TUGboat, Volume 37 (2016), No. 2

Advances in PythonTEX with
an introduction to fvextra

Geoffrey M. Poore

Abstract

The PythonTEX package allows Python and several
other programming languages to be embedded within
ITEX documents. It also typesets code with syntax
highlighting provided by the Pygments library for
Python. Code typesetting has been improved with
the new fvextra package, which builds on fancyvrb
by allowing long lines of code to be broken and by
providing several additional features. Code execution
has been improved by a new set of commands and
environments that perform variable substitution or
string interpolation. This makes it easier to mix
TEX with Python or other languages while avoiding
errors due to expansion, tokenization, and catcodes.

1 Limitations with code typesetting and
execution

In 2012, T released the first version of the PythonTEX
package [13| with the goal of making it simpler to
write mathematical and scientific ' TEX documents.
PythonTEX allows the BTEX source of a document to
contain both a mathematical result and the Python
code that calculated it, or both a plot and the Python
code that generated it. Originally, PythonTEX only
allowed Python code in a IMTEX document to be
executed, with the output included in the document.
It is now possible to execute Ruby, Octave, Sage,
Bash, and Rust code as well. From the beginning,
PythonTEX has also allowed general code typesetting
with syntax highlighting.

PythonTEX’s code typesetting has been func-
tional but relatively basic. It uses the Pygments
library [15] for Python to perform syntax highlight-
ing. (Pygments is also used for syntax highlighting
by the minted [14] package, which I maintain, as well
as the verbments [18], texments [3], and pygmentex [5]
packages.) Pygments supports over 300 languages
and can perform highlighting that would not be
practical in a pure XTEX solution such as the listings
package [2]. Yet Pygments is not without drawbacks.
It uses the fancyvrb package [16] to perform the ac-
tual code typesetting. fancyvrb lacks many of the
advanced features found in listings, such as the ability
to break long lines of code. Unfortunately, attempt-
ing to use listings instead of fancyvrb brings its own
set of issues; among other things, listings lacks built-
in support for UTF-8 and other multi-byte encodings
under the pdfTEX engine.

This paper introduces fvextra [12], a new package

187

I have created to address these limitations in code
typesetting. fvextra extends and patches fancyvrb.
It provides most of the features that fancyvrb lacks
compared to listings, including line breaking with fine-
grained control over break locations. The fvextra
package also provides additional features, such as
the ability to highlight specific lines or line ranges
based on line numbers. The most recent versions
of PythonTEX and minted require fvextra and fully
support all new features.

Another longstanding drawback in PythonTEX
relates to code execution rather than typesetting.
Documents that use PythonTEX are valid INTEX doc-
uments; there is no preprocessing step to produce
IATEX source. A PDF or other output is created by
running KTEX (code is saved to a temporary file),
then running the pythontex executable (code is exe-
cuted), and finally running INTEX again (code output
is brought into the final PDF). The advantage of this
approach is that it is possible to create macros that
mix MTEX with Python or other languages. Since
IXTEX handles all code before it is executed, code
can be assembled using macros. In a preprocessor
approach such as that used by Sweave [4], knitr [17],
and Pweave [9], this is generally not possible because
KTEX only receives a copy of the document in which
code has been replaced by its output.

The disadvantage of PythonTEX not being a
preprocessor is that KTEX does indeed process ev-
erything. For example, it is not possible to use a
PythonTEX command to insert Python output in
the midst of a verbatim environment; the command
would appear literally. Similarly, PythonTEX com-
mands can cause errors within tikzpicture envi-
ronments or in other situations in which characters
do not have their normal meanings (catcodes) or in
which other special processing is applied.

This paper introduces a new solution for these
scenarios. New commands and environments perform
variable substitution or string interpolation. These
effectively allow the preprocessor approach to be ap-
plied to the argument of a command or the contents
of an environment. It is now simpler to mix KXTEX
with Python or another language while avoiding er-
rors due to expansion, tokenization, and catcodes.

2 A brief overview of PythonTEX

Before describing new PythonTEX features, I will
briefly summarize PythonTEX usage to provide con-
text. General PythonTEX usage has been explored
in greater detail previously in TUGboat [6] and else-
where [10, 11].

