
TUGBOAT

Volume 37, Number 2 / 2016

TUG 2016 (Toronto) Conference Proceedings

TUG 2016 106 Pavneet Arora / Passport to the TEX canvas

111 Conference sponsors, participants, program, and photos

115 Norbert Preining / TUG 2016 in Toronto

125 Stefan Kottwitz / TUG 2016 Annual General Meeting informal report

General Delivery 126 Lou Burnard / Sebastian Rahtz (1955–2016): A brief memoir

129 Frank Mittelbach and Joan Richmond / R.I.P.—S.P.Q.R

Sebastian Patrick Quintus Rahtz (13.2.1955–15.3.2016)

131 David Walden / Interview with Pavneet Arora

Typography 137 Joe Clark / Type in the Toronto subway

148 Leila Akhmadeeva, Rinat Gizatullin, Boris Veytsman / Are justification and
hyphenation good or bad for the reader? Preliminary experimental results

Publishing 152 David Walden / An informal look into the history of digital typography

Fonts 154 Charles Bigelow / A short history of the Lucida math fonts

161 Michael Sharpe / New font offerings: Cochineal, Nimbus15, LibertinusT1Math

163 Jaeyoung Choi, Sungmin Kim, Hojin Lee, Geunho Jeong / MFCONFIG:
A METAFONT plug-in module for the Freetype rasterizer

171 Abdelouahad Bayar / Towards an operational (LA)TEX package supporting
optical scaling of dynamic mathematical symbols

LATEX 180 Jim Hefferon / A LATEX reference manual

182 Matthew Skala / Astrological charts with horoscop and starfont

183 Boris Veytsman / Remaking the ACM LATEX styles

187 Geoffrey Poore / Advances in PythonTEX with an introduction to fvextra

193 David Tulett / Development of an e-textbook using
LATEX and PSTricks

Macros 200 Christian Gagné / An Emacs-based writing workflow inspired by TEX and WEB,
targeting the Web

204 Federico Garcia-De Castro / TEXcel? An unexpected use for TEX

Software & Tools 209 Mojca Miklavec and Arthur Reutenauer / Hyphenation in TEX and elsewhere,
past and future

214 Michael Cohen, Blanca Mancilla, John Plaice / Zebrackets: A score of years
and delimiters

222 Amartyo Banerjee and S.K. Venkatesan / A Telegram bot for printing LATEX files

Book Reviews 229 Boris Veytsman / Palatino: The natural history of a typeface by Robert Bringhurst

232 David Walden / A Truck Full of Money by Tracy Kidder

Abstracts 234 TUG 2016 abstracts (Bazargan, Bigelow, Bringhurst, Claudio, Inkster, Kottwitz,
Larson, Mittelbach, Preining, Reutenauer)

TUG Business 238 Susan DeMeritt / TUG 2016 Annual General Meeting Minutes

240 TUG Board / Report: Suspension of Kaveh Bazargan as TUG President

249 TUG 2017 election

250 TUG institutional members

Advertisements 250 TEX consulting and production services

News 252 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: http://tug.org/TUGboat.

Individual membership

2016 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount.

Regular members (early bird): $85.
Special rate (early bird): $55.
Membership in the TEX Users Group is for the

calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and respon-
sibilities as voting in TUG elections. For detailed
membership information, visit the TUG web site.

Subscriptions

TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2016 is $110.

Institutional membership

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.

METAFONT is a trademark of Addison-Wesley Inc.

PostScript is a trademark of Adobe Systems, Inc.

[printing date: September 2016]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Jim Hefferon, President∗

Boris Veytsman∗, Vice President

Klaus Höppner∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Karl Berry
Kaja Christiansen
Michael Doob
Steve Grathwohl
Steve Peter
Cheryl Ponchin
Geoffrey Poore
Norbert Preining
Arthur Reutenauer
Michael Sofka
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past

and present board members, and other official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

General correspondence,

membership, subscriptions:

office@tug.org

Submissions to TUGboat,

letters to the Editor:

TUGboat@tug.org

Technical support for

TEX users:

support@tug.org

Contact the

Board of Directors:

board@tug.org

Copyright c© 2016 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

2016 Conference Proceedings

TEX Users Group

Thirty-seventh Annual Meeting

Toronto, Canada

July 25–27, 2016

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 37, NUMBER 2 • 2016

PORTLAND • OREGON • U.S.A.

106 TUGboat, Volume 37 (2016), No. 2

Passport to the TEX canvas

Pavneet Arora

Welcome.
Whenever I begin a talk, in my head I hear Jean-

luc Doumount’s admonishment on what not to do
when presenting. (From his article on presentations,
“Traditions, templates, and group leaders”.)

And so I will resist the temptation to fall into
the more obvious traps, although along the way I
will no doubt transgress. Presumably we all know
which city we are in. And we know the reason for
our being here:

Even so, some of us may yet be unfamiliar with
one critical aspect of this city: the pronunciation of
its name. When Duane Bibby and I were discussing
concepts for the conference logo, I put forth a small
request: that the logo should have a small Easter
Egg which would be a reminder of just this point.
Any takers on what that Easter Egg might be?

That’s right. Toronto is pronounced like piranha.
So when you’re at the next border, and the officer
asks where you are heading to, simply keep this
mental image in mind, and you will come off sounding
like a true local.

The inspiration for the canvas and the painting
style comes from The Group of Seven, an influential
group of Canadian impressionist painters—AJ Cas-
son and Lawren Harris being two of my favourites.
Those on the Georgian Bay excursion this coming
Friday will have a chance to see many Group of Seven
works in person at the McMichael Art Collection.

1 Canvases

1.1 Collaboration

This year at Microsoft’s Build conference, Satya
Nadella used an interesting turn of phrase: he spoke
of “conversational canvases”. And let me just say
that in my wildest dreams I never, ever, ever imag-
ined that I would open any presentation of mine by
quoting the CEO of Microsoft. I hope this is more of
an indicator of what Microsoft is about these days
than an indicator about me.

So let me say what a delight it is to have Kevin
Larson fromMicrosoft’s Advanced Typography Group
join us. When I went about trying to contact the
group, I landed up on a website that looked as if it
was a screen scrape of a Windows 97 screen. The
old Tektronix 4010s that I used to work on had a
crisper image, and for that matter could be used as
a crisper given the dosage coming off the panel!

It was a happy day indeed when I heard back
from Microsoft, and then had an email exchange with
Kevin. Kevin will be speaking this afternoon.

But back to canvases: what is this canvas that
Satya was talking about? The buzz nowadays is
about IoT (Internet of Things, or not only network
enabled but aware devices), intelligent bots enabled
by cloud based machine learning, augmented reality,
and virtual reality.

When I thought about it some more, I began
to suspect that what he was really referring to had
more to do with a specific type of human activity, or
mode of “interaction”. That the canvas across these
interactions was the common element. That is, in
this “mobile first, cloud first” vision, the device has
become the canvas.

Pavneet Arora

TUGboat, Volume 37 (2016), No. 2 107

When over-the-air TV ruled this continent’s air-
waves, if one were to switch from CBS News—with
its exquisite branding with the very beautiful Didot
typeface under the guidance of Lou Dorfsman—to
ABC’s Wide World of Sports did we refer to it as
different viewing canvases? Or was it simply differ-
ent content utilizing the same canvas, namely the
television?

However you might consider the distinction be-
tween canvas and content, the question remains:
“What sort of activities does this canvas enable and
encourage?”

There are three prominent ones with conversa-
tional canvases: (1) collaboration, (2) cooperation,
and sometimes (3) confrontation.

So these new world canvases would be Facebook,
Twitter, Skype, WhatsApp, Slack, GroupMe, Own-
Cloud, email or any of the other bewildering range
of choices available. They are all marked by a ca-
cophony of voices, each clamouring to interject the
next riposte and make a mark.

Here the canvas can also be seen as a viewport
for the race to acquire the largest number of users
as quickly as possible. We attribute virtue to the
canvas not by its content but rather by its viability.
And a declining or even steady user base is taken as
a mark of irrelevance.

In the immortal words of perhaps the greatest
of the modern worldly philosophers:

“If you ain’t first, you’re last!”
—Ricky Bobby, Talladega Nights

And since we are so dependent on—at least the
first two activities—collaboration and cooperation,
it is natural to put so much emphasis on these conver-
sational canvases. Plus, who amongst us can resist
the siren call of shiny new technology, and what it
might represent of our needs and aspirations—our
innate desire to be acknowledged for being at the
vanguard of the future?

Indeed it is reflected in the very names given
to the gatherings where these are showcased, or as
company mottos: Build (Microsoft), Invent (HP),
Maker Fair (Raspberry Pi).

It is an expression of our creative impulse into
something tangible, whether it be a woodworking
project, or a new tablet PC.

But if this is the main attraction of the big top
with its “barkers and coloured balloons”, to quote
Neil Young, what is happening behind the tent?

In other words is this all there is?

1.2 Discovery

Behind this illusion of spectacle, behind the curtain
that forms the backdrop of the glitz and glamour of
the stage is another form of activity. And this activity
sustains the show. It is the activity of Discovery.

This endeavour is lonelier; the path more dif-
ficult. The effort expended can span many years,
even decades, with little in the form of assurance
that a positive outcome awaits the supplicant. And
even if you are mostly right, or even completely right,
someone else might still beat you to the punch. Ac-
knowledgement of great achievement in this activity
is rarely resounding.

Working here can often feel like pushing on a
string. Think of the connection that takes you from
Menaechmus’ discovery of the mathematics behind
conic sections, to Kepler’s work on planetary motion,
to NASA’s Apollo missions. This is the 47th anniver-
sary of Apollo 11, and one of the most compelling
things on Twitter is not the two political conven-
tions! It is the real time broadcast of the mission
communications for that Apollo mission.

Discovery is the driving force behind research,
both pure and applied. It spans the fields of science,
technology, engineering and mathematics, or STEM

for short.
In this vast domain there too is a common can-

vas. Here, it is the Page that holds court. Even if
we don’t yet know for how long, the primacy of the
Page is, for now, unquestioned in this dominion.

And the Page is the ideal canvas for using TEX.
For TEX has an unequalled ability to express com-
plex ideas using the specific notations and syntactic
constraints used in all of these fields. The rarest
of cuneiform marks, along with their most pedantic
rules of layout can all be handled with aplomb using
TEX. Even after all of these years, it is able to adapt
to the natural language of the domain rather than
force the language to conform to its limitations. (Car-
toon originally from somethingofthatilk.com.)

Passport to the TEX canvas

108 TUGboat, Volume 37 (2016), No. 2

This canvas, in contrast to the conversational
canvases—perhaps only because those are still evolv-
ing rapidly—has a natural order. We may still be
in the process of abstracting overarching rules of rep-
resentation on those electronic canvases—and here
I am thinking of Twitter Bootstrap as a significant
milestone along the way—but that is something for
the future.

Thanks to another one of our special guests,
Robert Bringhurst, we are able to talk about propor-
tion and spacing to arrive at a much deeper under-
standing of what constitutes beauty on this canvas.
Just think of the implications of this. We can speak
of beauty with a common appreciation. What a mar-
vellous thing to share! Robert Bringhurst will be
speaking tomorrow.

But is even Discovery all there is? The more ap-
propriate question might be, whether the activity of
Discovery qualifies as Aristotle’s “Unmoved Mover”,
so to speak?

1.3 Contemplation

There is an even more isolating endeavour than Dis-

covery. And it is Contemplation, which in turn feeds
its nearest neighbours Intuition, Imagination, and
Interpretation.

This is the most solitary of endeavours, and
the practitioner must traverse a vastly more barren
landscape as they climb the slope and try to pierce
“The Cloud of Unknowing”. The artist must confront
their own self-doubt when faced with that blank page
or surface.

“The writer who loses his self-doubt, who
gives way as he grows old to a sudden eupho-
ria, to prolixity, should stop writing immedi-
ately: the time has come for him to lay aside
his pen.” —Colette

And what of this canvas? What tools might we
use to express our ideas.

This is how we landed up on one of the themes of
this conference, which you will find on the pens that
are part of the registration kit for the conference.

This theme is “Pen to Print”. It acknowledges
the connection between artist and artisan that allows
enduring works of art to be created. The source of
an idea often has its earliest expression in ink.

We were privileged, yesterday, to have visited
Tim and Elke Inkster’s unique printing house, Por-
cupine’s Quill. Craft and Quality should never be
allowed to be taken for granted.

Coming back to the pen itself, these pens were
made by the Garland Pen Company of Providence,
RI, the same location as where TUG was founded.
Some of you might notice that there are three fonts
used on the inscription, and the em-dash is shown in
“code”—that is, as a triple hyphen. In this audience,
this is akin to having used Comic Sans, in all its
garish glory, when putting out the UN Declaration
of Human Rights.

But here too, a small puzzle to tickle the mind.
The font family used on the pen is Lucida, and I
only wish Chuck Bigelow and Kris Holmes were here
so that we might have been able to call them out
in person. No doubt we can query Chuck further
on this when he arrives tomorrow. The first line,
identifying the conference, is done in Lucida Grande
Mono DK which is the special edition dedicated to

Pavneet Arora

TUGboat, Volume 37 (2016), No. 2 109

Don Knuth. It acknowledges the essential step that
to get from the handwriting font used for the word
Pen, to the book font used for the word Print, the
content must first be coded. We used the province
rather than country to draw extra attention to the
subtle distinction between the shapes of letter ‘O’ and
the digit zero, without resorting to explicit marking,
one of B&H’s design goals.

2 Passport

I have spoken at length of canvases, and over which
of these canvases TEX’s powerful expressiveness still
has sway.

Now let me talk about the passport. These days
it has become an ID document—something that
identifies the holder as to who they are. A means to
get through ever tighter security when entering an
airport, boarding a plane or crossing over a border.
It is nowadays treated as a gateway key.

But to me, a passport conjures up a much more
romantic image of a more innocent time. It speaks
of exotic lands, and people on faraway shores; of
adventurous travels, and the chance to shed our
skins of the familiar patterns of daily life. To stand
in awe of unfamiliar vistas, and know with certainty
that they will form indelible impressions upon the
backdrop of our memories.

At its essence a passport allows us to delight in
the stories of others, and by doing so connect our
own to theirs. To my mind, that is all there really is.
We are both made and then defined by our stories.

When I put, as the title to this talk, the “Pass-
port to the TEX Canvas” I am referring to TUG. I
think of TUG not so much as an organization, but as
a collection of conversations told as stories. Of talks
given formally at conferences such as this, but more
importantly, discussions carried on in the margins.

Conversational canvases bristle with activity, ex-
citing and sometimes enraging the participants even
as they sit in silent, electronic isolation. In contrast,
the TEX canvas— the Page—which demands of the
reader quiet, concentrated effort, can allow the same
reader to escape noisy and boisterous surroundings.

As it did with me late one night on Rue Sainte-
Catherine in Montréal, overflowing with revellers,
and where I found myself in an open-to-the-street
cafe reading Northrop Frye’s Myth and Metaphor.
This canvas, without the transactional pull from ad-
vertisements interjecting themselves, allows us to
soar alongside stories into our imaginations.

3 Stories

So let me tell you about a story. A story about this
bag. It was given to me by Pavel Striz as a parting

gift at the ConTEXt meeting in Brejlov, Czech Re-
public shortly after my first TUG conference, which
would have been in San Francisco. Of all the people
here, I think only Arthur and I attended. Have I
missed anyone?

On it is the inscription “Karlovy Vary International
Film Festival”. I had no idea of its importance when
I received it.

A few months later I was taking some training
in Atlanta, Georgia. I was sitting at a table, head
down, working out some assigned problem. This bag
was on the table. All of a sudden I heard a voice
beside me: “Did you enjoy Karlovy Vary?” Actually,
I have no idea what precisely was said, as it didn’t
really register at all, because it was so out of context.

I turned to find a giant of a man. I was easily
dwarfed in his shadow. And his voice had a southern
drawl. It took another few attempts by him for me
to finally comprehend that he was talking about this
bag. Well he went on to explain that he had grown
up in rural Georgia, and ended up marrying a Czech
woman. His father-in-law had a property in Karlovy
Vary, and so this man along with his family spent a
portion of their summers in the Czech Republic. He
had learnt to speak fluent Czech.

And we got to talking about typesetting, TEX
or in this case ConTEXt, and the arts scene in and
around Prague. What an extraordinary conversation
it led to!

Lest you think that all stories come this easily,
let me tell you of another chance encounter on the
same trip, and a missed opportunity.

I was at the home of a family member, and they
took delivery of some furniture. On the truck was
the company name Grissom.

Now I imagine that many of us were mesmer-
ized by the Apollo programme. For me, the Apollo

Passport to the TEX canvas

110 TUGboat, Volume 37 (2016), No. 2

astronaut who somehow caught my imagination was
Gus Grissom, who died tragically on the launchpad
in Apollo 1. I think it was both because he had an
engineering background, and also because there is
hardly a photograph of him that doesn’t show him
laughing. (Photo courtesy of NASA.)

I mentioned this to one of the delivery persons,
and that there was a high school in Alabama dedi-
cated to him. This person didn’t recognize the name,
but wishing, I think, to continue on with the con-
versation mentioned that the moving company was
his uncle’s, Marquis Grissom. I didn’t recognize
that name, but I should have since Marquis Grissom
played for the Montréal Expos, and is by all accounts
a class act through and through.

So there we were, telling our stories past each
other. If only I had stopped and asked him more
about his uncle!

Stories are around us, and they can bind us
together in kinship.

It is the hope of the conference organizers that
TUG act as your passport, and the messenger bag
that each of you have received act as a repository to
many new, and wonderful stories. And that it may
inspire some of you to put at least some of those
stories down on the TEX canvas for others to enjoy
for years to come.

Welcome to TUG 2016!

⋄ Pavneet Arora

Waroc Informatik

pavneet_arora (at) waroc dot com

waroc.com

TUGboat, Volume 37 (2016), No. 2 111

Sponsors

TEX Users Group DANTE e.V.

The Porcupine’s Quill
River Valley Technologies—UK
with special assistance from individual contributors. Thanks to all!

Special guests

Charles Bigelow, Bigelow & Holmes Robert Bringhurst, Quadra Island, BC Kevin Larson, Microsoft

Conference committee

Pavneet Arora Karl Berry Jim Hefferon Robin Laakso Steve Peter

Bursary committee

Taco Hoekwater, chair Jana Chlebikova Kaja Christiansen Bogusław Jackowski Alan Wetmore

Participants

Pavneet Arora, Bolton, ON

Amartyo Banerjee, TNQ, India
Abdelouahad Bayar, Cadi Ayyad University,

Morocco
Kaveh Bazargan, River Valley Technologies, UK

Nelson Beebe, University of Utah
Barbara Beeton, AMS, Providence, RI

Karl Berry, Bandon, OR

Johannes Braams, Zoetermeer, The Netherlands
Jozo Capkun, Caledon, ON

David Casperson, University of
Northern British Columbia

Jaeyoung Choi, Seoul, Korea
Joe Clark, Toronto, ON

Jennifer Claudio, Oak Grove High School, CA
Paulo Ney de Souza, BooksInBytes
Sue DeMeritt, Center for Communications Research,

La Jolla, CA
Mercedes Dollard, Pittsburgh, PA
Michael Doob, University of Manitoba
Behdad Esfahbod, Google
Yukitoshi Fujimura, Ichikawa-shi, Japan
Christian Gagné, Université Laval
Federico Garcia-De Castro, Alia Musica Pittsburgh
Peter Giunta, MIT

John Goyo, Acton, ON

Steve Grathwohl, Duke University Press
Katie Harding, Dartmouth College
Jim Hefferon, Saint Michael’s College
Tim Inkster, The Porcupine’s Quill
Steve Izma, Between The Lines Publishing

John Eddie Kerr, Wellington Law Association
Library

Stefan Kottwitz, Lufthansa Industry Solutions
Robin Laakso, TEX Users Group
Richard Leigh, St Albans, UK

Lothar Meyer-Lerbs, Bremen, Germany
Frank Mittelbach, LATEX3 Project
T Rishikesan Nair, River Valley Technologies,

India
Kim Nesbitt, Canadian Journal of Economics
Steve Peter, TUG

John Plaice, Montreal, Canada
Cheryl Ponchin, Center for Communications

Research, Princeton, NJ

Geoffrey Poore, Union University, Tennessee
Norbert Preining, Ishikawa, Japan
C V Rajagopal, River Valley Technologies, India
Arthur Reutenauer, London, UK

Volker RW Schaa, DANTE e.V.
Herbert Schulz, Naperville, IL
Heidi Sestrich, Carnegie Mellon University
Michael Sharpe, UC San Diego
A M Shanmugam Pillai, River Valley Technologies,

India
Keiichiro Shikano, Tokyo, Japan
Matthew Skala, IT University of Copenhagen
Michael Sofka, Rensselaer Polytechnic Institute
Christina Thiele, Nepean, ON

David Tulett, Memorial University, Newfoundland
Boris Veytsman, George Mason University
David Walden, East Sandwich, MA

TUG2016—Toronto, Canada

TUG2016 program

Monday

July 25

8:00 am registration

8:45 am Pavneet Arora, Bolton, ON Opening: Passport to the TEX canvas
9:30 am Geoffrey Poore, Union Univ. Advances in PythonTEX
10:00 am Stefan Kottwitz, Lufthansa Industry Sol. TEX in industry I—programming Cisco switches using TEX
10:30 am break

10:45 am Stefan Kottwitz TEX in industry II—designing converged network solutions
11:15 am Boris Veytsman, George Mason Univ. Making ACM LATEX styles
11:45 am Frank Mittelbach, LATEX3 Alice goes floating—global optimized pagination including

picture placements
12:45 pm lunch

1:45 pm Michael Doob, Univ. of Manitoba baseball rules summary
2:00 pm Amartyo Banerjee, S.K. Venkatesan, TNQ A Telegram bot for printing LATEX files
2:30 pm Norbert Preining, Ishikawa, Japan Security improvements in the TEX Live Manager and installer
3:00 pm Arthur Reutenauer, Royal Opera House The TEX Live M sub-project
3:45 pm break

4:00 pm Kevin Larson, Microsoft Reading between the lines: Improving comprehension
for students

≈ 5 pm end

Tuesday

July 26

8:25 am announcements

8:30 pm Kaveh Bazargan, River Valley

Technologies, UK

A graphical user interface for TikZ

9:00 am Matthew Skala, IT Univ. of Copenhagen Astrological charts with horoscop and starfont

9:30 am David Tulett, Memorial Univ. Development of an e-textbook using LATEX and PStricks
10:00 am Christian Gagné, Univ. Laval An Emacs-based writing workflow inspired by TEX and WEB,

targeting the Web
10:30 am break

10:45 am Frank Mittelbach In memoriam: Sebastian Rahtz
11:00 am Jim Hefferon, Saint Michael’s College A LATEX reference manual
11:15 am Arthur Reutenauer, Mojca Miklavec Hyphenation past and future: hyph-utf8 and patgen

11:45 am Federico Garcia-De Castro, Alia Musica TEXcel?
12:15 pm Jennifer Claudio, Oak Grove High School A brief reflection on TEX and end-user needs
12:45 pm lunch (with typeforming video, 40min)

2:00 pm Jaeyoung Choi, Seoul, Korea MFCONFIG: Metafont plug-in for the Freetype rasterizer
2:30 pm Michael Sharpe, UC San Diego New font offerings—Cochineal, Nimbus15 and

LibertinusT1Math
3:00 pm break

3:15 pm Robert Bringhurst, Quadra Island, BC The evolution of the Palatino tribe
4:15 pm TUG Annual General Meeting

≈ 5:15 pm end

5:15 pm Herbert Schulz, Naperville, IL Workshop: TeXShop tips & tricks

Wednesday

July 27

8:25 am announcements

8:30 am Jennifer Claudio The case for justified text
9:00 am Boris Veytsman Are justification and hyphenation good or bad for the reader?
9:30 am Charles Bigelow, Bigelow & Holmes Looking for legibility
10:30 am break

10:45 am David Walden, East Sandwich, MA Some notes on the history of digital typography
11:15 am Tim Inkster, The Porcupine’s Quill The beginning of my career
12:15 pm lunch (with road painting video, 10min)

1:45 pm group photo

2:00 pm Joe Clark, Toronto, ON Type and tiles on the TTC

3:00 pm break

3:15 pm Abdelouahad Bayar, Cadi Ayyad Univ. Towards an operational (LA)TEX package supporting optical
scaling of dynamic mathematical symbols

3:45 pm John Plaice, Montreal, QC Zebrackets: A score of years and delimiters
4:15 pm Charles Bigelow Probably approximately not quite correct: Revise, repeat

≈ 5:15 pm end

6 pm Type and Tile Subway Tour, Joe Clark (typography discussion at 3–5 subway stops)

TUGboat, Volume 37 (2016), No. 2 113

Outside The Porcupine’s Quill, in Erin, Ontario with
proprietor Tim Inkster (right) and Steve Izma (left),
Between The Lines Publishing (using groff).

Invited speakers Kevin Larson, Robert Bringhurst and
Charles Bigelow.

Michael Doob explains baseball to an international
audience.

TUG at the Toronto Blue Jays vs. San Diego Padres
game with Frank Mittelbach, Kevin Larson,
Michael Doob, Stefan Kottwitz; Arthur Reutenauer,
Johannes Braams, Yukitoshi Fujimura, Chris and
Herb Schulz.

A sampling of design and font catalogs,
Toronto Public Reference Library.

Joe Clark demonstrating why Helvetica (first line) is
not a good font for signage.

114 TUGboat, Volume 37 (2016), No. 2

Rare Book Room exhibit in the Toronto Public
Reference Library, guided by librarian Steven Shubert.

The Arthur Conan Doyle Room, in the Toronto Public
Reference Library.

One Hundred and One Nights, Aga Khan Museum. Cruise departure.

Banquet on the cruise. Pavneet receiving the original conference drawing.

Photos courtesy of Pavneet Arora, Jennifer Claudio,

Kim Nesbitt, Norbert Preining, Volker RW Schaa,

Michael Sofka and Christina Thiele.

TUGboat, Volume 37 (2016), No. 2 115

TUG 2016 in Toronto

Norbert Preining

In 2016, the TUG conference was held in Toronto,
Canada. The following was originally published on
my blog (preining.info/blog/tag/tug2016) and
edited for publication. So you want to know what
you missed if you weren’t able to be there? Here are
my very personal recollections!

1 First pre-conference excursion

This year, the TUG conference was held in Toronto,
Canada, and our incredible host Pavneet Arora man-
aged to put together a busy program of excursions
and events around the real conference. The −1st day
(yeah, you read right, the minus-first day), that is
two days before the actual conference started, was
dedicated to an excursion to enjoying wines at the
wine estate Château des Charmes, followed by a visit
to Niagara Falls.

What can I say, if the first thing after getting
out of the bus is a good wine, then there is nothing
to go wrong . . .

I had arrived in Toronto already two days earlier
in the late afternoon, and spent Friday relaxing,
recovering from the long flight, walking the city a
bit, trying to fix my cold, and simply going slowly.
Saturday morning we met at a comfortable 10am
in the morning (though still too early for me, due
to jet lag and a slightly late evening before), but
the first two hours of the bus drive allowed us to
relax. Our first stop was the Château des Charmes,
an impressive building surrounded by vineyards.

We were immediately
started off with a sand-
wich lunch with white, red,
and ice wine. Good start!
And although the breakfast
wasn’t that long ago, the de-
licious sandwiches (at least
the vegetarian ones I tried)
were a good foundation for
the wine.

After replenishing our
energy reserves, we were
ready to start our tour.
Our guide, very, if not over, enthusiastic, explained
that practically everything related to wine in Canada
has been started at this Château from the current
owner — the château system where farmer and wine
producer are the same, import of European grapes,
winter protection methods, wine making — I was
close to forgetting our Roman and Greek ancestors.

At least she admitted that the ice wine was

brought over by an Austrian — but perfection was
done here, where the controls of the government are
much stricter than anywhere else . . . hmmm, some-
how I cannot completely believe all this narrative,
but at least it is enjoyable. So now that we know all
about the history, we dive into the production pro-
cess area, and the barrel space, always accompanied
with extensive comments and (self-)praise.

After this exhaustive
and exhausting round, we
are guided back to the pa-
tio to taste another three
different wines, a white (bit
too warm, not so much my
taste), a rosé (very good),
and a red made from a new
grape variety that has mutated first here on the
Château (interesting). As I didn’t have enough, I
tried to get something out of the big containers di-
rectly, but without success!

Happy and content, and after passing through
the shopping area, we boarded the bus to continue
towards Niagara Falls. Riding by some quite nice
houses of definitely quite rich people (although Pav-
neet told me that houses in Toronto are far more
expensive than those here — how can anyone afford
this?), we first have a view onto the lower Niagara
river. A bit further on we are let out to see huge
whirlpools in the river, where boat tours are bringing
sightseers on a rough ride into the pool.

Only a slight bit further on we finally reached the
falls proper, with a great view of the American Falls
at full power, and the Horseshoe Falls further up.

We immediately boarded a boat tour making
the short trip to the Horseshoe Falls. Lining up
with hundreds and hundreds of other spectators, we
prepare for the splash with red rain wear (the US side
uses blue; forbid that any side would rescue a wrong
person and create an illegal immigrant!). The trip
passes first under the American Falls and continues
right into the mist that fills all the area in the middle
of the Horseshoe Falls. Spectacular impression with
walls of water falling down on both sides.

Returned from the splash and having dried our
feet, we walk along the ridge to see the Horseshoe
Falls from close up. The amount of water falling
down these falls is incredible, and so is the erosion
that creates the brown foam on the water down in the

TUG 2016 in Toronto

116 TUGboat, Volume 37 (2016), No. 2

pool, made up from pulverized limestone. Blessed as
we were, the sun was smiling all day and we got a
nice rainbow right in the falls.

The surroundings of the falls are less impressive —
Disneyland? Horror cabinet? Jodel bar? A wild
mixture of amusement park style locations squeezed
together and overly full with people — as if enjoying
the nature itself would not be enough. All engulfed
by ever-blasting loudspeaker music. The only plus I
could find in this encampment of forced happiness
was a local craft beer brewer where one could taste
eight different beers — I made it only to four, though.

Finally night was falling, and we moved down to
the falls again to enjoy the illumination of the falls.

After this wonderful finish we boarded the bus
and back to Toronto, where we arrived around mid-
night. A long but very pleasurable Day Minus One!

2 Second pre-conference excursion

The second pre-conference day was dedicated to
books and beers, with a visit to an exquisite print
studio, and a beer tasting session at one of the noted
craft breweries in Canada. In addition we could get
a view into the Canadian lifestyle by visiting Pav-
neet’s beautiful house in the countryside, as well as
enjoying traditional style pastries from a bakery.

In short, a perfect combination for us typogra-
phy and beer savvy freaks!

This morning we had rather an early start from
the hotel. Soon the bus left downtown Toronto
and entered countryside of Ontario, large landscapes
filled with huge (for my Japanese feeling) estates
and houses, separated by fields, forests and wild
landscape. Very beautiful and inviting to live there.
On our way to the printing workshop we stopped
at Pavneet’s house for a very short visit of the ex-
terior, which includes mathematics in the bricking.
According to Pavneet, his kids hate to see math on
the wall — I would be proud to have it.

A bit further on we entered Erin, where the
Porcupine’s Quill is located. A small building along
the street, one could easily overlook this rare jewel!

Even more so considering that according to the own-
ers, Google Maps has a bad error which would lead
you to a completely different location. This printing
workshop, led by Tim and Elke Inkster, produces
books in a traditional style using an old Heidelberg
offset printing machine.

Elke introduced us to the sewing of folded sig-
natures together with a lovely old sewing machine.
It was the first time I actually saw one in action.

Tim, the head master of the printing shop, first
entertained us with stories about Chinese publishers
visiting them in the old cold-war times before diving
into explanations of the actual machines present, like
the Heidelberg offset printing machine.

In the back of the basement of the little studio
is a huge folding machine, which cuts up the big
signatures of 16 pages and folds them into bundles.
An impressive example of tricky engineering.

Due to the small size of the printing studio, we
were split into two groups, and while the other group
got its guided tour, we grabbed coffee and traditional
cookies and pastries from the nearby Holtom’s bakery.
Loads of nice pastries with various filling, my favorite
being the slightly salty cherry pie, and above all the
rhubarb-raspberry pie.

To my absolute astonish-
ment I also found there a Vi-
ennese “Kaisersemmel”, called
“Kaiser bun” here, but keeping
the shape and the idea (but

Norbert Preining

TUGboat, Volume 37 (2016), No. 2 117

unfortunately not the crispy crackly quality of the
original in Vienna). Of course I got two of them, to-
gether with a nice jam from the region, and enjoyed
this “Viennese breakfast” the next day morning.

Leaving the Quill, we
headed for a lunch in a
nice pizzeria (I got Pizza
Toscana) which also served
excellent local beer — how
I would like to have some-
thing like this in Japan!
Our last stop on this day’s

excursion was Stone Hammer Brewery, one of the
most famous craft breweries in Canada.

Although they won’t
win a prize for typogra-
phy (besides one page of a
coaster there that carried a
nice pun), their beers are
exquisite. We got five dif-
ferent beers to taste, plus
extensive explanations on
brewing methods and differ-
ences. Now I finally under-
stand why most of the new craft breweries in Japan
are making ales: ales don’t need a long process and
are ready for sale in rather short time, compared to
e.g., lagers.)

Also at the Stone Ham-
mer Brewery I spotted this
very nice poster on the wall
of the toilet. And I cannot
agree more, everything can
easily be discussed over a
good beer — it calms down
aversions, makes even the
worst enemies friends, and
is healthy for both the mind
and body.

Filled with excellent
beer, some of us (notably
an unnamed US TEXnician and politician), stocked
up on beers to carry home. I was very tempted to
get a huge batch, but putting cans into an airplane
seemed not to be an optimal idea. Since we are
talking cans, I was surprised to hear that many craft
beer brewers nowadays prefer cans due to their better
protection of the beer from light and oxygen, both
killers of good beer.

Before leaving we took a last look at the Periodic
Table of Beer Types, which left me in awe about how
much I don’t know and probably never will know. In
particular, I heard the first time of a “Vienna style
beer” — Vienna is not really famous for beer, better

to say, it is infamous. So maybe this is a different
Vienna than my home town that is meant here.

Another two hour bus ride brought us back to
Toronto, where we met with other participants at the
reception in a restaurant of Mediterranean cuisine,
where I could enjoy for the first time in years a good
tahina and hummus.

All around another excellent day, now I’d just
like to have two days of holidays; guess I’ll need to
relax in the lectures starting tomorrow.

3 First day

The first day of the conference itself started with
an excellent overview of what one can do with TEX,
spanning from traditional scientific journal styles to
generating router configuration for cruising ships.

All this was crowned with an invited talk by
Kevin Larson from Microsoft’s typography depart-
ment on how to support reading comprehension.

Pavneet Arora, Passport to the TEX canvas
Pavneet, our never-sleeping host and master of orga-
nization, opened the conference with a philosophical
introduction, touching upon a wide range of topics
ranging from Microsoft, Twitter to the beauty of
books, pages, and type. I think at some point he
even mentioned TEX, but I can’t remember for sure.
His words set a very nice and all-inclusive stage, a
community that is open to all kind of influences with-
out any disregard or prejudice. Let us hope that this
reflects reality. Thanks Pavneet.

Geoffrey Poore, Advances in PythonTEX
Our first regular talk was a report on recent ad-
vances in PythonTEX, a package that allows includ-
ing Python code in your TEX document. Starting
with an introduction to PythonTEX, Geoff discussed
an improved verbatim environment, fvextra, which
patches fancyvrb, and improved interaction between
TikZ and PythonTEX.

As I am a heavy user of listings for my teach-
ing on algebraic specification languages, I will surely
take a look at this package and see how it compares
to listings.

TUG 2016 in Toronto

118 TUGboat, Volume 37 (2016), No. 2

Stefan Kottwitz, TEX in industry I: Program-
ming Cisco network switches using TEX Next
was Stefan from Lufthansa Industry Solutions, who
reported first about his working environment, cruise
ships (i.e., small floating towns) with a very demand-
ing IT infrastructure which he has to design and
implement. Then he introduced us to his way of
generating IP configurations for all the devices us-
ing TEX. The reason he chose this method is that
it allows him to generate at the same time proper
documentation.

It was surprising for me to hear that by using
TEX he could far more efficiently and quickly produce
well designed and easily accessible documentation,
which both helped the company as well as made the
clients happy!

Stefan Kottwitz, TEX in industry II: Design-
ing converged network solutions After a coffee
break, Stefan continued his exploration into indus-
trial usage of TEX, this time about using TikZ to
generate graphics representing the network topology
on the ships.

Boris Veytsman, Making ACM LATEX styles
Next up was Boris, who brought us back to more
traditional realms of TEX when he guided us into the
abyss of ACM LATEX styles he tried to maintain for
some time, until he plunged into a complete rewrite
of the styles.

Frank Mittelbach, Alice goes floating: global
optimized pagination including picture place-
ments The last talk before lunch (probably strate-
gically placed, otherwise Frank could continue for
hours and hours) was on global optimization of page
breaks, using an algorithm analogous to TEX’s line
breaking. This has been a wish among TEXies for
decades! Frank showed us what can and cannot
be done with current (Lua)LATEX, and how to play
around with global optimization of pagination, using
Alice in Wonderland as a running example. We can
only hope that his package is soon available for us
to at least play around with.

Thai lunch Pavneet organized three different cui-
sines for the three days of the conference. Today’s
was Thai with spring rolls, fried noodles, interesting
orange noodles, and chicken something.

Michael Doob, baseball rules summary After
lunch Michael gave us an accessible explanation of
the most arcane rules a game can have — the rules
of baseball — by using pseudocode. I think the total
number of loc needed to explain the overall rules
would fill more pages than the New York phonebook,
so I am deeply impressed by those who can under-

stand these rules. Some of us even wandered off in
the late afternoon to see how a real game matched
up with Michael’s explanations.

Amartyo Banerjee, A Telegram bot for print-
ing LATEX files Next up was Amartyo who showed
a Telegram (as in messenger application) bot, run-
ning on a Raspberry Pi, which receives (LA)TEX files
and sends back compiled PDF files. While it is not
ready for general consumption (if you sneeze the
bot will crash!), it looks like a promising applica-
tion. Furthermore, it is nice to see how open APIs
(like Telegram) can spur development of useful tools,
while closed APIs (including threatening users, like
WhatsApp) hinder this.

Norbert Preining, Security improvements in
the TEX Live Manager and installer Next up
was my own talk about beefing up the security of TEX
Live by providing integrity and authenticity checks
via GnuPG, a feature that has been introduced with
the recent release of TEX Live 2016.

The following discussion gave me several good
ideas on how to further improve security and usabil-
ity.

Arthur Reutenauer, The TEX Live M sub-
project (and open discussion) Arthur present-
ed the TEX Live M (where the M stands for Mojca,
who couldn’t attend, unfortunately) project: Their
aim is to provide a curated and verified subset of
TEX Live that is sufficiently complete for many ap-
plications, and easier for distributors and packagers.

We had a lively discussion after Arthur’s short
presentation, mostly about why TEX Live does not
have an “on-the-fly” installation like MiKTEX. I
insisted that this is already possible, using the “tex-
on-the-fly” package which uses the mktextex infra-
structure script, but also caution against using it by
default due to delays induced by repeatedly read-
ing the TEX Live database. I think this would be a
worthwhile project for someone interested in learning
the internals of TEX Live, but I am not sure whether
I want to invest time into this feature myself.

Another discussion point was about testing in-
frastructure, which I am currently working on. This
is in fact high on my list, to have some automatic min-
imal functionality testing — a LATEX package should
at least load!

Kevin Larson, Reading between the lines:
Improving comprehension for students Hav-
ing a guest from Microsoft is rare in our somewhat
Unix-centered environment, so big thanks to Pavneet
again for setting up this contact, and big thanks to
Kevin for coming.

Norbert Preining

TUGboat, Volume 37 (2016), No. 2 119

Kevin gave us a profound introduction to read-
ing disabilities and how to improve reading compre-
hension. Starting with an excursion into what makes
a font readable and how Microsoft develops optimally
readable fonts, he then turned to reading disabilities
like dyslexia, and how markup of text can increase
students’ comprehension. He also toppled my long-
term belief that dyslexia is connected to the similar
shape of letters which are somehow visually malpro-
cessed — this was the scientific theory from the 1920s
through the 70s, but since then all researchers have
abandoned this interpretation; dyslexia is now linked
to problems linking shape to phonemes.

Kevin did an excellent job with a slightly difficult
audience — some people being picky about grammar
differences between British and US English and trying
to derail the discussion, and even more the high
percentage of typographically somehow sophisticated
participants.

After the talk I had a lengthy discussion with
Kevin about if/how this research can be carried
over to non-Roman writing systems, in particular
Kanji/Hanzi based writing systems, where dyslexia
probably shows itself in different context. Kevin
also mentioned that they want to add interword
space to Chinese to help learners of Chinese (children,
foreigners) parse text, and studies showed that this
helps a lot in comprehension.

On a meta-level, this talk bracketed with the
morning introduction by Pavneet, describing an open
environment with stimulus back and forth in all
directions. I am very happy that Kevin took the
time to come in his tight schedule, and I hope that
the future will bring better cooperation — at the end
we are all working somehow toward the same ends —
only the tools differ.

Dinner After the closing
of the session, one part of
our group went off to the
baseball game, while an-
other group dived into a
nearby Japanese-style Iza-
kaya where we managed to
kill huge amounts of sake
and quite an amount of
food. The photo shows me after the first bottle
of sake, while just sipping an intermediate small
amount of genshu (a strong undiluted sake) before
continuing to the next bottle.

An interesting and stimulating first day of TUG,
and I am sure that everyone was looking forward to
day 2.

4 Second day

The second day of TUG 2016 was again full of inter-
esting talks, spanning from user experiences to highly
technical details of astrological chart drawing, and
graphical user interfaces for TikZ to the invited talk
by Robert Bringhurst on the Palatino type family.

With all these interesting things there is only one
complaint — I cannot get out of the dark basement
and enjoy the city . . .

After a evening full of sake and a good night’s
sleep we were ready to dive into the second day.

Kaveh Bazargan, A graphical user interface
for TikZ The opening speaker of Day 2 was Kaveh.
He first gave us a quick run-down on what he is
doing for business and what challenges publishers
are facing in these times. After that he introduced us
to his new development of a command line graphical
user interface for TikZ. I wrote “command line” on
purpose, because the editing operations are short
commands issued on a kind of command line, which
give an immediate graphical feedback. The base of
the technique is a simplified TikZ-like meta language
that is not only easy to write, but also easy to parse.

While the set of supported commands and fea-
tures of TikZ is not complete, I think the basic idea
is a good one, with plenty of potential.

Matthew Skala, Astrological charts with horo-
scop and starfont Next up was Matthew who
introduced us to the involved task of typesetting
astrological charts. He included comparisons with
various commercial and open source solutions, where
Matthew of course, but me too, felt that his charts
came off quite well!

As an extra bonus we got some charts of famous
singers, as well as the TUG 2016 horoscope.

David Tulett, Development of an e-textbook
using LATEX and PStricks David reported on
his project to develop an e-textbook on decision
modeling (lots of math!) using LATEX and PStricks.
His e-book is of course a PDF. There was a lot of
very welcome feedback — legally copyable (CC-BY-

NC-ND) textbooks for sciences are rare and we need
more of them.

Christian Gagné, An Emacs-based writing
workflow inspired by TEX and WEB, target-
ing the Web Christian’s talk revolved around edit-
ing and publishing using org-mode of Emacs and the
various levels of macros one can use in this setup. He
finished with a (sadly) incomprehensible-to-me vision
of a future equational logic-based notation mode. I
have used equational logic in my regular job, and
I am not completely convinced that this is a good

TUG 2016 in Toronto

120 TUGboat, Volume 37 (2016), No. 2

approach for typesetting and publishing — but who
knows, I am looking forward to a more logic-based
approach!

