
TUGBOAT

Volume 37, Number 3 / 2016

General Delivery 255 President’s note / Jim Hefferon

256 Editorial comments / Barbara Beeton

R.I.P. Kris Rose, 1965–2016; A book fair. . . and another passing;
Some typography links to follow; Another honor for Don Knuth;
A fitting memorial for Sebastian Rahtz;
Second annual Updike Prize for student type design; Talk by Fiona Ross

259 Interview with Federico Garcia-De Castro / David Walden

Typography 264 Typographers’ Inn / Peter Flynn

Software & Tools 267 LuaTEX version 1.0.0 / Hans Hagen

269 LuaTEX 0.82 OpenType math enhancements / Hans Hagen

Electronic

Documents

275 Introducing LaTeX Base / Gareth Aye

277 Computer Modern Roman fonts for ebooks / Martin Ruckert

Graphics 281 When (image) size matters / Peter Willadt

Survey 284 A survey of the history of musical notation / Werner Lemberg

Fonts 305 Colorful emojis via Unicode and OpenType / Hans Hagen

306 Cowfont (koeieletters) update / Taco Hoekwater and Hans Hagen

311 Corrections for slanted stems in METAFONT and METAPOST / Linus Romer

317 GUST e-foundry font projects /

Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski

LATEX 337 Localisation of TEX documents: tracklang / Nicola Talbot

352 Glisterings: Index headers; Numerations; Real number comparison / Peter Wilson

Macros 357 Messing with endnotes / David Walden

358 Tracing paragraphs / Udo Wermuth

Hints & Tricks 374 The treasure chest / Karl Berry

Cartoon 376 An asterisk’s lament / John Atkinson

Abstracts 377 Die TEXnische Komödie: Contents of issues 2–3/2016

TUG Business 254 TUGboat editorial information

254 TUG institutional members

378 TUG 2015 election

Advertisements 379 TEX consulting and production services

News 380 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: http://tug.org/TUGboat.

Individual memberships

2017 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount:

Regular members (early bird): $85.
Special rate (early bird): $55.

Members also have the option to receive TUGboat

and other benefits electronically, for an additional
discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions

TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2017 is $110.

Institutional memberships

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.

METAFONT is a trademark of Addison-Wesley Inc.

PostScript is a trademark of Adobe Systems, Inc.

[printing date: November 2016]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Jim Hefferon, President∗

Boris Veytsman∗, Vice President

Klaus Höppner∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Karl Berry
Kaja Christiansen
Michael Doob
Steve Grathwohl
Steve Peter
Cheryl Ponchin
Geoffrey Poore
Norbert Preining
Arthur Reutenauer
Michael Sofka
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past

and present board members, and other official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

General correspondence,

membership, subscriptions:

office@tug.org

Submissions to TUGboat,

letters to the Editor:

TUGboat@tug.org

Technical support for

TEX users:

support@tug.org

Contact the

Board of Directors:

board@tug.org

Copyright c© 2016 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

“Editors are ghouls and cannibals.”
Harriet Vane to Salcombe Hardy

Dorothy L. Sayers
Busman’s Honeymoon (A love story
with detective interruptions) (1937)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 37, NUMBER 3 • 2016
PORTLAND • OREGON • U.S.A.

TUGboat editorial information

This regular issue (Vol. 37, No. 3) is the last issue of the 2016

volume year.
TUGboat is distributed as a benefit of membership to

all current TUG members. It is also available to non-members

in printed form through the TUG store (tug.org/store), and
online at the TUGboat web site, tug.org/TUGboat. Online

publication to non-members is delayed up to one year after
print publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volunteers
and checked by the Editor before publication. However, the
authors are assumed to be the experts. Questions regard-
ing content or accuracy should therefore be directed to the
authors, with an information copy to the Editor.

Submitting items for publication

Proposals and requests for TUGboat articles are gratefully
received. Please submit contributions by electronic mail to
TUGboat@tug.org.

The first issue for 2017 will be a regular issue, with a
deadline of February 24, 2017. The second 2017 issue will be
the proceedings of the TUG’17 conference (tug.org/tug2017).

The third issue deadline is September 1.
The TUGboat style files, for use with plain TEX and

LATEX, are available from CTAN and the TUGboat web site,
and are included in common TEX distributions. We also ac-
cept submissions using ConTEXt. Deadlines, templates, tips
for authors, and more is available at tug.org/TUGboat.

Effective with the 2005 volume year, submission of a
new manuscript implies permission to publish the article, if
accepted, on the TUGboat web site, as well as in print. Thus,
the physical address you provide in the manuscript will also
be available online. If you have any reservations about post-
ing online, please notify the editors at the time of submission
and we will be happy to make special arrangements.

254 TUGboat, Volume 37 (2016), No. 3

TUGboat editorial board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

Other TUG publications

TUG is interested in considering additional manuscripts for
publication, such as manuals, instructional materials, docu-
mentation, or works on any other topic that might be useful
to the TEX community in general.

If you have such items or know of any that you would
like considered for publication, send the information to the
attention of the Publications Committee at tug-pub@tug.org.

TUGboat advertising

For advertising rates and information, including consultant
listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of TUGboat.
If there is any question about whether a name is or is not a
trademark, prudence dictates that it should be treated as if it
is. The following list of trademarks which commonly appear
in TUGboat should not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American Mathe-

matical Society.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

http://tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

River Valley Technologies,

Trivandrum, India

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TNQ, Chennai, India

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Cambridge,

Centre for Mathematical Sciences,

Cambridge, United Kingdom

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

TUGboat, Volume 37 (2016), No. 3 255

President’s note

Jim Hefferon

Lots of things are happening in the TEX world, some
new and some older, some great to hear and some
otherwise.

Elections

This is an election year for TUG. There are ten seats
up for a vote this year, including mine as President.

We invite nominations for these openings. I
hope that you will consider serving if you are able.
It is a truism but it is nonetheless true that the work
doesn’t get done unless somebody does it.

The page tug.org/election/ has the full infor-
mation. If you have any questions, please contact the
election committee, whose address is on that page.
The submission deadline, which will be strictly kept,
is February 1.

Conferences

Next year’s TUG conference will take place in con-
junction with the yearly BachoTEX conference. We
are excited to be joining the Polish group GUST to
celebrate their 25th birthday. A big thank you to
them for agreeing to host!

The dates are April 29–May 3, 2017 (note that
this differs from the midsummer time we have often
used in the past). The monthly online TUG newslet-
ter and the web page tug.org/tug2017/ will have
more information as it becomes available.

I’ve also just heard the dates and location for the
11th International ConTEXt meeting have been set:
September 11–17, 2017 in Butzbach-Maibach, Ger-
many. More information on this will be at meeting.
contextgarden.net/2017/.

New projects

We have activated two working groups.
The PDF accessibility group addresses the very

important work of implementing accessibility stan-
dards in TEX. It has a web page tug.org/twg/

accessibility/ and mailing list lists.tug.org/

accessibility. You can direct a portion of your
TUG donations, which are tax deductible in the US,
to this group.

The education working group is aimed at helping
to teach and promote TEX in schools and universities.
The mailing is list lists.tug.org/edutex and the
freshly minted web site at tug.org/twg/edutex/.

This second group is near to my heart. I would
dearly like to see more undergraduates using TEX
and friends. I’m a mathematics professor and I
teach an introduction to proofs class. As part of

the class I require students to learn enough LATEX
to do their homework. It is a professional standard
in mathematics and I think it is to their benefit to
know it.

If you are interested in these issues, please join!

Membership drive continues

We are continuing our campaign Members Bring

Members. We ask all TUG members to help spread
the word about our community by inviting new indi-
viduals and organizations to join.

If you know someone who uses TEX and friends,
someone who is interested in high quality electronic
documents, then please urge them to consider joining
TUG.

On the TUG signup form at tug.org/forms/

current/memberapp.html, the first question is for
new members: “Who invited you to join TUG?” We
acknowledge each such sponsor with a small gift,
a postcard made by long-time TUG member Peter
Wilson on his letterpress specially for this campaign
(or, if preferred, any physical item from TUG store).
Moreover, we will recognize participants in the cam-
paign at the TUG meeting, in TUGboat, and on the
web site. At the end of 2016, we will also hold a
drawing and the person selected will receive a copy
of the limited edition book Manuale Zapficum: Typo-

graphic arrangements of the words by and about the

work of Hermann Zapf & Gudrun Zapf von Hesse

(2009).

Helping

We all benefit from the work of others, and that
includes those of us in the TEX world. If you are
able to give back a bit but are not sure how, you
could consider running for the TUG Board; see above.
Alternatively, the technical committee maintain a
list of project ideas for anyone interested to tackle,
at tug.org/help.html. Have a look; they are all
worthwhile.

Kristoffer Rose

We learned with sadness that Kris Rose has passed
away in September. He is one of those people whose
work has helped me personally. He was the author
of the widely used XY-pic package. And, he was
a member of the TUG Board from 1997–2003, as
well as Vice President from 1997–2001. He was also
a contributor to Debian. Barbara will say more
elsewhere in this issue but we were sorry to hear the
news and our thoughts go out to his loved ones.

⋄ Jim Hefferon

Saint Michael’s College

jhefferon (at) smcvt dot edu

President’s note

256 TUGboat, Volume 37 (2016), No. 3

Editorial comments

Barbara Beeton

R.I.P. Kris Rose, 1965–2016

Kristoffer Høgsbro Rose was a native of Denmark,
born 5 April 1965. He discovered computer science
when he was very young, and spent the rest of his life
involved in this pursuit. He was an early contributor
to AUC-TEX, and the author of XY-pic.

In Aarhus in the mid-1990s, after receiving his
degree from the University of Copenhagen, he was
teaching at and working with the Basic Research in
Computer Science (BRiCS) center; he would from
time to time visit with Kaja Christiansen and have
a chat. Kaja reports:

We’d talk TEX, XY-pic, Debian or Emacs, or he
would sit down and read my copies of TUG-

boat. In 1997 we happened to talk about TUG;
the same year I decided to join the board at
TUG’97.

Kris joined the TUG board at the same time, and
was elected Vice President for a term through 2001;
he remained on the board until 2003. In addition to
his TUG participation, he was active in the Debian
open source and free software community.

Also in 1997, Kris moved with his family from
Denmark to France, taking a teaching position at
the École Normale Supérieur (ENS) de Lyon, from
which position he was invited in 2000 by IBM to join
the TJ Watson facility in New York as a Research
Scientist. It was at this point that he left the TEX
community, but continued to be active in Debian. In
2013, while still at IBM, he joined the adjunct faculty
of New York University, where he taught compiler
construction. In 2014, he left IBM to become a
research scientist in the financial industry, at Two
Sigma Investments, while continuing to teach at NYU,
and becoming more active as a Debian contributor.
Late in 2015 he was diagnosed with a very aggressive
form of leukemia, which took his life on 17 September
2016. He was far too young.

A book fair. . . and another passing

The first weekend in October, my husband and I
attended the Oak Knoll Fest XIX in New Castle, Del-
aware, hosted by Oak Knoll Press.1 (Some attendees
at the 2001 TUG meeting, held at the University
of Delaware, may remember my recommendation to
visit the bookshop.) This book fair is held every
other year, and I look forward to it eagerly. So it
surprised and saddened me to learn of the death, just

1 http://www.oakknoll.com

a week earlier, of Oak Knoll’s proprietor and guiding
spirit of the Fest, Robert Fleck; nonetheless, the Fest
went on as planned, following Bob’s admonition to
his son Rob, “Hell no! We’ve already paid for it!”
(Rob and his mother, Millie, intend to continue the
work Bob started, Bob’s plans are solidly in place
for the next several years.)

Oak Knoll is both a bookshop and a publisher,
with a very specialized focus—books about books.
I first became familiar with Oak Knoll in the early
years of TEX when I was looking for some of the
books listed in the bibliography of Don Knuth’s
Gibbs lecture, “Mathematical Typography”.2 In ad-
dition to the (very few) publications devoted to math
composition, the shop is full of publications about
fonts, composition and printing, bibliography, book-
binding, papermaking, fine press books, A most
valuable resource for information on the history of
type and printing.

Bob Fleck also recognized an interest in con-
temporary hand-set and artists’ books, and in 1996
encouraged the founding of the Fine Press Book As-
sociation (FPBA).3 The biennial Oak Knoll Fest
comprises a symposium on book-related topics as
well as a book fair where book-makers, most of them
FPBA members, exhibit their creations and works
in progress. The array of books and ephemera to be
seen is dizzying in its variety.

The topic for this year’s symposium was the
question: what are the most important criteria for a
private press when selecting texts to print? While
this matter is undoubtedly secondary for most TEX
users, the opinions and experience of the participants
were interesting and enlightening for any active or
prospective book collector.

For anyone who loves books and is in the Del-
aware vicinity around the beginning of October (in
even-numbered years; it alternates years with the
Oxford Book Fair, in the UK), attending the Fest is
a recommended activity.

Another honor for Don Knuth:

the SIAM John von Neumann Lecture

On 12 July 2016, the John von Neumann Lecture
prize was awarded to Don Knuth “for his transfor-
mative contributions to mathematics and computer
science”. Knuth delivered the associated prize lecture,
“Satisfiability and Combinatorics” on that day to the

2 Bulletin of the American Mathematical Society (new

series), 1:2, 337–372 (March 1979), https://www.ams.org/
bull/1979-01-02/S0273-0979-1979-14598-1; republished in
Digital Typography, pp. 19–65.

3 http://fpba.com

TUGboat, Volume 37 (2016), No. 3 257

Some typography links to follow

On the illegibility of street signs in New York, in verse:
http://flip.it/HLIMY

How typeface designers made room in the New York Times for President Eisenhower’s
long last name:
http://www.theatlantic.com/technology/archive/2016/06/

eisenhower-and-the-skinny-s/486965/

Selections from the blog of St Brigid Press, in the Blue Ridge Mountains of Virginia:

How type is made, in two parts:
http://www.stbrigidpress.net/blog/how-type-is-made-part-1

http://www.stbrigidpress.net/blog/how-type-is-made-part-2

A letterpress lexicon, in (so far) three parts:
http://www.stbrigidpress.net/blog/a-letterpress-lexicon-part-1

http://www.stbrigidpress.net/blog/a-letterpress-lexicon-part-2

http://www.stbrigidpress.net/blog/a-letterpress-lexicon-part-three

The blog itself:
http://www.stbrigidpress.net/blog

Videos from Type@Cooper —Lectures presented in conjunction with
the Cooper Union typeface design program, in New York and San Francisco:
https://vimeo.com/coopertype/videos

Donald Knuth, “32 Years of Metafont” (Type@CooperWest talk):
https://www.youtube.com/watch?v=0LR_lBEy7qU

Announcements of upcoming lectures:
http://coopertype.org/

annual meeting of the Society for Industrial and Ap-
plied Mathematics (SIAM) in Boston, Massachusetts.
This is the highest honor awarded by SIAM; “the flag-
ship lecture recognizes outstanding and distinguished
contributions to the field of applied mathematical
sciences and the effective communication of these
ideas to the community.”

A fitting memorial for Sebastian Rahtz

The Text Encoding Initiative (TEI) has announced
the creation of the Rahtz Prize for TEI Ingenuity.
The prize is described in part as follows:

The TEI Consortium has created the Rahtz
Prize for TEI Ingenuity in memory of Sebastian
Rahtz (13 February 1955–15 March 2016). The
award is intended to honour Sebastian’s major
technical and philosophical contributions to the
TEI, and to encourage TEI innovation by the
TEI community.

The full announcement can be read at http:

//www.tei-c.org/Activities/rahtz.xml; nomi-
nations for the first award are due 1 April 2017.

Second annual Updike Prize

for student type design

On October 17, safely outside of the winter storm
season,4 the award ceremony for the second annual
Updike Prize for student type design was held at the
Providence Public Library. The invited speaker was
Dr. Fiona Ross of the University of Reading.

Four finalists were announced, and their entries
were on exhibit, along with information about the
sources they had consulted for inspiration. Here are
their names, and the names of their typefaces.

• June Shin, Ithaka (First Prize)

• SooHee Cho, The Black Cat

• Cem Eskinazi, Mond

• Íñigo López Vázquez, Erik Text

A brief announcement is at https://pplspcoll.

wordpress.com/2016/10/20/congratulations-to-

june-shin-winner-of-the-2016-updike-prize/,
and includes several related links.

4 Last year’s presentation, on 19 February 2015, was ac-
companied by a fierce snowstorm. The event was reported
in my column in TUGboat 36:1, http://tug.org/TUGboat/
tb36-1/tb112beet.pdf.

258 TUGboat, Volume 37 (2016), No. 3

Talk by Fiona Ross

Fiona Ross is on the faculty of the University of
Reading, where she lectures on non-Latin typeface
design in the MA Typeface Design program, and
is curator of the Non-Latin Type Collection. (She
is also an Associate Designer for Tiro Typeworks,
the organization which is polishing version 2 of the
STIX fonts.) Her talk, on the occasion of the Updike
Prize ceremony, entitled “Collections-based research
for contemporary typeface design — with special ref-
erence to non-Latin scripts”, dealt with the resources
necessary when designing fonts for languages in which
one is not a native speaker, and how to make most
effective use of them.

Dr. Ross used the Bengali script as her main
example. Bengali has a long history, longer even than
Latin, with the oldest representations being carved
in stone, and more recent, though still old, examples
produced with a broad-edge pen that has the writing
edge slanted in the opposite direction from that of the
broad-edge pen used for italic script. Although the
Bengali script is strongly alphabetic, the glyphs are
based on consonant clusters, with vowels relegated
almost to diacritic status. The order of written
phonemes is not necessarily the same as how the
phonemes occur in the spoken word. Wide elements
at the top or (less frequently) bottom traditionally
overlap what occurs next to them; the overlap can
occur on either side. The setting of these features in
type is strongly influenced by what is possible with
the available technology.

Dr. Ross’ studies in Sanskrit prepared her for
her first assignment at Linotype (UK), where she
undertook to redesign the Bengali font for use with
a filmsetter. The existing Linotype Bengali font was
designed for use on a hot-metal typesetter, which had
no real ability to kern adjacent characters. With-
out this ability, the only alternative would be to
provide ligatures, which for Bengali would increase
the number of glyphs to several hundred; with a
physical capacity of only 90 characters at a time,
the Linotype was incapable of accommodating this
requirement. For this reason, many shapes were re-
stricted to a width narrower than tradition would
dictate. But the desire for printed material (India
is still devoted to reading the daily newspaper) was
stronger than the requirement for typography that
embodied traditional elegance.

The design of a new font, even for a new technol-
ogy, should not be simply a clone of an existing font,
even if it is meant to fill the same niche. Especially
if a new technology provides possibilities that were
not available under previous technologies, the op-
portunity should be taken to create something that

matches the expectations of the culture whose lan-
guage it will be used to exemplify. So it was possible,
with the enhanced capabilities of the filmsetter, to
ignore the limitations that had heretofore restricted
the font design.

The UK Linotype company held a collection of
manuscripts and printed materials in the relevant
script, as well as having a branch in India with per-
sonnel willing to supply not only more examples, but
also the expertise of native language speakers. To-
gether, these resources fulfilled the three criteria that
are required for development of a new font (besides
the efforts of a skilled designer): relevance, signif-
icance, and reliability. For Bengali, the available
materials covered a broad period as well as a signifi-
cant variety of likely applications. The staff of the
office in India were enthusiastic about the project,
allowing work on the new font to be a true team ven-
ture. Despite Dr. Ross’ lack of native competency in
Bengali, the ability to ask the right questions and
attention to the opinions of those native speakers
resulted in a product that was readily adopted by
the major Bengali newspapers, and even today, more
than thirty years later, it is still the predominant
font used by the newspapers.

The image below was kindly provided by Dr.
Ross to illustrate this report. It says, in Hindi
transliteration, “Typographic Design” in Adobe De-
vanagari Regular and Bold, designed by Tim Hol-
loway, Fiona Ross, and John Hudson.

Every slide illustrating Dr. Ross’ talk included
the Bengali letter “ka” (Unicode U+0995) as an icon.
An inquiry elicited the information that “ka” is auspi-
cious; this is the first glyph that she designs in every
script.

On 17 July 2016, Dr. Ross presented a lecture
on a related topic at Typographics 2016, held at
The Cooper Union in New York City. A video of
that talk can be viewed at https://www.youtube.

com/watch?v=3_MbN_pBuy0. In her slides, starting
at 3:29, the iconic Bengali “ka” can be seen, usually
in the lower left-hand corner.

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

TUGboat, Volume 37 (2016), No. 3 259

Interview: Federico Garcia-De Castro

David Walden

Erin Gallagher Pesa

Federico Garcia-De Castro is a composer of music,
passionate for chess, and a lover of TEX.

Dave Walden, interviewer : Please tell me a bit
about yourself.

Federico Garcia-De Castro, interviewee : I was
born and raised in Bogota, Colombia. I was a pretty
normal child, but I pursued a couple of interests from
an early age — I went to the conservatory for a couple
years, before that conflicted with math Olympiad
training and I decided to do math. I’d return a
couple of years later, as I remember out of curiosity
and a vague remembrance that it (music) had actu-
ally been interesting. Math still figured at the top,
though, but then eventually I left math to devote my-
self to chess, which was my life pretty much between
11 and 16. And, studying chess, I started listening
to music (while studying openings, tactics, etc.), and
that’s when I got hooked on music. In the end, at
16 I decided music — composition — was my thing.

So my mom, who had been the one pushing
for my early music training (and hated that I quit
for math, and later hated much worse that I quit
math for chess!), ended up winning that one. The
one who lost, however, was my uncle Rodrigo De
Castro. A mathematician, uncle Luli was in Chicago
for seven years before returning to Colombia in 1993,
when I was 15. He’s also a huge music aficionado
and connoisseur, and was the one who triggered my
teenage interest in music . . . always trusting that I
clearly was going to be a mathematician. He’s most
relevant here, however, because in 1993 he brought
TEX to Colombia.

Now, a digression for context: some four years
ago I was visiting Bogota, and went through some
notebooks and papers and things my mom had kept

Federico conducting a composition of his at the 2015
MusicArte Festival in Panama

from our childhood years. (That is, mine and my
brother’s; Nicolás is two years younger, and now a
German philologist; he writes amazing poetry on
the side, and I have set a couple of his poems to
chamber works.) In those childhood archives I found
a small slip of paper, which had, written clearly in a
child’s handwriting, some 10 lines of a program — in
BASIC. This discovery, and some things it made us
all remember, helped me, as an adult, understand
a lot of my life in a new light. Whatever I did as
a child, whatever I pursued, whatever courses I en-
rolled, I was always, and have always been, foremost
a programmer. In the wide sense: what else is a
music score? No more and no less than a program —
a series of instructions, written in a code (with its
own syntax that you have to learn, etc.), that will
be executed. And then debugged. A musical work is
not exactly analogous to an algorithm, but even so,
what a composer does is programming.

My relationship with composition has always
been tense (as probably anyone’s is — nothing special
there). When I came to the United States, for PhD
in composition at Pitt in 2001, I also “discovered”
musicology, and I did much more musicology than
composition. From that time stems the motivation
for my first LATEX packages.

DW : Let’s talk about them later.

FGDC : Then eventually between 2005 and 2009 I
was really devoting myself to chess — in 2009 I won,
amazingly, the Pittsburgh Chess Club championship
and the informal “state” tournament at Carlisle, PA.
That’s where the TEXmate package stemmed from.
Soon after my graduation in 2006 I co-founded a
contemporary music organization, which has since
grown stronger and stronger. That meant for years
I flirted seriously with a career in conducting

Interview: Federico Garcia-De Castro

260 TUGboat, Volume 37 (2016), No. 3

It’s like I always looked for something to do,
something to be, other than a composer That’s
why it was so important to me to understand, as men-
tioned above, that I am mainly a programmer, and
that my interest in composing is of the same nature.
Composing, I’ve since also figured out, is just much
harder and much scarier (among other things, you
don’t have the luxury of constant feedback through
test runs). But it is what I am, period.

DW : How did you first come in contact with TEX?

FGDC : So in 1993 I ran into TEX. Then I only
had an Atari 130 XE, which I got after months and
months of pleading to my parents because I wanted
finally to be able to program on a computer, not on
slips of paper . . . (also, my parents couldn’t readily
afford a computer right away, that was the reason
for the wait). I had no PC to run TEX on in 1993,
but I have the vivid memory of being in a class in
school and writing out the TEX document that would
produce whatever the textbook we were looking at
was. I’d write it on the left side of the notebook; on
the right, I’d calligraph out what would have been
TEX’s output. This was in 1993, just when I got to
know TEX and was hooked enough that I had to do
it even on paper :) That summer a colleague of my
uncle hired me to typeset his math book. I remember
too the frustrating moments with ! Extra messages,
and my uncle coming to my rescue (I worked at my
uncle’s place — I did not have a PC!) when the tears
were starting to come.

Back then, AMS-TEX was the thing. (In fact,
my uncle had brought with him the LATEX manual,
but he had never used LATEX and only vaguely told
me what it was. I borrowed the book. I was the
one who told my uncle (!) that LATEX was onto
something) The point is that, for me, names
like Spivak, Mittelbach, Rahtz, etc., were the same
as names like Mozart, Beethoven, Brahms.

This last one with an h; Braams would also be-
come like that when my uncle kept writing LATEX
manuals for Colombian (and Spanish-speaking) TEX
users, with which I helped him. In 2002, I think,
El Universo LATEX featured a CD with examples and
summaries — in PDF, done by me, with color syntax
highlighting and plenty of hyperlinks — a lot of fun
with \verb. Years and years later, when working se-
riously on my most complicated program (TEXmuse),
I looked back at this code, when I wanted to add
syntax highlighting to the LATEX docstrip system —
what eventually became the colordoc package.

In 2011, I think, Frank Mittelbach (Beethoven!)
got in touch with me to include TEXmate in the
second volume of the LATEX Graphics Companion.

One of the LATEX books written by Federico’s uncle in
2002; Federico prepared the PDF summary included in
the CD.

And then I met him, in Boston in 2012. A couple of
weeks ago (as of this writing) I had multiple beers
and chats with him in Toronto.

DW : When you say that your uncle brought TEX to
Colombia, do you mean to you personally or basically
to all Colombia?

FGDC : To all Colombia. He basically brought TEX
with him when returning from his time in the US

(PhD in math at Champaign Urbana). At around the
same time TEX was also brought into the community
centered on another person (I can’t remember his
name), who was associated with the Math Olympiads.
But my uncle brought it to the National University,
much more central in the math community. And then
he immediately started writing booklets, manuals,
etc., that people needed in order to learn. I remember
he even did one on PiCTEX. And a full booklet for
tables, which of course were a problematic subject
in TEX. And so on.

DW : Is your uncle still alive and promoting TEX?

FGDC : He’s still active at the math department.
Demand for TEX manuals declined once most peo-
ple know how to use it and with the availability of
everything online these days. But I’m sure copies of
that book are still sold every once in a while today.

DW : You mentioned TEXmate. What other things
have you implemented in TEX. (I know you have
written about some of them.)

FGDC : Here’s a list:

• subfiles— an alternative to the \include

mechanism that allows the subsidiary

David Walden

TUGboat, Volume 37 (2016), No. 3 261

documents to be typeset as stand-alone
documents.

• todo— utilities to add a to-do list at the end
of a document.

• texmate— comprehensive chess annotation.

• opcit— support for footnote-style
bibliographies in LATEX.

• colordoc— modification of the doc package
that provides syntax highlighting.

And there’s TEXmuse, of course

DW : Yes, I have read your papers on TEXmuse:
On musical typesetting: Sonata for TEX and META-
FONT, Op. 21, and TEX and music: An update on
TEXmuse2.

I’d like to come back to TEXmuse. How about
TEXcel, which you presented at TUG 20163?

FGDC : TEXcel is a set of macros I developed this
spring for financial tracking and reporting for my
contemporary music company. It was a fun project,
a nice excuse to program (go back to hacking TEX),
with a clear and manageable goal. It is a complete
and robust system, but it simply does what it does:
helps in reporting financial information for my orga-
nization. It is certainly the backbone of what conceiv-
ably would be a more “public” and general purpose
package; and, inasmuch as it was a kind of discovery
(in the sense that who would have thought that TEX
was more appropriate for this than a spreadsheet),
it was an interesting presentation for the TUG meet-
ing. But I would not count it next to the packages
above that are meant for general use by general users
without much further hacking.

DW : Let’s return to your composing. Is it possible
to label the kind of music you write, and who are
your musical influences (in addition to your uncle)?

FGDC : The genre is usually called “new music”.
But for someone who doesn’t already know what
that means, it doesn’t mean much. Lately I’ve said
“contemporary chamber music”. That gets it across.

I think Mahler and Beethoven are the greatest
composers in history. At one point I was a devoted
Bachian (I even published a scholarly article on his
Italian Concerto), but I have since matured, hehe.

All that said, it is when I listen to Luciano
Berio, Witold Lutos lawski, and George Crumb that
I remember why I am a composer.

DW : Might you give us an example of each of these
composers that is in any sense representative of their
compositions? Perhaps I can listen to them via
YouTube.

FGDC : Crumb’s Makrokosmos series (the first one
is for solo piano, then he wrote one for amplified

piano, then the masterpiece volume III for two pianos
and two percussionists, and finally one for amplified
piano four hands) is in my view among the highest
creations of the human mind in any area. Crumb’s
music is unmistakable, but in a very open way: it’s
prolific in his influence on other composers (in the
80s, for example, it swept through Latin America
and everyone was writing like him for a while, in the
good sense), unlike, for example, Messiaen’s, who
sounds like Messiaen to the point that it came to be a
kind of dead end with no more to be explored there.

Berio’s Laborintus II is a piece that also fills
me with admiration. This coming spring (I can
barely believe it), I am producing and conducting
the Pittsburgh premiere of the piece (which is very
ambitious: 17 instruments, 8 actors/speakers, 3 solo
sopranos, narrator, and electronics) as part of a
residency with Chicago-based vocal ensemble Quince.
This has been more of a dream than a goal for me;
until it became a possibility last year, it was simply
too unthinkable.

Lutos lawski’s music is certainly my biggest in-
fluence. I think the piano concerto is second only,
maybe, to Beethoven’s Emperor. His cello concerto,
his third symphony, and his string quartet are tow-
ering exemplars of each genre. His music is rela-
tively conservative in format (most of it for orches-
tra, which is a 19th-century instrument), if not in
its amazing content; and this has meant that he’s a
little less “sexy” than more fashionable contempora-
neous names, notably Ligeti. But everyone agrees
Lutos lawski is a giant.

DW : On your website4, I see full scores5 for some
of your compositions. How do you do your compos-
ing — musical instrument, music paper and pencil,
instrument and music notation program, or directly
into a music notation program (e.g., TEXmuse)?

FGDC : It really depends on the piece, the project,
the kind of idea I’m struck by. I just finished a guitar
piece, that’s inspired by a Cuban trova song (Pedro
Luis Ferrer’s Romanza de la niña mala). You can
think of it almost as a translation into a new language
(in my piece, the guitar is tuned in microtones; and
in addition it has no lyrics, it’s just the guitar part).
The process was: passage by passage, listen to the
original, then find the right “translation” on my
guitar; I’d then lock the left hand in position, so as
to not lose the chord, and quickly scribble it down
with my right hand on my notebook. But not all the
details — those would be added simply when (next
step) I’d type the notes into the computer. On the
other hand, I’ve been composing a piece for six harps
placed around the audience; in this case I have no

Interview: Federico Garcia-De Castro

262 TUGboat, Volume 37 (2016), No. 3

Federico at the piano strings for his composition
Livre Pour Deux Pianos, August 2014, New Hazlett
Theater Community Supported Art Performance
Series, Pittsburgh, PA (photo by Renee Rosensteel)

instrument to find chords on and the piece is really
about the surround effect, so exactly what notes I
write is really a minor point. For this there’s mainly a
huge “research” stage that’s really about discovering
what the piece is about, and I am a long way away
from even knowing what the best notation will be
for it — so the computer is useless at this point.

The question, I think, touches on the relation-
ship between the notebook and the computer. Do
musicians have it all in their heads? Do they fig-
ure it out on paper? Do they use the computer for
it? All understandable questions, but in a way they
are illusory: would you ask a novelist, or a scholar,
whether they write first on paper and then type it
up? The answer in that case is not only obvious
(take notes as needed on paper, but go ahead and
use the computer for the actual text), but also not
very interesting. Well, I hate to say it, but writing
music doesn’t carry any more mystery about it than
writing words!

DW : Please compare your TEXmuse music tran-
scription with other programs, for example, Finale,
Sibelius, MusiXTEX, or Lilypond.

FGDC : The most important aspect and uniqueness
in TEXmuse’s approach is that it is all about keeping
the act of typesetting music as close as writing it by
hand as possible. In several respects: if you’re, say,
in c-minor, you don’t write the flat next to each e,
even though you mean it (because that’s part of what
being in c minor means). This is the major deficiency
of Lilypond — a very complete system, but with a
syntax and an approach so autonomous from the
musician’s mind that it’s a chore more than a help.

TEXmuse also features some algorithms that

were pursued in the belief that mechanical tasks are
exactly what computers are for. In music, in par-
ticular, pitch spelling (including transposition) and
line breaking are areas that are largely mechanical
but that have been left alone by music typesetting
software. Among the two of them they consume the
biggest (and unacceptably big) portion of a com-
poser’s time these days It was this frustration
that led me to think of TEX for music typesetting.
And it was so high on my priority list that I tackled
those two algorithms very early on: if they were
not going to be possible, then the rest would not be
worth it.

In recent times there have been advances. I
follow from a distance, but from what I have seen
MusicXML is very good, there are serious people do-
ing serious research on all of this. (I’m still not aware
of anyone tackling the spelling problem, though.) It’s
part of the reason why I haven’t continued working
on TEXmuse (in addition to time, my “real” respon-
sibilities, etc.): that space is in a sense crowded
now, and crowded with good efforts. As a system,
and thinking of the user’s experience, TEX (sadly) is
not really the most promising environment; I don’t
see the whole musician community installing and
deciphering TEX.

TEXmuse can still be a contribution at some
point: as a front end to the other systems that have
been developing. At this point in TEXmuse, TEX
takes the user’s input (and this is its strength) and
from it, it makes METAFONT programs that produce
the music. There’s no reason why TEXmuse’s in-
put couldn’t be something other than METAFONT

(for example, Lilypond, or MusicXML). In fact, this
is probably much much easier than programming
METAFONT automatically!

DW : Please say something about Alia Musica6 and
the new music festival7 it sponsors, e.g., how and
why were they founded, how does it help you (or
the world) for you to spend time as artistic director
and obviously doing lots of less artistic work to keep
them functioning?

FGDC : In the last 15 years or so (I lived here since
2001), Pittsburgh has been going through a major
cultural renaissance. Even when I got here the city
was far from its infamous past as a dirty steel mid-
west town, and had already shifted to things like the
health system (the biggest industry in Pittsburgh,
through the University of Pittsburgh Medical Cen-
ter), high-tech research (mainly at Carnegie Mellon
University) and eventually high-tech industry. But
culturally it’s been a thing of the last decade or so.
I founded Alia Musica with another 10 emerging

David Walden

TUGboat, Volume 37 (2016), No. 3 263

composers in 2006–7. The main reason was that
there were really no professional outlets for the work
of young composers in the city, and in fact there was
little visibility, little funding, and little interest. In a
word, we realized that since no one was playing our
music we would have to do it ourselves. A lot has
changed, and it’s continuing to change. Some things
lag behind (funding, media attention) but they’re
catching up. In any case, the contemporary chamber
music scene is much larger, and not only in quan-
titative terms. More and more young people (and
that includes, simply statistically, artists, and within
them musicians) are either moving in or (perhaps
more relevantly in a city with a long tradition of
excellent music performance schools) staying after
advanced studies.

I was reflecting on this during an interview I did
for the new-music blog “I Care If You Listen” on the
occasion of the 2016 edition of the Pittsburgh Festi-
val of New Music8 (PFNM), a production of mine and
of Alia Musica’s in May 2016. As I was saying, when
we started there wasn’t much devoted to cultivating
the creation and appreciation of new music in the
city (and that’s why we started; and, by the way, we
were not the only ones that started more or less at
that same time). By contrast, at PFNM 2016 one
of the performances was a showcase of current new-
music activity in Pittsburgh, for which I had to select
groups. I had “room” for seven, and I had to make
a choice, and it wasn’t easy. New initiatives pop up,
some die, some endure, but the general sense is of vi-
brant activity. Alia Musica itself has in a way grown
out of its original mission of performing Pittsburgh
composers; other younger initiatives have taken that
role. Alia Musica has been able now to shift its focus,
from making an impact on the careers of emerging
musicians, to making an impact on the actual life
experience of its audiences. So, for example:

• In 2014 we produced a piece that was written for
9 to 99 percussionists by Pulitzer Prize winner
John Luther Adams; we gathered 67 percussion-
ists at a park.

• We presented one of the most epic works of
the 20th century, the variations for piano on
The People United will Never Be Defeated, per-
formed by the composer himself, the legendary
Frederic Rzewski, at a fish market!

• In 2015 we were able to bring a residency with
cutting-edge California composer/vocalist Ken
Ueno9 to perform his own concerto for overtone/
throat-singing and orchestra (excerpt10).

• As part of the May 2016 festival we produced a
flashmob of Stravinsky’s Firebird11 at the cen-
tral Market Square in Pittsburgh.

These are epic, unforgettable events — music
at its most relevant, the proof, in fact, that music
can still be relevant. I mean, who cares that the
counterpoint is well crafted or that the pianist has
good technique? When you’re seeing (as in the third
bullet point above) a symphony orchestra re-creating
and elaborating on the sound of a low throat-singing
note, with muted trombones and string glissandos,
who cares really whether the tempo is correct? Who
cares, even, who the composer is? More and more
in the mind of the general audience, Alia Musica is
the folks who bring these experiences to our lives.

I should mention one more thing, namely, one of
the young ensembles just founded, NAT 2812. I have
been in touch with them in regards to my 10 years
of professional activity as a composer in Pittsburgh.
As part of the celebration, NAT 28 is going to devote
a full concert to my music this November. A “por-
trait concert”, the dream of any composer. They are
bright young musicians, recent graduates in perfor-
mance, and beyond (or before) plans for this concert
I have had nothing to do with their formation. I
take this as a sign that the seeds planted by Alia
Musica (among many seeds planted by others as well)
are in fact taking root and producing on their own.
Personally, it is also one more gift I get from Pitts-
burgh — like the right grant that I’ve gotten at the
right time for the right new idea, effectively the mech-
anism by which I’ve stayed, year after year, and based
my career in what is an increasingly central city.

DW : Thank you for taking the time to do this in-
terview. You’ve mentioned a lot of new music I need
to listen to.

[Interview completed 2016-08-17]

Links

1 http://tug.org/TUGboat/tb24-2/tb77garcia.pdf
2 http://tug.org/TUGboat/tb33-2/tb104garcia.pdf
3 http://tug.org/TUGboat/Contents/contents37-2.html
4 http://garciadecastro.net/composer
5 http://tinyurl.com/garciadecastroscores
6 http://aliamusicapittsburgh.org
7 http://icareifyoulisten.com/2016/05/5-questions-

federico-garcia-de-castro-pittsburgh-new-music-

festival-artistic-director
8 http://pghnewmusic.com
9 http://newmusicusa.org/projects/spring-2016-a-ken-

ueno-premiere-2
10 http://youtu.be/A_4nfxShyGM
11 http://youtu.be/bz8OVFygnQA
12 http://www.nat28.org

⋄ David Walden
http://tug.org/interviews

Interview: Federico Garcia-De Castro

264 TUGboat, Volume 37 (2016), No. 3

Typographers’ Inn

Peter Flynn

Dashing it off

I recently put up a new version of Formatting Infor-

mation (http://latex.silmaril.ie), and in the
section on punctuation I described the difference be-
tween hyphens, en rules, em rules, and minus signs.

In particular I explained how to type a spaced
dash — like that, using ‘dash~---Ђlike’ to put a
tie before the dash and a normal space afterwards,
so that if the dash occurred near a line-break, it
would never end up at the start of a line, only at
the end. I somehow managed to imply that a spaced
dash was preferable to an unspaced one (probably
because it’s my personal preference, but certainly
not an absolute).

The ensuing discussion on comp.text.tex re-
vealed some curious inconsistencies. Petros Travioli
very kindly directed me at the Oxford Dictionaries
web site at http://www.oxforddictionaries.com/
words/punctuation#dash, which gives examples of
an unspaced em-rule, but in the ‘Read more’ link
on that page, we discovered that the examples are
actually spaced en-rules. This is the practise recom-
mended by Wikipedia’s style guide, which says that
the em-rule is not spaced; and the APA style guide
agrees with them [1, p 97]. Strunk & White use it
unspaced, but don’t actually mention it; but the As-
sociated Press style guide disagrees and says to use
spaces, which is what TUGboat does (\thinspace,
in fact).

So what authorities say they think is right, and
what publishers actually do, can be very different. I
just picked up five books I read since the start of the
year:

• Sansom, Ian (2012) Paper: An Elegy. Fourth
Estate (Harper Collins), London, 2012 (spaces

around en rule).
• Wilson, Bee (2013) Consider The Fork. Penguin,

London (spaces around em rule).
• Jones, Terry and Alan Ereira (2005) Mediaeval

Lives. BBC Books, London (spaces around

em rule).
• Sayers, Dorothy (1942) The Nine Tailors. Victor

Gollancz, London (unspaced em rule).
• Banks, Iain M (2003) The Player of Games.

Orbit (Macmillan), London (spaces around

en rule).

I suspect that, as with many points of typographic
style, you should follow the conventions of your dis-
cipline; but if you have free rein, choose whichever
style you think best —but be consistent.

X ELATEX

Back at the ranch, we have been experimenting with
X ELATEX in our workflow, spurred on by two recent
requests to use a specific set of OpenType fonts for
some GNU/Linux documentation. X ELATEX offers
two major improvements on pdfLATEX: the use of
OpenType and TrueType fonts, and the handling of
UTF-8 multibyte characters.

Font packages. You can’t easily use the font pack-
ages you use with pdfLATEX because the default font
encoding is EU1 in the fontspec package which is key
to using OTF/TTF fonts, rather than the T1 or OT1

conventionally used in pdfLATEX. But late last year
Herbert Voß kindly posted a list of the OTF/TTF

fonts distributed with TEX Live which have packages
of their own for use with X ELATEX [6].

Table 1: List of font packages supporting X ELATEX
(as of 25 Dec 2015)

accanthis some Accanthis with CMR

Alegreya some Alegreya with CMR

AlegreyaSans some Alegreya Sans with CMSS

cabin some Cabin with CMSS

caladea some Caladea with CMR

carlito some Carlito with CMSS

cinzel some Cinzel with CMR

ClearSans some Clear Sans with CMSS

ebgaramond some EB Garamondwith CMR

FiraMono some Fira Mono with CMTT

FiraSans some Fira Sans with CMSS

gillius some Gillius with CMSS

gillius2 some Gillius2 with CMSS

imfellEnglish some IM FELL Englishwith CMR

libertine some Libertine with CMR

librebaskerville some Libre Baskerville with CMR

librecaslon some Libre Caslon with CMR

LobsterTwo some Lobster Two with CMR

merriweather some Merriweather with CMR

mintspirit some Mint Spirit with CMSS

mintspirit2 some Mint Spirit2 with CMSS

PlayfairDisplay some Playfair Display with CMR

quattrocento some Quattrocento with CMR

raleway some Raleway with CMSS

roboto some Roboto with CMSS

sourcecodepro some Source Code Pro with CMTT

sourcesanspro some Source Sans Prowith CMSS

sourceserifpro some Source Serif Pro with CMR

universalis some Universalis with CMSS

These packages, shown in Table 1, work with
the \usepackage command in the normal way. The

Peter Flynn

TUGboat, Volume 37 (2016), No. 3 265

LATEX Font Catalogue has a separate page at http://
www.tug.dk/FontCatalogue/opentypefonts.html

for fonts with OpenType support.
So what do you do about all those other font

packages not yet adapted to detect that they are
being used in X ELATEX? Individual font specifi-
cation in X ELATEX is slightly different to that in
pdfLATEX: it requires the fontspec package. This pro-
vides three commands which let you specify the three
basic families expected by LATEX: \setmainfont,
\setsansfont, and \setmonofont (there are also
commands for loading individual fonts). The argu-
ment is either a full fontname like Times New Roman

or a font filename like Lato-Hairline.ttf, and this
is where the fun starts, because both methods have
advantages and disadvantages for ease of use and
portability.

Full fontnames. There are OTF/TTF replacements
for many of the pdfLATEX-oriented package fonts,
which can be loaded using the full font name, in-

cluding spaces. The TEX Gyre project has created a
set of fonts which work with fontspec, equivalent to
the old Adobe ‘35’ which have been a mainstay of
desktop publishing for many years (see Table 2).

Table 2: Font names for equivalents of the Adobe
PostScript ‘35’ fonts

TeX Gyre Adventor Avant Garde

TeX Gyre Bonum Bookman

TeX Gyre Chorus Zapf Chancery
TeX Gyre Cursor Courier

TeX Gyre Heros Helvetica

TeX Gyre Pagella Palatino

TeX Gyre Schola Century Schoolbook
TeX Gyre Termes Times

For example, \setsansfont{TeX Gyre Adventor}.

If you need the Microsoft Windows Core Fonts
which come with most Windows and Mac systems
(available as RPM/DEB packages for GNU/Linux),
the names are shown in Table 3.

However, the downside with all the other OTF

or TTF fonts already installed on a computer is
that the user may not know how to find out the
full fontname — it’s usually the one shown when you
display the system font folder or pull down the font
menu in a wordprocessor. The upside is that the
full fontname is usually fairly clear and descriptive,
and stays built into the font even if you change the
filename.

On GNU/Linux systems, where there is no strict
rule about where such fonts get installed, you must

Table 3: Font names for using the Microsoft Windows
Core Fonts in X ELATEX

Andale Mono Andale Mono
Arial Arial
Arial Black Arial Black
Comic Sans MS Comic Sans MS
Courier New Courier New
Georgia Georgia
Impact Impact
Times New Roman Times New Roman
Trebuchet MS Trebuchet MS
Verdana Verdana
Webdings

For example, \setsansfont{Comic Sans MS}.

use your system’s font cache to find a fontname. You
create the cache by running the command

sudo fc-cache -f -vv

You can then use the fc-list command to list the
fonts it found (the second colon-separated field) and
use a filter like grep (1) to find the name you want.

Font filenames. You can also load the font by file-
name, providing the filetype (extension), location
(path), and naming pattern for the font variants as
options (see Figure 1).

\setmainfont{Lato-Hairline}[Extension=.ttf,

Path=/usr/share/fonts/truetype/lato/,

UprightFont=*, BoldItalicFont=*BoldItalic,

ItalicFont=*Italic, BoldFont=*Bold]

Figure 1: Loading a font by filename

The naming pattern uses an asterisk to represent
the filename you gave as the main argument to the
command; so in the example, the italic variant would
be the file named Lato-HairlineItalic.ttf, but
you can add whatever punctuation (hyphens, spaces,
etc) your filenaming pattern requires. This method
is probably better than the fontname if you know the
exact places and names of all your font files, because
you can tailor the command to suit your own setup.

The disadvantage is that filenames can be differ-
ent for the same font file across systems, so there is
less portability; but the advantage is that it’s usually
easier to find filenames than to find full fontnames.
However, you can also create a .fontspec file which
provides the mapping from filename to fontname, so
frequent users can make life much easier for them-
selves.

Typographers’ Inn

266 TUGboat, Volume 37 (2016), No. 3

Logos

Logotypes are typographic designs or glyph variants
of more than one letter, but available as a single
glyph (originally, cast as a single piece of metal type).

in ATF Garamond is one example, and TEX is
another.

The TEX and related logos work fine in Com-
puter Modern, but in other faces the spacing needs
adjustment, and this is tedious in the extreme when
dealing with many fonts in several faces.

There have been several articles on the problem
of adjustments [4, 5], not least from Don Knuth [3];
but Karl Berry and Robin Fairbairns parameterised
the macros for \TeX and other commands in the
ltugboat document class, which were tuned for CM by
Barbara Beeton, the redoubtable editor of TUGboat.

Table 4: Example adjustments to logo settings

I have borrowed this code and extended it so
that you can specify the kerning either side of the
letter E in TEX and the letter A in LATEX, as well
as their vertical displacement and their scale. Three
other arguments let you give the font name, font
series, and font shape, so that each combination can
have its own set of adjustments.

I’ll upload a draft of the package (flexlogo) to
CTAN once I have a few buglets sorted out.

Afterthought

In this column in TUGboat 33:1 [2], I described the
problems raised by poorly-broken centered material,
especially headings. Hardly a day goes by without
me seeing another example, and Figure 2 shows the
label from a very fine cheese I brought as a gift to an
elderly relative recently. She wanted to know what
a ‘cheese beech’ was. . . see Figure 2.

SEMI FIRM CHEESE BEECH

SMOKED ON THE FARM

Maybe they prepared the text in Word and sent it
to the designer, who followed it without question
(which is unprofessional), or that the vendor has no
clue, and the designer neither (which is not unusual,
alas). Would it have killed them to rearrange it?

SEMI-FIRM CHEESE

BEECH-SMOKED ON THE FARM

But most likely, the designer wanted the lines to get
shorter so that they followed the curvature of the
label.

SEMI-FIRM CHEESE

BEECH-SMOKED

ON THE FARM

Three lines was probably too many, but I still think
they made a mistake putting vanity of the design
above the usability of the text.

Figure 2: Poorly-broken lines in a description

References

[1] American Psychological Association. Publication
Manual of the American Psychological Association.
Technical report, APA, Washington, DC, Jan 2010.

[2] Peter Flynn. Typographers’ Inn—Formatting
and centering. TUGboat, 33(1):8–9, Jan 2012.
http://tug.org/TUGboat/tb33-1/tb103inn.pdf.

[3] Donald E. Knuth. The TEX Logo in Various
Fonts. TUGboat, 7(2):101, Jan 1986. http:

//tug.org/TUGboat/tb07-2/tb15knutlogo.pdf.
[4] Grzegorz Murzynowski. LATEX vs. LATEX—a

modification of the logo. TUGboat, 29(1):180,
Jan 2008. 17th European TEX Conference
(EuroBachoTEX), Bachotek, Poland. CSTUG,

GUST. http://tug.org/TUGboat/tb29-1/
tb91murzynowski-logo.pdf.

[5] Jacek Rużyczka. texlogos.sty: LATEX package
for LATEX logos. http://ctan.org/pkg/texlogos,
Jan 2016.

[6] Herbert Voß. Re: XeLaTeX/biblatex -
anything missing? comp.text.tex, Dec 2015.
de55baFddkaU1@mid.uni-berlin.de.

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

Peter Flynn

TUGboat, Volume 37 (2016), No. 3 267

LuaTEX version 1.0.0

Hans Hagen

1 The release

After some ten years of development and testing, on
September 9, 2016, we released LuaTEX 1.0.0! It
happened at the tenth meeting of the ConTEXt users
and developers group in the Netherlands.

Instead of staying below one and ending up with
versions like 0.99.1234, we decided that the moment
was there to show the TEX audience that LuaTEX is
stable enough to lose its beta status. Although func-
tionality has evolved and sometimes been replaced,
we have been using LuaTEX ourselves in production
right from the start. Of course there are bugs and
for sure we will fix them.

Our main objective was and still is to provide a
variant of TEX that permits user extensions without
the need to adapt the inner workings. We did add
a few things here and there but they mostly relate
to opening up the inner parts and/or the wish to
influence some hard-coded behaviour. Via Lua we
managed to support modern functionality without
bloating the code or adding more and more depen-
dencies on foreign code. In the process a stable and
flexible MetaPost library became part of the engine.

The functionality as present now will stay. We
might open up some more parts, we will stepwise
clean up the code base while staying as close as possi-
ble to the Knuthian original, we will try to document
bits and pieces. We might also experiment a bit
with better isolation of the backend, and simplify
some internals. For that we can use the experimental
version but if we diverge too much we may need to
give that another name.

We want to thank all those who have tested the
betas and helped to make LuaTEX better.

Hans Hagen
Hartmut Henkel
Taco Hoekwater
Luigi Scarso

2 The past

Originally we planned to release the first version a few
years ago but our ambitions didn’t work out well with
that schedule so we finally took a decade to get there.
For the record it is good to summarize what happened
during those years.

• Around 2005, after we talked a bit about extend-
ing TEX in a flexible way and Hartmut added the
Lua scripting language to pdfTEX as an experiment.
This add-on was inspired by the Lua extension to
the SciTE editor that I (still) use.

• At that time one could query counter registers and
box dimensions and print strings to the TEX input
buffer.

• The Oriental TEX project then made it possible to
go forward and come up with a complete interface.
For this, Taco converted the code base from Pascal
to C, a quite impressive effort.

• We spent more than a year intensively discussing,
testing and implementing the interface between TEX
and Lua. Many binaries and lots of test code were
flying between Taco and my machine as we pro-
gressed and decided what directions to go. These
were really interesting times.

• In successive years we polished and extended things;
in recent years, we cleaned up interfaces, polished
more code, filled in gaps and reached the point where
we were more or less satisfied.

