@date.\par
\begin{center}%
\begin{tabular}{lr}
\invoiceitemname &
\invoicepricename\
(\invoicecurrencyname)%

}%
{%

\end{tabular}%
\end{center}%
\invoicepaymentblurb\par
\medskip\par

}
\endinput

The package author has provided a way of alter-
ing the fixed names (by providing commands like
\invoicedatename) but babel can’t alter them (since
it’s unaware of them) and the easyinvoice package
author hasn’t provided translations. It’s therefore
necessary for both Alice and Bob to make the neces-
sary changes by redefining the relevant commands.
In Alice’s case this is just the currency unit:
\renewcommand{\invoicecurrencyname}{GBP}
However Bob needs to redefine all region-sensitive
commands.

This is a nuisance for Alice and Bob (especially
Bob) and while they can create a template .tex file
to copy every time they want to create an invoice,
there may be other packages they might want to
use that likewise need modifications. It’s not the
best example for Alice and Bob to present to their
spreadsheet-using colleagues in a bid to encourage
them to switch to LATEX.

2 Adding multi-lingual support
to packages

Let’s suppose now that the author of the easyinvoice
package decides to provide some regional support in
response to feedback from Alice and Bob. The next
version now has some additional lines of code:
\newcommand{\invoicebritish}{%
\renewcommand{\invoicedatename}{Invoice Date}%
\renewcommand{\invoiceitemname}{Item}%
\renewcommand{\invoicepricename}{Price}%
\renewcommand{\invoicecurrencyname}{GBP}%
\renewcommand{\invoicepaymentblurb}{Please
pay within 28 days of invoice date.}%

}

\newcommand{\invoicecanadien}{%
\renewcommand{\invoicedatename}{Date
de la Facture}%

\renewcommand{\invoiceitemname}{Article}%
\renewcommand{\invoicepricename}{Prix}%
\renewcommand{\invoicecurrencyname}{CAD}%
\renewcommand{\invoicepaymentblurb}{S'il
vous pla\^{\i}t payer dans les 28 jours
suivant la date de facturation.}%

}

Now Bob can simply do \invoicecanadien, which
saves him a few lines of code, but there’s not a great
deal of difference to Alice who now simply replaces:
\renewcommand{\invoicecurrencyname}{GBP}

with
\invoicebritish

Alice may be wondering at this point why the
package author has set the defaults to English text
with European currency. Many of the packages on
CTAN are written by a single author, and the origi-
nal package was simply to help the author perform
some task. The author then decided that the pack-
age might be useful to others and made it publicly
available. It’s therefore not too surprising to find
that the package defaults match the requirements of
the package author. In this case, it might be that
the package author is, say, an English speaker living
in the Republic of Ireland (RoI).

How can the easyinvoice package author be more
helpful to Alice and Bob? The package could define
options that select the appropriate \invoice〈lang〉
command. For example:
\DeclareOption{british}{\invoicebritish}
\DeclareOption{canadien}{\invoicecanadien}
\ProcessOptions

Now Bob can do:
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[canadien]{babel}
\usepackage[canadien]{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

This is still a bit of a nuisance as Bob has to tell both
babel and easyinvoice to use French Canadian. In this
example, the document has a single language and is
for a single region. The localisation is essentially a
document-wide setting here, and therefore this seems
a valid instance of making it a document class option:
\documentclass[canadien]{article}
\usepackage[T1]{fontenc}
\usepackage{babel}

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 339

\usepackage{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

Now Bob only needs to set this information once
per document. Of course, his spreadsheet-using col-
leagues might point out that they don’t need to do
it at all, but Bob decides to put up with that.

Bob now remembers that the recipient is in an
English-speaking part of Canada, and he decides that
perhaps he’d better produce a dual-language invoice,
so he tries:
\documentclass[canadien,canadian]{article}
\usepackage[T1]{fontenc}
\usepackage{babel}
\usepackage{easyinvoice}

\begin{document}
\selectlanguage{canadien}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}

\selectlanguage{canadian}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

This produces:

Date de la Facture: 14 juin 2016.
Article Prix (CAD)
DVD 5

S’il vous plaît payer dans les 28 jours suivant la date
de facturation.

Date de la Facture: 14th June 2016.
Article Prix (CAD)
DVD 5

S’il vous plaît payer dans les 28 jours suivant la date
de facturation.

This hasn’t worked for two reasons. The first one
being that easyinvoice doesn’t provide a canadian
option. This can be added to the package:
\newcommand{\invoicecanadian}{%
\renewcommand{\invoicedatename}{Invoice Date}%
\renewcommand{\invoiceitemname}{Item}%
\renewcommand{\invoicepricename}{Price}%
\renewcommand{\invoicecurrencyname}{CAD}%
\renewcommand{\invoicepaymentblurb}{Please

pay within 28 days of invoice date.}%
}
\DeclareOption{canadian}{\invoicecanadian}

Bob’s document now produces:

Invoice Date: 14 juin 2016.
Item Price (CAD)
DVD 5

Please pay within 28 days of invoice date.

Invoice Date: 14th June 2016.
Item Price (CAD)
DVD 5

Please pay within 28 days of invoice date.

This is because the easyinvoice package isn’t aware
of the language changes. Only the date has changed
because that’s controlled by babel. The language in
effect is the last one in the easyinvoice options list,
as that was the one most recently set.

The babel package has hooks that are used when
the language is set, such as \captions〈lang〉 which
redefines all the kernel fixed-text commands. To
be more generally helpful, the easyinvoice package
could test for the existence of \captionsbritish,
\captionscanadien and \captionscanadian and
add to them. For example, the following code could
be added to the easyinvoice package:
\@ifundefined{captionsbritish}{}

{\addto\captionsbritish{\invoicebritish}}
\@ifundefined{captionscanadien}{}

{\addto\captionscanadien{\invoicecanadien}}
\@ifundefined{captionscanadian}{}

{\addto\captionscanadian{\invoicecanadian}}

With this modification, Bob’s document now pro-
duces:

Date de la Facture: 14 juin 2016.
Article Prix (CAD)
DVD 5

S’il vous plaît payer dans les 28 jours suivant la date
de facturation.