Using PythonTEX involves loading the package
in the preamble:

Advances in PythonTEX with an introduction to fvextra

188

\usepackage{pythontex}

and modifying the compile process. As mentioned
above, PythonTEX requires a three-step compile. For
a document doc.tex, this might look like

pdflatex doc.tex

pythontex doc.tex

pdflatex doc.tex

The pythontex executable is typically installed along
with the package when PythonTEX is installed with
a TEX distribution’s package manager. The sec-
ond and third steps of the compile process are only
necessary when code needs to be executed or high-
lighted. PythonTEX caches all results to maximize
performance, and the pythontex executable will not
actually do anything unless it detects changes.

2.1 Code typesetting

PythonTEX provides a \pygment command and a
pygments environment for general code typesetting.
These are similar to the \mintinline command and
minted environment provided by the minted package.
Colorizing is automatic (but grayscaled here for the
printed TUGboat). For example,

Inline: \pygment{python}{var = "string"}

results in

Inline: var = "string"

The code may be delimited by a pair of curly braces,
as shown, or by a single pair of identical characters
(like \verb). Similarly,
\begin{pygments}{python}
def func(var):
return var 2
\end{pygments}

produces

def func(var):
return var**2

Code typesetting may be customized using fancyvrb’s
\fvset, which applies document-wide options, or the
\setpygmentsfv command, which restricts options
to \pygment and pygments.

There are also language-specific commands and
environments that do not need the language to be
specified. For example, \pyv and pyverbatim could
be substituted in the examples above if “{python}”
were deleted. Typesetting may be customized with
\fvset or \setpythontexfv.

2.2 Code execution

There is a \pyc command and a pycode environment
that may be used to execute Python code. Similar
commands and environments exist for Ruby, Octave,
Sage, Bash, and Rust. By default, anything that is

Geoffrey M. Poore

TUGDboat, Volume 37 (2016), No. 2

printed or written to stdout will automatically be
included in the document, just as if it had been saved
in an external file and then brought in via \input.
For example,

\begin{pycode}

print("Python says hello to \\tug!")

\end{pycode}
produces

Python says hello to TUG!

Notice that by default printed text is interpreted as
normal KTEX input, not as verbatim.

There is also a \py command for conveniently
inserting string representations of Python expressions
in a document. It would be possible to use the \pyc
command for this purpose. For example, to insert
the value of 28 into the document, this would suffice:

\pyc{print (2**8)3}
However, \py is more convenient:

\py{2**8}
It is also possible to use \py to insert the value
of a previously defined variable. For instance, if

\pyc{x = 2**8} had been used previously to set
the value of x, then \py{x} would produce 256.

2.3 Code typesetting and execution

There is a \pyb command and a pyblock environ-
ment that both typeset and execute code. Anything
printed or written to stdout by the code is not au-
tomatically inserted in the document, since it might
not be desirable to have typeset code immediately
next to its output. Instead, anything printed by
the most recent command or environment may be
inserted using the \printpythontex command.

3 An introduction to fvextra

The fancyvrb package was first publicly released in
1998 at version 2.5. A few bugs were fixed and a few
features added later that year in version 2.6. Since
then, the documentation lists two bug fixes, with
version 2.8 released in 2010. The stability of fancyvrb
speaks to its success as a fancy verbatim package.

I released the first version of the fvextra package
at the end of June 2016. The package focuses on
adding features to fancyvrb that improve code type-
setting, especially when used with syntax highlight-
ing provided by Pygments. fvextra also implements
a few patches to the fancyvrb internals and makes a
few changes to default fancyvrb behavior. All patches
and changes to defaults are detailed in the fvextra
documentation. At the end of July 2016, I released
PythonTEX version 0.15 and minted 2.4. These re-
quire the fvextra package and support all features
described below.

TUGboat, Volume 37 (2016), No. 2

3.1 Single quotation marks

By default, W' TEX verbatim commands and environ-
ments convert the backtick (*) and single typewriter
quotation mark (') into the left and right curly single
quotation marks (¢ ?). This behavior carries over into
fancyvrb. In typeset code, these characters should be
represented literally. This is typically accomplished
by manually loading the upquote package [1].

That approach has two drawbacks. First, not
using upquote by default means that it is easily for-
gotten. I have had the experience myself of reviewing
the final proofs of a paper, only to realize that I had
forgotten to load upquote. Second, when upquote
is loaded, obtaining the curly quotation marks is
inconvenient if they are ever legitimately desired in
a verbatim context.