• The core is still traditional TEX, but has been ex-
tended with pdfTEX protrusion and expansion (re-
worked) and directional features from Aleph (cleaned
up). We did add some extensions (in ε-TEX fashion)
but removed most of the ones that we inherited from
pdfTEX because Lua could do better.

• The backend and extension interfaces are now mostly
separated and although we don’t expect to add more
backends, it makes the code somewhat cleaner be-
cause all kinds of PDF-related issues are no longer
mixed with front-end mechanisms.

• The font subsystem is no longer limited to 8-bit
fonts. It must be noted that for instance Open-
Type support is done in Lua, which provides a lot of
flexibility. This also serves as an example of exten-
sibility. A small TEX core, independent of libraries,
was definitely an objective and it works out well.

• The (rewritten but compatible) hyphenation machin-
ery can use runtime loaded (and extended) patterns.
There are a few extensions and of course one can
revert to Lua for more.

• Already at an early stage, hyphenation, ligaturing
and kerning were separated, which was one step
in adding callbacks to nearly every stage in the
typesetting process.

• Math supports wide (more than 8-bit) characters
too so that one can implement Unicode math easily.
The machinery has OpenType math code paths
because there are some fundamental differences with
traditional TEX math fonts.

LuaTEX version 1.0.0

268 TUGboat, Volume 37 (2016), No. 3

• Although the kpse library is still the default inter-
face to the file system, all in- and output can be
controlled and intercepted, for instance for input
filtering or re-encoding on the fly.

• The token scanner has been opened up so that one
can write (simple) parsers. Experimental intercep-
tion code didn’t prove to be useful so that interface
has been dropped. We kept it simple and efficient.

• During callbacks related to the node lists, individual
nodes can be accessed and manipulated at will. Of
course one needs to know a bit about the internals
and not mess up the lists to the extent that TEX
will choke on it: things that ‘can’t happen’ now
can. Most of the original documentation of the
code by Don Knuth still applies (which was another
objective) but of course directional support and such
go beyond that. And it’s surprisingly fast.

• Images and reusable boxes are now native nodes;
they travel through the system as special kinds of
rules instead of whatsits with dimensions. Users
can define their own rule types too.

There is more to say but much has been reported
already in articles in this and other journals. In the Con-
TEXt distribution there are four documents describing
aspects of the development and choices we have made
(mkiv.pdf, hybrid.pdf, about.pdf and still.pdf) and
we keep writing (onandon.pdf). One thing will hopefully
be clear by now: the choice of Lua was a good one.

3 The future

The project is driven by ConTEXt users and ConTEXt
development which is why we found it proper to release
version one at the tenth meeting. Right from the start
ConTEXt supported LuaTEX and this means that most
mechanisms have been tested in production. There is
some risk in this as users then are always forced to
update the binary with the macros but the ConTEXt
garden provides easy ways to deal with this. In fact,
most users switched to the new engine pretty soon after
we started rewriting ConTEXt. We greatly appreciate
their patience.

Raw performance of LuaTEX is of course less than
8-bit pdfTEX but in practice and on modern machines
LuaTEX behaves well. In fact, many mechanisms, like
native XML handling and MetaPost processing are way
faster in ConTEXt MkIV then in the now frozen MkII
version. Given the fact that we’re using Unicode and
more complex fonts, one can safely assume that in Con-
TEXt the overhead due to delegation to Lua has no real
drawbacks.

We will continue development, but functionality
will stay stable within versions. The code will be further
streamlined and documented. We deliberately postponed
some cleanup till after version one. And of course bugs
will be fixed. We hope to stepwise improve the manual
too. So what will the future bring?

• So far we managed to avoid extensions beyond those
needed as part of the opening up. We stick close to
Don Knuth’s concepts so that existing documenta-
tion still conceptually applies. We keep our promise
of not adding to the core. But, we might open up
(make configurable) some of the remaining hard-
coded properties.

• Some node lists could use a bit of (non-critical)
cleanup, for instance passive nodes, localpar nodes,
and other leftovers. Maybe we should add missing
left/right skips.

• We can optimize some callback resolution (more
direct) so that we can gain a little performance.

• Inheritance of attributes needs checking and maybe
we need to permit some more explicit settings.

• We will move some more code to the API file and
plan to update the global PDF and Lua states con-
sistently (there are some leftovers from the early
days). Some C macros can probably go away.

• We can possibly minimize some return values of
Lua functions and only return nil when we expect
multiple calls in line. This might be more efficient.
We plan to look into Lua 5.3 but we might well
conclude that it’s better to stick to 5.2.

• We have to figure out a way to deal with literals in
virtual characters. This relates to font switching in
the result.

• Maybe we will reorganize some code so that docu-
mentation is easier. We hope to continue to stick
close to what Don Knuth documents.

• We can clean up and isolate the backend a bit more.
We also could add a few more options to delegate
actions to Lua and we should get rid of some historic
PDF artifacts.

Of course we have some ideas of what to do next
but these don’t need an extension to the engine because
we can use Lua for that.

In that perspective it is tempting to think of a
(lean and mean) LuaTEX variant for ConTEXt: a close to
traditional core with many hooks and a minimal number
of dependencies on libraries and such. In a ConTEXt setup
a only user needs LuaTEX because all (workflow) related
scripts are written in Lua and if additional functionality
(like graphic conversions) is needed, it can easily be
provided by external programs.

We will not touch the stable version unless it con-
cerns bug fixes and/or simple extensions, but we will
keep exposing ConTEXt users to the experimental branch
(as we do now). Of course users of other macro packages
can pick up binaries from the compile farm that has been
set up by Mojca and friends.

So . . . be prepared.

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

Hans Hagen

TUGboat, Volume 37 (2016), No. 3 269

LuaTEX 0.82 OpenType math enhancements

Hans Hagen

Abstract

LuaTEX 0.82 (and later) have had improvements in
OpenType math typesetting.

1 Introduction

When TEX typesets mathematics it makes some as-
sumptions about the properties of fonts and dimen-
sions of glyphs. Due to practical limitations in the
traditional eight-bit fonts, such as the number of
available characters in a font and a limited number
of heights and depths, some juggling takes place.
For instance, TEX sometimes uses dimensions as a
signal to treat some characters as special. This is
not a problem as long as one knows how to make
a font and in practice that was done by looking at
the properties of Computer Modern to implement
similar shapes. After all, there are not that many
math fonts around and basically there is only one
engine that can deal with them properly.

However, when Microsoft set the standard for
OpenType math fonts it also steered the direction
of their use in rendering mathematics. This means
that the LuaTEX engine, which handles OpenType
fonts, has to implement some alternative code paths.
At the start, this involved a bit of gambling because
there was no real specification; since then we now
have a better picture. One of the more complex
changes that took place is in the way italic correction
is applied. A dirty way out of this dilemma would be
to turn the math fonts into virtual ones that match
traditional TEX properties, but this would not be a
nice solution.

It must be noted that in the process of imple-
menting support for the new fonts, Taco (Hoekwater)
turned some noad types (see below) into a generic
noad with a subtype. This simplified the transition.
At the same time, a lot of detailed control was added
in the way successive characters are spaced.

In LuaTEX before 0.85, the italic correction was
always added when a character got boxed (a fre-
quently used preparation in the math builder). Now
this is only done for the traditional fonts because,
concerning italic correction, the OpenType standard
states:1

1. When a run of slanted characters is followed by
a straight character (such as an operator or a
delimiter), the italic correction of the last glyph
is added to its advance width.

1 Recently version 1.8 has been published on the Microsoft

website.

2. When positioning limits on an N-ary operator
(e.g., integral sign), the horizontal position of
the upper limit is moved to the right by half of
the italic correction, while the position of the
lower limit is moved to the left by the same
distance.

3. When positioning superscripts and subscripts,
their default horizontal positions are also differ-
ent by the amount of the italic correction of the
preceding glyph.

And, with respect to kerning:

4. Set the default horizontal position for the su-
perscript as shifted relative to the position of
the subscript by the italic correction of the base
glyph.

I must admit that when the first implementa-
tion showed up, my natural reaction to unexpected
behaviour was just to compensate for it. One such so-
lution was simply not to pass the italic correction to
the engine and deal with it in Lua. In practice, that
didn’t work well for all cases; one reason was that the
engine saw the combination of old fonts as a new one
and followed a mixed code path.2 Another approach
I tried was a mix of manipulated italic values and
Lua, but finally, as specifications settled I decided
to leave it to the engine completely, if only because
successive versions of LuaTEX behaved much better.

So, as we were closing in on the first stable re-
lease of LuaTEX (1.0.0 was released on September 27,
2016; this note was mostly written in the early part
of 2016), I decided to fix the pending issues and sat
down to look at the math-related code. I must admit
that I had never looked in depth into that part of
the machinery. In the next sections I will discuss
some of the outcomes of this exercise.

I will also discuss some extensions that have been
on the agenda for years. They are rather generic
and handy, but I must also admit that the MkIV
code related to math has so many options to control
rendering that I’m not sure if they will ever be used
in ConTEXt. Nevertheless, these generic extensions
fit well into the set of basic features of LuaTEX.

2 Italic correction

As stated above, the normal code path included
italic correction in all the math boxes made. This
meant that, in some places, the correction had to
be removed and/or moved to another place in the
chain. This is a natural side effect of the fact that
TEX runs over the intermediate list of math nodes

2 ConTEXt employed Unicode math right from the start

of LuaTEX.

LuaTEX 0.82 OpenType math enhancements

270 TUGboat, Volume 37 (2016), No. 3

∫H__

2H__

H__ ∫H__

2H__

H__ ∫H__

2H__

2H____V

H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__

2H____V

H__

Figure 1: Italic correction examples (1):
superscripts shifted right and subscripts left.

∫H__

2H__

H__ ∫H__

2H__

H__ ∫H__

2H__

2H____V

H__ ∫H__

2H__

H__ ∫H__

2H__

H__ ∫H__

2H__

2H____V

H__

Figure 2: Italic correction examples (2):
plain integral vs. integral with limits

(noads) and turns them into regular nodes, mostly
glyphs, kerns, glue and boxes.

The complication is not so much the italic cor-
rections themselves, because we could just continue
to do the same, but the fact that these corrections
are to be interpreted differently in case of integrals.
There, the problem is that we have to (kind of) look
backward at what is done in order to determine what
italic corrections are to be applied.

The original solution was to keep track of the
applied correction via variables but that still made
some analysis necessary. In the new implementation,
more information is stored in the processed noads.
This is a logical choice given that we have already
added other information. It also makes it possible to
fix cases that will (for sure) show up in the future.

In figure 1 we show two examples of inline italic
correction. The superscripts are shifted to the right
and the subscripts to the left. In the case of an
integral sign, we need to move half the correction.
This is triggered by the \nolimits primitive. In fig-
ure 2 we show the difference between just an integral
character and one tagged as having limits.3

The amount of correction, if present at all, de-
pends on the font, and in this document we use
DejaVu math. Figure 3 shows a few variants. As
you can see, the amount of correction is highly font
dependent.

3 Vertical delimiters

When we go into display math, there is a good chance
that an integral has to be enlarged. The integral
sign in Unicode has slot 0x222B, so we can define a
bigger one as follows:

\def\standardint{\Umathchar "1 "0 "222B }

\def\wrappedint{\mathop{\Umathchar "1 "0 "222B}}

\def\biggerint{\mathop{

\Uleft height3ex depth3ex axis

3 We show some boxes so that you can get an idea what

TEX is doing. Essentially, TEX puts superscripts and sub-

scripts on top of each other with some kern in between and

then corrects the dimensions.

∫H__

2H__

H__ ∫H__

2H__

H__ ∫H__

2H__

2H____V

H__ 𝑓 2H__

H__ 𝑓2H__
H__ 𝑓 2H__

2H____V

H__

cambria∫H__

2H__

H__ ∫H__ 2H__

H__ ∫H__

2H__2H____V

H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__2H____V

H__

pagella

∫H__

2H__

H__ ∫H__

2H__

H__ ∫H__

2H__

2H____V

H__ 𝑓2H__

H__ 𝑓
2H__

H__ 𝑓2H__

2H____V

H__

latin modern

∫H__

2H__

H__ ∫H__
2H__

H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__

2H____V
H__

lucida ot

Figure 3: Italic correction examples (3):
correction amounts are font-dependent.

\Udelimiter "0 "0 "222B \Uright .}}

\def\evenbiggerint{\mathop{

\Uleft height 6ex depth 6ex axis

\Udelimiter "0 "0 "222B \Uright .}}

The axis keyword will apply a shift up over the
size of the current styles math axis. We use this in
some examples as:

$

\displaystyle\standardint ^a_b\enspace

\displaystyle\wrappedint ^a_b\enspace

\displaystyle\biggerint ^a_b\enspace

\displaystyle\evenbiggerint^a_b\enspace

$

In figure 4 you can see some subtle differences.
The wrapped version doesn’t shift the superscript
and subscript. The reason is that the operator is
hidden in its own wrapper and the scripts attach
at an outer level. So, unless we start analyzing the
innermost noad and apply that to the outer, we
cannot know the shift. Such analyzing is asking
for problems: where do we stop and what slight
variations do we take into account? It’s better to be
predictable.

Another observation is that Latin Modern does
not provide (at least not yet) large integrals at all.

The following four cases are equivalent:

\Uleft height 3ex depth 3ex axis

\Udelimiter "0 "0 "222B

\Uright .

\Uleft .

\Uright height 3ex depth 3ex axis

\Udelimiter "0 "0 "222B

\Uleft .

\Umiddle height 3ex depth 3ex axis

Hans Hagen

TUGboat, Volume 37 (2016), No. 3 271

𝑎H__∫H__

𝑏H____V

𝑎H__∫H__

__V

𝑏H____V

𝑎H__

∫H__H__
H__

H__

𝑏H____V

𝑎H__∫H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__∫H____V

H__
H__

H__

𝑏H____V

H__නH__H__

H____V

H__නH__H__

__V

H____V

H__඲H__H__
H__

H__

H____V

H__⌠H__⎮H__⎮H__⎮H__⌡H____V

H__
H__

H__

H____V

𝑎H__

∫H__

𝑏H____V

𝑎H__

∫H__

__V

𝑏H____V

𝑎H__

∫H__H__
H__

H__

𝑏H____V

𝑎H__

∫H__H__
H__

H__

𝑏H____V

𝑎H__

∫H__H__

𝑏H____V

𝑎H__

∫H__H__

__V

𝑏H____V

𝑎H__

⌠H__⎮H__⎮H__⌡H____V

H__
H__

H__

𝑏H____V

𝑎H__

⌠H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__⌡H____V

H__
H__

H__

𝑏H____V

Figure 4: Comparison of integral variants (standard, wrapped, bigger, even bigger)
among fonts: TEX Gyre Pagella, Cambria, Latin Modern, and Lucida OT.

∫ ∫ න ඲ ⌠⎮⎮⌡
⌠⎮⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⎮⎮⌡
∫ ∫ ∫ න ඳ ⌠⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⎮⎮⌡noaxisFigure 5: Cambria integrals, adaptive; axis left,
noaxis right.

(󰕱 󰦈 ൭ ⎛⎜⎝
⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝

(((󰦎 ൮ ⎛⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝noaxisFigure 6: Cambria left parenthesis, adaptive;
axis left, noaxis right.

\Udelimiter "0 "0 "222B

\Uright .

\Uleft .

\Umiddle height 3ex depth 3ex axis

\Udelimiter "0 "0 "222B

\Uright .

However, because this all looks a bit clumsy, we
now provide a new primitive:

\Uvextensible

height 〈dimension〉
depth 〈dimension〉
[no]axis
exact

〈delimiter〉

The symbol to be constructed will have size
height plus depth. When an axis is specified, the
symbol will be shifted up, which is normally the case

∫ ∫ ∫ ඲
⌠⎮⎮⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⌡ ∫ ∫ ∫ ඲
⌠⎮⎮⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⌡ ∫ ∫ ∫ ඲
⌠⎮⎮⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⌡ ∫ ∫ ∫ ඲
⌠⎮⎮⎮⎮⎮⎮⌡

⌠⎮⎮⎮⎮⌡
axis exact axis exact

Figure 7: Cambria integrals, with dimensions.

((󰕱 󰦎 ⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝ ((󰕱 󰦎 ⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝ ((󰕱 󰦎 ⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝ ((󰕱 󰦎 ⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝
axis exact axis exact

Figure 8: Cambria left parenthesis, with dimensions.

for such symbols. The keyword exact will correct
the dimensions when no exact match is made, and
this can be the case as long as we use the stepwise
larger glyphs and before we end up using the com-
posed shapes. When no dimensions are specified, the
normal construction takes place and the only key-
word that can be used then is noaxis which keeps
the axis out of the calculations. After about a week
of experimenting and exploring options, this combi-
nation made most sense, read: no fuzzy heuristics
but predictable behaviour. After all, one might need
different solutions for different fonts or circumstances
and the applied logic (and expectations) can (and
will, for sure) differ per macro package. Figures 5–8
show some examples.

4 Horizontal delimiters

Horizontal extenders also have some new options. Al-
though one can achieve similar results with macros,
the following might look a bit more natural. Also,

LuaTEX 0.82 OpenType math enhancements

272 TUGboat, Volume 37 (2016), No. 3

(default) ↔ ↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ↔ ↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ
left ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ
middle ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ
right ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ↔↔ ↔ ↔ ↔ ↔ ↔ ርሮ ርሮ ርሮ
Figure 9: Stepwise wider \Uhextensible with options
(Cambria).

(default) !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔
!↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔

left !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔
!↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔

middle !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔
!↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔

right !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔
!↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔ !↔

Figure 10: Stepwise wider \Udelimiterunder with
options (Cambria).

some properties are lost once the delimiter is con-
structed, so macros can become complex when trying
to determine the original dimensions involved.

We start with the new \Uhextensible primitive
that accepts a dimension. It’s just a variant of the
over and under delimiters with no content part.

\Uvextensible

height 〈dimension〉
depth 〈dimension〉
left | middle | right

〈family〉
〈slot〉

So for example you can say:

$\Uhextensible width 30pt 0 "2194$

The left, middle and right keywords are only
interpreted when the requested size can’t be met
due to stepwise larger glyph selection (i.e., before we
start using arbitrary sizes made of snippets). Figure 9
shows what we get when we step from 2–20 points
by increments of 2 points in Cambria.

The dimensions and options can also be given
to the four primitives:
\Uoverdelimiter \Uunderdelimiter

\Udelimiterover \Udelimiterunder

Figure 10 shows what happens when the delimiter is
smaller than requested. The source for the samples
looks like this:

$\Udelimiterunder width 1pt 0 "2194

{\hbox{\strut !}}

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

xits – has variants∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500
cambria – lacks variants

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

pagella – lacks variants

Figure 11: Using overlay in \Umathaccent.

When no dimension is given the keywords are
ignored as it makes no sense to mess with the exten-
sible in that case.

5 Accents

Many years ago, I observed that overlaying charac-
ters (which happens when we negate an operator
which has no composed negation glyph) didn’t al-
ways give nice results and, therefore, a tracker item
was created. When going over the todo list, I ran
across a suggested patch by Khaled Hosny that added
an overlay accent type. As the suggested solution
fits in with the other extensions, a variant has been
implemented.

The results definitely depend on the quality and
completeness of the font, so here we will use XITS.
The placement of an overlay also depends on the
top accent shift as specified in the font for the used
glyph. Instead of a fixed criterion for trying to find
the best match, an additional fraction (numerator)
parameter can be specified. A value of 800 means
that the target width is 800/1000.

The \Umathaccent command now has the fol-
lowing syntax:

\Umathaccent

[top | bottom | overlay]
[fixed]
[fraction 〈number〉]
〈delimiter〉
{〈content〉}

When we have an overlay, the fraction concerns
the height; otherwise it concerns the width of the
nucleus. In both cases, it is only applied when search-
ing for stepwise larger glyphs, as extensibles are not
influenced. An example of a specification is:

\Umathaccent

overlay "0 "0 "0338

fraction 950

{\Umathchar"1"0"2211}

Figure 11 shows what we get when we use dif-
ferent fractions (from 800 up to 1500 with a step of
100). We see that \overlay is not always useful.

Normally you can forget about the factor be-
cause overlays make most sense for inline math, which

Hans Hagen

TUGboat, Volume 37 (2016), No. 3 273

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

Figure 12: Skewed fraction results in Latin Modern.

uses relatively small glyphs, so we can get 𝑥̸ x̸ ̸xxx
with the following code:

$\Umathaccent overlay "0 "0 "0338 {x}$

$\Umathaccent overlay "0 "0 "0338 {\tf x}$

$\Umathaccent overlay "0 "0 "0338 {\tf xxx}$

A normal accent can also be influenced by fraction:

⏞𝑎 × 𝑏 ⏞𝑎 × 𝑏 ⏞𝑎 × 𝑏 ⏞𝑎 × 𝑏 ⏞⏞⏞𝑎 × 𝑏

6 Fractions

A normal fraction has a reasonable thick rule but as
soon as you make it bigger you will notice a peculiar
effect:

𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏

)
1pt 2pt 3pt 4pt 5pt

Such a fraction is specified as:

x + { {a} \abovewithdelims () 5pt {b} }

A new keyword exact avoids the excessive spacing:

x + { {a} \abovewithdelims () exact 5pt {b} }

Now we get:

𝑥 + (𝑎𝑏) 𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏)
1pt 2pt 3pt 4pt 5pt

One way to get consistent spacing in such frac-
tions is to use struts:

x + { {\strut a} \abovewithdelims () exact 5pt

{\strut b} }

Now we get:

𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏)

1pt 2pt 3pt 4pt 5pt

Yet another way to increase the distance be-
tween the rule and text a bit is:

\Umathfractionnumvgap \displaystyle4pt

\Umathfractiondenomvgap\displaystyle4pt

This looks quite consistent:

𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏)

1pt 2pt 3pt 4pt 5pt

Here we use code like:

$\displaystyle x +

{{a} \abovewithdelims() exact 2pt {b}}$

Using struts, it is best to zero the gap:

𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏)

1pt 2pt 3pt 4pt 5pt

Here we use code like:

$\displaystyle x + {{\strut a} \abovewithdelims()

exact 2pt {\strut b}}$

7 Skewed fractions

The math parameter table contains values specify-
ing horizontal and vertical gaps for skewed fractions.
Some guessing is needed in order to implement some-
thing that uses them, so we now provide a primitive
similar to the other fraction related ones but with a
few options that one can use to influence the render-
ing. Of course, a user can mess around directly
with the parameters \Umathskewedfractionhgap

and \Umathskewedfractionvgap.
The syntax used here is:

{ {1} \Uskewed / 〈options〉 {2} }

{ {1} \Uskewedwithdelims / () 〈options〉 {2} }

The options can be noaxis and exact, a com-
bination of them or just nothing. By default we add
half the axis to the shifts and also by default we
zero the width of the middle character. For Latin
Modern, the results are shown in figure 12.

8 Side effects

Not all bugs reported as such are really bugs. Here
is one that came from a misunderstanding: In Eijk-
hout’s TEX by Topic, the rules for handling styles in
scripts are described as follows:

• In any style superscripts and subscripts are
taken from the next smaller style. Exception:
in display style they are taken in script style.

LuaTEX 0.82 OpenType math enhancements

274 TUGboat, Volume 37 (2016), No. 3

• Subscripts are always in the cramped variant of
the style; superscripts are only cramped if the
original style was cramped.

• In an ..\over.. formula in any style the nu-
merator and denominator are taken from the
next smaller style.

• The denominator is always in cramped style;
the numerator is only in cramped style if the
original style was cramped.

• Formulas under a \sqrt or \overline are in
cramped style.

In LuaTEX, one can set the styles in more detail,
which means that you sometimes have to set both
normal and cramped styles to get the effect you want.
If we force styles in the script using \scriptstyle

and \crampedscriptstyle we get the following (all
render the same):

default 𝑏𝑥=𝑥𝑥

𝑥=𝑥𝑥

script 𝑏𝑥=𝑥𝑥

𝑥=𝑥𝑥

crampedscript 𝑏𝑥=𝑥𝑥

𝑥=𝑥𝑥

This is coded as follows:

$b_{x=xx}^{x=xx}$

$b_{\scriptstyle x=xx}^{\scriptstyle x=xx}$

$b_{\crampedscriptstyle x=xx}

^{\crampedscriptstyle x=xx}$

Now we set the following parameters:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

This gives:

default 𝑏𝑥 =𝑥 𝑥

𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥 𝑥

𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥=𝑥𝑥

𝑥=𝑥𝑥

Since the result is not what is expected (vis-
ually), we should say:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

\Umathordrelspacing\crampedscriptstyle=30mu

\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

default 𝑏𝑥 =𝑥 𝑥

𝑥 =𝑥 𝑥

script 𝑏𝑥 =𝑥 𝑥

𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥 =𝑥 𝑥

𝑥 =𝑥 𝑥

mode down up

0 dynamic dynamic CH2 + CH
+

2
+ CH2

2

1 𝑑 𝑢 CH2 + CH+
2 + CH2

2

2 𝑠 𝑢 CH
2

+ CH+

2
+ CH2

2

3 𝑠 𝑢 + 𝑠 − 𝑑 CH
2

+ CH
+

2
+ CH

2

2

4 𝑑 + (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH
2

+ CH
+

2
+ CH

2

2

5 𝑑 𝑢 + 𝑠 − 𝑑 CH2 + CH
+

2 + CH
2

2

CH2 + CH+

2
+ CH2

2
CH2 + CH+

2 + CH2
2 CH

2
+ CH+

2
+ CH2

2

0 1 2

CH
2

+ CH
+

2
+ CH

2

2
CH

2
+ CH

+

2
+ CH

2

2
CH2 + CH

+

2 + CH
2

2

3 4 5

Figure 13: The effect of setting \mathscriptsmode.

9 Fixed scripts

We have three parameters that are used for anchoring
superscripts and subscripts, alone or in combinations.

d \Umathsubshiftdown

u \Umathsupshiftup

s \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other
than zero, these are used for calculating fixed po-
sitions. This is something that is needed in, for
instance, chemical equations. You can manipulate
the mentioned variables to achieve different effects,
and the specifications are shown in figure 13, with
enlarged examples below the table.

10 Remark

The changes that we have made are hopefully not
too intrusive. Instead of extending existing com-
mands, new ones were introduced so that compati-
bility should not be a significant problem. To some
extent, these extensions violate the principle that
extensions should be done in Lua, but TEX being
a math renderer and OpenType replacing old font
technology, we felt that we should make an exception
here. Hopefully, not too many bugs were introduced.

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

Hans Hagen

TUGboat, Volume 37 (2016), No. 3 275

Introducing LaTeX Base

Gareth Aye

LaTeX Base (https://latexbase.com) is a web-
based LATEX editor that provides many useful fea-
tures such as

• live, compile-as-you-type document preview,

• one-click document publishing and sharing,

• offline mode,

• integrations with file storage services like Google
Drive and Dropbox,

• syntax highlighting,

• and familiar keyboard shortcuts for Vim and
Emacs users.

This article focuses on the technical side of the inter-
actions between LaTeX Base and LATEX. However,
we’re eager to hear from users about their experi-
ences using the service; please feel free to reach out
to us at team@latexbase.com with suggestions or if
you’d like to beta test new features. Many features
do require a premium membership.

Figure 1 shows the first page presented after
loading, with simple LaTeX source on the left and
the preview output on the right.

1 Offline mode

One unique aspect of LaTeX Base amongst web ap-
plications is that it can be used with or without an
Internet connection! This is possible thanks to “ser-
vice workers”: a recent development in the web plat-
form that allows applications to intercept and cache
network requests. That means that you can write
your papers on a plane, in a park, or anywhere in
between. While LaTeX Base isn’t the first web-based
LATEX editor, it is the only one with this capability.

If you’re a programmer as well as a LATEX en-
thusiast, you may suspect that there’s a bit more
to the story. Service workers allow us to cache the
editor, but (LA)TEX doesn’t run in the browser (it’s
ordinarily compiled to machine code). How can La-
TeX Base compile documents without an Internet
connection if it’s limited to executing JavaScript?

2 Enter Emscripten

The answer lies in a fascinating tool that came out
of Mozilla’s research group a few years ago called Em-
scripten (wikipedia.org/wiki/Emscripten), which
compiles LLVM bytecode to JavaScript. Many code-
bases such as Unreal Engine, Bullet Physics, and
the Lua programming language (which appears to
be of some interest to the greater LATEX community)
have been ported from C/C++ to JavaScript using
Emscripten. In building LaTeX Base, pdflatex was

compiled to LLVM bytecode using clang and from
LLVM to JavaScript using Emscripten.

Whereas similar services send users’ documents
to servers with installed LATEX compilers and pack-
ages, LaTeX Base sends the compiler and packages
to the browser. In addition to making offline mode
possible, compiling in the browser also allows LaTeX
Base to compile documents quickly and often—so
much so that we can offer a real-time preview instead
of requiring the user to compile manually.

3 Packages

Our design goal when considering the issue of pack-
ages was to make a large number of packages (eventu-
ally anything hosted on the CTAN registry) available
to users while only ever downloading the packages
needed to compile their documents. What we came
up with is lazy package loading. Every time you
include a new package in a document with LaTeX
Base, you’ll download it from our servers. When you
use that package in the future it’ll be cached in your
browser. For this reason, using packages that a user
hasn’t previously used while offline will not work.
You can also expect compiling to take slightly longer
the very first time you use a package.

For the time being, we only support a small
number (around 25) of the most commonly used
packages, but our roadmap includes extending sup-
port to arbitrary hosted packages.

4 Images

The only way that our implementation of LATEX
differs from a standard compiler is in how we han-
dle external files (like images). We don’t currently
give users direct access to the virtual Emscripten
filesystem that LATEX sees when it’s running on
https://latexbase.com. Instead, we support call-
ing \includegraphics with an image url that we’ll
fetch and preload in Emscripten’s virtual filesys-
tem. When you download your documents, we au-
tomatically convert these url identifiers to simple
file names and bundle the downloaded images so
that no changes are necessary to compile documents
elsewhere.

Our roadmap also includes allowing users to
upload images and other local resources rather than
supplying urls.

5 Conclusion

Web applications are great. They allow users to
use software without permanently installing it. The
abilities and permissions they’re granted by default
are very limited compared to native applications, so

Introducing LaTeX Base

276 TUGboat, Volume 37 (2016), No. 3

Figure 1: Getting Started page of LaTeX Base.

they are preferable from a practical security perspec-
tive. They’re built on open standards, so they run
anywhere and don’t need to be sanctioned by any
organization or app store. Using cutting edge tools,
LaTeX Base is able to offer many advanced capabili-
ties right in the browser. In this author’s (absolutely
biased) opinion, it’s on its way to becoming the best
way to write LATEX documents.

In closing, I want to recognize Mozilla, not only
for their tremendous standards work that’s made the
web the wonderful thing it is today, but also for their
work on components that made LaTeX Base possible
including Ace, Emscripten, PDF.js, and localforage.

About the author

Gareth is a New York native living in Portland, OR,
with his wife Alison and toddler Albee. He received
a BA in Computer Science with a Math minor from
Middlebury College and worked in software develop-
ment, most recently as an engineering lead at Mozilla,
before building LaTeX Base. In his free time, he en-
joys playing jazz piano and chess.

⋄ Gareth Aye

https://latexbase.com

Gareth Aye

Computer Modern Roman fonts for ebooks

Martin Ruckert

How it all started

Last year on February 19, I looked at the first ver-
sion of my first ebook and I was shocked. I had just
finished the printed version of “The MMIX Supple-
ment for The Art of Computer Programming” [5]
and Donald Knuth had provided extensive help to
make its appearance match the books in his series.
Donald Knuth had developed TEX, METAFONT, and
the Computer Modern Roman (CMR) type faces es-
pecially to be able to typeset “The Art of Computer
Programming” [3] in the best possible quality. But
when I looked at my newly bought Kindle Paper-
white—not the most expensive, but still a decent
ebook reader—what I saw (Figure 1) did not re-
semble even remotely what you would expect from
TEX and friends.

I studied the specification of the epub format
and found that TrueType or OpenType fonts should
work with it. My first attempt with the TrueType
versions of the CMR fonts failed because I had over-
looked the few instances where the characters in the
book were not pure ASCII. So I switched to the
Computer Modern Unicode (CMU) version of the
fonts [4], and mailed the publisher the first long list
of change requests including the request to use these
fonts. When I received the next version of my ebook,
Dayna Isley, the digital development editor respon-
sible for the ebook, wrote: “I’m finding that embed-
ded fonts are not well supported across Kindle apps
and devices. In most cases, the fonts default to the
standard Kindle fonts. Kindle for PC and Paper-
white support embedded fonts, but the body font is
difficult to read (very faint) and therefore not effec-
tive.” And see for yourself (Figure 2), she was right.

My schedule was tight, I was teaching 18 credit
hours that semester, and aside from the fonts there
were more and bigger problems to be solved before
the ebook could be released. So we settled for a se-
lection of standard ebook fonts and moved on. The
final ebook uses Baskerville fonts for the main text
body. It is no match for the printed version, but
it was a good compromise given the limitations of
time and technique.

Now, a year later, I decided to get back to the
problem of ebook production with more time to my
disposal: I plan to use my sabbatical in 2017 to
build a prototype ebook renderer that uses the al-
gorithms of TEX for ebook layout and a front-end

TUGboat, Volume 37 (2016), No. 3 277

Fig. 1: First version of my ebook

Fig. 2: Second version of my ebook

that translates TEX input to an intermediate re-
presentation that can be used by the new rendering
engine. In preparation for this project, I started to
identify those subproblems which I would need to
ignore in order to have a reasonable sized project.
This brought me back to investigating the font issue.

ebook versus Preview

One of the good programs to view TEX output on-
screen is YAP, which comes with MiKTEX [6]. YAP

is an acronym standing for Yet Another Previewer.
The word “previewer” indicates that it is the pur-
pose of the program to give the user an advance
view, an approximation of what one should expect to
see on paper. The paper version is the “real thing”
and the electronic version is only an intermediate
step in its production. An indication of this attitude
is the selection of fonts. In its default configuration,
YAP uses METAFONT in ljfour mode to generate
bitmap fonts. These bitmaps are optimized for a
(once) popular 600 dpi laser printer. YAP scales
them down to display the TEX output on the low
resolution computer screen, and if you reduce down-
scaling, you can see precisely, down to the last pixel,
what you are supposed to get on paper.

The situation has changed significantly with the
introduction of ebooks. Now books are produced

Computer Modern Roman fonts for ebooks

specifically for reading on some kind of computer
screen. The electronic rendering is no longer an ap-
proximation of something yet to come, it is the final
product.

The built-in font rendering software (and hard-
ware) of computers usually does not support META-
FONT generated bitmapped fonts. It supports True-
Type or OpenType outline fonts. These are now the
de facto standards. The emerging universal stan-
dard in character encoding is, perhaps due to the
World Wide Web, the UTF-8 encoding. Outline
fonts can be scaled to any resolution desired, but
as we will shortly see, this is not sufficient for opti-
mal on-screen reading.

Rendering Computer Modern Roman fonts

To investigate the rendering of the available CMR

fonts on current electronic devices, a reference ren-
dering is needed. I choose (somewhat but not com-
pletely arbitrarily) my personal copy of The META-

FONTbook and picked the second paragraph of the
preface [2, page v]. It reads, typeset below in 10pt
Computer Modern Roman as in the printed book:
“ Modern printing equipment based on raster
lines— in which metal “type” has been replaced by
purely combinatorial patterns of zeroes and ones
that specify the desired position of ink in a discrete
way—makes mathematics and computer science in-
creasingly relevant to printing. We now have the
ability to give a completely precise definition of let-
ter shapes that will produce essentially equivalent
results on all raster-based machines. Moreover, the
shapes can be defined in terms of variable param-
eters; computers can “draw” new fonts of charac-
ters in seconds, making it possible for designers to
perform valuable experiments that were previously
unthinkable.”

I then took a photograph of this paragraph from
the book (Figure 3) which I will use as my refer-
ence for the Computer Modern Roman 10pt font
from now on. Apart from the plain text, the pho-
tograph contains an insert with the first two let-
ters magnified six times. In comparing the different
font renderings, one should pay special attention to
the thickness of the different strokes of the “M” and
the rounding of the “o”. As a first observation you
might notice that the font as shown in figure 3 ap-
pears to be much heavier than the same font in the
previous paragraph—depending of course on how
you printed or rendered this article in order to read
it. While it is impossible for me to avoid the effects
that your rendering software and your output device

278 TUGboat, Volume 37 (2016), No. 3

Fig. 3: From The METAFONTbook

Fig. 4: CMU font, ebook

Fig. 5: LM font, ebook

will have on the appearance of fonts, I can reason-
ably hope that the reproduction of the photographs
shown in this article preserve the relative differences
which I observed on my output devices.

I have tried my best to take all the photographs
in this article under identical conditions, for the sake
of comparison. Using a good camera (Canon EOS

60 D, 18Mpixel, 18mm–135mm lens, 1/15s, 5300K,
ISO320, 56mm focal length, 16 aperture), I took
all photographs under identical light conditions and
post-processed the raw images in the same way, try-
ing to reproduce the differences in appearance as
well as possible.

TrueType, OpenType, and Unicode fonts

As a first example, lets look at the rendering on my
ebook reader (Kindle Paperwhite 2, 1024x758 pix-
els, 212dpi) using the OpenType Computer Modern

Martin Ruckert

Fig. 6: CMU Font, smart-phone

Fig. 7: CMU Font, laptop

Fig. 8: METAFONT at 142dpi, laptop

Fig. 9: METAFONT at 4 × 142dpi, laptop

Unicode (CMU) fonts that I had tried already for
my ebook (Figure 2). Figure 4 shows how the ebook
renders this outline font using the built-in rendering
engine. Comparing it with the printed book (Fig-
ure 3), it is obvious that the rendering lacks contrast
and looks significantly lighter. It turns out that the
initial observation that the font is “very faint” is not
a general property of the CMR fonts but a property

TUGboat, Volume 37 (2016), No. 3 279

Fig. 10: METAFONT with blacker = 0.6, laptop

Fig. 11: METAFONT with blacker = 1.6, smart-phone

Fig. 12: METAFONT with blacker = 2.4, ebook

of a specific font implementation on a specific output
device. Another popular choice are the OpenType
Latin Modern (LM) fonts [1]. The native rendering
on the Kindle Paperwhite (Figure 5) is compara-
ble to that of the CMU fonts. It seems that the
eInk technology used on the Kindle Paperwhite just
needs heavier fonts.

When considering reading text on an electronic
device, two other choices come to mind: laptop com-
puters and smart phones (or tablets), which typ-
ically have a smaller screen but higher resolution.
Figures 6 and 7 show the reference text as displayed
on my smart-phone (Motorola Moto G, 1280x720
pixels, 329dpi) and my laptop (Dell Latitude E6530,
1920x1080 pixels, 142dpi).

It is clearly visible that, due to high resolution
and good contrast, the font rendering on the smart-
phone already approaches the rendering on tradi-
tional paper, whereas the laptop screen falls short of

Computer Modern Roman fonts for ebooks

our expectations. METAFONT was designed to pro-
duce good looking fonts at low resolution. Donald
Knuth writes: “However, it will always be less ex-
pensive to work with devices of lower resolution, and
we want the output of METAFONT to look as good
as possible on the machines that we can afford to
buy.” [2, page 195] Of course, we can hope that the
ever-increasing resolution of our computer screens
will make those techniques dispensable within the
next years. But for the time being and for afford-
able, low-cost devices, good font rendering will con-
tinue to be an issue.

METAFONT and bitmapped fonts

METAFONT is aware of rasterization and takes great
care to round the outlines of the glyphs to the avail-
able raster, but it assumes an output device that
places small dots of black ink on white paper. In
contrast, my ebook is able to produce 16 gray lev-
els and my smart-phone screen is, at least in the-
ory, capable of 256 shades of gray. (Other font ren-
dering engines use even more sophisticated subpixel
rendering.) To overcome this limitation of bitmap
fonts generated by METAFONT, one can render the
bitmaps for a higher resolution and then scale down
the result to a lower resolution, converting partially-
black regions to gray pixels. The effect of this mech-
anism can be seen in figure 8 and figure 9. Clearly
the downscaling gives superior results. So the fol-
lowing figures all show fonts that are scaled down
by a factor of 4.

The METAFONT system for font design offers
special parameters to adapt the generated bitmap
fonts for any specific output device [2, Chapter 24,
Discreteness and Discretion]. The main parameter,
of course, is the resolution. Since we are dealing
with fonts that are too light, we turn our attention
to the parameter blacker. The variable blacker is a
special correction intended to help adapt a font to
the idiosyncrasies of the current output device [2,
page 93]. Its effect can be seen when comparing
figure 9 to figure 10, where the parameter blacker

has been chosen so that the visual appearance of
the font on screen would match as closely as possi-
ble the appearance in the printed book (Figure 3).
Similar results can be obtained for the smart-phone
(Figure 11) and the ebook (Figure 12) with appro-
priately chosen values of blacker. The illustrations
show that with appropriate parameters, the glyphs
as rendered by METAFONT look better than their
counterparts produced by the built-in font render-
ing engines from standard outline fonts optimized
for high-resolution printers.

280 TUGboat, Volume 37 (2016), No. 3

Conclusion

Preparation of an ebook from a TEX source will al-
ways be more than just flipping a switch in the TEX
file. Just as preparing a book for print is more than
just adopting the publisher’s style file: it might re-
quire for example stretching a paragraph by rewrit-
ing it to get a good page break; repositioning and
redesigning illustrations, so that they fall on the
right page and fit the available space on the page.
These things are no longer necessary nor possible
with ebooks, but other problems appear: Now the
author has to judge the appearance of tables or pro-
gram listings at different sizes and optimize font
sizes for good readability at various magnification
levels. Still, I expect that the algorithms of TEX
can help us to produce ebooks of much better qual-
ity than the ebooks we have today.

But even if I can get TEX to produce a beauti-
ful page layout for the ebook reader, I still need—
especially for the traditional look and feel of books
like “The Art of Computer Programming”—a True-
Type or OpenType version of the Computer Modern
Roman font family using Unicode encoding that is
specifically designed for ebooks (or other on-screen
reading). My experiments indicate that such fonts
are possible and I sincerely hope that one of the
many font specialists takes on this project. If you
do, please let me know!

References

[1] Bogus law Jackowski and Janusz M. Nowacki.
The Latin Modern (LM) Family of Fonts.
http://www.gust.org.pl/projects/e-foundry/

latin-modern/, 2009.

[2] Donald E. Knuth. Computers & Typesetting,

The METAFONTbook. Addison-Wesley, 1986.

[3] Donald E. Knuth. The Art of Computer

Programming. Addison Wesley, 1998.

[4] Andrey V. Panov. Computer Modern Unicode
Fonts. http://canopus.iacp.dvo.ru/~panov/

cm-unicode/, 2010.

[5] Martin Ruckert. The MMIX Supplement:

Supplement to The Art of Computer

Programming Volumes 1, 2, 3 by Donald E.

Knuth. Addison-Wesley, 2015.

[6] Christian Schenk. MiKTEX.
http://www.miktex.org/, 2016.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München Germany
ruckert (at) cs dot hm dot edu

Martin Ruckert

TUGboat, Volume 37 (2016), No. 3 281

When (image) size matters

Peter Willadt

Abstract

For space and performance reasons, scaling of images
to be included into a PDF document down to a
certain resolution is often desirable. This article
describes a halfway automatic method to achieve
this goal with pdfTEX.

1 Basics

TEX output is by default device independent, and
this is fine. In ancient implementations, adoption
to different previewers or printing devices resulted
from the work of DVI processing software, in recent
years TEX has been widely replaced by pdfTEX and
other software that produces PDF output which can
be processed by a wide range of devices (the P in
PDF stands for portable, after all).

With scalable fonts and scalable inline graphics
produced by software packages like TikZ or META-
POST, still everything is fine. Problems arise when
raster graphics are embedded into a PDF file. pdfTEX
includes raster graphics at their natural size. Espe-
cially with the megapixel mania of digital cameras
this leads to bloated files. Download time and pro-
cessing effort at the printing device increase; perhaps
your printer will give up with an out-of-memory error
for rendering a stamp-sized photograph.

Rescaling bitmap images to a size that suffices
for usual post-processing help keep file size and pro-
cessing complexity small while retaining expected
image quality. The most important question is: what
resolution will suffice? There are two answers: With
pure black-and-white pictures (‘line art’), the print-
ing devices’ native resolution (e.g. 1200 dpi) is fine.
With grayscale or color pictures, a resolution of 1/4
of that will easily do. The reason is that colored
‘pixels’ are formed by combining several dots.1 For
16 distinct gray tones, one ‘pixel’ consists in theory
of a 4×4 matrix of black or white pixels. In practice,
the real resolution may be even coarser, as effects like
bleeding of ink or surface roughness of paper have
also to be considered. With professional printing
equipment, true output resolution is measured in lpi
(lines per inch) and grayscale or color images scaled
to their dpi equal to the printing devices’ lpi should
be fine. If you read this article in the print version of
TUGboat, figure 1 gives you the chance to see what

1 It does not matter if the device does halftoning by ras-

tering or dithering. Special printing devices which are capable

of producing ink drops of varying size or using thermal subli-

mation are not covered by these thoughts.

2500 dpi, 900 kB 500 dpi, 58 kB

375 dpi, 42 kB 250 dpi, 24 kB

200 dpi, 20 kB 100 dpi, 10 kB

Figure 1: The same photograph in several resolutions.

See for yourself where quality degradation becomes

perceptible.

professional printing equipment can achieve on plain
paper. Printing this page on your own device will
probably be even more sobering: On my 1200 dpi
laser printer, I can’t see any difference among the im-
ages. With special paper and techniques like duotone
printing, there is room at the top.

For online viewing, one pixel of an image corre-
sponds to one pixel on screen. If you zoom in even
more pixels may be needed. Considering high-res
devices and moderate zooming, 300 dpi will probably
suffice for the next few years.

2 Looking outside the box

In the early times of desktop publishing, when disk
space was costly and memory size and local network
bandwidth were seriously limited, layout designers
often worked with low-resolution preview pictures
and final images would be inserted on the way to the
imagesetter. There even existed a standard called
open prepress interface (OPI) [1] for automatic image
replacement in PostScript files.

Adobe software (at least InDesign and Distiller)
will rescale images during PDF production to an ap-
propriate resolution chosen for the intended target
you choose (e.g. print or web). OpenOffice and Libre-
Office leave images untouched, while Microsoft Word
treats pictures, without any chance to intervene, in
a way that causes considerable grief to people in
printing offices.

When (image) size matters

282 TUGboat, Volume 37 (2016), No. 3

3 Including pictures for different output
devices into a single PDF file

Probably for purposes similar to OPI, the PDF spec-
ification allows the inclusion of different images for
viewing on screen and printing. Unfortunately, there
are several restrictions and drawbacks:

• both images have to have the same dimensions

• both images should have the same resolution

• both images will be included within the PDF

file, so file size gets bloated.

• Software support is rare.

Alternative print images are enabled as an exper-
imental feature in pdftex.def and can be used with
the graphicx package out of the box. You just say

\includegraphics

[print=imgPrint.jpg,...]{imgView}

instead of

\includegraphics[...]{myimgView}

and you’re done.
It only works with bitmap graphics and you

have to specify the full filename. Another drawback
is that image reuse does not work with this option
for screen images, so your file gets bloated even more.
With Adobe Acrobat, I have been able to use it,
but most other PDF processing software fails. On
my GNU/Linux system, I ended up with a file I
could view but not print. Considering all this, I can
unfortunately see no good use for this technology
apart from playing pranks.

4 Ways of attack

There are three possible hooks to scale images: before
the pdfTEX run; while pdfTEX is processing pictures;
and as a postprocessor on the finished PDF.

Googling for the problems aforementioned, you
will find a postprocessing solution using Ghostscript
on the final PDF file [2] and another one using a
Python tool [3].

There also exists a LATEX package and corre-
sponding ConTEXt module, both called degrade [4],
which shrink image files on the fly using ImageMagick
in the background. Both of these packages require a
Unix-ish operating system and \write18 has to be
enabled.

Beyond downscaling, there are other ways of
getting smaller image files. For one, increasing JPEG

compression allows drastic reductions in space. This
can be done when there will be no further image
processing involved, but it requires careful visual
checking for compression artifacts.

Also, color depth can be decreased (by “posteri-
zation” or grayscale conversion). The author believes

that this technique is best carried out with interactive
software and visual checks for the results. Unfortu-
nately, reducing color depth does not yield large gains
in space,2 but it might be useful to do gray-scale
conversion for material to be printed in black and
white to get fine control over the results. Gamma
correction and adjustment of black and white levels
are often helpful to get better printing results, but
for file size there is no benefit.

5 Proposal for a perfect solution

A presumably perfect solution would scale pictures
on the fly while producing PDF, ideally triggered
by a command like \pdfFinalResolution=300 or
\destination=web in the document preamble. This
command would probably be supported by some
bookkeeping to avoid unnecessary computations on
already downscaled images. If black-and-white out-
put was intended, all images might be converted to
grayscale, also keyword-driven. Of course, when im-
ages were to be clipped, only the visible part of these
images would be included.

I guess that this could be done with LuaTEX
almost out of the box, and as it has now (Sept. 2016)
reached a stable state, there should be no obstacles
to implementing it.

6 Implementation (less than perfect)
and usage

I have resorted to external software that reads a
TEX log file to scan for filenames of images and re-
quired target resolutions and then builds up scaled
images. As you can specify paths for graphic inclu-
sion with the graphicx LATEX package, you get a
comparatively easy solution if you adopt to some
conventions. You should avoid giving path names
on individual \includegraphics commands and in-
stead use the \graphicspath directive. In a first
run you will comment the path to the final images
out, having generated the downscaled pictures you
will comment the original file path out.

\graphicspath{{my/hires/images/}}

%\graphicspath{{printimg/}}

% move comment up for final pdfLaTeX run

You will have to repeat this procedure as you
change image sizes or as you add new images, so it
is probably best to start generating scaled pictures
when your document is almost done. Really fast
previewing can—as you probably know—be done by
specifying the draft option to the graphics package,

2 With the example picture, only ten percent reduction of

disk space was achieved by grayscale conversion.

Peter Willadt

TUGboat, Volume 37 (2016), No. 3 283

where you get only frames instead of pictures in your
PDF file.

So, your workflow will look like this:

• Run LATEX on your file, with \graphicspath

pointing to the original files.

• Run pdflatexpicscale on your LATEX project.

• Run LATEX on your file, with \graphicspath

pointing to your optimized files.

• Repeat if you change picture sizes, add new
pictures, or choose a different target resolution.

If you cannot produce PDF files directly, the
only change to the workflow will be that you have
to additionally call your PDF producing software.

pdflatexpicscale3 is a Perl script. It depends
on some standard Perl packages and the presence of
ImageMagick software. As these prerequisites are
quite common, it should run with your system. You
call the script with the name of your LATEX project
and optionally with the desired resolution and desired
picture directory. If you omit arguments, reasonable
defaults will be assumed. So a typical call would be:

pdflatexpicscale --printdpi=200 \

--destdir=medrespics myarticle

If your LATEX file is called myarticle.tex, you
have done a LATEX run, so that the log file exists, you
want 200 dpi output and the directory for the scaled
pictures is an existing subdirectory of the current
directory called medrespics, then you may copy the
above command verbatim.

The software can be downloaded from CTAN

[5], and is included in TEX Live. Documentation is
included. You may probably want to read it, as it is
not identical with this article.

7 Caveats, limitations and drawbacks

My PostScript printer prints some black-and-white
images inverted. I could have inverted them with an
image processor, but then they would look wrong
on screen. As a workaround I converted them to
grayscale. Some provision needs to be made to
keep pdflatexpicscale from scaling them down
like other halftone images. The easiest way is keep
them in a separate directory and to include this di-
rectory at the beginning of the \graphicspath list.

The target resolution you choose may not truly
meet the printing devices’ needs, especially if you do
not know who will print your document. Perhaps
the printing device has got fantastic image scaling
software that you replace by some inferior software
on your computer. Also you probably will not want

3 This name was chosen because Google found no hits in

July, 2016.

to recompile all of your documents just because you
bought a new printer.

pdflatexpicscale changes image size and tar-
get resolution. This has serious consequences if you
intend to use clipping, or to display pictures in a
size dependent on their resolution. Also, anisotropic
scaling is not supported.

When a file gets used several times at different
sizes, only the largest will be included. The software
reads the log file from beginning to the end and starts
rendering immediately, so when an image is included
at first in thumbnail size and then larger, it will be
rendered several times.

The Perl script uses ImageMagick’s convert

software for scaling pictures, so quality of resam-
pling and file compression (most important for lossy
compression formats like JPEG) depend upon Im-
ageMagick’s algorithms.

Security concerns: ImageMagick has had several
security flaws fixed in 2016. So it is probably not a
good idea to provide scaling services to anonymous
users that might upload a malicious image file.

The solution presented only deals with pure
raster graphics (JPEG and PNG). If you include
graphics in a mixed format like PDF, rasterization
might be beneficial or disadvantageous, depending on
the content. Rastering vector graphics is definitely
not what you want. Treating your PDF with one of
the postprocessing solutions mentioned might help.

A last remark: Having two projects share the
same images is a recipe for dissatisfaction. It is quite
common to keep, for instance, a presentation and
the corresponding handout in the same folder, but
graphic requirements are totally different. The best
solution is to keep downscaled pictures in separate
directories; pdflatexpicscale can easily cope with
this.