Invoice Date: 14th June 2016.
Item Price (CAD)
DVD 5

Please pay within 28 days of invoice date.

Alice and Bob are now both happy, but the pack-
age author might be feeling somewhat less so. What
started out as a simple, short package has bloated.
Each supported language and region combination
requires a block of code in the form:
\newcommand{\invoicebritish}{%
\renewcommand{\invoicedatename}{Invoice Date}%

Localisation of TEX documents: tracklang

340 TUGboat, Volume 37 (2016), No. 3

\renewcommand{\invoiceitemname}{Item}%
\renewcommand{\invoicepricename}{Price}%
\renewcommand{\invoicecurrencyname}{GBP}%
\renewcommand{\invoicepaymentblurb}{Please
pay within 28 days of invoice date.}%

}
\DeclareOption{british}{\invoicebritish}
\@ifundefined{captionsbritish}{}

{\addto\captionsbritish{\invoicebritish}}

So far the easyinvoice package only supports
three language and region combinations. The more
options that are added, the more bloated the package
becomes and the harder it is to manage it. Another
method is needed to trim down this code. The babel
package stores the names of all loaded languages
in \bbl@loaded. It’s a bit risky using an internal
command defined by another package, especially if
it’s not documented in the user guide. Internal com-
mands are the closest packages can get to declaring
private variables. There’s no guarantee that they
won’t change or disappear in future versions, but
let’s suppose the easyinvoice package author decides
to take a gamble on it. The three \@ifundefined
blocks can now be changed from
\@ifundefined{captionsbritish}{}

{\addto\captionsbritish{\invoicebritish}}
\@ifundefined{captionscanadien}{}

{\addto\captionscanadien{\invoicecanadien}}
\@ifundefined{captionscanadian}{}

{\addto\captionscanadian{\invoicecanadian}}

to:
\ifdef\bbl@loaded
{%

\@for\@this@lang:=\bbl@loaded\do{%
\ifcsdef{invoice\@this@lang}%
{%

\cseappto{captions\@this@lang}{%
\expandonce
{\csname invoice\@this@lang
\endcsname}}%

}%
{%

\PackageWarning{easyinvoice}{Sorry,
no support for language `\@this@lang'}%

}%
}%

}%
{}%

(The easyinvoice author has wisely decided to use
the etoolbox package [3] to help here.) This method
has the added advantage of warning the user if their
chosen language isn’t supported.

The package options are still declared
\DeclareOption{british}{\invoicebritish}
\DeclareOption{canadien}{\invoicecanadien}
\DeclareOption{canadian}{\invoicecanadian}

in case the user has decided not to use babel. For
example, Alice might decide that she ought to expli-
citly set the date (using \date) so she has a record
of it if she needs to recheck it. (She might have
removed the PDF after posting it to tidy up her file
system.)
\documentclass{article}
\usepackage[british]{easyinvoice}
\date{14th June 2016}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

This correctly displays the GBP currency.
Betty, from elsewhere in the UK, has discovered

the easyinvoice package and decides to use it. Unlike
Alice, Betty is in the habit of using babel with the
UKenglish option, so she tries it out:
\documentclass{article}
\usepackage[UKenglish]{babel}
\usepackage{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

This produces the error message:
Package easyinvoice Warning: Sorry, no
support for language ‘UKenglish’

and displays the following in the output:

Invoice Date: 14th June 2016.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This is because the easyinvoice package doesn’t recog-
nise UKenglish as a synonym for british. A simple
fix is to add
\newcommand{\invoiceUKenglish}{\invoicebritish}

to the package code.
Betty now decides that actually she’s going to

switch to X ELATEX and start using the polyglossia
package [2] instead. Her document is now:
\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage[variant=uk]{english}
\usepackage{easyinvoice}

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 341

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}
The invoice goes back to looking like:

Invoice Date: 14th June 2016.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This time easyinvoice gives no warning message. Since
babel hasn’t been loaded, \bbl@loaded is no longer
defined, so can’t be iterated over.

The earlier method of testing for the existence of
commands like \captionsbritish no longer works
here, as polyglossia only uses the root language name.
Thus, although the document has requested the UK
variant of English, only \captionsenglish is de-
fined.

What should the easyinvoice package do in this
situation? Testing if \captionsenglish is defined
doesn’t identify the region. The best that can be
done is to modify the package option declarations:
\DeclareOption{british}{\invoicebritish

\ifdef\captionsenglish
{\appto\captionsenglish{\invoicebritish}}%
{}%

}
\DeclareOption{canadien}{\invoicecanadien

\ifdef\captionsfrench
{\appto\captionsfrench{\invoicecanadien}}%
{}%

}
\DeclareOption{canadian}{\invoicecanadian

\ifdef\captionsenglish
{\appto\captionsenglish{\invoicecanadian}}%
{}%

}

This means that Betty now has to do:
\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage[variant=uk]{english}
\usepackage[british]{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}
That is, Betty has to specify her language and region
twice in the document. This shouldn’t be necessary.

I mentioned earlier the possibility that the fic-
tional author of such an easyinvoice package might

be an English speaker in the RoI. What localisation
setting is available for users there who need to write
a document in English? The babel package provides
the following English options: english, USenglish
(or american), UKenglish (or british), canadian,
australian and newzealand; while polyglossia pro-
vides: us (or american), usmax, uk (or british),
australian and newzealand.

Thus, neither babel nor polyglossia provides a
way of identifying the English language used in the
RoI. The sensible solution would appear to be to
use the closest matching alternative. In this case it’s
british (or the UK synonym) to match the date.
Aside from political sensitivities, this doesn’t help
the easyinvoice package because it will assume that
the currency should be GBP. There may be other
packages the user requires as well that are sensitive
to the territory. For example, UTC+1 is generally
denoted BST (British Summer Time) in the UK but
IST (Irish Summer Time) in the RoI, CET in Jersey
or Guernsey, etc.

3 The tracklang package

I have a number of packages for which I want to pro-
vide regional support, but they can become so bogged
down with the code to determine the document lan-
guage and region settings that they can end up being
too high-maintenance to support. Any development
around the basic task of the package becomes side-
lined in an attempt to support all the various ways in
which a user might want to identify their preferences.
Are they using babel or polyglossia or translator (pro-
vided with beamer [4]) or ngerman [5] or some other
language package that I don’t know about?

