
TUGboat, Volume 37 (2016), No. 2 209

Hyphenation in TEX and elsewhere,
past and future

Mojca Miklavec and Arthur Reutenauer

1 The past eight years: hyph-utf8

Hyphenation, or word division, is an essential feature
of TEX and related systems, which was a pioneer in
the area. Frank Liang, a student of Donald Knuth,
devised an algorithm to efficiently store the informa-
tion that specifies how to break words. Liang’s PhD
thesis on the subject was published in August 1983,
and TEX82 already included the algorithm. Liang
also wrote the program patgen that, given a list of
hyphenated words, produces a set of hyphenation
patterns that embed the information.

TEX82 would store only one hyphenation table,
but with TEX 3 in 1990 it became possible to include
multiple pattern sets, identified by the value of the
primitive \language. At the same time TEX’s char-
acter set was extended from 7 bits to 8 bits, thus
widening the range of supported encodings. This
would prove essential for many languages. Devel-
opment had indeed started early to devise sets of
patterns appropriate for different languages; for ex-
ample Italian, for which patterns were produced and
described in TUGboat volume 5, issue 1 in 1984;
and French and German, in the next issue. However,
with only 7 bits to use, most languages needed a
number of tricks to work correctly, some of which
could rightly be called dirty, and which were kept
even after TEX3 came along.

The terms of use of the different pattern sets,
when there were any, were equivalent to those of
TEX itself: free to use and distribute, and modified
versions should have another name. Most of the
time, however, there was no clear licence. When the
LATEX Project Public Licence, the LPPL, was created
in 1999, some authors adopted it for their patterns,
and over the years the majority of the files became
available under this licence.

When X ETEX and LuaTEX were included in dis-
tributions, encoding became once again a problem
since these engines expect UTF-8 input by default
and couldn’t accommodate the various 8-bit encod-
ings the different pattern files were using. In order
for X ETEX to be added to TEX Live in 2007, its
creator Jonathan Kew devised a solution whereby
patterns were converted to UTF-8 on the fly when
read by X ETEX. This worked but seemed awkward,
and when the following year it was LuaTEX’s turn
to be integrated in TEX Live, we felt this decision
needed to be reconsidered.

We decided to adopt the converse strategy of
what was originally done for X ETEX: convert all the
files to UTF-8, and devise a system to convert the
patterns back to the appropriate 8-bit encoding if
necessary. That way X ETEX and LuaTEX could read
the files in UTF-8 directly, while pdfTEX and Knuth’s
TEX would also work because they’ll see 8-bit versions
of the patterns, converted on the fly. It should be
noted that all this happens when generating formats,
as — except for LuaTEX — this is the only moment
when hyphenation patterns are read by TEX, in its
iniTEX incarnation. Once that job is finished and
the formats are dumped, each engine will be fed the
characters in the encoding appropriate to its kind.

The initial work was done in the spring of 2008
and was completed in time to be included in TEX
Live 2008, as was the original intention. We also used
this opportunity to rationalise the names of hyphen-
ation patterns, most of which used relatively cryptic
two- or three-letter codes to identify languages: af-
ter some research, we made the decision to use the
standard BCP 47, which to our knowledge is the
only one that allows the level of precision we need
to distinguish between all the languages TEX sup-
ports. BCP stands for “Best Current Practice” and
is used for a number of specifications by the IETF,
the Internet Engineering Task Force. This standard
is thus also used in most Web technologies, and the
exact same language tags can be used in HTML and
HTTP, for example. Since all BCP specifications
are published in the RFC (Request for Comments)
series, it’s probably useful to mention that BCP 47 is
currently equivalent to the combination of RFC 5646
and RFC 4647; these numbers may change in the
future, when the document is updated.

The result of this effort was the package hyph-
utf8 that is now used in MiKTEX as well. It was
soon picked up by external projects: Hyphenator, a
JavaScript program for supporting hyphenation in
browsers; then Firefox, that implemented hyphen-
ation in the browser itself; and finally Apache FOP

(Formatting Objects Processor), an XSL-FO imple-
mentation. All these programs took patterns directly
from our package, usually with just one straightfor-
ward conversion to adapt them to their format.