The fvextra package requires upquote, so that
the default behavior is correct for typesetting code.
It also defines a new curlyquotes option that re-
stores the default XTEX behavior. For example, using
fancyvrb’s Verbatim environment,

\begin{Verbatim} [curlyquotes]
“Single quoted text'
\end{Verbatim}

yields
‘Single quoted text’

This eliminates one of the most common mistakes
in code typesetting while still providing convenient
access to the normal IATEX behavior.

3.2 Math in verbatim

The fancyvrb package allows typeset mathematics to
be embedded within verbatim material. Pygments
builds on this with its mathescape option, which
enables typeset math within code comments. That
can be useful when typesetting code that implements
mathematical or scientific algorithms.

A close examination of fancyvrb’s typeset math
within verbatim reveals that the result differs from
normal math mode. Spaces are significant and ap-
pear literally, rather than vanishing. The \text com-
mand provided by the amstext package [7] and loaded
as part of amsmath [8] uses the verbatim font rather
than the normal document font. The single quota-
tion mark (') causes an error rather than becom-
ing a prime (that is, being converted into ~\prime).
fvextra modifies typeset math within verbatim so
that all of these behave as expected. For example,

\begin{Verbatim} [commandchars=\\\{\},
mathescape]

Verbatim $x~2 + f_\text{sub}(x) = g''(x)$

\end{Verbatim}

189

now correctly produces
Verbatim 22 + foun(z) = ¢” ()

The commandchars option used in this example is
defined by fancyvrb and allows macros within oth-
erwise verbatim material. The mathescape option
is a new feature added by fvextra that serves as a
shortcut for giving the dollar sign, underscore, and
caret their normal math-related meanings. When
fvextra’s mathescape is used with code highlighted
by Pygments, it reduces to Pygments’ mathescape,
only producing typeset math in comments.

3.3 Tabs and tab expansion

By default, fancyvrb converts tabs into a fixed num-
ber of spaces, which may be controlled with the
tabsize option. It also offers tab expansion to tab
stops with the obeytabs option.

Tab expansion involves a clever recursive algo-
rithm. Each tab character causes everything that
precedes it in the current line of text to be saved
in a box, and the width of the box is compared to
the tab stop size to determine the needed width for
the current tab. (For those who would like more
details, this is defined in the \FV@@ObeyTabs and
\FV@TrueTab macros in fancyvrb.sty.)

The tab expansion algorithm works excellently
in normal verbatim contexts. Unfortunately, it also
fails spectacularly (and silently) when tabs occur
within macro arguments, which is common in Pyg-
ments output. In a multiline string or comment that
is indented with tabs, obeytabs typically causes all
lines except the first and the last to vanish, with no
errors or warnings.

fvextra patches tab expansion so that it will
never cause lines to vanish. Tab expansion for tabs
that are only preceded by spaces or tabs is always
correct, even for tabs that are in macro arguments.
This covers the most common case of tabs used for
indentation. Unfortunately, tab expansion is not
guaranteed to be correct for tabs within macro ar-
guments that are preceded by non-tab, non-space
characters. The limitations of the new tab expansion
algorithm are discussed in detail in the documenta-
tion.

Tabs are also improved in fvextra with the addi-
tion of the tab and tabcolor options. For example,

\begin{Verbatim} [showtabs,

tab=\rightarrowfill,
tabcolor=orange]
A tab-indented line of text

\end{Verbatim}

produces

A tab-indented line of text

Advances in PythonTEX with an introduction to fvextra

190

The original fancyvrb treatment of visible tabs was
modified so that variable-width symbols such as
\rightarrowfill expand to fill the full tab width.

3.4 Line highlighting

When writing about code, it can be useful to high-
light a specific line or range of lines based on line
numbers. As far as I know, fvextra is the first IXTEX
package to implement this with its highlightlines
and highlightcolor options. For example,

\begin{Verbatim} [numbers=left,
highlightlines={1, 3-4}]

First line

Second line

Third line

Fourth line

Fifth line

\end{Verbatim}

results in

First line
Second line
Third line
Fourth line
Fifth line

[N N

By default, a \colorbox that uses highlightcolor
is inserted around specified lines. Additional cus-
tomization is possible when desired. fvextra defines
macros that are applied to the first, last, and inner
lines in a range, as well as to isolated highlighted
lines and to unhighlighted lines. These macros may
be redefined to produce fancier highlighting.