References

[1] http://wwwimages.adobe.com/www.
adobe.com/content/dam/Adobe/en/

devnet/postscript/pdfs/5660.OPI_2.0.pdf

[2] http://tex.stackexchange.com/questions/
14429/pdftex-reduce-pdf-size-reduce-

image-quality

[3] http://tex.stackexchange.com/questions/
2198/how-to-create-small-pdf-files-for-

the-internet

[4] http://ctan.org/pkg/degrade

[5] http://ctan.org/pkg/pdflatexpicscale

⋄ Peter Willadt

willadt (at) t-online dot de

When (image) size matters

284 TUGboat, Volume 37 (2016), No. 3

A survey of the history of musical notation

Werner Lemberg

Abstract

Music has been and still is an essential part of life. Simi-
lar to writing text there have been various ideas on how
to notate music. This article tries to show, with many
images, the solutions found in the course of more than
3000 years of history.

1 Introduction

Over the millennia, humanity has developed many
different ways to notate music. The solutions can be
roughly categorized visually as follows.

1. action description

2. words

3. letters

4. digits

5. graphics

6. stylized graphics

7. abstract symbols

8. combination of 1–7

This ordering also roughly corresponds to historical de-
velopment across cultures: The oldest Chinese sources
we know of are action descriptions, Mesopotamia seems
to have started with letters and digits, while modern
Western notation essentially uses all possible combina-
tions.

Interestingly, preserving music itself has been
much less important than preserving words— this is
true for all ancient cultures throughout the world. We
know many texts of hymns and songs, but their music
did not survive. Another observation is that most cul-
tures only developed tablatures. A tablature basically
notates the fingering to play the music on an instru-
ment, not the music itself. An exception to that was a
notation system for songs in ancient Greek; however, it
was lost with the fall of the Roman empire. Perhaps due
to the century-long ban of instruments in the church
music of early Christianity, musicians in western Eu-
rope developed new ways to notate sung music, which
eventually led to the modern notation which is used all
over the world today.

The emphasis in this survey is on the graphical rep-
resentation of music, showing both the inventiveness
and the beauty of the solutions discovered, via many im-
ages. Using some technical terms related to music for
the descriptions is unavoidable; readers without a mu-
sical background, however, can simply skip them and
enjoy the pictures for themselves.

This article is a greatly revised and extended ver-
sion of a paper submitted to the MOTYF 2014 confer-

https://www.youtube.com/watch?v=27opcKxcg1c, with permission

Figure 1: A kinnor-like lyre.

ence proceedings.1 Most images shown here are high-
resolution scans; it is thus recommended that you have
a look at the online PDF version so that you can zoom
into the document for details!

The music examples were typeset with GNU Lily-
Pond version 2.19.43.2

2 Mesopotamia—Hurrian songs

The oldest notation for music we currently know of was
found in the Royal Palace at Ugarit, an ancient port city

in northern Syria, today called Ras Shamra (Ɔشمر .(رأس
These clay tablet shards date to approximately 1400 BCE

(figs. 2 and 3); the notation uses words and digits (in
Akkadian cuneiform) for a nine-string lyre (fig. 1).

There are several problems making it hard to inter-
pret the data in a meaningful way.

• The text is written in a poorly understood Hurrian
dialect.

• Words in the notation represent intervals, not
pitches (fig. 4) — is this polyphonic? If not, what is
the order of the pitches? Ascending? Descending?

• Should the intervals be filled with scales or some-
thing different? In other words, is this a one-to-
one representation of what should be played, or is
it just a mnemonic aid?

• What do the numbers mean? Repetition? Beats?
Something completely different?

3 Greece—The Seikilos Column

The example shown in this section is the famous Seiki-
los column, found in one of the largest Aegean cities
in antiquity, Tralleis (͓Ͱαͪͪͤῖͱ, today Aydın, Anatolia,
Turkey), with an approximate age of 2000 years (figs. 7,
5, 6). It is a tombstone depicting an epigram or a skolion
(drinking song).

1. MOTYF. International Students’ Moving Type Festival 2014: Type
in Music, the Rhythm of Letters. Polsko-Japońska Akademia Technik
Komputerowych, Warsaw 2015. ISBN 978-83-63103-76-7.

2. http://www.lilypond.org

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 285

http://www.ramivitale.com/wp-content/uploads/2013/09/H6TabletsFront_lg.jpg

http://www.ramivitale.com/wp-content/uploads/2013/09/H6TabletsBack_lg.jpg

Figure 2: Hymn tablet h. 6 (front and back), consisting of shards RS 15.30, 15.49, 17.387 (Natl. Museum of Damascus).

http://digital.library.stonybrook.edu/cdm/ref/collection/amar/id/6904, with permission

Rº 5 qáb-li-te 3 ir-bu-te 1 qáb-li-te 3 ša-aḫ-ri 1 i-šar-te 10 uš-ta-ma-a-ri
6 ti-ti-mi-šar-te 2 zi-ir-te 1 ša-aḫ-ri 2 ša-aš-ša-te 2 ir-bu-te 2
7 um-bu-be 1 ša-aš-ša-te 2 ir-bu-te 1[+X] na-ad-qáb-li 1 ti-tar-qáb-li 1 ti-ti-mi-šar-te 4
8 zi-ir-te 1 ša-aḫ-ri 2 ša-aš-ša-te 4 ir-bu-te 1 na-ad-qáb-li 1 ša-aḫ-ri 1
9 ša-aš-ša-te 4 ša-aḫ-ri 1 ša-aš-ša-te 2 ša-aḫ-ri 1 ša-aš-ša-te 2 ir-bu-te 2
10 ki-it-me 2 qáb-li-te 3 ki-it-me 1 qáb-li-te 4 ki-it-me 1 qáb-li-te 2

Figure 3: A transcription of the cuneiform text below the double line that represents musical notation, following
Manfred Dietrich and Oswald Loretz (Kollationen zum Musiktext aus Ugarit, Ugarit-Forschungen 7, 1975).

\

\

1

\

\

3 ša-aḫ-ri

\

\

10 uš-ta-ma-a-rii-šar-te

\

\

\

\

\

\

3

\

\

qáb-li-te

\�

\�

ir-bu-te 1 qáb-li-te

\

\

\

\

Figure 4: The intervals and counters as used in the Hymn tablet. Depending on the order of strings (either ascending
or descending), which is unknown, either the first or the second line is the correct one.

A survey of the history of musical notation

286 TUGboat, Volume 37 (2016), No. 3

https://commons.wikimedia.org/wiki/File:Seikilos2.tif

͉͊ͅΩ͍͇ ͉͈͋͏͒
͉͉͌ͅ·͓͉͈͇͉͒ ͌ͅ
͉͉͒͊͋ͅ͏͒ ͍͈ͅΑ
͍͇͇͌͌͒ Α͈Α͍Α͓͏͔
͇͒͌Α ͐͏͔͋ ͖͑͏͍͉͏͍
Ϲ

͏
¯͆

͒͏͍
˙
¬
͆

͇͆͒
͉͊͆

͕Α͉
˙
¬
͉

͍͏͔
¯͊

͇͌
͉

͍̈́ͅ
˙͆

͏͋
˙͉̄͊
͝

Ω͒
͏

͔͒
Ϲ̄

͔͋
˙
¬
͏͕
͝

͐͏͔·
Ϲ

͐͑͏͒
͊

͏
͆

͉͋-
˙͉

̓͏͍
˙͊ ˙͉

͒ͅ
͊

͓͉
Ϲ̄

͓͏
˙
¬
͏͕
͝

͇͍͆.
Ϲ

͓͏
͊

͓ͅ
͏

͋͏͒
˙͉

͏
˙͆

͖͑͏-
˙͊

͍͏͒
Ϲ

Α
Ϲ̄

͐Α͉
Ϲ ˙͖̄ ̓

͝
͓͉ͅ.

Figure 5: The text of the Seikolos column; left a flattened image, right a version with modernized orthography. Note
the final ‘ ’̓ character: To get more symbols for music notation, Greek characters were both mirrored and rotated.

ͅἰͩὼͬἡ ͪͧͮ͞ͱ ͤἰͫ͞.
͓ͧͦ͞Ͳ͞ ͫͤ ͒ͤͩͨͪͮ͞ͱ ἔͬͧα
ͫͬͫͦ͝ͱ ἀͧαͬ͛ͳͮʹ
Ͳῆͫα ͯͮͪʹ ͶͰόͬͨͮͬ.

I am a tombstone, an image.
Seikilos placed me here
as an everlasting sign
of deathless remembrance.

Ϲ

Ὅ
¯͆

Ͳͮͬ
˙
¬
͆

ͥῇͱ
͉͊͆

͵α͞
˙
¬
͉

ͬͮʹ
¯͊

ͫͦ
͉

ͣὲͬ
˙͆
ὅͪ

˙͉͊̄͝
ωͱ

͏

Ͳὺ
Ϲ̄

ͪʹ
˙
¬
͏͕
ͯͮ͝ῦ·

Ϲ

ͯͰὸͱ
͊

ὀ
͆

ͪ͞
˙͉

ͮͬ͢
˙͊˙͉
ἐͲ

͊

ͳὶ
Ϲ̄

ͳὸ
˙
¬
͏͕
ͥ͝ῆͬ.

Ϲ

ͳὸ
͊

ͳ͜
͏

ͪͮͱ
˙͉
ὁ

˙͆
ͶͰό

˙͊
ͬͮͱ

Ϲ

ἀ
Ϲ̄

ͯαͨ
Ϲ ˙͖̄ ̓

͝ͳͤῖ.

While you live, shine
have no grief at all
life exists only for a short while
and time demands its toll.

τέ
a

λος ἀ
los

o
T

ἐσ

T
te

o

chro
T

νος
nos

oT
χρό

o
oT

ὁ
ho

o

τὶ

T
ti

oo
r

τὸ
to

ooT
ζῆν
zēn

o

τὸ
to

o o

τεῖ
tei

o

παι
pai

o

r
o

νου μη
mē

oN

nou

ooo

T
λως
lōs

o
T

es
ὅ
ho

o

δὲν
den

o

σον
son

o
r

Ὅ
Ho

68
��� o

φαί
phai

oN

ζῇς,
zēs,

o

pros

r

πρὸς

o
T
ποῦ·
pou

o
T

γον
gon

o
To

ί
i

o

T
ὀλ
ol

o

T
o

σὺ
sy ly

o

λυ

oo

Figure 6: A text version of the Seikilos column using mixed-case Greek, together with an English translation and a
representation with modern musical notation. A bar over letters represents two beats, a hooked bar three beats. A
dot indicates an unstressed beat, a tie below letters marks a syllable to be sung with more than a single note.

In contrast to the Hurrian songs, this is the earliest
known piece of music that can be almost exactly tran-
scribed to today’s music notation, thanks to many sci-
entific works of Pythagoras and others who introduced
music notation for their theoretical treatises. Sadly, the
number of music pieces that actually use the notation is

very small; as mentioned in the introduction, it was not
considered important to be written down. Additionally,
knowledge of this notation system was lost in the early
middle ages; only the text of Greek songs has survived.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 287

https://commons.wikimedia.org/wiki/

File:2._Stèle_portant_l’inscription_de_

Seikilos.jpg

Figure 7: The Seikilos column, National Museum
of Denmark.

4 Egypt

No musical notation is known from the culture of an-
cient Egypt; apparently, there was only an oral tradi-
tion. Musical instruments are displayed in many images
(and some have even survived); it is thus possible to re-
construct at least the range of possible sounds, but noth-
ing more.

A Coptic document with coloured circles, dated to
the 5th–7th centuries CE, might be related to notation
(fig. 8); however, nobody really knows.

http://musicofthebiblerevealed.files.wordpress.com/2013/07/

coptic_musical_notation.jpg

Figure 8: One of six Coptic parchments; colours might
indicate pitch, size the duration. Metropolitan Museum,
New York (?).

5 Far East

5.1 China

Similar to ancient Greece, music theory was highly de-
veloped in ancient China. The most important archae-
ological site, from a musicological point of view, is the
tomb of Marquis Yi of Zeng (曾侯乙墓, Zēng hóu Yǐ mù,
located in Léigǔdūn, 擂鼓墩, Hubei province, China),
dated sometime after 433 BCE. Excavated chimestones
and bells contain inscriptions related to pitches, scales,
and transposition (fig. 9). However, no musical notation
was found.

The oldest known notation from China dates from
the 7th century, called wénzìpǔ (文字譜), a longhand
tablature (figs. 10 and 11). It is a plain text description
of how to play the gǔqín (古琴), a zither.

During the Tang dynasty (8th to 9th centuries) this
system of verbal descriptions was greatly simplified,
leading to the jiǎnzìpǔ (減字譜) tablature (fig. 12). In
parallel, another tablature called gōngchěpǔ (工尺譜)
was invented (fig. 13); both systems use Chinese char-
acters, digits, and other symbols to notate fingerings.

Modern non-western notation (簡譜 jiǎnpǔ), intro-
duced in the early 20th century, is most likely based on
the French Galin-Paris-Chevé system, published 1818
(figs. 14 and 15 [after main text]). While not having

http://herschelian.files.wordpress.com/2013/09/bianzhong-

concert-2.jpg, with permission

Figure 9: Bells from the tomb of Marquis Yi of Zeng.
Hubei Provincial Museum, Wuhan.

耶臥中指｜卞半寸許案商，
食指、中指雙牽宮商。
中指急下与拘俱下十三下一寸許。
住。末商起。食指散緩半扶宮商。
食指挑商。又半扶宮商。
縱容下無名於十三外一寸許案商角，
於商角即作兩半扶、挾挑聲。

oo N
r
o

o N o \o N o�
o

r
o

rr
o

freely� ¯
o N

slow

o oN
r
o

� No

Figure 10: The beginning of Jiéshí diào yōu lán, with John
Thompson’s transcription. While the pitches in the orig-
inal are given to the quarter tone or better, one can only
approximate the rhythm.

A survey of the history of musical notation

288 TUGboat, Volume 37 (2016), No. 3

http://www.emuseum.jp/detail/100229/000/000

Figure 11: The beginning of the 4m long scroll with wénzìpǔ tablature of the piece Jiéshí diào yōu lán (碣石調幽蘭)
“Secluded Orchid, in Stone Tablet Mode”, from the 7th century (Tōkyō National Museum, TB-1393).

https://en.wikipedia.org/wiki/File:Shenqi_Mipu_vol_3_pg_1.jpg

Figure 12: Two pages from Shénqí mìpǔ (神奇秘譜), dated 1425, an example of jiǎnzìpǔ tablature for the qín zither.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 289

https://en.wikipedia.org/wiki/File:Kam_Hok_Yap_Mun-Yeung_Kwan_Sam_Tip.jpg

Figure 13: Two pages from the score book Qín xué rùmén (琴學入門), dated 1864,
showing gōngchěpǔ tablature for the gǔqín zither.

http://sammlungen.ulb.uni-muenster.de/hd/content/pageview/1474276

Figure 14: Cipher notation for the songO heil’ge Seelenspeise, contained in the book Sursum corda, a German Catholic
hymnal from 1887. The displayed melody is based on Innsbruck, ich muß dich lassen (Innsbruck, I Must Leave You),
a famous song by Heinrich Isaac composed in the second half of the 15th century.

A survey of the history of musical notation

290 TUGboat, Volume 37 (2016), No. 3

a significant impact on the Western world, it became
extremely popular in Asia since it is comparable to the
gōngchě tablature. Even today, most traditional music
scores and song books use jiǎnpǔ notation.

5.2 Japan

All traditional notation systems in Japan are tablatures,
strongly influenced by China and Korea, which in turn
was also influenced by China (fig. 16). In the course of
time, many different, specialized notations were devel-
oped depending on the instrument. This was further
specialized by competing music schools, trying hard to
provide knowledge of playing the instrument only to
members of the clan (fig. 17). In spite of the special-
ization, all notation systems are just mnemonic devices,
making it impossible to interpret it correctly without ad-
ditional oral tradition.

5.3 Korea

Similar to Japan, both music and music notation was
strongly influenced from China.

In the 15th century, the jeongganbo mensural no-
tation (정간보, 井間譜) was developed, providing a
means to exactly specify the rhythm by positioning the
musical information into a grid. This system, which was
the first in Asia able to represent duration of notes, is
still in use today (fig. 18); the idea of using a rhythm
grid was also exported to Japan in the 18th century.

6 India

Ancient India is another major civilisation that did not
develop explicit notation systems. Instead, only hints,
usually small strokes above and below the text, were
added. As is to be expected, such a system is not re-
producible without the oral tradition from guru (ƕुरु,
teacher) to shishya (िशष्ƭ, student).

Modern notations were developed by Vishnu Na-
rayan Bhatkhande (िवष्णु नाƮाƭण ƫातƔंड,े 1860–1936) and
Vishnu Digambar Paluskar (िवष्णु िदƕंƪƮ पलुस्ƓƮ, 1872–
1931) in northern India, mainly for teaching music and
the preservation of traditional compositions. They are
based on Devanagari characters and numbers with a
small set of additional symbols (fig. 19).

7 Middle East

No music notation systems were developed in the Mid-
dle East after the fall of the Roman empire; there was
only oral tradition, as far as we know. Starting around
1830 in Egypt, Western notation was introduced, but
only in a very limited way.

Music theoreticians Al-Kindi إسحاق) بن ƅي߿قو ,Ƅلـكنديأبو 9th century) and Al-Farabi ƄلفارƄبي) محمد نصر ,Ƅبو
10th century) used letters to denote strings of the oud
,عود) an Arabic lute), together with finger positions. Safi

al-Din al-Urmawi Ƅلارموی) Ƅلدین ,صفی 13th century) ad-
ditionally used digits to indicate rhythm in his works.
It must be noted, however, that none of these systems
gained any practical importance for playing music.

The perhaps most remarkable contributor to mid-
dle eastern notation systems was Dimitrie Cantemir,
Prince of Moldavia (Turkish: Kantemiroğlu), who pub-
lished his letter notation around 1710 while in forced ex-
ile in Constantinople, collecting and preserving around
340 Ottoman instrumental pieces (figs. 20 and 21).

8 Europe

8.1 Neumes

Isidore of Seville, living in the early 7th century, states
in his book Etymologiae (also known as Origines):

nisi enim ab homine memoria teneantur soni,
pereunt, quia scribi non possunt3

(unless sounds are held by the memory of man,
they perish, because they cannot be written down)

Music history soon provided counterexamples:
Visigothic neumes (i.e., inflective marks to notate mu-
sic) began to develop in northern Spain in the late 7th
century (figs. 22 and 23).

Similarly, the first paleofrankish neumes appeared
around 850 in Aurelian of Réôme’s works (fig. 24).

In the 10th and 11th centuries, development and us-
age of neumes started to flourish in many places in Eu-
rope: St. Gallen (Switzerland), Laon, Brittany (France),
to name just a few.

Neumes can be roughly classified as either adia-
stematic or diastematic. The older adiastematic neumes
show the direction of a melody, but no pitches. On the
other hand, rhythm and dynamics were quite precise
(fig. 25).

Diastematic neumes were rather the opposite:
Quite precise pitches, but lack of rhythm and dynamic
hints (fig. 26).

It is probable that neumes were originally devel-
oped in the Byzantine Empire, based on Greek origins.
The orthodox church still uses neumes today (with re-
fined notation).

8.2 Staff lines

Another European invention was the use of staff lines.
The first use of horizontal lines to indicate the pitch
can be found in the theoretical workMusica enchiriadis,
written in the 9th century (fig. 27).

Guido of Arezzo further developed the idea of staff
lines; he recommended the use of lines in distances of
a third in his book Prologus in Antiphonarium (around
1030), together with a clef (or coloured lines) to indicate
pitches.

3. Isidorus Hispalensis, Etymologiae, book III, De Musica.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 291

With the introduction of square-note neumes in
the 12th century, the development of the notation of
Gregorian chant was essentially completed (fig. 28), and
is still in use today.

In the same century, polyphony started to develop,
mainly in the Notre Dame school in Paris. It also intro-
duced modes to control the rhythm (figs. 29 and 30).

8.3 Mensural notation

Perhaps the most important invention in Western mu-
sical notation was made by Franco of Cologne (around
1250, as documented in his book Ars cantus mensurabi-
lis). He introduced note heads with different shapes to
define their own duration.

Previously, rhythm was only implicitly defined by
context and learned rules; the new class of note heads
allowed the notation of arbitrary durations. This system
is still basically the same as what we use today, with
only minor changes and additions (figs. 31, 32, 33).

8.4 Tablatures

In the Western music, tablatures spread in the 15th cen-
tury, mainly for instruments that can produce more
than a single note at the same time. Either digits or
letters were used to denote keys or fingering (figs. 34,
35, 36).

8.5 Printing

Printing music with movable type started around 1500.
In the beginning, the layout was a copy of handwriting
(figs. 37 and 38).

Bar lines, ties, slurs, and other marks were gradu-
ally introduced in the 16th and 17th centuries (fig. 39).

8.6 Engraving

In the 18th century, polyphonic music became too com-
plicated to be printed with movable types. Instead, en-
graving techniques were introduced for music, starting
with copper plates (chalcography, fig. 40).

Around 1730, the English music publisher John
Walsh invented a new engraving technique: Staff lines
were drawn with a 5-pronged ‘scoring tool’ onto a
pewter plate (an alloy of mainly tin), fixed-size musical
symbols were punched with dies, and everything else
engraved manually (fig. 41).

In 1799, Johann André from Offenbach am Main,
Germany, applied the newly invented lithography tech-
nique to music— images on zinc plates being mechani-
cally transferred (fig. 42).

Around 1860, the aesthetics of classical music en-
graving as used today were completed (fig. 43).

9 The future

The last revolutionary step in the history of music nota-
tion to date is the introduction of computers to typeset

music— this is happening right now. Today, the job of
a music typesetter working with pewter and dies is now
essentially defunct.

However, until very recently, the results produced
by computers were hardly adequate compared to man-
ually engraved scores. This difficulty is mainly due
to the two-dimensionality of the data, making it hard
to automatically achieve visually pleasing scores. At
the present time, this is going to change: Computers
are steadily becoming more powerful, allowing for the
mathematically expensive computations that are neces-
sary for good automatic positioning of the notational
elements.

Software is evolving, too: Programmers are learn-
ing from the errors and problems affecting the first-
generation programs used for typesetting music, and
also providing better GUIs with powerful templates for
users—who thus need be less aware of the intricate
details of correct music layout.

Sources

All images not tagged with a URL were created by the
author. Here is a table with additional notes for selected
images.

1 This image was extracted from a video; it shows Peter
Pringle playing an ancient lyre.

3 On his website, Casey Goranson collects no less than
ten different realizations of the tune that appeared in
various scientific papers, see http://individual.

utoronto.ca/seadogdriftwood/Hurrian/

Website_article_on_Hurrian_Hymn_No._6.html.
Most of them, if not all, are highly speculative due to
lack of information.

6 The English translation of the Greek text was taken
from Wikipedia, https:

//en.wikipedia.org/wiki/Seikilos_epitaph.

8 The blog entry http://musicofthebiblerevealed.

wordpress.com/2013/07/25/spiritual-harmony-

coptic-musical-notation gives more details on the
possible interpretation of this parchment.

9 The photo belongs to Jo Michie’s blog on China,
http://herschelian.wordpress.com/2013/09/

25/the-marquis-yi-of-zengs-musical-bells.

10 Thompson’s complete transcription of the piece can be
found at http://www.silkqin.com/02qnpu/01yl/

transpdf/jsdyl01.pdf.

19 The image was taken from David Courtney’s site Music
of India, http://chandrakantha.com/articles/

indian_music/lippi.html.

⋄ Werner Lemberg
wl@gnu.org

A survey of the history of musical notation

292 TUGboat, Volume 37 (2016), No. 3

���������

�

�
������������������ ����������������������� ���������������������

���������������

��

���� ����������������������� ���������������������

������������������� ��������
�

�������������� ������

��

���������������

o

r
o o

o o o N o o o o
s
o o o o

�� � 44
N

o
o N o o\

oo \o o o
o o

oo o o o o

o
o o

o

n
oN� �

o o o o N o

r
oh No

o
o

Nno o oo
o oo

oo o
hoho o

o oo
ooo

oo
NoNo

�� oNoo o

\
o�o

s
oo o

Figure 15: Beginning of the piece The Moon Mirrored in the Second Spring (二泉映月, Èrquán yìngyuè) for the èrhú
(二胡, a Chinese fiddle); jiǎnpǔ and Western notation.

https://en.wikipedia.org/wiki/File:Tempyo_Biwa_Fu.jpg

Figure 16: The Tempyō biwa fu (天平琵琶譜, Tempyō
lute score), dated ca. 738. This is essentially a Chinese
piece using Chinese lute notation, preserved in the Im-
perial Storehouse (Shōsōin正倉院) in Nara, Japan.

http://www.shaku-rus.com/Scores/Ch_score.jpg

Figure 17: An example of a tablature for the shakuhachi
(尺八, an end-blown flute).

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 293

http://cfile222.uf.daum.net/image/251EC74A5184633226C90A

Figure 18: Amodern example of jeongganbo notation, to
be read from top to down, right to left. The square boxes
contain themelody, the rectangles to the right hold play-
ing instructions. In the square boxes, two rows split the
beat into two half beats; two characters in a row further
split a half beat into two quarter beats. A ‘–’ character
indicates a rest.

http://chandrakantha.com/articles/indian_music/lippi_media/bhat_notation2.jpg,

with permission

Figure 19: An example of two systems of Bhatkhande’s
notation, taken from Hindustani Sangeet-Paddhati Kra-
mik Pustak Malika (िहन्दुस्तानी संƕीत-पद्धित करिƬƓ पुस्तƓ Ƭा-
िलƓा), Volume 4. Each system consists of four lines.

http://www.musikwissenschaft.uni-

wuerzburg.de/struktur/lehrstuehle_professuren_ressorts/projekte_und_

materialien_des_lehrstuhls_fuer_ethnomusikologie/osman/elci_pesrevi_1_faks/

Figure 20: A page of Cantemir’s treatise Kitâb-ı ’İlmü’l-
Mûsıkî ’alâ Vechi’l-Hurûfât (Türkiyat Enstitüsü Library,
İstanbul, Arel 2768).

T

oo

o

o o

o

o N

o

o

o T

r

o

o

o

o

r
o

o

o

oo

o

o

r
o

o

o

oo
°

°� o

��� o

o

o

T o

o

o

o o

r
o

o

T

N

Figure 21: A zoom into the fourth line of the page
showing the beginning of the song ‘Irak Elçi Peşevi’,
Usul Düyek, with transcription. The lower part of the
line in the facsimile with Arabic digits (to be read from
right to left) gives the rhythm of the melody.

A survey of the history of musical notation

294 TUGboat, Volume 37 (2016), No. 3

http://bvpb.mcu.es/en/catalogo_imagenes/grupo.cmd?posicion=192&path=26408&

presentacion=pagina

http://bvpb.mcu.es/en/catalogo_imagenes/grupo.cmd?posicion=193&path=26408&

presentacion=pagina

Figure 22: Two pages from the Visigothic Antiphonal, most probably an 11th century copy of a 7th century book
(Archivo de la Catedral de León, Ms. 8). It depicts Mozarabic chant.

Figure 23: A detailed view of the Antiphonal, also called Antifonario de León. Today, these neumes are
almost completely undecipherable— the Mozarabic Rite was forbidden in Spain around 1080 by Pope
Gregory VII and replaced by the Roman Rite.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 295

http://gallica.bnf.fr/ark:

/12148/btv1b8452635b/f147.item

Figure 24: Two views of a page of Aurelian of Réôme’s book Musica disciplina, a Carolingian chant treatise written
around 850— containing only text, no music. The neumes (undecipherable today) in this copy from ~880 were
apparently added to this copy by an early reader (Bibliothèque municipale de Valenciennes, Ms. 148).

http://www.e-codices.unifr.ch/de/csg/0359/107

Figure 25: A detailed view of p. 107 of the Codex
Sangallensis 359 manuscript from the early 10th
century, showing adiastematic neumes (St. Gallen,
Stiftsbibliothek).

https://archive.org/stream/palographiemusic15macq#page/60/mode/1up

Figure 26: The beginning of Tu es deus in the Codex
Benevento VI.34 manuscript, f. 59v, written around
1100, showing diastematic neumes (Biblioteca
capitolare, Benevento). The thicker line marks the
pitch ‘f’, the thinner one pitch ‘c’, a fifth higher, as
indicated by the letters at the beginning of the lines.
Those letters eventually became the clefs in modern
notation.

A survey of the history of musical notation

296 TUGboat, Volume 37 (2016), No. 3

https://commons.wikimedia.org/wiki/File:Musica_enchiriadis_Rex_celi.png

Figure 27: An image from Musica enchiriadis (Staatsbibliothek Bamberg, Var. 1, fol 57r).
Each line corresponds to a chord of a harp-like instrument.

http://www.kalosconcentus.org/images/Musiche/Intr%20Rorate.jpg, with permission

Figure 28: The Graduale Triplex (published by the Abbaye Saint-Pierre de Solesmes in 1979) shows both the
diastematic neumes from Metz (above, black) and the adiastematic ones from St. Gallen (below, red), together
with square-note neumes taken from the Graduale Romanum.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 297

http://teca.bmlonline.it/ImageViewer/servlet/ImageViewer?idr=TECA0000342136#page/1/mode/1up

Figure 29: The beginning of Pérotin’s Viderunt Omnes from the Magnus liber organi, composed around 1200, start-
ing with syllable “Vi”. This is the first known Quadruplum, a piece with four different voices (Biblioteca Medicea
Laurenziana, Pluteus 29.1, f. 1, Florence).

o

o

T

T

N

T

o

o

o

T
No

o

No

o

o

T

T

o
T

o

o

o

No

o

o
T

o

o N

N

o

o

o

N

N
T

N

o

o

o

N o

o

o

N

N

N

o

o

o

o

T

T
N

o

o

o

N

N

o

o

o

N

N

o

o

o

N

N

N

o

o

T
o

o

ooo

o

o

o

o

To

o

o

T

TT

T

o o

o

o

N

N

N

N
T

o

o

o

N

N

��
VI -

�

�
4

3

�
8

�

��
8

�

��
8

o

o

o

<

o

N

o

o

N

N
T

T

o

o

o

N

N

o

o

o

T

N

o

o

o

o T

o

o

T

T
o

o

o

o

oo

T

o

o

o

o
r

o

o

o

o

o

o

T

N

o N
T

o

o

o

N

o

oN

o

o

T
o

N
T

o

o

o

N

o
T

o

o

o

N

o

o

No

N

N

N

o

T

T
o

o

N

N

o

o

o

o N

o

o

o

N

o

N

N

o

N

T

o

o

o

T

r

o

o

o

N o

o

o

T

T

o

o
o

N

N

o

o

o

N

T

o

o

o

T
N

o

o

o

N o

o

o

T

o

N

o

o

�

o

o

o

<

8

4

3

� �

�
8

�

�
8

�

o

o

o o
o

o

o

o

T

T
N

o

o

T

N

o

o

T

T

o

o

o

N

N
T

o

o

o

o

N

o

o

T

o

o

o

T

r

o

o

o

No

T

T

o

o

o

N

o

o

N

NN

Figure 30: Transcription of Viderunt omnes from fig. 29, using modern notation.

A survey of the history of musical notation

298 TUGboat, Volume 37 (2016), No. 3

http://gallica.bnf.fr/ark:/12148/btv1b8449032x/f575.item http://gallica.bnf.fr/ark:/12148/btv1b8449032x/f576.item

Figure 31: The beginning of the Gloria of Guillaume de Machaut’s famous Messe de Nostre Dame, composed
around 1360, in black mensural notation (ms. Machaut B, f. 283v–284r, Bibliothèque nationale de France).

bo

<oo

ne

\oo

bus

\
�
oo

o
tavo

o
�
o

lun

ooo

ra

22 \\

�

\

Et

42� � N
ter

<

in

� o
niho

\
mi

22
pax

42 � o<

< N
te.

o
r

Glo

oo

oAd

o o
�

T
mus

o

ra

\

ca

o
o oo

�

o

fi

o
ri

oo

�

o
mus

o N
te.
<o

tis.

o�
da

32\

Lau

o

ci
o o

di

o
ne

o N
te.

<

musBe

\

�

glo

o
�

o
ri

o
o oo

ter

\
prop

\

nam

\o

mag

o

am.

<

��
am

oo

tu
\oo

�

o
ti
\�

Gra a
o<

as

\
22 <

�

mus
o

te.

� oo� o
<�
bi

oo

ti

o

mus

o \

gi

Figure 32: A zoom into the highest voice of the Gloria, together with a transcription to modern notation.
Since the original manuscript does not have time signatures, the grouping into bars is rather arbitrary.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 299

http://digi.vatlib.it/view/MSS_Chig.C.VIII.234/0384

Figure 33: The beginning of the Missa
L’homme armé (Kyrie eleison), written by
Josquin des Prez (~1452–1521), in white
mensural notation (Biblioteca Apostolica
Vaticana, Chig.C.VIII.234, f. 191v).
All elements of modern notation except bar
lines are present. Using paper instead of
parchment made it necessary to use less ink
to avoid damage, thus the hollow (‘white’)
note heads.

http://ricercar.cesr.univ-tours.fr/3-programmes/EMN/luth/sources/consult.asp?numnotice=4&ID=Capirola&index=94

Figure 34: Padoana a la francese from Vincenzo Capirola’s lute book, written around 1517
(Newberry Library, Chicago, MS VM C.25, f. 47r).

A survey of the history of musical notation

300 TUGboat, Volume 37 (2016), No. 3

http://imslp.org/wiki/Special:ImagefromIndex/111320

Figure 35: The chorale Wir Christenleut’, BWV 612, from J. S. Bach’s Orgelbüchlein manuscript, written around 1715.
The last 2½ bars are notated in German organ tablature (Staatsbibliothek zu Berlin Preussischer Kulturbesitz,
Mus. ms. autogr. Bach P 283).

o

o
�o

� o

o

o

o

o

o

o

o

o

o

o

o
o

�o

oo �o

ooo

o

<

<

<
<

oo

oo� o

o

oo

�

o

o

o

o

o
�

N

�� o

� o

��
o
\�
o

o

N

N

o

o

�

�o

oo

�
o

o

o

�
T

N

<

o

o o
<

Figure 36: A zoom into BWV 512. In the autograph, each line with German Kurrentschrift letters represents a voice;
uppercase letters denote pitches one octave lower, letters with a line above one octave higher. A sharp accidental
is indicated by a trailing curved stroke below the baseline. Flats are not used, thus the note sequence ‘g-f-e flat-d’
is notated as ‘g-f-d sharp-d’, for example. Superscript digits and other symbols above the letters indicate duration
(e.g., ‘4’ for four semiquavers, ‘|’ for a whole note).

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 301

http://imslp.org/wiki/Missarum,_Book_1_(Josquin_Desprez)

Figure 37: This page of a partbook, printed in Venice by Ottaviano Petrucci in 1502, shows the same mass
from Josquin as figure 33.

Figure 38: A direct comparison between the Josquin manuscript (fig. 33) and the printing (fig. 37). Note that the print
uses a different clef. It also contains some errors and variants, probably due to a different manuscript copy.

A survey of the history of musical notation

302 TUGboat, Volume 37 (2016), No. 3

http://www.bibliotecavirtualdeandalucia.es/catalogo/catalogo_imagenes/grupo.cmd?path=1000562&presentacion=pagina&posicion=29

Figure 39: A page from Miguel de Fuenllana’s Orphenica lyra (printed 1554), a tablature for the vihuela (an early
guitar), with bars. Red numbers indicate the melody. A rhythm indicator is only specified if a rhythm changes.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 303

http://imslp.org/wiki/Special:ImagefromIndex/246223

Figure 40: A copper plate engraving of the air En fin la beauté from Etienne Moulinie, published 1624.

http://www.musicprintinghistory.org/music-engraving/13-about-music-engraving

Figure 41: The process of manual music engraving. For complicated scores, it could easily take a day to finish a single plate.

A survey of the history of musical notation

304 TUGboat, Volume 37 (2016), No. 3

Figure 42: A lithography print from 1805 of a
piano reduction of Mozart’s overture to Don
Giovanni, produced by Johann André’s
printing company in Paris (he held a patent
on lithography).

http://www.wurlitzerbruck.com/images/MUS/Mozart%20Don%20Giovanni%20Overture%2010589.jpg

http://imslp.org/wiki/Special:ImagefromIndex/69058

Figure 43: An excerpt of Rachmaninoff’s second piano sonata, engraved in 1914.

Werner Lemberg

TUGboat, Volume 37 (2016), No. 3 305

Colorful emojis via Unicode and OpenType

Hans Hagen

A recent new (and evolving) addition to OpenType
is colored glyphs. One variant (by Microsoft) uses
overlays and this method is quite efficient.

\definefontfeature[colored][colr=yes]

\definefontsynonym[Emoji]

[file:seguiemj.ttf*default,colored]

\definesymbol[bug][\getglyphdirect{Emoji}

{\char"1F41B}]

\definesymbol[ant][\getglyphdirect{Emoji}

{\char"1F41C}]

\definesymbol[bee][\getglyphdirect{Emoji}

{\char"1F41D}]

Here we see a , and , and they come
in color! Since Unicode has started adding such
symbols (and more in each release) the distinction
between characters and symbols becomes even fuzzier.
Of course one can argue that we communicate in
pictograms but even then, given that mankind may
last a while yet, the Unicode repertoire will explode.

U+1F41B bug U+1F41C ant U+1F41D bee

Figure 1: A few emojis from seguiemj.ttf.

Above we have used seguiemj.ttf, a font that
comes with Windows. Colors are achieved by com-
bining glyphs rendered in different colors. A variant
font that uses SVG instead of overlays is
emojionecolor-svginot.ttf:

\definefontfeature[svg][svg=yes]

\definefontsynonym[Emoji]

[file:emojionecolor-svginot.ttf*default,svg]

This time we get , and and they look
quite different. Both fonts also have ligatures and
you can wonder what sense that makes. It makes it
impossible to swap fonts and as there is no standard
one never knows what to expect.

U+1F41B bug U+1F41C ant U+1F41D bee

Figure 2: The same emojis from

emojionecolor-svginot.ttf.

How do we know what faces add up to the lig-
ature and how are we supposed to know that
there should be zwj between? When we input four
faces separated by zero width joiners, we get a four
face symbol instead. The reason for having the join-
ers is probably to avoid unexpected ligatures. The
sequence man, woman, boy, boy gives family: ‍ ‍ ‍+

zwj‍ ‍ ‍+ zwj‍ ‍ ‍ + zwj‍ ‍ ‍ = , but two girls also

works: ‍ ‍ ‍+ zwj‍ ‍ ‍+ zwj‍ ‍ ‍ + zwj‍ ‍ ‍ = , and

so does a mixture of kids: ‍ ‍ ‍+ zwj ‍ ‍ ‍+ zwj‍ ‍ ‍
+ zwj‍ ‍ ‍ = , although (at least currently): ‍ ‍ ‍
+ zwj ‍ ‍ ‍+ zwj‍ ‍ ‍ + zwj‍ ‍ ‍ = ‍ ‍ ‍ (not
stacked). To add to the random fun, the official
Unicode family U+1F46A has only three members
(in this font): .

In our times for sure many combinations are
possible, so: ‍ ‍ ‍+ zwj ‍ ‍ ‍+ zwj‍ ‍ ‍ + zwj‍ ‍ ‍ =
indeed gives a family, but I wonder at what point
cultural bias will creep into font design. One can
even wonder how clothing and hair styles will demand
frequent font updates: .

In the math alphabets we have a couple of an-
noying holes because characters were already present
in Unicode, so now we forever have to deal with
those exceptions. But not so with emojis because
here eventually all variants will show up. Although a
character A in red or blue uses the same code point,
a white telephone (not in this particular font) and
black telephone have their own. And because
obsolete scripts are already supported in Unicode
and more get added, we can expect old artifacts also
showing up at some time. Soon the joystick will
be an unknown item to most, while the Microsoft
hololens might get its slot.

U+1F423

hatching chick

U+1F424

baby chick

U+1F425 front-

facing baby chick

Figure 3: Will all animals come in all stages of

development?

For sure these mechanisms will evolve and to
what extent we support them depends on what users
want. At least we have the basics implemented.

⋄ Hans Hagen

Pragma ADE

http://pragma-ade.com

Colorful emojis via Unicode and OpenType

306 TUGboat, Volume 37 (2016), No. 3

Cowfont (koeieletters) update

Taco Hoekwater, Hans Hagen

Abstract

After ten years, the ‘koeieletters’ font is ready for an
update. The new version uses OpenType technology
to combine the existing four PostScript Type 1 fonts
into a single TrueType font. It’s sort of a coincidence
that at the tenth ConTEXt meeting, the font also
celebrates its tenth birthday.

1 A bit of history1

1.1 The artful beginnings

At TUG 2003 in Hawaii, Hans Hagen met with Duane
Bibby. Hans was looking for some small images to
enliven the ConTEXt manuals and Wiki. A cutout
of a very early sketch can be seen in figure 1, but
it was soon agreed that consecutive drawings were
going to be an alphabet.

Nothing much happened after that initial meet-
ing until the beginning of 2006 when Hans picked up
the thread and got Duane started drawing. The al-
phabet quickly progressed. Starting in a rather natu-
ralistic style like Duane’s ‘normal’ TEX drawings, but
later progressing toward a much more cartoon-like
style, as can be seen from the drawings in figure 2.

For ease of use, it was clear that these draw-
ings should ideally become a computer font. Taco
Hoekwater agreed to take care of the digitization,
and luckily the drawings were already prepared for
that. As can be seen from the leftmost closeup in fig-
ure 3, the cows are drawn inside a grid. This ensures
that they are all the same size, which is a vital re-
quirement for a font design. But of course this is a
proportional font in the end; it even has kerning and
ligatures!

The center drawing in figure 3 is a still rather
roughly inked version of one of the in-between draw-
ings (there were many). In this particular one you
can see that the mouth of the cow was originally
more or less oval, but in the final form (on the right)
it became much more hexagonal.

1.2 Digitization

The original sheets were sent to Pragma ADE by
regular mail in the beginning of March 2006. Hans
scanned the original sheets at 1200 dpi and then
forwarded the images to Taco. There were four sheets
in all, containing an alphabet with some accents,

1 This section is an abbreviated version from our
article ‘The making of a (TEX) font’, MAPS 34 (2006),
pages 51–54. http://www.ntg.nl/maps/34/11.pdf

Figure 1: The first drawing

Figure 2: Rough design

Latin punctuation, and a number of TEX-related
logos and a few (mathematical) symbols.

The four sheets were digitally cut up into many
smaller pieces, each containing a single glyph for
the font. This being intended as a decorative font,
the character set does not even contain the com-
plete ASCII range. Nevertheless, almost a hundred
separate images were created.

These were then imported into FontForge. The
autotracer in FontForge, which is actually the stand-
alone autotrace program, does quite a good job
of tracing the outlines. But, interestingly enough,
only at a fairly low resolution. At higher resolutions
it gets confused and inserts more than a quadratic
amount of extra points as the resolution is increased.
Based on empirical tests, the images were scaled
to 40% of their original scanned size, resulting in
bitmaps that were precisely 1000 pixels high.

Taco Hoekwater, Hans Hagen

TUGboat, Volume 37 (2016), No. 3 307

Figure 3: Closeups of the progressive design stages of

the letter ‘A’.

Figure 4: Close-ups of autotracer output

As was to be expected, the autotracer brought
out many of the impurities in the original inked ver-
sion, as you can see in the left image of figure 4.
Luckily, the number of places where manual correc-
tions like this were needed was not so great to force
us to reconsider the digitization process.

A more severe problem can be seen in the right-
hand image of figure 4. The drawings contain hardly
any straight lines. For a font of this complexity, it
turned out to be absolutely necessary to simplify the
curves. Without simplification, the rendering speed
in PDF browsers became unbearably slow. All of the
near-horizontal stripes in the bellies were manually
removed and replaced by geometric straight lines.

The final stage in the font editor is to add
the PostScript hinting. A screenshot of a manually
hinted letter is visible in figure 5.

1.3 Finishing the font

The font was saved as two separate PostScript Type 1
fonts, one with the text glyphs and one containing the
logo glyphs. The text font is named ‘koeieletters’,
the logo font ‘koeielogos’. ‘Koeieletters’ literally
translates from Dutch to English as ‘cowcharacters’,
but the word ‘koeieletter’ is also used to indicate an
enormous character, as in a billboard, for instance.

Eventually it turned out that we needed a second
set of two fonts. Sometimes you want to have text
in the cowfont but on top of a colored background.
The background would then shine right through the
hide of the cow and that was of course unacceptable.
Hence, we also have the fonts ‘koeieletters-contour’
and ‘koeielogos-contour’.

Figure 5: Finished outline

Here is the final ‘A’, in the normal and the
contour version:AA
2 Updated version

In ConTEXt MkIV, we prefer not to use Type 1 fonts,
and definitely not the tfm-based trickery that was
needed to get the ‘koeieletters’ font performing at
its best. Advances in font technology have made it
possible to combine all glyphs into a single OpenType
font, which goes by the name koeielettersot.

2.1 Mathematics

The original Type 1 font already had a math compan-
ion but the new font supports math via its ‘MATH’
table, allowing it to be used for math typesetting just
like the other OpenType math fonts that ConTEXt
uses, with only a few minor differences:

• There are far fewer glyphs, due to a lack of orig-
inal artwork. You can imagine that providing
the full repertoire of Unicode math would be a
bit of a challenge.

• ConTEXt has to do some extra tweaking for the
horizontal extensible rules, including those that
are appended to radicals.

Cowfont (koeieletters) update

308 TUGboat, Volume 37 (2016), No. 3

• There are no accented characters but much can
be achieved by enabling the compose feature.

2.2 Ligatures for logos

In this font, there is no ‘fi’ ligature. In fact there
are no ‘normal’ ligatures at all. However, there is
a dlig feature in the font which replaces words by
hand-drawn versions of those words, and the ss02

feature can be used to convert these further, into
nicer versions with a drop-shadow below.

2.3 Sheep

The numbers and plus and minus in the font can be
replaced by versions that resemble a sheep instead
of a cow, by enabling the ss01 feature.

2.4 Colorization

In mid-2016, the ConTEXt font loader started sup-
porting color fonts. Such fonts normally contain
emoji characters and for achieving the desired effect
two methods are available: overlays and SVG. The
first method is cleaner and naturally fits ‘koeielet-
ters’.

The trick is in splitting a glyph into overlaying
snippets that each can have a color from a palette.
Emoji fonts can provide multiple palettes so that
culturally-based colors can be supported. So even-
tually we could have black Frisian cows and brown
ones from the southern part or our country.

The implementation uses virtual fonts. This is
straightforward but the current way to inject the
needed color directives and information to cut-and-
paste the right character can interfere with the way
the backend flushes characters. As we managed it
with some hackery eventually the virtual font tech-
nology might be extended a bit for this purpose.

More challenging was to get math working. Not
so much math itself but where regular math fonts use
rules for extending radicals, over- and underbars and
fractions, we need to use something cowish. Possible
solutions are:

• Build the radicals from scratch using snippets:
this is cumbersome.

• Preroll with normal rules that get replaced in
the node list later: one has to know in what
ways TEX constructs glyphs because not every
rule is a radical one.

• Patch the math engine to support complex radi-
cals: after some experiments this was considered
too dangerous and messy.

• Make the math rules pluggable: adding more
callbacks makes no sense for this one exception.

• Make the math rules be (optional) user rules
that can be postprocessed: this was relatively
easy.

It should be clear that the last solution was
chosen. Of course it was not as trivial as we make it
sound. First, for radicals we need to register what
font we are dealing with so that we can get the right
snippets to construct a rule. For the other rules we
need to know the font as well and it happens that
no such information is available: rules don’t come
from fonts. The solution is in two new primitives:

% use math specific user nodes:

\mathrulesmode = 1

% the family to take rules from:

\mathrulesfam = \fam\textstyle

When set, special rules will be constructed that
carry the current size (text, script or scriptscript) and
family-related font. In the backend the serialization
of these rule nodes will trigger a callback (when set)
that can inject whatever is reasonable. Of course
these extensions are still somewhat experimental and
should be used with care.

2.5 Using the font

So how is this new font used? Although it is a special
kind of font that will seldom be used for a whole
document, you need to load it anyway. The easiest
way (in ConTEXt) is:

\loadtypescriptfile[koeielettersot]

\setupbodyfont[cows,12pt]

Please take a look at type-imp-koeielettersot to
see how these fonts get set up. The beginning of
ConTEXt’s usual example Zapf quote (“Coming back
to the use of typefaces . . . ”) comes out as follows:CCoommiinngg bbaacckk ttoo tthhee uussee ooff
ttyyppeeffaacceess iinn eelleeccttrroonniicc
ppuubblliisshhiinngg:: mmaannyy ooff tthhee nneeww
ttyyppooggrraapphheerrss

If you want a colored variant a bit more work
is needed. By default the cows are black and white.
If you enable color you will see the difference when
you show them on a background:

CCoommiinngg bbaacckk ttoo tthhee uussee ooff
ttyyppeeffaacceess iinn eelleeccttrroonniicc
ppuubblliisshhiinngg:: mmaannyy ooff tthhee nneeww
ttyyppooggrraapphheerrss
When a font is loaded its color properties are

frozen because the backend needs to deal with it.

Taco Hoekwater, Hans Hagen

TUGboat, Volume 37 (2016), No. 3 309

(a + b − 1200) × [√[A]]√ab
(a + b − 1200) × [√[A]]√ab

Figure 6: A math formula rendered in ‘koeieletters’; cows above, sheep below.

The standard black rules in fractions and radicals are fixed in the next figure.

You can, however, influence the color with the colr
property before a font gets defined. This happens
just after loading the typescript file.

\definecolor[cowred] [r=.50]

\definecolor[cowgreen] [g=.50]

\definecolor[cowblue] [b=.50]

\definecolor[cowyellow][y=.25]

\definefontcolorpalette[cows]

[cowgreen,cowyellow,cowblue,cowred]

\adaptfontfeature[sheepcolored] [colr=cows]

In the example below we show the sheep with
colors because we already defined the cows as black
and white. You can mix colors by defining fonts
explicitly. Note that we only use the second and
fourth color in these glyphs.

\usetypescript[all][cowsotf]

\definefontcolorpalette[cows-1][cowgreen,

cowyellow,cowblue,cowred]

\definefontcolorpalette[cows-2][cowred,

cowyellow,cowblue,cowgreen]

\definefontcolorpalette[cows-3][cowgreen,

cowyellow,cowred,cowblue]

\definefontfeature[cows-1]

[cowscolored][colr=cows-1]

\definefontfeature[cows-2]

[cowscolored][colr=cows-2]

\definefontfeature[cows-3]

[cowscolored][colr=cows-3]

\definedfont[Cows*cows-1 at 30pt]red\quad

\definedfont[Cows*cows-2 at 30pt]green\quad

\definedfont[Cows*cows-3 at 30pt]blue

rreedd ggrreeeenn bblluuee

2.6 Math

As said, we can do math. Take this formula:

$\left(a + b - \frac1{200} \right) \times

\left[\sqrt{[A]}\right] \sqrt{\frac{a}{b}}$

This renders as shown in figure 6, cows above,
sheep below. The standard rules there don’t work
well, but figure 7 shows we can do better (imple-
mented with the \mathrulesmode mentioned above).

2.7 Logos

There’s a bunch of logos available. You can directly
request them but they can also be set automatically.

\definefont [CowsLogo]

[koeielettersot*cowslogos sa c]

\definefont [CowsLigs]

[koeielettersot*cowsligatures sa c]

\definefontsynonym[CowsOnly]

[koeielettersot]

These definitions can be used to get the logos
shown in 8. The last two columns in the table are
typeset using:

\getnamedglyphdirect{CowsOnly}{contextlogo}

\getnamedglyphdirect{CowsOnly}{c_o_n_t_e_x_t}

There are two more ligatures:©boo©cow
and we leave it to you to figure out how to get them.

We end with the best of all: a colored logo.

\definefontsynonym

[CowsColored]

[koeielettersot*default,cowscolored]

\getnamedglyphdirect{CowsColored}{contextlogo}

Cowfont (koeieletters) update

310 TUGboat, Volume 37 (2016), No. 3

(a + b − 1àáááááâ200) × [√√√√√√√√√[A]]√√√√√aàáâb
(a + b − 1àáááááâ200) × [√√√√√√√√√[A]]√√√√√aàáâb
Figure 7: The same math formula as the previous figure, with matching rules created using \mathrulesmode.

input \CowsLogo \CowsLigs somelogo s_o_m_e_l_o_g_o

PragmaAde PragmaAde PragmaAde PragmaAde PragmaAde
pragmaade pragmaade pragmaade pragmaade pragmaade
context context context context context
MP MP MP MP MP
TeX TeX TeX TeX TeX
metafun metafun metafun metafun metafun
Example Example Example Example Example
FoXeT FoXeT FoXeT FoXet FoXet
TEX TEX TEX TEX TEX
Wiki Wiki Wiki Wiki Wiki
Cowtext Cowtext Cowtext Cowtext Cowtext

Figure 8: Logos in ‘koeieletters’.