Since then, we’ve been keeping track of the up-
dates to the hyphenation patterns in the TEX world;
most of the time we’re in direct contact with au-
thors, who sent us their contribution directly, but we
regularly find isolated updates for some languages.
We’ve also welcomed pTEX in TEX Live in 2010,
specialised in typesetting Japanese, for which we
had to adapt the pattern loading strategy, since
it didn’t support UTF-8 input; this meant we had

Hyphenation in TEX and elsewhere, past and future



210 TUGboat, Volume 37 (2016), No. 2

to give up on the idea of converting patterns on
the fly, and thus provided 8-bit versions of all pat-
terns that would be used for pTEX only; the UTF-8-
encoded files serve as the master data. And we’re
constantly trying to clarify the licence terms of the
patterns. We feel we have a very good momentum in
the TEX community, and the tex-hyphen mailing list
(http://lists.tug.org/tex-hyphen), that’s been
driving the effort since we started it, has become
some sort of town square to discuss many language-
related topic in the TEX world, far beyond the subject
of hyphenation.

The rest of the free software world, however, is a
completely different story. The attentive reader will
have noticed that some names are missing from the
above list of projects we’re collaborating with, and
indeed we had little interaction with the developers of
the existing free word processors. Some conversations
took place, to be sure, but there was no concerted
effort to collect all patterns in a central place, or
decide what list of licences was acceptable for the
different projects.

At the time OpenOffice was the most widespread
of the word processors from the free software world,
and pattern sets had already been adapted for its
use, starting some time before hyph-utf8 was created.
The conversion was usually done for one file at a
time, with no coordination between the languages,
much like in the past individual pattern sets were
uploaded on a one-off basis to CTAN. On occasion
patterns were created for new languages, which we
took over when we became aware of it. There was
also a lot of talk about the licences of different pat-
tern files, and some changes came back to us because
of that. By then all major free software licences were
used by pattern files: GPL, LGPL, n-clause BSD

for different values of n, MIT, LPPL of course, and
some free-form text. The expansion of these acro-
nyms is left as an exercise to the reader (but read on
for a partial cheatsheet). In addition, some people
were apparently asked to sign a contributor licence
agreement (CLA), that is, an express agreement be-
tween the authors and the organisation responsible
for OpenOffice. We are still unclear as to why it was
so, but to our knowledge this hasn’t been the case
since the Apache Software Foundation took over the
maintenance of OpenOffice in 2011.

Not much happened on this front for a few years,
until it was time for Google to join the party. In
September 2015, and then again in December of
that year, many pattern authors were contacted with
requests to once again change the licence of the files,
with little explanation of why they were asked to
do so. It took us some research to understand what

was happening: hyphenation had been added to
the operating system Android, and Google was thus
interested in using the hyphenation patterns available
for TEX and other free software, but they had some
restrictions relating to licences. As it turned out,
the LPPL was the one that caused most problems
for them. There was also a secondary suggestion to
add the hyphenation patterns to Unicode’s Common
Locale Database Repository (CLDR), a large project
collecting linguistic data for many languages; there
were also legal obstacles to that at the time.

There followed several weeks of extensive dis-
cussion, hardly interrupted by Christmas and New
Year’s Eve, between pattern authors, ourselves, and
representatives of Google, soon joined by develop-
ers from Mozilla (for Firefox), LibreOffice — by now
the most active free software office suite — and even
Amazon (for software running on Kindle), over the
course of which many, many emails were exchanged
and went several times round the planet. Conversa-
tions that had started among maintainers of patterns
for some language inflated to include more and more
contributors, spilled over unto mailing lists, took a
side road to discuss the respective merits of different
licences, turned around to question the motivation of
the requesters, deflated back again to wonder what
the exact wording of a licence statement should be,
and finally died down when absolutely, absolutely
everything had been said and pondered, even that
which should probably never, ever have been said nor
pondered. When the dust finally settled in the cy-
berspace and the protagonists were recovering from
what can only be described, in the words of one of
the authors of this article, as “a huge wave of ???”,
we came to a decision, and we now have a plan, that
will be developed in the next section. It also tran-
spired a few months later that in order to include the
patterns in the CLDR, it would be necessary for each
contributor to sign a CLA, which will probably be
very close to the individual CLA for contributors to
Android; however, the exact text is not finalised yet.