3.5 Line breaking

The ability to automatically break long lines of code
is perhaps the most important feature present in
listings but missing in fancyvrb.

The fvextra package adds an option breaklines
that enables line breaking. Line breaking is turned
off by default, to ensure that the standard behavior
of fancyvrb is unchanged by fvextra. Perhaps it will
also encourage users to consider a smaller font size,
inserting hard line breaks, or otherwise modifying
code as an alternative to automatic line breaking.

By default, breaklines indents continuation
lines to the same indentation level as the start of
the line (adjustable via option breakautoindent),
and then adds a small amount of extra indentation
to make room for a line continuation symbol on the
left (adjustable via breaksymbolindentleft). For
instance,

A line that would eventually end up in the

— margin without breaklines
An indented line that would be too
— long without breaklines

Geoffrey M. Poore

TUGDboat, Volume 37 (2016), No. 2

Many options are provided for customizing break
indentation and break symbols. One possibility is to
use custom break symbols on both the left and the
right. Break symbols could be defined:

\newcommand{\symleft}{%

\ensuremath{\Rightarrow}}

\newcommand{\symright}{\raisebox{-1ex}{/%

\rotatebox{30}{\ensuremath{\Leftarrow}}}}
Then the following options could be added:
breaklines,

breaksymbolleft=\symleft,

breaksymbolright=\symright
An example using these settings is shown below.

A line that would eventually end up in Pz
= the margin without breaklines

By default, line breaks occur only at spaces when
the breaklines option is used. Breaks may also be
allowed anywhere (between non-space characters) by
turning on the additional option breakanywhere. In
many cases, however, simply breaking anywhere will
not be acceptable. Two more options, breakbefore
and breakafter, allow specific characters to be spec-
ified as break locations. For instance, setting

breakafter={+-=,}

allows breaks after any of the specified characters
(+-=,). This could be useful for allowing breaks
when spaces are not present while avoiding breaks
within variable names. Special ITEX characters
such as the percent sign and number sign must be
backslash-escaped when passed to breakbefore and
breakafter. When a given character is specified
as a potential break location, by default breaks
will not be inserted between identical characters;
rather, runs of identical characters are grouped. This
may be modified with the breakbeforegroup and
breakaftergroup options.

All of the breaking options discussed so far apply
equally well to both normal verbatim text and high-
lighted computer code output by Pygments. fvextra
also provides two line breaking options which are spe-
cific to Pygments output, and thus intended for the
PythonTEX and minted packages. The breakbytoken
option prevents line breaks from occurring within
Pygments tokens, such as strings, comments, key-
words, and operators. A complete list of Pygments
tokens is available at pygments.org/docs/tokens.
Breaks are still allowed at spaces outside tokens. The
breakbytoken option could be used in a case like

var = "string 1" + "string 2" + "string 3"
to prevent breaks from occurring inside the strings,
while still allowing breaks at spaces elsewhere.

There is also a breakbytokenanywhere option
that prevents breaks within tokens, but allows breaks

http://pygments.org/docs/tokens

TUGboat, Volume 37 (2016), No. 2

between immediately adjacent tokens. This could be
used in a case like

var = "string 1"+"string 2"+"string 3"

to prevent breaks within the strings while still allow-
ing breaks before and after the plus signs.

4 Variable substitution and string
interpolation

As mentioned in the introduction, one of the ad-
vantages of PythonTEX is that it allows macro pro-
gramming that mixes ¥ TEX with Python or another
language. For instance, I could define a command
that swaps the first and last characters in a string:

\newcommand{\swapfirstlast}[1]{/
\pyC{S = 11#1n}%
\py{s[-1] + s[1:-1] + s[0]}}

This stores the argument of the command as a Python
string, and then uses the character indices to swap
the first and last characters. Invoking

\swapfirstlast{0123456789}
yields
9123456780

Such convenience is only possible because PythonTEX
does not function as a preprocessor; N TEX handles
all text before code is seen by Python (or another
language) for evaluation, and then the result of eval-
uation is brought in during the next compile. In
this case, I TEX macros are used to assemble Python
code that is subsequently evaluated.