Frank Mittelbach, In memoriam: Sebastian
Rahtz (1955–2016) Frank recalled Sebastian’s
many contributions to a huge variety of fields, and
recalled our much-missed colleague with many photos
and anecdotes.

Jim Hefferon, A LATEX reference manual Jim
reported about the current state of an unofficial
LATEX reference manual, which tries to provide doc-
umentation orthogonal to the many introduction
and user guides available, by providing a straight
down-to-earth reference manual with all the technical
details required. He urged potential contributors to
take a look (http://home.gna.org/latexrefman).

As I also had to write a reference manual for
a computer language, it was very interesting to see
how this dealt with many of the same problems I am
facing.

Arthur Reutenauer, Hyphenation past and
future: hyph-utf8 and patgen Arthur reported
on the current state of the hyphenation pattern
project, and in particular the license and usage hell
they recently came into with large corporations sim-
ply grabbing the patterns without proper attribution.
In a second part, he gave quick rough sketch of his
design of a reimplementation of patgen.

Federico Garcia-De Castro, TEXcel? As an
artist organizing large festivals Federico has to fight
with financial planning and reports. He seemed not
content with the abilities of the usual suspects, so
he developed a way to do Excel-like bookkeeping in
TEX. Nice idea! I hope I can use this system for the
next conference I have to organize.

Jennifer Claudio, A brief reflection on TEX
and end-user needs The last speaker of the morn-
ing was Jennifer who gave us a real-world end-user’s
view of the TEX environment, and the respective
needs. This sort of talk is a very much welcomed
contrast to technical talks and hopefully all of us
developers take her suggestions to heart.

Jaeyoung Choi, MFCONFIG: Metafont plug-
in module for the Freetype rasterizer Jae-
young reported about an impressive project to make
Metafont fonts available to fontconfig and thus
windowing systems. He also explained their devel-
opment of a new font format Stemfont, which is a
Metafont-like system that can work also for CJK

fonts, and which they envisage to be built into all
kinds of mobile devices.

Michael Sharpe, New font offerings:
Cochineal, Nimbus15 and LibertinusT1Math
Michael reported on his latest font projects. The
first two being extensions of the half-made, half-
butchered, rereleased URW fonts, as well as an ex-
tended math font project.

I talked to him over lunch one day, and asked
him how many man-days he need for these fonts,
and his answer was, a lot: For the badly messed up
new URW fonts, like Cochineal, he guessed about five
man-months of work, while other fonts only needed
a few days. We all can be deeply thankful to all the
work he is investing into all these font projects.

Robert Bringhurst, The evolution of
the Palatino tribe The second invited talk was
from Robert Bringhurst, famous for his wide contri-
butions to typography, book culture in general, as
well as poetry. He gave a quick historic overview on
the development of the Palatino tribe of fonts, with
lots of beautiful photos.

Unfortunately, I was a bit disappointed that
the presentation was more a listing of historical facts
than his own ideas and thoughts. Of course, a person
as accomplished as Robert Bringhurst is so full of
anecdotes and background knowledge that it was
still a great pleasure to listen and lots of things to
learn, I only hoped for a bit more enthusiasm.

TUG Annual General Meeting The afternoon
session finished with the TUG Annual General Meet-
ing; Stefan Kottwitz wrote a separate report, follow-
ing this one.

Herbert Schulz, Optional workshop:
TeXShop tips & tricks After the AGM, Herb
from MacTEX and TeXShop gave a workshop on
TeXShop. Since I am not a Mac user, I skipped.

Another late afternoon program consisted of
an excursion to Eliot’s bookshop, where many of us
stocked up on great books. This time again I skipped
and took a nap.

Dinner In the evening we had a rather interesting
informal dinner in the food court of some building,
where only two shops were open and all of us lined
up in front of the Japanese curry shop, and then
gulped down from plastic boxes. Hmm, not my style
I have to say, not even for informal dinner. But at
least I could meet up with a colleague from Debian
and get some GPG key signing done. And of course,
talking to all kinds of people around.

The last step for me was in the pub opposite
the hotel, with beer and whiskey/scotch selected by
specialists in the field.

Norbert Preining

TUGboat, Volume 37 (2016), No. 2 121

5 Third day

The last day of TUG 2016, or rather the last day
of talks, brought four one-hour talks from special
guests, and several others, where many talks told us
personal stories and various histories. A great finish
of a great conference.

Jennifer Claudio, The case for justified text
Due to a strange timezone bug in my calendar pro-
gram, I completely overslept a morning meeting and
breakfast, as well as the first talk, so unfortunately
I don’t have anything to report about this surely
interesting talk comparing justification in various
word processors and TEX.

Boris Veytsman and Leila Akhmadeeva, Are
justification and hyphenation good or bad for
the reader? Still half dizzy and without coffee, I
unfortunately couldn’t follow this talk (with Leila
joining us via video from Russia), and only woke
up near the end when there was a lot of interesting
discussion about speed reading and its non-existence
(because it is simply skimming over text), and im-
provements on reading comprehension.

Charles Bigelow, Looking for legibility The
last special guest, Charles Bigelow, presented a huge
pool of research and work on readability, and how at-
titude and usage of fonts change over time. A very in-
volving and well laid out talk, full of interesting back-
ground images and personal opinions and thoughts.
Chuck also touched on topics of readability on mod-
ern devices like e-readers and mobiles. He compared
recent developments in font design for mobile de-
vices with their work on Lucida 20+ years ago, and
concluded that both arrived at the same solutions.

A very educating and amusing talk packed full
with information on readability. I will surely revisit
the recording in a study session.

David Walden, Some notes on the history of
digital typography David touched on many top-
ics of the history of digital typography which he
has experienced himself over the years: First the
development of newspaper production and printing,
then the evolution from simple text editors over word
processors to full-fledged DTP programs. Finally he
touched on various algorithmic problems that appear
in the publishing business.

Tim Inkster, The beginning of my career
Tim, our fantastic guide through his print shop the
Porcupine’s Quill on the second excursion day, talked
about his private ups and downs in the printing busi-
ness, all filled with an infinite flow of funny stories
and surprising anecdotes. Without slides, or any-
thing but his voice and stories, he kept us hanging on

his words without a break. I recommend watching
the recording of his talk because one cannot convey
the funny comments and great stories he shared with
us in this simple and so entertaining talk.

Joe Clark, Type and tiles on the TTC Joe
unveiled the history of the rise and fall of under-
ground types and tiles in Toronto. It is surprising
to me that a small metro network as in Toronto can
have such a long history of changes of design, lay-
out, presentation. Some of the photos completely
stymied me — how can anyone put up signs like that?
I was thinking. To quote Joe (hopefully I remember
correctly):

You see what happens without adult supervision.

Abdelouahad Bayar, Towards an operational
(LA)TEX package supporting optical scaling of
dynamic mathematical symbols A technical
talk about an attempt to provide optical scaling
of mathematical symbols. As far as I understand it
tries to improve on the TEX way of doing extensible
math symbols by gluing parts together at the font
level. It seems to be highly involved and technically
interesting project, but I couldn’t completely grasp
the aim of it.

John Plaice, Zebrackets: A score of years
and delimiters John introduced us to Zebrack-
ets, stripped parentheses and brackets, to help us
keep track of pairing of those beasts. But as we
know, zebras are very elusive animals, . . . and so we
saw lots of stripped brackets around. The idea of
better markup of matching parentheses is definitely
worth developing.

Charles Bigelow, Probably approximately not
quite correct: Revise, repeat Chuck’s second
talk, this time on the history of the Lucida fonts,
from the early beginnings drawn on graph paper
to recent developments using FontLab producing
OpenType fonts. A unique crash course through the
development of one of the biggest families of fonts,
and one of the first outside Computer Modern with
support for proper math typesetting in TEX.

Aggressively legible!

This was one of the key phrases that popped up
again and again — aggressively legible — mostly with
negative connotations, toward too-fat symbols or too-
big Arabic letters. But for me this font family is still
close to my heart. I purchased it back then from Y&Y

for my PhD thesis, and since then have upgraded to
the TUG version including the OpenType fonts, and
I use them for most of my presentations. Maybe I
like the aggressive legibility!

TUG 2016 in Toronto

122 TUGboat, Volume 37 (2016), No. 2

Chuck slid in lots of nice comments about his
partner Kris Holmes, the development practices in
their work, stories of business contacts, and many
more, making this talk a very lively and amusing,
and at the same time very educating talk.

Joe Clark, Type and Tile Subway Tour This
concluded the TUG conference talks, and we thanked
Pavneet for his excellent organization. But since we
still have up to two days more of excursions, many
people dispersed quickly, just to meet again for a
optional Type and Tile Tour — 3–5 subway stops
with discussion of typesetting there.

This guided tour through the underground of
Toronto, guided by Joe Clark who spoke in the morn-
ing on this topic, was simply too popular. I think
there were around 25 participants when we left. I
thought that this will not work out properly, and
decided to leave the group and wander around alone.

Dinner The last program point for the day was
dinner with a blues music concert at the nearby
Jazz Bistro. Excellent live music in a bit slick and
sophisticated atmosphere was a good finish for this
excellent day. With Herb from MacTEX and his
wife we killed two bottles of red wine, before slowly
tingling back to the hotel.

6 Fourth day

Talks have finished, and as a special present to the
participants, Pavneet has organized an excursion
that probably was one of the best I ever had. First
we visited the Toronto Reference Library where we
were treated to a delicious collection of rare books
(not to mention all the other books and architecture),
and then a trip through the Ismaili Centre Toronto
and the Aga Khan Museum.

Kelmscott press edition from 1892 of William

Morris’ A Dream of John Ball.

All these places were great pieces of architecture
with excellent samples of the writing and printing
art. And after all that and not to be left out, the
conference dinner evening cruise!

Our first stop was the Toronto Reference Library.
Designed by Raymond Moriyama, it features a large
open atrium with skylights, and it gives the library
an open and welcoming feeling. We were told that
it resembles a teacup that needs to be filled — with
knowledge.

The library also features running water at sev-
eral places — the architect had the idea that natural
ambient noise is more natural for a library than the
unnatural silence that never happens anyway.

Originally there was
lots of greenery hanging
into the atrium, resembling
the Hanging Gardens, but
that has been scrapped due
to financial reasons. But
there was still this beauti-
ful green oasis-like wall in

a corner of the library.
We were guided first

to the fifth floor where the
special collection is housed.
And what a special col-
lection. The librarian in
charge had laid out about
20 exquisite books starting
from early illuminated man-
uscripts over incunabula to
high pieces of printing art
from the 18th and 19th cen-
turies. Here we have an illuminated manuscript in
Carolingian minuscule.

It was surprising for all of us in this special
collection that all these books were simply laid out
in front of us, that the librarian touched them and
flipped pages without gloves, and above all, that he
told us that if one wants, it is common practice to
check out these books for study sessions and enjoy
them on the spot in the reading room. I don’t know
any other library that allows you to actually handle
such rare and beautiful specimens!

In one of the books I found by chance a map of

Norbert Preining

TUGboat, Volume 37 (2016), No. 2 123

my hometown of Vienna. On this map from very old
times, the place where I grew up is still uninhabited
somewhere in the far upper right corner of the map.
Times have changed.

After we left this open and welcoming treasure
house of beautiful books, we moved to the Aga Khan
Museum and Ismaili Centre Toronto, which are stand-
ing face-to-face separated by some water ponds in
the Aga Khan park a bit outside of central Toronto.
Below is the Ismaili Centre as seen from the Aga
Khan Museum entrance. The big glass dome is the
central prayer room, and is illuminated at night. Just
one detail — one can see in the outer wall one part
that looks like glass, too. This is the prayer alcove in
the back of the prayer hall, and is made from huge
slabs of onyx that are also lit up in the night.

The Ismaili Centre, designed by Charles Correa,
combines modern functional and simple style with
the wonderful ornamental art of the Islam heritage.
The inside of the Ismaili Centre features many pieces
of exquisite art — calligraphy, murals, stone work.

Following the Ismaili Centre we turned to the
Aga Khan museum which documents Islamic art,
science, and history with an extensive collection. We
didn’t have much time, and in addition I had to do
some firefighting over the phone, but the short trip
through the permanent collection with samples of
excellent calligraphy was amazing.

Banquet cruise After returning from this lovely
excursion and a short break, we set off for the last

stop for tonight, the dinner cruise. After a short bus
ride we boarded our ship and off we went. Although
the beer selection was not on par with what we were
used to from craft breweries, the perfectly sized boat
with two decks and lots of places to hang around
invited us to many discussions and chitchats. And
finally we could enjoy also the skyline of Toronto.

After the dinner we had some sweets, one of
which was a specially-made cake with the TUG 2016
logo on it. I have to say, it was not only this cake
but the whole excellent, overwhelming, food we had
during all these days, that will make me go on a diet
when I am back in Japan. Pavneet organized for the
lunch breaks three different style of kitchens (Thai,
Indian, Italian), then the excursions to local brewers
and and and. . . If it wouldn’t be for TEX, I would
call it a “Mastkur”.

During the cruise we also had a little ceremony
thanking Jim for his work as president of TUG, and
above all Pavneet for this incredible, well organized
conference. I think everyone agreed that this was
the most exceptional TUG conference in some time.

During this, Pavneet
also announced the win-
ners of the TUG 2016 foun-
tain pen auction. These
pens have much history and
travel behind them (tug.

org/tug2016/pens.html),
and were presented to the
special guests of the confer-
ence. Two remaining pens
were auctioned with pro-
ceeds going to TUG. The
first one was handed over
to Steve Grathwohl, and —
to my utter surprise — the
second one to myself. So
now I am a happy owner of a TUG 2016 fountain
pen. What a special feature!

Just one more detail about these pens: They
are traditional style, so without ink capsules; one

TUG 2016 in Toronto

124 TUGboat, Volume 37 (2016), No. 2

needs to insert the ink with a syringe. I guess I need
to stock up a bit at home, and more importantly,
train my really ugly handwriting, otherwise it would
be a shame to use this exquisite tool.

We returned to the harbor around 10pm, and
back to the hotel, where there was much greeting
and thanking at the end of a wonderful day.

I will leave on Friday morning to meet with
friends, thus I will not be participating in (and not
reporting on) the last excursion of TUG 2016 to
the Georgian Bay area. I will leave Toronto and
TUG 2016 with (nearly) exclusively good memories
of excellent talks, great presentations, wonderful ex-
cursions, and lots of things I have learned. I hope
to see all of the participants at next year’s TUG

meeting — and I hope I will be able to attend it.
One more thanks to Pavneet, you have done an

incredible job. And last but not least, thanks to your
lovely wife for letting you do all this, I know how
much time we stole from her.

⋄ Norbert Preining

Ishikawa, Japan

norbert (at) preining dot info

http://www.preining.info

Excursion to Georgian Bay

On Friday, although many participants had left, there
was one more excursion, to the Georgian Bay area.
This large bay, extending off of Lake Huron, was the
inspiration to the Canadian impressionist landscape
painters known as the Group of Seven, who were
active from the period before the first World War
until the early 1930s.

We first visited a public beach on the bay —
more like a large lake — where several of our group
took advantage of the opportunity to swim in the
calm water. (They assured me that it was quite
pleasant.) The rest of us enjoyed the scenery, woods
and islands as far as the eye could see, with small
cottages along the shore, and imagined what it would
look like in other seasons.

From Georgian Bay we made our way to the
McMichael Canadian Art Collection, a public gallery
in the village of Kleinburg, devoted largely to the
Group of Seven. Built around the collection of
Robert and Signe McMichael, and housed in their
much-expanded home, the collection, buildings, and
property on which it is located were donated in 1965
by the McMichaels to the Province of Ontario. Since
then, the collection has been augmented by other
Canadian works donated by collectors, as well as by
artists themselves. It now includes many contempo-
rary pieces, and both traditional and contemporary
works by First Nations and Inuit artists.

Our guide first introduced us to the works of the
Group of Seven. Although many of the Collection’s
holdings of this Group were temporarily away for
exhibit in larger cities’ museums, the core collection
on display showed a remarkable sensitivity to the
Canadian landscape in all its moods. The building
itself was designed by the Canadian architect Leo
Venchiarutti to be an appropriate home for the col-
lection, as well as (before it became a gallery) for
the McMichaels. Many of the windows look out on
the beautiful woods surrounding the building.

In addition to the permanent collection, several
special exhibits were on display. These included
a showing of contemporary textile art by Colleen
Heslin; a “studio” selection of colorful paintings by
Jack Bush; and drawings and paintings from the
period of the World War by A.Y. Jackson (one of the
Group of Seven) and Tom Thomson (closely affiliated
with the Group of Seven, though not a member; he
died before the Group got its name) showing their
influences on one another.

One area we didn’t have time to explore ade-
quately was the sculpture garden, which occupies
the grounds of the Collection. The pieces nearest
the main building, and those we could glimpse far-
ther away in the wooded parkland, are a compelling
invitation to return.

This is the 50th anniversary of the McMichael
Collection as a public institution. The website,
mcmichael.com, is well worth a visit.

⋄ Barbara Beeton

Barbara Beeton

TUGboat, Volume 37 (2016), No. 2 125

TUG 2016 Annual General Meeting informal

report

Stefan Kottwitz

The TUG Annual General Meeting for 2016 was in
the afternoon of the second day. Jim Hefferon, the
current TUG President, moderated it. He started
with a few slides. First, he gave a summary of the
TUG bylaws and goals, that are, further summarized,
maintaining TEX, supporting TEX users and caring
for fine typography. Following those objectives, the
TUG sponsors conferences, development of fonts, and
specific activities and projects such as CTAN and
LuaTEX development.

Jim introduced the board of directors. Every-
body on the board in the room stood up, so every-
body knows who they are. At last year’s meeting in
Darmstadt they sat in front of us, this year they just
stayed in the audience. Jim skipped the financial
information on purpose, saying that probably few
people in this audience were interested in financial
details; he’ll provide them for anybody interested.
They are also publicly available on the TUG web
site, since TUG has to publish them as a tax-exempt
organization. As a general remark, he mentioned
that TUG maintains its budget very conservatively.

However, there’s the challenge that the number
of members has fallen steadily. In 2000, we had
2211 members, in 2015 only 1260, and 1124 as of
June 2016. The membership fees have been raised
over time. One might see this kind of connected,
either could be partially a consequence of the other,
but: as long as TUG provides public services such
as CTAN support and TEX Live development and
more, also for non-members, and the TUG office,
with revenue mainly from membership fees, the fees
may get higher. As long as there’s no relevant change
of the model.

This led us to an open discussion, with Jim as
the moderator. It started similarly to last year, and
raised some of the same questions or suggestions:
what should be changed, what could be done, up to
whether the existence of TUG as an organization is
still relevant. The latter was quickly answered. How
to get developers together, such as at the present con-
ference, how to get funding and to finance projects,
without an organization?

The question was raised of how many members
we would like to have, what would be desirable—
stay small or grow—before doing anything about
it. Somebody said, and that’s good: we should be

much bigger to be representative of the very many
people using TEX. Several people confirmed that
there’s a general decline in membership numbers at
many societies. Today, young people seem to be less
interested in societies and paper journals.

We had a members-bring-members activity last
year. We had tried different things. It wasn’t sum-
marized what has been done, I missed that. It would
be good to touch ground before new suggestions
come. [Editor’s note: Although not mentioned at
the meeting, Boris Veytsman reported last year’s
results in “The continuing TUG membership drive”,
TUGboat 37:1, pp. 6–8, tug.org/TUGboat/tb37-1/
tb115veytsman.pdf. The campaign continues this
year: tug.org/membership.]

One such new suggestion was a lifetime member-
ship. But if we all use that, there would be no sub-
sequent membership fees at all. The 5-years-limited
lifetime membership was discarded as nobody wants
to kill anyone. We started to look beyond member
numbers . . .

The suggestion came to raise the TUGboat jour-
nal from a member’s journal to a premium journal
with subscription options. It would not take too
much, it was believed, we would have the ability to
produce a high quality journal. Libraries usually
don’t have the option to become a society member,
but would be able to subscribe to a journal. In-
stitutions where we study, teach, and work, could
subscribe. [Editor’s note: There was no chance at
the meeting to discuss it, but TUGboat currently has,
and has always had, a subscriber option available.]

Also not new: the suggestion to improve the
TUG website came up. To attract users to return
to the site on a regular base, such as by a blog.
Well, also blogs experienced a decline. I try to
support and to encourage blogging: on the one
hand I maintain TeXample.net with its blog ag-
gregator to keep up with blog posts, on the other
hand the three web forums LaTeX-Community.org,
TeXwelt.de, and goLaTeX.de present recent blog
posts in their side bar, so any TEX user jumping in
(e.g., from Google) anywhere in the forum can see
the posted list. You post on your blog, and the world
can see it at various places.

I have other thoughts too, though it’s just not
my thing to stand up in public. I am sending a few
suggestions to the TUG board . . .

⋄ Stefan Kottwitz

latex-community.org

TUG 2016 Annual General Meeting informal report

126 TUGboat, Volume 37 (2016), No. 2

Sebastian Rahtz (1955–2016):
A brief memoir

Lou Burnard

I wish I could discuss this with Sebastian. I know
that if I could, it would be a better piece, because
everything I have worked on with Sebastian has
always been better as a result. He had that rare
ability to understand what you were trying to achieve,
perhaps better than you did and to push you in the
right direction, if you were pointed that way, or gently
dissuade you if you were not. He saw things clearly,
and he had opinions about the right and the wrong
way of going about a thing, which in some people
might have been insufferable, but in him was not.
Far from it. No-one who enthused about Dr Who
and about dark Scandinavian thrillers on the telly,
about Bach and about Wagner, about the Moomins,
and Arthur Ransome, and Rudyard Kipling could
be considered insufferable.

I think I must have first met Sebastian at the
start of the 1980s, when he was working in the Ox-
fordshire Archaeological Unit. He was one of the
small number of proto-geeks frequenting Oxford Uni-
versity Computing Services who managed to make
its pioneering Lasercomp Typesetting System sit up
and say Uncle (or in his case the equivalent in Greek).
I got to know him better when he left Oxford and
became a lecturer in something called Humanities
Computing at Southampton University in 1985 or
thereabouts. We had a cheerfully irreverent email
correspondence making fun of our elders and betters
and bickering about what he called ‘Sludgemull’, the
ancestor of XML. We also engaged in data-trafficking
of dubious legality. His students extended my tran-
scriptions of the complete works of Bob Dylan, and I
provided him typesetting tapes of English dictionar-
ies to reformat. (Yes, dear reader, this was back in
the day when the most reliable way of transferring
more than a megabyte or so of data between different
computer systems involved huge reels of magnetic
tape in different proprietary formats.)

In 1985, he organised one of the first UK con-
ferences about how to teach IT skills to humanities
students. This was remarkable at the time because
delegates were provided on arrival with a copy of
the proceedings in the form of a decently typeset
book. The subjects covered seem extraordinarily
technical for a humanities focussed conference: em-
bracing database technology, information modelling,
and even logic programming, then much in vogue.
He was however skeptical about whether ‘humani-
ties computing’ actually meant anything much and

remained a fearless critic of some of its more pre-
tentious advocates on the email discussion lists and
bulletin boards which were the only kind of social
media we had in those distant days.

But the first big thing in Sebastian’s professional
life was not ‘Humanities Computing’ as such; it was
TEX and the TEX community. For about fifteen
years his professional energies were devoted to de-
veloping and promoting that celebrated open source
typesetting system. He became a world-recognized
mover and shaker within its community, setting up
its first online archive, producing numerous distribu-
tion packages, and writing two or three best-selling
textbooks. Others know much more than I do about
this period of his life; I note simply in passing what
an excellent preparation it provided for his work with
the Text Encoding Initiative. Because TEX is not
only a typesetting system, but also a community of
enthusiasts, empowered by the system’s openness
to tweak and modify it into a state of perfection.
Or confusion.

In the 1990s, Sebastian had a short spell work-
ing outside academia, first as a consultant at CERN,
where he witnessed first hand the arrival of the World
Wide Web, and then at Elsevier, where he was ac-
tually paid to work on TEX. But at the start of
the present century, Oxford University Computing
Services (as it then was) recruited him, initially with
the brief of reorganising its chaotic documentation
systems. The right answer, Sebastian decided, with
only a little prompting from me, was to convert ev-
erything to XML, more specifically TEI. And so
began his second major international collaboration,
in which I am very proud to have been involved.

The Text Encoding Initiative had been in use
amongst a small and rather various band of cogno-
scenti for more than a decade; its declared goal was
to define a common format for the representation of
written texts of every kind, in all languages, from
all periods of time, for every kind of scientific ap-
plication. Naturally, this was expressed as a very
complicated modular SGML schema, the full ram-
ifications and internal workings of which possibly
a handful of people in the world understood, on a
good day with a following wind. By the end of the
nineties, and with the arrival of XML, to say nothing
of Unicode or the web, the TEI was starting to look
decidedly antiquated: an elegant piece of research
perhaps but hardly a practical technology.

Sebastian paid the TEI the compliment of tak-
ing it seriously, and worked hard at making it re-
alise its full potential. He asked awkward questions
about how all that elegant text encoding was actually
supposed to be processed, and (when I waved my

TUGboat, Volume 37 (2016), No. 2 127

hands about by way of response) both proposed and
implemented solutions, real solutions, using actual
software. He led the development of a new technical
framework within which the TEI re-expressed itself
as a modular and customisable XML schema, and he
wrote the library of XSLT stylesheets which enabled
both publication and maintenance of succeeding ver-
sions of the system, from 2005 onwards.

Remarkably, he did this in a way that was en-
tirely faithful to the TEI’s original design goals of
accessibility and uniformity of documentation, but
taking advantage of the vastly improved range of
infrastructural tools and methods which had become
available since that initial design. We should not
forget that although designed before the existence of
the World Wide Web, the TEI anticipates, even takes
for granted, the wide availability of web technologies
which only came into being many years later; it an-
ticipates, for example, the kind of intimate linking
between documents and data we now recognize as
linked open data. Michael Sperberg-McQueen, the
original principal editor of the TEI Guidelines, liked
to say that when confronted by a choice between
expressing in one’s encoding what is true of a doc-
ument and what is expedient for processing, truth
should always take precedence. Sebastian’s work re-
minded us that the claims of expedience should not
be entirely neglected.

His contribution was not only technical however.
During the long drawn out process by which the TEI

transformed itself from short-term well-funded re-
search project into long-term self-sustaining research
infrastructure, he played a major role, working closely
with both Technical Council and Board of Directors
of the new TEI Consortium. Of course he was not
alone in orchestrating this transformation, but his
voice was the one consistently nudging the TEI to
adopt both open licencing policies and open working
practices, thus doing all that could reasonably be
done to ensure its longevity. I remember his being
quietly jubilant, as we stood on a railway platform
waiting for the train back to the Gare du Nord af-
ter a session at the French national standards body
AFNOR where the fledgeling TEI Council had agreed
once for all to licence all its products under the GPL.

I am lucky to have shared many such moments
with him. I remember a long bus journey in Norway
during which we reviewed and fixed all the outstand-
ing problem areas in an ancient TEI working paper
concerning the move from SGML to XML. I remem-
ber thrashing out details of what became the ODD

specification language with him, in countless email
messages, several airport lounges, and at least three
different Eurostar terminals. And I remember the

evening following an exhaustive TEI training work-
shop in Alicante during which (after rather a lot of
rioja) we planned out the structure and content of
the definitive TEI training manual.

His technical contributions were prodigious: it
became a standing joke in the Technical Council
whenever a particularly thorny issue was being dis-
cussed that by the time the Council—not the least
argumentative bunch of people—had formed a con-
sensus as to how it should be resolved, Sebastian
would have already implemented and tested an XSLT

stylesheet to do the job. But he was also and al-
ways a collaborative animal: he hated what he called
‘magic’ in software systems—secret by-ways in the
code depending on undocumented or special cased
data or situations. He wanted there to be a reason-
able possibility that a reasonably intelligent person
should be able to take over and run with everything
he had developed. Sadly, this goal is now something
the TEI Technical Council has to put to the test.

I think his later career at Oxford was marked by
the same insights. He obtained national funding for a
project called OSS Watch, which investigated the role
of Open Source software in academia, and developed
over the years into a consultative service, providing
reliable and objective data about the role of open
software provision in the academic context. He be-
came a well-liked and respected member of the senior
management team at OUCS in 2012, surviving the
department’s many vicissitudes and reorganisations
to become the University’s Chief Data Architect,
with strategic responsibility for many aspects of pol-
icy and practice across the University. I won’t try
to list all the different projects and services that
benefited from his expertise. I will however say that
he took each one seriously, so long as it was going
somewhere, but was ready to move on as soon as it
reached fruition. That seriousness, that commitment,
was surely a major cause for the real affection and
respect which his colleagues felt for him, not only
in the University, but in each of the many scientific
communities in which he participated, all of which I
think felt equally bereft when he was taken from us
earlier this year.

Sebastian’s personal life was full of happiness
and incident and variety, and he was blessed with a
wonderful loving family. There are many who count
themselves fortunate to have shared some small part
of his domestic life, whether IRL or elsewhere (for he
was a great Facebooker), to have eaten his excellent
bread, to have enjoyed his unstinting hospitality, to
have witnessed his joy and pride in his children, his
love of life, of running, of great art, and of all that
makes up our shared culture.

128 TUGboat, Volume 37 (2016), No. 2

And perhaps the most important lesson he
taught us was the need to engage with our fellows,
no matter how contrary they may seem. We are all
dead in the long run. Only by engaging the support
of our fellows can we hope to make possible any kind
of continuity for all those things that (like him) we
care so much about.

TUGboat, Volume 37 (2016), No. 2 129

R.I.P.—S.P.Q.R
Sebastian Patrick Quintus Rahtz
(13.2.1955–15.3.2016)

Frank Mittelbach and Joan Richmond
(translator)*

There are a small number of people in the worldwide
TEX community whose activities in the nineties have
been instrumental in shaping the TEX world as we
know it today. Sebastian Rahtz, known also by the
abbreviation SPQR, was without any doubt one of
this group.

Sebastian was born as the fifth child (Quintus)
of a family of archaeologists, which shaped the whole
of his future life. He began his career with an M.A. in
archaeology and as late as 2009 he was still describing
the Protestant graveyard in Rome as the place in
which he most enjoyed being [5].

Sebastian, colorful as
always in one of his striking
outfits—2005

Already during his early
time as a university lecturer
in Humanities Computing at
Southampton University, he
became involved with type-
setting classical texts, such
as “The Lexicon of Greek
Personal Names” (LGPN),
and at some point he came
in contact with TEX, which
then became the centre of his
work for almost two decades.

After Southampton, he
worked for some time as a
freelance consultant at sev-
eral places, including CERN,
where he worked with Michel
Goossens. After that he took
a post with Elsevier, where
he was principally involved

with TEX and its use in scientific publishing. Roughly
at the turn of the millennium he moved over to be-
come Information Manager at the Oxford University
Computing Services (OUCS), and in the following
years undertook various positions in higher manage-
ment there.

Sebastian was a pragmatist, who did things
when they had to be done, so it is not surprising that
a number of things which were significant for the
spread and further development of TEX and LATEX
can be traced back to him. A great deal of this was

* Ms Richmond kindly agreed to translate the German text
that originally appeared in TEXnische Komödie, the journal
of the German TEX user group, DANTE e.V. [4]. She is the
author of the book Nine Letters from an Artist, The Families

of William Gillard.

confined to “behind the scenes” operations, as com-
munity service, and consequently is not necessarily
known by the substantial majority of today’s TEX
users, but all these activities were hugely important
at the time and exercised a decisive influence on the
way TEX is presented to its users today.

In the eighties crucially important aspects were
the further spread of TEX, the porting of the pro-
grams to new operating systems, the development of
printer drivers for new devices and the like. Distri-
butions existed as “tapes” for individual operating
systems and Sebastian began his TEX life as a co-
ordinator and distributor of tapes for SunOS.

Sebastian at the “Poetry
Contest”—Vancouver 1999

His engagement in the
maintenance and expansion
of the Aston TEX archive
(working with Peter Ab-
bott and others) was a log-
ical next step, from which
CTAN (the Comprehensive
TEX Archive Network) was
subsequently born, so that
Sebastian is effectively one
of the founding fathers of
CTAN as we know it today.

In those days, an In-
ternet connection for most
TEX users was either rudi-
mentary (a 300kbps modem
was usual) or not available at
all, so that the distribution
of TEX software via floppy
discs, CDs and later DVDs
became of decisive impor-
tance with the rise of distri-
butions for Atari, PC, Amiga
and other computer systems. Anyone who still owns
a TEX Live disc from that period can verify that
Sebastian’s name appears as editor. He was the
one who constructed the first TEX Live installation
(based on the Unix distribution of Thomas Esser),
and over the next few years, together with a few
other volunteers, he continually improved it. The
first seven or eight TEX Live productions carry his
name as the responsible editor into the year 2004.

As I see it, both CTAN and TEX Live are vitally
important milestones in the history of TEX, without
which we would perhaps no longer know and use TEX
and LATEX today, since they were absolutely decisive
for wider distribution of the software.

But Sebastian’s name is also linked to several
macro packages which are still important today, de-
spite the fact that he played down the importance of
this work in an interview with Dave Walden [5]: these

R.I.P.—S.P.Q.R Sebastian Patrick Quintus Rahtz (13.2.1955–15.3.2016)

130 TUGboat, Volume 37 (2016), No. 2

include the early versions of graphics, produced
with David Carlisle, and the monumental package
hyperref which subsequently saw further develop-
ment by Heiko Oberdiek.

In the new millennium Sebastian turned his
attention to new tasks outside the world of TEX,
among which are his activities on TEI (Text Coding
Initiative) and OSS Watch. It is fair to say that the
XML world fascinated and absorbed him in the same
way that the TEX world had done decades before.

Sebastian was in many respects a model for us to
imitate. He never left construction sites behind him
(such as one encounters all too often in the world of
TEX and elsewhere), but always left behind him work
that was ordered and finished, and—when he no
longer had enough energy or interest in something—
he never clung to it but happily handed it on in good
time and in good condition to a successor.

Sebastian “preaching”
about XML and Passive
TEX, with a t-shirt from
San Francisco (1997);
in our hearts we are all
traditionalists, I still own
this too—Oxford 2000

I no longer recall ex-
actly when I got to know
Sebastian personally, but it
must have been sometime at
the beginning of the nineties.
In the course of the follow-
ing years we attacked vari-
ous projects together. The
most important of these are
the NFSS (New Font Selec-
tion Scheme for LATEX), in
which he undertook the inte-
gration of the 35 standard
PostScript fonts and later
the book projects The LATEX
Graphics Companion [1, 2]
and The LATEX Web Com-

panion [3].
Ever since then I have

valued him as both colleague
and friend, and there are a
number of activities which I
would like to remember. To

start with, the nightly coding sessions (via e-mail),
during which I once asked him how he could combine
that with the care of his little daughter. To which
he replied that she kept him awake, lay on his lap
and helped him. Whereupon he sent me a picture
of Matilde (6 months old) and himself “working to-
gether”. Or a walk on a free day during a conference,
during which he dragged me forcibly into a book
shop, ran straight to the children’s section, hunted
out a book that was completely unknown to me, and
said “Buy”. It looked rather odd, with the picture
of a boy wearing glasses, but I followed his advice,
bought it, and began to read it that same evening.

By four o’clock the following morning I had finished
it, and would rather not want to know how my lec-
ture went that morning. The book was by a still
fairly unknown woman writer at that time, and was
called “Harry Potter and the Philosopher’s Stone”.

Sebastian was a “philosopher in his own right”,
with a lovable, dry English sense of humor, which
often delighted me. This spring, his journey ended
due to cancer. My thoughts are with him and his
family.

Rest In Peace, S.P.Q.R.

References

[1] Michel Goossens, Sebastian Rahtz, and
Frank Mittelbach. The LATEX Graphics

Companion: Illustrating Documents with TEX

and PostScript. Addison-Wesley series on Tools
and Techniques for Computer Typesetting.
Addison-Wesley, Reading, MA, USA, 1997.

[2] Michel Goossens, Frank Mittelbach, Sebastian
Rahtz, Denis Roegel, and Herbert Voß,
editors. The LATEX Graphics Companion.
Addison-Wesley series on Tools and Techniques
for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, second edition, 2008.

[3] Michel Goossens and Sebastian Rahtz. The

LATEX Web Companion: Integrating TEX,

HTML, and XML. Addison-Wesley series
on Tools and Techniques for Computer
Typesetting. Addison-Wesley Longman,
Reading, MA, USA, 1999. With Eitan M.
Gurari and Ross Moore and Robert S. Sutor.

[4] Frank Mittelbach. Sebastian Patrick Quintus
Rahtz. Die TEXnische Komödie, 2/16, S. 24–27,
Mai 2016.

[5] David Walden. Interview with Sebastian Rahtz,
2009. https://tug.org/interviews/rahtz.

html.

Sebastian among his family: Inês, Leonor
and Matilde—2014

Frank Mittelbach and Joan Richmond

TUGboat, Volume 37 (2016), No. 2 131

Interview: Pavneet Arora

David Walden

Pavneet Arora has participated in TUG annual con-
ferences since 2010 and is the local organizer of TUG

2016 in Toronto.

Dave Walden, interviewer : Please tell me a bit
about yourself.

Pavneet Arora, interviewee : I have lived a some-
what nomadic life. I was born in Madras, India, far
from our nominal family home in Punjab as my father
was an Army Engineer in the EME Corps (electri-
cal and mechanical engineers). At a young age, my
mother, by then a widow, emigrated to Canada on
her own, and we established ourselves here.

My education was a product of the times, I sup-
pose, coming as it did right after the 1960s. This was
all in the public school system in Toronto, Canada.

I grew up in an inner city neighborhood well
before it became fashionably gentrified, but all along
I have had inspiring teachers. In primary school, we
had a wonderful teacher, Mr. Leeming, who was ex-
ploring open concept, mixed-grade classrooms with
huge—and I mean huge—spaces dedicated to ter-
rariums and aquariums filled with animals. I mean,
how many Grade 5 students can say that their class-
room housed its very own boa constrictor, and had
watched it feed? He would regularly, after getting
permission from our parents, pile a bunch of us kids
in a Ford Econoline and take us out to a rural farm
for a week, just to have us see that the planet is more
than concrete and steel. It was a very hopeful time.

Later, in high school, I had similar experiences
where teachers lifted me from the conventional path.
I got into calculators at an early stage as my mother
had purchased a TI SR-50A—the SR stood for Slide
Rule so you can imagine the era— for my mathe-
matician grandfather who declined, saying that he
preferred the one that he had been given at birth,
and simultaneously handed it to me. My electron-
ics teacher, Mr. Keen, observing that interest, one
Friday sent me home with an HP-35 (!) and the book-
let Enter vs. Equals, and asked me to come back
and let him know what I thought. (HP’s advertis-
ing said to “ask your dealer” for the booklet, which
explained entering arguments and operators for a
calculation onto a stack for evaluation according to
reverse Polish notation.)

DW : What did you think?

PA : It was an epiphany, the first of many. It was
as if your vision had been limited to the end of
your apartment balcony, and then someone pointed
out the horizon. I began to dream RPN, and then
pre-ordered an HP-34C programmable scientific cal-
culator when it was announced. It took me four
months of saving up from my part-time job to pay
for it.

DW : What about your other teachers?

PA : My literature teacher, Mr. Speichert, thought
nothing of chucking everything from French existen-
tialists, to Russian heavyweight writers at a bunch
of young teenagers. So I would come out of an as-
tronomy unit in physics one minute, and then be
reading Ivan Turgenev in the next. It all just seems
so far-fetched to me looking back now. My history
teacher, Dr. Heydeloff, guided us through European
history and economic theory through the lens of his
own childhood having grown up in Germany through
two horrific wars. At a very young age we were being
given the vocabulary to understand and question our
wider world. We were the beneficiaries, I think now,
of a confluence of two trends: the idealism of the
1960s, with those who entered teaching with it as its
touchstone, and a wave of extraordinary European
emigres who brought with them qualifications and
life experiences well beyond the norm.

Perhaps I was just impressionable, but all of
these imprinted on me the idea that one is truly free
when one is able to explore knowledge unfettered, and
that literacy is the most powerful force for the protec-
tion of personal liberty. Of course, it does get more
and more difficult as one takes on quotidian respon-
sibilities, but I have railed against accepting conven-
tion, and this has meant I have often lived with eco-
nomic uncertainty throughout my professional career.

Interview: Pavneet Arora

132 TUGboat, Volume 37 (2016), No. 2

I am very excited to see that we are now cele-
brating young people who aspire to be tinkerers. I
think the term “Maker” is perfect, and it is uplifting
to see the success of efforts like Raspberry Pi, and
the now ubiquitous availability and acceptance of
open source software.

DW : How did you first become involved with TEX?

PA : Ironically, my typesetting history has been
more aligned with troff than TEX. My father’s
younger brother worked at Bell Labs in its heyday,
and so I was exposed to Unix at an early age. I must
still have the documentation for Documenter’s Work-
bench Tools somewhere in my library along with a
full printed set of System V man pages. I remember
him recounting to me that the secretaries, which
I realize is now a term relegated to near antiquity,
took training courses in troff and were quite adept
at cranking out documents using troff markup.

And then when I was working on my Master’s
thesis, the university I attended had a format package
for troff, so I gravitated towards that. It was at
that time that one of my grad student friends chose,
instead, to use TEX, which was novel, but I was too
immersed in my own work.

DW : What university was that?

PA : It was at the University of Waterloo that I
did both my undergrad and Master’s in the Dept.
of Systems Design Engineering, a programme that
focused on inter-disciplinary aspects of engineering.
I ended up being fascinated by statistical pattern
recognition, and so that is what I pursued for my
Master’s.

DW : What did you do after university?

PA : I soon recognized, after my first few jobs, that
I was not a good fit for the corporate world. Along
with my business partner, we had a small venture
that, truth be told, wasn’t very successful. The short
explanation is that what I had to offer, the market
rejected. I say this with very few regrets, and without
the slightest wish to sound maudlin. The most that
one can reasonably expect is, to put it in baseball
terms, the chance to step up to the plate. After
that it is a combination of one’s skill, judgment, and
timing that determines the outcome. Whatever the
outcome, though, it doesn’t diminish in the slightest
that to take bat in hand and swing for the fences is in
itself a privilege: this is what gives entrepreneurship
its vibrancy.

I wrote an early text-based email agent using
the curses programming library, which my partner
and I hoped would find a place with “business” Unix
users. And then, for a decade we latched onto NeXT-

STEP and OpenSTEP, and developed applications
for it. NeXTSTEP arrived with native OOPS, Display
PostScript, Bit blit printing technology, Unix, the
very elegant syntax of Objective-C, and applications
like Lotus Improv. This, not too long after Microsoft
Windows had just managed to go from tiled windows
to overlapping ones! We thought that we had stepped
into the future.

We misjudged just how enduring the beige box
hegemony would be, and how long it would last. I
think that the PC era is mistakenly associated with
personal computing. In reality, DOS and Windows
were adopted mainly by corporations, whose employ-
ees then brought them into their homes. The real
personal computing revolution only happened with
mobile.

We had been unsuccessfully bashing our heads
against the Microsoft juggernaut for so very long.
You dig a financial hole, and it is hard to ever re-
ally catch back up. I was thoroughly worn out and
dejected with the technology sector by this time.
Somehow I ended up landing in construction.

This was a tremendously gratifying experience.
It released me from being bound by the very nar-
row definition of success that I had. I was doing
something practical with my hands, and it all hear-
kened back to the idea of Quality that Robert Pirsig
talked about in Zen and the Art of Motorcycle Main-

tenance. I met some amazing craftsmen, many of
whom I consider my friends today.