2 The past few months

We need to say a few words about the LPPL, since
it did as mentioned cause the most amount of talk.
It is a licence characterised by two main conditions:
first, that any work derived from a work under the
LPPL identify itself as such, and second, that each
work come with one particular person known as the
maintainer, responsible for keeping it up-to-date.
Both these conditions represent specific challenges,
which we’ll attempt to explain.

The first one, specified in clause 6.1 of the cur-
rent version of the LPPL (1.3c, dating from 2008),

Mojca Miklavec and Arthur Reutenauer



TUGboat, Volume 37 (2016), No. 2 211

is well-known to TEX users as it is equivalent to
the condition under which Donald Knuth made TEX
available: that any modified instance of the program
that didn’t fulfil a strict series of tests be given a
different name. Earlier versions of the LPPL actually
used a wording much closer to Knuth’s (it changed
with LPPL version 1.3 in 2003). This clause, however,
is virtually unheard of outside the TEX community,
and whenever external projects want to use hyphen-
ation patterns that are placed under the LPPL, we
need to do some education about the terms of the
licence (who does that does not matter as long as
a conversation is had, but in practice it often boils
down to the two authors of this article). This may
turn out harder than it looks, as we’ve experienced
some resistance to that notion, that sometimes gets
questioned or even ignored; we did for example have
a discussion with a lawyer from a technological com-
pany who found the wording of the LPPL ambiguous
and stated that it “imposes a lot of confused defini-
tions of derivative works”. This project rejected the
LPPL based on its text alone. Even without such
a strong reaction, the LPPL is generally frowned
upon and pattern authors are thus often asked to
make their files available under a different licence
(to “relicense” them), the exact one depending on
the project.

The reasons for third-party developers to re-
quest another licence are not only psychological: the
identification condition of the LPPL, while seemingly
simple to comply with, actually makes it incompat-
ible with many licences. Roughly speaking, that’s
all the copyleft licences — those characterised by the
requirement that any modification of the work they
apply to be made available under the same condi-
tions — such as the GNU General Public Licence
(GPL) and Lesser General Public Licence (LGPL),
or the Mozilla Public Licence (MPL). In these cases
the patterns have to be relicensed under the copyleft
licence, or a licence compatible with it, in order for
the external project to be allowed to use them; it
is not a matter of taste. This is one main reason
for the multiplicity of licences, the other chief one
being authors’ personal preferences, although often
they don’t have strong opinions. Attempts to work
around that incompatibility are known to not work;
in at least one case we are aware of a project trying
to incorporate patterns under the LPPL into copy-
lefted code (by documenting the situation and giving
proper credit to the original authors, of course), but
we now understand this to be a violation of the LPPL.

For external projects, this is not such a problem
in practice, however, as authors generally develop
their patterns in the spirit of collaboration and open

access, and thus readily agree to make their patterns
available under any alternative licence when asked.
The one issue is logistical: it can sometimes be hard
to contact some authors, and there are many exter-
nal projects trying to have the patterns relicensed,
which leads to the only case of reluctance we’ve ex-
perienced: on occasion an author will display a clear
(and understandable) expression of frustration at be-
ing asked the same question over and over again — a
situation named “relicensing fatigue” by a developer
used to being on the other end of these conversa-
tions. It should be noted that in this situation the
authors of this article have thus far been only passive,
witnessing discussions between pattern authors and
third-party projects.

The other chief condition of the LPPL is that
each work placed under it should have a designated
maintainer, the one person allowed to make changes
without needing to change the identification of the
work as per clause 6.1. By default it is the original
author of the work, who may nominate another per-
son when they are no longer willing or able to look
after the work themselves.

The issue we’re having with that condition is
that we don’t understand who is the maintainer of
the pattern files in hyph-utf8: in our case, we are not
the original authors of the patterns and we have not
been appointed by them as maintainers (except in
a few minor cases), but we are definitely the point
people responsible for changes in hyph-utf8, whose
core is a set of pattern files with new names. Who are
thus the maintainers of the individual files? If it is
the pattern authors, this would be a statement of fact
that isn’t true: the original authors are not the people
allowed to make arbitrary changes to the file in hyph-
utf8; we are. If we are the maintainers, this would —
formally — deny the authors any say in their patterns
(as they are packaged in major distributions). This
is a serious problem in the application of the text of
the LPPL.