The aim of the tracklang package is to simplify
this. It tries to determine what language and regional
settings the user has requested, so that it can provide
the information to interested packages in a more
accessible manner. It doesn’t provide translations.
It’s not an alternative to babel or polyglossia. It
doesn’t switch any document settings on. It just
attempts to keep track of the user’s settings.

3.1 Informing tracklang of the document
languages

The LATEX file tracklang.sty inputs the generic
TEX code file tracklang.tex. LATEX users can load
the package in the usual way:
\usepackage{tracklang}
However, there’s little need to load it directly in the
document preamble as it’s intended as a resource for
package writers, so it’s more likely to be loaded in a
package:
\RequirePackage{tracklang}

Localisation of TEX documents: tracklang

342 TUGboat, Volume 37 (2016), No. 3

The only options it has are language or dialect names
or regional identifiers to allow them to be picked up
from the document class options.

Non-LATEX users may load the tracklang.tex
file in the usual way. Pre-version 1.3 required a cat-
egory code change for the @ character. Version 1.3
added code to automatically set and restore the cat-
code for the benefit of non-LATEX users. Version 1.3
also introduced some new commands to make it easier
to query and parse the system environment variables
LC_ALL and LANG.

Since generic code has no concept of document
class or package options, generic use requires that
the document dialects be identified using
\TrackPredefinedDialect{〈name〉}
where 〈name〉 is a dialect label which is recognised
by tracklang.

For example, here’s the start of a LATEX docu-
ment:
\documentclass[british]{article}
\usepackage{tracklang}
The analogous plain TEX is:
\input tracklang
\TrackPredefinedDialect{british}

There are some synonyms available so, for ex-
ample, instead of british I can use UKenglish or
en-GB. The advantage of british and UKenglish
in the document class options list is that they’re also
recognised by packages such as babel. However, if
those packages aren’t in use, the ISO form fits in
better with global standards.

With version 1.3, you can instead look up your
system’s language environment variable using
\TrackLangFromEnv
This first queries LC_ALL. If that’s unavailable, it
then queries LANG. Unfortunately Windows stores the
locale information in the registry rather than in envi-
ronment variables. In this case, if texosquery [7] has
also been loaded (either through \usepackage for
LATEX users or \input for generic use) then tracklang
will use texosquery as a fallback if it fails to get a
result with the environment variables. (This will
also be used as a fallback for LuaTEX if the locale is
simply identified as the C or POSIX locale.)

Alice has LANG set to en_GB.utf8, so instead of
\TrackPredefinedDialect{british}
she can just do
\TrackLangFromEnv
(Provided either \directlua is defined or the shell
escape is available.)

The first environment variable to be queried is
LC_ALL, which Alice has set to POSIX. This is not

useful for tracklang, (similarly if it had been set to
C), so \TrackLangFromEnv tries again with LANG.

As a by-product, the component parts of the
localisation identifier are available in the following
commands:
\TrackLangEnvLang
This contains the language code. For Alice: en.
\TrackLangEnvTerritory
This contains the territory code. For Alice: GB.
\TrackLangEnvCodeSet
This contains the code set. For Alice: utf8.
\TrackLangEnvModifier
This contains the modifier. In Alice’s case, this is
empty as the modifier isn’t present.

The entire value is stored in
\TrackLangEnv

If this command has already been defined, then
\TrackLangFromEnv will skip the environment vari-
able query step. For example, no shell escape (or
\directlua) is performed with:
\def\TrackLangEnv{en_GB}
\TrackLangFromEnv
The underscore character here has its usual subscript
category code. This is the first choice by tracklang’s
internal parser when trying to split the language code
from the region code. It will also allow a hyphen
(with category code 12) as the separator:
\def\TrackLangEnv{en-GB}
\TrackLangFromEnv
and will finally try the underscore character with
category code 12.
\edef\TrackLangEnv{en\string_GB}
\TrackLangFromEnv

Also, case matters: the language code must be
in lower case and the territory code in capitals.

Here’s an example plain TEX document:
\input tracklang
\TrackLangFromEnv
Language: \TrackLangEnvLang.
Territory: \TrackLangEnvTerritory.
Codeset: \TrackLangEnvCodeSet.
Modifier: \TrackLangEnvModifier.
\bye
If this file is called, say, myDoc.tex, then if Alice
does:
pdftex myDoc
Then the resulting PDF contains:

Language en. Territory: GB. Codeset: utf8.
Modifier: .

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 343

Similar results are obtained with ε-TEX, X ETEX and
LuaTEX. Unfortunately it doesn’t work with the
non-extended TEX:
tex myDoc
This produces the following warnings:
tracklang Warning: \TrackLangQueryEnv
non-operational as can’t determine if the
shell escape has been enabled. (Consider
using eTeX or pdfTeX.)
tracklang Warning: \TrackLangFromEnv
non-operational as \TrackLangEnv is empty
Neither \shellescape nor \pdfshellescape are de-
fined, so tracklang can’t determine if the shell escape
is available, and therefore it won’t make the attempt.
This avoids the possibility of triggering the error:
! I can't find file `"|kpsewhich --var-value=LC_ALL"'.
l.2 \input |"kpsewhich --var-value=LC_ALL"
(Press Enter to retry, or Control-D to exit)
Please type another input file name:

If \shellescape/\pdfshellescape is defined
but is zero (disabled), the first warning changes to:
tracklang Warning: \TrackLangQueryEnv
non-operational as shell escape has been
disabled
If the shell escape is disabled, Alice can instead define
\TrackLangEnv from the command line:
tex "\\def\TrackLangEnv{$LANG}\\input myDoc"

Alternatively, she can use LuaTEX:
luatex --no-shell-escape myDoc
This now uses \directlua to obtain the environment
variable value.