Breaking communal bread, so to speak, on con-
struction sites led to some unusual conversations.
I remember once someone initiated a conversation
about the Higgs boson; not long earlier I had read
Herman Wouk’s A Hole in Texas which was dedi-
cated, I think, to his scientist brother Victor.

It also amazed me to find a very high level of
numeracy amongst the trades in spite of their of-
ten having struggled in school. This being North
America, there was a fluency in fractions— for exam-
ple, 1/16 inch and 1/32 inch with carpenters— that
I found simply dazzling, and it convinced me that
some parts of mathematics, at least, should be acces-
sible to nearly everyone given enough practice. You
hold a combined metric/Imperial units measuring
tape—the type common in Canada—and you are
holding an everyday example of nomography. How
amazing is that?

It also got me into architecture, and in particular
the works of Frank Lloyd Wright. I ended up visiting
quite a few of his houses around this continent before
finally building a home inspired by his Prairie style
some years later on. I named it Arkinia, which is
a play on words on the ideas of “a home for ‘our

David Walden

TUGboat, Volume 37 (2016), No. 2 133

kin” ’, and the “ark in” which we could find shelter
or sanctuary.

Here is a photo of the brass plate that I had
made in an Arts and Craft font, in 2011, while I was
in India for TUG Trivandrum:

Allow me to relate a story about this
I had walked by a hole-in-the-wall sign shop lo-

cated deep in the pedestrian bazaar near my mother’s
apartment in Gurgaon just a couple of days before re-
turning to Toronto. The proprietor wasn’t there, but
I got his mobile number from the person manning
the shop on his behalf.

Later that day I called him from IGI (Delhi)
airport on my way out to Pune where I was going
just for a day, and asked him how long it might
take to have a plate made and how I might get him
artwork. He said three days, and a TIFF file.

When I asked him about a deposit he said not
to worry, just get him the details and he would work
on it— I could pay him when I came to visit him
at the shop! I also explained that three days would
be too long, as I would be leaving before then. He
assured me that he would get it done before I was
to leave.

I prepared the artwork while waiting for my
flight. Initially, I attempted it in LATEX, but was
unable to get the font to work, and so switched
to GIMP under Ubuntu on my laptop, outputting
to TIFF. I then sent it along to him via email, all
while sitting in the departure lounge. IGI had free
WiFi long before many other airports did, and it was
commonplace to see people pounding their laptop
keyboards.

Well, upon my return to Delhi I phoned the
shop, and of course the sign wasn’t ready. I was told
that it would be a few hours yet, and if it was later
than that he would deliver the plate to my mother’s
apartment. I was to leave for Toronto that evening
with not much time remaining before my taxi was
to arrive. I went to the shop in order to at least pay
for the plate, and fortunately by the time I got there
it was waiting for me packed for travel. Although, I
have no doubt that he would have even delivered the
plate to me at the airport should it have been later!

DW : Please say a few more words about what your
business does.

PA : For the past several years, I have undertaken
projects related to high-end audio/video along with
a huge dollop of automation and controls, in both
residential and commercial construction. This is
transitioning at this point as all of these are trans-
ferring to IP, and so placing a heavier load on the
network infrastructure.

So we have some interesting work coming up, I
hope, in teleconferencing, digital home healthcare,
and the Internet of Things (IoT). We continue to em-
phasize heterogeneous solutions following the Unix
philosophy, although I must say that the “new Mi-
crosoft”, with its support of open source solutions
and the willingness to make its own offerings inter-
operable with them, also has great appeal in our
framework. So, for instance, we use OpenWrt, pf-
Sense, FreeNAS, rsync, etc., even if our clients are
completely unaware that these are the components
which are driving the solution.

Ultimately, I try my best to embrace each and
every opportunity as it comes.

DW : Let’s return to the question of when you first
(truly) got involved with TEX and seriously interested
in typography?

PA : One of my career stops was at the Royal On-
tario Museum in their nascent IT department where
my manager, Mark Dornfeld, was the one who in-
spired me to take typesetting seriously. He is an
archaeologist by training who fell into Unix. He
brought SCO Xenix into the ROM, and then Soft-
Quad’s troff. His vision was to leverage the multi-user
capabilities of Unix to develop collaborative work-
flows to guide exhibit documentation, and project
management schedules.

At some point later in my self-employment phase,
I wanted to bring a typesetting structure to my doc-
umentation, and so I downloaded MiKTEX onto my
Windows laptop, at which point I started to use it
for general document creation. It took until my de-
sire to create a web resource to aid young people
struggling with mathematics to really embrace TEX
as a way of life. I presented that work at TUG 2010
in San Francisco: Using LATEX to generate dynamic
mathematics worksheets for the web1 . That paper
is dedicated to my mathematician grandfather, Prof.
Bansi Lal, who is renowned for his textbooks in the
areas of geometry, algebra, and calculus.

During my project’s development, I had flash-
backs of my childhood visiting my grandfather’s
printing press in Jullunder, Punjab, where all of
that math was typeset traditionally in a dusty, noisy

Interview: Pavneet Arora

134 TUGboat, Volume 37 (2016), No. 2

Prof. Bansi Lal was honoured at his university with a

student apartment block named for him.

press room, and where technicians would use tweez-
ers to pull characters from letterboxes to put together
pages of complex mathematics. I still am left trying
to figure out from where he might have ordered the
metal type for his books. I only wish I had had a
chance to talk with him about the world that was
all consuming to him.

I can only dream of what would have been some
very amazing conversations. Isn’t it the curse of the
young to perpetually miss the opportunity to see the
remarkable lives of their elders as their own older
selves will one day see them. It fills me with great
regret, but at the same time it connects me to that
family history.

DW : Was your grandfather who wrote mathematics

Covers of books that Prof. Bansi Lal wrote and

printed.

books the same person as your grandfather who
printed books?

PA : He was one and the same. He authored the
books, but was dissatisfied with the contracted out-
put. So he ended up buying a printing press, and
taking over the process end-to-end. Doesn’t that
sound similar to what led DEK to the development
of TEX? I have vivid memories of my grandfather
coming home, while we were visiting him, and with
a dip pen and different colours of fountain pen ink
marking up proofs in the evenings, and then going
back to the press to have the corrections made.

DW : The work you presented in San Francisco was
done in LATEX. Is that still what you use, e.g., for
the work described in the following papers:

• YAWN—A TEX-enabled workflow for project
estimation2

• TANSU—A workflow for cabinet layout3

• SUTRA—A workflow for documenting signals4

PA : Since then, I have been using mainly ConTEXt
to develop what I like to term as “specification-driven
documentation”. That is, the specification is in
a form other than TEX and its dialects, with an
emphasis on YAML, along with scripts to generate
the desired output on demand.

DW : Please say another word or two about YAML

for those of us who don’t know what it is.

David Walden

TUGboat, Volume 37 (2016), No. 2 135

PA : YAML is a simple markup language that has a
close association with basic data structures such as
hashes, arrays, and strings. Support for it is available
in nearly all modern languages—Ruby, Java, C#,
etc. I was looking for a structured representation
for my specifications that was human readable. The
hope was that in the field, I should need at most
Vim to create and edit specifications, and even pen
and paper would suffice should it come to that. I
found XML too unwieldy, and preferred the mini-
malism of YAML. The specification creation is often
done with little time available, but I was still seek-
ing a consistent representation that could capture
information.

Here’s a small excerpt (from one of my articles)
from a YAML specification, for a cabinet:

:cabinets:

:subcategory: Cabinets

:items:

-

:model: BD24

:width: 24"

:height: 30 1/4"

:depth: 23 5/8"

...

It is a plain text file, like TEX source, but as
can be seen, structured and machine-processable.

DW : Why do you prefer ConTEXt to LATEX for what
you are doing with YAML, and in general? Can you
give a couple of examples of aspects of ConTEXt that
particularly appeal to you?

PA : I met Hans Hagen, the creator of ConTEXt, in
San Francisco and was impressed with the structured
nature of ConTEXt. It fit the way that I was thinking
about page elements as well as documents.

One specific example is the rich set of attributes
with which one can typeset tables in ConTEXt. Fol-
lowing the previous example, here is how a table of
such information about cabinets can look:

Base Cabinets

Model No. Description Price

HD30844D 30" x 84" tall cabinet with 4 draw-

ers

$1,192.89

B2D24 2-pot drawer 24"W base cabinet $362.98

S24 24"W base cabinet opening $250.64

BSD30 24"W sink cabinet with drawer face $344.77

HD1584 15" x 84" tall cabinet $501.75

Sub-total $2,653.03

Wall Cabinets

Model No. Description Price

W1230 12" wall cabinet $136.13

W2430 24" wall cabinet with glass door $254.80

W1230 12" wall cabinet $136.13

W3015HZ 24" x 15" bridge cabinet, top hinge $176.93

Sub-total $703.99

$3,357.02

In another area of construction, a great need in
electrical work is the proper labelling of panels. They
often have a combination of single-pole, double-pole,
and tandem breakers, and with this setup, horizon-

tal alignment of the breakers with the panel slots
isn’t regular, which places some heavy constraints
on vertical cell merging when typesetting. So I have
used ConTEXt’s natural tables to typeset panel doc-
umentation for line voltage, alarm sensor, and data
network port panels.

In one instance, I had put together some rather
detailed panel documentation for a complex alarm
system, and when that system went haywire in the
middle of the night (naturally) due to a failed water
sensor, the client was able to diagnose the problem
with the aid of those panel diagrams. I imagine
that had they been forced to trace back wire labels
through a mess of wire bundles, that their experience
may have been less than satisfactory.

It does put a smile on my face to think that
somewhere out there, electricians are referring to
documents created using GUST Type Foundry fonts
and ConTEXt!

DW : Do you keep up with the latest versions of
ConTEXt (context-minimals)?

PA : I was fortunate to start with ConTEXt MkIV,
and so that is where I have stayed. As such I wasn’t
forced to undergo a migration across major versions.
My needs don’t change very often, although ConTEXt
does. I update only occasionally. I have a set of core
templates that have evolved with my projects, and I
try to stick to the capabilities within.

My ConTEXt literacy is still rather low, I feel,
and so I rely heavily on the assistance of those on
the ConTEXt mailing list to help me. Hans has
encouraged me to do a deeper dive into LuaTEX,
and I hope to carve out some serious time to do that.
I have some ideas about projects, but don’t have
enough mastery of ConTEXt to have the confidence
to undertake them quite yet.

DW : Do you remain happy with your choice of Con-
TEXt? I ask this because sometimes I have made
choices that I later regretted, but so much of what
I do depends on what I am doing by then that I
cannot change to something that would have been
better.

PA : This is an excellent point. An entrenched path
can become the default choice after a while even as
one begrudges that choice. In my case, however, I
continue to be very happy with my committing to
ConTEXt. Even with my limited skill it has allowed
me to solve the problems that I am trying to solve.

DW : Please tell me how you came to be “officially”
involved with TUG.

PA : I hadn’t thought about it at all really. It was
suggested to me that my use of TEX in industrial

Interview: Pavneet Arora

136 TUGboat, Volume 37 (2016), No. 2

applications, and I guess my business experience
might be of use to the organization. From my end,
I am extremely grateful for all of the community
contributions that make up TEX, and so wanted
to offer up whatever experience that I had to the
furthering of that community.

DW : What do you see as the value of the TEX
community and TUG?

PA : I like that the TEX community is peer-to-peer
with little hierarchy. Ideas and contributions flow
freely across the entire community, and that too its
reach is international. I see TUG as a facilitator
for the information flow from and to its members,
while also documenting and communicating notable
developments.

DW : Your use of TEX, or rather ConTEXt, seems
a bit out of the ordinary. In any case, what is your
motivation for writing-up and presenting/publishing
what you do with TEX?

PA : Personally, I don’t find it that out of the ordi-
nary. My interest is in workflows, and so the typeset-
ting forms only one part, albeit a crucial one, of that.
When large data-base management systems ruled,
one was forced to learn different “report writers”.
These were very often proprietary in nature and of-
fered only crude formatting functionality—really
little more than grouping and aggregation. As I
mentioned at TUG Boston, fitting engineering prob-
lems into a Model-View-Controller framework makes
it natural to see TEX as a good fit for generating
sophisticated (and beautiful) views.

DW : Please tell me about your aims in organizing
TUG 2016.

PA : For TUG’16, I wanted to emphasize the contri-
butions of local artisans in the fields of typesetting,
printing as well as publishing, even if they weren’t
directly TEX related. It was my hope, ultimately
realized even though I felt that it was a bit of a
long shot, that we might also be able to attract
some special speakers to provide a wider view about
typesetting beyond TEX.

Over the years I have become less timid about
reaching out to people, something that shocks those
who knew the younger, painfully shy me. So I spent
a great deal of time phoning and writing to people

in order to make them aware of just what a unique
group of individuals attend TUG conferences, and
how wonderful an opportunity it is to come and meet
them, and to participate in the discussions.

DW : What do you foresee in the future—with TEX
and TUG and with your life more generally?

PA : Without trying to be flippant, I do sometimes
think back to my reading of the words that J.D.
Salinger gave to Esmé when she addressed Sergeant
X in For Esmé with Love and Squalor. Taking liberty
with the text: I hope to get through with my faculties
intact. That, to me, seems a not unworthy goal.

My children are my counterbalance: my foibles
provide them with an endless source of amusement.
Just in the past year, I have gotten on a small dirt
bike because of my son, and had discussions with
him about the beauty of the twelve-string guitar: he
is an excellent guitar player. My daughter continues
to amaze me with her fierce independence. Recently,
she and I have had some wonderful talks about the
notes composition of artisanal scents, and the “noses”
who crafted them.

I have a number of TEX-related project ideas,
and hope to present the results at upcoming TUG

conferences. If I have a wish, professionally speaking,
it would be that I could have an opportunity to make
meaningful contributions in the IoT space. That
would allow me to bring to bear all of my experience
in automation and controls, combining it with my
background in AI to leverage the machine learning
capabilities now accessible through cloud services.
At TUG Darmstadt, I talked about ToT or TEX of
Things so this would have a TEX tie-in as well.

DW : Thank you very much for taking the time to
participate in this interview. I look forward to seeing
you at TUG 2016 in Toronto.

[Interview completed 2016-05-24]

Links
1 http://tug.org/TUGboat/tb31-2/tb98arora.pdf
2 http://tug.org/TUGboat/tb33-2/tb104arora.pdf
3 http://tug.org/TUGboat/tb34-3/tb108arora.pdf
4 http://tug.org/TUGboat/tb35-2/tb110arora.pdf

⋄ David Walden

http://tug.org/interviews

David Walden

TUGboat, Volume 37 (2016), No. 2 137

Type in the Toronto subway

Joe Clark

Here’s Nina Bunjevac’s artwork at the Art Gallery
of Ontario, entitled “The Observer: The Ascent,
Dundas Subway, Sunny Days.” It’s one of two images
on walls in front of you and behind you when you
stand in the gallery.

That really is what the type on the walls of Dundas
subway station looks like. (It’s Toronto’s second-
busiest station.) What Bunjevac has given us is a
hand-drawn facsimile of the typeface that’s really on
the walls, Univers.

But type in the Toronto subway is much more than
Univers on one station wall.

1 Fundamentals

The subway in Toronto is run by the TTC, the
Toronto Transit Commission.

The story of type in the Toronto subway is a story
about:

1. A 50-year-old custom font of almost unknown
origin.

Station sign LAWRENCE in TTC typeface,
with Helvetica sign added above

2. A subway lined with washroom tiles.

3. A system that hired a wayfinding expert, paid
him to install and test a new signage system,
then ignored that new system after it tested
better than the old one.

Black sign with white Gill Sans lettering and
pictographs

4. A billion-dollar corporation that cloned Massimo
Vignelli’s work for the New York subway from
40 years ago—but won’t admit it.

5. A billion-dollar corporation that refuses to test
its signage.

6. A billion-dollar corporation that uses as its main
font a Helvetica clone that came free with Corel-
Draw.

This is the story of a unique typographic heritage
that the TTC is totally blowing.

Type in the Toronto subway

138 TUGboat, Volume 37 (2016), No. 2

2 The subway

Toronto’s subway consists of 69 stations on four lines.
The subway opened in 1954, and from the very start
we’ve had a unique font on the walls.

The TTC’s custom subway font is usually sandblasted
into the walls.

The walls themselves are interesting. In nearly all
cases, the walls are finished in tiles. Originally we
used glossy large-format Vitrolite tiles, then different
kinds of tiles later.

EGLINTON letters embossed into large glossy grey
tiles

The typeface itself is a geometric sansserif, upper
case only, with some unusual features:

1. Low waist of the R.

2. Points of A V N W M that extend past the
baseline or cap height.

3. What we’d consider nowadays to be quite a
heavy weight for signage, though you also find
some rare usages of a light weight (as seen in
the Eglinton example above) for which we don’t
have any drawings.

The font doesn’t have a name and nobody knows who
designed it. What I have shown above are believed to
be the original drawings for the typeface, but they’re
dated 1960, six years after the subway opened.

But we now have a few clues about the origins of the
font.

1. First, a little birdie found this very similar face
in an old book of type specimens:

Joe Clark

TUGboat, Volume 37 (2016), No. 2 139

That’s maybe halfway to the TTC font. Type-
faces similar to each other have been designed
more or less simultaneously even though the
designers in question had no knowledge of each
other. Helvetica and Univers were a case of that.
So this general type family might just have been
in the air in the 1950s.

2. Next we’ve got a bit of skullduggery from an
online forum. Someone named simply Brent
looked more carefully than I ever did at the
signatures on some of the old TTC drawings.
And Brent says:

The drawing for the 4′′ standard alpha-
bet indicates that it was drawn by a P.
Butt, and reviewed/checked by a W.F.G.
Godfrey. . .

A little digging leads to William Fred-
erick George Godfrey (b. London, Eng-
land, 1884; d. Toronto, 1971). He was a
Toronto artist who did engravings and
other line drawings, but he was originally
trained as an architect.

I am guessing that Godfrey was the
designer, and that Butt was the drafts-
man.

There are different kinds of signfaces that use the
TTC font, not just sandblasted letters.

1. Very early white signs with black letters.

2. Backlit box signs with white type on black.

3. And the most cherished of all, massive enamelled-
steel plates that have lasted almost without a
blemish for 40 years or longer.

Type in the Toronto subway

140 TUGboat, Volume 37 (2016), No. 2

These signs have never really been tested, but they
appear to be mostly functional.

Nonetheless, the TTC is run by jumped-up motor-
men and engineers and old guys who think anything
related to “print” or “design” is girly and decorative.

You know what these people are like. They think
design is the icing on the cake. They don’t know
that design is the recipe for the cake. They don’t
know that the cake is design.

At any rate, starting in the 1970s, the TTC began
to pollute its nice tidy uniform design.

They extended the first subway line north and also
south around a loop at the southern point of down-
town.

They opened a crosstown line with the original fonts.

They renovated some of the original subway stations.
They destroyed the original Vitrolite tiles in all but
one of them and replaced them with haphazard tiles
and haphazard fonts. I’ve got bad and good examples
here.

For reference, Dundas station originally looked like
this (with pale yellow walls):

Then they extended the first line again, with each
station ostensibly using nothing but Univers.

Joe Clark

TUGboat, Volume 37 (2016), No. 2 141

Then they opened a suburban line using toy trains.
It uses signage in Helvetica on curved-metal blades.

Then they opened a couple of extra stations here
and there using Helvetica.

All the while, behind the scenes they were replacing
signage with whatever they could get their hands on,
mostly Helvetica.

And finally they spent nearly a billion bucks on a
new five-station subway line to nowhere using fake
Helvetica—or fake Helvetica, as we shall soon see.

What we’ve got now is a completely unplanned mix-
ture of signs in the true TTC typeface, and signs in
Helvetica, fake Helvetica, Univers . . . and Arial.

Now, it’s really hard to get this point across to the
TTC, but when your signage is all hither and yon like
this then (a) people get lost, especially tourists and
people who haven’t learned the system the hard way,
and (b) your entire subway system looks undesigned
and people are encouraged not to believe a word your
signs say.

And in some cases that’s literally true:

The only westbound vehicles from this station (Bath-
urst) are trains. Buses and streetcars don’t travel
west. This is a sign that lies to you.

Type in the Toronto subway

142 TUGboat, Volume 37 (2016), No. 2

3 But, along the way, they did try to fix it

In the early 1990s, the TTC hired Paul Arthur to
develop a new signage system. Paul Arthur, a British-
born Canadian graphic designer, died in 2001. He
left behind a substantial legacy that is unknown to
designers outside Canada.

1. Paul Arthur was a pioneer of signage and wayfind-
ing. He designed the pictographs at Expo ’67
in Montreal, widely seen as the first high-profile
use of pictographs in a public setting.

2. He cowrote a couple of books, the most impor-
tant of which is Wayfinding: People, Signs and

Architecture (McGraw-Hill, 1992, reprinted 2005
by Focus Strategic Communications; amazon.

com/dp/0075510162).

TTC spent about a quarter of a million dollars coming
up with new designs with Paul Arthur at the helm.

Lance Wyman helped out. (You may know him from
Mexico City Olympic signage.) For the TTC, Lance
Wyman drew most of a set of new pictographs for
subway stations.

Paul Arthur’s project remade one half of one station,
St. George, an interchange between two lines. The
entire east end of the station, on all levels, was made
over with the new Paul Arthur signs, while the west
end was left intact.

Some of the features of the Paul Arthur system:

1. He used Gill Sans.

Paul Arthur was English and this was really a
holdover from his childhood. He considered all
sansserifs to be equally legible, which obviously
they are not.

Gill Sans in this case was too light a weight for
signage, though they did expand the tracking.
As ever, there is the notorious difficulty of

distinguishing I, l, and 1 in Gill Sans. Some of
Paul Arthur’s drawings show the straight-line 1,
others the real numeral 1.

2. Subway lines would no longer have names, which
admittedly are ridiculous in Toronto. They
tend to relate to the streets under which the
subway runs, which themselves aren’t accurate.
We’ve got the Yonge–University–Spadina line
(yes, three names for one line), the Bloor–Dan-
forth line, and the Sheppard line. The Scarbor-
ough RT runs through the neighbourhood, and
former city, named Scarborough, and RT means
“rapid transit.” The nomenclature is a mess.

In Arthur’s new system, lines would each get
a colour and a number. And the colour would be
written out in words to be accessible to colour-
blind people.

3. Every station had a strapline above the tracks
on the train-wall side in the line colour, with
the name written out and the station’s custom
pictograph. In principle, even if you couldn’t
read you could at least find your station.

Joe Clark

TUGboat, Volume 37 (2016), No. 2 143

Paul Arthur tested the St. George prototype with
four groups—the “general population,” meaning
riders without disabilities who could read English;
the visually impaired; a “multicultural” group, that
is, English-as-a-second-language speakers; and an
English-speaking group “with a low level of literacy,”
who were often students.

1. The low-vision people hated all the signs, but
they hated the new ones less, and all the other
groups preferred the new signs.

2. This was just an opinion survey, not a test of
tasks and performance. Nonetheless, the new

signs were deemed better.

So the TTC ignored the results. Literally. It would
have cost about $8 million to convert the whole
subway to the new system, but the Toronto Tran-
sit Commission never voted on doing that. It was
never brought to the elected commissioners. It was
killed internally, and there are no records of how that
happened.

And many of the Paul Arthur signs were simply left
in place. They’re still there a decade and a half later!

But, as of three years ago, TTC started phasing out
line names in favour of numbers and colours.

1. Obviously the numbers are in Helvetica.

2. And just as obviously, this male-run organiza-
tion picked a set of colours that colourblind
people cannot necessarily tell apart. 4% to 8%
of the male population, and some females, have
colour deficiency, but over and over again TTC

picks green, yellow, and orange as colours.

The point here is that, nearly 20 years on, the TTC

finally adopted one of Paul Arthur’s ideas, but, in
true Toronto fashion, they half-assed it all the way.

4 Then there was the Sheppard subway

TTC and the City of Toronto proposed an expansion
of subway lines in the 1990s. The plan was to run
two new lines across midtown Toronto on Eglinton
Ave. West and on Sheppard Ave. East and West.

But a new provincial government was elected that
hated Toronto. It tried to scotch the whole project.
What we ended up with was five stations on Sheppard
Ave. East that end in the middle of nowhere. And
this five-station Sheppard line cost $933 million to
build.

For a nice new subway line, you need nice new signs.
So, guess what, the TTC ignored the Paul Arthur
designs they’d already paid for and cooked something
up in-house.

1. They threw together two prototype overhead
signs and installed them—where else?—at St.
George station. And of course they’re still up
today!

2. And the biggest type on those signs is set in . . .
Arial.

3. One of the signs could not even construct a
lower-case g correctly.

4. So, to recap St. George station: It’s got more
than half of its original signs, or at least signs
from the 1980s, plus many of the Paul Arthur
prototype signs from the early ’90s, plus the
Sheppard prototype signs. Still. Today.

5. The TTC threw together these fake-Helvetica
signs and ran them by a dozen people. That
was their testing. And from that they wrote a
350-page instruction manual on how to clone
Massimo Vignelli’s designs for the New York
City subway in the ’60s.

Type in the Toronto subway

144 TUGboat, Volume 37 (2016), No. 2

You see, Toronto has an inferiority complex. Still.
Today. Deep down, we wish we were as good as New
York. The fact that we’re better than New York on a
lot of scores means nothing. New York is the summit
of a mountain we can never reach. But it also means
that anything New York does is axiomatically the
best.

That further means the use of Helvetica for transit
signage. Now, in the 1960s, Massimo Vignelli chose
Helvetica because he’s an arch-Modernist. Although
of course the typeface he chose was really Standard or
Akzidenz-Grotesk, because Helvetica wasn’t available
at the time in the formats he needed. (You should
read Paul Shaw’s book Helvetica and the New York

City Subway System, helveticasubway.com.)

But anyway, we don’t live in the 1960s. We have
engineered signage fonts now, and we can design new
engineered sign fonts if we need them, and we know
more about testing.

But TTC staff are visual illiterates and Windows
users and they have no taste whatsoever. Their
powers of analysis begin and end with “I can read it”
and “It looks clean.”

So what do we have in the Sheppard subway? Wall-
to-wall Helvetica. And half the time it’s backlit or
electronically scrunched.

It looks pleasingly uniform compared to the mish-
mash on the other lines, but is that enough? No, not
for transit signage, because it has to perform.

Helvetica does not work well in signage. There are
some reasons for that, which, while obvious, are not
obvious enough to dissuade the TTC.

Joe Clark

TUGboat, Volume 37 (2016), No. 2 145

1. All the usual confusable characters, like I, l, and
1, remain confusable. In fact, numerals are really
confusable.

2. The whole thing sets too tight together by de-
fault. When you’re at a distance from a piece
of text, an optical phenomenon called crowd-
ing reduces the legibility of characters that are
tightly spaced together. Helvetica sets too close
together by default.

3. The now-retired type designer Erik Spiekermann
has a couple of graphics that show these issues
nicely:

“1milliliter” in typefaces of differing legibility
(Helvetica among the least legible)

“LoveIslington” in typefaces of differing legibility
(Helvetica among the least legible)

Even if we didn’t have evidence already that Hel-
vetica is a lousy choice for signage, my business part-
ner Marc Sullivan and I demonstrated it for another
transit system here—GO Transit, the commuter-rail
system.

We showed this other transit system a set of alter-
natives, in positive and negative, sharp and blurry,
and proved that Helvetica doesn’t work. So GO

Transit went with something other than Helvetica.
They went with the wrong font, but at least it wasn’t
Helvetica.

Four sign mockups, black on white, white on black,
sharp, and blurry

And there’s more: What the TTC is using isn’t real
Helvetica or Helvetica Neue. It is actually Swiss 721,
the Bitstream clone that comes free with CorelDraw.
If you’ve ever used an HP printer or any Corel soft-
ware, you’re familiar with Swiss 721 as Bitstream’s
Helvetica clone from the late 1980s. A very good
copy, but it isn’t the real thing. And in the best case
one could argue with the propriety of a municipal
transit agency’s using a copy of a real font.

The most interesting point about the signs in the
Sheppard subway is the fact that the man who devel-
oped them ultimately could not use his own signage.

Bob Brent was a TTC manager in charge at the
time. Later, Brent had a hip operation that had him
using a wheelchair and then a walker. And on two
occasions, right there at Sheppard station, he could
not find an accessible exit using his own signs.

The TTC did give us a little sop to the past in the
Sheppard subway. The name of the station on the
train-wall side uses the old TTC font. Except the font
is too small and too tightly spaced. They couldn’t
even get that right, in other words.

Type in the Toronto subway

146 TUGboat, Volume 37 (2016), No. 2

5 What’s happening these days?

More than a few interesting things have happened
in recent years.

First, TTC now actually has a design department
and I actually did some work for them. I set up a
few tasks—common ones, unusual ones, and rare
ones—and did a test to see if I could carry out those
tasks using only existing signage. Usually I couldn’t.

This design department does not inspire a lot of con-
fidence. It spent almost a year being the world’s
only Helvetica truthers. TTC Design literally told
people— in writing, on Twitter, in their own design
manuals— that Swiss 721 is the real typeface and
Helvetica is the clone. TTC Design wanted us to
believe that those Swiss designers produced a type-
face called Neue Haas Grotesk and then one called
Swiss 721 and then, finally, a font called Helvetica.
That didn’t happen, and the Germans didn’t win
World War II, either.

Also, one of the TTC’s junior architects took it upon
himself to solve the problem of new wall coverings.
They did a test at one downtown station, St. Andrew.

The first couple of installations didn’t work, but they
kept at it, and now we have a nice new material
that looks a lot like the old Vitrolite tile, though
the slabs are full height floor-to-ceiling. And in
those installations, they’re duplicating the original
typography almost exactly. All that is pretty good.

Panoramic fisheye view of original Vitrolite tiles at
Osgoode station

Panoramic fisheye view of new wall cladding at
Osgoode station

And one more thing that’s going on is digging out
subway tiles and, apparently, putting them right back
up again, albeit with different and bigger caissons,
as they’re called, for advertisements. But while the
tiles are removed, we’ve all been able to see the
true aboriginal TTC type that’s behind them, on the
original tiles, hidden for many many years.

Joe Clark

TUGboat, Volume 37 (2016), No. 2 147

Ad frames at Dundas station reveal pale
yellow square Vitrolite tiles, O STREET legend
in light TTC typeface

And the TTC is renovating subway stations. They
use their own in-house version of the TTC font and
you can easily tell the difference. Plus there was
that time they installed the letter N backwards at
Dufferin station. That even made the papers. (It
was fixed soon enough.)

Even many years after they should have known better
and even after they hired me and well past any point
where there was possibly any excuse, exactly a year
ago some miscreant unknown gave the order to tear
out the destination signs on subway trains and re-
“typeset” them in Arial.

This is for real. Before this, the destination signs
were set in Futura and some mid-century industrial
gothics. Much better, and more historically accurate,
and not the total abomination that Arial is.

And, while the TTC has its own in-house outline ver-
sion of the subway typeface, Toronto designer David
Vereschagin produced and sells his own version, enti-
tled Toronto Subway (www.quadrat.com/ts.html).

6 Conclusion

Type in the Toronto subway is a story of just how
much of a mess you can make without adult supervi-
sion. The TTC started out with something nobody
else had, and then, through a combination of igno-
rance and bad taste, spent 50 years tinkering with it
and diluting it.

Photo credits

Some photos by David Topping, Luke Tymowski,
Craig James White, Lori Whelan, Bruce Reeve,
Nathan Ng, and Michael Leland, all used
by permission or under Creative Commons.
Photo of Nina Bunjevac artwork by the author;
reproduction of artwork by permission of the artist.
Photo of 1954 Dundas Station courtesy Toronto
Archives (Series 381).

⋄ Joe Clark
joeclark.org/tug

Type in the Toronto subway

148 TUGboat, Volume 37 (2016), No. 2

Are justification and hyphenation

good or bad for the reader? First results

Leila Akhmadeeva, Rinat Gizatullin and
Boris Veytsman

1 Introduction

Since the early days of typography text justification
was considered a necessary feature of well-typeset
text. The type block should be rectangular and grey.
Even the “New Typography” by Jan Tschichold [5],
while rejecting many dogmas of classical typesetting,
still retained text justification and, as a consequence,
hyphenated text.

While hyphenated text has obvious aesthetic
advantages, typography is not just about aesthetics:
its main purpose is to help the author to convey her
thoughts to the readers. Is hyphenated and justified
text really better for the reading and comprehension?

In this work we try to answer this question.

2 Experimental methods

The experimental methods were a variation of the
scheme used in our previous papers [1, 2, 7]. A
group of N = 300 healthy volunteers (Bashkir State
Medical University undergraduates) was given two
texts, A and B. Each text had 282 words, typeset
with LATEX using ParaType Serif fonts. Half of the
participants got text A justified and text B ragged
right, while the other half got text B justified and
text A ragged right. The participants were asked
to read the text. After a minute they marked their
current reading position. Immediately after the read-
ing the participants were given a multiple choice test
(10 questions with 4 variants of answers to choose
from). To test the long-term memory, we repeated
the test 60 minutes later. We compared the differ-
ences between the justified and ragged right tests.

3 Results

The difference between the results for justified and
ragged right texts for the same subjects is shown
in Figures 1 and 2. The results suggest that jus-
tified texts give slightly higher reading speed and
slightly fewer correct answers on the delayed test
(note that Figure 2 shows the difference between
justified and ragged texts). However, the effect is
small: we will see below that it is smaller than the
difference between the texts A and B themselves and
the individual differences between the subjects. To
quantify the effect we use a Bayesian technique [3,4].

In our model we assume that each participant
has an individual reading speed and individual proba-
bility of correctly answering a question. Besides these

individual propensities, there are corrections for the
texts (A or B) and typesetting (ragged or justified),
common for all participants. These corrections are
what we want to determine.

More formally, let us introduce the parameters

δa =

{

1, Text A

−1, Text B

δj =

{

1, Justified text

−1, Ragged text

(1)

Then we will model the reading speed v as a normal
distribution with the mean

v = vind +
1

2
(δava + δjvj) (2)

and standard deviation σ. Here vind is the individual
reading speed, va is the difference between text A
and text B, and vj is the difference between justified
and ragged texts. We need to estimate va and vj .

To estimate the probability of a correct answer
on a test (either immediate or delayed) we use the
log odds function [6]:

L = ln

(

p

1− p

)

(3)

where p is the probability of correctly answering.
When p changes between 0 and 1, L changes between
−∞ and +∞.

Then we can write down the mean log odds as

L = Lind +
1

2
(δaLa + δjLj) (4)

where the parameters have the same meaning as in
equation (2). We use separate estimates for immedi-
ate and delayed test.

The a priori distribution for the parameters is
the following:

1. Normal for vind and Lind with mean from the
data and deviation equal to 100 times the data
deviation.

2. Normal for va, vj , La and Lj with zero means
and deviation equal to 100 times the data devi-
ation.

3. Uniform for all standard deviations from 1/1000
to 1000 times the data deviation.

We found that a number of participants had
reading speeds higher than 282 words per minute,
so they were able to read the whole text before the
time was up. We used the censoring methods for
Bayesian analysis to overcome this limitation [4].

We used multiple chain Monte Carlo simulations
(16 chains with 10,000 samples each) for each model.

The results are plotted in Figures 3, 4 and 5.
On the figures we plot the probability distributions
of the parameters in equations (2) and (4); the x axis

Leila Akhmadeeva, Rinat Gizatullin and Boris Veytsman

TUGboat, Volume 37 (2016), No. 2 149

Justified Ragged

1
0

0
1

5
0

2
0

0
2

5
0

Reading speed
W

o
rd

s
 p

e
r

m
in

u
te

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●●

Justified Ragged

5
6

7
8

9
1

0

Immediate test

C
o

rr
e

c
t

a
n

s
w

e
rs

●●●

Justified Ragged

3
4

5
6

7
8

9
1

0

Delayed test

C
o

rr
e

c
t

a
n

s
w

e
rs

Figure 1: Distribution of reading speed and test results

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

−
1

0
0

0
5

0
1

5
0

Reading speed difference

W
o

rd
s
 p

e
r

m
in

,
ju

s
ti
fi
e

d
−

ra
g

g
e

d

●●●●

−
4

−
2

0
2

Immediate test difference

C
o

rr
e

c
t

a
n

s
w

e
rs

,
ju

s
ti
fi
e

d
−

ra
g

g
e

d ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

−
4

−
2

0
2

Delayed test difference

C
o

rr
e

c
t

a
n

s
w

e
rs

,
ju

s
ti
fi
e

d
−

ra
g

g
e

d

Figure 2: Difference of speed of reading and test results for justified and ragged right texts for the same subject

shows the values of the parameter, while the y axis
shows the relative probability of this value according
to the simulations. In all figures the first panel
represents the individual differences, the second panel
the differences between texts A and B, and the last
panel the difference between the justified and ragged
right texts. On the last panel we plot the zero line (no
difference) and 95% interval for the parameters. The
significance test of the usual statistics corresponds
to the 95% interval being completely to one side of
the vertical zero line [4].

The results show that the individual differences
in all models dominate the other factors. The differ-
ence between the justified and ragged texts is small.
However on the 95% level we can say that justified
texts are being read faster than the ragged right (by
about 7 words per minute), and, even more inter-
esting, the results for delayed tests are better for
the ragged right texts. If we convert the log odds
to the number of correct answers, we can see that
on a 100-question test with 90% correct answers the
difference would be about 4 points.

4 Discussion and conclusions

We see that there is a small, but persistent difference
between justified and ragged right texts: the former
are read slightly faster, but on the delayed tests
(when the text is committed to long term memory)
give slightly worse results.

Does this mean that one should typeset exam
materials in the ragged right fashion? Not necessar-
ily. We do not know whether this effect is specific for
our population: Cyrillic readers in Russian, with a
significant proportion having Russian as the second
language (many students of Bashkir State Medical
University have Tatar or Bashkir as their first lan-
guage). Still, our findings are very intriguing and
should be further investigated. One way of interpret-
ing the results might be the interplay between visual
image of a word and its commitment to memory: a
justified text has hyphenated words with “broken”
visual image. If this is the case, the effect should be
more pronounced for languages with longer words
like Russian and German than for languages with
shorter words like English.

Are justification and hyphenation good or bad for the reader? First results

150 TUGboat, Volume 37 (2016), No. 2

60 70 80 90

0
.0

0
0

.0
4

0
.0

8
vind

Words per min

5 10 15 20 25 30 35
0

.0
0

0
.0

4
0

.0
8

0
.1

2

va

Words per min

−5 0 5 10 15 20

0
.0

0
0

.0
4

0
.0

8
0

.1
2

vj

Words per min

95%

Figure 3: Bayesian estimate for the speed of reading model

2.0 2.2 2.4 2.6

0
1

2
3

4
5

Lind

Log odds

−0.2 0.0 0.2 0.4

0
1

2
3

4

La

Log odds

−0.4 −0.2 0.0 0.2

0
1

2
3

4

Lj

Log odds

95%

Figure 4: Bayesian estimate for the immediate test model

2.0 2.2 2.4 2.6 2.8

0
1

2
3

4
5

Lind

Log odds

−0.2 0.0 0.2 0.4

0
1

2
3

4

La

Log odds

−0.6 −0.4 −0.2 0.0

0
1

2
3

4

Lj

Log odds

95%

Figure 5: Bayesian estimate for the delayed test model

Leila Akhmadeeva, Rinat Gizatullin and Boris Veytsman

TUGboat, Volume 37 (2016), No. 2 151

Acknowledgments

The Bayesian simulations for this work were per-
formed on the George Mason University ARGO com-
puting cluster.

One of the authors (RG) gratefully acknowl-
edges the student travel grant from The European
Academy of Neurology (EAN) which allowed him to
present these results at the 2nd Congress of EAN

(Copenhagen, May 2016).
As usual, the audience at TUG 2016 gave us

many interesting ideas, which we will try to use in
further research.

References

[1] Leyla Akhmadeeva, Ilnar Tukhvatullin,
and Boris Veytsman. Do serifs help in
comprehension of printed text? An experiment
with Cyrillic readers. Vision Research, 65:21–24,
2012.

[2] Leyla Akhmadeeva and Boris Veytsman.
Typography and readability: An experiment
with post-stroke patients. TUGboat,
35(2):195–197, 2014. http://tug.org/

TUGboat/tb35-2/tb110akhmadeeva.pdf.

[3] Peter D. Hoff. A First Course in Bayesian

Statistical Methods. Springer, Dordrecht;
Heidelberg; London; New York, 2009.

[4] John K. Kruschke. Doing Bayesian Data

Analysis. A Tutorial with R, JAGS, and Stan.
Academic Press, second edition, 2014.

[5] Jan Tschichold. The New Typography.
University of California Press, Berkeley and
Los Angeles, CA, 1998.

[6] W. N. Venables and B. D. Ripley. Modern

Applied Statistics with S. Statistics and
Computing. Springer, New York, fourth edition,
2010.

[7] Boris Veytsman and Leyla Akhmadeeva.
Towards evidence-based typography:
First results. TUGboat, 33(2):156–157,
2012. http://tug.org/TUGboat/tb33-2/

tb104veytsman-typo.pdf.

⋄ Leila Akhmadeeva

Bashkir State Medical University, 3

Lenina Str., Ufa, 450000, Russia

la (at) ufaneuro (dot) org

http://www.ufaneuro.org

⋄ Rinat Gizatullin

Bashkir State Medical University, 3

Lenina Str., Ufa, 450000, Russia

⋄ Boris Veytsman

Systems Biology School &

Computational Materials

Science Center, MS 6A2, George

Mason University, Fairfax, VA,

22030, USA

borisv (at) lk (dot) net

http://borisv.lk.net

Are justification and hyphenation good or bad for the reader? First results

152 TUGboat, Volume 37 (2016), No. 2

An informal look into the history

of digital typography

David Walden

Introduction

I have always been interested in printed material, but
I didn’t begin to think explicitly about typography
until about 20 years ago when I adopted LATEX for
drafting and formatting books and papers I write. I
still didn’t have any interest in the history of printing
and typography until I prepared a presentation on
Boston printing history for TUG 2012. Since then I
have been reading (books, papers, Internet websites)
and watching YouTube videos about the history of
printing and typography that in time led into the
digital era.

For TUG 2016 I sketched some of what I (think I)
have learned in the hope that my study and think-
ing will be useful to someone else who is just start-
ing to dig into this history and that people already
knowledgeable about printing and typography his-
tory might help me understand better.

Several things became clear to me as I undertook
preparing for my TUG 2016 presentation.

First, I had not previously thought about how
printing has long been a massive business throughout
the world. It’s also a business with broad application:
newspapers, periodicals, and books; pamphlets, re-
ports, and legal and financial documents; sheet music;
packaging (e.g., on can labels and cardboard boxes);
stationery, cards, etc.; announcements, posters, etc.;
art reproductions; money, stamps, etc.; cloth, wall
paper, etc.; and, from the very earliest days, religious
documents of all types. Even as printed materials
are being replaced with images on electronic devices,
printing remains a massive business. Furthermore,
typography seems more relevant than ever, as it now
has to address both printed material and a variety
of electronic devices.

Second, the dimensions of how printing and ty-
pographic activity are accomplished can vary widely:

• large scale production such as big city newspa-
pers; medium or small sized typesetting or print
shops; individuals working interactively in their
homes on their desktop or laptop computers;

• working with frequent tight deadlines; working
with mutually agreed deadlines; working at one’s
own pace;

• seeking great typographic beauty; putting other
considerations first.

One example: big newspapers such as the Boston

Globe work with tight deadlines, and typographic

beauty undoubtedly has to give way at times to more
practical considerations. Another example: Donald
Knuth being so concerned with typographic beauty
that he delayed his work on The Art of Computing

Programming for years while he developed a typeset-
ting system for his personal use. And there are all
combinations in between.