To make a quick start with these fonts, you can use
one of:

\setupbodyfont[koeieletters]

\setupbodyfont[cows]

\setupbodyfont[coloredcows]

\setupbodyfont[sheep]

\setupbodyfont[coloredsheep]

where the koeieletters variant equals sheep. This
is possible because we aliased the typescriptfiles to
the predefined typeface setups in the typescript file.

⋄ Taco Hoekwater, Hans Hagen

ConTEXt Group

http://contextgarden.org

Taco Hoekwater, Hans Hagen

TUGboat, Volume 37 (2016), No. 3 311

Corrections for slanted stems in METAFONT

and METAPOST

Linus Romer

Abstract

Slanting an outline font may change the width and
angles of stems. The following article presents some
formulae to correct these effects and provides corre-
sponding METAFONT and METAPOST macros.

1 Slanting

Slanted typefaces are quite common; they are usually
called “oblique”. E.g., the URW Gothic L Book face
is slanted forward by an angle of ≈ 10.5◦ resulting
in the URW Gothic L Book Oblique face:

Witz Witz
Indeed, even the italic faces in Computer Modern

are designed unslanted, to then be slanted forward
by an angle of arctan(0.25) ≈ 14◦:

WitzWitz
In this article, we will assume that slanting means
horizontal shearing, which is the correct expression
in mathematics. The following picture allows us to
describe slanting mathematically:

P (x, y)

Q(x, 0)

P ′(x + sy, y)
sy

σ

Every coordinate vector
(

x
y

)

is mapped to
(

x+sy
y

)

,
where s is the slanting amount:

(

x

y

)

7→

(

1 s
0 1

)(

x

y

)

=

(

x + sy

y

)

The directed angle σ = arctan(s) denotes the slant-
ing angle. Note that s and σ are negative if and only
if the slanting is backward.

2 Width correction for slanted stems

Slanting forward makes forward leaning outline stems
slimmer:

Conversely, slanting forward can make backward
leaning stems fatter:

This affects slanted glyphs. E.g., a “K” with even
width stems will have stems of different widths after
slanting:

Outline stems can be imagined to be drawn by a
razor pen of penwidth p.

p

We want to express the pen width p (before slanting)
in terms of the future stem width b′ (after slanting),

the drawing direction ~d and the pen angle ϑ.

~d

b

p

ϑ

|δ − ϑ|

b′

~d′

In the figures above, ~d′ denotes the slanted vector ~d.
The angle δ = angle(~d) is the directed angle between
(

1
0

)

and ~d. The directed pen angle is denoted as
ϑ. The distances b and b′ are the heights of the
nonslanted marked triangle and the slanted marked
triangle, respectively. As we know, slanting is an
area-preserving transformation. Hence, |~d|·b = |~d′|·b′

and thus

b = b′ ·
|~d′|

|~d|
= b′ ·

∣

∣

∣

∣

(

1 s
0 1

)

· ~d

∣

∣

∣

∣

|~d|
= b′ ·

∣

∣

∣

∣

∣

(

1 s
0 1

)

·
~d

|~d|

∣

∣

∣

∣

∣

By applying the definition of the sine function on
the non-slanted triangle sin |δ − ϑ| = b

p
, we obtain

the solution:

p = b′ ·

∣

∣

∣

∣

∣

∣

∣

∣

(

1 s
0 1

)

·
~d

|~d|

sin
(

angle(~d) − ϑ
)

∣

∣

∣

∣

∣

∣

∣

∣

(1)

Corrections for slanted stems in METAFONT and METAPOST

312 TUGboat, Volume 37 (2016), No. 3

This formula has been published for the special case
|angle(~d)−ϑ| = 90◦ as “slant correction formula” by
Jackowski, Nowacki, and Strzelczyk, 2000.

Here is equation (1) as a macro in METAFONT

and METAPOST:

def penwidth(expr b,d,theta,s) =

b*abs(length((d/length(d)) slanted s)

/ sind(angle(d)-theta))

enddef;

3 Fitting given boxes

In the following subsections, we will fit diagonal
stems in some way into a given rectangular box, such
that the diagonal will have the required width b after
slanting. This is equivalent to the condition requiring
that diagonal stems of a required width b fit a given
slanted rectangular box (which is a parallelogram).

The following figures visualize the different mean-
ings of “fitting” a stem of width = 10 pt into a slanted
box of height = width = 50 pt.

Inscribing (first) diagonal leans forward:

Inscribing (first) diagonal leans backward:

Overlapping (last) diagonal leans backward:

Overlapping (last) diagonal leans forward:

“Half inscribing” chained diagonals:

The source code for the preceding figures is given in
subsection 3.4.

3.1 Inscribing diagonals

3.1.1 First diagonal forward

First, we are trying to inscribe a forward diagonal
stem of width b into a rectangular box of width c and
height y which was slanted by a slanting amount s.
We will try to find the penwidth p as depicted below.
Jackowski, Nowacki, and Strzelczyk (2000) have al-
ready algorithmically solved this problem by defining
the binary operator /\. Here, we will find an exact
solution.

c

y ⇒

b

c
p q

We can generalize the situation by introducing the
variable a, which may be toggled between 1 and 2 and
which stands for the number of inscribed (chained)
diagonals. The situation for a = 2 is shown below:

y y
cos(σ)

b d|β| |δ|

σ

90◦ − |β| − σ 90◦ − |δ| + σ

c

p q q

The small rectangular triangle at the left foot leads
to the relation

p =
b

sin |β|
.

The sine theorem for the left large triangle yields
(remember that cos(σ) > 0)

q

sin
(

90◦ − (|β| + σ)
) =

y/ cos(σ)

sin |β|
.

Linus Romer

TUGboat, Volume 37 (2016), No. 3 313

Hence, we obtain

q =
y sin

(

90◦ − (|β| + σ)
)

cos(σ) sin |β|

=
y cos(|β| + σ)

cos(σ) sin |β|

= y ·
cos |β| cos(σ) − sin |β| sin(σ)

cos(σ) sin |β|

= y ·
(

cot |β| − tan(σ)
)

(2)

= y ·

(

√

1/ sin2 |β| − 1 − s

)

= y ·
(

√

p2/(b2 − 1) − s
)

.

Looking at the total width c, we get

c = p + aq = p + ay
(

√

p2/(b2 − 1) − s
)

.

As p2/b2 ≥ 1, this is an ordinary quadratic equation
with the solutions

p = b ·
−b(c + asy) ± ay

√

(c + asy)2 + a2y2 − b2

a2y2 − b2
.

Because −b(c + asy) ≤ 0, we are left with the only
non-negative solution:

p = b ·
−b(c + asy) + ay

√

(c + asy)2 + a2y2 − b2

a2y2 − b2

(3)

3.1.2 First diagonal backward

y

y
cos(σ)

b d
|β| |δ|

σ

90◦ − |β| + σ

90◦ − |δ| − σ

c

p q q

Again

p =
b

sin |β|
.

The sine theorem for the left large triangle yields

q

sin
(

90◦ − (|β| − σ)
) =

y/ cos(σ)

sin |β|
.

Analogously as in subsection 3.1.1, we obtain

q = y ·
(

√

p2/(b2 − 1) + s
)

.

The equation

c = p + aq = p + ay ·
(

√

p2/(b2 − 1) + s
)

then leads to the solution

p = b ·
−b(c− asy) + ay

√

(c− asy)2 + a2y2 − b2

a2y2 − b2
.

(4)

3.1.3 Generalization

After introducing the boolean variable e:

e =

{

−1 if first stem is leaning backward

1 otherwise

we can generalize equations (3) and (4) to

p = b ·
−b(c + aesy) + ay

√

(c + aesy)2 + a2y2 − b2

a2y2 − b2

Replacing the b’s and c’s by bb = b
y

and cc = c
y

(avoiding arithmetic overflow) yields

p = b ·
−bb(cc + aes) + a

√

(cc + aes)2 + a2 − b2b
a2 − b2b

(5)

If we calculate the diagonal ratio p/b with equa-
tion (5) for the slanting amount s = 0, we get the
Computer Modern macro diag ratio (Knuth, 2002):

diag ratio(a, b, y, c) = b ·
−bbcc + a

√

cc + a2 − b2b
a2 − b2b

Thus, Computer Modern letters like A, V , Λ are
computed without slanting corrections. Because of
the unequal stem widths, this is not visible for the
serif faces. However, the sans faces have uneven stem
widths after slanting:

v v
Equation (5) as a METAFONT/METAPOST macro:

vardef penwidthin(expr a,e,b,c,y,s) =

numeric bb,cc; bb=b/y; cc=c/y;

b*(-bb*(cc+a*e*s)+a*sqrt((cc+a*e*s)**2

+a*a-bb*bb))/(a*a-bb*bb) enddef;

Corrections for slanted stems in METAFONT and METAPOST

314 TUGboat, Volume 37 (2016), No. 3

3.2 Overlapping diagonals

3.2.1 Last diagonal backward

y

y
cos(σ)

b d|δ|

σ

90◦ − |β| − σ 90◦ − |δ| + σ

c

p q q

r

The situation is almost the same as in subsection
3.1.1, the only difference being that the diagonals
start outside the box and that we are looking for r:

r =
d

sin |δ|

The sine theorem for the right large triangle yields

q

sin
(

90◦ − (|δ| − σ)
) =

y/ cos(σ)

sin |δ|
.

Analogous to subsection 3.1.1, we obtain

q = y ·
(

cot |δ| + tan(σ)
)

(6)

= y ·
(

√

p2/(b2 − 1) + s
)

.

Again, we write the total width as

c = a · q − r = ay ·
(

√

r2/(d2 − 1) + s
)

− r.

As long as ay > d, the only nonnegative solution is

r = d ·
d(c− asy) + ay

√

(c− asy)2 + a2y2 − d2

a2y2 − d2
.

(7)

3.2.2 Last diagonal forward

Analogous to the difference between subsection 3.1.2
and 3.1.1, this subsection differs from subsection 3.2.2
in changing (90◦ − |δ|+ σ) to (90◦ − |δ| − σ). Hence,
it suffices to substitute s by −s in equation (7):

r = d ·
d(c + asy) + ay

√

(c + asy)2 + a2y2 − d2

a2y2 − d2

(8)

3.2.3 Generalization

As in subsection 3.1.3, we are able to generalize the
equations (7) and (8) after introducing

e =

{

−1 if last stem is leaning backward

1 otherwise

to

r = d ·
d(c + aesy) + ay

√

(c + aesy)2 + a2y2 − d2

a2y2 − d2

Replacing the d’s and c’s by dd = d
y

and cc = c
y

(avoiding arithmetic overflow) yields

r = dd ·
dd(cc + aes) + a

√

(cc + aes)2 + a2 − d2d
a2 − d2d

.

(9)

Equation (9) as a METAFONT/METAPOST macro:

vardef penwidthover(expr a,e,d,c,y,s) =

numeric dd,cc; dd=d/y; cc=c/y;

d*(dd*(cc+a*e*s)+a*sqrt((cc+a*e*s)**2

+a*a-dd*dd))/(a*a-dd*dd) enddef;

Of course, equations (5) and (9) could again be easily
united to one single equation.

3.3 Half inscribing diagonals

We are looking at two chained diagonals which fit
the given box such that each penwidth is half inside
the box. In contrast to the preceding problems,
we do not have to consider the case with only one
diagonal (a = 1) as this case is already covered with
equation (1).

y y
cos(σ)

b d|β| |δ|

σ

90◦ − |β| − σ 90◦ − |δ| + σ

c

p q q

r

If we combine the equations (2) and (6) and include
the boolean variable e from subsection 3.1.3, we
obtain

y ·
(

cot |β| − es
)

= y ·
(

cot |δ| + es
)

=⇒ cot |δ| = cot |β| − 2es.

Linus Romer

TUGboat, Volume 37 (2016), No. 3 315

Looking at the total width c, we obtain

c = 0.5p + 2q − 0.5r

=⇒ 2c = p + 4q − r

=⇒ 2c = b
√

1 + cot2 |β| + 4y
(

cot |β| − es
)

− d

√

1 +
(

cot |β| − 2es
)2
.

This quartic equation can be solved exactly for cot |β|,
but the exact solution is long and tedious. For ap-
plications, this equation is best solved numerically,
e.g., by the bisection method. In the end, we will
find both widths p and r by

p = b
√

1 + cot2 |β|

r = d

√

1 +
(

cot |β| − 2es
)2
.

The implementation in METAPOST with the bisec-
tion method returns the pair (p, r):

vardef poswidthhalf(expr e,b,d,c,y,s) =

numeric bb,cc,dd,ta,tb,t; % t=cot(beta)

bb=b/y; dd=d/y; cc=c/y;

ta=-100; tb=100; % boundaries

forever:

exitif abs(ta-tb)<=eps;

t:=.5[ta,tb];

if bb*(1++t)+4*(t-e*s)-dd*(1++(t-2*e*s))

-2*cc>0: tb else: ta fi:=t;

endfor

(b*(1++t),d*(1++(t-2*e*s))) enddef;

3.4 Source codes for the box fitting figures

In the following, all METAPOST sources of the ten
figures at the beginning of section 3 are given as
building blocks in a compact form. The most impor-
tant figures for font design are probably figures 0–3.

beginfig(0);

w:=50pt; h:=50pt; s:=.25; z1l=(0,0); z2r=(w,h);

z1r-z1l=z2r-z2l=(penwidthin(1,1,10pt,w,h,s),0);

penstroke z1e--z2e slanted s; endfig;

beginfig(1);

w:=50pt; h:=50pt; s:=.25; z1l=(0,0); z4r=(w,0);

z3r=z2r; y2r=h; x4r-x2r=x2r-x1r;

z1r-z1l=z2r-z2l=(penwidthin(2,1,10pt,w,h,s),0);

penstroke z1e--z2e slanted s;

z3r-z3l=z4r-z4l =(penwidth(10pt,z3r-z4r,0,s),0);

penstroke (z3e--z4e) slanted s; endfig;

beginfig(2);

w:=50pt; h:=50pt; s:=.25; z1l=(0,h); z2r=(w,0);

z1r-z1l=z2r-z2l=(penwidthin(1,-1,10pt,w,h,s),0);

penstroke (z1e--z2e) slanted s; endfig;

beginfig(3);

w:=50pt; h:=50pt; s:=.25; z1l=(0,h); z4r=(w,h);

z3r=z2r; y2r=0; x4r-x2r=x2r-x1r;

z1r-z1l=z2r-z2l=(penwidthin(2,-1,10pt,w,h,s),0);

penstroke (z1e--z2e) slanted s;

z3r-z3l=z4r-z4l=(penwidth(10pt,z3r-z4r,0,s),0);

penstroke (z3e--z4e) slanted s; endfig;

beginfig(4);

w:=50pt; h:=50pt; s:=.25; z1r=(0,h); z2l=(w,0);

z1r-z1l=z2r-z2l=(penwidthover(1,1,10pt,w,h,s),0);

penstroke (z1e--z2e) slanted s; endfig;

beginfig(5);

w:=50pt; h:=50pt; s:=.25; z1r=(0,0); z4l=(w,0);

z3r=z2r; y2r=h; x4r-x2r=x2r-x1r;

z3r-z3l=z4r-z4l=(penwidthover(2,1,10pt,w,h,s),0);

penstroke (z3e--z4e) slanted s;

z1r-z1l=z2r-z2l=(penwidth(10pt,z2r-z1r,0,s),0);

penstroke (z1e--z2e) slanted s; endfig;

beginfig(6);

w:=50pt; h:=50pt; s:=.25; z1r=(0,0); z2l=(w,h);

z1r-z1l=z2r-z2l

=(penwidthover(1,-1,10pt,w,h,s),0);

penstroke (z1e--z2e) slanted s; endfig;

beginfig(7);

w:=50pt; h:=50pt; s:=.25; z1r=(0,h); z4l=(w,h);

z3r=z2r; y2r=0; x4r-x2r=x2r-x1r;

z3r-z3l=z4r-z4l=(penwidthover(2,-1,10pt,w,h,s),0);

penstroke (z3e--z4e) slanted s;

z1r-z1l=z2r-z2l=(penwidth(10pt,z2r-z1r,0,s),0);

penstroke (z1e--z2e) slanted s; endfig;

beginfig(8); w:=50pt; h:=50pt; s:=.25;

.5[z1l,z1r]=(0,h); .5[z4l,z4r]=(w,h); z3r=z2r;

y2l=y2r=y3l=0; y1l=y4l=h; x4r-x2r=x2r-x1r;

(x1r-x1l,x4r-x4l)=(x2r-x2l,x3r-x3l)

=poswidthhalf(-1,10pt,10pt,w,h,s);

penstroke (z1e--z2e) slanted s;

penstroke (z3e--z4e) slanted s; endfig;

beginfig(9); w:=50pt; h:=50pt; s:=.25;

.5[z1l,z1r]=(0,0); .5[z4l,z4r]=(w,0); z3r=z2r;

y2l=y2r=y3l=h; y1l=y4l=0; x4r-x2r=x2r-x1r;

(x1r-x1l,x4r-x4l)=(x2r-x2l,x3r-x3l)

=poswidthhalf(1,10pt,10pt,w,h,s);

penstroke (z1e--z2e) slanted s;

penstroke (z3e--z4e) slanted s; endfig;

Note: If you use mfplain.mp or METAFONT, you do
not need to write slanted s every time, as this can
easily be solved globally.

4 Apex correction

Of course, you generally do not want to join two
chained diagonals directly, but you want them to
overlap by an amount apex corr as depicted below
on the left:

apex corr apex corr

This does not require any new calculation formulae.
For calculations, one just needs to add the apex corr
to the box width. In the METAFONT sources of
Computer Modern (Knuth, 2014), the same trick is
applied.

Corrections for slanted stems in METAFONT and METAPOST

316 TUGboat, Volume 37 (2016), No. 3

5 Drawn outline borders

Drawn lines do normally not need slanting correc-
tions, because the paths are slanted first and drawn
in the end:

In the italic faces of Computer Modern, serifs are
not only filled but also stroked. However, the joining
stems are sometimes filled only. This creates bumps
in letters like A, K and X (Jackowski, Ludwichowski,
and Strzelczyk, 2009).

How can we avoid this effect? The formulae presented
in section 3 are still valid for an additional circular
border pen of width pb if we use clever substitutions.

The METAPOST code for the upper right figure is
indicated below:

beginfig(10); w:=80pt; h:=80pt; s:=.5; pb:=20pt;

pickup pencircle scaled pb slanted s;

lft x1l=0; bot y1l=0; rt x2r=w; top y2r=h;

z1r-z1l=z2r-z2l

=(penwidthin(1,1,50pt-pb,w-pb,h-pb,s),0);

pickup pencircle scaled pb;

filldraw z1e--z2e slanted s; endfig;

6 Orthogonally cut slanted stems

For this section, the pen angle of the stem shall
be exactly orthogonal to the stem direction ~d after

slanting.

We want to find the pen angle α before slanting.

−α

s · dy
d2

y

dx+sdydx

dy
~d

In the preceding figure we find

cot(−α) =

(

sdy +
d2y

dx + sdy

)

: dy = s +
dy

dx + sdy
,

as long as dx + sdy 6= 0. If dx + sdy = 0, the stem is
vertical after slanting and we have the trivial solution
α = 0. Therefore,

α =











angle

(

s +
dy

dx+sdy

−1

)

if dx + sdy 6= 0

0 otherwise.

(10)

Equation (10) as a METAFONT/METAPOST macro:

def angleortho(expr d,s) =

if xpart(d)+s*ypart(d)>0:

angle(s+ypart(d)/(xpart(d)+s*ypart(d)),-1)

else: 0 fi enddef;

References

Jackowski, Bogus law, J. B. Ludwichowski, and
P. Strzelczyk. “Math fonts: notes from the
trenches”. ntg.nl/EuroTeX/2009/slides/
jacko-slides.pdf, 2009.

Jackowski, Bogus law, J. Nowacki, and
P. Strzelczyk. “Antykwa Pó ltawskiego: a
parameterized outline font”. MAPS 25, 86–102,
2000.
ntg.nl/maps/25/13.pdf.

Knuth, Donald E. “The base file for Computer
Modern”. ctan.org/tex-archive/fonts/cm/
mf/cmbase.mf, 2002.

Knuth, Donald E. “Computer Modern Roman
upper case”. ctan.org/tex-archive/fonts/
cm/mf/romanu.mf, 2014.

⋄ Linus Romer

Oberseestrasse 7

Schmerikon, 8716

Switzerland

linus.romer (at) gmx dot ch

Linus Romer

TUGboat, Volume 37 (2016), No. 3 317

GUST e-foundry font projects

Bogusław Jackowski, Piotr Strzelczyk and
Piotr Pianowski

What is a document? It is a sequence of rectangles
containing a collection of graphic elements.
What is a font? It is a sequence of rectangles containing
a collection of graphic elements.
— Marek Ryćko

1 Introduction

The Polish TEX Users Group (GUST) has paid at-
tention to the issue of the fonts since the begin-
ning of its existence. In a way, it was a must, be-
cause the repertoire of the diacritical characters of
the Computer Modern family of fonts (CM), “canon-
ical” TEX family defined as the Metafont programs
(see [5]), turned out to be insufficient for the Polish
language. The efforts of the GUST font team (GUST

e-foundry), led by Bogusław Jackowski, were kindly
acknowledged by the professor Donald E. Knuth:

Obviously, our first fonts were PK bitmap fonts pro-
grammed using Metafont. Alas, the TEX/Metafont
bitmap font format never became the world-wide
standard. Therefore, the next step were fonts in the
PostScript Type 1 format which fairly soon became
obsolescent and was replaced by the OpenType for-
mat (OTF, a joint enterprise of Microsoft and Adobe,
1996, see [31]) which is actually a common container
for the Adobe PostScript Type1 and Microsoft True-
Type (TTF) formats. In 2007, Microsoft extended
the OTF standard with the capability of typesetting
math formulas, largely based on ideas developed for
TEX, and implemented it in MS Office. Soon, TEX
engines were adapted to process such math OTF

fonts. Therefore our recent fonts are released in the
OpenType format, which also makes them easily us-
able outside of the TEX realm.

So far, no OTF successor is in sight, which is
both good and bad (cf. Section 7.4).

We published our partial results successively as
the work progressed. This paper provides an overall
summary of our work: it describes the collections of
fonts prepared by the GUST e-foundry, deals with
some technical issues related to the generation of

fonts and their structure and puts forward a few
proposals concerning future works.

This is not an overly strict report, but rather a
story about our technical work on fonts, illustrated
by representative examples which, we hope, show
the essence of the matter. In order to keep our nar-
ration smooth, we decided not to use formal captions
with explanations to figures and tables (only num-
bers of figures and tables are given). The relevant
detailed descriptions always appear in the main text.

2 Historical background

PostScript and TEX are genetically related: their
common ancestor is the ingenious idea of a program-
ming language for the description of documents un-
derstood as a sequence of rectangular pages filled
with letters and graphics. Both projects were de-
vised nearly at the same time — at the turn of the
1970s to the 1980s.1 And both are still alive and
well, proving that the idea behind both projects was
indeed brilliant.

From our perspective, the most important thing
in common, and at the same time a key distinc-
tive element, was the different handling of fonts and
graphics; in other words, both systems clearly distin-
guished illustrations from fonts. That approach was
justified by the computer technology at that time.

For both TEX and PostScript, fonts were exter-
nal entities, both used metric files plus files defining
glyph shapes, both defined contours as Bézier splines
(planar polynomials of the 3rd degree), and for both
fonts were to be prepared separately with dedicated
font programs, prior to creating documents.

And this exhausts the list of similarities.
TEX worked with binary metric files, TFM; its

output, a device independent file (DVI), was pro-
cessed by so-called drivers which made use of the
“proper” fonts, that is, the relevant bitmap collec-
tions, and produced output that could be sent to a
printer or to a screen. The bitmaps were prepared
independently with the Metafont program(s) which
interpreted scripts written in the Metafont language
and generated TFM and bitmap files.

In Metafont, the shapes of glyphs are defined
as Bézier curves, stroked with a “pen” and/or filled.

Basic PostScript fonts (i.e., Type 1; see [28])
employ contours defined as non-intersecting closed
Bézier outlines which can only be filled.2 The “filled

1 Formally, TEX was released a little earlier — TEX in
1982, PostScript in 1984, both with earlier work.

2 The PostScript Type 1 documentation [28], p. 34, men-
tions the possibility of stroking: a Type 1 font program can
also be stroked along its outline when the user changes the
PaintType entry in the font dictionary to 2. In this case,

GUST e-foundry font projects

318 TUGboat, Volume 37 (2016), No. 3

outline” paradigm relates also to the Microsoft TTF

format and, thereby, to the OTF format.
PostScript Type1 fonts are usually (but not nec-

essarily) accompanied by corresponding ASCII met-
ric files (AFM), not used by the interpreters of the
PostScript language. In the Microsoft Windows op-
erating system, making an already complex situa-
tion even more complex, binary printer font met-
ric files (PFM) were introduced for Windows drivers
that used PostScript Type 1 fonts.

For a long time, only commercial programs for
generating PostScript Type 1 fonts were available.
Only in 2001, George Williams released his remark-
able FontForge program (initially dubbed PfaEdit;
[25]). FontForge can generate outline fonts in many
formats, including PostScript Type 1 and OTF.

PostScript was promptly (and rightly) hailed as
the standard for printers and, more importantly, for
phototypesetters, therefore a driver converting DVI

files to PostScript became necessary. Fortunately
for TEXies, PostScript is equipped also with Type 3
fonts; glyphs in Type 3 fonts can be represented by
nearly arbitrary graphic objects, in particular, by
bitmaps, therefore the making of a PostScript driver
for converting DVI files to PostScript was possible al-
ready in 1986, when Dvips, the first and still most
popular driver was released by Tomas Rokicki. (It’s
a pity that the idea of Type 3 fonts was not sup-
ported and developed by Adobe.)

There were a few unsuccessful attempts to con-
vert the basic TEX font collection, CM, to the Post-
Script Type 1 format automatically, thus preserving
the parameterization. The main hindrance was the
excessive usage of stroked (both painted and erased)
elements in the CM font programs, while, as was
mentioned previously, the PostScript Type 1 and
OTF formats accept only filled shapes.

The “filled outline” paradigm was a convenient
optimization at the beginning of the computer type-
setting era, when, for example, the generating of the
complete collection of bitmaps for the CM fonts at
resolution, say, 240 dots per inch (typical for dot
matrix printers) took a few days. Nowadays, the
paradigm still thrives by virtue of tradition: there
is an abundance of such fonts and, and what is worse,
all operating systems support only this kind of font.

3 First steps

Taking the above into account, we made up our
minds to design our own programmable system for
generating fonts in “world-compatible” formats.

overlapping subpaths will be visible in the output; this yields
undesirable visual results in outlined characters. In practice,
this possibility is not used.

3.1 Our tools

Our primary tool was MetaPost [4], a successor of
Metafont, which promised well as a tool for mak-
ing PostScript Type 1 fonts due to its native Post-
Script output. We called our MetaPost-based pack-
age MetaType 1 [13]. It was instantiated as a set of
scripts using, besides MetaPost, T1utils, that is, Lee
Hetherington’s (dis)assembler for PostScript Type 1
fonts (cf. [3, 4]). A few scripts written in Gawk and
Perl were also employed.

On the one hand, such a simple approach turned
out to be insufficient for generating OTF fonts, in
particular OTF math fonts. On the other hand, it
turned out to be flexible enough to include an extra
external step for making OTF fonts. For text fonts,
we employed the Adobe Font Development Kit for

OpenType (AFDKO [26]); for math fonts, the Font-
Forge library governed by Python scripts [15, 25].
In the future, we want replace AFDKO by a Font-
Forge+Python utility (cf. Section 7).

A set of MetaPost macros in the MetaType 1
package defines two important procedures, essential
for generating non-intersecting outlines and heavily
used in our font programs: finding a common outline
for overlapping figures, known also as removing over-
laps, and finding the outline of a pen stroke, known
as expanding strokes or finding the pen envelope.

Another important feature, hinting, is imple-
mented, but, in the end, we decided to avoid man-
ual hinting, since it is difficult to control and yields
mediocre results. Metafont has no notion of hint-
ing — the Metafont language simply offers rounding.
Moreover, the language for describing outlines in
PostScript Type 1 fonts cannot express even as triv-
ial a mathematical operation as rounding.

For low-resolution devices, controlled rounding
is crucial — hence the idea of “hinting”, that is, con-
trolled rounding. Alas, hinting algorithms remain
undisclosed, especially with regard to commercial
typesetting devices such as phototypesetters. One
can presume, however, that low-resolution devices
are bound to disappear sooner rather than later: the
resolution of display devices has reached almost 600
dpi and 1200 dpi (and more) for printers is nowa-
days nothing special. Therefore, running with the
hare and hunting with the hounds, we decided to
hint our recently released OTF fonts automatically
with FontForge.

3.2 Trying our tools out

We tested our newborn MetaType 1 engine against
a simple example, namely, Donald E. Knuth’s logo

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 319

font [17]: the sources, originally written in the Meta-
font language, were adapted to MetaType1’s require-
ments. The distributed package contains both Meta-
Type 1 sources and the resulting PostScript Type 1
files for the logo font [13].

The test proved the usefulness of the approach;
hence, in 1999, we started a larger project: the pro-
gramming of the long-established Polish typeface
Antykwa Półtawskiego as a parameterized font. The
preliminary family of fonts was released in 2000. Ten
years later, prompted by the TEX community, we
released the enhanced version of Antykwa Półtaw-

skiego with the relevant OTF files [7]. In parallel,
Janusz M. Nowacki used MetaType 1 to generate
several replicas of Polish fonts, namely, Antykwa To-

ruńska, Kurier, Iwona, and Cyklop [22].

4 Latin Modern collection of fonts

Recall that the repertoire of diacritical characters in
CM fonts was insufficient for most languages using
diacritical characters. The TEX accenting mecha-
nism (the \accent primitive), meant as a solution to
this problem, was unsatisfactory — for example, ac-
cents and hyphenation conflicted. The problem was
recognized relatively early and various approaches
were used to remedy the situation.

For example, the Polish extension of CM in the
PK format was prepared in Poland (PL fonts, [8]),
but this worked only for Polish TEXies.

Also worthy of note is the European Computer

Modern Fonts (EC) project led by Jörg Knappen and
Norbert Schwarz, triggered during the TEX Users
Group conference in Cork, 1990, and finished in
1997 [16]. The EC metric files, however, are slightly
incompatible with CM metric files, by circa 0.025%.3

A rather general technique was applied by Lars
Engebretsen, who attempted to eliminate the ne-
cessity of using the \accent primitive by making
virtual fonts, dubbed Almost European (AE), con-
taining quite a large set of the European diacritical
characters [1].

Hyphenation worked with AE fonts, though still
unsatisfactorily — for example, coinciding of such ac-
cents as cedilla or ogonek with a main glyph is incon-
venient when a non-intersecting outline is required
(for cutting plotters, for outlined titles, and so on).
Moreover, the virtual fonts are obviously unusable
outside the TEX realm.

3 The reason behind this discrepancy is a peculiarity of
Metafont arithmetic: the formula 1/36 ∗ i yields different
results than the formulas i/36 and 1/36i; for example, for
i = 3600 the results are 99.97559 for the first formula and
100 for the latter formulas. The first formula was used in the
EC fonts (in the gendef macro).

4.1 Latin Modern fonts in the PostScript

Type1 format

In 2002, during the EuroBachoTEX meeting, a pro-
posal of converting Engebretsen’s AE fonts into the
PostScript Type1 format and augmenting with them
the set of necessary diacritical characters was put
forward by representatives of European TEX user
groups. We had no choice but to accept the pro-
posal with delight.

Our initial plan was to use the AE fonts as our
departure point; we even wanted to preserve the orig-
inal name, Almost European, coined by Lars Enge-
bretsen. It turned out, however, to be much more
efficient to prepare the enhanced version of the CM

fonts from scratch, and so sticking to Lars Enge-
bretsen’s name seemed inadequate, because the dif-
ferences were too essential.

All in all, inspired by both EC and AE fonts,
we came up with the Latin Modern (LM; see [11])
project which was accepted by the user groups.

Fortunately for us, freely available quality CM

fonts in the PostScript Type 1 format already ex-
isted. In the 1980s and 90s, they were produced
(from traced bitmaps improved by very solicitous
manual tuning) for commercial purposes by Blue
Sky Research and Y&Y. Nearly a decade later, they
were released to the public thanks to the efforts of
the American Mathematical Society.4

We converted the PostScript Type 1 files of the
CM fonts to MetaType 1 and wrote the MetaPost
software relevant for generating the characters we
decided to add (mainly diacritical letters). The work
had already been partially done by Janusz M. No-
wacki, who prepared the PostScript Type1 version of
the PL fonts in 1997. The official version of the LM

fonts, 1.000, was eventually released in 2006 (in the
meantime, several unofficial versions were released
for testing purposes). The LM collection of fonts
consisted of 72 text fonts, each counting about 700
glyphs, plus 20 CM-like math fonts.

In 2009, an extensive revision of the LM fonts
was carried out: the text fonts now contain more
than 800 glyphs each (altogether more than 60,000
glyphs) and the glyphs conform to the changes in-
troduced by Donald E. Knuth in 1992.

4 In 1997, a consortium of scientific publishers (American
Mathematical Society, Elsevier Science, IBM Corporation, So-
ciety for Industrial and Applied Mathematics, and Springer-
Verlag) in cooperation with Blue Sky Research and Y&Y de-
cided to release these excellent fonts non-commercially; in
order to assure the authenticity of the fonts, copyright was
assigned to the American Mathematical Society. (http://

www.ams.org/publications/type1-fonts).

GUST e-foundry font projects

320 TUGboat, Volume 37 (2016), No. 3

Almost all of the CM text fonts have counter-
parts in the LM family; the exceptions are one mono-
spaced font, cmtex10, emulating Donald E. Knuth’s
keyboard layout, and the rarely used cmff10, cmfi10,
cmfib8, and cminch. So far, nobody has complained
about this inconsistency. Instead, encouraged by
Hans Hagen, we decided to create 10 variants of
typewriter LM fonts not having counterparts in the
CM family: lmtlc10, lmtk10, lmtl10, lmvtk10, and
lmvtl10 (monospaced light condensed and mono-
spaced and variable-width dark and light, respec-
tively) plus their oblique variants lmtko10, lmtlo10,
lmtlco10, lmvtko10, and lmvtlo10.

4.2 Latin Modern fonts in the OTF format

It was relatively easy to prepare the LM family of
fonts in the OTF format using the AFDKO package:
it mainly necessitated preparing a few extra data
files in the OpenType Feature File Specification lan-
guage [32]. Needless to say, the experience gathered
at this stage came in handy during the work on the
TG fonts (see Section 5).

There was trouble, however, with the 20 math
fonts. We provided the respective LM equivalents
in PostScript Type1 format. For compatibility with
the (obsolete) PL fonts, the symbol fonts, lmsy* and
lmbsy*, contain two extra glyphs: slanted greater-
or-equal and less-or-equal signs, used traditionally
in Polish math typography. As the math extension
for OpenType did not exist yet, we decided not to
convert these fonts to OTF. We knew that the com-
panies that had invented and maintained the OTF

standard, in cooperation with the American Mathe-
matical Society and the Unicode Consortium, were
working on extending the standard with math type-
setting capabilities. We expected that by using the
enhanced OTF specification we would be able to cre-
ate a TEX-compatible math OTF collection. Alas,
the Unicode Consortium report on Unicode support
for mathematics [37], followed by the initially confi-
dential Microsoft specification [29], snuffed out our
hopes. It turned out that OTF math and TEX math
cannot be reconciled. More information on the inter-
relationships between OTF and TEX math can be
found in Ulrik Vieth’s thorough analysis [24].

4.3 Repertoire issues

Our primary aim was to provide a repertoire of dia-
critical letters rich enough to cover all European lan-
guages. We thoroughly exploited Michael Everson’s
comprehensive study of European alphabets [2], as
well as other sources. Several other languages using
Latin-based alphabets, such as Vietnamese, Navajo
and Pali, are covered.

Initially, contrary to the Latin Modern name,
we considered including Cyrillic alphabets also. Hav-
ing thought the matter over, we decided, with regret,
to abandon this idea and concentrated our efforts on
OTF math fonts.

Besides diacritical characters, the Latin Mod-
ern fonts contain also a number of glyphs tradition-
ally present in TEX fonts, such as Greek symbols,
currency symbols, technical symbols, etc. Detailed
description of the contents of the fonts can be found
in the document entitled The Latin Modern Family

of Fonts. Technical Documentation, included in the
LM distribution package [11].

Two groups of glyphs are widely used in typog-
raphy but neglected to a certain extent in the CM

fonts, namely, caps and small caps and old style nu-

merals, also known as text figures or nautical digits;
the latter name originates from their widespread use
in tables in nautical almanacs at one time. For rea-
sons hard to explain, the caps and small caps were
implemented in the CM family as a separate font,
while the old style numerals (upright!) are in the
math italic font (cmmi*).

The LM fonts incorporated caps and small caps
from the CM family, together with its width idiosyn-
crasy: the lmcsc10 font, like cmcsc10, has capital
letters wider than the lmr10 font by circa 8%. There
are two caps and small caps fonts in the LM collec-
tion, namely, the regular and typewriter specimen,
lmcsc10 and lmtcsc10, as in CM, plus their oblique
variants, lmcsco10 and lmtcsco10, absent from CM.
In principle, small caps glyphs could be transferred
to other fonts, but we decided to not alter the fram-
ing of the original CM family, more so as CM has no
sans-serif caps and small caps; however, the prob-
lem of extending the LM family with bold counter-
parts of lmcsc10 and lmtcsc10 (and their oblique
variants), raised repeatedly by CM/LM users, needs
serious consideration.

Concerning old style numerals, we could not ac-
cept the CM oddity and included them in all text
fonts of the LM family. Further, all numerals come in
2 ‘flavors’: normal (fixed-width a.k.a. tabular) and
proportional (variable-width, having balanced side-
bearings) which altogether yields 4 variants — see
Figure 1.

The TFM format contains only 256 slots for
glyphs, thus, the whole repertoire of glyphs cannot
be accessed at once if TEX is used in a “traditional”
way, that is, with TFM files. In particular, access-
ing the different kinds of numerals when using Post-
Script Type 1 fonts plus TFM metrics turns out to
be clumsy; as a result, only tabular old style numer-
als are available in our package, in the TS1 encoding

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 321

F
ig

u
re

1

(see below). On the one hand, OTF fonts seem more
convenient as they do not impose such a restriction;
for example, all numerals can be accessed by using
the OTF feature mechanism, more precisely, by the
features onum, lnum, pnum, and tnum [33]. On the
other hand, OTF metric data cannot, in general, be
fully compatible with TFM metric data because the
glyph widths in OTF fonts must be represented by
integer quantities. This should be considered a draw-
back by TEXies — see Section 4.4.

Following the LATEX tradition, we provided sev-
eral encodings for the LM fonts, namely:

⋄ CS (CS TUG) encoding (cs-*.tfm),

⋄ EC (Cork) encoding (ec-*.tfm),

⋄ L7X (Lithuanian) encoding (l7x-*.tfm),

⋄ QX (GUST) encoding (qx-*.tfm),

⋄ RM (“regular math”, used in OT1 and OT4)
encodings (rm-*.tfm),

⋄ Y&Y’s TEX’n’ANSI a.k.a. LY1 encoding
(texnansi-*.tfm),

⋄ T5 (Vietnamese) encoding (t5-*.tfm),

⋄ Text Companion for EC fonts a.k.a. TS1

(ts1-*.tfm).

The LATEX support for all these encodings, due to
Marcin Woliński, is also part of the LM distribution.

TFM files nominally representing the same en-
coding do not always define the same set of charac-
ters; for example, the character sets of cmr10.tfm

and cmtt10.tfm differ. The original CM fonts com-
prise 7 different character sets, with an idiosyncratic
difference between the cmr10 and cmr5 layouts. As
a remnant of the CM design, there are 5 different
character sets of the LM text fonts:

1. 821 glyphs (basic set): lmb10 lmbo10 lmbx10

lmbx12 lmbx5 lmbx6 lmbx7 lmbx8 lmbx9

lmbxi10 lmbxo10 lmdunh10 lmduno10 lmr10

lmr12 lmr17 lmr5 lmr6 lmr7 lmr8 lmr9

lmri10 lmri12 lmri7 lmri8 lmri9 lmro10

lmro12 lmro17 lmro8 lmro9 lmss10 lmss12

lmss17 lmss8 lmss9 lmssbo10 lmssbx10

lmssdc10 lmssdo10 lmsso10 lmsso12 lmsso17

lmsso8 lmsso9 lmu10 lmvtk10 lmvtko10

lmvtl10 lmvtlo10 lmvtt10 lmvtto10

2. 824 glyphs: lmssq8 lmssqbo8 lmssqbx8

lmssqo8

extra characters: varI varIJ varIogonek

3. 814 glyphs: lmcsc10 lmcsco10

missing characters: f_k ff ffi ffl fi fl

longs

4. 785 glyphs: lmtk10 lmtko10 lmtl10 lmtlc10

lmtlco10 lmtlo10 lmtt10 lmtt12

lmtt8 lmtt9 lmtti10 lmtto10

missing characters: f_k ff ffi ffl fi fl

Germandbls hyphen.prop IJ ij permyriad

servicemark suppress trademark

varcopyright varregistered zero.oldstyle

zero.prop one.oldstyle one.prop

two.oldstyle two.prop three.oldstyle

three.prop four.oldstyle four.prop

five.oldstyle five.prop six.oldstyle

six.prop seven.oldstyle seven.prop

eight.oldstyle eight.prop nine.oldstyle

nine.prop

5. 784 glyphs: lmtcsc10 lmtcso10

missing characters: as in 4, also longs

4.4 Compatibility issues

We did our best to provide outline fonts that can be
used as a replacement for CM fonts. To a certain
extent, we managed to achieve this goal, namely,
the PostScript drivers which process TEX documents
typeset with CM metric files, can use either CM or
LM PostScript Type 1 fonts — special map files for
PostScript Type 1 fonts are available for this pur-
pose. The metric files, however, cannot be used
replaceably, because the typesetting algorithms are
intrinsically unstable — even tiny (rounding) errors
may yield glaringly different results.

Therefore, LM users also cannot expect Post-
Script Type 1 and OTF fonts to be used replace-
ably. Recall that the OTF format requires integer
number representation for glyph widths. The “refer-
ence” quantity is the em unit: 1 em = 2048 units for
fonts using splines of the 2nd degree, 1 em = 1000
units for fonts using splines of the 3rd degree (e.g.,
our LM and TG fonts). Therefore, in our case, the
difference in width is on average 1/2000 em (twice
as large as the variation in the EC widths), that is,
circa 0.005 pt for 10-point fonts.

Because the MetaType1 sources of the LM fonts
are the result of conversion from PostScript Type 1,

GUST e-foundry font projects

322 TUGboat, Volume 37 (2016), No. 3

the widths stored in the LM TFM files are not iden-
tical to the respective original CM widths. They
are closer, however, to the original quantities by an
order of magnitude compared to the EC and OTF

widths. At the cost of great effort (by referring to
the Metafont sources), we might have eliminated
rounding errors in LM widths. But it would not
cure the problem of (non-)replaceability, as widths
are not the only source of trouble. Differences in
heights and depths of glyphs may also yield unex-
pected behavior of the TEX typesetting algorithm.

The problem of heights and depths in TEX turns
out to be unavoidable, and quite serious: the TFM

format permits by design only 16 different heights
and depths, including the obligatory entries contain-
ing the value zero. If there are in fact more heights
and depths in a given font, their number is cleverly
reduced to 16 by Metafont (as well as by the Meta-
Post and TFtoPL programs). One of the certainly
unwanted results is that the same glyph in different
encodings may have different heights and/or depths!
For example, the height of the letter ‘A’ is 6.88875 pt
in the rm-lmr10.tfm file (this layout is an extension
to 256 slots of the cmr10 layout), it is 6.99648 pt in
the t5-lmr10.tfm file (Vietnamese layout), while in
the canonical cmr10.tfm file it is 6.83331 pt.

This is not the end of the list of possible sources
of incompatibility between CM and LM fonts. Posi-
tioning of the accents is also a long story. These and
related aspects are explained minutely in [12].

Finally, let us consider a somewhat atypical ex-
ample of incompatibility between the LM and CM

fonts related to Donald E. Knuth’s mistake in a CM

ligtable program, uncorrectable for obvious rea-
sons but basically harmless; namely, roman.mf con-
tains the following:

% three degrees of kerning
k#:=-.5u#; kk#:=-1.5u#; kkk#:=-2u#;
ligtable "k":

if serifs: "v": "a" kern -u#, fi
"w": "e" kern k#, "a" kern k#,

"o" kern k#, "c" kern k#;

The culprit is the if serifs clause: the kern pair
‘ka’ appears twice in the TFM files of serif fonts with
the values −u# and −0.5u#, respectively, as is eas-
ily seen in the following fragment of the cmr10.pl

file (the respective lines are marked with arrows):

(CHARACTER C k
(CHARWD R 0.527781)
(CHARHT R 0.694445)
(COMMENT

(KRN C a R -0.055555)⇐

(KRN C e R -0.027779)
(KRN C a R -.027779) ⇐

(KRN C o R -0.027779)

(KRN C c R -0.027779)
)

)

Moreover, there are no ‘va, ‘vc’, ‘ve’, and ‘vo’ kern
pairs in sans-serif fonts, although there are ‘kc’, ‘ka’,
‘ke’, ‘ko’, ‘wa’, ‘wc’, ‘we’, and ‘wo’ kern pairs in these
fonts. We could not see the reason for ignoring ‘v’
in this context, thus we decided to add the relevant
kern pairs in the LM fonts; we also added quite a
few other kern pairs missing, in our opinion, from
the CM fonts, for example, ‘eV’ and ‘kV’.

Summing up, we believed that we had good rea-
sons for giving up the struggle for a “100-percent
compatibility” between LM and CM metrics, what-
ever that would mean, and to confine ourselves to
providing the mentioned replaceability of outlines.

5 The TEX Gyre collection of fonts

Heartened by the results of the LM enterprise, we
accepted without hesitation the next proposal: the
“LMization” of the family of fonts provided by Ghost-
script as a replacement for the renowned Adobe base

35 fonts, generously released by the URW++ com-
pany under free software licenses.

⋄ ITC Avant Garde Gothic (book, book oblique,
demi, demi oblique)

⋄ ITC Bookman (light, light italic, demi,
demi italic)

⋄ Courier (regular, regular oblique, bold,
bold oblique)

⋄ Helvetica (medium, medium oblique, bold,
bold oblique)

⋄ Helvetica Condensed (medium, medium
oblique, bold, bold oblique)

⋄ New Century Schoolbook (roman, roman
italic, bold, bold italic)

⋄ Palatino (regular, regular italic, bold,
bold italic)

⋄ Symbol

⋄ Times (regular, regular italic, bold,
bold italic)

⋄ ITC Zapf Chancery (medium italic)

⋄ ITC Zapf Dingbats

Since our aim was “LMization”, we excluded the
Symbol and ITC Zapf Dingbats non-text fonts from
the scope of our interest.

After a brief (but heated) debate, the name of
the project and of its constituent fonts were coined.
The project was dubbed TEX Gyre (TG) and the
following names were accepted (the respective file
name kernels, original Adobe names and Ghostscript,
that is, URW, names are given in parentheses):

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 323

⋄ TG Adventor (qag / ITC Avant Garde Gothic /
URW Gothic L)

⋄ TG Gyre Bonum (qbk / ITC Bookman /
URW Bookman L)

⋄ TG Cursor (qcr / Courier / Nimbus Mono L)

⋄ TG Heros (qhv / Helvetica / Nimbus Sans L)

⋄ TG Heros Condensed (qhvc / Helvetica
Condensed / Nimbus Sans L Condensed)

⋄ TG Schola (qcs / New Century Schoolbook /
Century Schoolbook L)

⋄ TG Pagella (qpl / Palatino / URW Palladio L)

⋄ TG Termes (qtm / Times / Nimbus
Roman No9 L)

⋄ TG Chorus (qzc / ITC Zapf Chancery /
URW Chancery L)

We initially considered including Cyrillic alpha-
bets, but, as in the case of the LM fonts, we eventu-
ally abandoned this idea, also with regret, the more
so as the Ghostscript fonts at that time contained
an (apparently unfinished) set of Cyrillic glyphs.

We expected that the main effort would be the
making of extra glyphs plus maybe correcting out-
lines here and there. To our surprise, quite a few
glyphs required tuning because of evident errors in
outlines. One of the most striking examples is the
glyph ‘eight’ from the URW Schoolbook bold font5 —
see Figure 2.

F
ig

u
re

2

Mostly, we removed redundant or wrong nodes
(points) from the outline definitions, deleting more
than 5% of them in all. In the case of TG Pagella,
however, the insertion of extra nodes turned out nec-
essary. The chart in Figure 3 shows some statistics
for the upright TG fonts. The diagram concerns the
version of the Ghostscript fonts which we used as
our starting point. We used circa 350 glyphs from

5 Recently, the font has been renamed to ‘C059 bold’; the
bug was removed from the Ghostscript distribution only in
2015, although the TEX Collection 2016 distribution still con-
tains (due to the legacy reasons) the faulty glyph.

each font. The total number of nodes in these glyphs
varied from circa 10,000 to 25,000 per font. In the
current release, the TG text fonts count almost 1100
glyphs each with the number of nodes varying from
circa 30,000 to 65,000 (for sans-serif and serif italic
variants, respectively; see [14]).

F
ig

u
re

3

5.1 Repertoire issues

The difference in the number of glyphs between the
TG and LM text fonts (the former having circa 250
glyphs more per font) is due mainly to the presence
of small caps in the TG fonts (225 glyphs per font).
Also unlike the LM fonts, each TG font contains the
complete Greek alphabet and a few technical glyphs,
such as ‘lozenge’ and ‘lscript’.6 Except for these, the
LM and TG fonts share the same repertoire of glyphs
and the same set of TFM encodings (see Section 4.3).

The LATEX support for these encodings was also
provided by Marcin Woliński.

5.2 Compatibility issues

The consistency of the widths of the original Adobe
and the respective TG glyphs was one of our main
concerns, as the TG fonts were meant as potential
replacements for the Adobe fonts. It turned out,
however, that the original font metric files [27], con-
tained apparent metric flaws which we decided, with
some hesitation, not to retain.

A typical example (concerning Helvetica, a.k.a.
Nimbus Sans L, a.k.a. TG Heros) is depicted in Fig-
ure 4. Both Spanish ‘¡’ and Scandinavian ‘ø’ glyphs
belong to the Adobe Standard Encoding set, hence

6 For historical reasons, the LM fonts contain a few ad-
ditional variants of the base, left, and right double quotes,
absent from the TG fonts.

GUST e-foundry font projects

324 TUGboat, Volume 37 (2016), No. 3

one can expect that they should be considered im-
portant and thus unchangeable. Nevertheless, we
could not see a reason for using widths different
from the ‘!’ and ‘o’ widths, respectively, and cer-
tainly there is no substantiation for the asymmetry
of sidebearings, especially in the case of ‘ø’; there-
fore, we decided to alter the metrics.

F
ig

u
re

4

Fortunately, there are few such cases in the TG

collection; each is mentioned in the documentation
of the TG fonts [14].

Because the original widths for the TG fonts,
unlike in the LM collection, were integer numbers,
there is no metric discrepancy between the Post-
Script Type1 and OTF font formats, as far as widths
are concerned. Heights and depths, however, are
subject to the same restrictions as discussed in Sec-
tion 4.4.

6 OTF math fonts

The chronic problem of lack of math support for the
TG collection became the impetus for our third ven-
ture: math fonts for the LM and TG collections in
the OTF format. The recent update of the LM and
TG fonts took place at the end of 2009. The math ex-
tension for the OTF format ([29]) had been released
and there existed the FontForge font editor ([25])
capable of generating such fonts. So we embarked
upon an expedition into unknown regions — since
then we have focused our attention on the work on
OTF math fonts, again with the benevolent encour-
agement and support from the TEX users groups.

As we should have expected, the task turned
out interesting and absorbing, and, according to Hof-
stadter’s Law,7 we spent more time on it than we ex-
pected. From the very beginning, we aimed at mak-
ing a collection of mutually consistent math OTF

7 Hofstadter’s Law: It always takes longer than you ex-
pect, even when you take into account Hofstadter’s Law —
Douglas R. Hofstadter.

fonts and we underestimated the heterogeneity of
the sources of additional alphabets and the problem
of interrelationships — works on subsequent fonts en-
tailed moving backwards to the fonts which we had
prematurely considered ready. Nevertheless, in 2011,
we happily announced the release of our first math
OTF font, namely, Latin Modern Math. Altogether,
six math fonts have been released by the GUST e-
foundry so far [9, 10]:

⋄ TG Latin Modern Math

⋄ TG Bonum Math

⋄ TG Schola Math

⋄ TG Pagella Math

⋄ TG Termes Math

⋄ TG DejaVu Math

This amounts to nearly half of all OTF math fonts re-
leased in the world. Besides these, the following OTF

math fonts have been released: Asana by Apostolos
Syropoulos, Neo-Euler and XITS by Khaled Hosny,
STIX by the STI Pub companies,8 Cambria Math by
Microsoft,9 Lucida Math by Bigelow & Holmes, and
Minion Math by Johannes Küster; the latter three
fonts are distributed commercially.