Bob doesn’t have LC_ALL set, but he does have
LC_MESSAGES. If he wants to query this, he can use:
\TrackLangQueryOtherEnv{LC_MESSAGES}
\TrackLangFromEnv

This first tries LC_ALL, but if that doesn’t yield
a result, it then tries the variable name provided
in the argument (LC_MESSAGES in this example). If
that also doesn’t provide a value, it falls back on
LANG. The result is again stored in \TrackLangEnv
so \TrackLangFromEnv doesn’t repeat the environ-
ment variable query. The code can be slightly mod-
ified to only perform \TrackLangQueryOtherEnv if
\TrackLangEnv hasn’t already been defined:
\ifx\TrackLangEnv\undefined

\TrackLangQueryOtherEnv{LC_MESSAGES}
\fi
\TrackLangFromEnv

There’s a significant difference between directly
setting a dialect using \TrackPredefinedDialect
(including implicitly through the document class op-
tions) and using \TrackLangFromEnv.

With \TrackPredefinedDialect, an error will
occur if an explicit label isn’t recognised (or in the
case of a document class option, it will be ignored).
Whereas with \TrackLangFromEnv, if the language
and territory combination is unrecognised, tracklang
will define a new dialect to represent it.

For example, Jacques from Brussels can use:

\TrackPredefinedDialect{fr-BE}

since fr-BE is recognised by tracklang, but he can’t
replace fr-BE with en-BE, since that’s not a prede-
fined dialect.

However, Jacques can do:

\input tracklang
\def\TrackLangEnv{en-BE}
\TrackLangFromEnv
Language: \TrackLangEnvLang.
Territory: \TrackLangEnvTerritory.
Codeset: \TrackLangEnvCodeSet.
Modifier: \TrackLangEnvModifier.
\bye

The resulting PDF now shows:

Language: en. Territory: BE. Codeset: .
Modifier: .

The emphasis here is on reading the locale en-
vironment variables such as LANG because it’s easy
to call kpsewhich from TEX and capture the output.
However, version 1.3 of tracklang also introduces a
command for parsing a regular language tag. For
example:

\TrackLanguageTag{hy-Latn-IT-arevela}

The next version of texosquery (1.2) will include a
new option which can be used to access the locale
information in this format:

\input texosquery
\input tracklang
\TeXOSQueryLangTag{\langtag}
\TrackLanguageTag{\langtag}

3.2 Support for known language packages

The LATEX file tracklang.sty has some awareness
of babel, translator, polyglossia and ngerman. After it
has input tracklang.tex and processed any options,
it then tests if any of the declared options have
actually been used. For example:

\documentclass{article}
\usepackage[british]{babel}
\usepackage{tracklang}

Here british has been passed to babel, not the
document class. This means that it’s not detected
when tracklang’s options are processed.

Localisation of TEX documents: tracklang

344 TUGboat, Volume 37 (2016), No. 3

When this occurs, tracklang has to go through
the pesky process of trying to work out if any of the
language packages that it knows about have been
loaded. If any have, then tracklang needs to work
out the language settings. The simplest of these is
ngerman. If it’s been loaded, that just means doing
\TrackPredefinedDialect{ngerman}
(Similarly for german.)

The hardest of these is polyglossia, as it cur-
rently doesn’t keep a list of all the user’s selected lan-
guages. Instead, tracklang needs to iterate through
all known languages and check each one to deter-
mine if it has been loaded by testing the existence
of \〈lang〉@loaded. (For versions of tracklang before
1.3, the iteration was over a hard-coded list of known
polyglossia languages, but this could miss any new
languages that might later be supported, so as of
v1.3 the iteration is over all tracklang’s declared op-
tions, which is a longer list and therefore slower.)
There’s also no way of determining if a language
was loaded with a particular variant, so the regional
information can’t be determined. These limitations
may be addressed in the future, which would make
integration with polyglossia much easier.

If babel has been loaded, then \bbl@loaded
should be defined, in which case tracklang can it-
erate through that list and add each loaded lan-
guage to the list of tracked dialects. In the event
that \bbl@loaded isn’t defined but babel is loaded,
tracklang will iterate through a list of its own prede-
fined dialects that are available as package options
and test if the captions hook exists for that option.
As with the above case of polyglossia, this is a much
longer list.

If translator has been loaded, tracklang iterates
over the internal language list \trans@languages.

This is a bit clumsy, but it tidies the mess away
from other packages so they don’t have to do it.

3.3 Querying tracklang for the document
languages

All the dialects tracked using the commands in the
previous sections are stored by tracklang in an inter-
nal list. The root languages are stored in another
list, and any provided ISO codes are also stored.

This section looks at how a package can query
this information to determine which localisation set-
tings need to be applied. You can test if any lan-
guages are being tracked using:
\AnyTrackedLanguages{〈true〉}{〈false〉}
For example:
\input tracklang
\TrackPredefinedDialect{en-GB}

\AnyTrackedLanguages{Yes}{No}.
produces: Yes.

You can iterate over all known dialects using
\ForEachTrackedDialect{〈cs〉}{〈body〉}
This sets the control sequence given by 〈cs〉 at the
start of each iteration and does 〈body〉. For example:
\input tracklang
\TrackPredefinedDialect{en-CA}
\TrackPredefinedDialect{fr-CA}
Dialects:
\ForEachTrackedDialect

{\thisdialect}{\thisdialect. }
\bye
This produces:

Dialects: canadian. canadien.

If only the root language name is given, that will
appear in the dialect list. For example:
\input tracklang
\TrackPredefinedDialect{english}
Dialects:
\ForEachTrackedDialect

{\thisdialect}{\thisdialect. }
\bye
This produces:

Dialects: english.

In the case of Jacques’ unknown combination:
\input tracklang
\def\TrackLangEnv{en-BE}
\TrackLangFromEnv
Dialects:
\ForEachTrackedDialect

{\thisdialect}{\thisdialect. }
\bye
The result is now:

Dialects: enBE.

A useful command that can be used within the
body of \ForEachTrackedDialect is
\IfTrackedLanguageFileExists

{〈dialect〉}{〈prefix 〉}{〈suffix 〉}
{〈found code〉}{〈not found code〉}

This tests the existence of a file whose name is in
the form 〈prefix 〉〈tag〉〈suffix 〉 where the 〈tag〉 part is
determined by the 〈dialect〉. If a match is found,
〈found code〉 is performed, otherwise 〈not found
code〉. The 〈not found code〉 part is also done if
〈dialect〉 hasn’t been added to the list of tracked
dialects, or if 〈dialect〉 is empty, but this situation
won’t occur when used within the 〈body〉 argument
of \ForEachTrackedDialect.