Third, contrary to my naive feeling that the
move to digital happened fairly quickly, it now seems
to me that the evolution to digital happened over a
long time. For instance, many decades before what
we now think of as the digital era, the mechanical
Linotype machines were being driven by “digital”
punched paper tapes, often transmitted by wire from
remote locations.

And Monotype casting machines were driven by
punched paper tapes since the late 1800s.

To make some sense of this massive field, I find it
useful to consider the history of digital typography
in terms of four areas that are somewhat overlapping
but nonetheless seem able to represent the entire
field. My taxonomy is:

1. moving toward digitization of newspapers (repre-
sentative also of book and periodical publishing
and the printing industry more generally);

2. development of digital typesetting for individual
interactive use;

3. typesetting algorithms;

4. digital type.

So far my study covers aspects of the first three
of these areas in some detail, while merely touching
on the fourth area.

Main body of my presentation and paper

After TUG 2016 in Toronto, I prepared the paper
based on my presentation there, but concluded that
publishing it in TUGboat is not the best path. In-
stead, the current version of the paper has been
posted at tug.org/tug2016/walden-digital.pdf.

If you are interested, please look at it there
and give me your comments. It includes slightly
expanded versions of the Introduction here (above)
and Reflections here (below) along with more lengthy
sections on each of the four topics in my above tax-
onomy. Section 1 of the paper looks at the history

David Walden

TUGboat, Volume 37 (2016), No. 2 153

of newspaper typography up to the era when it be-
came fully digital. Section 2 looks at interactive
text processing and composition systems from those
that ran on the earliest interactive computers (1950s)
through contemporary desktop publishing systems.
Section 3 looks at algorithms, particularly the history
of justification and hyphenation. Section 4 contains
my starter list of topics for future investigation into
digital type.

All these sections include lots of references (in-
cluding some marvelous videos) that for the most
part are available on the web for ease of access to
other new students of this history. The acknowledge-
ments that were left out of my TUG 2016 presentation
are also included. And there is a pointer to a private
location of my presentation slides—private because
it includes many images I used from around the web
without bothering to think about licensing.

I am looking forward to continued investigation
of the history of digital type and of the newspapers
and equipment suppliers who pioneered the various
stages of newspaper processes becoming all digital.
So far I have found no single history of the latter
topic, but I have been gathering pointers to books,
papers, websites, and videos. Thus, I will likely make
additions over time to my paper at the above url.

Reflections

As I pulled together my TUG 2016 presentation (and
drafted the paper version), I have thought back on
what I learned from my look into the history of digital
typography. Of course, I learned all the stuff I report
in the paper, but also plenty more that didn’t fit into
the paper. Along the way I formed some high level
observations.

• What was happening in the four dimensions
of my taxonomy have become more and more
overlapping and interrelated as we have moved
fully into the digital era.

• It was a continuing revelation to me throughout
my study how the evolution to digital has been
happening for so long; there has been so much
intermixing over so many decades of mechanical,
photographic, electronically digital technology.

• There is disintermediation, consolidation and
despecialization all over the place. Typesetting
and design used to be separate specialties, and
now every typesetter is a designer or the reverse.
For my mother-in-law’s oral history that my

wife produced in 1982, my wife typed and pasted
up a photo-ready manuscript; she went to a
photo and offset vendor to have the photos sized
right and turned into half-tones and to have
her 8 1/2 x 11 inch manuscript pages photo

reduced to 6 x 9 and for printing of a few dozen
copies; and then she went to a separate place for
binding. Today, I can produce a book doing all
the photo work myself in Photoshop (and the
cover in Illustrator), typeset the book myself
using LATEX, produce a ready-to-print PDF, give
it to a big printing company (e.g., Lightning
Source) or little print shop (e.g., Copyman in
southwest Portland, Oregon), and it comes back
printed and bound. At the professional level,
some people claim that designers have “replaced”
printers as well as typographers.

• More generally I feel that the disintermediation,
consolidation, and despecialization has led to
a lowering of standards. The word processing
and desktop publishing systems (and systems
like groff and TEX et al.) put powerful typeset-
ting tools in the hands of every amateur and
full-time designer, many of whom are not truly
professionals. With a little work, anyone can
typeset a book or journal article. This lower-
ing of standards is exacerbated by the myriad
formats and display devices that must be sup-
ported today, for example, hardcopy, ebook, and
HTML formats and digital screens of all sizes.

• I suspect that such disintermediation, consoli-
dation, and despecialization is a done deal, and
there will be no turning back in general. How-
ever, some people beyond the true professionals
will still care about publishing aesthetics even if
they like being able to do lots of the steps them-
selves. I have no illusion that the TEX world
will again be important to the publishing world
at large. I do look forward to seeing automatic
aesthetics (such as the pagination work which
Frank Mittelbach described in his TUG 2016
presentation) becoming more available to the
TEX world—to the world in which I work; and
hopefully a few ideas from the TEX world will
continue to migrate into the mainstream systems
as they have from time to time in the past.

One concluding thought on the digital world.
There has never been a better time for the indepen-
dent researcher. In addition to traditional libraries
(and library networks with inter-library borrowing
privileges), we now have vast content available via
YouTube, Google Books, and professional society and
journal digital archives (some open access), and we
have web search engines to help us find things. Our
own TUG web server makes a significant contribution
in the area of digital typography.

⋄ David Walden

walden-family.com/texland

An informal look into the history of digital typography

154 TUGboat, Volume 37 (2016), No. 2

A short history of the Lucida math fonts

Charles Bigelow

This talk is about the development of Lucida math
fonts from the beginnings of Lucida in the early 1980s
to the most recent Lucida OpenType math fonts of
2011 and later. The images included here, and more,
are available online at http://tug.org/tug2016/

slides/bigelow-lucidamath.pdf.

1. The above shows a sampling of characters in Lu-
cida Math fonts. There are letter-like symbols and
also different shapes and sizes of arrows, operators,
relations, and delimiters.

Typography involves several kinds of harmony
between graphical elements. Weight, height, width,
stroke thickness, proportions, shapes, orientation,
position, spacing, and stylistic features such as serifs,
are the main relationships that may have to be har-
monized. In the typography of mathematics, many
symbols are derived from letters but have become
separate semantic elements, not units necessarily
combined into words. Within the formal language
of mathematics, symbols become ideograms — repre-
senting ideas — and logograms — spoken as a word or
phrase. Naturally, the spoken version changes from
language to language, while the meaning of the sym-
bol is constant. Moreover, symbols for mathematics
may need adjustment for optical scale because some
may be used large and small. And, of course they
must be legible.

2. What were the principles on which Lucida was
based? Although we were designing a typeface fam-
ily for emerging technologies — laser printing and
screen display — we tended to look backwards to the
history of letter forms, in traditional handwriting or
calligraphy, which goes back more than two thou-
sand years for Latin scripts and for more than five
hundred years before that for Greek.

3. We wanted the forms of the Lucida letters to be
related to traditional scribal handwriting, but not
necessarily “calligraphy” in its sense of “beautiful

Charles Bigelow

TUGboat, Volume 37 (2016), No. 2 155

writing”. Instead we aimed for simplicity because
our goal was easy reading under difficult imaging
conditions.

Our goal was to adapt traditional forms for
simpler rendering at a range of resolutions. We de-
veloped the letters in outline formats, principally
using Peter Karow’s Ikarus system, but the outlines
were then converted to bitmaps, either on-the-fly in
printers or pre-rasterized for screens, in the technol-
ogy of the early 1980s. Laser printers of the late
1970s and early 1980s had addressable resolutions
around 240 to 300 dots per inch, and bitmap display
screen resolutions were around 70 to 75 pixels per
inch on screen.

We made many experiments constructing letters
from bitmaps, and then used a few digital systems of
the early 1980s to study the different pixel patterns
when letters were rasterized at different resolutions.
At high resolutions, the letters looked like analog
typefaces, but at low resolutions, the letters became
minimalist aggregations of dots, and many distin-
guishing features that separated one type design
from another were obscured by the rough, rasterized
stair-cased shapes and by data loss.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

1234567890

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

1234567890

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

1234567890
4. In 1984, Imagen Corporation released the first
Lucida family of seriffed designs. They were simple
in form and had several adaptations for lower res-
olutions, such as short serifs and wide inter-letter
spacing to prevent collisions of character elements
and clarity at small sizes and greater reading dis-
tances from screens, for which loose spacing is often
helpful. We made the bold weight with twice the
stroke weight of the normal weight, for unambiguous
recognition of weight changes at low resolutions. In-
stead of a “just noticeable difference” we wanted a
“dramatically noticeable difference”.

These designs constituted the first new family
of types for laser printing and screens. When we
developed Lucida, most typefaces being digitized
were adaptations of existing metal or photo faces.

The adaptations were sometimes made ethically, but
often by plagiarism. We hoped that our develop-
ment of new digital types would spur more original
and more ethical approaches to type, and the Imagen
firm, started by graduate students and AI researchers
at Stanford, agreed. Another five years went by, how-
ever, before major firms began to produce original
designs.

5. In 1985, also with Imagen, we brought out a
sans-serif companion to the original seriffed Lucida
family. (The second stanza here shows the sans-serif
variants, compared to the seriffed originals in the
first stanza.) Many of the sans-serif Lucida features,
including slightly darkish weight, generous spacing,
big x-height, simple forms, and a humanistic style
dating back to legible letters of the Italian Renais-
sance, made the family ideal for screen displays and
user interfaces. Lucida Sans Unicode and Lucida
Console have been bundled with Microsoft Windows
since the early 1990s, and a version of Lucida Sans,
named Lucida Grande (because it had a much big-
ger character set including Greek, Cyrillic, Hebrew,
Arabic, Thai, and many signs and symbols) were
adopted as the user interface fonts for Macintosh
OS X from the beta tests of 2000 until 2014, when
Lucida Grande was replaced by a digitized version
of a more traditional “grotesque” sans-serif.

6. The individual letters of the first Lucida seriffed
type were crafted in some unusual ways. Serifs and
their brackets and some other features were polygonal

A short history of the Lucida math fonts

156 TUGboat, Volume 37 (2016), No. 2

rather than curved. At the time of its design, 1983–
1984, some printing and imaging systems used polyg-
onal outlines, whereas other systems used curved
contours, including circular arcs or cubic curves in
Bezier or Hermite forms. We believed that it would
be better to design the polygonal serifs ourselves
rather than let some program automatically render
them from curved forms. But, we kept curves for the
larger aspects of the letters, like arches and bowls.

klmno
7. Here we see diagonal, straight, arched, and fully
curved letters in combination, with the characteristic
open spacing of the original Lucida.

klmno

klmno

klmno
8. Comparison of the first Lucida (top) to Times
Roman (middle), which appeared under its own name
and in plagiarized forms under other names, to a
modification of Lucida (bottom), fitted to the same
widths as Times Roman and with modified serifs
but keeping the x-height of Lucida (bottom). It
looks condensed because the x-height is greater than
that of Times Roman but the width is not. We
later released a free version of this design under the
name “Luxi Serif”. It can still be found as a free font
from web font firms and others. They are gratis but
not open source, because we prohibited modification
without our permission. We felt that the artistic
aspects of the designs should be ours to control.

9. Lucida Math Italic, in the same character set
as Computer Modern Math Italic. We began the
design of math symbols for Lucida in 1985, in part
because of the influence of Donald Knuth, who had
invited me to join the Stanford faculty and to work
with him. If there had been a guide to the various
harmonizations needed for math fonts, it would have
saved us a lot of effort and time, but there were
none, except for examples from which some principles
could be inferred. Also, we liked to figure out things
by ourselves from first principles. We thought new
technologies demanded new design ideas — a lesson
we learned by studying with Hermann Zapf — so even
had there been guides for math characters, we might
have ignored them, being young.

10. Lucida Math Symbol. We made the strokes of
the math symbols fairly thick, in keeping with the
general Lucida parameters, and we made many of the
symbols fit in the standard figure widths, for easier
composition of simple equations and usage in tabular
composition, spreadsheets, etc. This tended to make
the operators smaller than the letter symbols used
for variables. We did this because we thought that
the majority of uses of the Lucida math fonts would
not be for traditional publishing of mathematics and
science, but for simpler uses on screens.

Charles Bigelow

TUGboat, Volume 37 (2016), No. 2 157

11. We also produced a Lucida Math Extension
font. In the first image, you can only see the tops
of the characters, because to conform with Donald
Knuth’s approach with Computer Modern, many
of the big delimiters and extensions “hang” from a
central position in the character cell. The second
image shows the full characters at a smaller size.

a = b c ≠ d

p ≥ q v ÷ w

a ⊗ b c ⊕ d

p ± q v ⊖ w

A ≤ B C ⊇ D

P ⊒ Q V ∪ W

12. Above is the original Lucida math operators of
various kinds with lower-case and capital letters. The
weights are harmonized and the symbols are clear
and resist digital degradation. We developed these
math fonts in 1985, but they were not released until
1990 by Adobe. During that time, principally under
the influence of PostScript, laser printing became an
enabling technology for digital prepress for print pub-
lishing, and fonts intended only for lower-resolution
printing were less favored. When the original Lucida
and Lucida Math fonts were used for more tradition-
ally printed math publishing, they seemed too strong
and dark, although they held up well on screens and
laser printers. As an editor at one academic press put
it, “Lucida Math seemed too aggressively legible”.

13. For print publishing, and now for high resolution
screen displays, we prefer legibility (at least when
it is more subliminal than aggressive). In 1987, for
Scientific American magazine), we made a modifi-
cation of the original seriffed Lucida with increased
contrast of thick to thin strokes, with more “modern”
style serifs, and with tighter letterspacing. An editor
at MacWorld magazine said it looked “brighter”, so
we named it Lucida Bright. It was used as the body
text in Scientific American for nine years.

a = b c ≠ d

p ≥ q v ÷ w

a - b c + d

p) q v , w

A 7 B C 6 D

P › Q V ~ W
14. For Lucida Bright, we developed “brightened”
math characters. These were released by Microsoft
in 1992 in TrueType font format. This prompted re-
quests for TEX-adapted versions in PostScript format.
At this point, we came to realize that the production
of fully functional, TEX-compatible math fonts re-
quired more knowledge of TEX and more effort than
we two designers could accomplish on our own.

A short history of the Lucida math fonts

158 TUGboat, Volume 37 (2016), No. 2

15. Over the next few years, we worked with Berthold
and Blenda Horn, of their firm Y&Y, at turning the
Lucida Bright Math fonts into fully functioning Post-
Script TEX math fonts. It was a tremendous effort
made feasible only with the patient and extraordi-
nary collaboration of the Horns.

16. During this development, we and Y&Y received
requests for more math characters, so we kept adding
them, and then came more requests for more char-
acters. If we hadn’t declared a halt and frozen the

fonts for release, we would probably be adding more
characters still. (In truth, we still are, but now to
the TUG releases, as we’ll see.) To distinguish the
Y&Y fonts from the previous Lucida Bright Math,
which were in TrueType, not PostScript, and had
fewer characters and different encodings, we named
the Y&Y releases “Lucida New Math”. I suppose we
could have called them Lucida Bright Math 2.0, but
that would have been confusing, too.

17. In the years since the Y&Y versions of the Lu-
cida Bright New Math, the Unicode Consortium
added math to the Unicode standard, with hundreds
of characters beyond the standard TEX repertoire.
Eventually, almost twenty years after the Y&Y Lu-
cida versions, Karl Berry asked (following user re-
quests) if we would like to work on OpenType ver-
sions in collaboration with TUG, and we began to
work on OpenType versions of Lucida Bright and
Lucida Math. The task turned out to be several
times greater than the original Y&Y development,
and also much greater than we anticipated. Partly
because we revised some of our design notions dur-
ing the development process, and partly because we
added hundreds of characters.

a = b c ≠ d

a = b c ≠ d

a - b c + d

a ⊕ b c ⊗ d

A 7 B C 6 D

A ≤ B C ⊇ D

P › Q V ~ W

P ⊒ Q V ∪ W

Charles Bigelow

TUGboat, Volume 37 (2016), No. 2 159

18. In developing the OpenType versions, we decided
to abandon our original notion that the math opera-
tors should match the figure widths; a comparison
of the old and new operator sizes is shown above.
Our experience over the years suggested that larger
operators were more readable by mathematicians.
This is anecdotal evidence; we did not conduct con-
trolled laboratory tests of mathematicians reading
equations, which should be done. Nevertheless, we
made the math symbols bigger. (Interestingly, one of
the most prolific legibility researchers of the 20th cen-
tury, Miles Tinker, wrote his psychology Ph.D. thesis
at Stanford in 1927 on “An Experimental study of
legibility, perception, and eye movement in the read-
ing of formulae” . . . exactly a half-century before
Donald Knuth began work on TEX at Stanford.)

a = b c+d

a = b c+d

a = b c+d
19. We also made a series of bold weight versions of
the math symbols. Unlike the original bold weight of
Lucida, which had stems twice as thick as the normal
weight, the Lucida Bright bold is more accurately a
demibold, with stems 1.5 times as thick as the normal.
Still very noticeable but not as domineering in text.
(The above shows Lucida Bright Math OT, Lucida
Bright Math Demi OT, and the original Lucida Bold.)

Not all these bold characters have well-defined
semantics in mathematics, but we became accus-
tomed to requests for such things, so we believed
that if we designed the characters, mathematicians
would find uses for them.

20. In our experience, and evidently in that of other
type designers as well, the development of successful,
original typefaces and fonts for mathematics requires
technical collaboration. We wish to thank those who
helped with the technical aspects of Lucida Math
font development. For the Adobe PostScript versions
of original Lucida Math: Daniel Mills. For the Y&Y

PostScript versions, Lucida New Math: Berthold
Horn and Blenda Horn. For the TUG OpenType ver-
sions, Lucida Math OT: Karl Berry, Khaled Hosny,
and Michael Sharpe, plus a cast of testers, bug re-
porters, commenters, and other advisers: Barbara
Beeton, Hans Hagen, Taco Hoekwater, Bogus law
Jackowski, Mojca Miklavec, Norbert Preining, Will
Robertson, Ulrik Vieth, Bruno Voisin.

ABCDEFG
HIJKLMN
OPQRSTU
VWXYZ
ABCDEFG
HIJKLMN
OPQRSTU
VWXYZ

21. Work on the Lucida math fonts sometimes re-
sulted in new stand-alone designs, especially scripts.
The first such spin-off was “Lucida Calligraphy”, a
“brighter” version of the original calligraphic capitals
in Lucida Math. Above, the original capitals are
shown first, with the bright Lucida capitals below.

22. Here is Lucida Calligraphy in the ASCII set.
Originally distributed by Microsoft and now by other
vendors, including Monotype. It is based on Italian
Renaissance chancery cursive, but, like the other
Lucida designs, adapted to digital rendering at a
range of resolutions and technologies. We see it
almost every day somewhere, often used in some
surprising way.

A short history of the Lucida math fonts

160 TUGboat, Volume 37 (2016), No. 2

23. We have since expanded Lucida Calligraphy
through a range of weights. Most of these are in
ASCII only for English-speaking users. We are now
developing additional characters sets for European
languages and orthographies.

ABCDEFGHIJKLM
NOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz
1234567890

&@*?!

ABCDEFGHIJKLM
NOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

1234567890
&@*?!

24. For the Lucida OpenType Math fonts, we have
recently developed an English Roundhand script.
It is not a copy of a standard traditional round-
hand, but a style with more “zip” (equivalent to
“élan”) devised by Kris Holmes. This will soon be
released in normal and bold weights, first through
TUG. (The name hasn’t yet been confirmed, but
several dozen TUG members at the recent meeting
in Toronto signed a petition requesting it be called
“Typey McTypeface”.)

The mathematician’s patterns,
like the painter’s or the poet’s, must be beautiful;

the ideas, like the colours or the words,
must fit together in a harmonious way.

G. H. Hardy

∫ ∫∫∫∫∫∫∫∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫
∫∫

∫∫
∫∫

∫∫
∫∫

∫∫
∫∫

∫∫
∫∫

∫∫∫∫∫∫∫∫∫

∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫

∫∫
∫∫

∫∫
∫∫

∫∫∫
∫∫

∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫
∫∫

∫∫
∫∫

∫∫
∫∫

∫∫
∫∫

∫∫
∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫

∫∫∫
∫∫

∫∫
∫∫

∫∫
∫

∫∫

∫∫
∫∫

∫∫
∫∫

∫∫
∫∫

∫∫∫
∫∫∫

∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫

25. Designing so many hundreds, eventually thou-
sands, of characters for mathematics, starting from
scratch has been a thirty year adventure that is not
over yet. The English mathematician G.H. Hardy
once wrote what could serve as a guide for type design
as well as mathematics. “The Mathematician’s pat-
terns, like the painter’s or the poet’s, must be beau-
tiful; the ideas, like the colours or the words, must
fit together in a harmonious way.” (From A Mathe-

matician’s Apology.)

26. Kris Holmes could not be at the conference,
but she contributed most of what makes the Lucida
designs exciting as well as legible, so I want to close
with a photo of her when she studied with Hermann
Zapf many years ago, looking intently over Zapf’s
shoulder as he demonstrates how to write with colors;
and then again with Zapf, a quarter-century later,
when Kris was one of the judges for a Linotype Arabic
type design competition.

⋄ Charles Bigelow

lucidafonts.com

Charles Bigelow

TUGboat, Volume 37 (2016), No. 2 161

New font offerings: Cochineal, Nimbus15,
LibertinusT1Math

Michael Sharpe

Abstract

This document is an expansion of my talk at TUG

2016, detailing the major projects I have worked on
during roughly the previous year. Cochineal is a fork
of Crimson, an excellent text font family reminiscent
of Minion. Nimbus15 is a reworking of the newest
versions (2015) of the Nimbus fonts from URW++,
which now have added Greek and Cyrillic alphabets.
LibertinusT1Math attempts the conversion of Khaled
Hosny’s LibertinusMath from otf to pfb with LATEX
support files.

1 Cochineal

Cochineal is an oldstyle text font family containing
Roman, Greek and Cyrillic alphabets, derived from
Sebastian Kosch’s Crimson (2014) font family. Crim-
son, originally named Crimson Text, has regular,
semibold and bold weights, with semibold the least
developed. Because of the time and effort it would
have taken to bring semibold up to parity with the
other weights, Cochineal is made available only in
regular and bold weights, and regular and bold italic,
in both otf and pfb formats.

The Crimson fonts in these weights contained
about 4500 glyphs, close to 1500 of which were in the
regular Roman font. To make glyph coverage uniform
across the four styles required making around 1500
new glyphs — a substantial FontForge job of several
months duration. The likelihood of bugs, especially
in spacing and kerning, in a project of this scale is
quite high, as the name might suggest.

(This paragraph is rendered in Cochineal.) The Coch-

ineal package provides fonts in regular, italic, bold, and

bold italic, with a full array of features, including both

lining (1234567890) and old-style (1234567890) ଏgures, both

in tabular and proportional spacing, superiors Abc���, infe-

rior ଏgures ���, Small Caps (and Small Caps, Small Caps,

Small Caps), and a swash Q that can be speciଏed globally

with the package option swashQ or individually with the

macro \Qswash: Q. In Latin scripts, Cochineal is some-

what reminiscent of Minion Pro, though its italic glyphs

tend to be narrower. The Greek (ελληνικά) coverage per-

mits polytonic Greek as well as some ancient forms, and

theCyrillic (ЀЀЀЀЀЀЀЀЀ) includes essentially completeT2A

coverage.

LATEX support for Cochineal is provided in en-
codings OT1, T1, TS1, LY1, LGR, T2A and OT2. While
LGR and OT2 are little-used by authors of tex doc-
uments in which Greek or Cyrillic is predominant,

they seem to be important to Western scholars who
need to be able to generate short segments of poly-
tonic and ancient Greek or Cyrillic using a Western
keyboard. As otf versions of the fonts are provided,
they may be used directly in Unicode TEXs by means
of the fontspec package. Because the cochineal

package contains a cochineal.fontspec file specify-
ing the otf file names, just include in your preamble:

\usepackage{fontspec}

\setmainfont[Mapping=tex-text]{cochineal}

Usage under LATEX has many options that are spelled
out in detail in the package documentation.

For mathematical typesetting with Cochineal,
one may use newtxmath with option cochineal:

\usepackage{cochineal}

\usepackage[cochineal,vvarbb]{newtxmath}

\usepackage[cal=boondoxo,frak=boondox]{mathalfa}

produces output like:

A Simple Central Limit Theorem

Let X1, X2, · · · be a sequence of i.i.d. random variables with

mean 0 and variance 1 on a probability space (,̀F,Pr). Let

N(y) ≔
∫ y

−∞

e−t
2/2

√
2π

dt,

Sn ≔

n
∑

1

Xk.

Then

Pr

(

Sn√
n
≤ y

)

−−−−→
n→∞

N(y)

or, equivalently, for f ∈ Cb(R),

E f
(

Sn/
√
n
)

−−−−→
n→∞

∫ ∞

−∞
f (t)e

−t2/2
√

2π
dt.

The Cochineal package includes a “theorem” font
style, a version of italic with upright punctuation
and lining figures, which I think is more suitable
than ordinary italic for theorem statements and such.
I have abused NFSS by setting \textsl to point to
the theorem font.

1.1 Production issues

Producing T2A, LGR and OT2 encoded support files
is somewhat complicated because specialized encod-
ing files must be generated to describe all required
ligatures. Those for Western European encodings
are fairly easy to obtain using autoinst, a wrap-
per for otftotfm, but it turns out that the latter
does not respect the spacing parameters in the otf,
and these must be corrected by passing through a
space-factor setting. (It seems that this is a com-
mon issue when using scripts that call otftotfm.)
I used the following:

New font offerings: Cochineal, Nimbus15, LibertinusT1Math

162 TUGboat, Volume 37 (2016), No. 2

autoinst --noupdmap --notitling \

--inferiors --superiors --fractions \

--target=${tmfc} \

--encoding=LY1,OT1,T1 \

--extra="--space-factor=1.06635" \

--vendor=public --typeface=cochineal \

*.otf

2 Nimbus15

Nimbus15 is derived from the Nimbus fonts issued
in 2015 by URW++ by way of Artifex, makers of
Ghostscript. They are metric clones of Courier, Hel-
vetica and Times. The 2015 versions appeared in an
update to the Ghostscript sources in October 2015.
They are included in TEX Live 2016 in PostScript
binary format, but lack the associated .afm files.

The novelty here is that there are now Greek
and Cyrillic glyphs in all the Nimbus fonts. It is
indeed regrettable that the license under which the
new Nimbus fonts are distributed is incompatible
with versions issued prior to 2000, on which the TEX
Gyre fonts were based, because these may not now be
blended. This limits the utility of Nimbus15 because
the TEX Gyre versions are much better except in
Greek and Cyrillic. NimbusMono, at least the narrow
version described below, may have some reason to
exist independently.

Starting from the Artifex distribution, several
characters were added throughout: cyrbreve U+F6D4,
dotlessj U+0237, and visiblespace U+2423. This was
done so the OT1 and OT2 encodings would be com-
plete in all cases.

2.1 NimbusSerif (“Times”)

NimbusRomNo9L, a metric clone of Times, was ex-
tended to include Greek (monotonic only) and Cyril-
lic glyphs. The current distribution from URW++/
Artifex has many errors in spacing and kerning of
Greek and Cyrillic glyphs. I expanded the Greek sec-
tion so that polytonic and some ancient Greek forms
are available, added a number of Cyrillic glyphs and
tried to correct the spacing and kerning. Since TEX
Gyre Termes has much more extensive coverage of
Latin glyphs, the only usage for this font that makes
sense to me is for standalone Greek and Cyrillic.

2.2 NimbusSans (“Helvetica”)

NimbusSanL, a metric clone of Helvetica, has been
extended to include Greek (monotonic only) and
Cyrillic glyphs. I changed the tonos accent from ver-
tical to slanted for consistency with the Courier and
Times clones. Analogous to NimbusSerif, given that
TEX Gyre Heros has much more extensive coverage

of Latin glyphs, the only usage that makes sense to
me is for standalone Greek and Cyrillic.

2.3 NimbusMono (“Courier”)

In short:
NimbusMono-Regular -> zco-Light

NimbusMono-Bold -> zco-Bold

NimbusMono-Oblique -> zco-LightOblique

NimbusMono-BoldOblique -> zco-BoldOblique

In addition, a new weight, intermediate between
Light and Bold, was created, given the names
zco-Regular and zco-Oblique.

The low asterisk U+204E glyph was added to all
the zco fonts so that * would render correctly.

The glyphs in Light, Regular and Bold have
stem widths 41, 64 and 100 units respectively. (The
stem width of cmtt10 in this scale is 69, slightly more
than zco-Regular, while its advance width is 525, less
than zco-Regular at 600.) A few glyphs required
modification prior to and following the thickening
process.

The Greek glyphs support only monotonic Greek
typesetting. Several Greek glyphs were modified
from the originals, most importantly alpha (less fish-
like), nu (curved, not v-shaped) and Phi (less tall).
Thanks are due to Dimitrios Filippou for his impor-
tant feedback on Greek typographic issues.

Additionally, zco-Regular was further modified
to a narrow version, zcoN-Regular, starting with the
FontForge Style/Change Glyph transformations and
finishing with manual adjustments to shorten serifs
where necessary and make circular outlines narrower.
This narrow version, though available only in upright
and oblique shapes, seems to me more useful than
the overly wide normal Courier. For an example, see
the list underneath the section heading above.

3 LibertinusT1Math

The last job mentioned was the conversion of Khaled
Hosny’s LibertinusMath otf to a traditional LATEX
setup with pfb fonts and accompanying LATEX sup-
port files. This was a somewhat complex process,
and will require a separate article at a later time.

4 Availability

Packages are available from CTAN and in TEX Live,
MiKTEX and other distributions. A list of all my
packages on CTAN, including these, is at the url
below.

⋄ Michael Sharpe

UCSD

http://ctan.org/author/id/sharpe

Michael Sharpe

TUGboat, Volume 37 (2016), No. 2 163

MFCONFIG: A METAFONT plug-in module

for the Freetype rasterizer

Jaeyoung Choi, Sungmin Kim, Hojin Lee and
Geunho Jeong

Abstract

One of METAFONT’s advantages is its ability to cre-
ate font variants by changing values of parameters
representing font characteristics. This advantage
can be applied not only to Latin alphabetic charac-
ters, but also to complicated CJK (Chinese-Japanese-
Korean) characters. Second, font families like bold,
italic, and bold-italic do not need to be created sepa-
rately for METAFONT, because it can automatically
generate a variety of styled fonts via changing pa-
rameter values. Therefore, METAFONT can reduce
the development time and cost for production of a
font family. It is not possible, however, to directly
use METAFONT in modern font engines; the output
must be changed to an outline font format if it is to
be used in a current computing environment.

In this paper, a module named MFCONFIG,
enabling direct usage of METAFONT on Linux is pro-
posed. It is a plug-in module for the FONTCONFIG

library, and must also be installed with the popular
rasterizer Freetype. FONTCONFIG and Freetype are
already compatible with other digital font types, both
bitmap and outline; MFCONFIG adds METAFONT

support. Furthermore, by setting various parame-
ters, the proposed module supports a variety of font
styles, all generated from METAFONT.

1 Introduction

Text is an effective way to communicate and record
information. With the growing use of smart devices,
digital fonts are more commonly used than analog
fonts. Although many styles of digital fonts have
been created, they still do not meet the requirements
of all users, and users cannot change digital font
styles freely [10]; for instance, if a user wants to use
a thinner outline font, either he/she has to find a
thinner styled font, or an in-application function to
change the font thickness. As several different fea-
tures of font style are needed, though, such searching
or changing of font style of an existing font is typi-
cally not easy. A perfect application satisfying users’
diverse requirements regarding font styles does not
exist. Also, it is impossible to provide all styles of
all fonts in accordance with users’ preferences.

Currently, popular digital fonts, either bitmap or
outline, have limits on changing font style [8]. How-
ever, METAFONT is a structured font definition that
allows users to change the font style freely. META-

FONT, a font system for TEX, was created by D. E.
Knuth [4]. It has functions for drawing characters
and parameters to determine the font styles. When
the user changes the parameters, the font style is
changed automatically. Therefore, a variety of styled
fonts can be generated from one METAFONT font.
Figure 1 shows a variety of styled fonts created by
the changing of the thickness and slant; examples of
two thickness and slant styles for the Latin letter “A”
and the Chinese character “ ” are shown. If other
features such as serif and pen are applied together,
a greater variety of styled fonts can be generated.

Most users, however, are unable to use META-
FONT on their PCs because current font engines do
not support METAFONT. METAFONT fonts are ex-
pressed as program source code, completely different
from standard digital bitmap and outline fonts. If
a user wants to use a specific METAFONT font in a
general font engine such as Freetype, then he/she
needs to convert the METAFONT font into the needed
outline font format.

In the case of Roman characters, the design of
“only” several hundred characters is required; more-
over, their shapes are generally simpler than those of
CJK (Chinese-Japanese-Korean) characters. In the
mid-1980s, when METAFONT was introduced, hard-
ware was not fast enough for real-time conversion of
the METAFONT fonts into the corresponding bitmap
or outline fonts. Moreover, outline fonts are more
commonly used than METAFONT.

Current PC hardware, however, has sufficient
performance for the real-time execution of META-
FONT. If METAFONT could be used directly in a

Figure 1: METAFONT style variations

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer

164 TUGboat, Volume 37 (2016), No. 2

Figure 2: Architecture of FONTCONFIG

PC, then users could easily make and use a variety
of styled fonts by themselves. As we previously saw,
one METAFONT font can generate a variety of styled
fonts by changing style parameter values. Therefore,
METAFONT can save great amounts of time and re-
peated effort in terms of font design to make font
families of plain, italic, bold, and bold-italic fonts.
In particular, in the case of CJK usage, METAFONT

could be an effective way to make and display a
variety of font styles—because, compared to alpha-
betic scripts, CJK characters are both complicated
in shape and expressed by combinations of radicals.

In this paper, a METAFONT module that en-
ables direct METAFONT usage on Linux is proposed.
It is possible to plug this module into FONTCONFIG

to provide digital font information to the FreeType
engine. When the MFCONFIG module is used, con-
version of a METAFONT into corresponding outline
fonts becomes unnecessary. It is simple to change
font styles by applying new parameter values. Also,
this module can interact with most existing FONT-

CONFIG functions without modification of either
FONTCONFIG or Freetype. The MFCONFIG mod-
ule therefore has good usability and compatibility for
the support of METAFONT in the Freetype engine.

2 Existing font systems

FONTCONFIG [7] provides extended font configu-
ration for the Freetype rasterizer, and the Xft (X–
FreeType) library [6] has been developed to provide
interfaces between applications and Freetype. These
font libraries are able to collect font information on
the current PC system such as font paths, style infor-
mation, extra meta information, and so on. Figure 2
shows a font-output sequence that is required for ap-
plications using the X Window system under Linux.

Figure 3: Architecture of VFlib

After an application sends a font request according
to name and style to the Xft library, it also delivers
the request information to FONTCONFIG. FONT-

CONFIG uses its internal commands to check the
following conditions: (1) whether the requested font
is installed, (2) whether the style of the user’s request
has been applied to the stored font, and (3) whether
the requested font has already been stored with the
printing format in the cache. (4) If the requested
font is not stored in the cache, it needs to be con-
verted into the requested printing format and stored
in the cache, and (5) the requested font in the cache
is selected and then delivered to Freetype. Lastly,
the requested font is printed with the font styles.

FONTCONFIG is a library for Freetype, and ca-
pable of supporting general digital font formats that
can also be processed in Freetype. The architecture
of FONTCONFIG is shown in Figure 2. It can support
TrueType, OpenType, Type1, CFF, PFR, and BDF,
but it does not support METAFONT. For the direct
support of METAFONT in FONTCONFIG, it might
be necessary to change the internal implementation
of FONTCONFIG; for instance, changing the overall
processes in FONTCONFIG from fc-scan (for font
searching) to fc-pattern (for the matching of the
styled font pattern). This is not a simple task.

Additionally, the Xft library interface exists be-
tween an application and FONTCONFIG, intended
for providing font information such as font name and
size. It would not be a good approach to modify
Xft to support METAFONT, as it would likely reduce
Xft’s performance.

VFlib [2, 3] is a font driver system for supporting
a variety of font types. The system supports virtual
fonts like BDF, PCF, and TrueType, as shown in
Figure 3. It provides a database of general font in-
formation, and a useful API for the supported font

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong

TUGboat, Volume 37 (2016), No. 2 165

Figure 4: Three layers of the MFCONFIG module

types. VFlib includes separate modules for each font
type, so a new module could be added to support
METAFONT. But VFlib is a complicated system con-
sisting of many different kinds of font drivers and an
information dataset of default font information. In
addition, the VFlib interface is required for an ap-
plication to use the VFlib library. Therefore, to add
a METAFONT module to VFlib, additional functions
must be implemented for every relevant application,
which is not practical. So, VFlib is not suitable to
add support for METAFONT.

The proposed MFCONFIG module in this paper
combines the following two features: (1) the process
for the printing of digital fonts in FONTCONFIG, and
(2) the font driver architecture of VFlib. The module
can process METAFONT independently, and it can
be easily installed or removed since it is implemented
as a plug-in module. Also, the steps that are used for
its implementation are similar to FONTCONFIG’s
internal commands, so METAFONT can be used along
with the existing digital font formats.

3 Implementing the MFCONFIG module

As shown in Figure 4, the MFCONFIG module con-
sists of the following three layers: communication,
management, and conversion. The communication
layer provides an interface between FONTCONFIG

and MFCONFIG. The management layer checks
whether the requested METAFONT is ready in the
cache. If not, it sends a request message to the con-
version layer to convert the METAFONT font. The
conversion layer makes a new outline font file by
using the requested METAFONT and the customized
style values. The resulting outline font is stored in
the cache.

As shown in Figure 5, MFCONFIG can be used
as a plugin for FONTCONFIG. First, an application
requests a font from the Xft library (step 1). Next,
FONTCONFIG sends the font information and the

values of the style parameters to MFCONFIG through
the interface of the communication layer (step 2).
This interface checks if the requested font is a META-
FONT font or not.

In the case of METAFONT, mf-query analyzes
the requested information, and mf-match tries to
find this METAFONT from mf-list. If mf-list does not
have the information, the requested METAFONT font
is not installed. In this case, mf-query returns a “not
found” flag to FONTCONFIG (step 3). Otherwise,
if the METAFONT font is installed and is already
stored in the cache, mf-query returns a “found” flag
to FONTCONFIG (step 3).

One more case: the requested METAFONT font
is installed, but the corresponding outline font is not
yet in the cache. In this case, mf-converter in the
conversion layer needs to convert the METAFONT

font into the corresponding outline font (step 2a).
In this step, the METAFONT font and the styled
parameter values from the application are required
for the conversion. After conversion, the outline font
is stored in the cache (step 2b), and mf-query sends
the “found” flag to FONTCONFIG (step 3).

After step 3, the remaining steps are the default
steps of FONTCONFIG. The font information is sent
to the internal programs of FONTCONFIG (step 4)
that try to find the corresponding outline font in the
cache (step 5); then, this outline font is sent to the
Freetype rasterizer (step 6). If MFCONFIG returns
the “not found” flag, then FONTCONFIG uses a
default font file. Lastly, the Freetype engine renders
the outline font that was made from the requested
METAFONT with the styled parameter values.

The details of the three layers in MFCONFIG

are presented below. First, the communication layer,
which is an interface between FONTCONFIG and
MFCONFIG, is the starting point of the MFCON-

FIG module. Therefore, the Freetype engine receives
METAFONT font information from FONTCONFIG

just as with existing font formats. The main func-
tions of the interface are as follows: (1) delivery of
the requested METAFONT information to the man-
agement layer, (2) returning results to FONTCON-

FIG, and (3) storage of the outline-font file from
mf-converter in the cache memory.

The major programs of the MFCONFIG mod-
ule operate in the management layer. This layer is
in charge of “searching” and “managing”. “Search-
ing” is an independent function, finding all installed
METAFONT fonts and storing the information in a
list. This list is used for checking whether a specific
font is installed or not, and for fetching its infor-
mation quickly. The searching is implemented in
mf-scan and mf-list which, as shown in Figure 6,

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer

166 TUGboat, Volume 37 (2016), No. 2

Figure 5: MFCONFIG architecture linked into fontconfig

Figure 6: Management layer, cf. FONTCONFIG

work similarly to FONTCONFIG’s fc-scan and fc-list.
“Management” is a core process of the MFCON-

FIG module that is responsible for the following ac-
tions: (1) checking if the requested METAFONT font
is prepared in the list, (2) checking if the correspond-
ing outline font is stored with the requested style in
the cache, and (3) if the outline font is not so stored,
check whether conversion of the METAFONT font
into the corresponding outline font is needed. If the
outline font has already been prepared in the cache,
then a notification is sent directly from MFCONFIG

to FONTCONFIG to use it, and FONTCONFIG sends
the cached outline font to Freetype. If the outline font
is not stored in the cache, then the conversion layer
converts the METAFONT font into the correspond-
ing outline font by applying the style parameters,
as shown in Figure 7. The resulting outline font is
then stored in the cache, and a notification from the
management layer through the communication layer
tells FONTCONFIG to use the font.

Thus, the work of the MFCONFIG module is

Figure 7: Conversion layer operation

perfectly compatible with the standard FONTCON-

FIG, and it can provide new functions to support
METAFONT. The module handles management of
METAFONT fonts and their conversion to correspond-
ing outline fonts in real time. When a different style
of an METAFONT font is requested, MFCONFIG can
conveniently display the resulting font on the screen
by applying the style values to the METAFONT fonts.
Therefore MFCONFIG provides good usability for
METAFONT. In addition, it is not necessary to gen-
erate the font family set of plain, bold, italic, and
bold-italic in advance with respect to MFCONFIG,
because the font styles can be generated easily.

4 Examining the MFCONFIG module

For performing the experiments of this study, an
application for the use of the X Window system in
Linux was developed, and the display of a text file
was attempted with the use of a variety of font files.
The TrueType font family FreeSerif was used in the
usual four font styles (normal, bold, italic, bold-italic)
and Computer Modern was used for METAFONT.
The Computer Modern fonts were examined with
the four similar styles normal, thickness, italic, and
thickness+italic. The sample text comprises over
2,000 words and over 8,800 characters, including

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong

TUGboat, Volume 37 (2016), No. 2 167

Table 1: The FreeSerif font family

Table 2: Computer Modern fonts in various styles,
made by changing style variables

space characters. For performance analysis of the
Freetype rasterizer, the time between the requesting
of a font with styles from an application and the
successful display of text on screen was measured
and compared.

Table 1 shows the FreeSerif font family in the
four styles, and Table 2 shows 12 styles for the Com-
puter Modern METAFONT. These styles were all
made from one original METAFONT font by sim-
ple changes of the style parameters. Therefore, the
METAFONT font has a good capability of generating
various font styles.

For displaying text in an application, the four
FreeSerif files from Table 1 and Style 1 of Computer
Modern from Table 2 were used. For the CM style,
the four parameter values are hair, stem, curve, and

slant. The three parameters of hair, stem, and curve

are related to the bold style, but these parameters
are different for lowercase and uppercase. The slant

parameter is related to the italic style. The chosen
parameter values for the representation of a bold
style are hair+20, stem+10, and curve+10, while
slant is 0.25 for a representation of the italic style.