6.1 OTF math font contents

Math OTF fonts, as we expounded in [10], are truly
nasty beasts. In accordance with [35] and [37], they
are expected to contain a plethora of glyphs: let-
ters, arrows, math operators and delimiters, geomet-
rical shapes, technical symbols, etc. The presence of
some of them, particularly the (over)abundance of
peculiar geometrical shapes and arrows, is hard to
substantiate in our opinion.

Initially, we planned also releasing the math
companion to the TEX Gyre sans-serif fonts, TG Ad-
ventor and TG Heros, but the Unicode specification
for the contents of math fonts, [37], turned out defi-
nitely “serif-oriented”. Let us take, for example, the
arrangement of the LM Math font shown in Table 1:
following the cited specification, we combined sev-
eral LM source fonts into a single complex font. As
the table clearly shows, the basic subsets, that is,
plain, bold, italic and bold italic are assumed to con-
sist of serif glyphs by default. It is not obvious how

8 The STIX project began through the joint efforts of
American Mathematical Society (AMS), American Institute of
Physics Publishing (AIP), American Physical Society (APS),
American Chemical Society (ACS), Institute of Electrical and
Electronic Engineers (IEEE), and Elsevier Science; these com-
panies are collectively known as the STI Pub companies.

9 Cambria Math was the first math font published, con-
forming to the specification MATH — The mathematical type-
setting table [29]. It was released by Microsoft in 2007, along
with a MS Office version equipped with the capability of han-
dling the math font and editing math formulas.

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 325

the table should be adjusted to suit sans-serif math
fonts. Work on this issue is in progress.

T
a
b

le
1

category charset source fonts

plain (upright, serif) L*, G, D lmr, lmmi (upright)

bold L, G, D lmbx, lmmib (upright)

italic L, G lmmi

bold italic L, G lmmib

sans-serif L, D lmss

sans-serif bold L, G, D lmssbx

sans-serif italic L lmsso

sans-serif bold italic L, G lmssbo

calligraphic L eusm (slanted)

bold calligraphic L eusb (slanted)

Fraktur L eufm

bold Fraktur L eufb

double-struck L, D bbold (by Alan Jeffrey)

monospace L, D lmtt

L, G, D — Latin, Greek and digits, respectively

L* — contains also diacritical letters and punctuation

All the alphanumeric glyphs specified in the table,
except for the “plain” ones (first row), are given
special mathematical Unicode slots — see [37]

The original CM fonts, and thus the LM fonts,
do not contain the complete sans-serif Greek. We
generated the missing glyphs using modified Meta-
font sources in order to generate outlines instead of
bitmaps and tuning the result manually, if required.

Moreover, a math font is bound to contain many
other characters, most notably glyphs used for sub-
scripts of the 1st and 2nd order, used also for super-
scripts; we’ll refer to them shortly pars pro toto as
subscripts. They are accessed by the OTF feature
mechanism, more precisely by the math extension
feature ssty [33].

Extensible symbols, like large brackets or radi-
cals, are another important group of math-oriented
glyphs. An extensible symbol consists of a collection
of a few components (the left part of Figure 5) as-
sembled by the typesetting engine into a seemingly
single character (the right part of Figure 5).

First, a glyph of adequate size is searched for in
the so-called chain of glyph variants (here: the three
leftmost curly braces). If a proper glyph is not found,
the typesetting engine assembles a respectively large
symbol from the relevant pieces using a fairly com-
plex algorithm — everybody who has attempted un-
successfully to fit braces around a formula according
to one’s desire probably knows it.

In the case of the radical symbol, the situation
is still more complex, because the OTF and TEX
geometric structure, as well as the relevant metric
data of the components differ, as is shown in Fig-
ure 6 which visualises “stages” of the assembling of
an extensible radical symbol.

F
ig

u
re

5
F

ig
u

re
6

In both cases, the radical symbol is assembled
from glyphs taken from a relevant font and a line
(rule) drawn by the typesetting program at the top
of the symbol (marked with a gray color). The thick-
ness of the rule, however, is given explicitly as a pa-
rameter in math OTF files, while it is inferred from
the height of the top element of the radical symbol
in TEX (recall the problem of the limited number of
heights in a TEX metric file).

There is an important difference between the
TEX and OTF math font specification concerning ex-
tensible glyphs: TEX is equipped with the ability to
assemble compound glyphs from pieces only verti-
cally, while the OTF format offers both horizontal
and vertical assembling. In TEX (i.e., in the plain

TEX format), such glyphs as horizontal braces are de-
fined by special macros using rules and a few glyphs
from a relevant font:

\def\downbracefill
{$\m@th \setbox\z@\hbox{$\braceld$}%
\braceld\leaders\vrule height\ht\z@

depth\z@\hfill\braceru
\bracelu\leaders\vrule height\ht\z@

depth\z@\hfill\bracerd$}
\def\upbracefill [...]

Incidentally, it seems that diagonal extensible glyphs
have not yet been invented. Could it be that the
conundrum is too difficult to solve?

GUST e-foundry font projects

326 TUGboat, Volume 37 (2016), No. 3

More on the differences between the TEX and
OTF specifications of the structure of math fonts can
be found in Ulrik Vieth’s survey [24].

In the case of LM Math, we were fortunate to
have well-known clean sources for a base, already
containing 7-point and 5-point variants, suitable for
typesetting subscripts, and components for assem-
bling extensible glyphs.

We have to confess, however, that we were not
especially delighted with the Computer Modern cal-
ligraphic script. More pleasingly designed, to our
eyes, are the calligraphic letters of the renowned Eu-
ler family. Therefore, we decided to transfer the
glyphs from the Euler fonts (slanting them slightly)
to the LM Math font:

In the case of the TG math fonts, the situa-
tion was slightly worse. The basic sources, that is,
the text fonts, were already improved by us, but
the sources of the relevant additional character sets
were highly heterogeneous. We used freely available
fonts of the best possible quality as our base; never-
theless, much manual tuning was necessary (recall
the tuning of the sources of the TG text fonts).

Moreover, not all suitable fonts had acceptable
free licenses. In a few cases, we had to contact the
authors personally. It should be emphasized that in
all cases the authors, if we managed to reach them,
courteously agreed to make their fonts available for
our purposes. The following external fonts were used
in the TG math fonts project (in alphabetical order):

⋄ Lato by Łukasz Dziedzic (TG Schola Math)

⋄ Kerkis by Apostolos Syropoulos and Antonis
Tsolomitis (TG Bonum Math)

⋄ Leipziger Fraktur replica by Peter Wiegel
(TG Bonum Math and TG Termes Math)

⋄ Math Pazo by Diego Puga (TG Pagella Math)

⋄ Odstemplik by Grzegorz Luk (gluk)
(TG Pagella Math)

⋄ Theano Modern by Alexey Kryukov
(TG Schola Math)

We are most grateful to all the authors for their
prominent aid.

6.2 Visual issues

Observe that the same monospaced alphanumeric
characters (excerpted from TG Cursor) are shared
by TG Bonum Math, TG Schola Math, and TG Ter-
mes Math. In such cases one must be carefully check
whether the size of the glyphs being included fits the

size of the basic set of glyphs. Nominally, all fonts
(both in the PostScript Type 1 and OTF formats)
have the same design size, 10 typographic points (re-
call that 1 point = 1/72 inch; cf. Section 4.4). Work-
ing on the TG math fonts, we had to adjust the size
of the subsets a few times. For example, we enlarged
the borrowed monospaced glyphs to circa 112.5% in
TG Schola Math; otherwise the monospaced alpha-
bet looked too small in combination with Schola’s
brawny glyphs.

The visual harmonizing of the supplementary
alphabets with the main font face concerns not only
alphanumeric glyphs. Even essentially geometrical
shapes should also reflect the characteristic features
of the main font, for example, the thickness of stems,
the ending of arms, etc. Seemingly trivial glyphs,
such as arrows, serve as a convenient example: they
have slightly different shapes in each of our math
fonts — see Figure 7.

F
ig

u
re

7

Another example is the shape of integrals. His-
torically, the integral symbol originates from the let-
ter ‘long s’10 which is nowadays identical with a bar-
less ‘f’. Therefore, we did our best to preserve some
characteristic features of the letter ‘f’ in the design
of the integral shape — see Figure 8.

F
ig

u
re

8

We are not going to dwell on the visual as-
pects of the math font design, as the number of de-
tails relevant for a font with over 4000 glyphs (and

10 The cursive long ‘s’ for denoting an integral operation,
i.e., infinite summation, was introduced by Gottfried Wilhelm
Leibniz in 1675 in an unpublished paper Analyseos tetrago-
nisticæ pars secunda (Second part of analytical quadrature).

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 327

counting) would perhaps become rather overwhelm-
ing. Notwithstanding, one aspect needs emphasiz-
ing, namely, the problem of sidebearings and kern-
ing for alphanumeric symbols.

It is generally accepted by typographers that
math symbols should have larger sidebearings than
the respective text glyphs. In particular, TEX math
italic glyphs are a little bit broader and have larger
sidebearings than the text italic glyphs. It is not ob-
vious, however, how large such sidebearings should
be. We have already experimented with a few sizes
but further tuning will probably be necessary. Of
course, the broadening of sidebearings should not
be applied to the basic font, that is, regular upright,
because of multiletter names of functions and oper-
ators, such as ‘sin’ or ‘max’, which are traditionally
typeset with regular upright letters.

As regards the problem of kerning, we decided
not to include kerns in math fonts, although provid-
ing kerns for the upright regular alphabet might be
reasonable. Actually, we consider introducing spe-
cial math kerning (so-called “staircase” kerns a.k.a.
“cut-ins”; see Section 7). Thankfully, nobody has
complained yet because of the lack of kerning in our
math OTF fonts.

6.3 Repertoire issues

At present, a common standard for the repertoire of
characters that should be present in an OTF math
font does not exist. After several debates (mostly
during TEX conferences) and many experiments, we
came up with the tentative repertoire scheme pre-
sented in Table 2, which can be considered a detailed
specification of Table 1.

T
a
b

le
2

B – basic letters, A – accented letters, G – Greek letters,
D – digits, O – other symbols, P – punctuation

B A G D O P

plain (upright, serif) +s +s +d
s +s + +s

italic +s +s

bold +s +d
s +s

bold italic +s +s

sans-serif + +

sans-serif italic +

sans-serif bold + + +

sans-serif bold italic + +

calligraphic +

bold calligraphic +

Fraktur +

bold Fraktur +

double-struck + +

monospace + +

d — digamma excluded from relevant Unicode blocks
s — subscripts are to be added

We would like all TG math fonts (Bonum, Deja-
Vu, Pagella, Schola, and Termes) to share this pat-
tern. For LM Math, however, we adopted another
scheme because of legacy concerns. Currently, LM

Math contains circa 4800 glyphs while the remaining
fonts contain circa 4250 glyphs each. LM Math con-
tains more subscripts, as the original sources already
provided them. On the other hand, the TG math
fonts contain more size variants of integral symbols.
This yields circa 550 glyphs more (net) in LM Math.
At the moment, TEX Gyre DejaVu Math contains (in
accordance with Table 2) subscript variants for bold
upright glyphs, while the remaining TG math fonts
need to be complemented with these glyphs. It is
a typical instance of the frequently occurring “back-
tracking” procedures: the final decision was under-
taken only after a few fonts had been released.

Concerning subscripts, it should be emphasized
that subscript glyphs for the TG math fonts are
obtained using the approach applied in the Meta-
font sources of the Euler family of fonts, that is, by
non-uniform rescaling of the respective normal-size
glyphs. In a way, such “optical scaling” can be con-
sidered undesirable; nevertheless, it proved accept-
able for the Euler fonts, thus we decided to apply it
also to the TG math fonts.

Some rather quirky characters which received
Unicode slots are spaces. Unicode [35] defines quite
a few space-related glyphs:

0008 BACKSPACE (<control>)
*0020 SPACE
*00A0 NO-BREAK SPACE
*2002 EN SPACE
*2003 EM SPACE

1361 ETHIOPIC WORDSPACE

1680 OGHAM SPACE MARK
*2004 THREE-PER-EM SPACE
*2005 FOUR-PER-EM SPACE
*2006 SIX-PER-EM SPACE
*2007 FIGURE SPACE
*2008 PUNCTUATION SPACE
*2009 THIN SPACE
*200A HAIR SPACE
*200B ZERO WIDTH SPACE
*202F NARROW NO-BREAK SPACE
*205F MEDIUM MATHEMATICAL SPACE

2408 SYMBOL FOR BACKSPACE

2420 SYMBOL FOR SPACE

3000 IDEOGRAPHIC SPACE

303F IDEOGRAPHIC HALF FILL SPACE
*FEFF ZERO WIDTH NO-BREAK SPACE

1DA7F SIGNWRITING LOCATION-WALLPLANE SPACE

1DA80 SIGNWRITING LOCATION-FLOORPLANE SPACE

E0020 TAG SPACE

We decided to include a subset of the Unicode-
defined spaces (marked with asterisks in the above
list), even though their meaning and usage seems
vague. The problem of spaces touches a general

GUST e-foundry font projects

328 TUGboat, Volume 37 (2016), No. 3

problem of the relation between the Unicode stan-
dard and typography. We discuss this topic in more
detail in the next section.

The next two pages show the representative sub-
set (for LM Math and TG Termes Math) of the reper-
toire we adopted as the GUST e-foundry “private
standard”; gray squares denote zero-width charac-
ters. As one can see, the repertoires are very similar.
One can assume that the difference in the repertoire
will be imperceptible in practical applications.

6.4 Unicode: the typographer’s friend

or enemy?

An important subject, closely related to the con-
tents and repertoire issues, is briefly mentioned in
Sections 4.2, 6.1, and 6.3: the problem of the char-
acter set defined by the Unicode standard [35], and
specified for math fonts in Unicode Technical Report

#25 [37].
The Unicode Consortium claims that “the Uni-

code standard follows a set of fundamental princi-
ples” and gives, among others, the following “princi-
ple”: characters, not glyphs and semantics. We are
not able to reconcile these principles with the cases
discussed in this section.

It should be emphasized that not all glyphs used
extensively in typography, in particular, in or out of
math formulas, are assigned Unicode numbers. Ex-
amples of such glyphs are small caps and old style
numerals. Nothing in these two classes of glyphs
has received Unicode numbers, although there are
codes for much more narrowly used double struck
characters or monospaced and sans-serif digits.

Another example of “unicodeless” glyphs are
the pieces used for assembling extensible characters
(cf. Section 6.1, Figures 5 and 6).

It is not so bad if whole blocks of characters
are included or excluded. The worse situation is an
inconsistency of including only some glyphs. The
abovementioned double struck glyphs are a good ex-
ample of such a situation. Here is the group of dou-
ble struck glyphs assigned Unicode slots, without
apparent rhyme or reason:
2102 DOUBLE-STRUCK CAPITAL C

210D DOUBLE-STRUCK CAPITAL H

2115 DOUBLE-STRUCK CAPITAL N

2119 DOUBLE-STRUCK CAPITAL P

211A DOUBLE-STRUCK CAPITAL Q

211D DOUBLE-STRUCK CAPITAL R

2124 DOUBLE-STRUCK CAPITAL Z

213C DOUBLE-STRUCK SMALL PI

213D DOUBLE-STRUCK SMALL GAMMA

213E DOUBLE-STRUCK CAPITAL GAMMA

213F DOUBLE-STRUCK CAPITAL PI

2140 DOUBLE-STRUCK N-ARY SUMMATION

2145 DOUBLE-STRUCK ITALIC CAPITAL D

2146 DOUBLE-STRUCK ITALIC SMALL D

2147 DOUBLE-STRUCK ITALIC SMALL E

2148 DOUBLE-STRUCK ITALIC SMALL I

2149 DOUBLE-STRUCK ITALIC SMALL J

The remaining letters of the alphabet (upper and
lower case) and digits received mathematical codes
(1D538–1D56B), with gaps at the glyphs above.

Another notable example are sub- and super-
scripts, theoretically not needed in math fonts, be-
cause the sub- and superscript characters (“unicode-
less”) are accessed there by the OTF feature mecha-
nism (the ssty feature, cf. Section 6.1). In practice,
for legacy reasons, sub- and superscript glyphs are
expected to be present in a text font, and, conse-
quently, in the basic (plain) charset of a math font
too — see Table 1. The Unicode standard [35] enu-
merates the following Latin letters in this context:
1D62 LATIN SUBSCRIPT SMALL LETTER I

1D63 LATIN SUBSCRIPT SMALL LETTER R

1D64 LATIN SUBSCRIPT SMALL LETTER U

1D65 LATIN SUBSCRIPT SMALL LETTER V

2090 LATIN SUBSCRIPT SMALL LETTER A

2091 LATIN SUBSCRIPT SMALL LETTER E

2092 LATIN SUBSCRIPT SMALL LETTER O

2093 LATIN SUBSCRIPT SMALL LETTER X

2094 LATIN SUBSCRIPT SMALL LETTER SCHWA

2095 LATIN SUBSCRIPT SMALL LETTER H

2096 LATIN SUBSCRIPT SMALL LETTER K

2097 LATIN SUBSCRIPT SMALL LETTER L

2098 LATIN SUBSCRIPT SMALL LETTER M

2099 LATIN SUBSCRIPT SMALL LETTER N

209A LATIN SUBSCRIPT SMALL LETTER P

209B LATIN SUBSCRIPT SMALL LETTER S

209C LATIN SUBSCRIPT SMALL LETTER T

2C7C LATIN SUBSCRIPT SMALL LETTER J

2071 SUPERSCRIPT LATIN SMALL LETTER I

207F SUPERSCRIPT LATIN SMALL LETTER N

Besides the somewhat surprising presence of the
‘schwa’ character and the striking asymmetry be-
tween the number of sub- and superscripts, most
questionable here is the incompleteness of the Latin
alphabet. So far, we have not included these glyphs
in neither text nor math fonts.

Another example concerns math italic symbols.
The Unicode standard reads:

1D44E MATHEMATICAL ITALIC SMALL A

1D44F MATHEMATICAL ITALIC SMALL B

1D450 MATHEMATICAL ITALIC SMALL C

1D451 MATHEMATICAL ITALIC SMALL D

1D452 MATHEMATICAL ITALIC SMALL E

1D453 MATHEMATICAL ITALIC SMALL F

1D454 MATHEMATICAL ITALIC SMALL G
⇐?

1D456 MATHEMATICAL ITALIC SMALL I

1D457 MATHEMATICAL ITALIC SMALL J

1D458 MATHEMATICAL ITALIC SMALL K

1D459 MATHEMATICAL ITALIC SMALL L

1D45A MATHEMATICAL ITALIC SMALL M

1D45B MATHEMATICAL ITALIC SMALL N

1D45C MATHEMATICAL ITALIC SMALL O

1D45D MATHEMATICAL ITALIC SMALL P

1D45E MATHEMATICAL ITALIC SMALL Q

1D45F MATHEMATICAL ITALIC SMALL R

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 329

GUST e-foundry font projects

330 TUGboat, Volume 37 (2016), No. 3

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 331

1D460 MATHEMATICAL ITALIC SMALL S

1D461 MATHEMATICAL ITALIC SMALL T

1D462 MATHEMATICAL ITALIC SMALL U

1D463 MATHEMATICAL ITALIC SMALL V

1D464 MATHEMATICAL ITALIC SMALL W

1D465 MATHEMATICAL ITALIC SMALL X

1D466 MATHEMATICAL ITALIC SMALL Y

1D467 MATHEMATICAL ITALIC SMALL Z

Math italic ‘h’ is apparently missing. In fact,
the Unicode Consortium decided to leave the slot
1D455 unused forever and “inflate” the meaning of
the slot formerly assigned to the Planck constant:
210E PLANCK CONSTANT

= height, specific enthalpy, ...
* simply a mathematical italic h;

this character’s name results
from legacy usage

More on Unicode’s ambiguities, inconsistencies,
riddles, curiosities, etc. concerning typography appli-
cations, especially math typesetting, can be found in
Piotr Strzelczyk’s ruminations [23].

From the typographer’s point of view, the enu-
meration of all signs used in the world does not seem
to be a good idea. Therefore, it should be no surprise
that it turned out to be impossible to create a math
OTF font that has an internally logical and coherent
structure and, at the same time, is practically use-
ful. Conforming rigorously to the mentioned spec-
ifications does not help too much — it would lead,
in our opinion, to fonts containing mostly seldom
used glyphs. Needless to say, research examining
which characters from the Unicode repertoire are ac-
tually used in practice, would be welcome. Lacking
such empirical data, we adopted Cambria Math as
our “reference point”. Cambria Math contains circa
6500 glyphs; we decided to reduce this number to
at most 4500 for the TEX Gyre series of math fonts.
We can reluctantly consider proposals for suitable
extensions, if truly needed.

6.5 Compatibility issues

We already explained why 100-percent compatibil-
ity of the LM text fonts with the parent Computer
Modern fonts is unfeasible; thereby, the same ap-
plies, even to a greater extent, to the LM Math font
(cf. the case of horizontal extensible braces in Sec-
tion 6.1).

Recall that we used an alternative calligraphic
alphabet in LM Math (Section 6.1). This incompat-
ibility can be relatively easily patched, by including
two calligraphic scripts in the font and using OTF

‘stylistic sets’ features, implemented as the OTF fea-
tures ss01–ss20 (see [33]).

There is, however, a flaw shared by both Com-
puter Modern and Euler calligraphic alphabets and
thus inherited by the Latin Modern Math: the lack

of a corresponding lower case alphabet. The Uni-
code specification assigns slots to lower case mathe-
matical calligraphic letters, implying that they are
expected to be present in math fonts.

We could not find a calligraphic font with a
proper license optically matching Euler or Computer
Modern upper case calligraphic letters, and we gave
up in advance the idea of designing the respective
matching lower case letters ourselves. Instead, we
began to consider the inclusion of yet another stylis-
tic set, a “home-made” calligraphic font inspired by
(but not based on) the original Computer Modern
calligraphic script. Although we would never dare
to make a text calligraphic font without close co-
operation by a professional type designer, we took
a chance and attempted to prepare a symbol calli-
graphic font for TG DejaVu Math.

There was an additional reason for doing our
own calligraphic script. Anticipating future work
(see Section 7 below), we looked for a calligraphic
script matching a sans-serif font. Having not found
any, we decided to prepare our own. Because our
calligraphic alphabet for TG DejaVu Math was, of
course, defined by a parametric MetaType 1 pro-
gram, it was possible to prepare a sans-serif (linear)
variant of the calligraphic script with reasonable ef-
fort. A tentative, experimental linear calligraphic al-
phabet is shown in Figure 9: the calligraphic script
used in TG DejaVu Math (top) and its linear variant
to be used in a sans-serif math font (bottom).

F
ig

u
re

9

Fortunately, there is no issue of compatibility
regarding the TG math fonts, as there are no prede-
cessors. The only question is the similarity of reper-
toire between the LM and TG math fonts. As ex-
plained in Section 6.3, the repertoires are bound to
differ slightly, for the usual legacy reasons.

GUST e-foundry font projects

332 TUGboat, Volume 37 (2016), No. 3

For the same reasons, some technical details of
the font structure also cannot be implemented simi-
larly. Worthy of mentioning in this context is a pe-
culiar difference between the LM and TG math fonts
related to integrals; namely, the TG math fonts con-
tain extensible integrals, which are definable within
the OTF math format — but we are not aware of any
typesetting engine that can take advantage of this
possibility.

7 Plans for the future

7.1 Testing and maintenance

Tasks that are important today and will be forever
important in the future are maintenance and test-
ing. There is, of course, neither a single tool for
testing nor a unique maintenance procedure. Each
case demands a specific approach.

It is Piotr Pianowski who is responsible for test-
ing fonts and preparing adequate tools. Tests re-
fer to both the appearance of the fonts and their
internal structure. In particular, the intermediate
PostScript Type 1 code needs checking. The follow-
ing example shows a case where the inspection of
the code revealed an error in the parenright.ex

procedure (describing an extender of the extensible
right parenthesis, which should be just a rectangle),
probably due to the wrong rounding procedure: the
number ‘1’ means that the line drawn by the com-
mand rlineto is not strictly vertical. The left col-
umn contains the correct code for the corresponding
component of the extensible left parenthesis:

/parenleft.ex { /parenright.ex {
143 609 hsbw 338 609 hsbw
127 418 rmoveto 128 418 rmoveto
-127 hlineto -128 hlineto
-418 vlineto 1 -418 rlineto
127 hlineto 126 hlineto
closepath closepath
endchar endchar
} ND } ND

It is next to impossible to perceive such a tiny defor-
mity on a printout of glyph shapes, which does not
mean that the bug should not be fixed.

The next example, Figure 10, shows one of the
tests we use for checking a vexing problem regard-
ing Greek letter names. Some Greek letters have a
shape variant, and there is an unfortunate discrep-
ancy between TEXies and the rest of the world (the
rightmost two columns marked with asterisks) as
to which glyphs are considered “normal” and which
“variant”.

Almost every time we deal with the Greek al-
phabet, a mistake in variant names tries to creep in.
Without tests of this kind we would be lost.

F
ig

u
re

1
0

The last example concerning maintenance and
testing issues, Figure 11, shows a typical test of
the structure of extensible characters, “embellished”
horizontal arrows in this case: ‘vh 2’ means that
there are 2 size variants, ‘ch 3’ and ‘ch 5’ — that
there are 3 and 5 horizontal components of a given
glyph, respectively. Tests of this kind are essential
for maintaining uniformity across a font collection
as well as inside a single font.

F
ig

u
re

1
1

As a result of remarks to date from the users
of our fonts, we gathered a list of recommended
fixes and improvements — some trivial, like reports
on malformed glyphs or wrongly assigned Unicode
slots, some fairly difficult, like suggestions to imple-
ment anchors or math staircase kerns.

The latter two potential improvements are still
pending, mainly because of vague specification and
the question of practical application. Being unsure
whether all relevant typesetting programs would be
able to handle such improvements, we preferred to
linger till the engines would become stable. It seems
that the time is ripe to attempt these extensions,
especially as the staircase kerns were ultimately im-
plemented in X ETEX in the middle of 2014.

We are also not sure which OTF features should
be present in math fonts. At the moment, only math-
oriented OTF features are implemented. Perhaps we
should consider the inclusion of text-oriented OTF

features too, like the mentioned onum, lnum, pnum,

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 333

and tnum for switching between numeral variants,
or stylistic sets for switching between calligraphic
alphabets.

Also as suggested by users, we consider excerpt-
ing a number of glyphs, mostly geometrical shapes
and arrows but also selected math operators and re-
lational symbols, etc. (but excluding extensible and
subscript characters), from math fonts and transfer-
ring them into the respective text fonts. Such glyphs,
though prepared for math-oriented applications, can
also be fruitfully used in conventional fonts, that is,
those not equipped with the MATH table, for the
typesetting of technical documents. This, obviously,
requires a proper specification and careful selection
of the glyphs in question. This is, in fact, one of the
planned stages of work on new fonts.

Of course, MetaType 1 itself also requires main-
tenance: enhancing, modifying, fixing, etc. For ex-
ample, we had to extend the otherwise stable set of
MetaPost macros used in MetaType 1 in order to
handle the math extension of the OTF specification.

Commencing our works for the GUST e-foundry,
we underestimated the inexorable Hofstadter’s Law
(see footnote 7 on page 324) which apparently ap-
plies not only to time resources. We believed that
MetaType 1 could be kept simple: just MetaPost,
a few trivial Gawk scripts and a stand-alone, sta-
ble converter to PostScript Type 1 fonts, T1utils,
and that’s all. In accordance with Hofstadter’s Law,
the task has unavoidably turned out to be much
more complex than we expected and the implemen-
tation — too heterogeneous.

In order to remedy this, we intend to unify
MetaType1 by eliminating Gawk, Perl, T1utils, and,
as we mentioned in Section 3.1, AFDKO. We aim
at employing two basic “subengines”, namely, Meta-
Post (for generating outlines) and Python (for ar-
ranging the MetaPost output) plus one external, pos-
sibly replaceable, “subengine”, for now, the Font-
Forge Python library (for generating OTF fonts and
the theoretically obsolescent but still widely used
PostScript Type 1 fonts).

7.2 More GUST e-foundry fonts

In the nearest future, we would like to elaborate
and release three experimental math fonts, namely:
bold math, sans-serif math, and monospaced math.
These fonts fit neither the Microsoft nor Unicode
specifications ([29] and [37], respectively). There-
fore, we have to start by working out an altered
specification, adjusted to our purposes, for these
non-standard cases. For example, it is not at all
clear what to do with the sans-serif alphabet in a

sans-serif math font: should it be omitted, left in-
tact, or modified somehow (how?).

Bold math fonts can be used in titles containing
math formulas, as shown in Figure 12 (a tentative
version of TG Termes Bold Math is used).

F
ig

u
re

1
2

Nowadays, many documents are being typeset
in sans-serif, even schoolbooks. Computer presenta-
tions may serve as another example. For such appli-
cations sans-serif math seems plausible. An example
of such an application is shown in Figure 13 (a ten-
tative version of TG DejaVu Sans Math is used).

F
ig

u
re

1
3

TEX users are accustomed to the use of control
sequences for math-oriented glyphs such as \infty,
\sum or \pm. Some of these glyphs can be accessed
(typed in and displayed) directly in text editors, pro-
vided the font used by the editor contains the rele-
vant glyphs. The lion’s share of nominally math-
oriented glyphs can also be prepared as monospaced
glyphs, usable in text editors, provided they are as-
signed Unicode numbers. One can expect that it will

GUST e-foundry font projects

334 TUGboat, Volume 37 (2016), No. 3

improve the legibility of sources and, thereby, the ef-
ficiency of preparation of such documents — see Fig-
ure 14 (a tentative version of TG DejaVu Mono Math
is used).

F
ig

u
re

1
4

Note that treating subscripts incoherently by
the Unicode Standard (Section 6.4) may prove to
be a significant impediment in the latter case, that
is, for fonts without full subscript support. Perhaps
the defining of the complete set of subscripts and
superscripts (partially “unicodeless”) and accessing
them via stylistic set features (ss01–ss20) can be
a solution, provided a given text editor handles the
relevant OTF features.

7.3 Legal issues

The problem of copyrights and licenses has clung
to us like a leech from the very beginning and still
persists. We are not copyright experts and we do
not want to be. Being sick of trouble with releasing
our work due to discussions about legal aspects of
distributing free fonts, we coined a pun lice-sense.
Just one example: the release of TG DejaVu Math
was delayed by about a year because of doubts raised
concerning legal matters.

Having said this, we should emphasize that it
does not mean that there has been no activity from
the side of the GUST e-foundry regarding legal issues.
On the contrary, our magnificent liaison officer, Je-
rzy Ludwichowski, has made Herculean efforts in or-
der to provide appropriate licenses for GUST fonts.
In particular, he prepared a proposal of a license
for the URW fonts that would suit GUST e-foundry
needs, managed to contact in person the URW++

managing director, Dr. Peter Rosenfeld, and, after
long negotiations, received the gracious approval for
the additional license.

All the fonts released so far are licensed under
the GUST Font License (GFL; see [30]), except for
TG DejaVu Math which has a somewhat complex li-
cense (see [9], the Manifest file for TG DejaVu Math).
Recently, many fonts are being released under the
SIL Open Font License (OFL; see [34]); therefore,
we consider dual-licensing GUST fonts (GFL+OFL).

More details concerning legal matters relevant
to GUST e-foundry fonts can be found in a series
of publications by Jerzy Ludwichowski — see, for ex-
ample [18, 19, 20, 21].

7.4 Constraints of tradition vs. our dreams

We are not particularly enthusiastic about font tech-
nology nowadays, but we are not going to spit into
the wind, and try to make the best of what is avail-
able. This does not mean, however, that we are
going to relinquish dreams of a successor to the cur-
rently prevalent “Knuth–Gutenberg” model of type-
setting, that is, the model of stiff rectangles (types)
arranged within a larger rectangle (page; a series of
pages being called a document), deeply ingrained in
Johannes Gutenberg’s technology of movable type,
and transferred by Donald E. Knuth, among others,
to the realm of computers.

Computers facilitate some operations, such as
kerning and ligatures, thereby accelerating work on
documents. The ease of use of affine transforma-
tions is also considered an advantage of computers
by many graphic designers. We are inclined to con-
sider both these aspects as being of rather equivo-
cal benefit. Leaving aside these philosophical ques-
tions and a far-reaching yet obvious idea, in fact also
philosophical, that a font could be defined as a struc-
tured collection of general purpose object programs,
we confine ourselves to pointing out two examples
of aspects that might be improved within the frame-
work of the contemporary edifice of typesetting.

Shrinkable and stretchable spaces, as in TEX,
would supposedly be convenient also in OTF fonts
and seem not too hard to implement. This simple
problem touches on a fairly general and not in the
least trivial problem which could be called “the con-
flict of competence”: which “knowledge” should be
implemented in a font and which — in a typesetting
program.

Another improvement, this time hard to imple-
ment, is related to a naïve question: why must ad-
ditional alphabets be embedded into a single math
font? The answer is simple: operating systems are
poorly designed with regard to font management. In

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 335

particular, a user is not allowed to define a “private”
family of fonts — the commonplace pattern “regu-
lar, regular italic, bold, bold italic” is very difficult
to dislodge. One can imagine other variants of this
idea, namely, borrowing components for extensible
characters or kerns from several fonts. As far as we
know, such an approach has not been implemented
in any typesetting program or any operating system.
TEX is no exception (unless virtual fonts are used);
note, for example, that changing fonts within a word
switches off the TEX hyphenation mechanism.

It should be emphasized that several such prob-
lems were tackled in LuaTEX by Hans Hagen and
team; it does not seem, however, as if amendments of
this kind are to be introduced worldwide in any near
future. This is understandable, as the constraints
of tradition and compatibility usually slow down
the innovative processes. For example, recently an-
nounced advancements in the OTF format specifi-
cation (see, e.g., [6]), can actually be considered a
step backward towards a previously abandoned idea,
temporarily as it turns out, of multiple master fonts.
Anyway, this announcement augurs both ill and well
for us: it means, on the one hand, that we will prob-
ably have to reimplement MetaType 1 in order to
keep pace with the surrounding world and, on the
other hand, that we still have something to do and
something to think about.

8 Acknowledgements

We are indebted to all the people and TEX groups
that have supported our font enterprises. Almost all
the GUST e-foundry projects have been kindly sup-
ported by the Czechoslovak TEX user group CSTUG,
the German-speaking TEX user group DANTE e.V.,
the Polish TEX Users Group GUST, the Dutch-speak-
ing TEX user group NTG, TUG India, UK-TUG, and,
last but not least, TUG. In a few cases, GUTenberg,
the French-speaking TEX Users Group, supported
us too.

We are very grateful to Karel Píška and Ulrik
Vieth, who performed extensive tests of our fonts
and inspired us with insightful comments, and to
Marcin Woliński, who provided the indispensable
LATEX support for our fonts.

The exceptional, personal thanks we owe to our
friends who kept our spirits up for many years and
tirelessly encouraged us to work on fonts: Hans Ha-
gen, Johannes Küster, Jurek Ludwichowski, Volker
RW Schaa, Jola Szelatyńska — hearty thanks!

All trademarks belong to their respective own-
ers and have been used here for informational pur-
poses only.

References

Presentations, publications and packages

[1] Lars Engebretsen, Almost European Fonts
https://ctan.org/pkg/ae

[2] Michael Everson, The Alphabets of Europe
http://www.evertype.com/alphabets/

[3] Lee Hetherington, Eddie Kohler, T1utils
http://www.lcdf.org/type/t1asm.1.html

http://www.lcdf.org/type/t1disasm.1.html

[4] John D. Hobby, MetaPost
https://ctan.org/pkg/metapost

[5] Donald E. Knuth, The TEXbook, TEX: The
Program, The Metafontbook, Metafont: The
Program, Computer Modern Typefaces,
Computers & Typesetting, vol. A–E,
Addison-Wesley, Reading, Massachusetts,
1986

[6] John Hudson, Introducing OpenType Variable
Fonts, 2016
https://medium.com/@tiro/

https-medium-com-tiro-introducing-

opentype-variable-fonts-12ba6cd2369

[7] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, Antykwa Półtawskiego: a parameterized
outline font, Proceedings of the EuroTEX
Conference, Heidelberg, Germany, 1999
article: http://www.staff.uni-giessen.de/

partosch/eurotex99/jackowski

download: http://www.gust.org.pl/projects/

e-foundry/poltawski

[8] Bogusław Jackowski, Marek Ryćko, Polish
extension of Computer Modern fonts
https://ctan.org/pkg/pl-mf

[9] Bogusław Jackowski, Piotr Strzelczyk, Piotr
Pianowski, GUST e-foundry math fonts
The Latin Modern Math (LM Math) font:
http://www.gust.org.pl/projects/e-foundry/

lm-math

The TEX Gyre (TG) Math Fonts:
http://www.gust.org.pl/projects/e-foundry/

tg-math

https://ctan.org/pkg/tex-gyre-math

[10] Bogusław Jackowski, Piotr Strzelczyk, How to
make more than one math OpenType font or the
Beasts of Fonts, DANTE 2011 Meeting, Bremen,
Germany, 2011
http://www.gust.org.pl/projects/e-foundry/

math/beasts05.pdf

[11] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, The Latin Modern (LM) Family of
Fonts
http://www.gust.org.pl/projects/e-foundry/

latin-modern

[12] Bogusław Jackowski, Janusz M. Nowacki,
Latin Modern fonts: how less means more
Proceedings of the EuroTEX conference,
Pont-à-Mousson, France, 2005
http://tug.org/TUGboat/tb27-0/jackowski.pdf

GUST e-foundry font projects

336 TUGboat, Volume 37 (2016), No. 3

[13] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, MetaType 1: a MetaPost-based engine
for generating Type 1 fonts, 2001
article: http://www.ntg.nl/maps/26/15.pdf

presentation: http://ntg.nl/eurotex/

JackowskiMT.pdf

download: https://ctan.org/pkg/metatype1

[14] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, The TEX Gyre (TG) Collection of Fonts
http://www.gust.org.pl/projects/e-foundry/

tex-gyre

[15] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, TEX Gyre Pagella Math or Misfortunes
of Math Typographer, BachoTEX XX, Bachotek,
Poland, 2012
http://www.gust.org.pl/projects/e-foundry/

math/misfortunes02.pdf

[16] Jörg Knappen, Norbert Schwarz, European
Computer Modern Fonts
https://ctan.org/pkg/ec

[17] Donald E. Knuth, Metafont and MetaPost logo
fonts. https://ctan.org/pkg/mflogo-font

[18] Jerzy B. Ludwichowski, GUST font licenses,
BachoTEX XIV, Bachotek, Poland, 2006
http://tug.org/fonts/licenses/gfl.pdf

[19] Jerzy B. Ludwichowski, Karl Berry, GUST Font
License: An application of the LATEX Project
Public License, XVII European TEX Conference
and BachoTEX XV, Bachotek, Poland, 2007;
TUGboat, Volume 29 (2008), No. 1
http://www.gust.org.pl/projects/e-foundry/

licenses/tb91Berry_Ludwichowski.pdf

[20] Jerzy B. Ludwichowski, Licensing of the TEX Gyre
family of fonts, XIX European TEX Conference
and 3rd International ConTEXt User Meeting, The
Hague, The Netherlands, 2009
https://www.ntg.nl/EuroTeX/2009/slides/

jerzy-slides.pdf

[21] Jerzy B. Ludwichowski, Is there life besides
licensing?, DANTE e.V. General Meeting, Bremen,
Germany, 2011
https://www.dante.de/events/Archiv/

dante2011/programm/vortraege/folien-jl.pdf

[22] Janusz M. Nowacki, Polish fonts
http://jmn.pl/en/

[23] Piotr Strzelczyk, Standard Unicode w typografii,
Acta Poligraphica nr 1/2013 (in Polish; to be
published also in English under the title Standard
Unicode in typography)
http://www.cobrpp.com.pl/actapoligraphica/

uploads/pdf/AP2013_01_Strzelczyk.pdf

see also: Piotr Strzelczyk, (uni)coding of math
fonts, BachoTEX XIX, Bachotek, Poland, 2011
http://www.gust.org.pl/bachotex/2011-en/

presentations/Strzelczyk_1_2011

[24] Ulrik Vieth, OpenType math illuminated,
TUGboat, Volume 30 (2009), No. 1
http://tug.org/TUGboat/tb30-1/tb94vieth.pdf

[25] George Williams and FontForge project
contributors, FontForge
http://fontforge.github.io/en-US/

General purpose documentation:

[26] Adobe Font Development Kit for OpenType
http://adobe.com/devnet/opentype/afdko.html

[27] Adobe base 35 fonts
Adobe original AFM files: ftp://ftp.adobe.com/

pub/adobe/type/win/all/afmfiles/base35/

URW replacement: https://ctan.org/pkg/

urw-base35

[28] Adobe Type 1 Font Format
https://partners.adobe.com/public/

developer/en/font/T1_SPEC.PDF

[29] MATH — The mathematical typesetting table
https://www.microsoft.com/typography/

OTSPEC/math.htm

[30] GUST Font License
http://www.gust.org.pl/fonts/licenses/

GUST-FONT-LICENSE.txt

http://tug.org/fonts/licenses/

GUST-FONT-LICENSE.txt

[31] OpenType specification (full)
http://www.microsoft.com/en-ph/download/

details.aspx?id=1144

[32] OpenType Feature File Specification
http://www.adobe.com/devnet/opentype/afdko/

topic_feature_file_syntax.html

[33] Registered features — definitions and
implementations (p–t)
https://www.microsoft.com/typography/

otspec/featuretags.htm

[34] SIL Open Font License
https://scripts.sil.org/OFL

[35] The Unicode Standard 9.0.0, 2016
http://unicode.org/versions/Unicode9.0.0

[36] The Unicode Standard: A Technical Introduction
http://unicode.org/standard/principles.html

[37] Barbara Beeton, Asmus Freytag, Murray
Sargent III, Unicode Technical Report #25.
Unicode Support for Mathematics
http://unicode.org/reports/tr25/

All links above were tentatively accessed
05.07.2015.

⋄ Bogusław Jackowski
Gdańsk, Poland
b_jackowski (at) gust dot org dot pl

⋄ Piotr Strzelczyk
Sopot, Poland
p.strzelczyk (at) gust dot org dot pl

⋄ Piotr Pianowski
Trąbki Wielkie, Poland
p.pianowski (at) gust dot org dot pl

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 337

Localisation of TEX documents: tracklang

Nicola L. C. Talbot

Abstract

TEX is an excellent typesetting system, but its an-
cient (in computing terms) origin means that it lags
behind modern competition in terms of localisation.

Word processors and spreadsheet applications
can query the operating system’s localisation-related
environment variables to determine how to format
information, such as dates, times or currency. If
the user is writing a single-language document in
their own native language, there’s no need to keep
stating their language and region every time they
create a new spreadsheet or word processor document.
Whereas with TEX (in its various formats), users may
find themselves having to provide this information
repeatedly within a single document.

This article describes the development of the
tracklang [8] package, which can be used in LATEX or
input as a generic TEX file. It attempts to keep track
of the localisation setting so that the user doesn’t
have to redundantly supply information.

1 Introduction

Let’s consider two hypothetical people, Alice and
Bob. Alice lives in the United Kingdom (UK) and
speaks English. Bob lives in Canada and speaks
French as his primary language, but is also fluent in
English. Alice has her computer set up so that the
operating system environment variables include:

LANG=en_GB.utf8

LC_ALL=POSIX

Bob has something similar, but for some reason he
likes to have his messages in English:

LANG=fr_CA.utf8

LC_MESSAGES=en_CA.utf8

Both Alice and Bob have to send out invoices from
time to time. They could just use a spreadsheet
which will conveniently look up the localisation vari-
ables and format the date using their own regional
format (British for Alice and French Canadian for
Bob) and will format the currency column according
to their region (GBP £ for Alice and CAD $ for Bob).
However, Alice and Bob both want to use LATEX, and
they’ve discovered a package called, say, easyinvoice

that looks promising.
Alice wants to invoice someone for a DVD cost-

ing £5. Rather bizarrely, and with no regard for
exchange rates, Bob is coincidentally invoicing some-
one for a DVD costing C$5. Both start with the same
document:

\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

In both cases this produces the same result:

Invoice Date: June 14, 2016.

Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This isn’t suitable for either Alice or Bob. It’s
closer to Alice’s requirements as it’s in English, but
the currency is incorrect and the date uses the Amer-
ican style. Alice and Bob both remember about
the babel package [1] and decide to load it before
easyinvoice. In Alice’s case, she does:

\usepackage[british]{babel}

and Bob does:

\usepackage[canadien]{babel}

Unfortunately for both of them, this only has a minor
change. For Alice, the result is now:

Invoice Date: 14th June 2016.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

For Bob, the result is now:

Invoice Date: 14 juin 2016.

Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

So in both cases, the only thing that has changed is
the date format. The code for easyinvoice.sty is
as follows:

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{easyinvoice}

\providecommand*{\@date}{\today}

\newcommand{\invoicedatename}{Invoice Date}

\newcommand{\invoiceitemname}{Item}

\newcommand{\invoicepricename}{Price}

\newcommand{\invoicecurrencyname}{EUR}

\newcommand{\invoicepaymentblurb}{Please

pay within 28 days of invoice date.}

Localisation of TEX documents: tracklang

338 TUGboat, Volume 37 (2016), No. 3

\newcommand*{\itemrow}[2]{\\#1}

\newenvironment{invoice}%

{%

\par\hfill\invoicedatename: \@date.\par

\begin{center}%

\begin{tabular}{lr}

\invoiceitemname &

\invoicepricename\

(\invoicecurrencyname)%

}%

{%

\end{tabular}%

\end{center}%

\invoicepaymentblurb\par

\medskip\par

}

\endinput

The package author has provided a way of alter-
ing the fixed names (by providing commands like
\invoicedatename) but babel can’t alter them (since
it’s unaware of them) and the easyinvoice package
author hasn’t provided translations. It’s therefore
necessary for both Alice and Bob to make the neces-
sary changes by redefining the relevant commands.
In Alice’s case this is just the currency unit:

\renewcommand{\invoicecurrencyname}{GBP}

However Bob needs to redefine all region-sensitive
commands.

This is a nuisance for Alice and Bob (especially
Bob) and while they can create a template .tex file
to copy every time they want to create an invoice,
there may be other packages they might want to
use that likewise need modifications. It’s not the
best example for Alice and Bob to present to their
spreadsheet-using colleagues in a bid to encourage
them to switch to LATEX.

2 Adding multi-lingual support

to packages

Let’s suppose now that the author of the easyinvoice

package decides to provide some regional support in
response to feedback from Alice and Bob. The next
version now has some additional lines of code:

\newcommand{\invoicebritish}{%

\renewcommand{\invoicedatename}{Invoice Date}%

\renewcommand{\invoiceitemname}{Item}%

\renewcommand{\invoicepricename}{Price}%

\renewcommand{\invoicecurrencyname}{GBP}%

\renewcommand{\invoicepaymentblurb}{Please

pay within 28 days of invoice date.}%

}

\newcommand{\invoicecanadien}{%

\renewcommand{\invoicedatename}{Date

de la Facture}%

\renewcommand{\invoiceitemname}{Article}%

\renewcommand{\invoicepricename}{Prix}%

\renewcommand{\invoicecurrencyname}{CAD}%

\renewcommand{\invoicepaymentblurb}{S'il

vous pla\^{\i}t payer dans les 28 jours

suivant la date de facturation.}%

}

Now Bob can simply do \invoicecanadien, which
saves him a few lines of code, but there’s not a great
deal of difference to Alice who now simply replaces:

\renewcommand{\invoicecurrencyname}{GBP}

with

\invoicebritish

Alice may be wondering at this point why the
package author has set the defaults to English text
with European currency. Many of the packages on
CTAN are written by a single author, and the origi-
nal package was simply to help the author perform
some task. The author then decided that the pack-
age might be useful to others and made it publicly
available. It’s therefore not too surprising to find
that the package defaults match the requirements of
the package author. In this case, it might be that
the package author is, say, an English speaker living
in the Republic of Ireland (RoI).

How can the easyinvoice package author be more
helpful to Alice and Bob? The package could define
options that select the appropriate \invoice〈lang〉
command. For example:

\DeclareOption{british}{\invoicebritish}

\DeclareOption{canadien}{\invoicecanadien}

\ProcessOptions

Now Bob can do:

\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[canadien]{babel}

\usepackage[canadien]{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

This is still a bit of a nuisance as Bob has to tell both
babel and easyinvoice to use French Canadian. In this
example, the document has a single language and is
for a single region. The localisation is essentially a
document-wide setting here, and therefore this seems
a valid instance of making it a document class option:

\documentclass[canadien]{article}

\usepackage[T1]{fontenc}

\usepackage{babel}

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 339

\usepackage{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

Now Bob only needs to set this information once
per document. Of course, his spreadsheet-using col-
leagues might point out that they don’t need to do
it at all, but Bob decides to put up with that.

Bob now remembers that the recipient is in an
English-speaking part of Canada, and he decides that
perhaps he’d better produce a dual-language invoice,
so he tries:

\documentclass[canadien,canadian]{article}

\usepackage[T1]{fontenc}

\usepackage{babel}

\usepackage{easyinvoice}

\begin{document}

\selectlanguage{canadien}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\selectlanguage{canadian}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

This produces:

Date de la Facture: 14 juin 2016.

Article Prix (CAD)
DVD 5

S’il vous plaît payer dans les 28 jours suivant la date
de facturation.

Date de la Facture: 14th June 2016.
Article Prix (CAD)
DVD 5

S’il vous plaît payer dans les 28 jours suivant la date
de facturation.

This hasn’t worked for two reasons. The first one
being that easyinvoice doesn’t provide a canadian

option. This can be added to the package:

\newcommand{\invoicecanadian}{%

\renewcommand{\invoicedatename}{Invoice Date}%

\renewcommand{\invoiceitemname}{Item}%

\renewcommand{\invoicepricename}{Price}%

\renewcommand{\invoicecurrencyname}{CAD}%

\renewcommand{\invoicepaymentblurb}{Please

pay within 28 days of invoice date.}%

}

\DeclareOption{canadian}{\invoicecanadian}

Bob’s document now produces:

Invoice Date: 14 juin 2016.

Item Price (CAD)
DVD 5

Please pay within 28 days of invoice date.

Invoice Date: 14th June 2016.
Item Price (CAD)
DVD 5

Please pay within 28 days of invoice date.

This is because the easyinvoice package isn’t aware
of the language changes. Only the date has changed
because that’s controlled by babel. The language in
effect is the last one in the easyinvoice options list,
as that was the one most recently set.

The babel package has hooks that are used when
the language is set, such as \captions〈lang〉 which
redefines all the kernel fixed-text commands. To
be more generally helpful, the easyinvoice package
could test for the existence of \captionsbritish,
\captionscanadien and \captionscanadian and
add to them. For example, the following code could
be added to the easyinvoice package:

\@ifundefined{captionsbritish}{}

{\addto\captionsbritish{\invoicebritish}}

\@ifundefined{captionscanadien}{}

{\addto\captionscanadien{\invoicecanadien}}

\@ifundefined{captionscanadian}{}

{\addto\captionscanadian{\invoicecanadian}}

With this modification, Bob’s document now pro-
duces:

Date de la Facture: 14 juin 2016.

Article Prix (CAD)
DVD 5

S’il vous plaît payer dans les 28 jours suivant la date
de facturation.

Invoice Date: 14th June 2016.
Item Price (CAD)
DVD 5

Please pay within 28 days of invoice date.

Alice and Bob are now both happy, but the pack-
age author might be feeling somewhat less so. What
started out as a simple, short package has bloated.
Each supported language and region combination
requires a block of code in the form:

\newcommand{\invoicebritish}{%

\renewcommand{\invoicedatename}{Invoice Date}%

Localisation of TEX documents: tracklang

340 TUGboat, Volume 37 (2016), No. 3

\renewcommand{\invoiceitemname}{Item}%

\renewcommand{\invoicepricename}{Price}%

\renewcommand{\invoicecurrencyname}{GBP}%

\renewcommand{\invoicepaymentblurb}{Please

pay within 28 days of invoice date.}%

}

\DeclareOption{british}{\invoicebritish}

\@ifundefined{captionsbritish}{}

{\addto\captionsbritish{\invoicebritish}}

So far the easyinvoice package only supports
three language and region combinations. The more
options that are added, the more bloated the package
becomes and the harder it is to manage it. Another
method is needed to trim down this code. The babel

package stores the names of all loaded languages
in \bbl@loaded. It’s a bit risky using an internal
command defined by another package, especially if
it’s not documented in the user guide. Internal com-
mands are the closest packages can get to declaring
private variables. There’s no guarantee that they
won’t change or disappear in future versions, but
let’s suppose the easyinvoice package author decides
to take a gamble on it. The three \@ifundefined

blocks can now be changed from

\@ifundefined{captionsbritish}{}

{\addto\captionsbritish{\invoicebritish}}

\@ifundefined{captionscanadien}{}

{\addto\captionscanadien{\invoicecanadien}}

\@ifundefined{captionscanadian}{}

{\addto\captionscanadian{\invoicecanadian}}

to:

\ifdef\bbl@loaded

{%

\@for\@this@lang:=\bbl@loaded\do{%

\ifcsdef{invoice\@this@lang}%

{%

\cseappto{captions\@this@lang}{%

\expandonce

{\csname invoice\@this@lang

\endcsname}}%

}%

{%

\PackageWarning{easyinvoice}{Sorry,

no support for language `\@this@lang'}%

}%

}%

}%

{}%

(The easyinvoice author has wisely decided to use
the etoolbox package [3] to help here.) This method
has the added advantage of warning the user if their
chosen language isn’t supported.