The downside of this approach is that it makes it
more difficult to evaluate Python code in a verbatim
or other special context. As should be expected,

\begin{Verbatim}
x = \py{2**16}
\end{Verbatim}

simply produces the literal text

x = \py{2**163}

Though that makes it convenient to write about
PythonTEX, it certainly does make it more difficult
to insert Python output in some situations.
In a case like this, it is possible to assemble all
of the text as a Python template, and then print it:
\begin{pycode}

g = "nn
\\begin{{Verbatim}}

x = {x}
\\end{{Verbatim}}
print(s.format (x=2**16))
\end{pycode}

191

That does give the desired result:
x = 65536

Unfortunately, a certain amount of complexity is
required even for this simple case. The backslash
must be escaped unless a raw string is used. Curly
braces, which are of course everywhere in IXTEX,
must be doubled to appear literally when used with
Python’s string formatting.

To simplify these cases, PythonTEX now in-
cludes a \pys command and pysub environment that
perform variable substitution or string interpolation.
Equivalent commands and environments exist for
Ruby, Octave, Sage, Bash, and Rust. Using the
pysub environment, the last example becomes

\begin{pysub}
\begin{Verbatim}
x = !'{2%x16}
\end{Verbatim}
\end{pysub}

The content of the environment is passed verba-
tim to Python. Substitution fields take the form
'{({expression)}. After (erpression) is evaluated, a
string representation of the result is returned to
BTEX. If (expression) is simply a variable name,
then it is replaced with a string representation of the
variable value.

The form !'{(expression)} was chosen because
the exclamation point is one of the few ASCII punc-
tuation characters without a special IATEX mean-
ing. Using more common string interpolation syntax
from other languages seemed unwise; $({variable),
${(expression)}, and #{(expression)} are constructs
which commonly appear in BTEX. Likewise, using
Python’s string formatting syntax of {({variable)}
would be problematic, since it would require all lit-
eral curly braces to be escaped by doubling.

The exact rules for delimiting and escaping
1 {{expression)} differ somewhat from standard BTEX
syntax. If a literal exclamation point followed by an
opening curly brace is desired, then the exclamation
point is escaped by doubling (!1!). A literal exclama-
tion point only needs to be escaped when followed
immediately by an opening curly brace. Curly braces
never need to be escaped, since they only delimit a
substitution field when they immediately follow an
unescaped exclamation point.

If (expression) is delimited by a single pair of
curly braces, !'{({expression)}, then it may contain
paired curly braces up to five levels deep. If the first
or last character in (expression) would be a curly
brace, then it must be separated from the delimiting
braces by a space; leading and trailing spaces are
stripped before (expression) is evaluated.

Advances in PythonTEX with an introduction to fvextra

192

While (expression) will typically contain paired
curly braces, there may be times when it does not. In
these cases, it may be delimited by a sequence of curly
braces up to six levels deep. Then (expression) must
not contain an opening or closing sequence of the
same depth as the delimiters, but may contain any
combination of shorter sequences. For example, in

{{{(expression)}}}

the (expression) could contain any combination of {,
}, {{, or }}, paired or unpaired. It could not contain
{{{ or }}}, however; that would require delimiters
of greater depth.

The \pys command is directly analogous to the
pysub environment and follows the same rules. For
instance,

\pys{\verb|x = !{2%%32}|3}

yields
x = 4294967296

Like the other PythonTEX commands, \pys takes
an argument delimited by curly braces or by a single
matched character, like \verb.

Both of the examples of \pys and pysub above
involve verbatim. There are other situations in which
they are useful. For example, in the tikzpicture
environment provided by the tikz package, the \py
command will typically conflict with tikz process-
ing and result in an error. This may sometimes be
avoided by using \py to output an entire line of tikz
code, including the terminating semicolon, rather
than just a snippet of text. The pysub environment
provides a simpler alternative that avoids any guess-
work regarding potential conflicts.

5 Conclusion

With the new fvextra package, it is now possible
to typeset code using Pygments syntax highlight-
ing without sacrificing advanced code typesetting
features, such as line breaking. This should make
PythonTEX (and minted) significantly better options
for code typesetting in the future.