In practice this doesn’t actually make any differ-
ence: the pattern authors communicate with us in a
number of ways, and since our job is only to package
the files in a format amenable to TEX distributions,
we usually adopt any change to the actual patterns
straightaway; and on the other side, we collaborate
with the core developers of said distributions to keep
our package up-to-date with the latest requirements,
such as for example when we had to devise a new
encoding strategy for including the patterns in pTEX
formats, or when a bug in X ETEX was revealed by
the patterns at format-generation time in the devel-
opment of TEX Live 2016. This is in our opinion the
way it should be done: we volunteer our time to work

Hyphenation in TEX and elsewhere, past and future



212 TUGboat, Volume 37 (2016), No. 2

on the low-level support of the patterns, and the au-
thors volunteer theirs for the linguistic aspect; there
doesn’t need to be a formal recognition of these roles.

The notion of a maintainer thus brings no prac-
tical benefit while introducing theoretical problems
that come to light during the post-apocalyptic dis-
cussions mentioned above. Two examples will serve
to illustrate this fact: in one case, the author of a set
of patterns under the LPPL had been asked to reli-
cense their patterns. They seemed relatively willing
to do that provided the relicensed files would only be
used outside the TEX community, but showed some
attachment to the idea that the original files should
stay under the LPPL. They then finally stated “I
will change the licence if and only if the TEX-hyphen
working group allows me to” (meaning us). This
is heartbreaking to us: we are not in the business
of prescribing to volunteers how they should make
their work available to the world; this should be
entirely their choice. We are able to make recommen-
dations, of course, but we have refrained as much as
possible from interfering in other people’s decisions.
Since, however, our input was clearly called for at
that point, we of course gave our “authorisation”,
without feeling entitled to do so.

The other situation was even stranger: in that
case the original author had appointed a maintainer
as they no longer felt in a position to look after the
patterns. The maintainer was keeping a strict policy
of no modification to the patterns and thus only
added a few lines of comment to the file when they
took over maintenance. This was before we started
hyph-utf8, and when we did, we simply adopted the
file with minor modifications. However, during the
discussion about relicensing a few months ago, the
maintainer, who had not contributed to the actual
patterns at all, felt empowered to decide the terms of
the new licence on behalf of the original author (who
admittedly seemed a little confused by the situation),
and then proceeded to dictate the exact comments
we were to put in the file, and even the name of the
file itself. This is of course not acceptable to us and
we did our best to ignore the maintainer’s whims.

These examples are cause for concern, because
they show a certain amount of misunderstanding
around the core conditions of the LPPL, on many
authors’ part (the two cases above are by far not the
only ones); they also are a clear waste of everybody’s
time, caused solely by use of the LPPL.

It is thus clear to us that the LPPL is a poor
choice for a project such as ours and we are going to
change our policy and start recommending against it.
We recognise its goals and want to achieve them too,
which can’t be through formal definitions of different

roles such as maintainer. In our case, this has no
practical effect and generates too much confusion,
as can be seen from the examples above. The cor-
rect way to proceed, in our opinion, is by fostering
healthy discussions among all the parties involved,
from package writers, to distributors, to end users.
The situation for hyph-utf8 is of course special since
the authors of this article are in some way an inter-
mediary between package writers and distribution
developers, but that only strengthens the need for
close collaboration.

It has been suggested that since we’re effectively
responsible for all the patterns in TEX distributions
it was also our role to defend their status under the
LPPL and enforce it in other projects, if necessary.
We don’t agree. We’re looking after hyphenation
patterns and the licence shouldn’t matter. What’s
more, the LPPL doesn’t come with any procedure to
enforce it, or any compliance team that could help
track down violations and rectify them — contrary to
other licences such as the GPL and the LGPL, where
one can assign copyright to the Free Software Foun-
dation (FSF), that also provides guidelines on how
to investigate and remove suspected violations. In
any case, that’s a discussion we’d (much) rather not
be part of, even if we’re sometimes co-opted into it.

For that matter, we don’t even have guidelines
on what the desired level of stability for the hyphen-
ation patterns is. There is no agreement on what
type of modifications are acceptable, and depending
on the language the authors may develop them ac-
tively, or not at all. We follow the changes while
trying to be conservative for long-established pat-
tern files (this is relatively easy to do since files of
a certain age generally get few updates); but there
is nothing to prevent someone from one day sending
mass changes to decades-old patterns for a major
language, and a difficult conversation will need to
take place at that point: will we ignore the changes,
or create a new file for the same language, or . . . ?
We are willing to follow any reasonable policy that
is agreed upon, but we can’t make it ourselves: that
clearly has to be done by the wider community.