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 345

In the 〈found code〉 part, you can obtain the
value of 〈tag〉 from
\CurrentTrackedTag

This means that within 〈found code〉 you can do
\input{〈prefix 〉\CurrentTrackedTag 〈suffix 〉}

Other convenient commands available for use
within 〈found code〉 are as follows:
\CurrentTrackedLanguage

This is set to the root language label (for example,
english if the dialect is british).
\CurrentTrackedDialect

This is set to the dialect label (for example, british).
This is the same value as 〈dialect〉.
\CurrentTrackedRegion

This is set to the region code (ISO 3166-1), if known
for this dialect (empty otherwise).
\CurrentTrackedIsoCode

This is set to the ISO code (either 639-1 or 639-2)
for the root language, if known (empty otherwise).

\IfTrackedLanguageFileExists guesses what
the 〈tag〉 should be based on whether or not the
dialect has an ISO 3166-1 country code, and if the
root language has an ISO 639-1 or 639-2 language
code. The first guess that matches a file name on
TEX’s path will provide the value of 〈tag〉.

For example, for the british dialect, the tries
will be in the order: british (dialect label), en-GB
(ISO 639-1 and ISO 3166-1), eng-GB (ISO 639-2 and
ISO 3166-1), en (ISO 639-1), eng (ISO 639-2), GB
(ISO 3166-1), english (language label). Whereas,
for the UKenglish dialect, the tries will be in the
order: UKenglish (dialect label), en-GB, eng-GB, en,
eng, GB, english (language label). It’s therefore
best not to use a file naming scheme that has dialect
labels as the 〈tag〉 part unless there’s a particular
reason to treat synonymous dialect labels differently.

Synonyms for the root language are treated as
regionless dialects; so, for example, with francais
the order is just: francais (dialect label), fr, fra,
french (language label). Compare this with the re-
gionless french language where the order is: french
(dialect label), fr, fra, french (language label).
Here the dialect label is identical to the language
label so the fourth guess either won’t be tried (be-
cause a match has already been found) or will fail
(because if it did match, it would’ve been picked up
on the first guess).

3.4 Example package using tracklang

Returning to the example easyinvoice package, it no
longer needs to define all the language options, as

they’ll be picked up by tracklang. The code that
changes the commands that produce the fixed text
(such as \invoicedatename) will go in separate files,
which will use the naming scheme

easyinvoice-〈tag〉.ldf
This fits in with \IfTrackedLanguageFileExists,
where 〈prefix 〉 is easyinvoice- and 〈suffix 〉 is .ldf.

These files can simply be input using \input,
but it’s useful to provide an equivalent to commands
like \RequirePackage and \ProvidesPackage. The
new improved version of easyinvoice is now:
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{easyinvoice}
\RequirePackage{etoolbox}
\RequirePackage{tracklang}

% If user hasn't requested a language
% try LC_ALL or LANG environment variable
\AnyTrackedLanguages{}{\TrackLangFromEnv}

% Set defaults
\newcommand{\invoicedatename}{Invoice Date}
\newcommand{\invoiceitemname}{Item}
\newcommand{\invoicepricename}{Price}
\newcommand{\invoicecurrencyname}{EUR}
\newcommand{\invoicepaymentblurb}{Please
pay within 28 days of invoice date.}

\providecommand*{\@date}{\today}
\newcommand*{\ProvidesInvoiceResource}[1]{%

\ProvidesFile{easyinvoice-#1.ldf}%
}
\newcommand*{\RequireInvoiceResource}[1]{%

\ifcsundef{ver@easyinvoice-#1.ldf}%
{%

\input{easyinvoice-#1.ldf}%
}%
{}%

}
\newcommand*{\RequireInvoiceDialect}[1]{%

\IfTrackedLanguageFileExists{#1}%
{easyinvoice-}% prefix
{.ldf}% suffix
{%

\RequireInvoiceResource\CurrentTrackedTag
}%
{%

\PackageWarning{easyinvoice}%
{No support for dialect `#1'}%

}%
}
\ForEachTrackedDialect{\this@dialect}{%

\RequireInvoiceDialect\this@dialect
}

% Main package code:
\newcommand*{\itemrow}[2]{\\#1}

Localisation of TEX documents: tracklang

346 TUGboat, Volume 37 (2016), No. 3

\newenvironment{invoice}%
{%

\par\hfill\invoicedatename: \@date.\par
\begin{center}%
\begin{tabular}{lr}
\invoiceitemname &
\invoicepricename\
(\invoicecurrencyname)%

}%
{%

\end{tabular}%
\end{center}%
\invoicepaymentblurb\par
\medskip\par

}
\endinput

At the start, this loads tracklang. If it hasn’t picked
up any localisation, an attempt is made to query the
environment variables LC_ALL or LANG.

Now for the LDF files. The language settings
are provided in a file that uses the root language
label in the 〈tag〉 part. The territory settings are
provided in a file that uses the ISO country code in
the 〈tag〉 part.

For example, easyinvoice-english.ldf:

\ProvidesInvoiceResource{english}
\providecommand*{\englishinvoice}{%

\renewcommand{\invoicedatename}{Invoice Date}%
\renewcommand{\invoiceitemname}{Item}%
\renewcommand{\invoicepricename}{Price}%
\renewcommand{\invoicepaymentblurb}{Please
pay within 28 days of invoice date.}%

}
\englishinvoice

% polyglossia check: \captions<root language>
\ifundef\captionsenglish
{% babel check: \captions<dialect>

\ifcsundef{captions\CurrentTrackedDialect}{}%
{%

\csgappto{captions\CurrentTrackedDialect}%
{\englishinvoice}

}%
}%
{\gappto\captionsenglish{\englishinvoice}}%
\endinput

The territory file easyinvoice-GB.ldf:

\ProvidesInvoiceResource{GB}
\providecommand*\GBinvoice{%
\renewcommand{\invoicecurrencyname}{GBP}%

}
\GBinvoice
\endinput

The dialect settings are stored in a file where
the 〈tag〉 part is formed from the ISO language code

and country code. This file needs to load the root
language LDF file and the territory LDF file.