The package options are still declared

\DeclareOption{british}{\invoicebritish}

\DeclareOption{canadien}{\invoicecanadien}

\DeclareOption{canadian}{\invoicecanadian}

in case the user has decided not to use babel. For
example, Alice might decide that she ought to expli-
citly set the date (using \date) so she has a record
of it if she needs to recheck it. (She might have
removed the PDF after posting it to tidy up her file
system.)

\documentclass{article}

\usepackage[british]{easyinvoice}

\date{14th June 2016}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

This correctly displays the GBP currency.
Betty, from elsewhere in the UK, has discovered

the easyinvoice package and decides to use it. Unlike
Alice, Betty is in the habit of using babel with the
UKenglish option, so she tries it out:

\documentclass{article}

\usepackage[UKenglish]{babel}

\usepackage{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

This produces the error message:

Package easyinvoice Warning: Sorry, no

support for language ‘UKenglish’

and displays the following in the output:

Invoice Date: 14th June 2016.

Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This is because the easyinvoice package doesn’t recog-
nise UKenglish as a synonym for british. A simple
fix is to add

\newcommand{\invoiceUKenglish}{\invoicebritish}

to the package code.
Betty now decides that actually she’s going to

switch to X ELATEX and start using the polyglossia

package [2] instead. Her document is now:

\documentclass{article}

\usepackage{polyglossia}

\setmainlanguage[variant=uk]{english}

\usepackage{easyinvoice}

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 341

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

The invoice goes back to looking like:

Invoice Date: 14th June 2016.
Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This time easyinvoice gives no warning message. Since
babel hasn’t been loaded, \bbl@loaded is no longer
defined, so can’t be iterated over.

The earlier method of testing for the existence of
commands like \captionsbritish no longer works
here, as polyglossia only uses the root language name.
Thus, although the document has requested the UK

variant of English, only \captionsenglish is de-
fined.

What should the easyinvoice package do in this
situation? Testing if \captionsenglish is defined
doesn’t identify the region. The best that can be
done is to modify the package option declarations:

\DeclareOption{british}{\invoicebritish

\ifdef\captionsenglish

{\appto\captionsenglish{\invoicebritish}}%

{}%

}

\DeclareOption{canadien}{\invoicecanadien

\ifdef\captionsfrench

{\appto\captionsfrench{\invoicecanadien}}%

{}%

}

\DeclareOption{canadian}{\invoicecanadian

\ifdef\captionsenglish

{\appto\captionsenglish{\invoicecanadian}}%

{}%

}

This means that Betty now has to do:

\documentclass{article}

\usepackage{polyglossia}

\setmainlanguage[variant=uk]{english}

\usepackage[british]{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

That is, Betty has to specify her language and region
twice in the document. This shouldn’t be necessary.

I mentioned earlier the possibility that the fic-
tional author of such an easyinvoice package might

be an English speaker in the RoI. What localisation
setting is available for users there who need to write
a document in English? The babel package provides
the following English options: english, USenglish
(or american), UKenglish (or british), canadian,
australian and newzealand; while polyglossia pro-
vides: us (or american), usmax, uk (or british),
australian and newzealand.

Thus, neither babel nor polyglossia provides a
way of identifying the English language used in the
RoI. The sensible solution would appear to be to
use the closest matching alternative. In this case it’s
british (or the UK synonym) to match the date.
Aside from political sensitivities, this doesn’t help
the easyinvoice package because it will assume that
the currency should be GBP. There may be other
packages the user requires as well that are sensitive
to the territory. For example, UTC+1 is generally
denoted BST (British Summer Time) in the UK but
IST (Irish Summer Time) in the RoI, CET in Jersey
or Guernsey, etc.

3 The tracklang package

I have a number of packages for which I want to pro-
vide regional support, but they can become so bogged
down with the code to determine the document lan-
guage and region settings that they can end up being
too high-maintenance to support. Any development
around the basic task of the package becomes side-
lined in an attempt to support all the various ways in
which a user might want to identify their preferences.
Are they using babel or polyglossia or translator (pro-
vided with beamer [4]) or ngerman [5] or some other
language package that I don’t know about?

The aim of the tracklang package is to simplify
this. It tries to determine what language and regional
settings the user has requested, so that it can provide
the information to interested packages in a more
accessible manner. It doesn’t provide translations.
It’s not an alternative to babel or polyglossia. It
doesn’t switch any document settings on. It just
attempts to keep track of the user’s settings.

3.1 Informing tracklang of the document

languages

The LATEX file tracklang.sty inputs the generic
TEX code file tracklang.tex. LATEX users can load
the package in the usual way:

\usepackage{tracklang}

However, there’s little need to load it directly in the
document preamble as it’s intended as a resource for
package writers, so it’s more likely to be loaded in a
package:

\RequirePackage{tracklang}

Localisation of TEX documents: tracklang

342 TUGboat, Volume 37 (2016), No. 3

The only options it has are language or dialect names
or regional identifiers to allow them to be picked up
from the document class options.

Non-LATEX users may load the tracklang.tex

file in the usual way. Pre-version 1.3 required a cat-
egory code change for the @ character. Version 1.3
added code to automatically set and restore the cat-
code for the benefit of non-LATEX users. Version 1.3
also introduced some new commands to make it easier
to query and parse the system environment variables
LC_ALL and LANG.

Since generic code has no concept of document
class or package options, generic use requires that
the document dialects be identified using

\TrackPredefinedDialect{〈name〉}

where 〈name〉 is a dialect label which is recognised
by tracklang.

For example, here’s the start of a LATEX docu-
ment:

\documentclass[british]{article}

\usepackage{tracklang}

The analogous plain TEX is:

\input tracklang

\TrackPredefinedDialect{british}

There are some synonyms available so, for ex-
ample, instead of british I can use UKenglish or
en-GB. The advantage of british and UKenglish

in the document class options list is that they’re also
recognised by packages such as babel. However, if
those packages aren’t in use, the ISO form fits in
better with global standards.

With version 1.3, you can instead look up your
system’s language environment variable using

\TrackLangFromEnv

This first queries LC_ALL. If that’s unavailable, it
then queries LANG. Unfortunately Windows stores the
locale information in the registry rather than in envi-
ronment variables. In this case, if texosquery [7] has
also been loaded (either through \usepackage for
LATEX users or \input for generic use) then tracklang

will use texosquery as a fallback if it fails to get a
result with the environment variables. (This will
also be used as a fallback for LuaTEX if the locale is
simply identified as the C or POSIX locale.)

Alice has LANG set to en_GB.utf8, so instead of

\TrackPredefinedDialect{british}

she can just do

\TrackLangFromEnv

(Provided either \directlua is defined or the shell
escape is available.)

The first environment variable to be queried is
LC_ALL, which Alice has set to POSIX. This is not

useful for tracklang, (similarly if it had been set to
C), so \TrackLangFromEnv tries again with LANG.

As a by-product, the component parts of the
localisation identifier are available in the following
commands:

\TrackLangEnvLang

This contains the language code. For Alice: en.

\TrackLangEnvTerritory

This contains the territory code. For Alice: GB.

\TrackLangEnvCodeSet

This contains the code set. For Alice: utf8.

\TrackLangEnvModifier

This contains the modifier. In Alice’s case, this is
empty as the modifier isn’t present.

The entire value is stored in

\TrackLangEnv

If this command has already been defined, then
\TrackLangFromEnv will skip the environment vari-
able query step. For example, no shell escape (or
\directlua) is performed with:

\def\TrackLangEnv{en_GB}

\TrackLangFromEnv

The underscore character here has its usual subscript
category code. This is the first choice by tracklang’s
internal parser when trying to split the language code
from the region code. It will also allow a hyphen
(with category code 12) as the separator:

\def\TrackLangEnv{en-GB}

\TrackLangFromEnv

and will finally try the underscore character with
category code 12.

\edef\TrackLangEnv{en\string_GB}

\TrackLangFromEnv

Also, case matters: the language code must be
in lower case and the territory code in capitals.

Here’s an example plain TEX document:

\input tracklang

\TrackLangFromEnv

Language: \TrackLangEnvLang.

Territory: \TrackLangEnvTerritory.

Codeset: \TrackLangEnvCodeSet.

Modifier: \TrackLangEnvModifier.

\bye

If this file is called, say, myDoc.tex, then if Alice
does:

pdftex myDoc

Then the resulting PDF contains:

Language en. Territory: GB. Codeset: utf8.
Modifier: .

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 343

Similar results are obtained with ε-TEX, X ETEX and
LuaTEX. Unfortunately it doesn’t work with the
non-extended TEX:

tex myDoc

This produces the following warnings:

tracklang Warning: \TrackLangQueryEnv

non-operational as can’t determine if the

shell escape has been enabled. (Consider

using eTeX or pdfTeX.)

tracklang Warning: \TrackLangFromEnv

non-operational as \TrackLangEnv is empty

Neither \shellescape nor \pdfshellescape are de-
fined, so tracklang can’t determine if the shell escape
is available, and therefore it won’t make the attempt.
This avoids the possibility of triggering the error:
! I can't find file `"|kpsewhich --var-value=LC_ALL"'.

l.2 \input |"kpsewhich --var-value=LC_ALL"

(Press Enter to retry, or Control-D to exit)

Please type another input file name:

If \shellescape/\pdfshellescape is defined
but is zero (disabled), the first warning changes to:

tracklang Warning: \TrackLangQueryEnv

non-operational as shell escape has been

disabled

If the shell escape is disabled, Alice can instead define
\TrackLangEnv from the command line:

tex "\\def\TrackLangEnv{$LANG}\\input myDoc"

Alternatively, she can use LuaTEX:

luatex --no-shell-escape myDoc

This now uses \directlua to obtain the environment
variable value.

Bob doesn’t have LC_ALL set, but he does have
LC_MESSAGES. If he wants to query this, he can use:

\TrackLangQueryOtherEnv{LC_MESSAGES}

\TrackLangFromEnv

This first tries LC_ALL, but if that doesn’t yield
a result, it then tries the variable name provided
in the argument (LC_MESSAGES in this example). If
that also doesn’t provide a value, it falls back on
LANG. The result is again stored in \TrackLangEnv

so \TrackLangFromEnv doesn’t repeat the environ-
ment variable query. The code can be slightly mod-
ified to only perform \TrackLangQueryOtherEnv if
\TrackLangEnv hasn’t already been defined:

\ifx\TrackLangEnv\undefined

\TrackLangQueryOtherEnv{LC_MESSAGES}

\fi

\TrackLangFromEnv

There’s a significant difference between directly
setting a dialect using \TrackPredefinedDialect

(including implicitly through the document class op-
tions) and using \TrackLangFromEnv.

With \TrackPredefinedDialect, an error will
occur if an explicit label isn’t recognised (or in the
case of a document class option, it will be ignored).
Whereas with \TrackLangFromEnv, if the language
and territory combination is unrecognised, tracklang

will define a new dialect to represent it.
For example, Jacques from Brussels can use:

\TrackPredefinedDialect{fr-BE}

since fr-BE is recognised by tracklang, but he can’t
replace fr-BE with en-BE, since that’s not a prede-
fined dialect.

However, Jacques can do:

\input tracklang

\def\TrackLangEnv{en-BE}

\TrackLangFromEnv

Language: \TrackLangEnvLang.

Territory: \TrackLangEnvTerritory.

Codeset: \TrackLangEnvCodeSet.

Modifier: \TrackLangEnvModifier.

\bye

The resulting PDF now shows:

Language: en. Territory: BE. Codeset: .
Modifier: .

The emphasis here is on reading the locale en-
vironment variables such as LANG because it’s easy
to call kpsewhich from TEX and capture the output.
However, version 1.3 of tracklang also introduces a
command for parsing a regular language tag. For
example:

\TrackLanguageTag{hy-Latn-IT-arevela}

The next version of texosquery (1.2) will include a
new option which can be used to access the locale
information in this format:

\input texosquery

\input tracklang

\TeXOSQueryLangTag{\langtag}

\TrackLanguageTag{\langtag}

3.2 Support for known language packages

The LATEX file tracklang.sty has some awareness
of babel, translator, polyglossia and ngerman. After it
has input tracklang.tex and processed any options,
it then tests if any of the declared options have
actually been used. For example:

\documentclass{article}

\usepackage[british]{babel}

\usepackage{tracklang}

Here british has been passed to babel, not the
document class. This means that it’s not detected
when tracklang’s options are processed.

Localisation of TEX documents: tracklang

344 TUGboat, Volume 37 (2016), No. 3

When this occurs, tracklang has to go through
the pesky process of trying to work out if any of the
language packages that it knows about have been
loaded. If any have, then tracklang needs to work
out the language settings. The simplest of these is
ngerman. If it’s been loaded, that just means doing

\TrackPredefinedDialect{ngerman}

(Similarly for german.)
The hardest of these is polyglossia, as it cur-

rently doesn’t keep a list of all the user’s selected lan-
guages. Instead, tracklang needs to iterate through
all known languages and check each one to deter-
mine if it has been loaded by testing the existence
of \〈lang〉@loaded. (For versions of tracklang before
1.3, the iteration was over a hard-coded list of known
polyglossia languages, but this could miss any new
languages that might later be supported, so as of
v1.3 the iteration is over all tracklang’s declared op-
tions, which is a longer list and therefore slower.)
There’s also no way of determining if a language
was loaded with a particular variant, so the regional
information can’t be determined. These limitations
may be addressed in the future, which would make
integration with polyglossia much easier.

If babel has been loaded, then \bbl@loaded

should be defined, in which case tracklang can it-
erate through that list and add each loaded lan-
guage to the list of tracked dialects. In the event
that \bbl@loaded isn’t defined but babel is loaded,
tracklang will iterate through a list of its own prede-
fined dialects that are available as package options
and test if the captions hook exists for that option.
As with the above case of polyglossia, this is a much
longer list.

If translator has been loaded, tracklang iterates
over the internal language list \trans@languages.

This is a bit clumsy, but it tidies the mess away
from other packages so they don’t have to do it.

3.3 Querying tracklang for the document

languages

All the dialects tracked using the commands in the
previous sections are stored by tracklang in an inter-
nal list. The root languages are stored in another
list, and any provided ISO codes are also stored.

This section looks at how a package can query
this information to determine which localisation set-
tings need to be applied. You can test if any lan-
guages are being tracked using:

\AnyTrackedLanguages{〈true〉}{〈false〉}

For example:

\input tracklang

\TrackPredefinedDialect{en-GB}

\AnyTrackedLanguages{Yes}{No}.

produces: Yes.
You can iterate over all known dialects using

\ForEachTrackedDialect{〈cs〉}{〈body〉}

This sets the control sequence given by 〈cs〉 at the
start of each iteration and does 〈body〉. For example:

\input tracklang

\TrackPredefinedDialect{en-CA}

\TrackPredefinedDialect{fr-CA}

Dialects:

\ForEachTrackedDialect

{\thisdialect}{\thisdialect. }

\bye

This produces:

Dialects: canadian. canadien.

If only the root language name is given, that will
appear in the dialect list. For example:

\input tracklang

\TrackPredefinedDialect{english}

Dialects:

\ForEachTrackedDialect

{\thisdialect}{\thisdialect. }

\bye

This produces:

Dialects: english.

In the case of Jacques’ unknown combination:

\input tracklang

\def\TrackLangEnv{en-BE}

\TrackLangFromEnv

Dialects:

\ForEachTrackedDialect

{\thisdialect}{\thisdialect. }

\bye

The result is now:

Dialects: enBE.

A useful command that can be used within the
body of \ForEachTrackedDialect is

\IfTrackedLanguageFileExists

{〈dialect〉}{〈prefix 〉}{〈suffix 〉}
{〈found code〉}{〈not found code〉}

This tests the existence of a file whose name is in
the form 〈prefix 〉〈tag〉〈suffix 〉 where the 〈tag〉 part is
determined by the 〈dialect〉. If a match is found,
〈found code〉 is performed, otherwise 〈not found

code〉. The 〈not found code〉 part is also done if
〈dialect〉 hasn’t been added to the list of tracked
dialects, or if 〈dialect〉 is empty, but this situation
won’t occur when used within the 〈body〉 argument
of \ForEachTrackedDialect.

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 345

In the 〈found code〉 part, you can obtain the
value of 〈tag〉 from

\CurrentTrackedTag

This means that within 〈found code〉 you can do

\input{〈prefix 〉\CurrentTrackedTag 〈suffix 〉}

Other convenient commands available for use
within 〈found code〉 are as follows:

\CurrentTrackedLanguage

This is set to the root language label (for example,
english if the dialect is british).

\CurrentTrackedDialect

This is set to the dialect label (for example, british).
This is the same value as 〈dialect〉.

\CurrentTrackedRegion

This is set to the region code (ISO 3166-1), if known
for this dialect (empty otherwise).

\CurrentTrackedIsoCode

This is set to the ISO code (either 639-1 or 639-2)
for the root language, if known (empty otherwise).

\IfTrackedLanguageFileExists guesses what
the 〈tag〉 should be based on whether or not the
dialect has an ISO 3166-1 country code, and if the
root language has an ISO 639-1 or 639-2 language
code. The first guess that matches a file name on
TEX’s path will provide the value of 〈tag〉.

For example, for the british dialect, the tries
will be in the order: british (dialect label), en-GB
(ISO 639-1 and ISO 3166-1), eng-GB (ISO 639-2 and
ISO 3166-1), en (ISO 639-1), eng (ISO 639-2), GB

(ISO 3166-1), english (language label). Whereas,
for the UKenglish dialect, the tries will be in the
order: UKenglish (dialect label), en-GB, eng-GB, en,
eng, GB, english (language label). It’s therefore
best not to use a file naming scheme that has dialect
labels as the 〈tag〉 part unless there’s a particular
reason to treat synonymous dialect labels differently.

Synonyms for the root language are treated as
regionless dialects; so, for example, with francais

the order is just: francais (dialect label), fr, fra,
french (language label). Compare this with the re-
gionless french language where the order is: french
(dialect label), fr, fra, french (language label).
Here the dialect label is identical to the language
label so the fourth guess either won’t be tried (be-
cause a match has already been found) or will fail
(because if it did match, it would’ve been picked up
on the first guess).

3.4 Example package using tracklang

Returning to the example easyinvoice package, it no
longer needs to define all the language options, as

they’ll be picked up by tracklang. The code that
changes the commands that produce the fixed text
(such as \invoicedatename) will go in separate files,
which will use the naming scheme

easyinvoice-〈tag〉.ldf

This fits in with \IfTrackedLanguageFileExists,
where 〈prefix 〉 is easyinvoice- and 〈suffix 〉 is .ldf.

These files can simply be input using \input,
but it’s useful to provide an equivalent to commands
like \RequirePackage and \ProvidesPackage. The
new improved version of easyinvoice is now:

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{easyinvoice}

\RequirePackage{etoolbox}

\RequirePackage{tracklang}

% If user hasn't requested a language

% try LC_ALL or LANG environment variable

\AnyTrackedLanguages{}{\TrackLangFromEnv}

% Set defaults

\newcommand{\invoicedatename}{Invoice Date}

\newcommand{\invoiceitemname}{Item}

\newcommand{\invoicepricename}{Price}

\newcommand{\invoicecurrencyname}{EUR}

\newcommand{\invoicepaymentblurb}{Please

pay within 28 days of invoice date.}

\providecommand*{\@date}{\today}

\newcommand*{\ProvidesInvoiceResource}[1]{%

\ProvidesFile{easyinvoice-#1.ldf}%

}

\newcommand*{\RequireInvoiceResource}[1]{%

\ifcsundef{ver@easyinvoice-#1.ldf}%

{%

\input{easyinvoice-#1.ldf}%

}%

{}%

}

\newcommand*{\RequireInvoiceDialect}[1]{%

\IfTrackedLanguageFileExists{#1}%

{easyinvoice-}% prefix

{.ldf}% suffix

{%

\RequireInvoiceResource\CurrentTrackedTag

}%

{%

\PackageWarning{easyinvoice}%

{No support for dialect `#1'}%

}%

}

\ForEachTrackedDialect{\this@dialect}{%

\RequireInvoiceDialect\this@dialect

}

% Main package code:

\newcommand*{\itemrow}[2]{\\#1}

Localisation of TEX documents: tracklang

346 TUGboat, Volume 37 (2016), No. 3

\newenvironment{invoice}%

{%

\par\hfill\invoicedatename: \@date.\par

\begin{center}%

\begin{tabular}{lr}

\invoiceitemname &

\invoicepricename\

(\invoicecurrencyname)%

}%

{%

\end{tabular}%

\end{center}%

\invoicepaymentblurb\par

\medskip\par

}

\endinput

At the start, this loads tracklang. If it hasn’t picked
up any localisation, an attempt is made to query the
environment variables LC_ALL or LANG.

Now for the LDF files. The language settings
are provided in a file that uses the root language
label in the 〈tag〉 part. The territory settings are
provided in a file that uses the ISO country code in
the 〈tag〉 part.

For example, easyinvoice-english.ldf:

\ProvidesInvoiceResource{english}

\providecommand*{\englishinvoice}{%

\renewcommand{\invoicedatename}{Invoice Date}%

\renewcommand{\invoiceitemname}{Item}%

\renewcommand{\invoicepricename}{Price}%

\renewcommand{\invoicepaymentblurb}{Please

pay within 28 days of invoice date.}%

}

\englishinvoice

% polyglossia check: \captions<root language>

\ifundef\captionsenglish

{% babel check: \captions<dialect>

\ifcsundef{captions\CurrentTrackedDialect}{}%

{%

\csgappto{captions\CurrentTrackedDialect}%

{\englishinvoice}

}%

}%

{\gappto\captionsenglish{\englishinvoice}}%

\endinput

The territory file easyinvoice-GB.ldf:

\ProvidesInvoiceResource{GB}

\providecommand*\GBinvoice{%

\renewcommand{\invoicecurrencyname}{GBP}%

}

\GBinvoice

\endinput

The dialect settings are stored in a file where
the 〈tag〉 part is formed from the ISO language code

and country code. This file needs to load the root
language LDF file and the territory LDF file.

For example, easyinvoice-en-GB.ldf can look
like this:

\ProvidesInvoiceResource{en-GB}

\RequireInvoiceResource{english}

\RequireInvoiceResource{GB}

\ifundef\captionsenglish

{%

\ifcsundef{captions\CurrentTrackedDialect}%

{}%

{%

\csgappto{captions\CurrentTrackedDialect}{%

\GBinvoice

}%

}%

}%

{\gappto\captionsenglish{\GBinvoice}}

If, for example, babel has been loaded with the
british option, this means the \captionsbritish

hook now includes

\englishinvoice

\GBinvoice

With polyglossia, these are in \captionsenglish

(but tracklang must be informed that the en-GB dia-
lect is required).

The LDF files rely on \CurrentTrackedDialect

being set, which it will be when the file is loaded
within \IfTrackedLanguageFileExists. If an at-
tempt is made to use \RequireInvoiceResource

when this command hasn’t been set, there’ll be a
problem with the caption hooks.

Although \RequireInvoiceResource could in-
clude a check for this, \RequireInvoiceDialect is
a more general purpose command, so it’s better to re-
strict \RequireInvoiceResource to use within the
resource files:

% Default behaviour outside of resource files:

% generate an error and ignore the argument.

\newcommand*{\noop@RequireInvoiceResource}[1]{%

\PackageError{easyinvoice}

{\string\RequireInvoiceResource\space only

permitted within invoice resource files.}

{}%

}

\let\RequireInvoiceResource

\noop@RequireInvoiceResource

% Actual behaviour of \RequireInvoiceResource

% used within resource files.

\newcommand*{\@RequireInvoiceResource}[1]{%

\ifcsundef{ver@easyinvoice-#1.ldf}%

{%

\input{easyinvoice-#1.ldf}%

}%

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 347

{}%

}

% General use command.

\newcommand*{\RequireInvoiceDialect}[1]{%

\IfTrackedLanguageFileExists{#1}%

{easyinvoice-}% prefix

{.ldf}% suffix

{%

% Enable \RequireInvoiceResource so that it can

% be used in resource files.

\let\RequireInvoiceResource

\@RequireInvoiceResource

% Load resource file.

\RequireInvoiceResource\CurrentTrackedTag

% Disable \RequireInvoiceResource.

\let\RequireInvoiceResource

\noop@RequireInvoiceResource

}%

{%

\PackageWarning{easyinvoice}%

{No support for dialect `#1'}%

}%

}

(This could be extended to add code prohibiting
\RequireInvoiceDialect within resource files.)

3.5 Using a tracklang-enabled package

With this new arrangement, Alice can do:

\documentclass{article}

\usepackage{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

As long as she has the shell escape enabled or she’s
using LuaLATEX, the result is:

Invoice Date: June 14, 2016.

Item Price (GBP)
DVD 5

Please pay within 28 days of invoice date.

This still uses the default US date style because
easyinvoice doesn’t make any changes to \today. Al-
ice could load datetime2 [6] as well, but it might be
helpful for easyinvoice to do this automatically.

The datetime2 package also uses tracklang, so it
seems the best solution would be to just load it with

\RequirePackage{datetime2}

However, datetime2 defaults to numeric ISO date
style. The useregional option is required to switch
on the regional support. However, it’s best not to

use the optional argument of \RequirePackage as
it can result in a package option clash error if it has
already been loaded. It’s possible that the user has
already loaded datetime2 with their own preferred
style, and easyinvoice shouldn’t interfere with this.

Thus, a better approach is to use:

\PassOptionsToPackage

{useregional=text}{datetime2}

\RequirePackage{datetime2}

Maybe easyinvoice should also allow the user to pass
options to datetime2 within easyinvoice’s option list:

\PassOptionsToPackage

{useregional=text}{datetime2}

\DeclareOption*{%

\PassOptionsToPackage

{\CurrentOption}{datetime2}

}

\ProcessOptions

\RequirePackage{datetime2}

So the new improved easyinvoice package now
works just fine for Alice; however, Betty, who’s us-
ing polyglossia, still needs to explicitly indicate her
region:

\documentclass[en-GB]{article}

\usepackage{polyglossia}

\setmainlanguage[variant=uk]{english}

\usepackage{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

Since tracklang has detected polyglossia’s english

setting, \TrackLangFromEnv isn’t used. To help
here, the easyinvoice package could provide an option
to insist on querying the environment variable even
if there are other languages present. For example:

\DeclareOption{env}{\TrackLangFromEnv}

This means that Betty can now do:

\documentclass{article}

\usepackage{polyglossia}

\setmainlanguage[variant=uk]{english}

\usepackage[env]{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

which saves her the redundant document option.
Another possibility is to add a test for the ex-

istence of \TrackLangEnv, regardless of whether or
not any languages have been detected:

Localisation of TEX documents: tracklang

348 TUGboat, Volume 37 (2016), No. 3

\ifdef\TrackLangEnv

{\TrackLangFromEnv}

{\AnyTrackedLanguages{}{\TrackLangFromEnv}}

This will add to the document’s dialect list if it’s not
already present. In the case of en-GB, the dialect
is considered a synonym for british but not a syn-
onym of UKenglish, even though both dialects have
the same language and country codes.

If neither babel nor polyglossia are loaded, the
last dialect in the list will be the one in effect. For
example, the following document adds fr-CA to the
list of tracked dialects:

\documentclass[fr-CA]{article}

\usepackage{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

However, if the document is compiled using

pdflatex '\def\TrackLangEnv{en-GB}\input{myDoc}'

Then the en-GB setting will override fr-CA.
Seán from the RoI also decides to use easyinvoice

but he prefers to have the date include the time and
zone information:

\documentclass{article}

\usepackage{easyinvoice}

\date{\DTMnow}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

He has LC_ALL set to en_IE and as he has shell
escape enabled (or is using LuaLATEX) this is added
to the list of tracked dialects. In this case, only the
english LDF file is loaded, not the GB or en-GB files.
This means that the currency is unchanged, which
is fine for Seán.

Since datetime2 has been loaded with the re-
gional option on, its en-IE style is automatically set,
so UTC+1 is displayed as IST, as shown below:

Invoice Date: 14th June 2016 1:10pm IST.

Item Price (EUR)
DVD 5

Please pay within 28 days of invoice date.

This is a simple solution for all the countries
that use the Euro currency; however, multilingual
documents that switch from one territory to another

need help to return to the default. This can be
done by defining a command for setting the country
defaults (in easyinvoice.sty). For example:

\newcommand*{\countrydefaultinvoice}{%

\renewcommand{\invoicecurrencyname}{EUR}%

}

Now the root language LDF file needs to add this to
the captions hooks:

\ifundef\captionsenglish

{%

\ifcsundef{captions\CurrentTrackedDialect}{}%

{%

\csgappto{captions\CurrentTrackedDialect}%

{%

\englishinvoice

\countrydefaultinvoice

}%

}%

}%

{%

\gappto\captionsenglish{%

\englishinvoice

\countrydefaultinvoice

}%

}

Remember that easyinvoice-en-GB.ldf adds to
the hook after this, so \GBinvoice will override this
default setting if the dialect is en-GB.

Let’s not forget about Bob in Canada. He needs
easyinvoice-CA.ldf:

\ProvidesInvoiceResource{CA}

\providecommand*\CAinvoice{%

\renewcommand{\invoicecurrencyname}{CAD}%

}

\CAinvoice

\endinput

The Canadian English file easyinvoice-en-CA.ldf:

\ProvidesInvoiceResource{en-CA}

\RequireInvoiceResource{english}

\RequireInvoiceResource{CA}

\ifundef\captionsenglish

{%

\ifcsundef{captions\CurrentTrackedDialect}%

{}%

{%

\csgappto{captions\CurrentTrackedDialect}{%

\CAinvoice

}%

}%

}%

{\gappto\captionsenglish{\CAinvoice}}

\endinput

The French Canadian file easyinvoice-fr-CA.ldf

is similar:

\ProvidesInvoiceResource{fr-CA}

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 349

\RequireInvoiceResource{french}

\RequireInvoiceResource{CA}

\ifundef\captionsfrench

{%

\ifcsundef{captions\CurrentTrackedDialect}%

{}%

{%

\csgappto{captions\CurrentTrackedDialect}{%

\CAinvoice

}%

}%

}%

{\gappto\captionsfrench{\CAinvoice}}

\endinput

This needs easyinvoice-french.ldf:

\ProvidesInvoiceResource{french}

\providecommand*{\frenchinvoice}{%

\renewcommand{\invoicedatename}{Date

de la Facture}%

\renewcommand{\invoiceitemname}{Article}%

\renewcommand{\invoicepricename}{Prix}%

\renewcommand{\invoicepaymentblurb}{S'il

vous pla\^{\i}t payer dans les 28 jours

suivant la date de facturation.}%

}

\frenchinvoice

\ifundef\captionsfrench

{%

\ifcsundef{captions\CurrentTrackedDialect}{}%

{%

\csgappto{captions\CurrentTrackedDialect}%

{%

\frenchinvoice

\countrydefaultinvoice

}%

}%

}%

{%

\gappto\captionsfrench{%

\frenchinvoice

\countrydefaultinvoice

}%

}

\endinput

This suits Jacques just fine as, like Seán, he
only needs the root language file since he wants the
country default.

Meanwhile Hank, over in the USA, only needs
easyinvoice-US.ldf:

\ProvidesInvoiceResource{US}

\providecommand*\USinvoice{%

\renewcommand{\invoicecurrencyname}{USD}%

}

\USinvoice

\endinput

and easyinvoice-en-US.ldf:

\ProvidesInvoiceResource{en-US}

\RequireInvoiceResource{english}

\RequireInvoiceResource{US}

\ifundef\captionsenglish

{%

\ifcsundef{captions\CurrentTrackedDialect}%

{}%

{%

\csgappto{captions\CurrentTrackedDialect}{%

\USinvoice

}%

}%

}%

{\gappto\captionsenglish{\USinvoice}}

\endinput

Now Seán decides to provide an Irish Gaelic
version easyinvoice-irish.ldf:1

\ProvidesInvoiceResource{irish}

\providecommand*{\irishinvoice}{%

\renewcommand{\invoicedatename}{D\'ata

Sonraisc}%

\renewcommand{\invoiceitemname}{M\'{\i}r}%

\renewcommand{\invoicepricename}{Praghas}%

\renewcommand{\invoicepaymentblurb}{Tabhair

\'{\i}oc laistigh de 28 l\'a \'o dh\'ata

an tsonraisc.}%

}

\irishinvoice

\ifundef\captionsirish

{%

\ifcsundef{captions\CurrentTrackedDialect}{}%

{%

\csgappto{captions\CurrentTrackedDialect}%

{%

\irishinvoice

\countrydefaultinvoice

}%

}%

}%

{%

\gappto\captionsirish{%

\irishinvoice

\countrydefaultinvoice

}%

}

\endinput

Again, he doesn’t need to worry about providing a
ga-IE LDF file since he wants the default currency.

Now Ciaran in Northern Ireland discovers this
and tries to produce an invoice in Irish Gaelic:

1 If the Irish and French text here are a bit iffy, it just

goes to show how unwise it is to expect someone to provide

translations for languages they don’t know or aren’t fluent in.

They tend to cheat and use a popular translation website.

Localisation of TEX documents: tracklang

350 TUGboat, Volume 37 (2016), No. 3

\documentclass[ga-GB]{article}

\usepackage{easyinvoice}

\begin{document}

\begin{invoice}

\itemrow{DVD}{5}

\end{invoice}

\end{document}

To his surprise, although the date is in Irish and the
currency is GBP, the text is in English:

Invoice Date: 14 Meitheamh 2016.
Item Price (GBP)
DVD 5

Please pay within 28 days of invoice date.

An inspection of the transcript shows that only the
GB LDF file has been loaded. The problem here is
that there’s no ga-GB file, so the first LDF file to
match 〈tag〉 is the GB file.

The solution is to add easyinvoice-ga-GB.ldf:

\ProvidesInvoiceResource{ga-GB}

\RequireInvoiceResource{irish}

\RequireInvoiceResource{GB}

\ifundef\captionsirish

{%

\ifcsundef{captions\CurrentTrackedDialect}%

{}%

{%

\csgappto{captions\CurrentTrackedDialect}{%

\GBinvoice

}%

}%

}%

{\gappto\captionsirish{\GBinvoice}}

\endinput

For any new LDF file, no change is required
to the code in easyinvoice.sty. As long as the
files are placed on TEX’s path, easyinvoice will detect
them.

4 Language packages

A language package is one that actually sets the doc-
ument language (hyphenation patterns, redefining
fixed name commands such as \contentsname, pos-
sibly set fonts and so on; e.g., babel). The easyinvoice

package is an example of a package that needs to
know the document language. How can language
package authors help packages like easyinvoice?

Let’s suppose I want to write a language package
that sets up a document for Ancient Greek. If this is
for single language documents (just Ancient Greek
and nothing else), all I need to do is add the following
lines to my package:

\input{tracklang}% v1.3

\TrackPredefinedDialect{greek}

\SetTrackedDialectModifier{greek}{ancient}

I’ve used \input rather than \RequirePackage here
to skip the tests for babel, polyglossia etc. There’s
no need to test for the possible language packages
because this is the language package. (There’s a test
in tracklang.tex to prevent multiple loading.)

In this case the label greek is recognised by
tracklang, but if it weren’t, I could replace the above
with:

\input{tracklang}

\TrackLocale{el@ancient}

This has the ISO 639-1 code (el) with a modifier
(ancient). \TrackLocale works in the same way
as \TrackLangFromEnv but doesn’t use any of the
\TrackLangEnv. . . commands. If I prefer to use an
IETF language tag I can use \TrackLanguageTag

instead.
As of version 1.3, tracklang recognises nearly 200

languages with ISO 639-1 or 639-2 codes. However,
if my root language isn’t included in that list, I can
add it using:

\AddTrackedLanguage{greek}

\AddTrackedIsoLanguage{639-1}{el}{greek}

\AddTrackedIsoLanguage{639-2}{ell}{greek}

or for a regional dialect:

\AddTrackedDialect{greekCY}{greek}

\AddTrackedIsoLanguage{639-1}{el}{greek}

\AddTrackedIsoLanguage{639-2}{ell}{greek}

\AddTrackedIsoLanguage{3166-1}{CY}{greekCY}

If my package is providing support for mul-
tiple languages or dialects with caption hooks in
the form \captions〈lang〉, then I also need to use
\AddTrackedDialect if 〈lang〉 isn’t recognised by
tracklang.

% user has requested "ancientgreek":

\AddTrackedDialect{ancientgreek}{greek}

\AddTrackedIsoLanguage{639-1}{el}{greek}

\AddTrackedIsoLanguage{639-2}{ell}{greek}

% define caption hook:

\def\captionsancientgreek{%

...}

In this case, tracklang doesn’t recognise ‘ancient-
greek’, but since it does recognise ‘greek’ and knows
the ISO codes for it, I can actually just do:

% user has requested "ancientgreek":

\AddTrackedDialect{ancientgreek}{greek}

\AddTrackedLanguageIsoCodes{greek}

% define caption hook:

\def\captionsancientgreek{%

...}

Now if a user wants to use this language package
and easyinvoice, then easyinvoice can find out the

Nicola L. C. Talbot

TUGboat, Volume 37 (2016), No. 3 351

document language without having to know anything
about my Ancient Greek package.

Note that the above code is all generic with the
exception of

\input{tracklang}

which needs to be replaced with:

\input tracklang

for plain TEX. (This syntax also works with LATEX.)

5 Summary

5.1 Document authors

Load the language package before any packages that
use tracklang. For example:

\documentclass{article}

\usepackage[british]{babel}

\usepackage{easyinvoice}

If the region is needed but isn’t provided by the
language package (or no language package required),
use the ISO format. For example:

\documentclass[en-IE]{article}

\usepackage[english]{babel}

\usepackage{easyinvoice}

Generic use (query operating system):

\input tracklang

\TrackLangQueryEnv

\input genericinvoice

5.2 Package writers

LATEX packages need to use

\RequirePackage{tracklang}

to pick up babel, etc., options. Generic use:

\input tracklang

In either case, if no languages found, query OS:

\AnyTrackedLanguages{}{\TrackLangFromEnv}

For package foo, put the language or regional com-
mands in separate foo-〈tag〉.ldf files, which are
loaded using

\def\RequireFooResource#1{\input foo-#1.ldf}

\def\RequireFooDialect#1{%

\IfTrackedLanguageFileExists{#1}{foo-}{.ldf}%

{\RequireFooResource\CurrentTrackedTag}%

{}% no support warning

}

\ForEachTrackedDialect{\thisdialect}{%

\RequireFooDialect\thisdialect

}%

6 Conclusion

The tracklang package provides a way for package au-
thors to conveniently query the document language
settings to make it easier to provide multilingual sup-
port. The generic code allows it to be used with mul-
tiple TEX formats, and the LATEX code additionally
detects and supports common language packages.

\IfTrackedLanguageFileExists allows a mod-
ular approach so that localisation support can be
added and maintained independently of the main
package code. This shifts the expectation that a sin-
gle person (the package author) should not only be
able to write TEX code but also be fluent in all known
languages and dialects, to a community-based ap-
proach with the package author maintaining the base
package code and any interested volunteers providing
the benefit of their own local knowledge.

References

[1] Javier Bezos and Johannes L. Braams.
The babel package, 2016. ctan.org/pkg/babel.

[2] François Charette and Arthur Reutenauer.
polyglossia: an alternative to the babel package,
2016. ctan.org/pkg/polyglossia.

[3] Philipp Lehman. The etoolbox package, 2011.
ctan.org/pkg/etoolbox.

[4] Vedran Miletić, Joseph Wright, and
Till Tantau. The beamer class, 2015.
ctan.org/pkg/beamer.

[5] Bernd Raichle. Kurzbeschreibung german.sty

und ngerman.sty, 1998. ctan.org/pkg/

german, ctan.org/pkg/ngerman.

[6] Nicola Talbot. The datetime2 package, 2016.
ctan.org/pkg/datetime2.

[7] Nicola Talbot. texosquery: Query OS
information from TEX, 2016.
ctan.org/pkg/texosquery.

[8] Nicola Talbot. The tracklang package, 2016.
ctan.org/pkg/tracklang.

⋄ Nicola L. C. Talbot

School of Computing Sciences

University of East Anglia

Norwich Research Park

Norwich NR4 7TJ

United Kingdom

N.Talbot (at) uea dot ac dot uk

http://www.dickimaw-books.com

Localisation of TEX documents: tracklang

352 TUGboat, Volume 37 (2016), No. 3

Glisterings: Index headers; Numerations;

Real number comparison

Peter Wilson

Gaul as a whole is divided into three parts.

De Bello Gallico, Julius Caesar

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

La dernière chose qu’on trouve faisant un

ouvrage, est de savoir celle qu’il faut mettre

la première.

The last thing one knows in constructing a
work is what to put first.

Pensées, Blaise Pascal

1 Index headers

In the manual for the memoir class the headers for the
index included the first and last main index entries
on the page in question. The technique I used was
fairly simple and can be applied to any document
whose index is generated via the MakeIndex program.
It consists of defining a macro in the document’s
preamble (or a package) and a simple MakeIndex
style file [4, 8, 16].

Below is an example of a document file, where
the new macro is \idxmark and the fancyhdr pack-
age [15] is used for specifying the page headers and
footers.

\idxmark{〈entry〉} prints 〈entry〉 and also sets
both the marks to 〈entry〉, where \leftmark resolves
to the first mark on the page and \rightmark to the
last mark on the page.

\documentclass[...twoside]{...}

\usepackage{makeidx,fancyhdr}

\newcommand*{\idxmark}[1]{#1\markboth{#1}{#1}}

\pagestyle{fancy}

%% set up general fancy headers/footers

\makeindex

\begin{document}

... % many \index{...} ...

\clearpage

%% fancy headers/footers for index pages

\fancyhead{}

\fancyhead[LE,RO]{%

\rightmark\space---\space\leftmark}

\fancyfoot{}

\fancyfoot[C]{\thepage}

\printindex

\end{document}

The index is typically set in two columns and
LATEX’s marking system did not always function well
in this case; in the past, including the fixltx2e package
was needed to fix that, but nowadays it is included
by default.

In the example the general header/footer styles
are set in the preamble using the fancyhdr package
facilities. The (special) headers and footers for the
index are set just before the index commences. When
looking for something in a book I flick it half closed
only seeing the outer portion of each page. Conse-
quently, in this case I have put the first and last
index entries on the page at the outer of the headers
where they are easy to see and the page number,
which is not particularly important when looking
through the index, centered at the foot of the page.

Here are the essentials of the MakeIndex style
file for the application. For each main entry, 〈entry〉
in the input .idx file it outputs \idxmark{〈entry〉}
in the .ind file which is used by pdflatex to print
the index.

% MakeIndex style file flindex.ist

% output main entry as <entry> as:

% \item \idxmark{<entry>}

item_0 "\n\\item \\idxmark{"

delim_0 "}, "

% not forgetting subitem

\item_X1 "} \n \\subitem "

The memoir manual, memman.pdf, has an in-
dex that is over 40 pages long with each alphabetic
section headed by the letter (A, B, C, etc.). The
hyperref package is used to enable PDF bookmarks
and Lars Madsen developed code so that the index
letter subheads would appear in the bookmark list-
ing. Here is the skeleton of how this was done, where
the \doidxbookmark{〈head〉} macro does the work.
The 〈head〉 argument is an index subhead and the
macro adds it to the list of bookmarks at one level
below the Index entry. The default MakeIndex gener-
ated subhead for entries that do not commence with
an alphanumeric is ‘Symbols’, but I felt that ‘Anal-
phabetics’ was a better subhead. \doidxbookmark

prints the appropriate subhead centered in a bold
font and adds it to the bookmark list.

...

\usepackage{ifpdf}

\ifpdf

\usepackage[pdftex,

plainpages=false,

pdfpagelabels,

bookmarksnumbered,

colorlinks,

ocgcolorlinks,

]{hyperref}

\else

Peter Wilson

TUGboat, Volume 37 (2016), No. 3 353

\usepackage[plainpages=false,

pdfpagelabels,

bookmarksnumbered,

colorlinks,

]{hyperref}

\fi

\makeatletter

\newcommand*{\doidxbookmark}[1]{{%

\def\@tempa{Symbols}\def\@tempb{#1}%

\centering\bfseries \ifx\@tempa\@tempb

Analphabetics

\phantomsection%

\belowpdfbookmark{Analphabetics}%

{Analphabetics-idx}%

\else

#1%

\phantomsection%

\belowpdfbookmark{#1}{#1-idx}%

\fi

\vskip\baselineskip\par}}

\makeatother

...

\begin{document}

...

\clearpage

\pdfbookmark{Index}{Index}

\phantomsection

\printindex

\end{document}

The MakeIndex style file must be written so that
it wraps the \doidxbookmark around the subheads,
like this:

% MakeIndex style file flindex.ist

% output main entry ...

% Wrap and uppercase head letters

headings_flag 1

heading_prefix "\\doidxbookmark{"

heading_suffix "}"

And here is the sequence of commands to gen-
erate the indexed file.tex document

> pdflatex file

> makeindex -s flindex.ist file

> pdflatex file

As yet a child, nor yet a fool to fame,
I lisped in numbers, for the numbers came.

An Epistle to Dr Arbuthnot,
Alexander Pope

2 Numerations

2.1 Sorted lists

Reza wrote to ctt [12] saying that he had developed
code that would sort the items in a description en-

vironment and asked if there was a way to enumerate
the entries.

I had no idea that you could sort items within
LATEX but it appears that Nicola Talbot’s incredible
datatool package [14] enables you to do that, and
much more.

Here is Reza’s original code, to which I have
added some comments to try and indicate what is
happening and changed the environment name to
distinguish it from other later code:

%%%% Reza’s code

\usepackage{datatool}

\newcommand{\sortitem}[2]{%

% start a new row in the db

\DTLnewrow{list}%

% add key/value to row

\DTLnewdbentry{list}{label}{#1}%

% add another key/value to the row

\DTLnewdbentry{list}{description}{#2}%

}

\newenvironment{sorteddesc}{%

% use or create a db called ‘list’

\DTLifdbexists{list}

{\DTLcleardb{list}}{\DTLnewdb{list}}%

}{%

% at the end of the environment sort the

% db in ascending order of the label

\DTLsort{label}{list}%

% start a description environment

\begin{description}%

% iterate through the db,

% picking out the keys/values

\DTLforeach*{list}%

{\theLabel=label,\theDesc=description}{%

\item[\theLabel]\theDesc

}%

\end{description}%

}

As an example,

\begin{sorteddesc}

\sortitem{zz}{description of zz}

\sortitem{mm}{description of mm}

\sortitem{aa}{description of aa}

\end{sorteddesc}

results in:

aa description of aa

mm description of mm

zz description of zz

Reza wanted to know if there was a way to
enumerate the entries. That is, so the output would
look like:

1. aa description of aa

2. mm description of mm

3. zz description of zz

Glisterings: Index headers; Numerations; Real number comparison

354 TUGboat, Volume 37 (2016), No. 3

Christian Anderson [1] responded with the fol-
lowing based on using the enumerate environment
(I have changed the name of the sorting environment
to distinguish it from the other proposals):

\newenvironment{sortedenum}{%

\DTLifdbexists{list}%

{\DTLcleardb{list}}{\DTLnewdb{list}}%

}{%

\DTLsort{label}{list}%

\begin{enumerate}%

\DTLforeach*{list}%

{\theLabel=label,\theDesc=description}{%

\item \theLabel\ \theDesc% original

% bolds the descriptive label

% \item \textbf{\theLabel}\ \theDesc%

}%

\end{enumerate}%

}

As an example of Christian’s proposal

\begin{sortedenum}

\sortitem{zz}{description of zz}

\sortitem{mm}{description of mm}

\sortitem{aa}{description of aa}

\end{sortedenum}

results in:

1. aa description of aa

2. mm description of mm

3. zz description of zz

It was unclear as to how Raza wanted the combi-
nation of number and label to be typeset. Christian
indicated how the label could be typeset in a bold
font, but the number would still be set in the normal
font.

Alan Munn [9] also responded as follows, tak-
ing advantage of the \DTLcurrentindex macro from
datatool (again I have changed the name of the sort-
ing environment).

\newenvironment{sorteditemdesc}{%

\DTLifdbexists{list}%

{\DTLcleardb{list}}{\DTLnewdb{list}}%

}{%

\DTLsort{label}{list}%

\begin{description}%

\DTLforeach*{list}%

{\theLabel=label,\theDesc=description}{%

\item[{\normalfont

\DTLcurrentindex.\ }

\theLabel]\theDesc}%

\end{description}%

}

As an example of Alan’s proposal

\begin{sorteditemdesc}

\sortitem{zz}{description of zz}

\sortitem{mm}{description of mm}

\sortitem{aa}{description of aa}

\end{sorteditemdesc}

results in:

1. aa description of aa

2. mm description of mm

3. zz description of zz

Alan also indicated how the number could be set in
bold to match the label. By suitable application of
\normalfont both could instead be set in the normal
font. In this sense Alan’s solution is slightly more
general than Christian’s.

2.2 Autotab

Jeremy wrote to ctt [7]:
I want to create a table and I want the first column
of the table to have incrementing numbers . . . I would
like to avoid having to manually enter the numbers
in the first column. Is there a way to do this auto-
matically?

Alan Munn responded with [10]:

%\usepackage{booktabs}

%\usepackage{array}

\newcounter{rownum}

\newcolumntype{N}{%

>{\stepcounter{rownum}\therownum.\ }l}

\newcommand*{\resetrownum}{%

\setcounter{rownum}{0}}

\begin{tabular}{Nll} \toprule

\multicolumn{1}{>{\resetrownum}l}{I}

& A & B \\ \midrule

& blah & blah \\

& foo & foo \\ \bottomrule

\end{tabular}

I A B

1. blah blah
2. foo foo

In the same thread Heiko Oberdiek noted that
the \resetrownum could be taken out of the tabular:

\resetrownum

\begin{tabular}{Nll} \toprule

\multicolumn{1}{l}{I}& A & B \\ \midrule

& blah & blah \\

& foo & foo \\ \bottomrule

\end{tabular}

In a later thread on a similar but extended topic
Romildo posed [13],

I want to typeset an enumeration list in a tabular
format, building a table with automatic numbered
items and sub-items in different rows. [An example
layout followed.]

Jean-François Burnol [3] responded with:

Peter Wilson

TUGboat, Volume 37 (2016), No. 3 355

\newcounter{bitmi}

\renewcommand{\thebitmi}{%

\arabic{bitmi}}

\newcounter{bitmii}[bitmi]

\renewcommand{\thebitmii}{%

\thebitmi.\arabic{bitmii}}

\newcounter{bitmiii}[bitmii]

\renewcommand{\thebitmiii}{%

\thebitmii.\arabic{bitmiii}}

\newcommand{\bitm}{\stepcounter{bitmi}

\hbox to 1.5em{\thebitmi.\hfil}}

\newcommand{\bsubitm}{\stepcounter{bitmii}

\hbox to 1.5em{}

\hbox to 2.5em{\thebitmii\hfil}}

\newcommand{\bsubsubitm}{%

\stepcounter{bitmiii}

\hbox to 4em{}

\hbox to 3.5em{\thebitmiii\hfil}}

\begin{tabular}{llll}

Subject & Class & Total & Notes \\

\bitm First topic & 2 & 2 & a, b \\

\bitm Second topic & 12 & 14 & \\

\bsubitm Aaaa & & & b, c, d \\

\bsubsubitm M1 & & & a \\

\bsubsubitm M2 & & & b, e, f \\

\bsubitm Bbbb & & & a, b \\

\bitm Third topic & \ldots & & \\

\end{tabular}

Subject Class Total Notes
1. First topic 2 2 a, b
2. Second topic 12 14

2.1 Aaaa b, c, d
2.1.1 M1 a
2.1.2 M2 b, e, f

2.2 Bbbb a, b
3. Third topic . . .

Just a little later Peter Flynn proposed [5]:

\usepackage{array}

\newcounter{topic}

\renewcommand{\thetopic}{\arabic{topic}}

\newcounter{topici}[topic]

\renewcommand{\thetopici}{%

\thetopic.\arabic{topici}}

\newcounter{topicii}[topici]

\renewcommand{\thetopicii}{%

\thetopici.\arabic{topicii}}

\newcommand{\topic}[1]{%

\stepcounter{topic}%

\vrule height1.2em width0pt\thetopic. &

\multicolumn{3}{l}{#1}}

\newcommand{\subtopic}[1]{%

\stepcounter{topici}%

\vrule height1em width0pt & \thetopici &

\multicolumn{2}{l}{#1}}

\newcommand{\subsubtopic}[1]{%

\stepcounter{topicii} & &

\thetopicii}

\begin{tabular}{rrrlr<{\quad}r<{\enspace}l}

\multicolumn{4}{l}{\textbf{Subject}} &

\multicolumn{1}{r}{\textbf{Class}} &

\multicolumn{1}{r}{\textbf{Total}} &

\textbf{Notes}\\[2pt]

\topic{First topic} & 2 & 2 & a, b \\

\topic{Second topic} & 12 & 14 & \\

\subtopic{Aaaa} & & & b, c, d \\

\subsubtopic{M1} & & & a \\

\subsubtopic{M2} & & & b, e, f \\

\subtopic{Bbbb} & & & a, b \\

\topic{Third topic} & \ldots & & \\

\end{tabular}

Subject Class Total Notes

1. First topic 2 2 a, b

2. Second topic 12 14

2.1 Aaaa b, c, d
2.1.1 M1 a
2.1.2 M2 b, e, f

2.2 Bbbb a, b

3. Third topic . . .

Jean-François’s approach to me is the simpler
and easier of the two as he designed it so that all the
main entries go into the first column and internally
uses empty \hboxes to indent the several (sub) item
levels. Peter’s approach is more complex in that it
involves several \multicolumns to control the (sub)
topic indentations; he also uses zero-width vertical
rules to enable different vertical spacing between the
topic levels. My feeling is that the combination of
Jean-François’s horizontal positioning and Peter’s
vertical adjustments might be closest to an optimum
solution to Romildo’s needs.