Table 3 shows the average time to print both
the FreeSerif and Computer Modern contents, and
Figures 8 and 9 show the displayed results. In this
experiment, with the FreeSerif TrueType fonts, re-
sults from 10 ms to 30 ms were obtained, and the

Table 3: Average time for display of TrueType and
METAFONT fonts (milliseconds)

average time is 16 ms. Therefore, extra time was
required for the conversion of the TrueType fonts. In
the case of the Computer Modern METAFONT font,
the result is much slower than for FreeSerif, because
of the additional time needed for the conversion of
the METAFONT font into the corresponding outline
font. The obtained results are from 50 ms to 120
ms, and the average time is 90 ms. Even though this
is 10 times slower, 90 ms is still a reasonable time
for rendering text to a display. Thus, we can con-
clude that the MFCONFIG module can be used with
FONTCONFIG to support METAFONT in (almost)
real time on a modern Linux PC.

The MFCONFIG module is a convenient system
to provide users with various styled fonts on screen
by applying style parameters directly to the META-
FONT font. An METAFONT font can be used in just
the same way as a TrueType font.

In this paper, we discuss the METAFONT font
Computer Modern, which provides alphanumeric val-
ues and symbols. It is possible to perform tests with
other METAFONT fonts from CTAN (Comprehensive
TEX Archive Network) directories that support lan-
guages such as Russian and Thai. Unfortunately,
difficulty was experienced when complicated CJK

fonts are used.
CJK font definitions are very complicated com-

pared to alphabet-based fonts, and they are com-
posed of several thousand phonemes. A number
of studies have been conducted to partially imple-
ment CJK fonts, such as Hóng-z̀ı [5, 11, 12] and
Tsukurimashou [9], including the use of a structural
font generator using METAFONT for Korean and Chi-
nese [1], and others. However, CJK fonts created with
METAFONT have still not nearly reached the level
of quality and practicality reached by commercial
offerings. The authors expect that using the MFCON-

FIG module for the generation of CJK fonts will take
more time. It may, however, be possible to solve
this problem by optimizing the meta-converter in
the conversion layer. Currently, the meta-converter
works with mftrace and autotrace programs, which
take a long time to generate outline fonts.

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer

168 TUGboat, Volume 37 (2016), No. 2

Figure 8: Displayed text in FreeSerif in the usual four styles

5 Conclusion

In this paper, the MFCONFIG module, enabling the
direct use of METAFONT on Linux, is proposed. It is
installed and used with the popular Freetype raster-
izer. MFCONFIG is a plug-in module for the FONT-

CONFIG library The module supports a variety of
the styled fonts that are generated from METAFONT

by setting different parameters.
Existing digital font formats—notably the out-

line fonts of Type 1, TrueType, and OpenType—
either do not typically allow users to change their

styles, aside from font size scaling. From the experi-
ments of the present study, it has been demonstrated
that a variety of fonts can be directly generated on
screen by applying different style parameters to a
prototype METAFONT font using a Freetype raster-
izer that is installed with MFCONFIG. Furthermore,
the fonts could be seen within an average time of 90
ms, which is a barely noticeable duration.

The MFCONFIG module targets METAFONT

fonts to be used with Freetype, a well-known ras-
terizer. MFCONFIG can be used effectively with

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong

TUGboat, Volume 37 (2016), No. 2 169

Figure 9: Displayed text in Computer Modern in the usual four styles

alphabet-based fonts, which are relatively simple
and have a limited number of characters. However,
there are only a few METAFONT fonts for various
languages. It will likely take a longer time to pro-
cess CJK METAFONT fonts, which have complicated
shapes and more than several thousand phonemes.
Further work will focus on these CJK METAFONT

fonts to improve performance, and otherwise op-
timize the MFCONFIG module. In addition, this
module will be experimented with as a font driver
in the Freetype rasterizer.

Acknowledgements

This work was supported by an Institute for In-
formation & Communications Technology Promo-
tion (IITP) grant funded by the Korean government
(MSIP) (No.R-20160301-002987, Technology Develop-
ment Project for Information, Communication, and
Broadcast).

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer

170 TUGboat, Volume 37 (2016), No. 2

References

[1] Gyungjae Gwon, Minju Son, Geunho Jeong,
and Jaeyoung Choi. Structural font generator
using METAFONT for Korean and Chinese,
2016. In preparation.

[2] H. Kakugawa, M. Nishikimi, N. Takahashi,
S. Tomura, and K. Handa. A general
purpose font module for multilingual
application programs. Software: Practice

and Experience, 31(15):1487–1508, 2001.
dx.doi.org/10.1002/spe.424.

[3] Hirotsugu Kakugawa. VFlib: A general font
library that supports multiple font formats.
Cahiers GUTenberg, iss. 28–29:211–222,
March 1998. cahiers.gutenberg.eu.org/

cg-bin/article/CG_1998___28-29_211_0.

pdf.

[4] Donald E. Knuth. Computers and Typesetting,

Volume C: The METAFONTbook. Addison-
Wesley, 1986.

[5] Javier Rodŕıguez Laguna. Hóng-z̀ı: A Chinese
METAFONT. TUGboat, 26(2):125–128, 2005.
tug.org/TUGboat/tb26-2/laguna.pdf.

[6] Keith Packard. The Xft font library:
Architecture and users guide. Proceedings of
the 5th annual conference on Linux Showcase

& Conference, 2001. keithp.com/~keithp/

talks/xtc2001/paper/.

[7] Keith Packard, Behdad Esfahbod, et al.
Fontconfig. fontconfig.org.

[8] Y. Park. Current status of Hangul in the
21st century [in Korean]. 〈The T 〉Type and

Typography magazine, vol. 7, August 2012. www.
typographyseoul.com/news/detail/222.

[9] Matthew Skala. Tsukurimashou: A
Japanese-language font meta-family. TUGboat,
34(3):269–278, 2013. tug.org/TUGboat/

tb34-3/tb108skala.pdf.

[10] S. Song. Development of Korean Typography
Industry [in Korean]. Appreciating Korean

Language, 2013. www.korean.go.kr/nkview/
nklife/2013_3/23_0304.pdf.

[11] Candy L.K. Yiu and Jim Binkley. Qin
notation generator. TUGboat, 26(2):129–134,
2005. tug.org/TUGboat/tb26-2/yiu.pdf.

[12] Candy L.K. Yiu and Wai Wong. Chinese
character synthesis using MetaPost. TUGboat,
24(1):85–93, 2003. tug.org/TUGboat/tb24-1/
yiu.pdf.

⋄ Jaeyoung Choi

Soongsil University, Seoul, Korea

choi (at) ssu.ac.kr

⋄ Sungmin Kim

Soongsil University, Seoul, Korea

sungmin.kim (at) ssu.ac.kr

⋄ Hojin Lee

Soongsil University, Seoul, Korea

hojini (at) ssu.ac.kr

⋄ Geunho Jeong

Gensol Soft, Seoul, Korea

ghjeong (at) gensolsoft.com

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong

TUGboat, Volume 37 (2016), No. 2 171

Towards an operational (LA)TEX package
supporting optical scaling of dynamic
mathematical symbols

Abdelouahad Bayar

Abstract

In processing of digital documents containing math-
ematical formulas, the handling of dynamic mathe-
matical symbols is still a difficult problem. A tool
to compose mathematics should support the typing
of variable-sized symbols taking care of optical scal-
ing and supporting the quality of metal typesetting.
Until now, there is no tool that allows these possi-
bilities in a direct and operational way.

This contribution describes and puts into prac-
tice the basic steps to develop a (LA)TEX package di-
rectly based on a parameterized PostScript Type 3
font. This package will present to (LA)TEX end-users
a tool to compute in the usual way mathematical
formulas consisting of dynamic mathematical sym-
bols while taking into account optical scaling. For-
matting (LA)TEX documents using this package is
achieved without requirements of special environ-
ments or external programs.

We find that the concept of using parameterized
Type 3 fonts directly with (LA)TEX commands can
give an accurate and straightforward way to man-
age dynamic graphics in documents formatted under
(LA)TEX, e.g., logo graphics.

Keywords: (LA)TEX, PostScript Type 3, dynamic
mathematical symbols, optical scaling

1 The problem

1.1 Class of mathematical symbols

Mathematical formulas are written using static and/
or variable-sized symbols. When using a font at
a given size, the dimension and shape of a static
symbol remain unchanged in the whole document;
α and + are good examples to represent this class.
A variable-sized symbol varies in terms of size and
sometimes shape from one context to another in
the same document. As an example, we can cite
the width of the hat symbols indicating angles: Â
and ÂOB. The managing of variable-sized symbols,
which we will sometimes call dynamic mathematical
symbols,1 is still a significant challenge in the area
of document processing (see later).

1 The term “dynamic mathematical symbol” encompasses

variable-sized symbols and also symbols defined in dynamic

fonts. Dynamic fonts are fonts in which printed character

graphics are defined in each instantiation at the time of print-

ing and not in the definition of the font.

1.2 Optical scaling

This is a concept used to handle different sizes of
the same font. It is in contrast to linear scaling. To
produce, say, size 48 using linear scaling, size 12 is
merely magnified four times. This is not the case
with optical scaling; rather, the building of the char-
acter is done by taking into account the eye of the
reader. More details on the optical scaling concept
are found in [3, 8, 9].

When we consider humans or trees, for example,
we can see obviously that they do not grow accord-
ing to a linear model. The human eye is naturally
attuned to the point of view represented by art. It
would be better to talk about natural scaling than
optical scaling since the first is more general than the
second. (By the way, the confusion between “opti-
cal scaling” and “optical scale” introduced by Harry
Carter in typefounding [7] will not happen.)

1.3 Metal vs. digital typesetting and
optical scaling

In old books, especially those in mathematics, math-
ematical formulas were typeset using optical scaling.
We give an example of a formula taken from [11]
exhibiting the metal braces. It is clear that these
braces are not related with a linear scaling (see Fig-
ure 1). Optical scaling was not difficult to achieve
in metal typesetting since symbols were processed
in their final sizes. However, the support of optical
scaling is not easy in automatic systems when com-
puting symbols or fonts, especially in the case of
digital typesetting. More information on this point
is in [3, 16].

Figure 1: Braces in metal typesetting

1.4 Existing work

Dynamic characters, especially dynamic mathemati-
cal symbols, are omnipresent in scientific documents.
So, a good application to process scientific docu-
ments must include all required means to support
dynamic characteristics. In the last four decades, a
number of tools have been developed which support

Towards an operational (LA)TEX package supporting optical scaling of dynamic mathematical symbols

172 TUGboat, Volume 37 (2016), No. 2

dynamism in different ways. We can cite in this case
native TEX [12] and LATEX [13] to support mathemat-
ical variable-sized symbols. One important tool to
indicate is CurExt [14], a (LA)TEX package. With
this package, it is possible to typeset mathemati-
cal formulas consisting of variable-sized mathemati-
cal symbols, particularly Arabic ones. In the same
way, CurExt allows one to write Arabic text taking
into account the kashida concept. We have to note
that the kashida makes manifest an important phe-
nomenon of dynamism in Arabic text typesetting.
Detailed information about the kashida and justi-
fication of Arabic texts can be found in [10]. It is
very important to consider the work accomplished in
[2, 3]. This consisted of the design of the “math-fly”
font, a PostScript Type 3 font, to supply dynamic
mathematical symbols taking into account optical
scaling. The particular property of this work, in
comparison with the preceding, is that it is used nei-
ther under nor with (LA)TEX.

CurExt as a package to extend TEX’s capabili-
ties in handling variable-sized symbols has some diffi-
culties in processing mathematical formulas contain-
ing more than two (matched) dynamic symbols [14].
So, it does not offer adequate support to manage the
general case of mathematical formulas.

()
() ()



















Figure 2: Stretches of parentheses in TEX

� � � � � �� �� �� �
Figure 3: Stretches of parentheses via our dynamic
PostScript

As for TEX, readers here likely already know
that it supports the composition of mathematical
formulas with multiple variable-sized symbols. Op-
tical scaling is not very well supported, however,
since the thickness cannot be changed after a cer-
tain point (see Figure 2), while the present package
can do so continuously (Figure 3). Furthermore, due
to the non-dynamic properties of Metafont, dynamic
variable-sized symbols at big sizes do not change in

{
{ { 












Figure 4: Stretches of left braces in TEX

� � � � � �
Figure 5: Stretches of left braces via our dynamic
PostScript

shape (Figures 2 and 4), but merely have straight
parts extended. The result does not look like the
traditional typesetting shown in Figure 1. Figure 5
shows the results for braces with the present pack-
age, with the shape changing in a natural way, in
addition to the increasing thickness.

Regarding optical scaling, we observe that any
one of these tools is completely operational. The

problem of typesetting mathematical formulas with

good quality respecting optical scaling is still chal-

lenging.
In the following, the paper follows this plan: the

second section presents what is required for handling
dynamic mathematical symbols, taking into account
optical scaling. In the third section, the practical
and operational way to design the system is given.
The next section is dedicated to describing and com-
paring the implementation of the package under dif-
ferent TEX tools. The paper ends with conclusions
and perspectives.

2 Requirements to handle dynamic
mathematical symbols taking care
of optical scaling

To realize a convenient tool to compose mathemat-
ical formulas based on dynamic mathematical sym-
bols with respect to optical scaling, it is required
to subdivide the study into two parts. The first
part concerns defining a font of symbols whereas
the second refers to the way to use this font to pro-
duce mathematical formulas. In all cases, we must
not neglect the fact that the tool has to assist the
(end-)user in producing good mathematical formulas
in a direct and straightforward way.

We know that fonts are classified in two groups:
static fonts and dynamic fonts. We give briefly and
accurately the difference between the two classes. In

Abdelouahad Bayar

TUGboat, Volume 37 (2016), No. 2 173

static fonts, shapes (the graphic to print) of char-
acters are generated and finalized before printing.
However, in dynamic fonts, characters take their
printing characteristics at printing time. More de-
tails and examples for comparison are found in [1].
A suitable font to deal with variable-sized symbols
must be dynamic; moreover, it must have the follow-
ing features:

• The language to implement programs encoding
dynamic symbols must provide more flexibility
in parameterizing symbols. Also, it must have
the ability to receive values from outside the
font to instantiate parameters and so generate
the shape to print.

• The interaction between the document process-
ing system and the font language must be well
defined and directly used in the document pro-
cessing task.

(LA)TEX, as a text formatting system, provides na-
tively an interface to fonts encoded in the Metafont
language. This is achieved principally via tfm files.
Nevertheless, Metafont does not allow manipulating
dynamism at printing time. (LA)TEX can also use
other kinds of fonts like PostScript Type 1, True-
Type, or the hybrid of these two, OpenType. These
fonts are referenced by TEX as if they were virtually
Metafont fonts. So the use of these fonts does not
add to either a means to supply real dynamism. It
is also very interesting to cite X ETEX and X ELATEX.
These are extensions to TEX and LATEX in order to
work directly with OpenType fonts (also Type 1 and
TrueType) without use of any intermediate mapping
files. Even with this capacity, X ETEX and X ELATEX
do not support a complete dynamism due to the
limited interaction interface between the TEX engine
and the font. Furthermore, OpenType supports only
a semi-dynamism or a discrete dynamism.

PostScript Type 3 fonts have some particular
features:

• They use the full PostScript language. This
means that the specification of fonts can use all
operators and constructors existing in the Post-
Script language, especially local and global vari-
ables. Variables are the means to communicate
new characteristics to the procedure encoding
dynamic symbols.

• The concept of caching the character bitmaps
(used in Type 1) can be deactivated via replac-
ing setcachedevice with setcharwidth. This
implies that each time a given character is to
be printed, its bitmap will be fully computed.
Consequently, the model supporting variability
(optical scaling) can take new values and states.

Using PostScript Type 3 does lose some important
abilities like fast printing, improvement via hints,
and handling by Adobe Type Manager (ATM). But
the support of dynamic mathematical symbols tak-
ing care of optical scaling may outweigh the dis-
advantages. Also, nowadays, the computers inside
printers are so fast and so large that the time re-
quired to move the paper inside printers dominates
the printing speed. Moreover, the printer industry
regularly makes significant improvements in resolu-
tion. Then, the efficiency benefits such as caching
and hints are gone.

PostScript Type 3 fonts can be used by TEX
in the same way as Type 1. In this case, we can-
not take advantage of the benefit of dynamic spec-
ification in PostScript. In [2], the authors stated
that a parameterized Type 3 font could not be fully
used by formatters (editors) such as TEX or others
without modifications to the way they call formula
symbols. For this reason, they chose to check their
font in the Grif project. In our case, the PostScript
Type 3 font will be inserted directly into the (LA)TEX
source of the document to be formatted by means of
the \special macro. Of course, the way to process
dynamic mathematical symbols in mathematical for-
mulas will be reviewed. The details of the concept
are given in the following.

3 The design of a practical and
operational system

3.1 General package layout

The development of a package able to use directly a
PostScript Type 3 font is based on the existing pos-
sibilities of interaction between (LA)TEX and Post-
Script. This is done using the command \special

via the dvips driver to translate dvi files to Post-
Script ones [15]. More precisely, we use these meth-
ods to include literal PostScript in TEX documents
to work with the PostScript Type 3 font. A summa-
rized design of the package is given below.

• The PostScript Type 3 font supporting dynamic
mathematical symbols and all useful procedures
is defined in the package as a literal header, a
‘!’ \special. This is mandatory since the font
will be used later when including other Post-
Script codes to show PostScript dynamic sym-
bols. Our Type 3 font is named “ dynMath”. The
command is:
\special{! ...dynMath specification...}.

The font implements the mathematical sym-
bols which will support curvilinear stretching
depending on the values of two global variables

Towards an operational (LA)TEX package supporting optical scaling of dynamic mathematical symbols

174 TUGboat, Volume 37 (2016), No. 2

h and w.2 In the font, the stretching model al-
lows symbols to stretch in height (depth) and
width depending on the values of h and w while
keeping the same thickness. We note that the
scaling is not linear. It is a semi-optical scaling
since the thickness is not affected. It is done
in macros we will define, such as \meLeft for
example (see next).

• The principal macro for handling mathemati-
cal formulas and thus dealing with inclusion of
the PostScript dynamic mathematical symbols
is defined in the package. Its skeleton is:
\def\meLeft#1#2\meRight#3{. . .}.
#1: the left delimiter,
#2: the formula to delimit, and
#3: the right delimiter.

This macro manages the dynamic mathemat-
ical symbols which are delimiters. Other dy-
namic symbols (e.g., the radical sign), are de-
fined in separate macros or in some cases exist-
ing macros will be redefined. About the delim-
iters, we chose to finalize at the moment the
implementation of only two symbols, namely
parentheses and braces. In reality, these two
groups of symbols are an adequate representa-

tion of curved symbols. Parentheses have simple
curved shapes, whereas the braces have curved
shapes with inflections. We notice that variable-
sized symbols that are simple combinations of
lines are simple to implement in the font.

• In the \meLeft macro:

1. The dimensions (width, height and
depth) of the formula are computed.
Let hf , wf and df be these dimensions
respectively.

2. Depending on hf , wf , df and the left
delimiter symbol, \meLeft determines
the stretching amounts of h and w.
Then, the corresponding size fs at which
the font dynMath will be used to output
the left symbol is calculated.

3. The dimensions of the left symbol
symHeight, symWidth, and symDepth

taking into account the PostScript font
fs are determined.

4. In an \hbox of dimensions symHeight,
symWidth, symDepth, the left symbol is
written using literal PostScript:

2 We have chosen to use simple names like h and w

to make the description of the equations easy in this

paper. In actual code, meaningful names will be used;

for example, h and w will be replaced by verticalStretch

and horizontalStretch respectively.

... \special{" ...

/fs ... store

/h ... store

/w ... store

/dynMath findfont fs scalefont setfont

〈code of the symbol〉 show
}

5. The formula is written.

6. The steps from the second to the fourth
are applied for the right delimiter.
Frequently, symHeight, symWidth and
symDepth remain unchanged.

3.2 The design of the dynMath font

The font dynMath is based on the font cmex10.mf.
The simple difference is that a symbol appears in
dynMath only once as opposed to the multiple ver-
sions in cmex10.mf. For example, the left parenthe-
sis is encoded in cells numbered 0, 16, 18, 32. The
stretchable parenthesis is built upon the characters
numbered 48, 66 and 64. However, in dynMath, only
one parameterized parenthesis is located in the font
at the order 0. For some particular values of the
parameters, we get the parenthesis with expected
characteristics. As said before, only �, � , � and 	 with
code numbers 0, 1, 8 and 9 respectively are encoded
at the moment.

We used the existing font cmr10.mf to get the
nuclei of left and right parentheses which we parame-
terized applying a mathematical model. Notice that
we did not use cmex10.mf. This is because the small
parenthesis in cmex10.mf is bigger than the normal
parenthesis in text. For the left and right braces, we
saw that none of the Metafont fonts supplied with
TEX distributions provide braces that look like the
metal ones. So, we designed them. The command
applied to generate the basic encoding of the paren-
thesis through cmr10.mf:
mpost ’&mfplain \mode=localfont; \

mag=100.375; input cmr10.mf’

To explain the global concepts for designing the
font, we use the parenthesis as an example. The
same process is applied to the other symbols. With-
out loss of generality, we show only the top part of
the left parenthesis (with respect to the mathemati-
cal axis).

Applying MetaPost to cmr10.mf, we get the en-
coding of the left parenthesis. Its top left part is
shown in Figure 6. It is defined based on two Bézier
curves linked by two line segments at the top and
bottom. To get a parenthesis symbol that is able
to stretch when needed, the two Bézier curves are
multi-decomposed using the generalized algorithm
of refinement [4].

Abdelouahad Bayar

TUGboat, Volume 37 (2016), No. 2 175

Figure 6: Top part of left parenthesis— initial
encoding at size 500

To explain in detail, we consider a refinement
of the fifth order. In Figure 7, the curves are decom-
posed according to the decomposition parameters
1/5, 1/4, 1/3 and 1/2. Every Bézier curve of the encod-
ing appears as a concatenation of five sub-curves.
The latter are then parameterized taking into ac-
count the variables h and w such that when the
stretching amounts are equal to zero the shape is
identical to the initial one illustrated in Figure 6.

Figure 8 shows an example of stretching at size
500. h and w take the values 250 and 83.33 Post-
Script points respectively (83.33 ≈ 250/3). We notice
that the initial and stretched versions of the half
symbol differ in height and width but they have the
same thickness. To emphasize this fact, let us con-
sider the line segments joining the extreme control
points of the left and right sub-curves. Each seg-
ment in Figure 7 and its corresponding segment in
Figure 8 are parallel and have the same length. It is
obvious that the scaling is not linear. It does not sup-
port a true optical scaling either since the thickness
remains unchanged. In the PostScript font, only a
semi-optical scaling is defined. The optical scaling is
completed in the TEX package. The way to param-
eterize the control points in order to support this
semi-optical scaling requires obedience to a strict
mathematical model. (We do not present the mathe-
matical concepts here because this is outside the ob-

Figure 7: Decomposed top part of left parenthesis
(parameterized curves) at size 500 without stretching

jective of this paper. Nevertheless, we cite the basics
of the development.) The curves are parameterized
based on the mathematical model which insures that
stretched and initial curves have the same geomet-
ric and similarity characteristics. In our PostScript
font, the left part of the parentheses has undergone
a Bézier refinement of order 15, whereas in the exam-
ple, the fifth order was enough because the amounts
of stretching are not big.

3.3 Optical scaling support

In this section, we present how the optical scaling is
supported by the package. The best way to describe
the concepts is via the delimiters, particularly bal-
anced ones such as parentheses and braces. This
cannot be done without enumerating the principal
characteristics of a mathematical formula.

We consider an abstract mathematical formula
to present the characteristics. It consists of a box
with some height, depth and width (which is not
relevant to this paper). Figures 9 and 10 show the
two cases of mathematical formulas, namely when
the formula is high or deep, respectively. Moreover,
they introduce some characteristic variables of for-
mulas:

• fh: height of formula from the baseline.

• fd: depth of formula from the baseline.

Towards an operational (LA)TEX package supporting optical scaling of dynamic mathematical symbols

176 TUGboat, Volume 37 (2016), No. 2

Figure 8: Decomposed top part of left parenthesis
(parameterized curves) at size 500, stretched 250
vertically and 83.33 horizontally

h32

y1

y2

hm

hm

fh

fd

baselinemath axis

Figure 9: Abstract high mathematical formula

h32 y1

y2

hm

hm

fh

fd

baselinemath axis

Figure 10: Abstract deep mathematical formula

• y1: mathematical height of the formula, mea-
sured from the mathematical axis to the top of
the formula.

• y2: mathematical depth of the formula, mea-
sured from the mathematical axis to the bottom
of the formula.

• hm: mathematical balanced height (depth) of
the (balanced) formula. We have that hm =
max (y1, y2).

• h32: the mathematical height of parenthesis at
size 32 (corresponding to the height hp

32
in the

PostScript dynMath; of course the value manip-
ulated in the package considers the relation be-
tween pt and bp). h32 is a reference in process-
ing the optical scaling (see later).

We note that a TEX variable vn is the value in TEX
units corresponding to vpn in PostScript units. For
example, h32 is the height in pt corresponding to
hp
32

being the height in PostScript of the dynamic
symbol at size 32. We have formally vn = 1.00375×
vpn.

One part of optical scaling, as previously stated,
is supported by the PostScript Type 3 font whereas
the other part is a direct job of the TEX package.
After a study of the fonts generated from cmr10.mf

and cmex10.mf via MetaPost, we noticed that the
standalone parentheses symbols (the symbol consist-
ing of one character) obtained from cmex10.mf are

Abdelouahad Bayar

TUGboat, Volume 37 (2016), No. 2 177

in some way a linear scaling of the standalone paren-
theses supplied by cmr10.mf. The dimensions of the
big parenthesis in cmex10.mf is approximately three
times the size of the ones relative to the parenthe-
sis in cmr10.mf. Consequently, the optical scaling
is handled in two different ways depending on the
value of hm. The first case deals with the values
of hm less than or equal to h32 whereas the second
takes care of values greater strictly than h32.

h32

y 1

y
2

hm

h
m

f h

f
d

B
a
se
li
n
e

m
a
th

a
x
is

�

Figure 11: Abstract mathematical formula with
hm ≤ h32 and non-aligned math axis

When the mathematical height hm is less than
or equal to h32, the optical scaling is treated simply
as a linear scaling. Figure 11 illustrates this case.
Let fs be the PostScript font size in which the height
of half of the left parenthesis (taken as an example)
equals hm. Then the font dynMath is set to fs and
the delimiter is written in a \special.

We can see that when the delimiter is intro-
duced, the mathematical axis of the formula and
that of the delimiter are not aligned. This is normal
because the “TEX size” in which the formula (10, 11,
. . .) is written will usually be different from the de-
limiter size. In the \special macro, a shifting oper-
ation is accomplished before writing the PostScript
delimiter, as shown here in Figure 12:

h32

y 1

y
2

hm

h
m

f h

f
d

B
a
se
li
n
e

m
a
th

a
x
is

�

Figure 12: Abstract mathematical formula with
hm ≤ h32 and aligned math axis

In the case where hm is strictly greater than h32,
the PostScript font size is managed differently. The
mathematical model adopted to formalize stretching
of mathematical symbols supplied to us has a maxi-
mal vertical stretching of 32700 bp. As the size 32 is
a threshold to handle the symbol stretching, we con-
sider the maximal amount allowed in stretching the
half of a parenthesis to be hp

max. The superscript p
relates to the PostScript context. We have:

hp
max =

32700× 32

1000
= 1190.4 (1)

Let hmax be the equivalent amount in TEX points;
then we have

hmax = 1.00375× hp
maxpt = 1194.864pt (2)

In the following, we give needed dimensions only
in TEX points since all calculations are done by TEX.
The first step in processing is to determine the size
that will be used to compute the delimiter. The
PostScript font dynMath provides the possibility to
extend symbols without affecting the thickness. This
is what remains to support optical scaling. Let e be
the thickness variable (in TEX units). e is calculated
as a function of the mathematical height of the for-
mula to be delimited. This is given in Equation 3:

e (hm) = c1hm + c0 (3)

where c1 and c0 are constants satisfying the following
requirements:

• e (h32) = e32

• e (hmax) = λ× e32

• e32: thickness of the dynamic symbol at size 32.

• λ: a scaling constant factor.3 We notice that λ
is not a global value for the font. It depends on
the dynamic symbol.

For λ, e1000 and e32 known, we can determine the
size fs for which the thickness of the symbol is e.
Using fs, we can produce the corresponding math
height of the symbol hfs . The formulas giving these
variables are in Equations 4 and 5.

fs =
1003.75

e1000
e (4)

hfs =
h1000

1003.75
fs (5)

3 For parenthesis and brace, fulfillment is reached with

λ = 3.236pt. 3.236 equals 2×1.618. 1.618 is the golden ratio.

Towards an operational (LA)TEX package supporting optical scaling of dynamic mathematical symbols

178 TUGboat, Volume 37 (2016), No. 2

h32
hfs

h y1

y2

hm

hm

fh

fd

B
a
se
li
n
e

m
a
th

a
x
is

�

Figure 13: Abstract mathematical formula with
hm > h32, non-aligned math axis and non-stretched
parenthesis

As an important remark, we can see easily that
h32 < hfs < hm. Once hfs is processed, the amount
of vertical stretching h can be determined letting
h = hm − hfs . (See Figure 13 above.)

h32
hfs

h y1

y2

hm

hm

fh

fd

B
a
se
li
n
e

m
a
th

a
x
is

�

Figure 14: Abstract mathematical formula with
hm > h32, aligned math axis and non-stretched
parenthesis

The dynamic symbol is written, especially the
left parenthesis as shown in Figure 13, in \special

macros using the font fsp (fsp = 0.9962 × fs) as
the size. We remark that for the case where h ≤
h32 that the math axis of the formula and that of
the parenthesis do not coincide (see Figure 13). So,
a shift transformation is applied before writing the
symbol in PostScript (see Figure 14).

The horizontal stretching amount w may take
values depending on h. In the case of the left paren-
thesis, w describes the interval [0, h/3]. In Figure
15, the parenthesis at the fs size is stretched by h
vertically and by w = h/3 horizontally.

h32
hfs

h y1

y2

hm

hm

fh

fd

B
a
se
li
n
e

m
a
th

a
x
is

�

Figure 15: Abstract mathematical formula with
hm > h32, aligned math axis and stretched parenthesis

4 Implementation

As we said, the system to typeset mathematical for-
mulas based on dynamic variable-sized symbols is
composed into a PostScript Type 3 font and a set
of TEX macros. Until now, the package is presented
as a simple TEX source file. It contains only TEX
macros that are recognized also by LATEX. So the
package operates with both TEX and LATEX. At the
same time, it is a good nucleus from which to de-
velop a LATEX package. One of the important steps
in the process of executing the macros managing
variable-sized symbols is the catching of the current
mathematical style. It is a mandatory task in order
to get the right dimensions of the mathematical for-
mula and determine the true sizes of the dynamic
mathematical symbol. First, we have developed a

Abdelouahad Bayar

TUGboat, Volume 37 (2016), No. 2 179

package that can operate in all TEX programs. The
determination of the current math style imposes the
use of complete recursion, i.e., recursion in macro
definitions and execution. So the package is very
slow and more demanding of memory. To solve
this problem, we resorted to the use of Lua(LA)TEX
since they supply \mathstyle (\luatexmathstyle)
which permits recognition of the mathematical style
on the fly, greatly reducing the time of processing
and the use of memory. Of course, since a PostScript
Type 3 font is used in conjunction with the TEX
package, then source documents are formatted via
dviluatex (dvilualatex) and dvips commands.

5 Conclusions

We have developed a mini-package for TEX offer-
ing support of variable-sized mathematical symbols
with respect to optical scaling. As an illustration,
we implemented only two symbols: the parenthesis
and the brace. But the support of these two symbols
demonstrates the feasibility as well as the possibil-
ity to produce scientific documents with the quality
of metal typesetting. In the future, we will finish,
at both the font and package levels, the support of
all the rest of the dynamic mathematical symbols.
At the same time, options relating to the printing
quality will be added to the final package. A more
important task will concern the optical scaling with
consideration of an artistic view point. Indeed, the
relationship between the values of horizontal, verti-
cal stretching and thickness will be studied taking
into account artistic satisfaction.

References

[1] Jacques André, B. Borghi, “Dynamic Fonts”,
PostScript Language Journal, Vol. 2, no. 3, pp.
4–6, 1990. http://jacques-andre.fr/japublis/
fontesdyn.pdf

[2] Jacques André, Irène Vatton, Contextual

Typesetting of Mathematical Symbols Taking

Care of Optical Scaling, Technical report No. 1972,
INRIA, October 1993.

[3] Jacques André, Irène Vatton, “Dynamic Optical
Scaling and Variable-sized Characters”, Electronic

Publishing, Vol. 7, No. 4, pp. 231–250, December
1994. http://jacques-andre.fr/japublis/
opticalscaling.pdf

[4] Brian A. Barsky, Arbitrary Subdivision of Bézier

Curves, Technical Report UCB.CSD 85/265,
Computer Science Division, University of
California, 1985. http://www.eecs.berkeley.
edu/Pubs/TechRpts/1986/CSD-86-265.pdf

[5] M.J.E. Benatia, M. Elyaakoubi, A. Lazrek,
“Arabic Text Justification”, TUG 2006 conference,
Marrakesh, Morocco. TUGboat 27:2, pp. 137–146,

2006. http://tug.org/TUGboat/tb27-2/
tb87benatia.pdf

[6] Daniel M. Berry, “Stretching Letter and
Slanted-Baseline Formatting for Arabic, Hebrew
and Persian with ditroff/ffortid and Dynamic
PostScript Fonts”, Software—Practice and

Experience, vol. 29, no. 15, pp. 1417–1457, 1999.
https://cs.uwaterloo.ca/~dberry/FTP_SITE/

tech.reports/keshide.paper.pdf

[7] Harry Carter. “The Optical Scale in
Typefounding”, Typography, No. 4, pp. 2–6,
Autumn, 1937. https://issuu.com/letterror/
docs/harry_carter_optical_scale_in_

typefounding

[8] Circuitous Root, “From the Optical Scale
to Optical Scaling”, 2016. http://www.
circuitousroot.com/artifice/letters/press/

typemaking/mats/optical/index.html

[9] Circuitous Root, “Clubs and Cults Revisiting
the Concept of ‘Typeface’ and the Optical
Scale in Typefounding”, 2016. http://www.
circuitousroot.com/artifice/letters/

press/typemaking/making-matrices/terms/

logical-grouping/clubs-and-cults/index.html

[10] Mohamed Elyaakoubi, Azzeddine Lazrek, “Justify
just or just justify”, Journal of Electronic
Publishing, Volume 13, Number 1, 2010.
http://dx.doi.org/10.3998/3336451.0013.105

[11] G. Lamé, “Leçons sur les coordonnées curvilignes
et leurs diverses applications”, Imprimerie de
Mallet Bachelier, Paris –Rue du Jardinet 12,
1859. https://archive.org/details/bub_gb_
jfgxNexuunYC

[12] D.E. Knuth, The TEXbook, Computers

and Typesetting, Vol. A, Reading, MA:
Addison-Wesley, 1984.

[13] Leslie Lamport, LATEX—A Document Preparation

System, Reading, MA: Addison Wesley, 1985.

[14] Azzeddine Lazrek, “CurExt, Typesetting
variable-sized curved symbols”, EuroTEX 2003
conference, Brest, France. TUGboat 24:3,
pp. 323–327, 2003. http://tug.org/TUGboat/
tb24-3/lazrek.pdf

[15] Tomas Rokicki, “Dvips: A DVI-to-PostScript
translator”, version 5.996, 2016.
http://tug.org/dvips

[16] Richard Southall, “Character description
techniques in type manufacture”, in Raster
Imaging and Digital Typography II, eds.,
Robert A. Morris and Jacques André, pp. 16–27,
Cambridge, UK, October 1991.

⋄ Abdelouahad Bayar
Cadi Ayyad University
Ecole Supérieure de Technologie de Safi
[High college of technology of Safi]
Morocco
a.bayar (at) uca.ma

Towards an operational (LA)TEX package supporting optical scaling of dynamic mathematical symbols

180 TUGboat, Volume 37 (2016), No. 2

A LATEX reference manual

Jim Hefferon

Abstract

The LATEX Reference Manual summarizes the fea-
tures of LATEX2ε. It can be a valuable resource
for authors using LATEX and deserves to be better
known.

1 Introduction

The LATEX Reference Manual, latexrefman, aims
to provide a freely available document summarizing
the commands and environments of LATEX2ε. It is
unofficial, not associated with the LATEX project.

You can see a current copy, in a variety of for-
mats, either at the project home page1 or on CTAN2.

This work brings together an array of LATEX
sources and documentation and organizes that ma-
terial into a reference format. Its base language is
English; presently, there are French and Spanish
translations.

This project deserves to be better known, among
both potential users and potential contributors.

2 For potential users

latexrefman is a resource that can be valuable to
LATEX authors while they are writing.

2.1 Why more documentation?

There are many works on LATEX: tutorial and ad-
vanced, online and on paper, in many languages and
at many levels of sophistication.

The chief distinction of latexrefman is that it
is a reference manual. If, for instance, you can’t
remember the specifics of the syntax of a command
then you can go directly to that command’s entry.
There will be a complete description, including all
of the salient technical points as well as an overview,
and hyperlinks to related entries.

An example of the difference between a reference
and other works is that here each entry assumes
whatever level of reader sophistication is needed to
cover the topic. For instance, an entry might specify
that the argument of a command is typeset in LR

mode, which a tutorial is likely not to state.
In addition, latexrefman is organized by com-

mand. For instance, the major LATEX environments
each get a separate entry.

latexrefman now covers the commonly-used
commands and environments. The entries work to
make fine distinctions clear. They also give the values

1 http://home.gna.org/latexrefman/
2 https://ctan.org/pkg/latex2e-help-texinfo

of various parameters in the standard LATEX classes.
It is online so it can be easily accessed and so that
searches and hyperlinks are also easy.

In short, the document is written with a focus
on being useful to a working LATEX author who is
typing, who runs across an issue, and who wants a
convenient way to see all the information needed to
resolve the issue, presented in one place.

2.2 Sources

The information in this manual is available from
other LATEX sources and documentation, but is scat-
tered. Besides the ultimate reference of the LATEX2ε
source code, and books such as [1] and [2], there
are also many reputable online sources including the
Comprehensive Symbols List3 and the Users Guide
for amsmath4. The work of this project is to bring
these diverse sources together and synthesize the
information into a reference form.

This project has an advantage over reference
manuals for other subjects: the existence of online
forums. The TEX family has a long history and is
also blessed with a helpful community so there are a
number of long-lived forums, including the Usenet
group comp.text.tex,5 the mailing list texhax,6

the TEX-LATEX Stack Exchange,7 and the Reddit
subgroup /r/LaTeX.8 This great body of material
not only provides authors of a reference with answers
that may be hard to find elsewhere but, just as
importantly, provides those authors with questions
showing what gives users trouble. If online research
reveals a question about a topic that has puzzled
LATEX users over a long time then we can increase
the value of the reference by including explanation
or examples specifically addressing that question.

2.3 Coverage

At present, latexrefman covers the most-used com-
mands and environments of core LATEX2ε.

We do not plan to ever cover a broad, let alone
complete, range of packages from CTAN. Instead,
the plan is to exhaustively cover all of core LATEX2ε.
That goal remains rather distant; thus, additional
project contributors would be most welcome.

3 https://ctan.org/pkg/comprehensive/
4 ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.

pdf
5 https://groups.google.com/forum/#!forum/comp.

text.tex
6 http://lists.tug.org/texhax
7 http://tex.stackexchange.com/
8 http://www.reddit.com/r/latex

Jim Hefferon

TUGboat, Volume 37 (2016), No. 2 181

3 For potential contributors

This is a project where a person looking for a way to
give back to the community can make a real contri-
bution without a lot of initial effort. You can start
off small by finding some improvement on an existing
entry, or a missing one, and submitting a suggestion
or a patch.

You could submit that improvement via the
mailing list. You can also download the document
source. You can reach both at the project’s home
page.9

The document source is in Texinfo.10 To give a
feel for this, here are parts of the source of the entry
on LATEX’s quotation and quote environments.

It begins with the syntax of the two:

Synopsis:

@example

\begin@{quotation@}

@var{text}

\end@{quotation@}

@end example

or

@example

\begin@{quote@}

@var{text}

\end@{quote@}

@end example

The most obvious difference from writing in LATEX
is that the at sign @ takes the place of backslash as
the escape character, including the escaping used
in @example and @end but also including escaping
the braces as @{ and @}. There is (intentionally)
little in the way of macros so writing is relatively
straight-ahead—a person used to LATEX does not
need to ramp up much to start working with the
source.

Here is a little more, later in the same entry:

To compare the two: in the

@code{quotation} environment, paragraphs

are indented by 1.5@dmn{em} and the space

between paragraphs is small,

@code{0pt plus 1pt}. In the @code{quote}

environment, paragraphs are not indented

and there is vertical space between paragraphs

(it is the rubber length @code{\parsep}).

We see here that, as discussed earlier, there is a focus
on the working LATEX author. The body addresses
the question of when to choose one environment or
the other.

9 http://home.gna.org/latexrefman
10 https://www.gnu.org/software/texinfo/

In addition, you can see that the reference man-
ual strives to give precise default values, as actually
defined, rather than vague circumlotions. These num-
bers come from the LATEX2ε source files. So this is
an example of a way that a person can make a useful
contribution back to the community: spend a little
time tracking down values that are not yet specified.

Finally, that entry closes with an example that
is short but is also cut-and-pasteable. That is, this
example is designed to be one that would get our
hypothesized LATEX author started.

@example

\begin@{quotation@}

\it Four score and seven years ago

... shall not perish from the earth.

\hspace@{1em plus 1fill@}---Abraham Lincoln

\end@{quotation@}

@end example

There are other things in the source file not
shown here, notably cross-reference information. In
addition, the source is in a Subversion repository.
But both are easy to get used to.

3.1 History of contributions

This project has been around, in various forms, for a
long time. George Greenwade started it as help files
for VMS. It was updated for LATEX 2.09 by Stephen
Gilmore and for LATEX2ε by Torsten Martinsen. To-
day, active contributors are Vincent Beläıche, Karl
Berry, and Jim Hefferon. Vincent also maintains the
French translation and has made some updates to the
Spanish translation, but reports that Spanish needs
a new maintainer. Translations to more languages
would be most welcome.

4 Summary

The LATEX Reference Manual aims to provide a
freely available document summarizing the features
of LATEX2ε. In its current state it can be a useful
resource for LATEX authors. Give it a try!

It plans eventually to cover all of the commands
of core LATEX2ε. Contributors are very welcome.

References

[1] Leslie Lamport. LATEX: A Document Preparation
System. Addison-Wesley, second edition, 1986.

[2] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The
LATEX Companion (Tools and Techniques for
Computer Typesetting). Addison-Wesley, second
edition, 2004.

⋄ Jim Hefferon

Saint Michael’s College

jhefferon (at) smcvt dot edu

A LATEX reference manual

182 TUGboat, Volume 37 (2016), No. 2

Astrological charts with horoscop

and starfont

Matthew Skala

Abstract

TEX should create beautiful documents for all fields
of human endeavour, and in this talk, I describe
one frequently under-served by typesetting systems:
astrology. Astrology has its own tradition of written
knowledge and symbolic notation, analogous to that
of mathematics but arguably even older; and like
mathematics, astrology presents unique challenges
for typesetting. Writers of astrological software often
focus their attention primarily on the calculations,
leaving any kind of graphical presentation as an
afterthought. In this talk I present the horoscop

and starfont LATEX packages, meant for creating
visually appealing astrological documents using TEX.
No prior knowledge of astrology, and not too much
of TEX, will be assumed.

starfont and horoscop

Human beings have looked for meaning in the sky
since early prehistoric times. Some of our oldest
written materials record the phases of the moon, and
seasonal variations in the rising and setting of the
sun. Astrological goals such as eclipse prediction
motivated much of early mathematics; and mathe-
matical developments in turn made possible more
complicated astrological investigations. As mathe-
matics developed a written symbolic notation, so did
astrology. It is only recently that the two disciplines
were considered distinct from each other at all.