For example, easyinvoice-en-GB.ldf can look
like this:
\ProvidesInvoiceResource{en-GB}
\RequireInvoiceResource{english}
\RequireInvoiceResource{GB}

\ifundef\captionsenglish
{%

\ifcsundef{captions\CurrentTrackedDialect}%
{}%
{%

\csgappto{captions\CurrentTrackedDialect}{%
\GBinvoice

}%
}%

}%
{\gappto\captionsenglish{\GBinvoice}}

If, for example, babel has been loaded with the
british option, this means the \captionsbritish
hook now includes
\englishinvoice
\GBinvoice
With polyglossia, these are in \captionsenglish
(but tracklang must be informed that the en-GB dia-
lect is required).

The LDF files rely on \CurrentTrackedDialect
being set, which it will be when the file is loaded
within \IfTrackedLanguageFileExists. If an at-
tempt is made to use \RequireInvoiceResource
when this command hasn’t been set, there’ll be a
problem with the caption hooks.

Although \RequireInvoiceResource could in-
clude a check for this, \RequireInvoiceDialect is
a more general purpose command, so it’s better to re-
strict \RequireInvoiceResource to use within the
resource files:
% Default behaviour outside of resource files:
% generate an error and ignore the argument.
\newcommand*{\noop@RequireInvoiceResource}[1]{%

\PackageError{easyinvoice}
{\string\RequireInvoiceResource\space only
permitted within invoice resource files.}

{}%
}
\let\RequireInvoiceResource

\noop@RequireInvoiceResource

% Actual behaviour of \RequireInvoiceResource
% used within resource files.
\newcommand*{\@RequireInvoiceResource}[1]{%

\ifcsundef{ver@easyinvoice-#1.ldf}%
{%

\input{easyinvoice-#1.ldf}%
}%

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 347

{}%
}

% General use command.
\newcommand*{\RequireInvoiceDialect}[1]{%

\IfTrackedLanguageFileExists{#1}%
{easyinvoice-}% prefix
{.ldf}% suffix
{%

% Enable \RequireInvoiceResource so that it can
% be used in resource files.

\let\RequireInvoiceResource
\@RequireInvoiceResource

% Load resource file.
\RequireInvoiceResource\CurrentTrackedTag

% Disable \RequireInvoiceResource.
\let\RequireInvoiceResource

\noop@RequireInvoiceResource
}%
{%

\PackageWarning{easyinvoice}%
{No support for dialect `#1'}%

}%
}

(This could be extended to add code prohibiting
\RequireInvoiceDialect within resource files.)

3.5 Using a tracklang-enabled package

With this new arrangement, Alice can do:
\documentclass{article}
\usepackage{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}
As long as she has the shell escape enabled or she’s
using LuaLATEX, the result is:

Invoice Date: June 14, 2016.
Item Price (GBP)
DVD 5

Please pay within 28 days of invoice date.

This still uses the default US date style because
easyinvoice doesn’t make any changes to \today. Al-
ice could load datetime2 [6] as well, but it might be
helpful for easyinvoice to do this automatically.

The datetime2 package also uses tracklang, so it
seems the best solution would be to just load it with
\RequirePackage{datetime2}
However, datetime2 defaults to numeric ISO date
style. The useregional option is required to switch
on the regional support. However, it’s best not to

use the optional argument of \RequirePackage as
it can result in a package option clash error if it has
already been loaded. It’s possible that the user has
already loaded datetime2 with their own preferred
style, and easyinvoice shouldn’t interfere with this.

Thus, a better approach is to use:
\PassOptionsToPackage

{useregional=text}{datetime2}
\RequirePackage{datetime2}

Maybe easyinvoice should also allow the user to pass
options to datetime2 within easyinvoice’s option list:
\PassOptionsToPackage

{useregional=text}{datetime2}
\DeclareOption*{%
\PassOptionsToPackage

{\CurrentOption}{datetime2}
}
\ProcessOptions
\RequirePackage{datetime2}

So the new improved easyinvoice package now
works just fine for Alice; however, Betty, who’s us-
ing polyglossia, still needs to explicitly indicate her
region:
\documentclass[en-GB]{article}
\usepackage{polyglossia}
\setmainlanguage[variant=uk]{english}
\usepackage{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

Since tracklang has detected polyglossia’s english
setting, \TrackLangFromEnv isn’t used. To help
here, the easyinvoice package could provide an option
to insist on querying the environment variable even
if there are other languages present. For example:
\DeclareOption{env}{\TrackLangFromEnv}

This means that Betty can now do:
\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage[variant=uk]{english}
\usepackage[env]{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

which saves her the redundant document option.
Another possibility is to add a test for the ex-

istence of \TrackLangEnv, regardless of whether or
not any languages have been detected:

Localisation of TEX documents: tracklang

348 TUGboat, Volume 37 (2016), No. 3

\ifdef\TrackLangEnv
{\TrackLangFromEnv}
{\AnyTrackedLanguages{}{\TrackLangFromEnv}}

This will add to the document’s dialect list if it’s not
already present. In the case of en-GB, the dialect
is considered a synonym for british but not a syn-
onym of UKenglish, even though both dialects have
the same language and country codes.

If neither babel nor polyglossia are loaded, the
last dialect in the list will be the one in effect. For
example, the following document adds fr-CA to the
list of tracked dialects:
\documentclass[fr-CA]{article}
\usepackage{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}
However, if the document is compiled using
pdflatex '\def\TrackLangEnv{en-GB}\input{myDoc}'

Then the en-GB setting will override fr-CA.
Seán from the RoI also decides to use easyinvoice

but he prefers to have the date include the time and
zone information:
\documentclass{article}
\usepackage{easyinvoice}
\date{\DTMnow}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}
He has LC_ALL set to en_IE and as he has shell
escape enabled (or is using LuaLATEX) this is added
to the list of tracked dialects. In this case, only the
english LDF file is loaded, not the GB or en-GB files.
This means that the currency is unchanged, which
is fine for Seán.