Tenants of life’s middle state,
Securely placed between the small and great.

Tirocinium, William Cowper

3 Real number comparison

On ctt Pluto noted that \ifnum could be used to
compare integer values and wondered if there was a
similar method for comparing real numbers [11]. This
led to a spirited discussion involving several people
and over 50 postings at my last count. The two that
struck me the most were from Donald Arseneau and
‘GL’.

For demonstration purposes assume that the
following are defined:

\def\fourfive{4.5}

Glisterings: Index headers; Numerations; Real number comparison

356 TUGboat, Volume 37 (2016), No. 3

\def\fivefive{5.5}

\def\sixseven{6.7}

\def\threetwo{3.2}

Donald gave concise and elegant code,1 shown
later, that could be used like this:
\ifrnum <condition> \then...\else...\fi

as in:

\ifrnum 4.5 > 5.5

\then 4.5 is larger than 5.5

\else 4.5 is not larger than 5.5\fi. \\

\ifrnum \sixseven > \threetwo

\then \sixseven\ is larger than \threetwo

\else \sixseven\ is not larger than

\threetwo \fi.

4.5 is not larger than 5.5.
6.7 is larger than 3.2.

Here is Donald Arseneau’s code [2]:

\let\then\iffalse

\def\gobblejunk#1\delimeter{}

\def\ifrnum#1\then{\ifdim

\ptlt\ptgt\pteq #1pt\gobblejunk<=>\delimeter}

\def\ptlt#1<{#1pt<}

\def\ptgt#1>{#1pt>}

\def\pteq#1={#1pt=}

GL also provided code, shown later, that could
be used like this:

\unless\Realnums\ifnum <condition>

\Then ... \else ... \fi

as in:

\unless\ifnum\Realnums\fourfive>\fivefive

\Then \fourfive\ is not larger than \fivefive

\else \fourfive\ is larger than

\fivefive\fi. \\

\unless\ifnum\Realnums 6.7 > 3.2

\Then 6.7 is not larger than 3.2

\else 6.7 is larger than 3.2\fi.

4.5 is not larger than 5.5.
6.7 is larger than 3.2.

In GL’s original posting [6], which was in re-
sponse to Donald, he reused, modified, and extended
Donald’s code. I have renamed some of the macros
in GL’s code so that the two sets are distinct, which
means that both styles can be used in the same
document, as I have done here.

\def\gobblejunk#1\delimeter{}

\def\Realnums#1\Then{\dimexpr

\Ptlt\Ptgt\Pteq #1pt\gobblejunk<=>\delimeter}

\def\Ptlt#1<{#1pt<\dimexpr}

\def\Ptgt#1>{#1pt>\dimexpr}

\def\Pteq#1={#1pt=\dimexpr}

1 Which I cannot interpret for you.

The \unless macro is defined in ε-TEX, which all re-
cent LATEX systems automatically utilise. Personally
I find the \unless construct hard to get my mind
around; it’s the reverse of the traditional \if....

References

[1] Christian Andersen. Re: Sorted items in
description environment. comp.text.tex,
10 October 2010.

[2] Donald Arseneau. Re: \ifnum for real numbers.
comp.text.tex, 16 October 2010.

[3] Jean-François Burnol. Re: Tabular with
enumerated items and sub-items in different rows.
comp.text.tex, 27 April 2011.

[4] Pehong Chen and Michael A. Harrison. Index
preparation and processing. Software Practice and

Experience, 19(8):897–915, September 1988. http:

//mirror.ctan.org/indexing/makeindex/paper.

[5] Peter Flynn. Re: Tabular with enumerated items
and sub-items in different rows. comp.text.tex,
27 April 2011.

[6] GL. Re: \ifnum for real numbers. comp.text.tex,
16 October 2010.

[7] Jeremy. Table with auto-incrementing column.
comp.text.tex, 11 April 2011.

[8] Frank Mittelbach and Michel Goossens.
The LATEX Companion. Addison Wesley,
second edition, 2004. ISBN 0-201-36299-6.

[9] Alan Munn. Re: Sorted items in description
environment. comp.text.tex, 10 October 2010.

[10] Alan Munn. Re: Table with auto-incrementing
column. comp.text.tex, 11 April 2011.

[11] Pluto. \ifnum for real numbers. comp.text.tex,
10 October 2010.

[12] Reza. Sorted items in description environment.
comp.text.tex, 10 October 2010.

[13] Romildo. Tabular with enumerated items and
sub-items in different rows. comp.text.tex,
27 April 2011.

[14] Nicola L.C. Talbot. datatool: Databases and
data manipulation, 2016. http://ctan.org/pkg/

datatool.

[15] Piet van Oostrum. Page layout in LATEX, 2016.
http://ctan.org/pkg/fancyhdr.

[16] Peter Wilson. The memoir class for configurable
typesetting, 2016. http://ctan.org/pkg/memoir.

⋄ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ UK
herries dot press (at)

earthlink dot net

Peter Wilson

TUGboat, Volume 37 (2016), No. 3 357

Messing with endnotes

David Walden

The two journals with which I am involved, IEEE
Annals of the History of Computing and TUGboat,
both prefer endnotes to footnotes. The TUGboat

editors don’t like footnotes because they create com-
plications with the two-column format. The editors
of the Annals allow no deviation from their specified
style which comprises a single endnote list of both
notes and references in order of use. In books I have
typeset and self-published, I also have mostly used
endnotes rather than footnotes to avoid dealing with
page breaks in the context of footnotes.

With references in footnotes or in endnotes, one
needs sometimes to refer to an earlier note to avoid re-
peating the full reference. This is handled by putting
a label in the footnote or endnote call, e.g.,

\footnote{\label{uniquename}Note text.}

and then inserting commands such as

\textsuperscript{\ref{uniquename}}

in the main text where it is necessary to reference
the same note again. One could define a macro

\def\ReRef#1{\textsuperscript{\ref{#1}}}

in order to have less to type in those other instances
of the same reference.

You might ask, “Why not use BibTEX?”. Well,
I used it for a couple of big projects and found its for-
matting more tedious to use and not much of a labor
saver compared to doing my own brute force thing.
Nevertheless, I have used BibTEX when notes and
references were required to be mixed in a single end-
of-document list, by adding .bib entries of the form

@misc{NoteA, note="Whatever..."}

When not using BibTEX (for either footnotes or
endnotes), I don’t like to have the long author-title-
publisher-etc. items in the flow of the main text. Also,
I like at least the bibliographic items to be available
for me to peruse in order of first author’s last name.
Thus, I have taken to putting the bibliographic data
near the beginning of my .tex or .ltx source file,
or perhaps in its own file included with any other
files I include (\include) near the beginning of my
document. An example follows.

\def\createnote#1#2{%

\expandafter\newcommand\csname en#1%

\endcsname{#2}}

\createnote{Akera}{Atsushi Akera,

Voluntarism and the Fruits of

Collaboration: The IBM User Group,

Share, ..., pp.~710--736.}

\createnote{Armer}{Paul Armer,

SHARE---A Eulogy to Cooperative

Effort, \textit{Annals of the History...}

The \createnote command in the above example
defines the content of a future endnote (I am us-
ing the endnote package) that can be summoned
by a macro call. For example, the first call above
to \createnote defines a macro named \enAkera.
(The “en” prefix is to reduce the chance of unan-
ticipated conflicts. For some insight into the use
of csname and \expandafter, see Amy Hendrick-
son’s paper in the TUG 2012 proceedings.1) At the
appropriate place later in my document I create
and reference the endnote with a command such as
\endnote{\enAkera}.

If I expect another reference to the same end-
note, I could do the initial creation with a command
such as \endnote{label{en:akera}\enAkera} and
reference the endnote again with a command such
as \textsuperscript{\ref{en:Akera}}. If I want
two endnotes at the same place, e.g., here,2,3 I put
the following after “here”:
\endnote{\enAkera},\endnote{\enArmer}

Rather than explicitly including a \label in the
first call to an endnote used more than once, I can
create a macro that includes both the label and the
macro call to use a particular endnote:

\def\bionote#1{\endnote{%

\label{en:#1}\csname en#1\endcsname}}

to be called, e.g., like \bionote{enBright}4 (given
that \createnote had been used earlier to define
\enBright) and which can be referenced later with
\ref{en:Bright} in another endnote.5,6

Confession: Only after the above mechanisms were
mostly developed and this written was I reminded
that I could have used BibTEX for the above without
the usual name/title/publisher fields by only using
@misc and typing my full bibliographic entries into
the note field, as I have done with \createnote.

Notes

1Amy Hendrickson, “The joy of \csname...\endcsname”.

TUGboat 33:2, 2012. tug.org/TUGboat/tb33-2/

tb104hendrickson.pdf
2Atsushi Akera, Voluntarism and the Fruits of

Collaboration: The IBM User Group, Share, ...,

pp. 710–736.
3Paul Armer, SHARE—A Eulogy to Co-op Effort, Annals

of the History of Computing, ... April 1980, pp. 122–129.
4Herbert Bright, Computer User Groups, Annals of the

History of Computing, vol. 12, no. 1, 1990, pp. 56–61.
5See note 4 again.
6Thanks to Karl Berry for his help with this note.

⋄ David Walden

walden-family.com/texland

Messing with endnotes

Tracing paragraphs

Udo Wermuth

Abstract

The program TEX provides more than a dozen con-
trol words for diagnostic and debugging purposes.
Some of them are used often, others handle special
tasks and are less frequently applied. In the latter
case falls the parameter \tracingparagraphs that
seems to be a hidden gem. This article explains what
the parameter triggers if set and how an author can
use the trace data to check and improve his text.

1 Introduction

The TEX software, described in TEX : The Program

[8], implements several control sequences to show
information about its work. The commands and pa-
rameters form a set of powerful tools to help diag-
nose errors. TEX itself contains nine primitive in-
teger parameters for tracing ([6, p. 273]) and four
primitive show commands ([6, p. 279]). The plain

format defines additional macros ([6, p. 364]).

The tracing parameters might be classified into
different groups: Some look at the settings of the
installation, like \tracingstats, others are used
mainly for developers, like \tracingmacros, and
some (or all) can be used to get a better understand-
ing how TEX operates. For example, the parame-
ter \tracingparagraphs gives detailed insights into
the inner workings of TEX’s line-breaking algorithm.

Four tracing parameters are optional, i.e., their
value might be ignored by a working TEX program
([6, p. 303]) without violating one of the conditions
which allow a program to carry the name TEX, called
the TRIP test [7]. For example, TEX’s two control se-
quences \tracingstats and \tracingparagraphs

are this kind of parameter. They were deemed op-
tional as the code to implement them slows down
the program even when they are not in use, i.e.,
set to their default value 0. That might have been
annoying in the early days of TEX, but today with
faster machines the effect is small and so most imple-
mentations of TEX provide them. Speed is only one
aspect as some parameters trigger a huge amount
of output to be written in the log file of the run.
The setting \tracingstats=1 adds only eight lines
to the log file, but setting \tracingparagraphs=1

increases the size of the log file significantly as every
paragraph in the scope of this parameter is copied at
least once into the log file, accompanied by several
lines of trace data.

358 TUGboat, Volume 37 (2016), No. 3

I don’t remember how long I played with the pa-
rameter \tracingparagraphs when I learned TEX.
After I gained some experience with TEX I probably
read only pages 98–99 of The TEXbook [6], a cou-
ple of double dangerous-bend paragraphs, and did
not see how to benefit from the output in my work.
(Somehow I missed the hint of a real world appli-
cation on page 317 of [6].) Other tracing parame-
ters, for example, \tracingmacros, became an im-
portant tool to diagnose problems. Years later I read
the protocol of a Q&A session with Donald E. Knuth
([12] or [13], Ch. 32) and I realized that the parame-
ter \tracingparagraphs is a powerful tool too.

Section 2 gives a high-level overview of TEX’s
line-breaking algorithm and its parameters and in
section 3 the format of the trace data for this al-
gorithm is explained. Section 4 gives examples how
I make use of the trace and section 5 shows some
aspects of \looseness that makes it difficult to ex-
tract precisely from the trace data the range of lines
in which a paragraph can be typeset without violat-
ing the current parameter settings.

All the figures except Figs. 8, 9, 10, and 12 rep-
resent data from a previous run of this article; all
examples are typeset and traced by TEX during the
last compilation.

2 TEX’s line-breaking algorithm

This is not the place to present the details of TEX’s
sophisticated line-breaking algorithm but as the pa-
rameter \tracingparagraphs creates a trace of this
algorithm, an overview will be given.

The procedure tries to break the text into lines
of a given length. This length is usually \hsize

but also \leftskip, \rightskip, \hangindent, or
\parshapemust be considered. Each line gets a bad-
ness value which is calculated as a function of the
change of the available white space, i.e., the glue,
which is necessary to place the content of the line
into the given length. A finite badness is an integer
between 0 and 9999, larger values are considered to
be infinite and are not distinguished anymore ([6],
p. 97). The badness is approximately min(100 ×

r3, 10000) if the ratio of used to available amount
of change is called r.

Based on the badness each line is assigned a
fitness class. A line is called

C0. very loose if the badness value is 100 or more
and the glue has to stretch;

C1. loose if the badness value is between 13 and 99
and the glue has to stretch;

C2. decent if the badness value is between 0 and 12;

Udo Wermuth

C3. tight if the badness value is 13 or more and the
glue has to shrink.

A line break can occur only at certain points;
there are five possibilities ([6], p. 96). A line can be
broken at

B1. glue, i.e., at white space, if a non-discardable
item (not glue, kern, penalty or a math switch)
appears before the glue;

B2. a kern, if it is followed by glue;
B3. math-off, i.e., at the end of a formula, if it is

followed by glue;
B4. a penalty which is either entered directly into

the text as an indication how desirable a break
at this point is or inserted by TEX automati-
cally, for example, in a formula;

B5. a discretionary break when TEX splits a word
either at an explicit or an inserted implicit hy-
phen.

Note that TEX controls white space in math mode;
in this mode B1 and B2 are not used.

Certain line breaks get a penalty based on the
following parameters, listed here with their default
values which the plain TEX format sets:

P1. \exhyphenpenalty (default 50) which is used
if a break occurs after an explicit hyphen, i.e.,
a hyphen that is present in the input;

P2. \hyphenpenalty (default 50) which is applied
at an automatically inserted hyphen;

P3. \binoppenalty (default 700) which is applied
if a formula is broken after a binary operation;

P4. \relpenalty (default 300) which is applied if a
formula is broken after a relation symbol.

And there is a special penalty called \linepenalty

(default 10) that is applied to every line.
Finally, each line gets a value called demerits by

which TEX rates the constructed lines and sets the
breakpoints ([6], pp. 97–98). TEX’s goal is to select
those line breaks that minimize the sum of the line
demerits. (TEX’s decision can be changed via the
integer parameter \looseness ([6], p. 103) to select
a set of line breaks that might result in a different
number of lines for the paragraph.) Demerits com-
bine two aspects: d = d1 + d2. The first summand
d1 is based on badness and penalty. The formula
by which TEX calculates the demerits d1 follows. It
shows the special role that the \linepenalty, let’s
call it l, plays. If b stands for the badness of a line
and p for the penalty assigned to the break then

d1 = (l + b)2 +

{

sign(p) p2, −10000 < p < 10000
0, p ≤ −10000.

No line break occurs if p ≥ 10000, and p ≤ −10000
represents a forced break.

TUGboat, Volume 37 (2016), No. 3 359

The second aspect d2 is the sum of fixed values:

D1. \adjdemerits (default 10000) is added either
to the second line if adjacent lines fall in one of
the fitness class pairs (very loose, decent), (very
loose, tight), or (loose, tight) or if the first line
is very loose.

D2. \doublehyphendemerits (default 10000); it is
added to the second line if two consecutive lines
end with a discretionary break.

D3. \finalhyphendemerits (default 5000) which is
added to the last line if the second-last line ends
with a discretionary break.

Now all but one ingredient of the algorithm has
been described. The last item is a limit for the bad-
ness which the algorithm uses to decide if a line is
acceptable. TEX knows two limits ([6], p. 96):

T1. \pretolerance (default 100) which is used as
the limit in TEX’s attempt to break the para-
graph without hyphenation of words (breaks are
still allowed at explicit hyphens, i.e., a ‘-’ or
a ‘\-’);

T2. \tolerance (default 200) which is used as the
limit when hyphenation of words is allowed.

The line-breaking algorithm tries in up to three
passes to cut the paragraph into lines whose badness
values are less than the current limit. In the first pass
the limit T1 counts and no words are given to TEX’s
hyphenation algorithm. If this pass fails then a sec-
ond pass with the limit T2 and word hyphenation
is made. This pass outputs the paragraph even if it
fails, except if the dimen \emergencystretch has a
positive value. In the first case an overfull line with
infinite badness is constructed. In the second case
the failed second pass is followed by a third pass
with word hyphenation, badness limit T2, and ad-
ditional stretchability per line given by the value of
the dimen \emergencystretch. This pass may fail
too but then either the value of the dimen must be
increased or “the line-breaking task is truly impos-
sible” ([6], p. 107).

3 Format of \tracingparagraphs’s output

The TEXbook [6] explains on pages 98–99 the main
aspects of the trace data. The full details are con-
tained in Computers & Typesetting, Volume B [8] in
§§ 813–890 together with the code for general print-
ing routines like §§ 174–175, and 245.

The single assignment \tracingparagraphs=1
triggers if trace data is written in the log file. Here is
an overview of the kind of data that is output:
• optional header which identifies for which pass

of the line-breaking algorithm the output is written.

Tracing paragraphs

It is one of the words @firstpass, @secondpass,
or @emergencypass. The headers of the first and
second pass are not output if the limit of T1 in sec-
tion 2, the parameter \pretolerance, prevents the
first pass, i.e., if it is negative (see § 863). It would be
nice to add a hook to the log file in this situation,
let’s say @hyphenationpass to signal in a unique
way the start of the trace data. But such a change
violates the TRIP test [7] although it changes only
the log file.

• break candidates which are considered by the
algorithm as there is a valid way to break the line at
this point using a previously found feasible break-
point. The output has the form “@<w> via @@<m>

b=<x> p=<y> d=<z>” (§ 856) where the placeholders
<x>, <y>, and <z> are the values of the badness of
the line, the penalty for the break (see P1–P4) if
applicable, and the demerits of the line, whose cal-
culation uses the \linepenalty and adds the values
of D1–D3 if the conditions are met. The @@<m> doc-
uments the feasible breakpoint, after which the cur-
rent line starts (the value 0 stands for the start of
the paragraph). The first parameter <w> indicates
the kind of break: It is empty if the break occurs
at glue between words; otherwise it is (see B2–B5)
\kern, \math, \penalty, \discretionary, or, at
the end of the paragraph, \par. When the badness
values <x> are calculated for an emergency pass, the
values represent the data that the line-breaking al-
gorithm uses to get the demerits, i.e, one of TEX’s
input values for its rating function. The “real” val-
ues for the badness as “seen in the output” depend
heavily on the used stretchability given by the di-
men \emergencystretch, but these values are not
shown in the trace data. See below for an example.

Principally, three types must be distinguished:

◦ inter-word breaks that are line breaks between
words or symbols, i.e., the cases B1–B4.

◦ discretionary breaks (case B5) indicated by the
word \discretionary for <w>, which signals
that the line break occurs within a word. Then
pre-break and post-break information must be
considered to construct the contents of the line.

◦ end-of-par breaks indicated by \par. This shows
that the line break algorithm was able to pro-
cess the whole paragraph. TEX rates the end of
a paragraph as a forced break and assigns there-
fore a penalty of −10000, which does not add to
the demerits (see the formula for the calculation
of demerits in section 2).

Note it is possible to have several break can-
didates at the end of a line for different feasible
breakpoints.

360 TUGboat, Volume 37 (2016), No. 3

• feasible breakpoint which gives the best way to
break the paragraph up to this point using the cur-
rent settings of the line-breaking algorithm for one of
the break candidates that appear above this feasible
breakpoint. The output in the log file is the string
“@@<n>: line <a>.<c> t=<d> -> @@<m>” (§ 846)
where <n> is the new sequence number of the cur-
rent feasible breakpoint, and <m> states the number
of the feasible breakpoint which the new breakpoint
needs as the previous line break. The content data
between these two breakpoints is then line number
<a>. It belongs to the fitness class (range is 0–3
(§ 817); name is given in C), and ends with a
hyphen if <c> is ‘-’. The value <d> states the total
demerits of the whole paragraph up to this line, i.e.,
it is the sum of the <z> values of the break candi-
dates for the set of lines ending with this feasible
breakpoint.

Note it is not yet determined if this feasible
breakpoint will be used to construct the paragraph.
The best end-of-par break names the previous feasi-
ble breakpoint for the last feasible breakpoint.

The final feasible breakpoints are treated as
having a hyphen as the value of <c> (§ 829).
• content data which is the text seen by the algo-

rithm (§ 857). It is split in small parts as the break-
points are listed in the output too. In passes that
try to hyphenate the words all hyphenation points
of TEX’s hyphenation algorithm are inserted.

The trace data ends with an empty line (§ 245).
Note: Except for the content data all trace lines start
with the symbol @.

Final remark: Values for the badness are some-
times stated as * which means that it is infinite ac-
cording to TEX’s rules. For demerits such an aster-
isk means that the calculation was not performed
because of certain forced conditions (§ 856).

The format of the trace lines is rather terse and
a lot of trace lines are written even if they do not
contribute to the final line breaks. An example will
help to understand the above stated description of
the data.

Example 1: TEX input

\tracingparagraphs=1

\noindent
Note: {\sl pretolerance\/} is \the\pretolerance\
and {\sl tolerance\/} is \the\tolerance, the
{\it hsize\/} is~\the\hsize.

This is a nonsense text to serve as a
constructed example that shows all kind of trace
lines. It contains~inline mathematics and text in
columns. The formula $2\times 2^2 = 8$ is simple
mathematics as well as formula $\root3 \of 8 = 2$
or what do you think? Now a declaration or

Udo Wermuth

definition for a three columns tabbing
environment is made.
\settabs 3 \columns \+&&End of example:\cr

TEX output

Note: pretolerance is 100 and tolerance is 200, the hsize

is 225.0pt.

This is a nonsense text to serve as a constructed
example that shows all kind of trace lines. It contains in-
line mathematics and text in columns. The formula
2 × 22 = 8 is simple mathematics as well as formula
3
√
8 = 2 or what do you think? Now a declaration or

definition for a three columns tabbing environment is
made.

End of example:

Note: The small rectangle at the end of the previous
line indicates the end of an example.

The trace data was written in the log file; here
are all trace lines with numbers for identification.

Example 1 continued: Log file contents

1. @firstpass
2. \ninerm Note: \ninesl pretolerance \ninerm

is 100 and \ninesl tolerance \ninerm is
200, the \nineit hsize

3. @\kern via @@0 b=2 p=0 d=144
4. @@1: line 1.2 t=144 -> @@0
5. \ninerm is 225.0pt.
6. @\par via @@1 b=0 p=-10000 d=100
7. @@2: line 2.2- t=244 -> @@1
8.

9. @firstpass
10. []\ninerm This is a nonsense text to serve

as a constructed
11. @ via @@0 b=23 p=0 d=1089
12. @@1: line 1.1 t=1089 -> @@0
13. @secondpass
14. []\ninerm This is a non-sense text to serve

as a con-structed
15. @ via @@0 b=23 p=0 d=1089
16. @@1: line 1.1 t=1089 -> @@0
17. ex-
18. @\discretionary via @@0 b=27 p=50 d=3869
19. @@2: line 1.3- t=3869 -> @@0
20. am-ple that shows all kind of trace lines.

It con-tains in-
21. @\discretionary via @@1 b=38 p=50 d=14804
22. @\discretionary via @@2 b=0 p=50 d=12600
23. @@3: line 2.2- t=16469 -> @@2
24. @@4: line 2.3- t=15893 -> @@1
25. line
26. @ via @@2 b=91 p=0 d=10201
27. @@5: line 2.3 t=14070 -> @@2
28. math-e-mat-ics and text in col-umns. The

for-mula
29. @ via @@3 b=137 p=0 d=31609
30. @ via @@4 b=137 p=0 d=31609
31. @@6: line 3.0 t=47502 -> @@4
32. $2 \ninesy ^^B
33. @\penalty via @@3 b=0 p=700 d=490100
34. @\penalty via @@4 b=0 p=700 d=490100
35. @\penalty via @@5 b=123 p=700 d=517689
36. @@7: line 3.2 t=505993 -> @@4

TUGboat, Volume 37 (2016), No. 3 361

37. \ninerm 2[] =
38. @\penalty via @@5 b=10 p=500 d=250400
39. @@8: line 3.2 t=264470 -> @@5
40. 8$ is sim-ple math-e-mat-ics as well as

for-mula
41. @ via @@6 b=57 p=0 d=4489
42. @@9: line 4.1 t=51991 -> @@6
43. $[][] =
44. @\penalty via @@6 b=72 p=500 d=266724
45. @\penalty via @@7 b=1 p=500 d=250121
46. @@10: line 4.3 t=314226 -> @@6
47. 2$
48. @\math via @@7 b=2 p=0 d=144
49. @\math via @@8 b=130 p=0 d=29600
50. @@11: line 4.0 t=294070 -> @@8
51. or
52. @ via @@8 b=7 p=0 d=289
53. @@12: line 4.2 t=264759 -> @@8
54. what do you think? Now a dec-la-ra-tion or
55. @ via @@9 b=31 p=0 d=1681
56. @@13: line 5.1 t=53672 -> @@9
57. def-i
58. @\discretionary via @@9 b=4 p=50 d=2696
59. @\discretionary via @@10 b=119 p=50 d=29141
60. @@14: line 5.2- t=54687 -> @@9
61. -
62. @\discretionary via @@9 b=20 p=50 d=13400
63. @\discretionary via @@10 b=82 p=50 d=20964
64. @@15: line 5.3- t=65391 -> @@9
65. ni-
66. @\discretionary via @@10 b=14 p=50 d=13076
67. @\discretionary via @@11 b=106 p=50 d=15956
68. @@16: line 5.0- t=310026 -> @@11
69. tion
70. @ via @@10 b=4 p=0 d=196
71. @ via @@11 b=2 p=0 d=10144
72. @ via @@12 b=107 p=0 d=23689
73. @@17: line 5.0 t=288448 -> @@12
74. for
75. @ via @@12 b=0 p=0 d=100
76. @@18: line 5.2 t=264859 -> @@12
77. a
78. @ via @@12 b=25 p=0 d=1225
79. @@19: line 5.3 t=265984 -> @@12
80. three col-umns tab-bing en-vi-ron-ment is
81. @ via @@13 b=57 p=0 d=4489
82. @@20: line 6.1 t=58161 -> @@13
83. made.
84. @\par via @@14 b=48 p=-10000 d=8364
85. @\par via @@15 b=10 p=-10000 d=5400
86. @\par via @@16 b=0 p=-10000 d=15100
87. @\par via @@17 b=0 p=-10000 d=10100
88. @\par via @@18 b=0 p=-10000 d=100
89. @\par via @@19 b=0 p=-10000 d=100
90. @\par via @@20 b=0 p=-10000 d=100
91. @@21: line 7.2- t=58261 -> @@20
92. @@22: line 6.3- t=63051 -> @@14
93.

As expected, the trace starts with @firstpass

for the first paragraph. Line 2 is the content data
preceded by a \ninerm, which was added by TEX’s
routines (§ 174); it was not part of the input. As
you see all font switching commands are spelled out

Tracing paragraphs

explicitly with the control sequence that TEX asso-
ciates with the requested font. Line 3 outputs the
first break candidate; it is a break at the italic cor-
rection and so <w> is \kern. The badness is 2, i.e.,
the line is decent, penalty is 0 and therefore the de-
merits are (10 + 2)2 = 144. That the line is decent
can been seen in line 4 of the listing as a “.2” appears
after the line number (see C2). Line 6 documents an
end-of-par break, so the first pass was successful.
As explained above the <c> is ‘-’ merely because of
the end of the paragraph; it does not indicate that
the final line ends with an hyphen. The penalty is
−10000 to mark a forced break; this value is ignored
as stated in the formula for the calculation of demer-
its and therefore the demerits of the second line are
(10 + 0)2 = 100. The total demerits are the sum of
the line demerits: 144 + 100 = 244 (see line 7).

The data of the second paragraph is much more
interesting. Again the header line of the first pass is
printed (line 9), but only one feasible breakpoint
is found and output. This means TEX’s algorithm
was unable to find a second break candidate, so it
stops this pass, and starts the second pass, which
outputs its header line (line 13). Note however, that
the content data in line 10 has in front of the font in-
formation, which is inserted as described above, the
construction []. This stands for output that TEX
cannot show; in this case it is the white space cre-
ated by the indentation. This is the normal behavior
for all non-printable items (see § 175). In the sec-
ond pass hyphenation is tried so TEX shows all hy-
phenation points in the words by inserting hyphens.
Compare line 14 with line 10: TEX has placed hy-
phens in the words “nonsense” and “constructed”.
The breakpoint in the lines 17–19 is a discretionary
break. In line 18 the penalty is 50, the value of
\hyphenpenalty. In line 19 the 1.3- states that it
is a tight line ending in an hyphen.

Let’s look at some interesting points without
going through all the details of the trace.

◦ Lines 21 and 22 show that more than one break
candidate can occur but they must use different
feasible breakpoints after the “via”.

◦ In lines 33–35 and in lines 38 & 44–45 penalty
breaks are shown in math mode. In the first
set the break occurs after a binary operation
and the \binoppenalty is applied. The break
in the second set is made after a relation and
the \relpenalty is used.

◦ An example for a line break after a math-off is
given in lines 47–50.

◦ Lines 57ff. show a discretionary break in the
word “definition” which contains the ligature
“fi”. An implicit discretionary break is used for

362 TUGboat, Volume 37 (2016), No. 3

the ligature with the pre-break text “f-”, the
post-break text “i” and the no-break text “fi”.
Both pre-break and post-break text are stated
in the content data of line 57. After feasible
breakpoint 14 just a hyphen is added to the
line.

◦ The end-of-line break candidates in the lines
84–90 signal the successful completion of the
second pass. Lines 88–90 seem to be equivalent
judged by the data in the lines, but the path
via feasible breakpoint 20 has the lowest total
demerits and therefore it is stated in the feasible
breakpoint @@21.

◦ Feasible breakpoint @@22 gives an alternative
path via feasible breakpoint @@14. Its total de-
merits are higher than for feasible breakpoint
@@21 therefore it is not used by TEX. But the
number of lines is lower and so it would be a
valid path if the author states \looseness=-1
(see example 2 below).

◦ The trace ends with an empty line. It is shown
here but the other examples will omit it.

The paragraph is now built from bottom to top:
The last line is between @@20 and @@21, its content
is “made” (see line 83). The second last line starts at
@@13 with the concatenation of the content in lines
57, 61, 65, 69, 74, 77, and 80. The third last line
begins at @@9, the next at @@6, then at @@4, the sec-
ond line of the paragraphs starts at @@1 and the first
at the beginning of the paragraph, of course. Their
content is built from the lines carrying the content
data between the mentioned feasible breakpoints.

So the feasible breakpoints @@2, @@3, @@5, @@7,
@@8, @@10 to @@12, and @@15 to @@19 are never used
in the line breaks of the paragraph chosen by TEX
(@@14 and @@22 are used if only six lines are built).

The text entered in the tabbing environment is
not repeated in the trace as the line-breaking algo-
rithm is not called and so no trace lines are output.

4 Applications

The description in the previous section makes clear
that the task of decoding the tracing information by
hand is difficult, or at least time consuming. More-
over, the trace data must be enhanced as example 1
has shown: There are two ways to break the para-
graph and the selection involves the knowledge of
the current setting of \looseness. So its value has
to be put in the log file too. The value is reset to 0
after each paragraph; TEX uses the value that it has
at the end of the paragraph ([6, p. 349]). The follow-
ing code writes the parameter to the log file; here it
is applied to the second paragraph of example 1.

Udo Wermuth

Example 2: TEX input

\let\orglooseness=\looseness
\def\writelooseness{% output looseness to log

\immediate\wlog{@ looseness \the\orglooseness}}
\def\setlooseness{% enhanced version of looseness

\afterassignment\writelooseness\orglooseness}
\let\looseness=\setlooseness

\tracingparagraphs=1 \looseness=-1
This is a nonsense text to serve as a . . .

TEX output

This is a nonsense text to serve as a constructed
example that shows all kind of trace lines. It contains in-
line mathematics and text in columns. The formula
2 × 22 = 8 is simple mathematics as well as formula
3
√
8 = 2 or what do you think? Now a declaration or def-

inition for a three columns tabbing environment is made.

The first line of the excerpt from the log file
shows the output of the macros; note that the line
might not appear directly in front of the start of the
data but it is always first. The trace data is nearly
identical to the data shown for example 1. All trace
lines are present but their sequence is changed and
at the end one more feasible breakpoint is added
for a six-line paragraph; in this case the ligature in
“definition” is resolved and the break is after the ‘f’.

Example 2 continued: Log file contents

1. @ looseness -1
2. @firstpass
3. []\ninerm This is a nonsense text to serve

as a constructed
4. @ via @@0 b=23 p=0 d=1089
5. @@1: line 1.1 t=1089 -> @@0
6. @secondpass

. . .

76. made.
77. @\par via @@19 b=0 p=-10000 d=100
78. @\par via @@18 b=0 p=-10000 d=100
79. @\par via @@17 b=0 p=-10000 d=10100
80. @\par via @@16 b=0 p=-10000 d=15100
81. @\par via @@15 b=10 p=-10000 d=5400
82. @\par via @@14 b=48 p=-10000 d=8364
83. @@21: line 6.2- t=70791 -> @@15
84. @@22: line 6.3- t=63051 -> @@14
85. @\par via @@20 b=0 p=-10000 d=100
86. @@23: line 7.2- t=58261 -> @@20

The integer parameter looseness influences the
line-breaking algorithm and makes it select para-
graph lines that are not the optimum. Most often
this price is worth being paid to improve the page
breaking. It would be useful to inform an author
about the possibilities to shorten or to lengthen a
paragraph. Section 5 discusses this topic in more
detail.

In the following I do not discuss lines with over-
full boxes, etc. These are reported by TEX during
the run. My recommendation is that an author re-
act to these messages. Moreover, only the multiline

TUGboat, Volume 37 (2016), No. 3 363

paragraphs are handled in the figures. This article
contains many single-line paragraphs through the
verbatim listings but they are not discussed. The
following tasks are addressed:

1. Find hyphenated words.
2. Find the longest sequence of hyphenated lines.
3. Find paragraphs that contain visually incom-

patible lines.
4. Find sequences of lines starting or ending with

the same word.
5. Use statistics to learn about the overall appear-

ance of the text.
6. Perform actions to eliminate detected problems.

List of hyphenated words. In a Q&A session
Donald E. Knuth was asked why TEX does not pro-
vide a way to generate a list of hyphenated words
of a text. He answered that a little filter program
can do the work if all relevant tracing is switched on
([12], p. 365 or [13], pp. 620–621).

There are several ways to get the hyphenated
words, for example, one could set \hbadness=-1 and
check the output for lines ending in a hyphen. See
for example, exercise 28 of [11]. (Note: Such lines
often start with the words “loose” and “tight” but
that does not refer to C1 and C3, resp. See [6],
p. 302.) A problem might be that the part of a word
at the beginning in the last line is not output. An-
other approach is to filter the output of dvitype

[10]. I decided to use the trace data of the com-
mand \tracingparagraphs. Of course, that meant
writing the “little filter program” for efficient extrac-
tion of data. Such a program reads the trace data,
chooses the right final feasible breakpoint, goes back
through the chain of feasible breakpoints looking at
the content data and saves all hyphenated words.
The script might output a list like the one in Fig. 1.

It is much easier to check such a file for bad hy-
phenation than to go through the DVI output and
check every end of line. Changes to this list be-
tween runs can be analyzed by a diff command. And
more is possible: As TEX hyphenates all the words
in certain passes they can be collected in a list, sup-
plied with corrected hyphenation points if necessary,
and saved in a database. With time this database

A ‘=’ marks the hyphenation point.

1: con=trol
2: pa=ram-e-ters
3: di-ag=nose

. . .

160: Stan=ford
161: Pro=gram

Figure 1: List of hyphenated words

Tracing paragraphs

Show line-break statistics based on the log file of a TeX run.

texput.log analyzed on 05/11/16, 14:48:16

Hsize: 225.0pt; Parindent: 20.0pt; Parfillskip: 168.75pt plus 13.49945pt minus 168.75pt

Parameter settings for line breaking:

Pretolerance: 100; Tolerance: 200; Emergencystretch: 0.0pt
Linepenalty: 10; Exhyphenpenalty: 49; Hyphenpenalty: 50
Binoppenalty: 700; Relpenalty: 500
Adjdemerits: 10000; Doublehyphendemerits: 10000; Finalhyphendemerits: 5000

Single-line paragraphs : 570
vloose loose decent tight

Line categories: 0 0 563 7

Multiline Paragraphs : 201
with total lines : 1155
and lines pro par between : 2 and 25
with demerits between : -156 and 545991

Demerits in range >1,000,000 200,000 50,000 20,000 10,000 5,000 0
Positive values: 0 2 17 46 25 26 84
Negative values: 0 0 0 0 0 0 1

Figure 2: General information about this article

represents an author’s active vocabulary and the
list of all hyphenated words can be checked against
the database to find wrong hyphenation points that
can be given as exceptions using the control word
\hyphenation. And new entries enlarge the data-
base (for this article by 56 words). The list can
also be generated by \pretolerance=-1 (no first
pass), set \emergencystretch=\hsize (allow awful
lines), apply \looseness=1000 to every paragraph,
and run dvitype [10] to find all hyphenated words.

A wrong hyphen in a word must be corrected, of
course. Either declare the word at the beginning of
the document as a hyphenation exception, or add \-

to the word at the right place, or put a short word
into an \hbox to avoid the hyphen. The last two
methods are useful if the word occurs only a few
times in the text. For this text three hyphenation
exceptions are specified: Eng-lish, stretch-abil-
ity and Mas-sa-chu-setts.

Note: In order to distinguish between explicit,
i.e., author entered, and implicit, i.e., TEX inserted,
hyphens I subtract 1 from \exhyphenpenalty if it
equals \hyphenpenalty (see Fig. 2). This changes
the calculations of TEX during the tracing compared

13% lines with implicit hyphen : 161
0% lines with explicit hyphen : 2

with longest sequence : 3
and hyphenated final lines : 22

Figure 3: Global statistics about hyphenated lines

364 TUGboat, Volume 37 (2016), No. 3

to the normal run, but the impact is usually small,
at most 99 demerits for a break at an explicit hyphen
with the defaults of plain TEX.

Martin Budaj wrote a script in Perl [1] that
finds the hyphenated words in the trace data and
outputs a list similar to Fig. 1. A LuaTEX solution
is described in [4]. Its author, Patrick Gundlach, de-
veloped also the package [3] for LuaLATEX to show all
hyphenation points using tiny vertical marks inside
the text similar to the triangles in Fig. 1 of [5].

Counting consecutive hyphenated lines. As all
the lines are checked for discretionary breakpoints,
overall statistics can be collected to give information
on the longest sequence of consecutive lines that are
hyphenated. For example, the report for an early
draft of this article showed that the longest sequence
of hyphenated lines was 5, which is too long accord-
ing to [2], 3.11: When four or more lines end with

a hyphen or the same word, word spacing should

be adjusted to prevent such “stacks.” The current
count for this article is shown in Fig. 3.

The length of the longest sequence of hyphen-
ated lines is valuable and easily output by the script.
The author decides if this length is acceptable or not.
How can the hyphen stack be reduced? An author
has several possibilities:

A0. change the words of the paragraph;
A1. increase the penalties and demerits that have

to do with hyphenation for this paragraph;

Udo Wermuth

A2. lower the \tolerance and use a positive value
for \emergencystretch in this paragraph;

A3. try to make the paragraph a line longer (or
shorter) using \looseness (maybe supported
by a positive value of \emergencystretch);

A4. improve the chance of the first pass by increas-
ing \pretolerance for this paragraph;

A5. put the third or fourth hyphenated word in an
hbox if it is a short word.

Action A0 is always an option and it is guar-
anteed to be successful; the other actions might fail.
Actions A1, A2, and A4 should not be made for the
whole text; apply the parameter setting only to the
“bad” paragraph; see below.

Relationships between lines. Instead of count-
ing and printing numbers of lines of a certain type
the relationships between lines can be documented.
As an example I use the data of the fitness classes
C0–C3.

4% very loose lines : 53
21% loose lines : 243
62% decent lines : 713
13% tight lines : 146

Figure 4: Distribution of fitness classes

Figure 4 reports on the distribution of the lines
into the four classes. The distribution shows that
less than two-thirds of all lines in multiline para-
graphs are decent. Michael F. Plass and Donald E.
Knuth gave in [5] some results for the second vol-
ume of The Art of Computer Programming, a book
with 702 pages, 5526 paragraphs, and 21057 lines. (I
refer to this article through the reprint in [13].) The
article was published in 1981 one year before TEX82
was released and the algorithm was changed a little
bit for TEX82, see [8, § 813]. But the algorithm is
close enough that the data can serve as an exam-
ple. In [13], p. 125, Fig. 19, Donald E. Knuth shows
the distribution of lines into the fitness classes. A
rough measurement of this data together with the
definitions on page 112 of [13] gives the distribution
(2, 14, 79, 5)% for (very loose, loose, decent, tight).
So the data for the present article is worse. On the
other hand the book has an hsize of 468 pt compared
to the 225 pt of this column; the line-breaking job is
easier for the book.

The numbers for transitions from one class to
another provides additional insights (see Fig. 5). It
gives the volume of visually incompatible lines. Only
a few lines are incompatible, about 2.9%. In sum-
mary the data looks acceptable to me. Only a few
jumps from very loose or loose to tight occur. The
majority of transitions is listed on the “diagonal”,

TUGboat, Volume 37 (2016), No. 3 365

From / To: vloose loose decent tight
vmode 1 2 169 29
vloose 18 11 12 3
loose 15 57 109 15
decent 16 157 339 75
tight 3 16 84 24

Figure 5: Transitions between fitness classes

so lines of the same class follow most often. One in-
tentionally bad paragraph is the second paragraph
in the introduction. There, lines 3 and 4 are very
loose, lines 5 and 7 are tight, and line 6 is loose.

To improve a paragraph with excessive transi-
tions between visually incompatible lines the above-
mentioned action A2 seems to be the best choice.
Usually it reduces the number of very loose lines if
the parameters are chosen carefully; see below.

Distribution of demerits. When the topic “dis-
tribution” is considered, the idea of showing the data
of TEX’s rating values, the demerits, comes to mind.
Of course, a script can easily document them and I
use a set of ranges for positive and negative values to
categorize the data points. The scripts calculate the
distribution as shown in Fig. 2. Negative values can
occur as an author can specify them via \penalty.
(The paragraphs with negative demerits appear in
the references where URLs are broken by macros.)

The problem that I have with the data is the
lack of a trigger for action. A twenty-line paragraph
with lines all having badness 10 and no hyphenations
has the same demerits as a two-line paragraph with
lines having badnesses of 10 and 0 and a hyphen
after the first line. Which one is better? What can
be done to improve the situation? Is there a problem
at all?

But the statistic is useful to give a general over-
view. When the default values of TEX are active,
paragraphs with demerits in the range 0–5000 can
have only one hyphenated word, which is not at the
end of the second last line: The penalty for a hyphen-
ated word is 502 = 2500 so there cannot be two if the
total demerits are at most 5000 and, of course, the
value of \finalhyphendemerits was not applied.
Similarly the paragraphs in the range 5001–10000
have no stack of two hyphens and no visually in-
compatible lines. The next range might have just
one of such things but only once.

So one can concentrate on the few paragraphs
that have very high values of demerits. But let me
state again: A high value does not imply a problem.
In this article most paragraphs with high demerits
appear in examples. The paragraph above the de-
scription of the fitness classes on the first page is an
exception (see Fig. 11): It has the highest demerits

Tracing paragraphs

(see Fig. 2) because of 13 lines, three have a badness
above 50, one more than 100, one \binoppenalty

and one \hyphenpenalty are charged, and it has
one pair of visually incompatible lines. But only the
break in the formula might trigger a change.

number of words in paragraphs : 8417
max. words in one line : 14
one-word lines (multiline par) : 35

Repeat word >4 chars at start : 3
or end of line : 2

Repeat shorter word at start : 10
or end of line : 7

Longest sequence at start of line : 2
Longest sequence at end of line : 2

Figure 6: Several global counts

More global statistics. Other counts can be cal-
culated. For example, I use an experimental count
of lines that start or end with the same word or syl-
lables as the previous line (see Fig. 6). In this text
most occurrences of stacks of words with at least
five letters appear in the examples. As the longest
sequence is two, there is no problem according to
[2]. Otherwise an author should tie one of the words
to the previous or the following word if the stack
appears at the start or the end of the line, resp. It
seems best to connect the tie to the shortest pos-
sible word or syllable. The number of hyphenated
lines might increase or an overfull line is created if
the stack appears near the beginning of the para-
graph; then the text must be rewritten to avoid it.

Other general statistics can be generated and
they may trigger actions by an author although the
interpretation is more complicated. Such statistics
do not point to a certain situation in the input which
might be changed.

50% successful in the first pass : 100
43% successful in second pass : 86
2% successful without first pass : 5
5% needed an emergency pass : 10

Figure 7: Global statistics about passes

Figure 7 shows the distribution of passes for
this article. But how can this data be interpreted?
The emergency pass is used in several examples and
the list of references where a positive value for the
\emergencystretch is specified. The main question
is: Is the shown distribution between first and sec-
ond pass OK? In [13], p. 123, Donald E. Knuth writes
that in the second volume of The Art of Computer

Programming (TAOCP) only 5% of all paragraphs
needed a second pass and only 2.26% lines ended in
a hyphen. So compared to these data the values are

366 TUGboat, Volume 37 (2016), No. 3

55% successful in the first pass : 108
44% successful in second pass : 87
0% successful without first pass : 0
1% needed an emergency pass : 2

5% very loose lines : 49
20% loose lines : 197
64% decent lines : 643
11% tight lines : 110

11% hyphenated lines : 109
11% lines with implicit hyphen : 105
0% lines with explicit hyphen : 4

with longest sequence : 3
and hyphenated final lines : 18

Figure 8: Global statistics of another article [15]

bad. On the other hand the columns of this journal
are much smaller than the \hsize of the book. It
needs some judgment to decide if the values are ac-
ceptable or if some parameters should be changed.
As I have written another article for this journal
[15] its data can be used for a comparison. Figure 8
shows its values for the data shown in Figs. 7, 4,
and 3. The values of the present article are worse.
But I do not change anything as, for example, some
paragraphs have been designed to make the first pass
fail.

What options does an author have to respond
to unwanted global statistics? Of course, when an
author has to use a given format with given parame-
ters often only rewriting of the text is possible. The
distributions are useful to detect problems in the
general setup. If a small percentage is seen for the

\newtoks\TRsavedLBparameters
\newif\ifprotectLBparameters
\def\SaveallLBparameters{% store 11 parameters
\ifprotectLBparameters
\else\protectLBparameterstrue
{\edef\saveparameters{%

\global\TRsavedLBparameters=\expandafter
{\the\emergencystretch:\the\pretolerance:%
\the\tolerance:\the\linepenalty:%
\the\hyphenpenalty:\the\exhyphenpenalty:%
\the\binoppenalty:\the\relpenalty:%
\the\adjdemerits:\the\doublehyphendemerits:%
\the\finalhyphendemerits}}\saveparameters}\fi}

% usage:\afterassignment\RestoreLBparameters
\def % \emergencystretch=\the\TRsavedLBparameters
\RestoreLBparameters:#1:#2:#3:#4:#5:#6:#7:#8:#9:{%

\pretolerance=#1 \tolerance=#2 \linepenalty=#3
\hyphenpenalty=#4 \exhyphenpenalty=#5
\binoppenalty=#6 \relpenalty=#7
\adjdemerits=#8 \doublehyphendemerits=#9
\finalhyphendemerits=}

% #1: i - s c o ii i- ... (is for --) or \hskip<x>pt
\def\setEMstr(#1){SaveallLBparameters

\setbox0=\hbox{#1}\emergencystretch=\wd0 }

Figure 9: Support macros for Fig. 10

Udo Wermuth

#Pars P Demerits Breakpoints Lines opt L Lines-found B-inf B-min B-max vloos loose decnt tight hyphen seq last

==

1: 1 100 1 1 1 0 1 0 0 1

2: 1 100 1 1 1 0 1 0 0 1

3: 1 100 1 1 1 0 1 0 0 1

4: 2 15554 (0)/25 8 8 0 (0)/8-9 0 69 1 5 2 1/ 1

5: 1 100 1 1 1 0 1 0 0 1

6: 2 40159 (2)/15 8 8 0 (2)/8 0 79 3 5 3/ 3 3

7: 2 120270 (2)/13 8 8 0 (2)/8 3 178 2 2 1 3 2/ 2 2

8: 2 44163 (5)/52 21 21 0 (5)/21 0 89 4 13 4 3/ 3

9: 2 63786 (1)/46 13 13 0 (1)/13-14 0 86 3 6 4 6/ 6 3 Y

10: 2 18559 (2)/16 9 9 0 (2)/9 0 30 4 4 1 3/ 3 Y

11: 2 3565 (0)/9 4 4 0 (0)/4 0 14 1 3 1/ 1

12: 1 100 1 1 1 0 1 0 0 1

13: 2 4290 (1)/4 4 4 0 (1)/4 0 29 2 2 1/ 1

14: 2 545991 (14)/31 13 13 0 (10)/13 0 146 1 3 8 1 1/ 1

Figure 11: Information about the first several paragraphs of this article

first pass check that (1) no non-breakable items like
large hboxes or verbatim strings (as in this article)
are present, (2) \pretolerance is not too low, and
(3) the \hsize is appropriate, i.e., not too small for
justified text. In such situations where the hyphen-
ation passes appear in the expected amount but the
number of hyphenated lines is high, check addition-
ally that (4) the values of the parameters for hy-
phenation are set reasonably.

A few examples. The actions that change some
line-breaking parameters should apply that change
only for a single paragraph. The technically named
try. . . macros in Fig. 10 (supported by those in
Fig. 9) change parameters and with the command
\defaultlinebreaking after an empty line or a
\par the old parameters are reset. In most cases
action A0, i.e., change the wording, is the best solu-
tion; only if this is not possible the actions A2, A3,
or A4 should be tried.

In the first example the action A2, i.e., a lower
\tolerance with \emergencystretch, is applied to
the second paragraph of the introduction. The pa-
rameter to the macro is a string to specify the length
of the \emergencystretch; an “\hskip<dimen>” is

\def\defaultlinebreaking{% reset parameters
\ifprotectLBparameters\protectLBparametersfalse
\afterassignment\RestoreLBparameters
\emergencystretch=\the\TRsavedLBparameters\fi}

\def\tryonlyfirstpass{\SaveallLBparameters
\pretolerance=125 }

\def\tryonlysecondpass{\SaveallLBparameters
\pretolerance=-1 }

\def\trythirdpassD(#1){\setEMstr(#1)%
\tolerance=125 \ignorespaces}

\def\trylesshyphens{\SaveallLBparameters
\hyphenpenalty=75 \doublehyphendemerits=20000
\exhyphenpenalty=55 \finalhyphendemerits=7500 }

Figure 10: Set of useful macros

TUGboat, Volume 37 (2016), No. 3 367

possible too. The characters “i-sco” cover the range
of 5–9 basic units of width in cmr10; see [9]. This
makes the additional stretchability individual to the
paragraph.

Example 3: TEX input

\trythirdpassD(oo)
The tracing parameters might be classified ...

TEX output

The tracing parameters might be classified
into different groups: Some look at the settings
of the installation, like \tracingstats, others are
used mainly for developers, like \tracingmacros,
and some (or all) can be used to get a better un-
derstanding how TEX operates. For example, the
parameter \tracingparagraphs gives detailed in-
sights into the inner workings of TEX’s line-breaking
algorithm.

The paragraph is one line longer; two lines are
loose, five decent, then follows a tight and a decent
line. No visually incompatible pair is reported. The
documented badness values are 91, 43, 1, 7, 5, 8, 3,
19, and 0 instead of 3, 25, 171, 178, 37, 21, 41, and
28. Six lines have a lower value than before. But the
reporting does not include the additional stretch-
ability. The true badness values can be seen using
\hbadness=-1. Then the line badnesses are 1019,
239, 11, 69, 18, 41, 53, 19, and 0; two visually incom-
patible pairs are present. The first line is so bad that
TEX reports an underfull hbox. An author should
expect looser lines if a paragraph is lengthened.