So if TEX is the best tool for typesetting mathe-
matics, then shouldn’t it also be useful for typeset-
ting astrology? The question is especially important
because there are very few other good tools avail-
able. Historically, authors of astrological documents
would draw their charts by hand, or use hand-set
type. The availability of computers has made astro-
logical computations much easier and more precise;
but graphical output from astrological software is
often disappointing.

I wrote the LATEX packages called starfont

and horoscop, starting around 2003, to bring high-
quality astrological typesetting to the TEX world.
Both are available from CTAN.

The starfont package provides the two fonts
named StarFont Sans and StarFont Serif, designed
by Anthony I.P. Owen. These fonts include signs of
the zodiac like xcm and planet glyphs like fgh,
as well as other astrological and alchemical symbols.
Other LATEX packages offer some of these characters,

x

cv

b

n

m

X

C V

B

N

M

s
3
◦

n

d
x

14
◦

f22◦n

g
16

◦

n

h
C
27

◦

j21
◦m

S
V
10

◦

5

F
25

◦

x

GM12
◦5

J
B

16
◦

5

u

u

uu

u

u

t

tt

t

Figure 1: Mundane horoscope for the opening of

TUG 2016: 8:45AM, July 25, 2016, Toronto.

but often in ways unsuitable for high-quality astro-
logical typesetting. For example, wasysym’s Leo �

and North Node � are indistinguishable.
The horoscop package’s main function is gen-

erating wheel charts as in Figure 1. This kind of
chart represents the sky at a specific time and place
in a schematic form that emphasizes the information
most relevant to astrological interpretation. The
package can take manually-specified coordinates for
celestial bodies or interface to external software via
\write18 to calculate their positions.

There are some challenges behind the scenes in
typesetting such a chart. Most of the plotting is
done in polar coordinates, requiring trigonometric
calculations in TEX code. Labels plotted on the chart
should not collide even if the objects they represent
are near each other in the sky, so the package recal-
culates positions iteratively, using spring tension. A
less visible challenge concerns rounding coordinates
to lower precision, because the details of the rounding
rules are significant in interpretation.

The horoscop package provides a range of ready-
made chart designs, and also a framework for users
to define their own. It aims to bring TEX’s astrology
to the same level as TEX’s mathematics.

⋄ Matthew Skala

Copenhagen

Denmark

mskala (at) ansuz.sooke.bc.ca

http://ansuz.sooke.bc.ca/

Matthew Skala

TUGboat, Volume 37 (2016), No. 2 183

Remaking ACM LATEX styles

Boris Veytsman

Abstract

The Association for Computing Machinery is one of
the largest publishers of computation texts in the
world. It publishes more than fifty journals and
many more conference proceedings every year. It
was among the early adopters of TEX.

Unfortunately, over the years ACM styles accu-
mulated many patches and haphazard changes. They
diverged to the point when supporting became an
impossible task. This warranted a complete refactor-
ing.

This talk discusses the experience of rewriting
ACM styles and the lessons learned.

1 Introduction

Five years ago I was asked to update BibTEX styles
for the Association of Computing Machinery (ACM).
I did not know at that time that this commission
would start a very interesting line of work.

The ACM [2] is one of the largest publishers
in the computing and information science in the
world. It produces dozens and dozens of journals
and conference proceedings. Thus I considered the
work on this assignment to be a great honor and a
large responsibility.

It befits the ACM mission and traditions that it
is one of the early adopters of TEX. There are time-
stamps in the ACM style files going as far back as the
middle of 1980s, i.e., even predating TEX3. As any
computer specialist knows only too well, code this
old requires much care and attention lest it become
a crazy quilt of patches upon patches (the integrity
of TEX itself over the years is an important excep-
tion rather than the general rule). This is especially
true when the code is maintained by generations of
programmers stressed by deadlines and production
requirements.

In the case of the ACM files, both the LATEX
and BibTEX code and the output display the re-
sult of many temporary ad hoc decisions and show
overlapping fingerprints of editors and coders, often
with incompatible philosophies and approaches. As
one frustrated TEXpert wrote me (name withheld by
request),

. . . 3 packages copied in with a comment (good!)
that they are needed but without taking out
\endinput that was in the code from the pack-
age copied in (bad :-) so after the first nothing
else is ever used. . .

1. Class files:

(a) acm_proc_article-sp.cls

(b) acmlarge.cls

(c) acmsiggraph.cls

(d) acmsmall-ec13.cls

(e) acmsmall.cls

(f) acmtog.cls

(g) acmtrans2m.cls

(h) sig-alternate-05-2015.cls

(i) sig-alternate.cls

(j) sigchi-ext.cls

(k) sigchi.cls

(l) sigplanconf.cls

2. BibTEX styles:

(a) ACM-Reference-Format-Journals.bst

(b) SIGCHI-Reference-Format.bst

(c) acmsiggraph.bst

(d) acm-abbrv.bst

(e) acm-alpha.bst

(f) acm-plain.bst

(g) acm-unsrt.bst

Figure 1: Legacy code base (2015)

. . . and it seems there is a redefinition of
startsection inside that is broken—last night
30 min before my deadline I found 3 sections
dangling at the bottom of columns. . .

. . . and the footnotes are horror and the
fonts too and. . .

. . . looks worse than your average Word
document . . .

These problems were exacerbated by the amount
of copy and paste in the TEX code. Many times over
the years whenever the need arose, the original code
was cloned, changed in subtle (or not so subtle) ways,
and a new class file was released. At the end of 2015 I
found that I was dealing with as many as 12 class files
and 7 BibTEX styles (Figure 1). Thus any update to
the system required dozens of tantalizingly similar
but slightly different changes in these files. This was
not sustainable.

Another problem with the old styles was that
interfaces to the elements like tables or figures were
set long before the common standards were adopted.
As the result, they looked quite strange for a LATEX
user. The unusual ways to do usual things were
confusing to the authors and caused errors.

Thus, the decision of the senior staff of ACM to
make a radical refactoring of the styles was excellent
news. Both the typographic design and the coding
were going to change. This was an opportunity to
write the styles from scratch.

Remaking ACM LATEX styles

184 TUGboat, Volume 37 (2016), No. 2

2 Organization of work

With many stakeholders, it took some effort to or-
ganize the writing of the styles and templates. The
tasks were distributed as follows. The ACM editors
updated the design and fonts selection. I wrote the
LATEX and BibTEX code. The company Aptara [1],
which does typesetting for the ACM, developed word
processor templates for the authors who do not use
TEX, as well as tools for the extraction of metadata.

Since many conference committees (SIGs) wanted
to be involved in the process, LATEX and BibTEX code
was put in a Github repository (https://github.
com/borisveytsman/acmart). Github-based devel-
opment turned out to be quite efficient for our pur-
poses: the testers and SIG representatives could
quickly assess the changes, submit bug reports and
even contribute the code. Github seems to be a
mature environment for free software development.

Sometimes it was difficult to accommodate the
wishes of all the stakeholders, but we tried to keep
in the spirit of compromise and consensus.

3 Design features

Instead of many class files (Figure 1) we use one class,
acmart, with options corresponding to the output
version. I sincerely hope this decision (one docu-
ment class with options rather than several classes)
will prevent the proliferation of copy-and-paste that
plagued the old styles.

As suggested by the name, acmart is based on
the famous amsart class [4], so all AMS-LATEX ad-
vanced math typesetting features are available by de-
fault. You can use environments like cases, gather
or multline, commands like \dfrac and \tfrac or
\text in math mode, as well as AMS-style theorem
definitions (the class itself defines several theorem-
like constructs and theorem styles).

There are three journal options: acmsmall for
small trim size journals, acmlarge for large trim size
journals and acmtog for Transactions on Graphics,
which traditionally uses two-column format. There
are five proceedings options: sigconf for most con-
ference proceedings, siggraph, sigplan and sigchi for
specific proceedings with distinct formatting, and
sigchi-a for the special SIGCHI Extended Abstract.
The latter is quite unusual: it has wide margins
with marginal figures and tables. Another option,
manuscript, is for a generic manuscript.

In Figures 2, 3, 4 and 5 some examples of the
output are shown. Additional samples can be found
in the documentation on CTAN (http://ctan.org/
pkg/acmart) or in your TEX distribution.

Another important decision was to eliminate use
of proprietary fonts. The Libertine fonts [6] with

39

A Multifrequency MAC Specially Designed for Wireless

Sensor Network Applications

GANG ZHOU, College of William and Mary

YAFENG WU, University of Virginia

TING YAN, Eaton Innovation Center

TIAN HE, University of Minnesota

CHENGDU HUANG, JOHN A. STANKOVIC, and TAREK F. ABDELZAHER, University of

Virginia

Multifrequency media access control has been well understood in general wireless ad hoc networks, while in

wireless sensor networks, researchers still focus on single frequency solutions. In wireless sensor networks,

each device is typically equipped with a single radio transceiver and applications adopt much smaller packet

sizes compared to those in general wireless ad hoc networks. Hence, the multifrequency MAC protocols

proposed for general wireless ad hoc networks are not suitable for wireless sensor network applications, which

we further demonstrate through our simulation experiments. In this article, we propose MMSN, which takes

advantage of multifrequency availability while, at the same time, takes into consideration the restrictions of

wireless sensor networks. �rough extensive experiments, MMSN exhibits the prominent ability to utilize

parallel transmissions among neighboring nodes.

CCSConcepts: •Computer systems organization→Embedded systems; Redundancy; Robotics; •Networks

→ Network reliability;

Additional Key Words and Phrases: Wireless sensor networks, media access control, multi-channel, radio

interference, time synchronization

ACM Reference format:

Gang Zhou, Yafeng Wu, Ting Yan, Tian He, Chengdu Huang, John A. Stankovic, and Tarek F. Abdelzaher.

2010. A Multifrequency MAC Specially Designed for Wireless Sensor Network Applications. ACM Trans. Web

9, 4, Article 39 (March 2010), 8 pages.

DOI: 0000001.0000001

1 INTRODUCTION

As a new technology, Wireless Sensor Networks (WSNs) has a wide range of applications [5, 8,
13], including environment monitoring, smart buildings, medical care, industrial and military
applications. Among them, a recent trend is to develop commercial sensor networks that require

�is work is supported by the National Science Foundation, under grant CNS-0435060, grant CCR-0325197 and grant

EN-CS-0329609.

Author’s addresses: G. Zhou, Computer Science Department, College of William and Mary; Y. Wu and J. A. Stankovic,

Computer Science Department, University of Virginia; T. Yan, Eaton Innovation Center; T. He, Computer Science Department,

University of Minnesota; C. Huang, Google; T. F. Abdelzaher, (Current address) NASA Ames Research Center, Moffe� Field,

California 94035.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1559-1131/2010/3-ART39 $15.00

DOI: 0000001.0000001

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Figure 2: Journal output, small trim size: acmsmall

newtxmath [5] give the pages a clean and crisp look.
The footnotes are no longer cramped. In general, we
tried to add a little air to the pages, while keeping
in mind that the authors are constrained by page
count limits.

One of the main principles of the design is the
integrity of the interface. While the typesetting
of the journals and proceedings is quite different,
the interface is the same. The author should be
able merely to change acmsmall to sigconf option in
the \documentclass command in order to typeset
the manuscript in a different category. The only
exception are the marginal figures and tables for
the sigchi-a option, which have no corresponding
material in the other formats.

Another principle is the logical markup with
most visual decisions made by LATEX. This can be
demonstrated by the way authors’ information is en-
coded. In the old design the authors should manually
set the number of authors and align their addresses
on the page using tabular-like commands. The new
design does this automatically.

Since the TEX file is used both for typesetting
and for automatic extraction of metadata by Aptara

Boris Veytsman

TUGboat, Volume 37 (2016), No. 2 185

A Multifrequency MAC Specially Designed for Wireless Sensor Network
Applications

GANG ZHOU, College of William and Mary

YAFENG WU, University of Virginia

TING YAN, Eaton Innovation Center

TIAN HE, University of Virginia and University of Minnesota

CHENGDU HUANG, JOHN A. STANKOVIC, and TAREK F. ABDELZAHER, University of Virginia

Multifrequency media access control has been well understood in general

wireless ad hoc networks, while in wireless sensor networks, researchers

still focus on single frequency solutions. In wireless sensor networks, each

device is typically equipped with a single radio transceiver and applications

adopt much smaller packet sizes compared to those in general wireless

ad hoc networks. Hence, the multifrequency MAC protocols proposed

for general wireless ad hoc networks are not suitable for wireless sensor

network applications, which we further demonstrate through our simulation

experiments. In this article, we propose MMSN, which takes advantage of

multifrequency availability while, at the same time, takes into consideration

the restrictions of wireless sensor networks. �rough extensive experiments,

MMSN exhibits the prominent ability to utilize parallel transmissions among

neighboring nodes. When multiple physical frequencies are available, it

also achieves increased energy efficiency, demonstrating the ability to work

against radio interference and the tolerance to a wide range of measured

time synchronization errors.

CCS Concepts: •Computer systems organization → Embedded sys-

tems; Redundancy; Robotics; •Networks→ Network reliability;

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Wireless sensor networks, media access

control, multi-channel, radio interference, time synchronization

ACM Reference format:

Gang Zhou, Yafeng Wu, Ting Yan, Tian He, Chengdu Huang, John A.

Stankovic, and Tarek F. Abdelzaher. 2010. A Multifrequency MAC Spe-

cially Designed for Wireless Sensor Network Applications. ACM Trans.

Graph. 9, 4, Article 39 (March 2010), 4 pages.

DOI: 0000001.0000001 2

1 INTRODUCTION

As a new technology, Wireless Sensor Networks (WSNs) has a wide

range of applications [5, 8, 13], including environment monitoring,

smart buildings, medical care, industrial and military applications.

Among them, a recent trend is to develop commercial sensor net-

works that require pervasive sensing of both environment and hu-

man beings, for example, assisted living [4, 12, 20] and smart homes

[3, 12, 20].

�is work is supported by the National Science Foundation, under grant CNS-0435060,
grant CCR-0325197 and grant EN-CS-0329609.
Author’s addresses: G. Zhou, Computer Science Department, College of William and
Mary; Y. Wu and J. A. Stankovic, Computer Science Department, University of Virginia;
T. Yan, Eaton Innovation Center; T. He, Computer Science Department, University of
Minnesota; C. Huang, Google; T. F. Abdelzaher, (Current address) NASA Ames Research
Center, Moffe� Field, California 94035.
© 2010 ACM. �is is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. �e definitive Version of Record was published in
ACM Transactions on Graphics, h�p://dx.doi.org/0000001.0000001 2.

“For these applications, sensor devices are incorpo-

rated into human cloths [3, 8, 27, 39] formonitoring

health related information like EKG readings, fall

detection, and voice recognition”.

While collecting all these multimedia information [4] requires a

high network throughput, off-the-shelf sensor devices only provide

very limited bandwidth in a single channel: 19.2 Kbps in MICA2 [8]

and 250 Kbps in MICAz.

In this article, we propose MMSN, abbreviation for Multifre-

quency Media access control for wireless Sensor Networks. �e

main contributions of this work can be summarized as follows.

• To the best of our knowledge, the MMSN protocol is the

first multifrequency MAC protocol especially designed for

WSNs, in which each device is equipped with a single radio

transceiver and the MAC layer packet size is very small.

• Instead of using pairwise RTS/CTS frequency negotiation

[3, 13, 38, 39], we propose lightweight frequency assign-

ments, which are good choices for many deployed compar-

atively static WSNs.

• We develop new toggle transmission and snooping tech-

niques to enable a single radio transceiver in a sensor device

to achieve scalable performance, avoiding the nonscalable

“one control channel + multiple data channels” design [27].

2 MMSN PROTOCOL

2.1 Frequency Assignment

We propose a suboptimal distribution to be used by each node,

which is easy to compute and does not depend on the number of

competing nodes. A natural candidate is an increasing geometric

sequence, in which

P (t) =
b
t+1
T+1 − b

t

T+1

b − 1
, (1)

where t = 0, . . . ,T , and b is a number greater than 1.

In our algorithm, we use the suboptimal approach for simplicity

and generality. We need to make the distribution of the selected

back-off time slice at each node conform to what is shown in Equa-

tion (1). It is implemented as follows: First, a random variable α

with a uniform distribution within the interval (0, 1) is generated

on each node, then time slice i is selected according to the following

equation:

i = ⌊(T + 1) logb [α (b − 1) + 1]⌋ .

It can be easily proven that the distribution of i conforms to Equation

(1).

ACM Transactions on Graphics, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Figure 3: Journal output, two columns: acmtog

SIG Proceedings Paper in LaTeX Format∗

Extended Abstract†

Ben Trovato‡

Institute for Clarity in Documentation
P.O. Box 1212

Dublin, Ohio 43017-6221
trovato@corporation.com

G.K.M. Tobin§

Institute for Clarity in Documentation
P.O. Box 1212

Dublin, Ohio 43017-6221
webmaster@marysville-ohio.com

Lars �ørväld¶

�e �ørväld Group
1 �ørväld Circle
Hekla, Iceland

larst@affiliation.org

Lawrence P. Leipuner
Brookhaven Laboratories

P.O. Box 5000
lleipuner@researchlabs.org

Sean Fogarty
NASA Ames Research Center
Moffe� Field, California 94035

fogartys@amesres.org

Charles Palmer
Palmer Research Laboratories

8600 Datapoint Drive
San Antonio, Texas 78229

cpalmer@prl.com

John Smith
�e �ørväld Group
jsmith@affiliation.org

Julius P. Kumquat
�e Kumquat Consortium
jpkumquat@consortium.net

ABSTRACT

�is paper provides a sample of a LATEX document which conforms,

somewhat loosely, to the forma�ing guidelines for ACM SIG Pro-

ceedings1.

CCS CONCEPTS

•Computer systems organization→ Embedded systems; Re-

dundancy; Robotics; •Networks→ Network reliability;

KEYWORDS

ACM proceedings, LATEX, text tagging

ACM Reference format:

Ben Trovato, G.K.M. Tobin, Lars �ørväld, Lawrence P. Leipuner, Sean

Fogarty, Charles Palmer, John Smith, and Julius P. Kumquat. 1997. SIG

Proceedings Paper in LaTeX Format. In Proceedings of ACM Woodstock

conference, El Paso, Texas USA, July 1997 (WOODSTOCK’97), 4 pages.

DOI: 10.475/123 4

1 INTRODUCTION

�e proceedings are the records of a conference2. ACM seeks to give

these conference by-products a uniform, high-quality appearance.

∗Produces the permission block, and copyright information
†�e full version of the author’s guide is available as acmart.pdf document
‡Dr. Trovato insisted his name be first.
§�e secretary disavows any knowledge of this author’s actions.
¶�is author is the one who did all the really hard work.
1�is is an abstract footnote
2�is is a footnote

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WOODSTOCK’97, El Paso, Texas USA

© 2016 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

To do this, ACM has some rigid requirements for the format of the

proceedings documents: there is a specified format (balanced double

columns), a specified set of fonts (Arial or Helvetica and Times

Roman) in certain specified sizes, a specified live area, centered

on the page, specified size of margins, specified column width and

gu�er size.

2 THE BODY OF THE PAPER

Typically, the body of a paper is organized into a hierarchical struc-

ture, with numbered or unnumbered headings for sections, subsec-

tions, sub-subsections, and even smaller sections. �e command

\section that precedes this paragraph is part of such a hierarchy.3

LATEX handles the numbering and placement of these headings for

you, when you use the appropriate heading commands around

the titles of the headings. If you want a sub-subsection or smaller

part to be unnumbered in your output, simply append an asterisk

to the command name. Examples of both numbered and unnum-

bered headings will appear throughout the balance of this sample

document.

Because the entire article is contained in the document environ-

ment, you can indicate the start of a new paragraph with a blank

line in your input file; that is why this sentence forms a separate

paragraph.

2.1 Type Changes and Special Characters

We have already seen several typeface changes in this sample.

You can indicate italicized words or phrases in your text with the

command \textit; emboldening with the command \textbf and

typewriter-style (for instance, for computer code) with \texttt.

But remember, you do not have to indicate typestyle changes when

such changes are part of the structural elements of your article;

for instance, the heading of this subsection will be in a sans serif4

3�is is a footnote.
4Another footnote, here. Let’s make this a rather short one to see how it looks.

Figure 4: Proceedings output: sigconf

SIGCHI Extended Abstracts Sample
FileC

o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *

E
valuated

*
P
o
P
*

A
rt ifact *

A
E
C

P
P

First Author

University of Author
Authortown, CA 94022, USA
author1@anotherco.edu

Second Author

VP, Authoring
Authorship Holdings, Ltd.
Awdur SA22 8PP, UK
author2@author.ac.uk

Third Author

Fourth Author

Lēkhaka Labs
Bengaluru 560 080, India
author3@another.com
author4@another.com

Fi�h Author

YetAuthorCo, Inc.
Authortown, BC V6M 22P, Canada
author5@anotherco.com

Sixth Author

Université de Auteur-Sud
Auteur 40222, France
author6@author.fr

Seventh Author

University of Umbhali
Pretoria, South Africa
author7@umbhaliu.ac.za

ABSTRACT

UPDATED—July 12, 2016. This sample paper describes the forma�ing requirements for SIGCHI
Extended Abstract Format, and this sample file offers recommendations on writing for the worldwide
SIGCHI readership. Please review this document even if you have submi�ed to SIGCHI conferences
before, as some format details have changed relative to previous years. Abstracts should be about 150
words. Required.

WOODSTOCK’97, El Paso, Texas USA

© 2016 ACM. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The

definitive Version of Record was published in Proceedings of ACMWoodstock conference, July 1997 , h�p://dx.doi.org/10.475/123 4.

SIGCHI Extended Abstracts Sample File WOODSTOCK’97, July 1997, El Paso, Texas USA

• Explain “insider” comments. Ensure that your whole audience understands any reference
whose meaning you do not describe (e.g., do not assume that everyone has used a Macintosh
or a particular application).
• Explain colloquial language and puns. Understanding phrases like “red herring” requires a
cultural knowledge of English. Humor and irony are difficult to translate.
• Use unambiguous forms for culturally localized concepts, such as times, dates, currencies,
and numbers (e.g., “1-5- 97” or “5/1/97” may mean 5 January or 1 May, and “seven o’clock”
may mean 7:00 am or 19:00). For currencies, indicate equivalences: “Participants were paid₩
25,000, or roughly US $22.”
• Be careful with the use of gender-specific pronouns (he, she) and other gender-specific words
(chairman, manpower, man-months). Use inclusive language (e.g., she or he, they, chair, staff,
staff-hours, person-years) that is gender-neutral. If necessary, you may be able to use “he”
and “she” in alternating sentences, so that the two genders occur equally o�en [10].
• If possible, use the full (extended) alphabetic character set for names of persons, institu-
tions, and places (e.g., Grønbæk, Lafreniére, Sánchez, Nguy˜ên, Universität, Weißenbach,
Züllighoven, Århus, etc.). These characters are already included in most versions and variants
of Times, Helvetica, and Arial fonts.

Figure 2: In this image, the cats are tes-

sellated within a square frame. Images

should also have captions and be within

the boundaries of the sidebar on page 2.

Photo: cz jofish on Flickr.

FIGURES

The examples on this and following pages should help you get a feel for how screen-shots and other
figures should be placed in the template. Your document may use color figures (see Figures 1), which
are included in the page limit; the figures must be usable when printed in black and white. You
can use the marginfigure environment to insert figures in the (le�) margin of the document (see
Figure 2). Finally, be sure to make images large enough so the important details are legible and clear
(see Figure 3).

TABLES
Table 2: A simple narrow table in the

le� margin space.

First Location

Child 22.5 Melbourne
Adult 22.0 Bogotá

Gene 22.0 Palo Alto
John 34.5 Minneapolis

You man use tables inline with the text (see Table 1) or within the margin as shown in Table 2. Try
to minimize the use of lines (especially vertical lines). LATEX will set the table font and captions sizes
correctly; the la�er must remain unchanged.

ACCESSIBILITY

The Executive Council of SIGCHI has commi�ed to making SIGCHI conferences more inclusive for
researchers, practitioners, and educators with disabilities. As a part of this goal, the all authors are
asked to work on improving the accessibility of their submissions. Specifically, we encourage authors
to carry out the following five steps:

Figure 5: SIGCHI Extended abstract: sigchi-a

\author{Ben Trovato}

\authornote{Dr.~Trovato insisted his

name be first.}

\orcid{1234-5678-9012}

\email{trovato@example.edu}

\author{A. U. Thor}

\email{author@example.edu}

\affiliation{%

\institution{Institute for Clarity

in Documentation}

\streetaddress{P.O. Box 1212}

\city{Dublin}

\state{Ohio}

\postcode{43017-6221}

\country{USA}}

Figure 6: Example of author information commands

tools, the commands are highly structured. For ex-
ample, the authors’ information is typed using the
commands like \streetaddress or \city (Figure 6).
There are special commands for grant sponsors and
grant numbers, etc.

The class offers a number of useful features like

Remaking ACM LATEX styles

186 TUGboat, Volume 37 (2016), No. 2

canned copyright statements (vetted by the ACM

lawyers), review mode with line numbers printed,
anonymous mode with the information about the
authors, affiliations, grants and acknowledgments
suppressed (for a blind review), etc. This anony-
mous mode is just one of the options for conditional
typesetting: the authors could also have different ver-
sions for the online and hard-copy; for example, the
online version could include supplementary materi-
als. There are provisions to include CCS “concepts”:
hierarchical keywords generated by the ACM website.

The class uses standard LATEX2ε interfaces to
common elements, such as figures and tables, as
much as possible. The only area with ACM-specific
commands is the front matter: unfortunately all pub-
lishers use their own systems to indicate the authors
and their affiliations, and ACM is no exception here.

4 Bibliography

Historically some ACM publications used author-year
citations, while other used numbered cites. Even
the author-year ones were not uniform: some used
natbib, while some used their own interface. There
were pervasive differences in bibliography formatting.
This led to a large number of “official” ACM BibTEX
styles (see Figure 1).

The new acmart package uses only one BibTEX
style, which is natbib-compatible and defaults to nu-
meric citations. Fortunately, the natbib package [3]
allows the user to choose either author-year or num-
bered citations, thus allowing SIGs to customize their
bibliographies. Even when the citation style is nu-
meric, commands like \citeyear and \citeauthor

are allowed.
Another interesting feature of the citation style

is that the bibliographic output is highly structured
for use by the cross-referencing software. This is
done transparently to the user, creating the entries
like the one shown on Figure 7.

5 Conclusions and acknowledgments

This large work of creating the new ACM styles would
not be possible without the help of many people. I
would like to express my gratitude to:

• ACM editors: Craig Rodkin, Bernard Rous.

• Aptara: Neeraj Saxena, Sehar Tahir.

• Testers, users and SIG representatives: Chris
Guccio, Wayne Graves, Matthew Fluet, Jofish
Kaye, Frank Mittelbach, John Owens, Tobias
Pape, David A. Shamma, Stephen Spencer.

• Authors of the early versions of ACM TEX and
BibTEX styles.

\bibitem[\protect\citeauthoryear{Akyildiz,

Melodia, and Chowdhury}{Akyildiz

et~al\mbox{.}}{2007}]%

{Akyildiz-02}

\bibfield{author}{\bibinfo{person}{I.~F.

Akyildiz},

\bibinfo{person}{T. Melodia}, {and}

\bibinfo{person}{K.~R. Chowdhury}.}

\bibinfo{year}{2007}).

\newblock \showarticletitle{A Survey on

Wireless Multimedia Sensor Networks}.

\newblock \bibinfo{journal}{{\em Computer

Netw.\/}}

\bibinfo{volume}{{51}, 4},

\bibinfo{pages}{921--960}.

Figure 7: Bibliography entry made by the new ACM

bst file

The new ACM styles are available on CTAN

and the ACM web site, as well as in the major TEX
distributions like TEX Live and MikTEX.

As mentioned above, development is hosted
at Github, https://github.com/borisveytsman/
acmart. The Github interface is the best way to
send me bug reports or feature suggestions.

References

[1] Aptara. http://www.aptaracorp.com.

[2] Association for Computing Machinery.
http://www.acm.org.

[3] Patrick W. Daly. Natural Sciences Citations
and References (Author-Year and Numerical
Schemes), 2010. http://ctan.org/pkg/

natbib.

[4] Michael Downes and Barbara Beeton.
The amsart, amsproc, and amsbook
document classes. American Mathematical
Society, 2015. http://ctan.org/pkg/amsart.

[5] Michael Sharpe. New TX font package, 2016.
http://ctan.org/pkg/newtx.

[6] Bob Tennent. LATEX Support for Linux
Libertine and Biolinum Fonts, 2014. http:

//ctan.org/pkg/libertine.

⋄ Boris Veytsman
Systems Biology School and

Computational Materials
Science Center

MS 6A2
George Mason University
Fairfax, VA 22030 USA
borisv (at) lk dot net

http://borisv.lk.net

Boris Veytsman

TUGboat, Volume 37 (2016), No. 2 187

Advances in PythonTEX with

an introduction to fvextra

Geoffrey M. Poore

Abstract

The PythonTEX package allows Python and several
other programming languages to be embedded within
LATEX documents. It also typesets code with syntax
highlighting provided by the Pygments library for
Python. Code typesetting has been improved with
the new fvextra package, which builds on fancyvrb

by allowing long lines of code to be broken and by
providing several additional features. Code execution
has been improved by a new set of commands and
environments that perform variable substitution or
string interpolation. This makes it easier to mix
LATEX with Python or other languages while avoiding
errors due to expansion, tokenization, and catcodes.

1 Limitations with code typesetting and

execution

In 2012, I released the first version of the PythonTEX
package [13] with the goal of making it simpler to
write mathematical and scientific LATEX documents.
PythonTEX allows the LATEX source of a document to
contain both a mathematical result and the Python
code that calculated it, or both a plot and the Python
code that generated it. Originally, PythonTEX only
allowed Python code in a LATEX document to be
executed, with the output included in the document.
It is now possible to execute Ruby, Octave, Sage,
Bash, and Rust code as well. From the beginning,
PythonTEX has also allowed general code typesetting
with syntax highlighting.

PythonTEX’s code typesetting has been func-
tional but relatively basic. It uses the Pygments
library [15] for Python to perform syntax highlight-
ing. (Pygments is also used for syntax highlighting
by the minted [14] package, which I maintain, as well
as the verbments [18], texments [3], and pygmentex [5]
packages.) Pygments supports over 300 languages
and can perform highlighting that would not be
practical in a pure LATEX solution such as the listings

package [2]. Yet Pygments is not without drawbacks.
It uses the fancyvrb package [16] to perform the ac-
tual code typesetting. fancyvrb lacks many of the
advanced features found in listings, such as the ability
to break long lines of code. Unfortunately, attempt-
ing to use listings instead of fancyvrb brings its own
set of issues; among other things, listings lacks built-
in support for UTF-8 and other multi-byte encodings
under the pdfTEX engine.

This paper introduces fvextra [12], a new package

I have created to address these limitations in code
typesetting. fvextra extends and patches fancyvrb.
It provides most of the features that fancyvrb lacks
compared to listings, including line breaking with fine-
grained control over break locations. The fvextra

package also provides additional features, such as
the ability to highlight specific lines or line ranges
based on line numbers. The most recent versions
of PythonTEX and minted require fvextra and fully
support all new features.

Another longstanding drawback in PythonTEX
relates to code execution rather than typesetting.
Documents that use PythonTEX are valid LATEX doc-
uments; there is no preprocessing step to produce
LATEX source. A PDF or other output is created by
running LATEX (code is saved to a temporary file),
then running the pythontex executable (code is exe-
cuted), and finally running LATEX again (code output
is brought into the final PDF). The advantage of this
approach is that it is possible to create macros that
mix LATEX with Python or other languages. Since
LATEX handles all code before it is executed, code
can be assembled using macros. In a preprocessor
approach such as that used by Sweave [4], knitr [17],
and Pweave [9], this is generally not possible because
LATEX only receives a copy of the document in which
code has been replaced by its output.

The disadvantage of PythonTEX not being a
preprocessor is that LATEX does indeed process ev-
erything. For example, it is not possible to use a
PythonTEX command to insert Python output in
the midst of a verbatim environment; the command
would appear literally. Similarly, PythonTEX com-
mands can cause errors within tikzpicture envi-
ronments or in other situations in which characters
do not have their normal meanings (catcodes) or in
which other special processing is applied.

This paper introduces a new solution for these
scenarios. New commands and environments perform
variable substitution or string interpolation. These
effectively allow the preprocessor approach to be ap-
plied to the argument of a command or the contents
of an environment. It is now simpler to mix LATEX
with Python or another language while avoiding er-
rors due to expansion, tokenization, and catcodes.

2 A brief overview of PythonTEX

Before describing new PythonTEX features, I will
briefly summarize PythonTEX usage to provide con-
text. General PythonTEX usage has been explored
in greater detail previously in TUGboat [6] and else-
where [10, 11].

Using PythonTEX involves loading the package
in the preamble:

Advances in PythonTEX with an introduction to fvextra

188 TUGboat, Volume 37 (2016), No. 2

\usepackage{pythontex}

and modifying the compile process. As mentioned
above, PythonTEX requires a three-step compile. For
a document doc.tex, this might look like

pdflatex doc.tex

pythontex doc.tex

pdflatex doc.tex

The pythontex executable is typically installed along
with the package when PythonTEX is installed with
a TEX distribution’s package manager. The sec-
ond and third steps of the compile process are only
necessary when code needs to be executed or high-
lighted. PythonTEX caches all results to maximize
performance, and the pythontex executable will not
actually do anything unless it detects changes.

2.1 Code typesetting

PythonTEX provides a \pygment command and a
pygments environment for general code typesetting.
These are similar to the \mintinline command and
minted environment provided by the minted package.
Colorizing is automatic (but grayscaled here for the
printed TUGboat). For example,

Inline: \pygment{python}{var = "string"}

results in

Inline: var = "string"

The code may be delimited by a pair of curly braces,
as shown, or by a single pair of identical characters
(like \verb). Similarly,

\begin{pygments}{python}

def func(var):

return var**2

\end{pygments}

produces

def func(var):

return var**2

Code typesetting may be customized using fancyvrb’s
\fvset, which applies document-wide options, or the
\setpygmentsfv command, which restricts options
to \pygment and pygments.

There are also language-specific commands and
environments that do not need the language to be
specified. For example, \pyv and pyverbatim could
be substituted in the examples above if “{python}”
were deleted. Typesetting may be customized with
\fvset or \setpythontexfv.

2.2 Code execution

There is a \pyc command and a pycode environment
that may be used to execute Python code. Similar
commands and environments exist for Ruby, Octave,
Sage, Bash, and Rust. By default, anything that is

printed or written to stdout will automatically be
included in the document, just as if it had been saved
in an external file and then brought in via \input.
For example,

\begin{pycode}

print("Python says hello to \\tug!")

\end{pycode}

produces

Python says hello to TUG!

Notice that by default printed text is interpreted as
normal LATEX input, not as verbatim.

There is also a \py command for conveniently
inserting string representations of Python expressions
in a document. It would be possible to use the \pyc

command for this purpose. For example, to insert
the value of 28 into the document, this would suffice:

\pyc{print(2**8)}

However, \py is more convenient:

\py{2**8}

It is also possible to use \py to insert the value
of a previously defined variable. For instance, if
\pyc{x = 2**8} had been used previously to set
the value of x, then \py{x} would produce 256.

2.3 Code typesetting and execution

There is a \pyb command and a pyblock environ-
ment that both typeset and execute code. Anything
printed or written to stdout by the code is not au-
tomatically inserted in the document, since it might
not be desirable to have typeset code immediately
next to its output. Instead, anything printed by
the most recent command or environment may be
inserted using the \printpythontex command.

3 An introduction to fvextra

The fancyvrb package was first publicly released in
1998 at version 2.5. A few bugs were fixed and a few
features added later that year in version 2.6. Since
then, the documentation lists two bug fixes, with
version 2.8 released in 2010. The stability of fancyvrb

speaks to its success as a fancy verbatim package.
I released the first version of the fvextra package

at the end of June 2016. The package focuses on
adding features to fancyvrb that improve code type-
setting, especially when used with syntax highlight-
ing provided by Pygments. fvextra also implements
a few patches to the fancyvrb internals and makes a
few changes to default fancyvrb behavior. All patches
and changes to defaults are detailed in the fvextra

documentation. At the end of July 2016, I released
PythonTEX version 0.15 and minted 2.4. These re-
quire the fvextra package and support all features
described below.

Geoffrey M. Poore

TUGboat, Volume 37 (2016), No. 2 189

3.1 Single quotation marks

By default, LATEX verbatim commands and environ-
ments convert the backtick (`) and single typewriter
quotation mark (') into the left and right curly single
quotation marks (‘’). This behavior carries over into
fancyvrb. In typeset code, these characters should be
represented literally. This is typically accomplished
by manually loading the upquote package [1].

That approach has two drawbacks. First, not
using upquote by default means that it is easily for-
gotten. I have had the experience myself of reviewing
the final proofs of a paper, only to realize that I had
forgotten to load upquote. Second, when upquote

is loaded, obtaining the curly quotation marks is
inconvenient if they are ever legitimately desired in
a verbatim context.

The fvextra package requires upquote, so that
the default behavior is correct for typesetting code.
It also defines a new curlyquotes option that re-
stores the default LATEX behavior. For example, using
fancyvrb’s Verbatim environment,

\begin{Verbatim}[curlyquotes]

`Single quoted text'

\end{Verbatim}

yields

‘Single quoted text’

This eliminates one of the most common mistakes
in code typesetting while still providing convenient
access to the normal LATEX behavior.

3.2 Math in verbatim

The fancyvrb package allows typeset mathematics to
be embedded within verbatim material. Pygments
builds on this with its mathescape option, which
enables typeset math within code comments. That
can be useful when typesetting code that implements
mathematical or scientific algorithms.

A close examination of fancyvrb’s typeset math
within verbatim reveals that the result differs from
normal math mode. Spaces are significant and ap-
pear literally, rather than vanishing. The \text com-
mand provided by the amstext package [7] and loaded
as part of amsmath [8] uses the verbatim font rather
than the normal document font. The single quota-
tion mark (') causes an error rather than becom-
ing a prime (that is, being converted into ^\prime).
fvextra modifies typeset math within verbatim so
that all of these behave as expected. For example,

\begin{Verbatim}[commandchars=\\\{\},

mathescape]

Verbatim $x^2 + f_\text{sub}(x) = g''(x)$

\end{Verbatim}

now correctly produces

Verbatim x2 + fsub(x) = g′′(x)

The commandchars option used in this example is
defined by fancyvrb and allows macros within oth-
erwise verbatim material. The mathescape option
is a new feature added by fvextra that serves as a
shortcut for giving the dollar sign, underscore, and
caret their normal math-related meanings. When
fvextra’s mathescape is used with code highlighted
by Pygments, it reduces to Pygments’ mathescape,
only producing typeset math in comments.

3.3 Tabs and tab expansion

By default, fancyvrb converts tabs into a fixed num-
ber of spaces, which may be controlled with the
tabsize option. It also offers tab expansion to tab
stops with the obeytabs option.

Tab expansion involves a clever recursive algo-
rithm. Each tab character causes everything that
precedes it in the current line of text to be saved
in a box, and the width of the box is compared to
the tab stop size to determine the needed width for
the current tab. (For those who would like more
details, this is defined in the \FV@@ObeyTabs and
\FV@TrueTab macros in fancyvrb.sty.)

The tab expansion algorithm works excellently
in normal verbatim contexts. Unfortunately, it also
fails spectacularly (and silently) when tabs occur
within macro arguments, which is common in Pyg-
ments output. In a multiline string or comment that
is indented with tabs, obeytabs typically causes all
lines except the first and the last to vanish, with no
errors or warnings.

fvextra patches tab expansion so that it will
never cause lines to vanish. Tab expansion for tabs
that are only preceded by spaces or tabs is always
correct, even for tabs that are in macro arguments.
This covers the most common case of tabs used for
indentation. Unfortunately, tab expansion is not
guaranteed to be correct for tabs within macro ar-
guments that are preceded by non-tab, non-space
characters. The limitations of the new tab expansion
algorithm are discussed in detail in the documenta-
tion.

Tabs are also improved in fvextra with the addi-
tion of the tab and tabcolor options. For example,

\begin{Verbatim}[showtabs,

tab=\rightarrowfill,

tabcolor=orange]

A tab-indented line of text

\end{Verbatim}

produces

−−−−−−→A tab-indented line of text

Advances in PythonTEX with an introduction to fvextra

190 TUGboat, Volume 37 (2016), No. 2

The original fancyvrb treatment of visible tabs was
modified so that variable-width symbols such as
\rightarrowfill expand to fill the full tab width.

3.4 Line highlighting

When writing about code, it can be useful to high-
light a specific line or range of lines based on line
numbers. As far as I know, fvextra is the first LATEX
package to implement this with its highlightlines
and highlightcolor options. For example,

\begin{Verbatim}[numbers=left,

highlightlines={1, 3-4}]

First line

Second line

Third line

Fourth line

Fifth line

\end{Verbatim}

results in

1 First line

2 Second line

3 Third line

4 Fourth line

5 Fifth line

By default, a \colorbox that uses highlightcolor
is inserted around specified lines. Additional cus-
tomization is possible when desired. fvextra defines
macros that are applied to the first, last, and inner
lines in a range, as well as to isolated highlighted
lines and to unhighlighted lines. These macros may
be redefined to produce fancier highlighting.

3.5 Line breaking

The ability to automatically break long lines of code
is perhaps the most important feature present in
listings but missing in fancyvrb.

The fvextra package adds an option breaklines

that enables line breaking. Line breaking is turned
off by default, to ensure that the standard behavior
of fancyvrb is unchanged by fvextra. Perhaps it will
also encourage users to consider a smaller font size,
inserting hard line breaks, or otherwise modifying
code as an alternative to automatic line breaking.

By default, breaklines indents continuation
lines to the same indentation level as the start of
the line (adjustable via option breakautoindent),
and then adds a small amount of extra indentation
to make room for a line continuation symbol on the
left (adjustable via breaksymbolindentleft). For
instance,

A line that would eventually end up in the

margin without breaklines→֒

An indented line that would be too

long without breaklines→֒

Many options are provided for customizing break
indentation and break symbols. One possibility is to
use custom break symbols on both the left and the
right. Break symbols could be defined:

\newcommand{\symleft}{%

\ensuremath{\Rightarrow}}

\newcommand{\symright}{\raisebox{-1ex}{%

\rotatebox{30}{\ensuremath{\Leftarrow}}}}

Then the following options could be added:

breaklines,

breaksymbolleft=\symleft,

breaksymbolright=\symright

An example using these settings is shown below.

A line that would eventually end up in

the margin without breaklines
⇐

⇒

By default, line breaks occur only at spaces when
the breaklines option is used. Breaks may also be
allowed anywhere (between non-space characters) by
turning on the additional option breakanywhere. In
many cases, however, simply breaking anywhere will
not be acceptable. Two more options, breakbefore
and breakafter, allow specific characters to be spec-
ified as break locations. For instance, setting

breakafter={+-=,}

allows breaks after any of the specified characters
(+-=,). This could be useful for allowing breaks
when spaces are not present while avoiding breaks
within variable names. Special LATEX characters
such as the percent sign and number sign must be
backslash-escaped when passed to breakbefore and
breakafter. When a given character is specified
as a potential break location, by default breaks
will not be inserted between identical characters;
rather, runs of identical characters are grouped. This
may be modified with the breakbeforegroup and
breakaftergroup options.