Since datetime2 has been loaded with the re-
gional option on, its en-IE style is automatically set,
so UTC+1 is displayed as IST, as shown below:

Invoice Date: 14th June 2016 1:10pm IST.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This is a simple solution for all the countries
that use the Euro currency; however, multilingual
documents that switch from one territory to another

need help to return to the default. This can be
done by defining a command for setting the country
defaults (in easyinvoice.sty). For example:
\newcommand*{\countrydefaultinvoice}{%

\renewcommand{\invoicecurrencyname}{EUR}%
}

Now the root language LDF file needs to add this to
the captions hooks:
\ifundef\captionsenglish
{%

\ifcsundef{captions\CurrentTrackedDialect}{}%
{%

\csgappto{captions\CurrentTrackedDialect}%
{%

\englishinvoice
\countrydefaultinvoice

}%
}%

}%
{%

\gappto\captionsenglish{%
\englishinvoice
\countrydefaultinvoice

}%
}

Remember that easyinvoice-en-GB.ldf adds to
the hook after this, so \GBinvoice will override this
default setting if the dialect is en-GB.

Let’s not forget about Bob in Canada. He needs
easyinvoice-CA.ldf:
\ProvidesInvoiceResource{CA}
\providecommand*\CAinvoice{%
\renewcommand{\invoicecurrencyname}{CAD}%

}
\CAinvoice
\endinput

The Canadian English file easyinvoice-en-CA.ldf:
\ProvidesInvoiceResource{en-CA}
\RequireInvoiceResource{english}
\RequireInvoiceResource{CA}

\ifundef\captionsenglish
{%

\ifcsundef{captions\CurrentTrackedDialect}%
{}%
{%

\csgappto{captions\CurrentTrackedDialect}{%
\CAinvoice

}%
}%

}%
{\gappto\captionsenglish{\CAinvoice}}
\endinput

The French Canadian file easyinvoice-fr-CA.ldf
is similar:
\ProvidesInvoiceResource{fr-CA}

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 349

\RequireInvoiceResource{french}
\RequireInvoiceResource{CA}

\ifundef\captionsfrench
{%

\ifcsundef{captions\CurrentTrackedDialect}%
{}%
{%

\csgappto{captions\CurrentTrackedDialect}{%
\CAinvoice

}%
}%

}%
{\gappto\captionsfrench{\CAinvoice}}
\endinput

This needs easyinvoice-french.ldf:
\ProvidesInvoiceResource{french}
\providecommand*{\frenchinvoice}{%
\renewcommand{\invoicedatename}{Date
de la Facture}%
\renewcommand{\invoiceitemname}{Article}%
\renewcommand{\invoicepricename}{Prix}%
\renewcommand{\invoicepaymentblurb}{S'il
vous pla\^{\i}t payer dans les 28 jours
suivant la date de facturation.}%

}
\frenchinvoice

\ifundef\captionsfrench
{%

\ifcsundef{captions\CurrentTrackedDialect}{}%
{%

\csgappto{captions\CurrentTrackedDialect}%
{%

\frenchinvoice
\countrydefaultinvoice

}%
}%

}%
{%

\gappto\captionsfrench{%
\frenchinvoice
\countrydefaultinvoice

}%
}
\endinput

This suits Jacques just fine as, like Seán, he
only needs the root language file since he wants the
country default.

Meanwhile Hank, over in the USA, only needs
easyinvoice-US.ldf:
\ProvidesInvoiceResource{US}
\providecommand*\USinvoice{%
\renewcommand{\invoicecurrencyname}{USD}%

}
\USinvoice
\endinput

and easyinvoice-en-US.ldf:
\ProvidesInvoiceResource{en-US}
\RequireInvoiceResource{english}
\RequireInvoiceResource{US}

\ifundef\captionsenglish
{%

\ifcsundef{captions\CurrentTrackedDialect}%
{}%
{%

\csgappto{captions\CurrentTrackedDialect}{%
\USinvoice

}%
}%

}%
{\gappto\captionsenglish{\USinvoice}}
\endinput

Now Seán decides to provide an Irish Gaelic
version easyinvoice-irish.ldf:1

\ProvidesInvoiceResource{irish}
\providecommand*{\irishinvoice}{%

\renewcommand{\invoicedatename}{D\'ata
Sonraisc}%

\renewcommand{\invoiceitemname}{M\'{\i}r}%
\renewcommand{\invoicepricename}{Praghas}%
\renewcommand{\invoicepaymentblurb}{Tabhair

\'{\i}oc laistigh de 28 l\'a \'o dh\'ata
an tsonraisc.}%

}
\irishinvoice

\ifundef\captionsirish
{%

\ifcsundef{captions\CurrentTrackedDialect}{}%
{%

\csgappto{captions\CurrentTrackedDialect}%
{%

\irishinvoice
\countrydefaultinvoice

}%
}%

}%
{%

\gappto\captionsirish{%
\irishinvoice
\countrydefaultinvoice

}%
}
\endinput

Again, he doesn’t need to worry about providing a
ga-IE LDF file since he wants the default currency.

Now Ciaran in Northern Ireland discovers this
and tries to produce an invoice in Irish Gaelic:

1 If the Irish and French text here are a bit iffy, it just
goes to show how unwise it is to expect someone to provide
translations for languages they don’t know or aren’t fluent in.
They tend to cheat and use a popular translation website.

Localisation of TEX documents: tracklang

350 TUGboat, Volume 37 (2016), No. 3

\documentclass[ga-GB]{article}
\usepackage{easyinvoice}

\begin{document}
\begin{invoice}
\itemrow{DVD}{5}
\end{invoice}
\end{document}

To his surprise, although the date is in Irish and the
currency is GBP, the text is in English:

Invoice Date: 14 Meitheamh 2016.
Item Price (GBP)
DVD 5

Please pay within 28 days of invoice date.

An inspection of the transcript shows that only the
GB LDF file has been loaded. The problem here is
that there’s no ga-GB file, so the first LDF file to
match 〈tag〉 is the GB file.

The solution is to add easyinvoice-ga-GB.ldf:
\ProvidesInvoiceResource{ga-GB}
\RequireInvoiceResource{irish}
\RequireInvoiceResource{GB}

\ifundef\captionsirish
{%

\ifcsundef{captions\CurrentTrackedDialect}%
{}%
{%

\csgappto{captions\CurrentTrackedDialect}{%
\GBinvoice

}%
}%

}%
{\gappto\captionsirish{\GBinvoice}}
\endinput

For any new LDF file, no change is required
to the code in easyinvoice.sty. As long as the
files are placed on TEX’s path, easyinvoice will detect
them.