PythonTEX’s code execution capabilities have
also been improved by the new \pys command and
pysub environment, and other commands and envi-
ronments for variable substitution or string interpo-
lation. These remove many of the remaining obsta-
cles to document programming mixing KTEX with
Python, or with any of the other languages supported
by PythonTEX, including Ruby, Octave, Sage, Bash,
and Rust.

References

[1] Michael A. Covington, Frank Mittelbach, and
Markus G. Kuhn. upquote — upright-quote and

Geoffrey M. Poore

[2

3

[4

[5

[6]

7]

[8

19]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

TUGDboat, Volume 37 (2016), No. 2

grave-accent glyphs in verbatim.
ctan.org/pkg/upquote, 2012.

Carsten Heinz, Brooks Moses, and Jobst
Hoffmann. The listings package.
ctan.org/pkg/listings, 2013.

Marek Kubica. The texments package.
ctan.org/pkg/texments, 2008.

Friedrich Leisch. Sweave: Dynamic generation

of statistical reports using literate data analysis.
In Wolfgang Hérdle and Bernd Rénz, editors,
Compstat 2002 — Proceedings in computational
statistics, pages 575-580. Physica Verlag,
Heidelberg, 2002. ISBN 3-7908-1517-9.

José Romildo Malaquias. Testing the PygmenTEX
package. ctan.org/pkg/pygmentex, 2014.

Andrew Mertz and William Slough. A gentle
introduction to PythonTEX. TUGboat,
34(3):302-312, 2013. tug.org/TUGboat/tb34-3/
tb108mertz.pdf.

Frank Mittelbach and Rainer Schopf. The amstext
package. ctan.org/pkg/amstext, 2000.

Frank Mittelbach, Rainer Schopf, Michael Downes,
and David M. Jones. The amsmath package.
ctan.org/pkg/amsmath, 2016.

Matti Pastell. Pweave — reports from data with
Python. mpastell.com/pweave, 2010.

Geoffrey M. Poore. Reproducible documents
with PythonTEX. In Stéfan van der Walt, Jarrod
Millman, and Katy Huff, editors, Proc. of the 12th
Python in Science Conference, pages 78-84, 2013.
Geoffrey M. Poore. PythonTEX: Reproducible
documents with BTEX, Python, and more. Comp.
Science & Discovery, 8(1):014010, 2015.

Geoffrey M. Poore. The fvextra package.
github.com/gpoore/fvextra, 2016.

Geoffrey M. Poore. The pythontex package.
github.com/gpoore/pythontex, 2016.

Geoffrey M. Poore and Konrad Rudolph. The
minted package: Highlighted source code in EATEX.
github.com/gpoore/minted, 2016.

The Pocoo Team. Pygments: Python syntax
highlighter. pygments.org, 2016.

Timothy Van Zandt, Denis Girou, Sebastian
Rahtz, and Herbert Vok. The ‘fancyvrb’ package:
Fancy verbatims in LXTEX.
ctan.org/pkg/fancyvrb, 2010.

Yihui Xie. Dynamic Documents with R and knitr.
Chapman and Hall/CRC, Boca Raton, FL, 2013.
ISBN 978-1482203530, yihui.name/knitr.

Dejan Zivkovié. The verbments package: Pretty
printing source code in IMTEX.
ctan.org/pkg/verbments, 2011.

o Geoffrey M. Poore
1050 Union University Dr.
Jackson, TN 38305
gpoore (at) gmail dot com
https://github.com/gpoore/

ctan.org/pkg/upquote
ctan.org/pkg/listings
ctan.org/pkg/texments
ctan.org/pkg/pygmentex
tug.org/TUGboat/tb34-3/tb108mertz.pdf
tug.org/TUGboat/tb34-3/tb108mertz.pdf
ctan.org/pkg/amstext
ctan.org/pkg/amsmath
mpastell.com/pweave
github.com/gpoore/fvextra
github.com/gpoore/pythontex
github.com/gpoore/minted
pygments.org
ctan.org/pkg/fancyvrb
yihui.name/knitr
ctan.org/pkg/verbments

	Limitations with code typesetting and execution
	A brief overview of PythonTeX
	Code typesetting
	Code execution
	Code typesetting and execution

	An introduction to fvextra
	Single quotation marks
	Math in verbatim
	Tabs and tab expansion
	Line highlighting
	Line breaking

	Variable substitution and string interpolation
	Conclusion