All of the breaking options discussed so far apply
equally well to both normal verbatim text and high-
lighted computer code output by Pygments. fvextra

also provides two line breaking options which are spe-
cific to Pygments output, and thus intended for the
PythonTEX and minted packages. The breakbytoken
option prevents line breaks from occurring within
Pygments tokens, such as strings, comments, key-
words, and operators. A complete list of Pygments
tokens is available at pygments.org/docs/tokens.
Breaks are still allowed at spaces outside tokens. The
breakbytoken option could be used in a case like

var = "string 1" + "string 2" + "string 3"

to prevent breaks from occurring inside the strings,
while still allowing breaks at spaces elsewhere.

There is also a breakbytokenanywhere option
that prevents breaks within tokens, but allows breaks

Geoffrey M. Poore

TUGboat, Volume 37 (2016), No. 2 191

between immediately adjacent tokens. This could be
used in a case like

var = "string 1"+"string 2"+"string 3"

to prevent breaks within the strings while still allow-
ing breaks before and after the plus signs.

4 Variable substitution and string

interpolation

As mentioned in the introduction, one of the ad-
vantages of PythonTEX is that it allows macro pro-
gramming that mixes LATEX with Python or another
language. For instance, I could define a command
that swaps the first and last characters in a string:

\newcommand{\swapfirstlast}[1]{%

\pyc{s = "#1"}%

\py{s[-1] + s[1:-1] + s[0]}}

This stores the argument of the command as a Python
string, and then uses the character indices to swap
the first and last characters. Invoking

\swapfirstlast{0123456789}

yields

9123456780

Such convenience is only possible because PythonTEX
does not function as a preprocessor; LATEX handles
all text before code is seen by Python (or another
language) for evaluation, and then the result of eval-
uation is brought in during the next compile. In
this case, LATEX macros are used to assemble Python
code that is subsequently evaluated.

The downside of this approach is that it makes it
more difficult to evaluate Python code in a verbatim
or other special context. As should be expected,

\begin{Verbatim}

x = \py{2**16}

\end{Verbatim}

simply produces the literal text

x = \py{2**16}

Though that makes it convenient to write about
PythonTEX, it certainly does make it more difficult
to insert Python output in some situations.

In a case like this, it is possible to assemble all
of the text as a Python template, and then print it:

\begin{pycode}

s = """

\\begin{{Verbatim}}

x = {x}

\\end{{Verbatim}}

"""

print(s.format(x=2**16))

\end{pycode}

That does give the desired result:

x = 65536

Unfortunately, a certain amount of complexity is
required even for this simple case. The backslash
must be escaped unless a raw string is used. Curly
braces, which are of course everywhere in LATEX,
must be doubled to appear literally when used with
Python’s string formatting.

To simplify these cases, PythonTEX now in-
cludes a \pys command and pysub environment that
perform variable substitution or string interpolation.
Equivalent commands and environments exist for
Ruby, Octave, Sage, Bash, and Rust. Using the
pysub environment, the last example becomes

\begin{pysub}

\begin{Verbatim}

x = !{2**16}

\end{Verbatim}

\end{pysub}

The content of the environment is passed verba-
tim to Python. Substitution fields take the form
!{〈expression〉}. After 〈expression〉 is evaluated, a
string representation of the result is returned to
LATEX. If 〈expression〉 is simply a variable name,
then it is replaced with a string representation of the
variable value.

The form !{〈expression〉} was chosen because
the exclamation point is one of the few ASCII punc-
tuation characters without a special LATEX mean-
ing. Using more common string interpolation syntax
from other languages seemed unwise; $〈variable〉,
${〈expression〉}, and #{〈expression〉} are constructs
which commonly appear in LATEX. Likewise, using
Python’s string formatting syntax of {〈variable〉}
would be problematic, since it would require all lit-
eral curly braces to be escaped by doubling.

The exact rules for delimiting and escaping
!{〈expression〉} differ somewhat from standard LATEX
syntax. If a literal exclamation point followed by an
opening curly brace is desired, then the exclamation
point is escaped by doubling (!!). A literal exclama-
tion point only needs to be escaped when followed
immediately by an opening curly brace. Curly braces
never need to be escaped, since they only delimit a
substitution field when they immediately follow an
unescaped exclamation point.

If 〈expression〉 is delimited by a single pair of
curly braces, !{〈expression〉}, then it may contain
paired curly braces up to five levels deep. If the first
or last character in 〈expression〉 would be a curly
brace, then it must be separated from the delimiting
braces by a space; leading and trailing spaces are
stripped before 〈expression〉 is evaluated.

Advances in PythonTEX with an introduction to fvextra

192 TUGboat, Volume 37 (2016), No. 2

While 〈expression〉 will typically contain paired
curly braces, there may be times when it does not. In
these cases, it may be delimited by a sequence of curly
braces up to six levels deep. Then 〈expression〉 must
not contain an opening or closing sequence of the
same depth as the delimiters, but may contain any
combination of shorter sequences. For example, in

!{{{〈expression〉}}}

the 〈expression〉 could contain any combination of {,
}, {{, or }}, paired or unpaired. It could not contain
{{{ or }}}, however; that would require delimiters
of greater depth.

The \pys command is directly analogous to the
pysub environment and follows the same rules. For
instance,

\pys{\verb|x = !{2**32}|}

yields

x = 4294967296

Like the other PythonTEX commands, \pys takes
an argument delimited by curly braces or by a single
matched character, like \verb.

Both of the examples of \pys and pysub above
involve verbatim. There are other situations in which
they are useful. For example, in the tikzpicture

environment provided by the tikz package, the \py

command will typically conflict with tikz process-
ing and result in an error. This may sometimes be
avoided by using \py to output an entire line of tikz

code, including the terminating semicolon, rather
than just a snippet of text. The pysub environment
provides a simpler alternative that avoids any guess-
work regarding potential conflicts.

5 Conclusion

With the new fvextra package, it is now possible
to typeset code using Pygments syntax highlight-
ing without sacrificing advanced code typesetting
features, such as line breaking. This should make
PythonTEX (and minted) significantly better options
for code typesetting in the future.

PythonTEX’s code execution capabilities have
also been improved by the new \pys command and
pysub environment, and other commands and envi-
ronments for variable substitution or string interpo-
lation. These remove many of the remaining obsta-
cles to document programming mixing LATEX with
Python, or with any of the other languages supported
by PythonTEX, including Ruby, Octave, Sage, Bash,
and Rust.

References

[1] Michael A. Covington, Frank Mittelbach, and
Markus G. Kuhn. upquote—upright-quote and

grave-accent glyphs in verbatim.
ctan.org/pkg/upquote, 2012.

[2] Carsten Heinz, Brooks Moses, and Jobst
Hoffmann. The listings package.
ctan.org/pkg/listings, 2013.

[3] Marek Kubica. The texments package.
ctan.org/pkg/texments, 2008.

[4] Friedrich Leisch. Sweave: Dynamic generation
of statistical reports using literate data analysis.
In Wolfgang Härdle and Bernd Rönz, editors,
Compstat 2002—Proceedings in computational

statistics, pages 575–580. Physica Verlag,
Heidelberg, 2002. ISBN 3-7908-1517-9.

[5] José Romildo Malaquias. Testing the PygmenTEX

package. ctan.org/pkg/pygmentex, 2014.
[6] Andrew Mertz and William Slough. A gentle

introduction to PythonTEX. TUGboat,
34(3):302–312, 2013. tug.org/TUGboat/tb34-3/

tb108mertz.pdf.
[7] Frank Mittelbach and Rainer Schöpf. The amstext

package. ctan.org/pkg/amstext, 2000.
[8] Frank Mittelbach, Rainer Schöpf, Michael Downes,

and David M. Jones. The amsmath package.
ctan.org/pkg/amsmath, 2016.

[9] Matti Pastell. Pweave—reports from data with

Python. mpastell.com/pweave, 2010.
[10] Geoffrey M. Poore. Reproducible documents

with PythonTEX. In Stéfan van der Walt, Jarrod
Millman, and Katy Huff, editors, Proc. of the 12th

Python in Science Conference, pages 78–84, 2013.
[11] Geoffrey M. Poore. PythonTEX: Reproducible

documents with LATEX, Python, and more. Comp.

Science & Discovery, 8(1):014010, 2015.
[12] Geoffrey M. Poore. The fvextra package.

github.com/gpoore/fvextra, 2016.
[13] Geoffrey M. Poore. The pythontex package.

github.com/gpoore/pythontex, 2016.
[14] Geoffrey M. Poore and Konrad Rudolph. The

minted package: Highlighted source code in LATEX.
github.com/gpoore/minted, 2016.

[15] The Pocoo Team. Pygments: Python syntax

highlighter. pygments.org, 2016.
[16] Timothy Van Zandt, Denis Girou, Sebastian

Rahtz, and Herbert Voß. The ‘fancyvrb’ package:

Fancy verbatims in LATEX.
ctan.org/pkg/fancyvrb, 2010.

[17] Yihui Xie. Dynamic Documents with R and knitr.
Chapman and Hall/CRC, Boca Raton, FL, 2013.
ISBN 978-1482203530, yihui.name/knitr.

[18] Dejan Živković. The verbments package: Pretty

printing source code in LATEX.
ctan.org/pkg/verbments, 2011.

⋄ Geoffrey M. Poore
1050 Union University Dr.
Jackson, TN 38305
gpoore (at) gmail dot com

https://github.com/gpoore/

Geoffrey M. Poore

TUGboat, Volume 37 (2016), No. 2 193

Development of an e-textbook using

LATEX and PSTricks

David M. Tulett

Abstract

For a course on decision modeling (linear, integer,
and goal programming, networks, and decision trees)
I created an e-textbook using LATEX and PSTricks. I
will discuss why I chose these programs, how I used
them, and why I decided to make the final product
“open access”. The full PDF can be downloaded from
http://stor.mun.ca/handle/123456789/37463.

1 Introduction

A wide-sweeping curriculum change in the under-
graduate business programs at Memorial University
necessitated the development of many new courses,
including Business 2400, Decision Modeling. The
introduction of the new courses was staggered, begin-
ning in 2010, with Business 2400 first being offered
in Fall Term, 2011. Here is the course description
from the 2011–2012 university calendar:

2400 Decision Modeling provides an in-
troduction to: spreadsheet modeling; linear
optimization and the related topics of integer,
assignment, and transportation models; and
decision analysis including payoff matrices, de-
cision trees, and Bayesian revision. All topics
will be taught within the context of business
applications. [4]

This new course replaced the former Business 4401
and it differed in the following ways:

1. Business 2400 comes one year earlier in the cur-
riculum than Business 4401 did. Since 4401
(and 4500 Finance) acted to “weed out” stu-
dents from the program, it was felt that 2400
should come earlier than 4401 did.

2. Business 2400 continued the de-emphasis of the
learning of algorithms that began when Busi-
ness 4401 was created 15 years earlier. The only
algorithms taught in Business 2400 are: solving
two-variable optimization problems graphically;
the graphical method for solving the minimal
spanning tree problem; and the rollback proce-
dure for solving decision trees.

3. As the name implies, there is now an increased
emphasis on the modeling of problems. In most
cases this means defining a set of variables, and
then stating an objective function to be max-
imized or minimized subject to a set of con-
straints.

The author is grateful for funding from a Teaching Fellowship

to attend the 2016 TUG conference.

4. For the solution of formulated models, only Ex-
cel is used. All students at Memorial receive
a copy of Microsoft Office, which includes Ex-
cel, hence there is no new software to download.
Also, learning Excel has to be done anyway, so
the only new things would be some specific math-
ematical functions and the use of the Solver.

When the course was first offered in the Fall Term
of 2011, we adopted a textbook for it: Managerial

Decision Modeling with Spreadsheets by Render et
al. [5] At the time, the book sold in the campus
bookstore for about $156. (All monetary figures in
this article are in Canadian currency.) Alternatively,
it could be obtained as an e-book for about $70, but
this comes with only a six-month licence.

Even though we had adopted a textbook, before
the course had even begun I had started to write a
document with the course title Decision Modeling.
Principally, this was because the course was about to
be offered in Winter 2012, by what was then known
as “distance education” (as of 2016, this is now called
online learning). For the students in this course, my
document would substitute for the lectures that they
would miss by not being on-campus. Also, I felt
that I could improve upon the textbook’s coverage
of some topics, such as decision analysis (the use
of decision trees). Five years later, the Decision

Modeling document has become an open access stand-
alone e-textbook, and the rest of this article describes
how this happened.

In section 2, I describe the beginning of the
writing: why LATEX was chosen, merging of material
from earlier courses, and development of new mate-
rial. In section 3, I describe what I found useful when
I was presented with options for completing various
tasks in writing the document. Finally in section 4,
I describe why this document became open access.

2 Initial development

I have been using LATEX since the early 1990s, so
I am very familiar with it and its graphical cousin,
PSTricks. I am also very familiar with Microsoft
Word, it being the standard for word processing
where I work. Indeed, I use Word anytime that I
need to collaborate with a co-worker, be it for ad-
ministrative purposes or for writing a journal article.
Perhaps if the writing of Decision Modeling had been
a collaborative effort by multiple professors the doc-
ument would have had to be written using Word.
However, I was doing it on my own, so the choice
was mine.

From previous courses I had amassed a large
amount of material, mostly written in LATEX, which
could, with modification, be embedded within the

Development of an e-textbook using LATEX and PSTricks

194 TUGboat, Volume 37 (2016), No. 2

new document, partially fulfilling its requirements.
For this reason alone it would have made sense to
create the Decision Modeling document in LATEX,
but there are two other main reasons.

1. LATEX looks better than Word. This is especially
true when creating mathematical expressions.

2. Because things like section numbers are never
entered by the user in LATEX, it becomes much
easier to move things about, letting LATEX figure
out how everything (sections, figures, tables,
footnotes) is to be renumbered.

All this being said, there is one important develop-
ment in LATEX that was needed to make the finished
product useful for distribution as an e-document,
and that is the creation of pdfLATEX. Back in the
1990s, a .tex file was compiled to create a .dvi file.
For anyone with a TEX system, all one had to do
was print the .dvi file. However, members of the
general public could not be expected to have this
ability, and even when stand-alone free .dvi readers
came out, it was still a barrier to have to expect peo-
ple not interested in LATEX to download the reader.
Once the ability to easily compile a .tex file to a
PDF became available, it was a major step forward.
While Microsoft Office is a standard piece of software
where I work, once a document has been converted
to PDF its original source becomes irrelevant, be it
Word, WordPerfect, Libre Office Writer, or LATEX.

Hence, for all these reasons, it made sense to
create this document using LATEX for conversion to
PDF. As I have mentioned, Excel is used as the
prominent method of solution. For any parts of the
document which used Excel, nearly everything had
to be written from scratch. In other places I was
able to import previously created material, but even
here substantial alterations had to be made. The
alterations were of two main types:

1. In cutting-and-pasting from several source doc-
uments, I was greatly aided by LATEX’s logical
design, which frees the user from worrying about
the numbering of sections, figures, tables, and
footnotes. However, the text had to be exten-
sively edited for phrases such as “as we saw in
the previous chapter”, which would probably
now be an anachronism. Also, there needed
to be consistency about notation, avoiding, for
example, x1 in one place while using X1 in an-
other. More subtle than these things, though,
would be the existence of ideas which presume
a knowledge which might not apply to readers
of the new document.

2. Some of the older documents were based on
earlier technology, such as the use of LATEX’s

native picture environment (rather than the far
more sophisticated PSTricks). Over time, these
things have been updated.

At the outset of the Fall of 2011, the Decision

Modeling document consisted of the following chap-
ters, with much content to be completed:

1. Introduction Back in 2011, this was a very
short chapter, consisting of a look at the para-
digm of problem identification, modeling, solu-
tion, and implementation; a review of some key
Excel functions; and a brief look at professional
associations.

2. Elementary Modeling This chapter essen-
tially replicated one used in Business 4401, so
this required little work.

3. Applications of Linear Models Many of
the examples in this chapter had been used in
previous courses, but they had never been solved
in Excel.

4. Sensitivity Analysis Most of the concepts
had been seen before, but the pictures to illus-
trate these concepts had been created in the
native LATEX picture environment rather than
PSTricks. Also, all computer output needed to
be done in Excel.

5. Network Models These models are for the
assignment, transportation, transshipment, min-
imal spanning tree, maximal flow, and shortest
path problems. The minimal spanning tree prob-
lem has a very easy graphically-based algorithm
for its solution. For the other five problems,
this course stresses the use of Excel, in contrast
to previous courses in which these problems
had purpose-built algorithms. Because of this,
this chapter needed to be written almost from
scratch. Nothing had been written on this chap-
ter as of September 2011.

6. Integer Models Much of the theory had
been described in material written for previous
courses, but none of the models had been solved
in Excel.

7. Goal Programming and Nonlinear Mod-

els Same problem as the previous chapter:
theory, but no Excel.

8. Decision Analysis I Mostly done already,
but some Excel work required.

9. Decision Analysis II Mostly done already,
but some Excel work required.

In addition to the work that needed to be done to
complete all these chapters, another requirement was
to create end-of-chapter problems for student comple-
tion, and to make the solutions for these problems.

David M. Tulett

TUGboat, Volume 37 (2016), No. 2 195

3 Making the document

The Fall Term proceeded with the Render et al. text-
book, on which all course assignments were based.
As a supplement, students in my sections could down-
load a PDF then called Business 2400 Decision Mod-

eling Course Manual (a document title spread over
three lines) which had no Chapter 5, and with the
problems noted above in the other eight chapters.
An immediate first priority was to have something
written for Chapter 5. One of these models is the
Assignment Problem, for which a small example is
presented here, along with its mathematical model
and its spreadsheet model.

3.1 Assignment Problem example:

Assigning 3 jobs to 3 machines

Suppose that we have three jobs, and three machines
on which these jobs will be done. Each machine will
do just one of the three jobs. All three machines
are capable of doing each job, but with differences
in performance. We can think of these differences
in terms of cost (which could be time rather than
dollars). Suppose that the costs to assign each job
(row) to each machine (column) are as follows:

Machine
1 2 3

1 30 20 18
Job 2 17 40 21

3 25 32 28

By inspection, the minimal cost solution is to
assign job 1 to machine 2, assign job 2 to machine 1,
and assign job 3 to machine 3, for a total cost of
20 + 17 + 28 = 65. To solve this as a mathematical
model, we define the meaning of Xi,j for all pairs
(i, j):

Xi,j =

{

1 if job i is assigned to machine j
0 otherwise

}

i = 1, 2, 3 j = 1, 2, 3

The reason for using the numbers 1 and 0 be-
comes clear when we write the model. For example,
if job 2 is assigned to machine 3 (i.e. X2,3 = 1), then
the cost is 21(1) = 21. If job 2 is not assigned to
machine 3 (i.e. X2,3 = 0), then the cost is 21(0) = 0.
Hence, whether or not job 2 is assigned to machine 3,
we incur a cost of 21X2,3.

Hence the objective function is:

minimize 30X1,1 + 20X1,2 + 18X1,3 +

17X2,1 + 40X2,2 + 21X2,3 +

25X3,1 + 32X3,2 + 28X3,3

Every job must be assigned to a machine, hence for
each job i one of Xi,j ’s will be 1 (and the other two

will be 0), hence the sum will be 1:

X1,1 +X1,2 +X1,3 = 1

X2,1 +X2,2 +X2,3 = 1

X3,1 +X3,2 +X3,3 = 1

Every machine must have a job assigned to it,
hence for each machine j one of Xi,j ’s will be 1 (and
the other two will be 0), hence the sum will be 1:

X1,1 +X2,1 +X3,1 = 1

X1,2 +X2,2 +X3,2 = 1

X1,3 +X2,3 +X3,3 = 1

Finally, each variable must be 0 or 1.

all Xi,j ∈ {0, 1} .

In one sense this is a specialized type of linear
programming problem, but it seems to violate one
of the assumptions of linear programming—that all
variables be continuous, rather than integer. How-
ever, it turns out that the assignment problem is
naturally integer. By this, we mean that the solu-
tion will only contain 0/1 variables, even when these
have not been specifically required. Hence, any soft-
ware for general linear programming will solve an
assignment problem.

We will use the Solver in Excel to solve this type
of problem. Indeed, the rectangular array paradigm
of Excel is very useful for this type of problem, where
the cost data is in this format in the first place.

Since the cost data are in a 3 by 3 array, we can
also use a 3 by 3 array for the values of the variables.
Note that the SUMPRODUCT function is happy with
this; here it’s an array times an array on a cell-by-cell
basis, not the dot product of one row with another
row. In this example it’s B3 times B10 plus C3
times C10 and so on up to D3 times D12. This type
of product is not the same as matrix multiplication.
Here is the setup in formula mode on the spreadsheet,
before entering the Solver (the = signs in row 7 and
column F are created by typing ’=).

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G

Assignment Machine

Problem 1 2 3 sum

Job 1 =SUM(B3:D3) = 1

Job 2 =SUM(B4:D4) = 1

Job 3 =SUM(B5:D5) = 1

sum =SUM(B3:B5) =SUM(C3:C5) =SUM(D3:D5)

= = =

1 1 1

Total Cost 30 20 18

=SUMPRODUCT(B3:D5,B10:D12) 17 40 21

25 32 28

In the Solver we ask it to minimize A11 by chang-
ing variable cells B3:D5, subject to the three con-
straints B6:D6 = B8:D8, and the three constraints
E3:E5 = G3:G5. We click on the “Make uncon-
strained variables non-negative” box, and ask for
the problem to be solved using the “Simplex LP”.
Solving the model we obtain:

Development of an e-textbook using LATEX and PSTricks

196 TUGboat, Volume 37 (2016), No. 2

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G

Assignment Machine

Problem 1 2 3 sum

Job 1 0 1 0 1 = 1

Job 2 1 0 0 1 = 1

Job 3 0 0 1 1 = 1

sum 1 1 1

= = =

1 1 1

Total Cost 30 20 18

65 17 40 21

25 32 28

As we saw earlier, we see from the Solver output
that the minimal cost solution is to assign job 1 to
machine 2, assign job 2 to machine 1, and job 3 to
machine 3, with a total cost of 65.

3.2 Typesetting the above in LATEX

The above description uses the tabular environment
for the cost data, and the array environment for the
objective function and equations. When it comes to
doing the Excel output, it would have been possible
to use the tabular environment to mimic a spread-
sheet, including the use of colour, but this would
have been slow and cumbersome. Instead, I made
the file in Excel, highlighted the range that I wanted
printed, went to File/Print, set the Printer to Adobe
pdf, made the Settings “Print Selection” and “Fit All
Columns on One Page”, and under Page Setup, then
Sheet, then Print, clicked the boxes for “Gridlines”
and “Row and column headings”. I named this file
Assignment2.pdf, then using Adobe Acrobat, this
file was cropped and saved. It was imported into the
book’s .tex file as:

\begin{center}

\includegraphics[scale=0.9]{Assignment2.pdf}

\end{center}

This file needed to be re-scaled to 90% of its original
size in order not to spill too much into the margin.
This re-scaling is a visual trial-and-error process.
It wasn’t needed for the final numerical workbook
image:

\begin{center}

\includegraphics{Assignment3.pdf}

\end{center}

When importing Excel files in this manner, the rib-
bon with its words (File, Home, Insert, etc.) and all
the icons does not appear. Normally, I think that
this is to be preferred— it emphasizes that the most
important part of a workbook is what lies in the
rows and the columns. If including the ribbon is
desired, we can use the Print Screen command and
then import this file into Adobe Acrobat. In my

document, I do this only once at the outset, to show
what the ribbon looks like.

With this section on the assignment problem,
plus other sections for the other network models, I
finally had a first draft of Chapter 5 completed before
the outset of the Winter Term, 2012. Next came
the inclusion of dozens of PDFs created by cropping
files created in Excel for the many problems covered
throughout the document. A major piece of work
remained until 2015, the creation of the graphical
images needed for Chapter 4 (Sensitivity Analysis).
The earlier work on which this chapter was based
included graphics made in the native LATEX picture

environment. While this environment was better
than nothing, it was very inadequate. Everything
was in black-and-white, with very limited ability to
draw curved lines. Even straight lines were limited
to horizontal and vertical lines, and lines whose rise
over the run could be expressed as a : b, where a and
b are integers from 1 to 6 inclusive.

The way to improve the graphics is to use better
software, such as PSTricks, which like LATEX can be
freely obtained from TUG. A good introduction is
provided in Chapter 5 of The LATEX Graphics Com-

panion by Goossens et al. [3] A complete description
of PSTricks is contained in PSTricks: Graphics and

PostScript for TEX and LATEX by Voß. [8]
At the outset of Chapter 4, a problem is stated

and solved. Here follows the problem description,
model formulation, and graphical solution.

3.3 A two-variable example

3.3.1 Problem description

Wood Products Limited buys fine hardwoods from
around the world from which they make specialized
products for the quality furniture market. Two of
their products are two types of spindles.

A type 1 spindle requires 6 cuts, then 4 minutes
of polishing, followed by 6.5 minutes of varnishing.
A type 2 spindle requires 15 cuts, then 4 minutes
of polishing, followed by 4.75 minutes of painting.
There is one cutting machine which can operate up
to 135 cuts per hour. There is one polishing machine;
allowing for maintenance it can operate up to 54
minutes per hour. Both the varnish and paint shops
can only handle one spindle at a time. Because of a
periodic need for high volume ventilation, the varnish
and paint shops cannot be operated continuously.
These shops are available for production 58.5 and 57
minutes per hour, respectively.

For each type 1 spindle produced, the company
obtains a contribution to profit of $3. For each
type 2 spindle produced, the contribution to profit
is $4. How many spindles of each type should be

David M. Tulett

TUGboat, Volume 37 (2016), No. 2 197

produced each hour so that the total contribution to
profit is maximized?

3.3.2 Model

We define:
X1 —number of type 1 spindles produced per hour
X2 —number of type 2 spindles produced per hour.

For reference, each constraint is identified by
a word description on the left-hand side, and by a
number in brackets on the right-hand side.

maximize 3X1 + 4X2

subject to
Cutting 6X1 + 15X2 ≤ 135 (1)

Polishing 4X1 + 4X2 ≤ 54 (2)
Varnishing 6.5X1 ≤ 58.5 (3)
Painting 4.75X2 ≤ 57 (4)

X1 , X2 ≥ 0

3.3.3 Graphical solution

Because of the two 4’s in the polishing constraint,
this constraint will be on a diagonal. Since it’s ≤,
the arrow indicating feasibility will point south-west.
So, since 54/4 = 13.5, having a 14 by 14 grid must
contain the optimal solution. Using these bound-
aries, we obtain the values in Figure 1. The graph
(displaying both numerical labels and the names of
the constraints) is shown in Figure 2.

We see that constraints (1) and (2), i.e. the
cutting and polishing constraints, are binding. The
equations we need to solve are:

6X1 + 15X2 = 135
4X1 + 4X2 = 54

Multiplying the second equation by 6/4 = 1.5 we
obtain:

6X1 + 15X2 = 135
6X1 + 6X2 = 81

Subtracting the bottom from the top gives 9X2 = 54,
and hence X2 = 6. Therefore 4X1+4(6) = 54, hence
4X1 = 30, and therefore X1 = 7.5. Putting X1 = 7.5
and X∗

2 = 6.0 into the objective function we obtain
OFV∗ = 3(7.5)+4(6) = 46.5. The 7.5 type 1 spindles
per hour simply means that we must produce 15 of
them every two hours, hence the fractional solution
is not of concern.

0 2

Number of Type 1 Spindles Made Each Hour (X1)

4 6 8 10 12 14
0

2

N
u

m
b

er
o

f
T

y
p

e
2

S
p

in
d

le
s

M
ad

e
E

ac
h

H
o

u
r

(X
2
)

4

6

8

10

12

14

Feasible Region

Cutting (1)

Polishing
(2)

V
ar

n
is

h
in

g
(3

)

Painting (4)

Trial Isovalue Line

Optim
al Isovalue Line

Optimal Solution

Figure 2: Spindle problem, graphical.

3.4 Doing the above in PSTricks

Everything in the preceding section is easy until we
come to the graph. What we need is to be able
to: draw straight lines at any angle; write text next
to these lines at the same angle; draw arrows at
right angles to these lines indicating which side is
true for the inequality; fill in the polygon which
represents the region in which all inequalities are
true. PSTricks gives all these things, though a bit
of geometry/trigonometry is needed to make it all
work properly. Here are some of the special features
of this picture, showing the relevant PSTricks code:

1. We have some lines which are neither horizon-
tal nor vertical. If we take the Cutting con-
straint as an example, we have identified that
the boundary of the inequality, which is the line
9X1 + 15X2 = 135, passes through (0, 9) (on
the vertical axis), and (14, 3.4) (on the right-
hand side boundary). I found it useful to plot
points as integers, so all algebraically determined
points were multiplied by 100, making these co-
ordinates (0,900) and (1400,340), but then to
use a scaling command in PSTricks to make the
graph for the page properly. For this graph, I

First Point Second Point
Cutting 6X1 + 15X2 ≤ 135 (1) (0, 9) (14, 3.4)

Polishing 4X1 + 4X2 ≤ 54 (2) (0, 13.5) (13.5, 0)
Varnishing 6.5X1 ≤ 58.5 (3) X1 = 9 vertical
Painting 4.75X2 ≤ 57 (4) X2 = 12 horizontal

Figure 1: Spindle problem, numerical.

Development of an e-textbook using LATEX and PSTricks

198 TUGboat, Volume 37 (2016), No. 2

used a quarter scale, using the PSTricks com-
mand \psset{unit=0.25pt}, and then created
the line using the PSTricks command

\psline(0,900)(1400,340) %(Cutting)

2. The set of points for which all inequalities are
true is called the feasible region. To identify this
region, it is highlighted in colour with the built-
in paint program in PSTricks. The problem
is, we need to give PSTricks the set of coor-
dinates which gives the vertices (“corners”) of
the feasible region. This requires doing some
successive solving of two equations in two un-
knowns to determine these points. They are
the origin at (0,0); then where the vertical axis
meets the boundary of the cutting constraint,
which is (0,9); then where boundary of the cut-
ting constraint meets the boundary of the pol-
ishing constraint which is (7.5,6); then polish-
ing and varnishing at (9,4.5), then varnishing
and the horizontal axis at (9,0). I defined my
own colour using the PSTricks \definecolor

command, which I named marygold. (I know
that the flower is named marigold, but I named
this colour after my wife, whose name is Mary.)
Therefore the code includes

\definecolor{marygold}{cmyk}

{0,0.1,0.5,0}

and

\pspolygon

[fillstyle=solid,fillcolor=marygold]

(0,0)(0,900)(750,600)(900,450)(900,0)

3. We want to write a label next to each constraint,
so that the label is parallel with the constraint.
This requires recalling trigonometry from high
school. For the cutting constraint, the inequality
is 6X1 + 15X2 ≤ 135, hence the rise over the
run of the boundary is −6 over 15, or −0.4. To
find the angle that the boundary makes with the
horizontal axis we need to find the arctangent of
this number. PSTricks uses degrees, but Excel’s
ATAN function uses radians, hence we need to
use the DEGREES function as well. The Excel
command is therefore =DEGREES(ATAN(-6/15))
which is rounded to −21.801.

A related issue is the determination of the co-
ordinates for the centre of the expression “Cut-
ting (1)”. For me, this was accomplished by
trial-and-error. It isn’t just a matter of making
the words close but not too close to the line;
the words need to be placed so that they don’t
interfere with other lines or words.

Each diagram done in PSTricks requires a lot
of work, with many iterations to get everything
right. Each iteration requires filename.tex =⇒
dvips =⇒ ps2pdf. Because of all the work for
each diagram, I created each diagram with its own
file. When I was satisfied with the final PDF, I
cropped it in Adobe Acrobat, and then used an
\includegraphics command in the main file.

3.5 Continuous improvement

Until recently, the file, now called DecisionModeling.
pdf, was updated at least once every four months.
At the outset, references were made to Excel 2010,
then Excel 2013, and very recently Excel 2016. That
being said, I tried to make all references to Excel to
be as version-free as possible, showing the rows and
columns without the ribbon.

Other improvements include: adding new exam-
ples; adding more problems to the section in each
chapter on “Problems for Student Completion”; and
making pedagogical improvements to the writing
when students needed more explanation about a
topic. Any new work is prone to typographical or
other kinds of errors, so each revision provides an
opportunity to make the necessary corrections.

4 Making the document open access

4.1 Introduction

My university uses a student shell called D2L (“Desire
to Learn”) which is used for storing documents, sub-
mitting assignments, and storing grades. It is used
always for online learning courses, and at the profes-
sor’s option for on-campus courses as well. Access to
the course-specific part of D2L is restricted to those
with valid course registrations. Hence, a document
can be released to the students by posting it to D2L,
without making the document publicly accessible.

It was obvious from the outset that this doc-
ument should be made available to the students
free-of-charge. It was, after all, a work-in-progress,
rather than a finished product. Also, I think there
would be a conflict-of-interest question in a professor
adopting his own self-made publication and then col-
lecting royalties from students. Nevertheless, during
this period of development, the document contained
the words “ c© David M. Tulett”, because I didn’t
want anyone else to claim my work as their own,
and I didn’t know what else I could have written in
this regard. I did, however, put a note in the course
outline to the effect that any student who wanted to
have the document printed in a copy shop had my
permission to do so.

Once the document had been completed, I had
to think about whether I should try to publish it as

David M. Tulett

TUGboat, Volume 37 (2016), No. 2 199

a commercial venture or let it be freely accessible to
anyone who wanted to read it. I chose the latter, for
the following reasons:

1. The content of the book was written specifi-
cally for the needs of Business 2400 at Memorial
University. Other universities might consider
a topic such as queueing theory, or simulation,
or the study of algorithms, to be essential. Be-
cause of this, textbook publishers want manu-
scripts which are inclusive of all topics in the
field, which is why book lengths often reach a
thousand pages. To pursue this, I would have
to complete much more material.

2. I am unhappy with what has happened to text-
book prices. The textbook mentioned earlier
now costs about $190. There are plenty of other
textbooks costing well over $200. Most students
find these prices hard to afford.

3. The existence of free material on the web helps
learning.

4. Many prefer to help the public good rather than
seek royalties. The TEX community is a good
example of this. I can use LATEX and PSTricks
without paying a fee because of the generosity of
those who donated their time and effort to create
and maintain these programs. In the software
world, this is called “Open Source”. There are
all sorts of things freely available: alternative
suites to Microsoft Office; games such as chess;
programming languages, and so on.

4.2 Open Access and Creative Commons

licences

In a conversation with Jeannie Bail [1], a librarian at
the Queen Elizabeth II Library at Memorial Univer-
sity, she informed me that for written material the
equivalent of open source is “Open Access”. She went
on to say that I should read about a major organiza-
tion acting for the public good in this area, called Cre-

ative Commons, http://creativecommons.org. [2]
They offer free licences which are described on their
website. The most restrictive licence allows anyone
to freely download the material but places the follow-
ing restrictions (quoted verbatim from the Creative
Commons website):

1. Attribution—You must give appropriate credit,
provide a link to the license, and indicate if
changes were made. You may do so in any
reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

2. NonCommercial—You may not use the material
for commercial purposes.

3. NoDerivatives— If you remix, transform, or build
upon the material, you may not distribute the
modified material.

The above is a quick summary of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives 4.0
International Licence. The full text is at http://

creativecommons.org/licenses/by-nc-nd/4.0/.
A reader of DecisionModeling.pdf is informed

of this licence by the following graphic:

This image appears on page i, which follows the title
page. Also, the word copyright and the copyright
symbol c© now no longer appear in the document.

4.3 Public availability

Memorial University encourages open access, as it
helps to promote learning, and makes a website
available for this purpose. For anyone who sim-
ply wants to explore what’s there, the address is
http://stor.mun.ca/. On the website the purpose
of stor is described:

stor is a learning object repository that aims
to promote an atmosphere of sharing where
learning objects can be searched, reused, re-
purposed and contributed. A learning object
is a digital, open educational resource that is
created to assist in a learning event. [6]

The edition of September 1 2015 was placed
online at this site in March 2016. More recently
DecisionModeling.pdf has been amended, referenc-
ing Excel 2016 instead of Excel 2013, and uploaded
to stor in June 2016. [7] Here is a direct link to the
current DecisionModeling.pdf:
http://stor.mun.ca/handle/123456789/37463.

With the document now in a public repository,
I can inform someone of its existence by sending an
email message, with a link to the document. Before
this, I would have had to attach the file, which at
8MB is rather large. I now need to make fellow edu-
cators in the field of Decision Modeling aware of the
document’s existence. I thank the TEX community
for helping to make this possible.

References

[1] Jeannie Bail, Librarian at the Queen
Elizabeth II Library, Memorial University,
St. John’s, NL, Canada. Personal
communication, 2015.

[2] Creative Commons, creativecommons.org,
accessed June 2016.

Development of an e-textbook using LATEX and PSTricks

200 TUGboat, Volume 37 (2016), No. 2

[3] Michel Goossens, Frank Mittelbach, Sebastian
Rahtz, Denis Roegel, and Herbert Voß, The
LATEX Graphics Companion, 2nd edition,
Addison-Wesley, 2008.

[4] Memorial University, 2011–2012 Calendar.
http://www.mun.ca/regoff/calendar/2011_

2012/sectionNo=BUSI-0288.

[5] Barry Render, Ralph Stair, Nagraj
Balakrishnan, and Brian Smith, Managerial

Decision Modeling with Spreadsheets, 2nd
Canadian Edition, Pearson Canada, Toronto,
2010. ISBN 978-0-13-208013-2, HD30.25.M35,
2010. http://wps.pearsoned.ca/ca_ph_
render_mdm_2/.

[6] http://stor.mun.ca/, accessed June 2016.

[7] David Tulett. DecisionModeling.pdf, June
2016. Available at:
http://stor.mun.ca/handle/123456789/

37463.

[8] Herbert Voß, PSTricks: Graphics and

PostScript for TEX and LATEX, UIT,
Cambridge, England, 2011.

⋄ David M. Tulett

Faculty of Business Administration

Memorial University

St. John’s, NL, Canada, A1B 3X5

dtulett (at) mun dot ca

An Emacs-based writing workflow inspired

by TEX and WEB, targeting the Web

Christian Gagné

Abstract

I present here a practical method developed with
colleagues working in the humanities, whereby they
produce content using macro-less notations (such as
Markdown), which I integrate and publish on the
Web by using macro-rich notations such as Emacs
Org-mode and TEX. Over time, this method’s gen-
eral applicability has caused me to entertain a nota-
tional pipe dream: a minimalistic substitution syn-
tax, suitable for content work in any field (technical
or otherwise), which would yield both TEX on the
one hand, and on the other hand HTML and XML

styled with TEX-equivalent CSS.

1 Introduction

When using Emacs, there are at least four different
things called ‘macros’—and I have come to use all
four in my work as a content integrator: Emacs Lisp
macros, keyboard macros recorded in a non-Lisp
expression language, Org-mode lexical macros and
TEX macros written with AUC-TEX. The Org lexical
macros turn out to be especially useful for one who
is used to TEX and needs to produce HTML: they
bring some of the power of writing in WEB to the
Web.

The following concerns a methodology developed
over the course of my work as a research and teaching
assistant in a literature department, with influence
from my concurrent work as a teaching assistant in
computer science, hence the mix of developer-friendly
and user-friendly solutions.

Some background will be relevant in order to
explain my methodological choices: during my phi-
losophy studies (which have both continental and
analytic components), I was lured into a Medieval
Studies research unit and became their “IT guy”. At
that point I was already a confirmed TEX user and
my new medieval interest involved taming the XML

beast. I happily obliged; however, the road ended
back at a distinctly TEX-flavored abode.

My first job was to teach my literary colleagues
to write in a format other than Word or LibreOffice.
Given that I love the interplay of theory and practice,
I organized workshops for them as I pursued my
gradual discovery of theoretical computer science,
philosophy of language and of what Edward Tufte
calls analytic design [11].

It was also in the same school year that I began
using Emacs in earnest, printing out reference cards

TUGboat, Volume 37 (2016), No. 2 201

and practicing proper buffer movement. What led
me to Emacs was first AUC-TEX, then Org. With
AUC-TEX, I first realized how much the dynamics of
writing matter. Here I was teaching my colleagues to
write Markdown and TEI XML by hand, just as I had
begun to discover the joys of writing with macros!
However, when I tried to introduce this into their
workflow, it seemed to them one step too far: they
said they preferred writing XML by hand, and were
intimidated by transformations and macro expan-
sions of any kind. Such is one of the reasons behind
the hybrid workflow we adopted for our research
unit’s Web site [6].

While I studied the many alternatives for im-
plementing the TEI guidelines and transforming TEI

into other formats, I came across the name Sebas-
tian Rahtz many times. His texts, code examples
and generally remarkable implication in such mat-
ters set important precedents and helped me bridge
the gap between the TEX and XML mindsets. As
such, I am very thankful for the pioneering work of
Sebastian Rahtz and others in the field of semantic
transcription. Below, I will refer to an example of
the way I interpreted the Text Encoding Initiative
Guidelines [2]. I have gotten much mileage out of
the Guidelines, but in an unorthodox way.

As it turns out, the way I have used TEI ties in
beautifully with some recent wide-ranging efforts in
the Web design community to integrate solid infor-
mation architecture into the use of markup, in order
to make it both meaningful and aesthetically pleas-
ing. In other words, I believe that some of those very
same ‘semantic markup’ techniques used in an aca-
demic setting will be relevant for Web content work
in any field, be it technical, scientific or creative.

2 Flexible delimiters for Web content work

Org’s markup syntax is very rich and parses into
intricate structures. One of my favorite stated prin-
ciples from the syntax specification [9] is that ‘the
paragraph is the unit of measurement’. An order
of magnitude higher, many nesting constructs exist.
For example, lines beginning with stars do make
trees, properly speaking:

* Section title example in Org

** This is a subheading --

and a node in the tree

Markdown and Org share this ability to create
implicit tree structures through the use of headings.
This is applicable in many situations. However, for
my scenario I needed to name my content blocks
using native HTML5 vocabulary and I could not
commit to regular section titles that would convert

to h1 . . . h6 elements. The reason was that I had
to make content blocks that would nest arbitrarily:
they had to be closed under inclusion, one might
say (though Web developers rarely speak this way).
Web people call this working content-out instead of
canvas-in, after the expressions consecrated by in-
formation architects’ discussions at Web sites such
as A List Apart (alistapart.com) and Boxes and
Arrows (boxesandarrows.com). The following ex-
ample is typical of what was needed on our Web
site:

#+begin_section

#+attr_html: :id about-blocks

:class mt_sectitle

#+begin_header

How block-delimited lines become paragraphs,

which are at the syntactic level

of mt_concept(elements) in Org parlance

#+end_header

The parsing rules dictate that, because Org

is very much a mt_emphasis(line-based) format

(in its surface guise), paragraphs are created

inside the special blocks as expected.

As for the lexical macros, they are expanded

at the very beginning of the export process.

#+end_section

What do we have in this Org example? Two
nested special blocks which will be converted to the
appropriate HTML5 or LATEX constructs, as appro-
priate, and also some Org lexical macros similar to
those of the C preprocessor, m4 or WEB. Here the
lexical macros are shown in their fontified form, a
feature added in recent Org versions. Under the
fontification hood, there are actually three pairs of
braces around the whole macro invocation! The
block is much more readable when the braces are
removed by fontification, and the macro objects are
also syntax-highlighted.

Org is line-based, contrary to token-based macro
engines such as m4. In this, Org is closer to Mark-
down, in which blank lines are a staple of the syntax.
In both Org and Markdown then, the document is de-
limited into blocks and inlines [8]. This is important
for ergonomics, since it reveals document structure
graphically. This is also one of TEX’s strong points,
and probably one of the many reasons why TEX is
often deemed easier to learn than the SGML fam-
ily. In fact, though my colleagues preferred writing
their TEI XML by hand, I allowed them to write all
other content types in Markdown, freely interspersed
with HTML as they needed. Upon reception, I pro-
cessed their documents with Pandoc, then refactored
them, so to speak, in Emacs. Whenever I wished

An Emacs-based writing workflow inspired by TEX and WEB, targeting the Web

202 TUGboat, Volume 37 (2016), No. 2

to integrate multiple complex sources, Org was my
intermediate language of choice.