4 Language packages

A language package is one that actually sets the doc-
ument language (hyphenation patterns, redefining
fixed name commands such as \contentsname, pos-
sibly set fonts and so on; e.g., babel). The easyinvoice
package is an example of a package that needs to
know the document language. How can language
package authors help packages like easyinvoice?

Let’s suppose I want to write a language package
that sets up a document for Ancient Greek. If this is
for single language documents (just Ancient Greek
and nothing else), all I need to do is add the following
lines to my package:

\input{tracklang}% v1.3
\TrackPredefinedDialect{greek}
\SetTrackedDialectModifier{greek}{ancient}

I’ve used \input rather than \RequirePackage here
to skip the tests for babel, polyglossia etc. There’s
no need to test for the possible language packages
because this is the language package. (There’s a test
in tracklang.tex to prevent multiple loading.)

In this case the label greek is recognised by
tracklang, but if it weren’t, I could replace the above
with:
\input{tracklang}
\TrackLocale{el@ancient}

This has the ISO 639-1 code (el) with a modifier
(ancient). \TrackLocale works in the same way
as \TrackLangFromEnv but doesn’t use any of the
\TrackLangEnv. . . commands. If I prefer to use an
IETF language tag I can use \TrackLanguageTag
instead.

As of version 1.3, tracklang recognises nearly 200
languages with ISO 639-1 or 639-2 codes. However,
if my root language isn’t included in that list, I can
add it using:
\AddTrackedLanguage{greek}
\AddTrackedIsoLanguage{639-1}{el}{greek}
\AddTrackedIsoLanguage{639-2}{ell}{greek}

or for a regional dialect:
\AddTrackedDialect{greekCY}{greek}
\AddTrackedIsoLanguage{639-1}{el}{greek}
\AddTrackedIsoLanguage{639-2}{ell}{greek}
\AddTrackedIsoLanguage{3166-1}{CY}{greekCY}

If my package is providing support for mul-
tiple languages or dialects with caption hooks in
the form \captions〈lang〉, then I also need to use
\AddTrackedDialect if 〈lang〉 isn’t recognised by
tracklang.
% user has requested "ancientgreek":
\AddTrackedDialect{ancientgreek}{greek}
\AddTrackedIsoLanguage{639-1}{el}{greek}
\AddTrackedIsoLanguage{639-2}{ell}{greek}
% define caption hook:
\def\captionsancientgreek{%

...}

In this case, tracklang doesn’t recognise ‘ancient-
greek’, but since it does recognise ‘greek’ and knows
the ISO codes for it, I can actually just do:
% user has requested "ancientgreek":
\AddTrackedDialect{ancientgreek}{greek}
\AddTrackedLanguageIsoCodes{greek}
% define caption hook:
\def\captionsancientgreek{%

...}

Now if a user wants to use this language package
and easyinvoice, then easyinvoice can find out the

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 351

document language without having to know anything
about my Ancient Greek package.

Note that the above code is all generic with the
exception of
\input{tracklang}

which needs to be replaced with:
\input tracklang

for plain TEX. (This syntax also works with LATEX.)

5 Summary

5.1 Document authors

Load the language package before any packages that
use tracklang. For example:
\documentclass{article}
\usepackage[british]{babel}
\usepackage{easyinvoice}

If the region is needed but isn’t provided by the
language package (or no language package required),
use the ISO format. For example:
\documentclass[en-IE]{article}
\usepackage[english]{babel}
\usepackage{easyinvoice}

Generic use (query operating system):
\input tracklang
\TrackLangQueryEnv
\input genericinvoice

5.2 Package writers

LATEX packages need to use
\RequirePackage{tracklang}

to pick up babel, etc., options. Generic use:
\input tracklang

In either case, if no languages found, query OS:
\AnyTrackedLanguages{}{\TrackLangFromEnv}

For package foo, put the language or regional com-
mands in separate foo-〈tag〉.ldf files, which are
loaded using
\def\RequireFooResource#1{\input foo-#1.ldf}
\def\RequireFooDialect#1{%

\IfTrackedLanguageFileExists{#1}{foo-}{.ldf}%
{\RequireFooResource\CurrentTrackedTag}%
{}% no support warning

}
\ForEachTrackedDialect{\thisdialect}{%

\RequireFooDialect\thisdialect
}%

6 Conclusion

The tracklang package provides a way for package au-
thors to conveniently query the document language
settings to make it easier to provide multilingual sup-
port. The generic code allows it to be used with mul-
tiple TEX formats, and the LATEX code additionally
detects and supports common language packages.

\IfTrackedLanguageFileExists allows a mod-
ular approach so that localisation support can be
added and maintained independently of the main
package code. This shifts the expectation that a sin-
gle person (the package author) should not only be
able to write TEX code but also be fluent in all known
languages and dialects, to a community-based ap-
proach with the package author maintaining the base
package code and any interested volunteers providing
the benefit of their own local knowledge.

References

[1] Javier Bezos and Johannes L. Braams.
The babel package, 2016. ctan.org/pkg/babel.

[2] François Charette and Arthur Reutenauer.
polyglossia: an alternative to the babel package,
2016. ctan.org/pkg/polyglossia.

[3] Philipp Lehman. The etoolbox package, 2011.
ctan.org/pkg/etoolbox.

[4] Vedran Miletić, Joseph Wright, and
Till Tantau. The beamer class, 2015.
ctan.org/pkg/beamer.

[5] Bernd Raichle. Kurzbeschreibung german.sty
und ngerman.sty, 1998. ctan.org/pkg/
german, ctan.org/pkg/ngerman.

[6] Nicola Talbot. The datetime2 package, 2016.
ctan.org/pkg/datetime2.

[7] Nicola Talbot. texosquery: Query OS
information from TEX, 2016.
ctan.org/pkg/texosquery.

[8] Nicola Talbot. The tracklang package, 2016.
ctan.org/pkg/tracklang.

� Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich Research Park
Norwich NR4 7TJ
United Kingdom
N.Talbot (at) uea dot ac dot uk
http://www.dickimaw-books.com

Localisation of TEX documents: tracklang