\def\trylongerparD(#1){\setEMstr(#1)%
\finalhyphendemerits=0 \adjdemerits=5000
\looseness=1 \ignorespaces}

Figure 12: Stronger than \looseness=1

The macros can be combined and more macros
are possible, for example, Fig. 12 increases forces

Tracing paragraphs

--#Par---(#Lines [#per pass Looseness+# for min demerits])---

#Line Badness Penalty Demerits FitClass -? ST #w

==

--1---(1 [1 L0+1])-----------------------------------

1: 0 -10000 100 decent 2 Tracing paragraphs

--2---(1 [1 L0+1])-----------------------------------

2: 0 -10000 100 decent 2 [] Udo Wermuth

--3---(1 [1 L0+1])-----------------------------------

3: 0 -10000 100 decent 1 Abstract

--4---(8 [(0)/8-9 L0+8])-----------------------------

4: 0 50 2600 decent Y 9 The pro-gram T[]X pro-vides more than a dozen con-

5: 29 0 1521 loose 6 trol words for di-ag-nos-tic and de-bug-ging pur-poses.

6: 0 0 100 decent 9 Some of them are used of-ten, oth-ers han-dle spe-cial

7: 9 0 361 decent 9 tasks and are less fre-quently ap-plied. In the lat-ter

8: 1 0 121 decent 5 case falls the pa-ram-e-ter \tracingparagraphs that

9: 57 0 4489 tight 10 seems to be a hid-den gem. This ar-ti-cle ex-plains what

10: 1 0 121 decent 10 the pa-ram-e-ter trig-gers if set and how an au-thor can

11: 69 -10000 6241 tight 10 use the trace data to check and im-prove his text.

--5---(1 [1 L0+1])-----------------------------------

12: 0 -10000 100 decent 1 1 Introduction

--6---(8 [(2)/8 L0+8])-------------------------------

13: 0 0 100 decent 8 The T[]X soft-ware, de-scribed in T[]X : The Pro-gram

Figure 13: Information about the lines of the first paragraphs of the article

to lengthen a paragraph, i.e., it implements action
A3. Note that the paragraph does not change with
a simple \looseness=1.

Example 3 continued: TEX input

\trylongerparD(i)
The tracing parameters might be classified ...

TEX output

The tracing parameters might be classified into
different groups: Some look at the settings of the
installation, like \tracingstats, others are used
mainly for developers, like \tracingmacros, and
some (or all) can be used to get a better understand-
ing how TEX operates. For example, the param-
eter \tracingparagraphs gives detailed insights
into the inner workings of TEX’s line-breaking al-
gorithm.

The typical pattern of \looseness=1 appears:
The new line contains only the last word or a part
of it. But the result looks better than before.

Next, stacks of hyphens are removed.

Example 4: TEX input

\trylesshyphens\noindent
The program \TeX, described in \TP\ [...

TEX output

The TEX software, described in TEX : The Program

[8], implements several control sequences to show
information about its work. The commands and
parameters form a set of powerful tools to help di-
agnose errors. TEX itself contains nine primitive in-
teger parameters for tracing ([6, p. 273]) and four
primitive show commands ([6, p. 279]). The plain

368 TUGboat, Volume 37 (2016), No. 3

format defines additional macros ([6, p. 364]).

The original text appears as the first paragraph
of section 1. It is one of the paragraphs with the
longest sequence of hyphenated lines in this text (see
Fig. 11). The best solution is to insert “the book” af-
ter “in” in the first line, but here \trylesshyphens
is also successful. Sometimes this command does not
work, for example, if the stack is at the beginning of
the paragraph; more penalties and demerits might
not change the first line break. The macro of Fig. 12
might help; next it is applied to a statement in [12],
p. 358, where \trylesshyphens is not successful. I
use \trylongerparD(Ar) for the second paragraph.

Example 5: TEX output

So instead, I worked only at Stanford, at the Ar-
tificial Intelligence Laboratory with the very primi-
tive equipment there. We did have television cam-
eras, and my publisher, Addison-Wesley, was very
helpful — they sent me the original press-printed
proofs of my book, from which The Art of Com-

puter Programming had been made. The process in
the 60s . . .

So instead, I worked only at Stanford, at the
Artificial Intelligence Laboratory with the very
primitive equipment there. We did have television
cameras, and my publisher, Addison-Wesley, was
very helpful — they sent me the original press-
printed proofs of my book, from which The Art

of Computer Programming had been made. The
process in the 60s . . .

Details for paragraphs and lines. How to find
the word or section in the text which is responsible

Udo Wermuth

for a bad value in the statistics? My solution involves
the scripts creating two additional files, one with
the data about the paragraphs, the other listing the
values of all lines (see Figs. 11 and 13).

Figure 11 shows the following information for
each paragraph in one line: a sequential number,
the number of passes, the number of breakpoints
in each pass, the number of lines used, the optimal
number of lines, the active looseness, lines found in
each pass, number of lines with infinite badness, the
minimal badness, the maximal badness, the number
of lines that are very loose, loose, decent, and tight,
the number of hyphens and implicit hyphens, the
longest sequence of hyphenated lines, and a flag to
indicate if the second last line is hyphenated. En-
tries in parentheses stand for failed passes, slashes
separate the data of the passes. Figure 13 lists all
the details about the lines separated by dashed lines
that repeat some data of the paragraph. The dashed
lines show the number of the paragraph, the num-
ber of lines created (for all passes), lines found per
pass, the active looseness, and the optimal number
of lines. For each line the line number, the line bad-
ness, the penalty at the end of the line, the line
demerits, the fitness class, three flags for a hyphen
at the end of the line, stacks at the start or end of
the line, an approximation to the number of words
and the content of the line is output.

To locate, for example, paragraphs that have
the longest sequence of lines that end with a hyphen,
check the column “seq” in the list of paragraphs
(Fig. 11) and go to the entries for this paragraph
in the list of lines (Fig. 13) to see the text. In some
cases the list of lines can be consulted directly. For
example, in the column “FitClass” the word “tight”
is moved to the left and the word “loose” to the
right. This helps to find visually incompatible lines.

My Rexx scripts output probably too much
data. Everything that the trace data shows is
printed. At least it serves as educational material.

5 Remarks about \looseness

Let’s look a little bit closer at the integer parameter
\looseness and how it influences the line-breaking
algorithm and as a consequence also the trace data
output. It would be nice to inform an author about
the number of lines his paragraph can have.

Example 2 has shown that the looseness does
not force the algorithm to make a second pass. Only
when a pass cannot provide the desired number of
lines does TEX start the next pass because the pre-
vious pass counts as failed. Therefore, some state-
ments in [14] are wrong in general.

TUGboat, Volume 37 (2016), No. 3 369

In this section the following facts are shown.

1. In different passes a paragraph can have differ-
ent number of lines.

2. The use of looseness might result in the execu-
tion of a second or third pass.

3. A possible emergency pass is not executed if a
previous pass is successful.

4. A possibility to shorten a paragraph with the
same pass is not always reported explicitly in
the trace data.

5. Similarly, a possibility to lengthen a paragraph
might not be reported.

6. The use of looseness might result in different
line breaks even if no additional pass is run.

7. This can also happen with a “neutral” par-
shape.

Different number of lines in the passes. When
TEX has successfully finished a pass, it builds from
the feasible breakpoints the paragraph with the low-
est total demerits. During this process the best num-
ber of lines N for the paragraph is also determined.
A non-zero looseness forces TEX’s algorithm to go
again through the feasible breakpoints but this time
it picks those that change the number of lines by
the given value of \looseness. If this is not pos-
sible, the pass fails and, if it is not the final pass,
the next pass is executed. The last pass outputs the
paragraph even in a failed situation. The number of
lines is then the best approximation that TEX has
found to the sum of lines for lowest total demerits
and the looseness value. Note that the number N

is determined individually for each pass. The value
for the second pass might be equal to the value of
a successful first pass. But other cases are possible
too, as the following example shows.

Example 6: TEX input

Hi \TeX. Tell me how is the following long
word hyphenated: ‘antidisestablishmentarianism’?
Now do it.

\noindent Hi! \TeX! Tell me: How is the
following long word broken
’pneumonoultramicroscopicsilicovolcanoconiosis’?
I am sure that you are an expert in hyphenation,
right \TeX?

\smallskip \pretolerance=-1

Hi \TeX. Tell me how is the following long . . .

TEX output

Hi TEX. Tell me how is the following long word
hyphenated: ‘antidisestablishmentarianism’? Now do
it.

Hi! TEX! Tell me: How is the following long word broken
’pneumonoultramicroscopicsilicovolcanoconiosis’? I am
sure that you are an expert in hyphenation, right TEX?

Tracing paragraphs

Hi TEX. Tell me how is the following long word hy-
phenated: ‘antidisestablishmentarianism’? Now do it.
Hi! TEX! Tell me: How is the following long word bro-
ken ’pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right
TEX?

The first two paragraphs are typeset in the first
pass. When that pass is suppressed, as in the third
and fourth paragraphs, the pass which tries hyphen-
ation is the only available pass. As the output shows,
instead of three lines once two and once four are
built. Larger differences between passes are possi-
ble as [14] points out. In the case that the second
pass creates N lines and the first pass N + 2, a
\looseness=1 which the first pass cannot fulfill but
the second can result in a shorter paragraph—and
TEX claims success. The shortest paragraph with
this property that I was able to construct with text
in cmr9 and an \hsize of 225 pt has N = 39.

Therefore, if \looseness=-1 is applied to the
second paragraph of example 6 with three lines the
result is a successful (based on TEX’s rating) sec-
ond pass that shortened a four line paragraph to
three lines. Even if \emergencystretch has a posi-
tive value TEX does not run a third pass. The para-
graph looks identical to the output of the first pass.

An emergency pass is made if the second pass
fails to create the requested number of lines.

Example 7: TEX input

\pretolerance=-1

\looseness=1 \noindent Hi! \TeX! Tell me:
How is the following long word broken
’pneumonoultramicroscopicsilicovolcanoconiosis’?
I am sure that you are an expert in hyphenation,
right?

\emergencystretch=6.75pt

\looseness=1 \noindent Hi! \TeX! Tell me: . . .

TEX output

Hi! TEX! Tell me: How is the following long word bro-
ken ’pneumonoultramicroscopicsilicovolcanoconiosis’? I
am sure that you are an expert in hyphenation, right?
Hi! TEX! Tell me: How is the following long word
broken ’pneumonoultramicroscopicsilicovolcanoconio-
sis’? I am sure that you are an expert in hyphenation,
right?

The pass can build only three lines, so TEX exe-
cutes for the second paragraph an emergency pass as
the \emergencystretch is positive. The next exam-
ple specifies a positive value for \emergencystretch
but no emergency pass is executed.

Example 8: TEX input

\tracingparagraphs=1 \emergencystretch=4.5pt

\looseness=1
This is a short paragraph and two words can

370 TUGboat, Volume 37 (2016), No. 3

have a hyphen in it. The rest of the text
is made up of short words only. Well, I
think the first sentence is wrong. Wait
then one more must be wrong. Two are wrong.

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of
short words only. Well, I think the first sentence is
wrong. Wait then one more must be wrong. Two are
wrong.

As the trace data proves in line 17 the line-
breaking algorithm is successful in the first pass. It
creates a paragraph of four lines. In order to increase
this number TEX performs a second pass.

Example 8 continued: Log file contents

1. @firstpass
2. []\ninerm This is a short paragraph and two

words can have
3. @ via @@0 b=0 p=0 d=100

. . .

16. Wait then one more must be wrong. Two are
wrong.

17. @\par via @@4 b=0 p=-10000 d=100
18. @@5: line 4.2- t=2509 -> @@4
19. @secondpass
20. []\ninerm This is a short para-graph and two

words can have
21. @ via @@0 b=0 p=0 d=100
. . .

39. Wait then one more must be wrong. Two are
40. @ via @@5 b=12 p=0 d=10484
41. @@7: line 4.2 t=60914 -> @@5
42. wrong.
43. @\par via @@6 b=0 p=-10000 d=100
44. @@8: line 4.2- t=2509 -> @@6
45. @\par via @@7 b=0 p=-10000 d=100
46. @@9: line 5.2- t=61014 -> @@7

No information in the trace data. The infor-
mation in the trace of example 1 that the paragraph
could be typeset with six instead of seven lines was
part of the construction of the example. Here are
some examples which demonstrate that this is not
always reported. The first example uses a negative
value for \looseness.

Example 9: TEX input

\tracingparagraphs=1

This is a short paragraph and two words can
have a hyphen in it. The rest of the text
is made up of short words only. I think the
first sentence is wrong. Wait then the next
one must be wrong too. Two are wrong, or?

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. I think the first sentence is wrong. Wait
then the next one must be wrong too. Two are wrong,
or?

Udo Wermuth

The line-breaking algorithm finds seven feasi-
ble breakpoints and the reported breaks are for a
paragraph of five lines. It is not reported that the
paragraph can be set in four lines.

Example 9 continued: Log file contents

1. @firstpass
2. []\ninerm This is a short paragraph and two

words can have
3. @ via @@0 b=0 p=0 d=100
4. @@1: line 1.2 t=100 -> @@0
5. a
6. @ via @@0 b=19 p=0 d=841
7. @@2: line 1.3 t=841 -> @@0
8. hyphen in it. The rest of the text is made

up of short
9. @ via @@1 b=0 p=0 d=100

10. @ via @@2 b=4 p=0 d=196
11. @@3: line 2.2 t=200 -> @@1
12. words only. I think the first sentence is

wrong. Wait
13. @ via @@3 b=24 p=0 d=1156
14. @@4: line 3.1 t=1356 -> @@3
15. then
16. @ via @@3 b=89 p=0 d=9801
17. @@5: line 3.3 t=10001 -> @@3
18. the next one must be wrong too. Two are

wrong,
19. @ via @@4 b=1 p=0 d=121
20. @@6: line 4.2 t=1477 -> @@4
21. or?
22. @\par via @@5 b=0 p=-10000 d=100
23. @\par via @@6 b=0 p=-10000 d=100
24. @@7: line 5.2- t=1577 -> @@6

Nevertheless, the setting \looseness=-1 suc-
ceeds in the first pass and a four line paragraph is
output.

Example 9 continued: TEX input

\tracingparagraphs=1

\looseness=-1
This is a short paragraph and two words can . . .

TEX output

This is a short paragraph and two words can have
a hyphen in it. The rest of the text is made up of short
words only. I think the first sentence is wrong. Wait then
the next one must be wrong too. Two are wrong, or?

The log file contains only one additional line,
the feasible breakpoint for a shorter paragraph in
line 23.

Example 9 continued: Log file contents

1. @firstpass
2. []\ninerm This is a short paragraph and two

words can have
3. @ via @@0 b=0 p=0 d=100

. . .

21. or?
22. @\par via @@5 b=0 p=-10000 d=100
23. @@7: line 4.2- t=10101 -> @@5
24. @\par via @@6 b=0 p=-10000 d=100
25. @@8: line 5.2- t=1577 -> @@6

TUGboat, Volume 37 (2016), No. 3 371

The next example sets the looseness parame-
ter to 1, i.e., the number of lines for the paragraph
should be one more than the optimum.

Example 10: TEX input

\tracingparagraphs=1

Let’s look at another example. We saw that
$\root3\of8=2$ and $2^3=8$. What happens when 2
and 3 are switched? The equal sign is wrong! So
write $\root2\of8\neq3$ and $3^2\neq8$.

\looseness=1
Let’s look at another example. We saw that . . .

TEX output

Let’s look at another example. We saw that 3
√
8 = 2

and 23 = 8. What happens when 2 and 3 are switched?
The equal sign is wrong! So write 2

√
8 6= 3 and 32 6= 8.

Let’s look at another example. We saw that 3
√
8 = 2

and 23 = 8. What happens when 2 and 3 are switched?
The equal sign is wrong! So write 2

√
8 6= 3 and 32 6=

8.

Again only one additional feasible breakpoint
appears in the trace for the longer paragraph (see
line 38). In both cases only the first pass is executed.

Example 10 continued: Log file contents

1. @firstpass
2. []\ninerm Let’s look at another example. We

saw that $[][] =
3. @\penalty via @@0 b=0 p=500 d=250100
4. @@1: line 1.2 t=250100 -> @@0
5. 2$
6. @\math via @@0 b=73 p=0 d=6889
7. @@2: line 1.3 t=6889 -> @@0
8. and $2[] = 8$. What happens when 2 and 3

are switched?
9. @ via @@1 b=53 p=0 d=3969

10. @ via @@2 b=0 p=0 d=100
11. @@3: line 2.2 t=6989 -> @@2
12. The equal sign is wrong! So write $[][]

\ninesy 6\ninerm = 3$ and $3[] \ninesy
6\ninerm =

13. @\penalty via @@3 b=23 p=500 d=251089
14. @@4: line 3.1 t=258078 -> @@3
15. 8$.
16. @\par via @@3 b=0 p=-10000 d=100
17. @\par via @@4 b=0 p=-10000 d=100
18. @@5: line 3.2- t=7089 -> @@3
19.

20. @firstpass
. . .

35. @\par via @@3 b=0 p=-10000 d=100
36. @@5: line 3.2- t=7089 -> @@3
37. @\par via @@4 b=0 p=-10000 d=100
38. @@6: line 4.2- t=258178 -> @@4

If we want more information in the trace data,
we have to find a way to have TEX report feasible
breakpoints without setting \looseness. Unfortu-
nately, this is not possible. A non-zero \looseness

does two things: a) it changes the number of “easy”

Tracing paragraphs

lines to TEX’s maximum and b) it forces the exe-
cution of a slightly more complicated loop to find
breakpoints. The code of this loop is shown in § 875
of [8] and it is only executed if the looseness param-
eter has a non-zero value (§ 873). But as both ex-
amples show, the possibility to shorten or lengthen
a paragraph seems to be indirectly included in the
end-of-par break candidates. The line number of the
feasible breakpoints associated with an end-of-par
break candidate can simply be increased by one and
that value gives a possible alternative.

A digression. The change in item a) can be simu-
lated and it has an interesting side effect: TEX might
change the output of a paragraph with a non-zero
\looseness even if the looseness command cannot
be obeyed.

Example 11: TEX input

\tracingparagraphs=1 \pretolerance=-1

A one! Or two! Oh! A one! A two! A three!
It is a lovely day and I’ve got a feeling!
A new feeling! Yes it’s a sunny day! Good
day! Sunshine! Sunshine! Sun! I’m in ---
hey, the text of the song sounds familiar.

\looseness=-1
A one! Or two! Oh! A one! A two! A three! . . .

TEX output

A one! Or two! Oh! A one! A two! A three! It is a
lovely day and I’ve got a feeling! A new feeling! Yes it’s
a sunny day! Good day! Sunshine! Sunshine! Sun! I’m
in — hey, the text of the song sounds familiar.

A one! Or two! Oh! A one! A two! A three! It is
a lovely day and I’ve got a feeling! A new feeling! Yes
it’s a sunny day! Good day! Sunshine! Sunshine! Sun!
I’m in — hey, the text of the song sounds familiar.

The line-breaking algorithm uses an internal
counter to mark certain lines as “easy.” TEX’s al-
gorithm saves space and time by the fact that after
a certain point all lines have the same length ([8,
§ 818]) and this point is given by that counter. As
stated in a), the counter is set to its maximum if
\looseness is used. In example 2 we observed that
the sequence of breakpoints in the trace output was
changed compared to example 1. This effect has to
do with the counter for easy lines (see [8, § 819]). As
TEX picks the first break candidate that minimizes
the total demerits the sequence is important.

The effect is seen not only when \looseness

is non-zero, as the internal counter for easy lines
is also set by \hangindent and \parshape (see
[8, §§ 848–849]). A “neutral” \parshape specifica-
tion—all lines have length \hsize and there are
more lines than the paragraph will have— increases
the counter for easy lines high enough to stimulate
the same output as a non-zero value for \looseness.

372 TUGboat, Volume 37 (2016), No. 3

A five-line parshape outputs the paragraph in the
style of the second paragraph above.

Example 12: TEX input

\def\fivelineparshape{\parshape 5 0pt \hsize
0pt \hsize 0pt \hsize 0pt \hsize 0pt \hsize }
\tracingparagraphs=1

A one! Or two! Oh! A one! A two! A three! . . .

\fivelineparshape
A one! Or two! Oh! A one! A two! A three! . . .

TEX output

A one! Or two! Oh! A one! A two! A three! It is a
lovely day and I’ve got a feeling! A new feeling! Yes it’s
a sunny day! Good day! Sunshine! Sunshine! Sun! I’m
in — hey, the text of the song sounds familiar.

A one! Or two! Oh! A one! A two! A three! It is
a lovely day and I’ve got a feeling! A new feeling! Yes
it’s a sunny day! Good day! Sunshine! Sunshine! Sun!
I’m in — hey, the text of the song sounds familiar.

Let’s look at the trace data. In this example two
different sets of line breaks produce exactly the same
total demerits, but in the first the line badnesses are
2, 1, 0, and in the second, 0, 2, 1.

Example 12 continued: Log file contents

1. @firstpass
2. []\ninerm A one! Or two! Oh! A one! A two!

A three!
3. @ via @@0 b=57 p=0 d=4489
4. @@1: line 1.1 t=4489 -> @@0
5. It
6. @ via @@0 b=7 p=0 d=289
7. @@2: line 1.2 t=289 -> @@0
8. is
9. @ via @@0 b=0 p=0 d=100

10. @@3: line 1.2 t=100 -> @@0
11. a
12. @ via @@0 b=2 p=0 d=144
13. @@4: line 1.2 t=144 -> @@0
14. lovely day and I’ve got a feeling! A new

feeling!
15. @ via @@1 b=1 p=0 d=121
16. @ via @@2 b=40 p=0 d=2500
17. @@5: line 2.1 t=2789 -> @@2
18. @@6: line 2.2 t=4610 -> @@1
19. Yes
20. @ via @@2 b=3 p=0 d=169
21. @ via @@3 b=2 p=0 d=144
22. @ via @@4 b=25 p=0 d=1225
23. @@7: line 2.1 t=1369 -> @@4
24. @@8: line 2.2 t=244 -> @@3
25. it’s
26. @ via @@3 b=64 p=0 d=5476
27. @ via @@4 b=1 p=0 d=121
28. @@9: line 2.2 t=265 -> @@4
29. @@10: line 2.3 t=5576 -> @@3
30. a
31. @ via @@4 b=64 p=0 d=5476
32. @@11: line 2.3 t=5620 -> @@4
33. sunny day! Good day! Sunshine! Sunshine!
34. @ via @@5 b=8 p=0 d=324
35. @ via @@6 b=8 p=0 d=324

Udo Wermuth

36. @@12: line 3.2 t=3113 -> @@5
37. Sun!
38. @ via @@7 b=1 p=0 d=121
39. @ via @@8 b=1 p=0 d=121
40. @ via @@9 b=62 p=0 d=5184
41. @ via @@10 b=62 p=0 d=15184
42. @@13: line 3.1 t=5449 -> @@9
43. @@14: line 3.2 t=365 -> @@8
44. I’m
45. @ via @@9 b=0 p=0 d=100
46. @ via @@10 b=0 p=0 d=100
47. @ via @@11 b=5 p=0 d=225
48. @@15: line 3.2 t=365 -> @@9
49. in
50. @ via @@11 b=1 p=0 d=121
51. @@16: line 3.2 t=5741 -> @@11
52. --- hey, the text of the song sounds

familiar.
53. @\par via @@12 b=2 p=-10000 d=144
54. @\par via @@13 b=0 p=-10000 d=100
55. @\par via @@14 b=0 p=-10000 d=100
56. @\par via @@15 b=0 p=-10000 d=100
57. @\par via @@16 b=0 p=-10000 d=100
58. @@17: line 4.2- t=465 -> @@15
59.

60. @firstpass
61. []\ninerm A one! Or two! Oh! A one! A two!

A three!
62. @ via @@0 b=57 p=0 d=4489
63. @@1: line 1.1 t=4489 -> @@0
64. It
. . .

74. @ via @@2 b=40 p=0 d=2500
75. @ via @@1 b=1 p=0 d=121
76. @@5: line 2.1 t=2789 -> @@2
77. @@6: line 2.2 t=4610 -> @@1
78. Yes
. . .

112. @\par via @@16 b=0 p=-10000 d=100
113. @\par via @@15 b=0 p=-10000 d=100
114. @\par via @@13 b=0 p=-10000 d=100
115. @\par via @@14 b=0 p=-10000 d=100
116. @\par via @@12 b=2 p=-10000 d=144
117. @@17: line 4.2- t=465 -> @@14

Look at lines 53–58 and 112–117: the best final
feasible breakpoints select different previous feasible
breakpoints, as the order of the break candidates
is not the same. In other places of the trace this
happens too but without consequence.

References

[1] Martin Budaj, findhyph, V3.4, 18.10.2015
http://ctan.org/pkg/findhyph

[2] The Chicago Manual of Style, th edition,
Chicago, Illinois: University of Chicago Press, 2003

[3] Patrick Gundlach, showhyphens, V0.5c, 19.02.2016
http://ctan.org/pkg/showhyphens

[4] Patrick Gundlach, lua-check-hyphen, V0.4,
02.04.2016
http://ctan.org/pkg/lua-check-hyphen

TUGboat, Volume 37 (2016), No. 3 373

[5] Donald E. Knuth and Michael F. Plass, “Breaking
paragraphs into lines,” Software—Practice and

Experience 11 (1981), 1119–1184; reprinted with
an addendum as Chapter 3 in [13], 67–155

[6] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984

[7] Donald E. Knuth, “A torture test for TEX,” Stan-
ford Computer Science Report STAN-CS-84-1027,
Stanford, California: Stanford University, 1984

[8] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston, Massachu-
setts: Addison-Wesley, 1986

[9] Donald E. Knuth, Computer Modern Typefaces,
Volume E of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986

[10] Donald E. Knuth, “The DVItype processor,” in
TEXware, Stanford Computer Science Report
STAN-CS-86-1097, Stanford, California: Stan-
ford University, 1986 (David R. Fuchs designed the
first program, Peter Breitenlohner helped with the
latest revisions)
http://ctan.org/pkg/dvitype

[11] Donald E. Knuth, “Exercises for TEX: The Pro-
gram”, TUGboat 11:2 (1990), 165–170; answers
are given in: TUGboat 11:4 (1990), 499–511;
reprinted together as Chapter 10 in [13], 197–223
(exercise 28 is in the reprint exercise 25)
http://tug.org/TUGboat/tb11-2/tb28knut.pdf

http://tug.org/TUGboat/tb11-4/tb30knut-
exercises.pdf

[12] Donald E. Knuth, “CSTUG, Charles University,
Prague, March 1996: Questions and Answers with
Prof. Donald E. Knuth,” TUGboat 17:4 (1996),
355–367; reprinted as Chapter 32 in [13], 601–624
http://tug.org/TUGboat/tb17-4/tb53knuc.pdf

[13] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999

[14] Frank Mittelbach, “\looseness on the loose,”
TUGboat 29:2 (2008), 334; also published in
Die TEXnische Komödie 19:4 (2007), 41; and in:
“Pearls of TEX programming,” TUGboat 26:3
(2005), 256–263, as “\looseness not so loose”
(p. 259)
http://tug.org/TUGboat/tb29-2/tb92mitt.pdf

[15] Udo Wermuth, “Typesetting the ‘Begriffsschrift’
by Gottlob Frege in plain TEX”, TUGboat 36:3
(2015), 243–256
http://tug.org/TUGboat/tb36-3/tb114wermuth.
pdf

⋄ Udo Wermuth
Babenhäuser Straße 6
63128 Dietzenbach
Germany
u dot wermuth (at) icloud dot com

Tracing paragraphs

374 TUGboat, Volume 37 (2016), No. 3

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from April–October 2016, with
descriptions based on the announcements and edited
for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred; of course, this is not intended to slight the
other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to
the TEX community. (See also ctan.org/topic.)
Comments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

biblio

apalike-german in biblio/bibtex/contrib

apalike.bst with German localization.
biolett-bst in biblio/bibtex/contrib

BibTEX style for Biology Letters.
ietfbibs in biblio/bibtex/utils

Generate BibTEX entries for IETF index files.
pbibtex-base in biblio/pbibtex

Base files for the Japanese pBibTEX.

fonts

baekmuk in fonts

Baekmuk Korean fonts, in TrueType.
beuron in fonts

Monumental capitals from the Beuron art school.
chivo in fonts

The contemporary grotesque Chivo.
* cormorantgaramond in fonts

A contemporary Garamond-based family in several
weights and styles.

eulerpx in fonts

Modern interface for the Euler math fonts.
fonts-churchslavonic in fonts

Fonts for the Church Slavonic language.
frederika2016 in fonts

Zapf’s calligraphic Greek companion to his Virtuosa,
in OpenType.

oldstandardt1 in fonts

Type 1 versions of the Old Standard fonts previously
common in Russia.

ptex-fonts in fonts

Fonts used with pTEX, originally from ptex-texmf.

rosario in fonts

The contemporary semiserif Rosario.
unfonts in fonts

Korean Un-fonts collection, in TrueType.
unfonts-extra in fonts

Korean Un-fonts collection extras, in TrueType.
uppunctlm in fonts

Keep upright shape for punctuation and numerals.
uptex-fonts in fonts

Japanese fonts used with upTEX.
yinit-otf in fonts/gothic

Haralambous’ Old German initials in OpenType.
zhmetrics-uptex in fonts

Chinese font metrics for upTEX.

graphics

axodraw2 in graphics

Feynman diagrams in LATEX.
binarytree in graphics/pgf/contrib

Draw binary trees with TikZ.
mgltex in graphics

Create graphics from MathGL scripts embedded
directly in a document.

pgf-spectra in graphics/pgf/contrib

Draw spectra of elements in PGF.
pst-cie in graphics/pstricks/contrib

Draw (many kinds of) arrows in PSTricks.
table-fct in graphics/pstricks/contrib

Draw variations table of a function and convexity
table of its graph.

tikz-page in graphics

Help visualize page layout.

info

latex2e-help-texinfo-fr in info

French translation of latex2e-help-texinfo.
pstricks-examples-7 in info

Examples from the 7th edition PSTricks book by
Herbert Voß.

texproposal in info

LATEX promotion proposal for Chinese universities.

language

banglatex in language/bengali

Enhanced LATEX integration for Bangla.
bxjalipsum in language/japanese

Dummy Japanese text, counterpart of lipsum.
churchslavonic in language/churchslavonic

Typesetting in the Church Slavonic language,
platex-base in language/japanese

Format and other support for pLATEX.
ptex-base in language/japanese

Format and other support for (e)pTEX.
ptex-tools in language/japanese

(u)pLATEX standard tools bundle.
uplatex-base in language/japanese

Format and other support for upLATEX.

fonts/rosario

TUGboat, Volume 37 (2016), No. 3 375

uptex-base in language/japanese

Format and other support for upTEX.

macros/generic

autoaligne in macros/generic

Align terms and members in math expressions.
listofitems in macros/generic

Operate on lists with user-specified separator.
markdown in macros/generic

Support for Markdown across engines via Lua.
olsak-misc in macros/generic

Single-file plain TEX macros by Petr Oľsák.
randomlist in macros/generic

Operate on random list elements.

macros/latex/contrib

acmart in macros/latex/contrib

Support for ACM publications.
* addfont in macros/latex/contrib

Easier use of fonts without explicit LATEX support.
artthreads in macros/latex/contrib

Support for PDF article threads across drivers.
aucklandthesis in macros/latex/contrib

Support for University of Auckland theses.
aurl in macros/latex/contrib

Semantic Web hyperlinks, such as for rdf:type.
autobreak in macros/latex/contrib

Simple line/page breaking in align environments.
bangorexam in macros/latex/contrib

Support for Bangor University examinations.
bxenclose in macros/latex/contrib

Hooks for beginning/end of document body.
bxnewfont in macros/latex/contrib

\newfontx command allowing font size changes.
coloring in macros/latex/contrib

Implicitly define named colors.
cookingunits in macros/latex/contrib

Convert and typeset cooking units.
cquthesis in macros/latex/contrib

Thesis template for Chongqing University.
datepicker-pro in macros/latex/contrib

Date chooser for Adobe Reader and related.
diffcoeff in macros/latex/contrib

Write differential coefficients easily.
graphics-def in macros/latex/contrib

LATEX graphics drivers: pdftex.def, luatex.def,
xetex.def, dvipdfmx.def, dvisvgm.def.

ecgdraw in macros/latex/contrib

Draw electrocardiograms.
emf in macros/latex/contrib

Support for the EMF (electromotive force) symbol.
fetchbibpes in macros/latex/contrib

Fetch Bible passages from self-defined collection.
filecontentsdef in macros/latex/contrib

Display verbatim TEX and make PDF attachment.
footnotehyper in macros/latex/contrib

Make footnote.sty compatible with hyperref

and (x)color.

fvextra in macros/latex/contrib

Automatic line breaking, improved math mode,
and other fancyvrb enhancements.

getargs in macros/latex/contrib

Flexible list-parsing macro.
glossaries-finnish in macros/latex/contrib

Finnish language module for glossaries.
grant in macros/latex/contrib

Support for US government grant proposals.
hustthesis in macros/latex/contrib

Unofficial thesis template for Huazhong University.
ijsra in macros/latex/contrib

Support for the International Journal of Student

Research in Archaeology.
jacow in macros/latex/contrib

Support for submissions to the Joint Accelerator
Conferences Website.

latexgit in macros/latex/contrib

Fetch and typeset Git information.
ling-macros in macros/latex/contrib

Macros for typesetting formal linguistics.
linop in macros/latex/contrib

Linear operators as in quantum theory, etc.
makebase in macros/latex/contrib

Typeset a counter in any numeric base (default 16).
milog in macros/latex/contrib

Fulfill German minimum wage law requirements.
navydocs in macros/latex/contrib

Support for US Navy technical reports.
notespage in macros/latex/contrib

Fill documents with notes pages and/or notes
areas.

nwejm in macros/latex/contrib

Support for the new journal North-Western

European Journal of Mathematics.
optidef in macros/latex/contrib

Support for writing minimization problems.
overlays in macros/latex/contrib

Lightweight alternative for incremental slides.
phffullpagefigure in macros/latex/contrib

Figure content on a full page, with separate caption.
* phfnote in macros/latex/contrib

Simple but flexible formatting for short documents.
phfparen in macros/latex/contrib

Simpler writing of parenthetic math expressions.
phfqit in macros/latex/contrib

Support for quantum information theory.
phfquotetext in macros/latex/contrib

Quote verbatim text without whitespace formatting.
phfsvnwatermark in macros/latex/contrib

Watermarks of version control data from Subversion.
phfthm in macros/latex/contrib

Enhanced theorem and proof environments.
phonenumbers in macros/latex/contrib

Typeset telephone numbers in LATEX.
quicktype in macros/latex/contrib

Abbreviations for quick typesetting.
revquantum in macros/latex/contrib

Easier writing of quantum papers for revtex4-1.

macros/latex/contrib/revquantum

376 TUGboat, Volume 37 (2016), No. 3

richtext in macros/latex/contrib

Rich text for fields made by the eforms package.
rpg-module in macros/latex/contrib

Old-school Dungeons & Dragons modules.
sanitize-umlaut in macros/latex/contrib

Sanitize umlauts in index entries for makeindex.
semantic-markup in macros/latex/contrib

Semantic markup in the spirit of the Text Encoding
Initiative, especially for humanities and music.

spalign in macros/latex/contrib

Typeset matrices and arrays with spaces and
semicolons as delimiters.

testidx in macros/latex/contrib

Dummy text for testing any indexing code.
tocdata in macros/latex/contrib

Add names or other text per sectioning entry in
contents and lists of figures.

typed-checklist in macros/latex/contrib

Checklists with different types of items.
umbclegislation in macros/latex/contrib

UMBC Student Government Association bills.
uspace in macros/latex/contrib

Giving meaning to Unicode space characters.
xcntperchap in macros/latex/contrib

Track multiple levels of sectioning.
xcolor-material in macros/latex/contrib

The colors of the Google Material Color Palette.

macros/latex/contrib/babel-contrib

babel-belarusian in m/l/c/babel-contrib

Babel support for Belarusian.

macros/latex/contrib/beamer-contrib

beamerswitch in m/l/c/beamer-contrib

Support for one Beamer document producing
slides, a handout, a reference, or other variants.

beamertheme-cuerna in m/l/c/beamer-contrib/themes

Beamer theme with four-color palette.

macros/latex/contrib/biblatex-contrib

biblatex-abnt in m/l/c/biblatex-contrib

Support for Brazil’s ABNT rules.
biblatex-bookinother in m/l/c/biblatex-contrib

New entry types and fields for books contained in
another work.

biblatex-claves in m/l/c/biblatex-contrib

Manage claves of old literature.
biblatex-gb7714-2015 in m/l/c/biblatex-contrib

Support for the Chinese GBT7714-2015.
biblatex-ijsra in m/l/c/biblatex-contrib

Support for the International Journal of Student

Research in Archaeology.
biblatex-iso690 in m/l/c/biblatex-contrib

Support for ISO 690:2010.
biblatex-lni in m/l/c/biblatex-contrib

Support for the Lecture Notes in Informatics.

biblatex-morenames in m/l/c/biblatex-contrib

New name fields for BibLATEX.
biblatex-nottsclassic in m/l/c/biblatex-contrib

Support for the University of Nottingham style.
biblatex-sbl in m/l/c/biblatex-contrib

Support for the Society of Biblical Literature.

macros/luatex

cstypo in macros/luatex/generic

Czech typography enforced via LuaTEX hooks.
nodetree in macros/luatex/generic

Visualize structure of node lists.

macros/xetex

font-change-xetex in macros/xetex/plain

Change text and math fonts in plain X ETEX.
langsci in macros/xetex/latex

Support for Language Science Press works.

support

byzantinemusic in support

Support for writing Byzantine music.
extractpdfmark in support

Extract page mode and destinations as PDFmarks.
gitfile-info in support

Get Git metadata for a specific file.
gregoriotex in support

Engraving Gregorian chant scores.
* latex2nemeth in support

Convert LATEX to Braille with Nemeth math.
latex-papersize in support

Compute LATEX settings for font and paper sizes.
pdflatexpicscale in support

Downscale graphics for smaller PDF sizes.
pdfxup in support

Compose n-up documents while removing margins.
* texosquery in support

Query basic locale, environment, file information.

Cartoon by John Atkinson (http://wronghands1.com).

m/l/c/biblatex-contrib/biblatex-morenames

TUGboat, Volume 37 (2016), No. 3 377

Die TEXnische Komödie 2–3/2016

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (http://www.
dante.de). (Non-technical items are omitted.)

Die TEXnische Komödie 2/2016

Uwe Ziegenhagen, Klausuren erstellen mit der
Dokumentenklasse exam [Creating examinations
with the exam document class]; pp. 40–51

The exam package provides a versatile and pow-
erful way to typeset examinations for use in schools
and universities. This article introduces the reader
to the basic functions of this class.

Alexander Senger, Schmuckfarben für X ELATEX
[Spot Colours für X ELATEX]; pp. 52–56

The xespotcolor package is used to display
spot colours in X ELATEX and LATEX+dvipdfmx. De-
veloped by Apostolos Syropoulos in 2016, it is a
reimplementation of the spotcolor package, pub-
lished by Jens Elstner in 2006.

Christine Römer, Konstituentenstrukturen
einfach und schön mit forest [Constituent
structures made simple and beautiful with forest];
pp. 57–62

Sašo Živanović, the author of the forest pack-
age, describes the package as follows: “It is due to
the awesome power of the supplementary facilities
of PGF/TikZ that Forest is now, I believe, the most
flexible tree typesetting package for LATEX you can
get.” In perhaps all cases it is much easier to handle
than other packages; even complex structures are not
a problem.

Rolf Niepraschk, Kalender mit persönlichen
Daten [Calendars with personal information];
pp. 63–66

A nice proposal for a calendar based on TikZ is
presented at www.texample.net/tikz/examples/a-
calender-for-doublesided-din-a4. One exam-
ple shows how personal calendar dates such as birth-
days or vacations can be highlighted, unfortunately
in a rather theoretical way. To prepare a calendar
for a colleague who wished to have such a calendar,
I created a document class which keeps the dates in
a separate file.

Herbert Voß, Geometrische Konstruktionen
[Geometric constructions]; pp. 67–69

The pst-eucl package allows one to construct
geometrical objects on the basis of defined points on
the plane. In so-called Voronoi diagrams (mathworld.
wolfram.com/VoronoiDiagram.html), named after
Georgi Feodosjewitsch Woronoi, only the circumcen-
ter of triangles is needed.

Die TEXnische Komödie 3/2016

Lukas C. Bossert, Uwe Ziegenhagen,

Herbert Voß, Integration von Python in TEX
am Beispiel von Katalogeinträgen [Catalogue
entries with Python and TEX]; pp. 7–20

Many dissertations in archeology contain a cat-
alogue at the end, which shows the analyzed data in
a certain scheme. In this article we implement an
efficient catalogue with the help of Python and show
a TEX-only solution as well.

Uwe Ziegenhagen, Parallel TEXen mit Python
[Parallel TEXing with Python]; pp. 21–23

In this article I briefly show, how—with the
help of Python—the typical multiple CPU cores in
a modern PC can be used to compile files in parallel
to save a significant amount of time.

Herbert Voß, Trennmuster und deren
Anwendung [Hyphenation patterns and their
application]; pp. 24–28

Since for most languages hyphenation rules can
hardly be expressed in algorithmic form, one can
only make use of database- or probability-based pro-
cedures. In general one does not care about the
internal mechanisms of the hyphenation algorithm,
but there are times when one would like to know why
a specific word was hyphenated as it was or what
hyphenations are possible at all.

Herbert Voß, Im Netz gefunden [Found in the
net]; pp. 29–41

In various mailing lists, web forums, newsgroups,
et al., one finds plenty of helpful information around
the topics of typesetting with TEX, LATEX, ConTEXt,
etc. Following are two recent items.
“How TEX reads source code”, by Ulrich Diez on
November 22, 2014 in news://de.comp.text.tex:
[. . .] I want to show how TEX reads the source file
and creates the tokens.

“Slanted characters with a bar”, by Heiko Oberdiek on
June 11, 2016 in http://tex.stackexchange.com/

questions/314238/bar-and-overline: The slant-
ing makes the correct length of the bar a little more
complicated. [An] example measures the width of an
upright X and uses this for the length of the bar.

[Received from Herbert Voß.]

Die TEXnische Komödie 2–3/2016

378 TUGboat, Volume 37 (2016), No. 3

2017 TEX Users Group election

Barbara Beeton
for the Elections Committee

The positions of TUG President and nine members of
the Board of Directors will be open as of the 2017 An-
nual Meeting, which will be held in April–May 2017 in
Bachotek, Poland.

The terms of these individuals will expire in 2017:
Karl Berry, Kaja Christiansen, Steve Grathwohl, Jim
Hefferon, Klaus Höppner, Steve Peter, Geoffrey Poore,
Arthur Reutenauer, Michael Sofka.

Continuing directors, with terms ending in 2019:
Barbara Beeton, Susan DeMeritt, Michael Doob, Cheryl
Ponchin, Norbert Preining, Boris Veytsman.

The election to choose the new President and Board
members will be held in early Spring of 2017. Nomina-
tions for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/
to the Board by submitting a nomination petition in
accordance with the TUG Election Procedures. Election
. . . shall be by . . . ballot of the entire membership, carried
out in accordance with those same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline published below. A
candidate’s membership dues for 2017 must be paid be-
fore the nomination deadline. The term of President is
two years, and the term of a member of the TUG Board
is four years.

A nomination form follows this announcement; forms
may also be obtained from the TUG office, or via http:

//tug.org/election.
Along with a nomination form, each candidate must

supply a passport-size photograph, a short biography,
and a statement of intent to be included with the bal-
lot; the biography and statement of intent together may
not exceed 400 words. The deadline for receipt of com-
plete nomination forms and ballot information is 5 p.m.
(PST) 1 February 2017 at the TUG office in Portland,
Oregon, USA. No exceptions will be made. Forms may
be submitted by fax, or scanned and submitted by email
to office@tug.org; receipt will be confirmed by email.

Information for obtaining ballot forms from the TUG

website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office; see address on the form. Marked ballots must
be received by the date noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by mid-April, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

2017 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2017
will be eligible to participate in the election. The signa-
tures of two (2) members in good standing at the time
they sign the nomination form are required in addition to
that of the nominee. Type or print names clearly, using
the name by which you are known to TUG. Names that
cannot be identified from the TUG membership records
will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2017 Annual Meeting,
April–May 2017.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion on
the ballot) must be received at the TUG office in Portland,
Oregon, USA, no later than 5 p.m. (PST) 1 Febru-
ary 2017.1 It is the responsibility of the candidate to
ensure that this deadline is met. Under no circumstances
will late or incomplete applications be accepted.

� nomination form
� photograph

� biography/personal statement

TEX Users Group
Nominations for 2017 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)

1 Supplementary material may be sent separately from the

form, and supporting signatures need not all appear on the

same form.

The information here comes from the consultants themselves.
We do not include information we know to be false, but we
cannot check out any of the information; we are transmitting
it to you as it was given to us and do not promise it is correct.
Also, this is not an official endorsement of the people listed
here. We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at tug.org/
consultants.html. If you’d like to be listed, please see there.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page layout
and typesetting services to authors or publishers world-wide.
We have been in business since the beginning of 1990. For
more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine typogra-
phy specs beyond those of the average LATEX macro package.
If you use X ETEX, we are your microtypography specialists.

We take special care to typeset mathematics well.
Not that picky? We also handle most of your typical TEX

and LATEX typesetting needs.
We have been typesetting in the commercial and academic

worlds since 1979.
Our team includes Masters-level computer scientists, jour-

neyman typographers, graphic designers, letterform/font de-
signers, artists, and a co-author of a TEX book.

de Bari, Onofrio and Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles; creation of
LATEX classes and packages; graphic design; conversion be-
tween different formats of documents.

We offer our services (related to publishing in Mathemat-

ics, Physics and Humanities) for documents in Italian, En-
glish, or French. Let us know the work plan and details;

we will find a customized solution. Please check our website
and/or send us email for further details.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of books,

manuscripts, articles, Word document conversions as well as
creating the customized packages to meet your needs.

Call or email to discuss your project or visit my website
for further details.

TUGboat, Volume 37 (2016), No. 3 379

TEXConsultants

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual, linguistic, and
technical typesetting using most flavors of TEX, I have typeset

books for Pragmatic Programmers, Oxford University Press,
Routledge, and Kluwer, among others, and have helped nu-

merous authors turn rough manuscripts, some with dozens

of languages, into beautiful camera-ready copy. In addition,
I’ve helped publishers write, maintain, and streamline TEX-
based publishing systems. I have an MA in Linguistics from
Harvard University and live in the New York metro area.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and program-

ming services.
I offer over 25 years of experience in programming, macro

writing, and typesetting books, articles, newsletters, and the-
ses in TEX and LATEX: Automated document conversion; Pro-
gramming in Perl, C, C++ and other languages; Writing and
customizing macro packages in TEX or LATEX; Generating
custom output in PDF, HTML and XML; Data format con-

version; Databases.
If you have a specialized TEX or LATEX need, or if you

are looking for the solution to your typographic problems,
contact me. I will be happy to discuss your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars. Integra-
tion with databases, automated document preparation, cus-
tom LATEX packages, conversions and much more. I have
about nineteen years of experience in TEX and three decades
of experience in teaching & training. I have authored several
packages on CTAN, published papers in TEX related jour-
nals, and conducted several workshops on TEX and related
subjects.

Webley, Jonathan

21 West Kilbride Road
Dalry, North Ayrshire, KA24 5DZ, UK
01294538225
Email: jonathan.webley (at) gmail.com

I specialize in math, physics and IT. However, I’m comfort-
able with most other science, engineering and technical ma-
terial and I’m willing to undertake most LATEX work. I’m
good with equations and tricky tables. I can also proofread
and copy-edit if required. I’ve done hundreds of papers for
journals over the years. Samples of work can be supplied on
request.

2017

Jan 13 – 14 College Book Art Association Annual
Meeting, “Conspire, Collaboration,
Cooperation and Collections”, Florida
State University, Tallahassee, Florida.
www.collegebookart.org

Feb 1 TUG election: nominations due.
tug.org/election

Feb 5 – 8 CODEX 2017, 6th Biennial International
Book Fair and Symposium,
Richmond, California.
www.codexfoundation.org

Feb 23 – 25 Typography Day 2017,
“Typography and Diversity”.
Department of Integrated Design
University of Moratuwa, Sri Lanka.
www.typoday.in

Feb 24 TUGboat 38:1 (regular issue), submission
deadline.

Mar 22 – 24 DANTE 2017 Frühjahrstagung and

56th meeting,
Deutsches Elektronen-Synchrotron
(DESY), Zeuthen, Germany.
www.dante.de/events.html

Mar 30 – 31 Center for Printing History & Culture,
“From Craft to Technology and
Back Again: print’s progress in the
twentieth century”,
National Print Museum, Dublin, Ireland.
http://www.cphc.org.uk/events

TUG2017 & BachoTEX2017

Bachotek, Poland.

Apr 29 –
May 3

The 38th annual meeting of the
TEX Users Group, jointly with the

25th meeting of GUST

and GUST’s 25th birthday.
tug.org/tug2017

380 TUGboat, Volume 37 (2016), No. 3

Calendar

May 12 TUGboat 38:2 (proceedings issue),
submission deadline.

May 21 – 26 16th Annual Book History Workshop,
Texas A&M University,
College Station, Texas.
cushing.library.tamu.edu/programs/

bookhistoryworkshop

May 25 – 27 TYPO Berlin 2017, “Wanderlust”,
Berlin, Germany.
typotalks.com/berlin

Jun 9 – 12 SHARP 2017, “Technologies of the Book”.
Society for the History of Authorship,
Reading & Publishing.
Victoria, BC, Canada.
www.sharpweb.org/main

Jul 5 – 7 The Fifteenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), “New Directions of the
Humanities in the Knowledge Society”,
Imperial College, London, UK.
thehumanities.com/2017-conference

Jul 30 –
Aug 3

SIGGRAPH 2017, “At the ♥ of
Computer Graphics & Interactive
Techniques”, Los Angeles, California.
s2017.siggraph.org

Aug 8 – 11 Digital Humanities 2017, Alliance of
Digital Humanities Organizations,
“Access”, McGill University, Montréal,
Canada. adho.org/conference

Sep 1 TUGboat 38:3 (regular issue), submission
deadline.

Sep 11 – 17 11th International ConTEXt Meeting,
Butzbach-Maibach, Germany.
meeting.contextgarden.net/2017

2018

Mar 2 TUGboat 39:1 (regular issue), submission
deadline.

Status as of 15 October 2016

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings. In-
terested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 37 (2016), No. 3

Introductory

275 Gareth Aye / Introducing LaTeX Base
• web-based LATEX editor supporting offline editing and real-time preview

256 Barbara Beeton / Editorial comments
• typography and TUGboat news

305 Hans Hagen / Colorful emojis via Unicode and OpenType
• Unicode now includes many emojis, and OpenType allows for coloring them

255 Jim Hefferon / President’s note
• TUG news and initiatives seeking help

259 David Walden / Interview with Federico Garcia-De Castro

Intermediate

374 Karl Berry / The treasure chest
• new CTAN packages, April–October 2016

264 Peter Flynn / Typographers’ Inn
• dashing it off; X ELATEX; logos

267 Hans Hagen / LuaTEX 1.0.0
• release of the first stable version of LuaTEX

306 Taco Hoekwater and Hans Hagen / Cowfont (koeieletters) update
• OpenType font with cows, sheep, math, logos, and other features

284 Werner Lemberg / A survey of the history of musical notation
• music notation from the earliest known to the present, across cultures, with many illustrations

277 Martin Ruckert / Computer Modern Roman fonts for ebooks
• careful comparison between METAFONT and other font formats for phones, laptops, etc.

Intermediate Plus

317 Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski / GUST e-foundry font projects
• past, present, future of Latin Modern, TEX Gyre, and more

337 Nicola Talbot / Localisation of TEX documents: tracklang
• distributing creation of translations for packages; simplifying use in documents

357 David Walden / Messing with endnotes
• small macro hacks for convenient endnote references

281 Peter Willadt / When image size matters
• semi-automatic downscaling images to save space and time

352 Peter Wilson / Glisterings: Index headers; Numerations; Real number comparison
• fancy headers with marks; automatic numbering; comparing real numbers

Advanced

269 Hans Hagen / LuaTEX 0.82 OpenType math enhancements
• increased flexibility and extensions to OpenType math handling

311 Linus Romer / Corrections for slanted stems in METAFONT and METAPOST

• formulae and macros to correct stem widths and angles when slanting

358 Udo Wermuth / Tracing paragraphs
• help from \tracingparagraphs for more pleasing documents

Contents of other TEX journals

377 Die TEXnische Komödie 2–3/2016

Reports and notices

376 John Atkinson / An asterisk’s lament

378 TUG Election committee / TUG 2017 election

254 Institutional members

379 TEX consulting and production services

380 Calendar