In short, we want to ensure the best possible
future for the patterns and this goes through collab-
oration with all the projects that are interested in
developing them. If we kept strictly to the LPPL,
this would create an artificial divide among the lan-
guages, separating those that can be shared with
other projects and those that can’t; inevitably the
latter would tend to get less attention and become
second-class citizens. We had already noticed that
among the languages whose patterns had moved away

Mojca Miklavec and Arthur Reutenauer



TUGboat, Volume 37 (2016), No. 2 213

from the LPPL were some of the world’s major lan-
guages and we wanted to look into this fact in more
detail. We thus ordered them by decreasing number
of speakers; having grouped together all language
variants together, we had exactly 60 languages. From
this we took the top third, to see how many were still
under the LPPL, and the result was striking: only 2
out of 20. And even then, the status of these two was
quite artificial, since one had seen its licence being
chosen arbitrarily as the “popular” choice, and the
other one actually comes with several variant files,
some of which are not under the LPPL; the one that
ships in hyph-utf8 is, but external projects could just
as well take the ones whose licences are more accept-
able to them. One can of course argue about the
methodology and the difficulty of determining the
number of speakers for each language, but this figure
alone clearly points to the fact that the divide is
already there. It is very likely this had been brought
about by the fact that major languages naturally
got more attention and that pattern authors have
thus been asked to relicense more often. The “less
important” languages are thus at risk of seeing their
patterns progressively lose ground.

In conclusion, we think that in spite of all the
difficulties, we are at a point where we’re finally
able to put TEX at the centre of all efforts to create
good hyphenation patterns in the free software world.
Let’s use that opportunity and not close ourselves
to change; we want to become proactive in that
effort and we now have a plan: we are going to start
recommending to pattern authors to switch to the
MIT licence, a very permissive one that has a simple
text; other permissive licences would of course be
acceptable, if that’s the author’s preference. We
also want to start talking about hyphenation proper
instead of politico-legal issues. We accept that the
latter is inevitable but we’ve had far too much of
it lately, as the disproportionate structure of this
article makes clear.

Back to the work in progress: we have made a
few updates for TEX Live 2016. Apart from some
licence business (as usual . . . ), it has a few low-level
changes: we’ve broken up the main package into dif-
ferent language groups to reflect the many packages
called hyphen-〈language〉; the patterns used to all be
in the former package while the latter were shells
merely containing instructions on how to populate
language.dat. We have also rewritten the top of

each pattern file to make the comments machine-
readable, in an effort to make the many language
files easier to process; and we’ve renamed the plain
text versions of the patterns to more human-friendly
names. Finally, we have migrated the repository to
GitHub for better visibility. These changes, how-
ever modest, should be seen as preparatory work
for making our package more palatable to external
projects.

In a separate effort, we also started looking
into patgen and, in an endeavour to understand in
detail how it worked — and to support UTF-8 in-
put — we rewrote it in Ruby using object-oriented
programming. As a result, it is hopelessly slow, by
a factor of about 60, but we have been able to re-
produce the results exactly, and we are going to
look into making it more efficient, and hopefully en-
hance it. The code is currently available at https:

//github.com/hyphenation/hydra and will be dis-
tributed through CTAN and TEX Live in due time.

3 The next few months

The future plans right now include:

• Setting up a new website for the project at
http://www.hyphenation.org.

• Getting as many pattern authors as possible to
agree to the MIT licence and Unicode’s CLA.

• Unify all the patterns from different sources and
finally become the central hub for all things
hyphenation in the free software world.

4 The future

Some more distant plans involve looking at the hy-
phenation algorithm in more detail: the hyphenation
library used by the free word processors, libhyphen,
actually does a little more than TEX’s original al-
gorithm, which is not surprising since the current
version dates from the mid-2000s, and it would cer-
tainly be nice to see if the additional features couldn’t
be included into TEX engines too. There’s always
more to do!

� Mojca Miklavec
Sežana, Slovenia

� Arthur Reutenauer
late of the Royal Opera House,

Covent Garden
arthur.reutenauer (at)

normalesup dot org

Hyphenation in TEX and elsewhere, past and future