The begin . . . end pairs in Org have extra power,
making them invaluable for producing SGML-style
markup: they can conditionally write attributes in
the resulting element tags. This can be used to add
classes for CSS selection, identifiers, target URI’s, mi-
croformats or even Resource Description Framework
statements. In the above example, id and class

attributes will be added to the header block upon
HTML5 export. If the export target is LATEX, simple
environments will be produced that bear the names
of the Org special blocks. This affords one the occa-
sion to write some sophisticated definitions for said
environments, perhaps going as far as to reproduce
a given CSS layout. It is still an open question for
me what exact set of packages and commands one
would need to adequately reproduce some of the
more idiomatic CSS stylings, for example relative,
absolute and fixed element positioning—and the
true holy grail consists of that plus a TEX implemen-
tation of Flexbox !

The above example is used in a Web demo [4],
with some typeset examples, which acts as a com-
panion piece to the present article.

3 Applying WEB-style substitutions

to Web content

The constructs nested inside the element blocks,
namely the macro objects, have an mt_ prefix mean-
ing ‘multi-target’, since the macros define different
substitutions for different target formats. In the ac-
companying Web demo, examples are given for an
HTML rendition, plus an SVG rendition produced
with a TEX engine and an SVG converter.

The initial motivation for publishing SVG text
blocks typeset with TEX comes from the Medieval
Studies project: I wanted to produce facsimile ex-
cerpts of the manuscript transcriptions. I found that
the best way to reproduce the beautiful hand-written
text was to procure a historically-accurate font with
many alternates and make a proof-of-concept ex-
ample by manually adding OpenType substitutions.
This proof-of-concept facsimile is available at [3].
The X ETEX engine was used with the standalone

class and the fontspec package. Because the Web
browsers cannot at present be trusted with such com-
plex typography, I used the Poppler tools to convert
the PDF to SVG with all text converted to paths.

In [1, p. 45], Robert Bringhurst mentions the
rich textures that Renaissance typographers achieved
with a single type size and hand-drawn additions.
This same ‘sensuous evenness of texture’ is very much
present already in fifteenth-century manuscripts such

as those reproduced on our Web site, and which the
early Renaissance typesetters duly imitated. In fact,
this has a very material basis in the tools of calligra-
phy, for the broad-nib pen that dominated European
writing until the Early Modern period had a more or
less fixed width, depending on the pressure applied
by the scribe. This width yields a fundamental tone,
a stroke that serves as the basis for a scale. With the
appropriate stroke modulation techniques, it allows
the scribe to play within friendly neighboring scales,
but the relative evenness of texture is to be seen as
a blessing.

I strongly believe in the power of harmony and
counterpoint in all media, so I always seek such ef-
fects, including with modern type. That is why I
speak of my workflow as generally applicable to Web
content work in any field, as long as the contributors
care about aesthetics and believe in the dignity of
the craft. In my facsimile, I have attempted to ap-
proximate the scribe’s creative freedom by applying
many OpenType substitutions, which recovers some
of the rich graphical harmonics created by a steady
and energetic hand. After many facsimile pieces have
been created, one could create appropriate macros
to group OpenType substitutions, thus creating a
mini-macro package giving the flavor of a particular
scribe’s craft!

I must stress that the TEI documents referred
to are very much fragments and are not validated
in any way. In order to ease my colleagues into the
workflow, I decided to treat anything they produced
as relevant and to act upon the principle that they
had good reasons for using whatever structures they
had written. This remained scalable because only
a dozen node types were allowed, including both
elements and attributes. From the beginning, I had
planned to write a Relax NG grammar when the pro-
cess stabilized, but the production of this grammar
remains an open ticket to this day. This has turned
out to be a blessing, since it allowed my colleagues to
inform the vocabulary themselves according to their
needs, without any external pressure from a pesky
grammarian. Again, the process was established from
the bottom up, and this has turned out to be a boon.
The graphical fidelity of the transcriptions is all the
better for it: they are actually readable, which is a
noteworthy milestone in and of itself.

In his presentation of the WEB literate program-
ming system, Donald Knuth discussed how he chose
to make his lexical macros as simple as possible, with
only one parameter allowed, in a section entitled ‘Oc-
cam’s Razor’ [7, p. 121]. The elegant simplicity of
the approach summarized there is one of my chief in-
spirations in developing the present workflow and in

Christian Gagné

TUGboat, Volume 37 (2016), No. 2 203

forming my conviction concerning the general appli-
cability of substitution in the act of writing. What is
more, The Occam with whom originates that saying,
being one of the greatest logicians of the Late Middle
Ages, is most appropriately mentioned here, since it
is with him and some contemporaries that the foun-
dations were laid for a mathematical consideration
of language items as discrete structures that can be
manipulated algorithmically, as in the substitution
techniques discussed here. I mention this in pass-
ing, o readers, knowing all too well that defending
this statement properly would lead us down a much
longer road which we will have to travel another time.

4 Equational inspiration

I have shown how the many aspects of macro substitu-
tion have shaped my experience of writing technical
documents. Another theoretical development has led
me to further consider macro-based writing as a most
appropriate way of writing. This year, I have been
introduced to equational logic through a computer
science course given in my department. This course
is based on the Gries-Schneider approach [5], which
is in turn influenced by Edsger Dijkstra among oth-
ers—and Leslie Lamport adopts a similar approach
in his work. I read the course’s introductory mate-
rial and learned that equality is taken as the most
fundamental relation and is defined in terms of sub-
stitution. Finding this epistemologically pleasing, I
asked around whether substitution and the Leibniz
rule, so defined, functioned as a theoretical base for
macros in Lisp or TEX, or rather whether macros were
effectively applications of the substitution principle,
to which the reply was that, given the definitions we
were handling, this was certainly the case. I then
thought, with my usual inclination towards holistic
conclusions, that surely this was yet another sign
that macro languages are most appropriate to the
very nature of writing with a computer.

5 Conclusion

In the end, even though I am presenting an Emacs-
based writing workflow, what I am truly committed
to is the epistemology of writing that emerges from
all this and the algorithmic principles that make it
possible in practice. That is why I am still trying
to find better notations for writers. Recently, this
has meant Web writers especially, as I strongly wish
to see the riches of TEX-style composition being dis-
tributed liberally among as many people as possible,
be they front-end developers, engineers, blog writers
or designers. That is the meaning of my syntax essay

at the end of the companion demo page [4]: reflect-
ing upon ways to make macro-based writing more
alluring to people who would traditionally never have
thought of using Emacs or TEX. In a word, my wish
is for Web writing to become more organic, both
technically and culturally.

References

[1] Robert Bringhurst. The Elements of Typographic
Style. Hartley & Marks, 2005.

[2] TEI Consortium. Text Encoding Initiative Guide-
lines. Oct. 5, 2015. http://www.tei-c.org/
Guidelines.

[3] Christian Gagné. Miroer du monde: comparaison
et mises en relation entre BnF fr. 684 et BnF
fr. 328. 2016–. http://hu15.github.
io/histoires-universelles-xv/

miroir-du-monde/comp/comp_fr684-fr328.

xhtml.

[4] Christian Gagné. Organic TEX Demo. Aug.
2016. https://waidanian.github.io/
organic-tex-demo.

[5] David Gries and Fred B. Schneider. Calcula-
tional Logic. http://www.cs.cornell.edu/
gries/Logic/intro.html.

[6] Groupe de recherche HU15. (H)istoires (U)ni-
verselles 15. 2016–. http://hu15.github.io/
histoires-universelles-xv.

[7] Donald E. Knuth. Literate Programming (1984).
Literate Programming. Center for the Study of
Language and Information, 1992, pp. 99–136.

[8] John MacFarlane. CommonMark Spec. July 15,
2016. http://spec.commonmark.org/0.26/
#blocks-and-inlines.

[9] Org Dev Team. Org Syntax (draft). Apr. 6, 2016.
http://orgmode.org/worg/dev/

org-syntax.html.

[10] David Walden. “Macro memories, 1964–2013”.
TUGboat 35:1 (2014), pp. 99–110. http://tug.
org/TUGboat/tb35-1/tb109walden.pdf.

[11] Mark Zachry and Charlotte Thralls. “An Inter-
view with Edward R. Tufte”. Technical Com-
munication Quarterly 13:4 (2004), pp. 447–462.
https://www.edwardtufte.com/tufte/

s15427625tcq1304_5.pdf.

⋄ Christian Gagné

christiangagne (at) outlook dot com

https://waidanian.wordpress.com

An Emacs-based writing workflow inspired by TEX and WEB, targeting the Web

204 TUGboat, Volume 37 (2016), No. 2

TEXcel? An unexpected use for TEX

Federico Garcia-De Castro

Abstract

I recently discovered the surprising fact that TEX
seems to be more appropriate for keeping financial
records, and especially preparing different kinds of
reports (to funders, to the board, by season, by
project, by calendar year), than the spreadsheets
that I was using, and which had become highly con-
voluted as years of information accumulated. Here
is a description of the task, the problems with the
spreadsheets, and the incipient but already useful
system I developed in TEX.

1 The problem

As the director of a contemporary chamber music
company (www.aliamusicapittsburgh.org), I am
in charge of designing and executing the budgets for
individual projects and for whole concert seasons.
And then reporting: to funders, board, government,
throughout projects and after their completion.

In retrospect I see that it is this— the wide range
of reports, each with its own format, budget lines and
subdivisions—that reveals the inadequacy of any
static-spreadsheet model for bookkeeping, and the
counterintuitive fact that TEX’s macro capabilities
come in handy for financial tracking and reporting.

1.1 Ways of reporting

Different funders, and therefore different budget re-
ports, focus on different things. Music foundations
usually have budget formats that include items that
are specific to concert production—things like perfor-
mance licenses, that in more general purpose budgets
go under something like “fees and dues”—while in
typical art grant reports a concert’s lighting design
(a relatively straightforward expense) must be split
into, for example, “equipment rental” and “other
program professionals”.

On the other hand, reports also vary by time
scale and scope. Season-wide reports, for example,
lump together all season ticket sales, while in project-
specific reports for a concert’s funder these need to
be reported by project. On the other hand, the fees
for online ticket sales, which are in principle project-
specific expenses, in year-long budgets may better
fall under “banking fees”.

And so on: the assignment of each transaction
to a particular budget line depends on the latter’s
purpose and format. In general, the only way of
implementing this is to record all transactions in a
report-independent database, from which each re-

port gathers transactions into the appropriate lines,
according to its own format and needs.

1.2 The spreadsheet model

I’ve long had such a database for Alia Musica, in the
form of a spreadsheet:

Season Prj1 Prj2 . . . Prj3

Donations
Ticket sales
...
Grants
Donations
...

Performers
Guests
...
Ads
Postcards
...

. . . and so on (although much more detailed). Col-
umns specify information relevant to each project
(or general season transactions in special season col-
umns), while the rows were arranged following our
most common report budget formats. Extra columns
were used to gather season totals, for season-wide re-
ports. In fact, since tax returns go by calendar year,
which is different from the season year, these ‘total
columns’ come in two flavors (one for each season,
one for each calendar year); this also meant needing
to have, for each season, two ‘general season transac-
tion’ columns—one for the part of the season year
that fell in one calendar year (September–December),
the other one for the other one (January–August). In
fact, this detail is just one of the many complications
in the spreadsheet model. All of which eventually
led me to look for an alternative.

Alia Musica’s spreadsheet had been built and in
use since around 2010, with ad hoc adjustments here
and there as new needs emerged. But in the mean-
time the organization has changed and has grown
significantly. In 2015–16, with two major produc-
tions (check out in particular the Pittsburgh Fes-

tival of New Music, www.pghnewmusic.com), the
spreadsheet had become clearly obsolete—now, for
example, overlaps happened not only among seasons
and calendar years, but among the productions them-
selves— some parts of one being part of another, and
so on.

Toward the end of the season and of all of those
productions— i.e., at reporting time—I decided to
update the system, and started re-designing an array
of spreadsheets, more in tune with current needs.

Federico Garcia-De Castro

TUGboat, Volume 37 (2016), No. 2 205

I did not get far: the deficiencies of the spreadsheet
model, as I found out, are structural, and not due
to a particular design or implementation.

1.3 Deficiencies of the spreadsheet model

Dimensions: A spreadsheet is basically a table in
two dimensions. At best, you can use a couple of
tricks and count them as two additional pseudo-
dimensions:

• The user can attach ‘notes’ to each cell. In
these notes, a total can be split into several
components. For instance, the total ticket
revenue of a concert can be input into the
cell, with a note saying how much was door
revenue and how much was online sales.

• What a cell shows on the spreadsheet is
the result of the formula contained in the
cell. You can make use of this to record
some extra information: “$420” can be
input, say, as “=0+320+(40+40)+20”. At
Alia Musica we used this trick to locate
transactions by month: the above would
mean “$0 in January; $320 in February;
two transactions for $40 each in March;
and $20 in April”.

Of course these tricks do not provide for real
extra dimensions: they afford extra information,
but the processing program has no access to it—
e.g., reports have no way eventually to take only
a subset of the components of the cell’s total.
The information can be recorded, but its actual
use requires user intervention.

User-time decisions: Transactions are input into
the spreadsheet at different times (as they hap-
pen, or, more systematically, at month-end).
That entails the ever-present risk of inconsis-
tencies: where did we put parking expenses—
sometimes as meeting expenses, sometimes as
travel expenses? What did we decide about the
guest’s payment, did we put all of it as “guest
performer”, or did we split it into “guest per-
former”, “lecture honoraries”, “per diem”, or
who knows what else?

Completeness and feedback: Assume, however,
that the inconveniences above can somehow be
worked around: that the information is all con-
sistently and clearly input into the big repository.
Now the reports “simply” have to gather the
relevant cells from here and there, according to
their design.

An inescapable deficiency of the spreadsheet
model shows up at this point: there is no mech-
anism to ensure that a) individual cells are not

counted wrongly in two or more report lines, for
which they might both be relevant; or b) that all
relevant transactions for a particular line are in-
cluded—maybe there was one obscure one (an
extra parking expense, an extra bank transfer
fee) that doesn’t come to mind when manually
gathering transactions into the report.

1.4 A necessary component: tags

Such reflection on the deficiencies of a spreadsheet
points to one necessary component of any satisfactory
system: assigning tags to transactions. A complete
description of a transaction should be enough for the
system to be able to pull it into whatever budget line
each report needs. This in effect implements an open
number of dimensions, and it even works toward
the problem of user-time decisions: nothing prevents
a report to gather tags for both “Fall 2015” and
“Fall 15”, relieving the user from having to remember
a rigid list of possible tags.

Tags are implemented in financial tracking pro-
grams. But there are still problems: using tags typi-
cally involves dialog boxes, saving buttons, scrolling
through lists. . . And in any case we still have the
main problem of a spreadsheet model: nothing checks
for completeness or duplications when at a later time
the transactions are gathered into reports.

2 TEXcel

After realizing that the problem with my spread-
sheet was not my particular spreadsheet, but the
spreadsheet model itself, I came to wonder, almost
as an afterthought, whether this was a task for TEX.
The intuition was strong that there would be many
problems, but that in principle something like this
would be workable:

\deposit: 45.50 (Ticket sales, Festival

subscription, Spring 2016)

\deposit: 8320 (Foundation Grant, T.W. Dunns

Char. Fund, Fall 15)

...

\expense: 400 (Performer, Spring 16, Festival)

\expense: 19.80 (Stamps, Office expense,

Mailing)

\expense: 1.59 (Facebook, Online advertising,

Fall 2015)

\expense: 950 (Booklet printing, Festival)

...

With such a database (in a database “document”),
reports could then be requested (in different docu-
ments) through something like this for a season-wide
report:

\begin{expenseline}{Marketing}

\include{Poster distribution}

TEXcel? An unexpected use for TEX

206 TUGboat, Volume 37 (2016), No. 2

\include{Poster printing}

\include{Flyer printing}

\include{Advertising}

\include{Online advertising}

\include{Booklet printing}

\include{Booklet shipping}

\include{Website}

\include{Project website}

\include{Postcards}

\end{expenseline}

...

Or for a project report:

\begin{expenseline}{Spring 2016}

\include{Spring 2016}

\include{Spring 16}

\include{Sp 2016}

\include{Sp 16}

\end{expenseline}

...

Indeed, this is the backbone of a system I have
developed for financial tracking in TEX.

2.1 The basic \deposit and \expense

So, \deposit and \expense are at the base of the
whole system. They do not really ‘mean’ anything
by default: what exactly TEX does when it finds
them depends on the task at hand, as explained in a
moment. This flexibility, and in general TEX’s ability
to define anything as anything, is a key reason why
TEX turns out to be an appropriate environment for
financial tracking.

Thus, \deposit (\expense is fully analogous)
is defined, at bottom, as follows:

\long\def\deposit: #1 (#2){%

\ifreporting

\ifnum\yearindex=\z@

\@deposit: #1 (#2)\relax

\fi

\else

\@addtoacct{\acct}{#1}%

\fi

}

It’s a simple fork: if we are compiling a report (gath-
ering transactions from the repository into the ap-
propriate budget lines of a report), we’ll do one thing
(\@deposit), and we’ll need the comma-separated
list of tags that comes as #2. Otherwise, in the
database document, the transaction is merely being
recorded, and we’ll just update the corresponding
account’s balance through \@addtoacc, for which
the tags are unimportant and we focus only on the
amount (#1).1

1 Now looking at the definition, I can’t see a reason for the
immediate handling of the arguments; \deposit could simply

\@addtoact has an extra argument, passed on
to it by \acct, as seen above. This is because the
transactions are entered within one of three LATEX
environments, one for each of Alia Musica’s accounts:
checking (in which case \acct is defined as “chk”);
money market (“mmk”); and PayPal (“ppl”).

In fact, the latter illustrates another use of the
flexibility of \deposit. In PayPal transactions, every
deposit has a fee. Accordingly, the paypal environ-
ment in TEXcel redefines \deposit to take care of
both the revenue amount and the associated fee. For
example, a ticket sale could be:

\deposit: 15-.62 (Ticket sales, Spring 16)

Within the paypal environment, TEXcel then knows
to add $15 and subtract 62 cents (and, furthermore,
it knows that the $15 is ‘ticket sales’ and the −.62
is ‘bank fees’).

2.2 Convenience bundling macros

Transactions like ticket sales are (hopefully) very
frequent, and there’s no point in requiring the corre-
sponding tag from the user. Ticket sales also come
in groups (more than one at a time). So, TEXcel
has a further macro, \tickets (a straightforward
front-end for \deposit), that takes care of it:

\tickets: 30-1.17, 60-2.04 (Fall 15)

There are similar ‘shorthand’ macros through-
out the system, including \donation and recurring
expenses like \stamps, \servicecharge, and so on,
all of which built on top of the basic \deposit and
\expense.

One such macro is \check. TEXcel provides for
an independent database of checks, where checks are
defined in full detail. The transaction database can
then call checks up through

\checks1131-1136,1138,1140,1141,1143-1150.

\checks3153,3177-3193,3195-3199.

\check3176

(notice the flexibility in syntax!) This saves a lot of
time when entering the transactions, and in addition
is extremely useful to keep track of checks that have
been issued but not cashed yet.

In the spreadsheet model in use until now, un-
cashed checks have been a source of nearly-intractable
discrepancies between projected budgets, reports,
and account balances. With TEXcel this is no longer
a problem: \check, \checks, etc., can themselves
be redefined for any purpose (just as \deposit and
\expense)—notably, to run through the checks and
make a list of pending liabilities.

let \@deposit and \@addtoact pick them up later. This (and
the \long, by the way) must be a residue from some initial
try or a different basic model. The wonders of organic growth.

Federico Garcia-De Castro

TUGboat, Volume 37 (2016), No. 2 207

2.3 Time-based reporting

A further utility worth noting: as mentioned above,
reports can go by season (September–August) or by
calendar year. This was a tough nut to crack, not
least because sometimes a season has revenue and
expenses that happen actually before the beginning
of the season (a grant that’s awarded in July, say),
or after its end (a check that we only get in Septem-
ber). This is the reason for \yearindex above in the
definition of \deposit. The internal mechanism will
be detailed below. At user entry time, any transac-
tion can be recorded as the argument of \late or
\early—TEXcel will know what to do with it.

This means that TEXcel keeps track of the time
transactions occur. In fact, the user actually enters
transactions within new LATEX environments for the
months— \begin{January} and so on. (So, each
month has three nested environments, for each of
the accounts.)

This brings a major benefit over the spreadsheet
model: the time dimension is preserved. Back in the
spreadsheet, with transactions assigned vertically by
project/season and horizontally by budget line, there
was no way to keep track of exact account balances by
date. When discrepancies occurred at reporting time,
locating them required going over all the statements
manually, one by one, until something popped up.
In contrast, with the month environments in TEXcel,
the system is able to report account balances at the
end of each month—catching a discrepancy is now
trivial.

2.4 Automatic consistency checking

Beyond all the above features and benefits, probably
the most important utility offered by the new system
is the automatic check for duplications and omissions.
When compiling a report, the user instructs TEXcel
to gather transactions by tag into different budget
lines. To repeat an example from above:

\begin{expenseline}{Marketing}

\include{Poster distribution}

\include{Poster printing}

\include{Flyer printing}

\include{Advertising}

\include{Online advertising}

\include{Booklet printing}

\include{Booklet shipping}

\include{Website}

\include{Project website}

\include{Postcards}

\end{expenseline}

Other expenseline environments include, for ex-
ample, performer honoraria (tags like ‘performer’,
‘performers’, ‘conductor’, ‘soloist’, etc.), operation

expenses (‘insurance’, ‘office supplies’, etc.), and so
on.

After the series of user-requested expense (or
revenue) lines, TEXcel automatically compiles a fur-
ther list, “Unassigned Transactions”, of those which
were not included (probably due to the user’s unin-
tentional omission) in any of the environments.

On the other hand, the system keeps track of
which transactions have already been assigned, and
if a later budget line matches an already used tag, it
will warn that the transaction number x on month y

was already counted in section z.
With these two features, the system provides

reliable consistency and completeness checks, a major
advantage over any static tracking system.

2.5 Programming tricks

It is still the case that TEX is not exactly the most ad-
equate programming environment for either database
or spreadsheet handling. There are some structural
limitations to what TEX can do—no easy alpha-
betization, for example, and a certain clumsiness in
holding information for later use, which all but dis-
courages trying to present the report in table form.
(TEXcel makes LATEX sections for each budget line,
an itemize environment for each tag included, fol-
lowed by a total of the transaction amounts for each
section.)

Even those features that are implemented re-
quired a bit of hacking. Here are some of the most
interesting tricks.

Arithmetic We’re dealing with dollars and cents,
but TEX’s arithmetic is limited to integers. . .
At first I used the trick of dealing with dollar
amounts in “dimen” registers—TEX is good
at arithmetic with lengths and dimensions. It
was a little funny that all amounts reported by
TEXcel would have “pt” after them, but one
could live with that.
I thought I was so clever. The problem, of

course, is TEX’s upper limit—a sum like 35000
is a longer dimension than TEX can handle. I
tried to salvage this by working in terms of
‘scaled points’ (the true internal unit that TEX
uses, much smaller physically and therefore with
a much much higher upper limit). But TEX
still presents dimensions translated into normal
pt units— so that the numbers reported would
be meaningless. (And if you simply try to re-
convert pt into sp right before typesetting, you
again exceed TEX’s numeric limit.)
There was no other way than to implement

decimals “manually”. I checked a couple of
existing packages, but in general they provide for

TEXcel? An unexpected use for TEX

208 TUGboat, Volume 37 (2016), No. 2

much more complicated functions (trigonometry,
floating point, etc.), not exactly what I needed.
So, in TEXcel all arithmetic is done through

two streams of integers: one for the dollars,
one for the cents. Then there is a function
that converts that into the usual decimal point
presentation.
In this context the decimal period has no

mathematical meaning. As a result, TEX would
read 12.4 as 4 cents, not 40. Very annoying,
and very annoying to fix! But it had to be done:
leaving the task to the user (possibly months
from now) would invite potentially untraceable
mistakes.

Feedback mechanism When a report is compiled
(selecting out transactions by tag), what hap-
pens roughly—very roughly, almost entirely
notionally— is that TEX goes through the list
of transactions, and creates new commands for
each tag. That way, when a tag is requested
by the user, it is an active command that ‘exe-
cutes’ the corresponding transaction . . . but this
command also redefines itself, so that when the
transaction is called for a second time, it now
does something else (warn of the duplication).

Months and years I was amazed at how quickly
this could get extremely confusing when I was
trying to implement it. The problem is that
TEX needs to know, according to what kind of
report we’re doing (by season or by calendar
year) which months to include. You would say
it’s a matter of adding an offset to the month
counter (so that September is 1 when going by
season, but 9 when going by calendar year), and
so did I. This basic offset is in fact somewhere
in the code.
But that’s not enough, because transactions

outside of the requested year are still relevant:
sometimes we have a grant for season n that was
actually awarded and cashed toward the end of
season n−1; sometimes liabilities and receivables
overflow to season n+1. On the one hand, these
outer transactions are still necessary for the full
picture of a season; and on the other, they should
be kept out of the reports for the seasons where
they actually took place. (Calendar-year reports

do not need this nuance, since they are basically
balance-sheet reconciliations for the IRS.)
So in the end the model uses a ‘year index:’

0 for the current (requested) season, −1 for
the previous one, 1 for the following one. The
counter is updated by the month environments:
\begin{September} (the first month in a sea-
son) steps \yearindex by 1. Then the program
knows what to do.

2.6 Future

The system is complete in the sense that any user
(say, an intern) can use it. It is also very flexible—
key functions like \deposit, \expense, and \check

are essentially black boxes that can be redefined for
any future needs that might arise.

But these future needs are not implemented.
That is to say, it is only Alia Musica’s needs that are
implemented right now. In that sense the program
is incomplete, and only a model for what could be
done for more general purposes.

Were this to be done for a public release, then
it would probably be a good idea to translate the
code into LuaTEX—Frank Mittelbach’s suggestion—
so that we get a true general-purpose programming
language. Desirable features would include reporting
by tables, alphabetization and other sorting capabil-
ities, and, less cosmetically, a more powerful engine
to handle the tags. Right now the program com-
pares tags, and when it finds a match it assigns a
transaction right away; future matches of the same
transaction are discarded (with a warning). It would
be great if the user could request more complicated
conditions: “include this tag but only if this other
one is not there”; or “only include transactions with
the indicated tags if in addition they have tag x”.

For now, it was a lot of fun, not that hard, and
in any case very surprising, to work on implement-
ing Alia Musica’s financial needs through TEX. The
resulting system is enormously, structurally, superior
to any spreadsheet.

⋄ Federico Garcia-De Castro

Artistic Director,

Alia Musica Pittsburgh

federook (at) gmail dot com

http://www.garciadecastro.net

Federico Garcia-De Castro

TUGboat, Volume 37 (2016), No. 2 209

Hyphenation in TEX and elsewhere,

past and future

Mojca Miklavec and Arthur Reutenauer

1 The past eight years: hyph-utf8

Hyphenation, or word division, is an essential feature
of TEX and related systems, which was a pioneer in
the area. Frank Liang, a student of Donald Knuth,
devised an algorithm to efficiently store the informa-
tion that specifies how to break words. Liang’s PhD
thesis on the subject was published in August 1983,
and TEX82 already included the algorithm. Liang
also wrote the program patgen that, given a list of
hyphenated words, produces a set of hyphenation
patterns that embed the information.

TEX82 would store only one hyphenation table,
but with TEX 3 in 1990 it became possible to include
multiple pattern sets, identified by the value of the
primitive \language. At the same time TEX’s char-
acter set was extended from 7 bits to 8 bits, thus
widening the range of supported encodings. This
would prove essential for many languages. Devel-
opment had indeed started early to devise sets of
patterns appropriate for different languages; for ex-
ample Italian, for which patterns were produced and
described in TUGboat volume 5, issue 1 in 1984;
and French and German, in the next issue. However,
with only 7 bits to use, most languages needed a
number of tricks to work correctly, some of which
could rightly be called dirty, and which were kept
even after TEX3 came along.

The terms of use of the different pattern sets,
when there were any, were equivalent to those of
TEX itself: free to use and distribute, and modified
versions should have another name. Most of the
time, however, there was no clear licence. When the
LATEX Project Public Licence, the LPPL, was created
in 1999, some authors adopted it for their patterns,
and over the years the majority of the files became
available under this licence.

When X ETEX and LuaTEX were included in dis-
tributions, encoding became once again a problem
since these engines expect UTF-8 input by default
and couldn’t accommodate the various 8-bit encod-
ings the different pattern files were using. In order
for X ETEX to be added to TEX Live in 2007, its
creator Jonathan Kew devised a solution whereby
patterns were converted to UTF-8 on the fly when
read by X ETEX. This worked but seemed awkward,
and when the following year it was LuaTEX’s turn
to be integrated in TEX Live, we felt this decision
needed to be reconsidered.

We decided to adopt the converse strategy of
what was originally done for X ETEX: convert all the
files to UTF-8, and devise a system to convert the
patterns back to the appropriate 8-bit encoding if
necessary. That way X ETEX and LuaTEX could read
the files in UTF-8 directly, while pdfTEX and Knuth’s
TEX would also work because they’ll see 8-bit versions
of the patterns, converted on the fly. It should be
noted that all this happens when generating formats,
as—except for LuaTEX—this is the only moment
when hyphenation patterns are read by TEX, in its
iniTEX incarnation. Once that job is finished and
the formats are dumped, each engine will be fed the
characters in the encoding appropriate to its kind.

The initial work was done in the spring of 2008
and was completed in time to be included in TEX
Live 2008, as was the original intention. We also used
this opportunity to rationalise the names of hyphen-
ation patterns, most of which used relatively cryptic
two- or three-letter codes to identify languages: af-
ter some research, we made the decision to use the
standard BCP 47, which to our knowledge is the
only one that allows the level of precision we need
to distinguish between all the languages TEX sup-
ports. BCP stands for “Best Current Practice” and
is used for a number of specifications by the IETF,
the Internet Engineering Task Force. This standard
is thus also used in most Web technologies, and the
exact same language tags can be used in HTML and
HTTP, for example. Since all BCP specifications
are published in the RFC (Request for Comments)
series, it’s probably useful to mention that BCP 47 is
currently equivalent to the combination of RFC 5646
and RFC 4647; these numbers may change in the
future, when the document is updated.

The result of this effort was the package hyph-

utf8 that is now used in MiKTEX as well. It was
soon picked up by external projects: Hyphenator, a
JavaScript program for supporting hyphenation in
browsers; then Firefox, that implemented hyphen-
ation in the browser itself; and finally Apache FOP

(Formatting Objects Processor), an XSL-FO imple-
mentation. All these programs took patterns directly
from our package, usually with just one straightfor-
ward conversion to adapt them to their format.

Since then, we’ve been keeping track of the up-
dates to the hyphenation patterns in the TEX world;
most of the time we’re in direct contact with au-
thors, who sent us their contribution directly, but we
regularly find isolated updates for some languages.
We’ve also welcomed pTEX in TEX Live in 2010,
specialised in typesetting Japanese, for which we
had to adapt the pattern loading strategy, since
it didn’t support UTF-8 input; this meant we had

Hyphenation in TEX and elsewhere, past and future

210 TUGboat, Volume 37 (2016), No. 2

to give up on the idea of converting patterns on
the fly, and thus provided 8-bit versions of all pat-
terns that would be used for pTEX only; the UTF-8-
encoded files serve as the master data. And we’re
constantly trying to clarify the licence terms of the
patterns. We feel we have a very good momentum in
the TEX community, and the tex-hyphenmailing list
(http://lists.tug.org/tex-hyphen), that’s been
driving the effort since we started it, has become
some sort of town square to discuss many language-
related topic in the TEX world, far beyond the subject
of hyphenation.

The rest of the free software world, however, is a
completely different story. The attentive reader will
have noticed that some names are missing from the
above list of projects we’re collaborating with, and
indeed we had little interaction with the developers of
the existing free word processors. Some conversations
took place, to be sure, but there was no concerted
effort to collect all patterns in a central place, or
decide what list of licences was acceptable for the
different projects.

At the time OpenOffice was the most widespread
of the word processors from the free software world,
and pattern sets had already been adapted for its
use, starting some time before hyph-utf8 was created.
The conversion was usually done for one file at a
time, with no coordination between the languages,
much like in the past individual pattern sets were
uploaded on a one-off basis to CTAN. On occasion
patterns were created for new languages, which we
took over when we became aware of it. There was
also a lot of talk about the licences of different pat-
tern files, and some changes came back to us because
of that. By then all major free software licences were
used by pattern files: GPL, LGPL, n-clause BSD

for different values of n, MIT, LPPL of course, and
some free-form text. The expansion of these acro-
nyms is left as an exercise to the reader (but read on
for a partial cheatsheet). In addition, some people
were apparently asked to sign a contributor licence
agreement (CLA), that is, an express agreement be-
tween the authors and the organisation responsible
for OpenOffice. We are still unclear as to why it was
so, but to our knowledge this hasn’t been the case
since the Apache Software Foundation took over the
maintenance of OpenOffice in 2011.

Not much happened on this front for a few years,
until it was time for Google to join the party. In
September 2015, and then again in December of
that year, many pattern authors were contacted with
requests to once again change the licence of the files,
with little explanation of why they were asked to
do so. It took us some research to understand what

was happening: hyphenation had been added to
the operating system Android, and Google was thus
interested in using the hyphenation patterns available
for TEX and other free software, but they had some
restrictions relating to licences. As it turned out,
the LPPL was the one that caused most problems
for them. There was also a secondary suggestion to
add the hyphenation patterns to Unicode’s Common
Locale Database Repository (CLDR), a large project
collecting linguistic data for many languages; there
were also legal obstacles to that at the time.

There followed several weeks of extensive dis-
cussion, hardly interrupted by Christmas and New
Year’s Eve, between pattern authors, ourselves, and
representatives of Google, soon joined by develop-
ers from Mozilla (for Firefox), LibreOffice—by now
the most active free software office suite—and even
Amazon (for software running on Kindle), over the
course of which many, many emails were exchanged
and went several times round the planet. Conversa-
tions that had started among maintainers of patterns
for some language inflated to include more and more
contributors, spilled over unto mailing lists, took a
side road to discuss the respective merits of different
licences, turned around to question the motivation of
the requesters, deflated back again to wonder what
the exact wording of a licence statement should be,
and finally died down when absolutely, absolutely
everything had been said and pondered, even that
which should probably never, ever have been said nor
pondered. When the dust finally settled in the cy-
berspace and the protagonists were recovering from
what can only be described, in the words of one of
the authors of this article, as “a huge wave of ???”,
we came to a decision, and we now have a plan, that
will be developed in the next section. It also tran-
spired a few months later that in order to include the
patterns in the CLDR, it would be necessary for each
contributor to sign a CLA, which will probably be
very close to the individual CLA for contributors to
Android; however, the exact text is not finalised yet.

2 The past few months

We need to say a few words about the LPPL, since
it did as mentioned cause the most amount of talk.
It is a licence characterised by two main conditions:
first, that any work derived from a work under the
LPPL identify itself as such, and second, that each
work come with one particular person known as the
maintainer, responsible for keeping it up-to-date.
Both these conditions represent specific challenges,
which we’ll attempt to explain.

The first one, specified in clause 6.1 of the cur-
rent version of the LPPL (1.3c, dating from 2008),

Mojca Miklavec and Arthur Reutenauer

TUGboat, Volume 37 (2016), No. 2 211

is well-known to TEX users as it is equivalent to
the condition under which Donald Knuth made TEX
available: that any modified instance of the program
that didn’t fulfil a strict series of tests be given a
different name. Earlier versions of the LPPL actually
used a wording much closer to Knuth’s (it changed
with LPPL version 1.3 in 2003). This clause, however,
is virtually unheard of outside the TEX community,
and whenever external projects want to use hyphen-
ation patterns that are placed under the LPPL, we
need to do some education about the terms of the
licence (who does that does not matter as long as
a conversation is had, but in practice it often boils
down to the two authors of this article). This may
turn out harder than it looks, as we’ve experienced
some resistance to that notion, that sometimes gets
questioned or even ignored; we did for example have
a discussion with a lawyer from a technological com-
pany who found the wording of the LPPL ambiguous
and stated that it “imposes a lot of confused defini-
tions of derivative works”. This project rejected the
LPPL based on its text alone. Even without such
a strong reaction, the LPPL is generally frowned
upon and pattern authors are thus often asked to
make their files available under a different licence
(to “relicense” them), the exact one depending on
the project.

The reasons for third-party developers to re-
quest another licence are not only psychological: the
identification condition of the LPPL, while seemingly
simple to comply with, actually makes it incompat-
ible with many licences. Roughly speaking, that’s
all the copyleft licences— those characterised by the
requirement that any modification of the work they
apply to be made available under the same condi-
tions—such as the GNU General Public Licence
(GPL) and Lesser General Public Licence (LGPL),
or the Mozilla Public Licence (MPL). In these cases
the patterns have to be relicensed under the copyleft
licence, or a licence compatible with it, in order for
the external project to be allowed to use them; it
is not a matter of taste. This is one main reason
for the multiplicity of licences, the other chief one
being authors’ personal preferences, although often
they don’t have strong opinions. Attempts to work
around that incompatibility are known to not work;
in at least one case we are aware of a project trying
to incorporate patterns under the LPPL into copy-
lefted code (by documenting the situation and giving
proper credit to the original authors, of course), but
we now understand this to be a violation of the LPPL.

For external projects, this is not such a problem
in practice, however, as authors generally develop
their patterns in the spirit of collaboration and open

access, and thus readily agree to make their patterns
available under any alternative licence when asked.
The one issue is logistical: it can sometimes be hard
to contact some authors, and there are many exter-
nal projects trying to have the patterns relicensed,
which leads to the only case of reluctance we’ve ex-
perienced: on occasion an author will display a clear
(and understandable) expression of frustration at be-
ing asked the same question over and over again—a
situation named “relicensing fatigue” by a developer
used to being on the other end of these conversa-
tions. It should be noted that in this situation the
authors of this article have thus far been only passive,
witnessing discussions between pattern authors and
third-party projects.

The other chief condition of the LPPL is that
each work placed under it should have a designated
maintainer, the one person allowed to make changes
without needing to change the identification of the
work as per clause 6.1. By default it is the original
author of the work, who may nominate another per-
son when they are no longer willing or able to look
after the work themselves.

The issue we’re having with that condition is
that we don’t understand who is the maintainer of
the pattern files in hyph-utf8: in our case, we are not
the original authors of the patterns and we have not
been appointed by them as maintainers (except in
a few minor cases), but we are definitely the point
people responsible for changes in hyph-utf8, whose
core is a set of pattern files with new names. Who are
thus the maintainers of the individual files? If it is
the pattern authors, this would be a statement of fact
that isn’t true: the original authors are not the people
allowed to make arbitrary changes to the file in hyph-

utf8; we are. If we are the maintainers, this would—
formally—deny the authors any say in their patterns
(as they are packaged in major distributions). This
is a serious problem in the application of the text of
the LPPL.

In practice this doesn’t actually make any differ-
ence: the pattern authors communicate with us in a
number of ways, and since our job is only to package
the files in a format amenable to TEX distributions,
we usually adopt any change to the actual patterns
straightaway; and on the other side, we collaborate
with the core developers of said distributions to keep
our package up-to-date with the latest requirements,
such as for example when we had to devise a new
encoding strategy for including the patterns in pTEX
formats, or when a bug in X ETEX was revealed by
the patterns at format-generation time in the devel-
opment of TEX Live 2016. This is in our opinion the
way it should be done: we volunteer our time to work

Hyphenation in TEX and elsewhere, past and future

212 TUGboat, Volume 37 (2016), No. 2

on the low-level support of the patterns, and the au-
thors volunteer theirs for the linguistic aspect; there
doesn’t need to be a formal recognition of these roles.

The notion of a maintainer thus brings no prac-
tical benefit while introducing theoretical problems
that come to light during the post-apocalyptic dis-
cussions mentioned above. Two examples will serve
to illustrate this fact: in one case, the author of a set
of patterns under the LPPL had been asked to reli-
cense their patterns. They seemed relatively willing
to do that provided the relicensed files would only be
used outside the TEX community, but showed some
attachment to the idea that the original files should
stay under the LPPL. They then finally stated “I
will change the licence if and only if the TEX-hyphen
working group allows me to” (meaning us). This
is heartbreaking to us: we are not in the business
of prescribing to volunteers how they should make
their work available to the world; this should be
entirely their choice. We are able to make recommen-
dations, of course, but we have refrained as much as
possible from interfering in other people’s decisions.
Since, however, our input was clearly called for at
that point, we of course gave our “authorisation”,
without feeling entitled to do so.

The other situation was even stranger: in that
case the original author had appointed a maintainer
as they no longer felt in a position to look after the
patterns. The maintainer was keeping a strict policy
of no modification to the patterns and thus only
added a few lines of comment to the file when they
took over maintenance. This was before we started
hyph-utf8, and when we did, we simply adopted the
file with minor modifications. However, during the
discussion about relicensing a few months ago, the
maintainer, who had not contributed to the actual
patterns at all, felt empowered to decide the terms of
the new licence on behalf of the original author (who
admittedly seemed a little confused by the situation),
and then proceeded to dictate the exact comments
we were to put in the file, and even the name of the
file itself. This is of course not acceptable to us and
we did our best to ignore the maintainer’s whims.

These examples are cause for concern, because
they show a certain amount of misunderstanding
around the core conditions of the LPPL, on many
authors’ part (the two cases above are by far not the
only ones); they also are a clear waste of everybody’s
time, caused solely by use of the LPPL.

It is thus clear to us that the LPPL is a poor
choice for a project such as ours and we are going to
change our policy and start recommending against it.
We recognise its goals and want to achieve them too,
which can’t be through formal definitions of different

roles such as maintainer. In our case, this has no
practical effect and generates too much confusion,
as can be seen from the examples above. The cor-
rect way to proceed, in our opinion, is by fostering
healthy discussions among all the parties involved,
from package writers, to distributors, to end users.
The situation for hyph-utf8 is of course special since
the authors of this article are in some way an inter-
mediary between package writers and distribution
developers, but that only strengthens the need for
close collaboration.

It has been suggested that since we’re effectively
responsible for all the patterns in TEX distributions
it was also our role to defend their status under the
LPPL and enforce it in other projects, if necessary.
We don’t agree. We’re looking after hyphenation
patterns and the licence shouldn’t matter. What’s
more, the LPPL doesn’t come with any procedure to
enforce it, or any compliance team that could help
track down violations and rectify them—contrary to
other licences such as the GPL and the LGPL, where
one can assign copyright to the Free Software Foun-
dation (FSF), that also provides guidelines on how
to investigate and remove suspected violations. In
any case, that’s a discussion we’d (much) rather not
be part of, even if we’re sometimes co-opted into it.

For that matter, we don’t even have guidelines
on what the desired level of stability for the hyphen-
ation patterns is. There is no agreement on what
type of modifications are acceptable, and depending
on the language the authors may develop them ac-
tively, or not at all. We follow the changes while
trying to be conservative for long-established pat-
tern files (this is relatively easy to do since files of
a certain age generally get few updates); but there
is nothing to prevent someone from one day sending
mass changes to decades-old patterns for a major
language, and a difficult conversation will need to
take place at that point: will we ignore the changes,
or create a new file for the same language, or . . . ?
We are willing to follow any reasonable policy that
is agreed upon, but we can’t make it ourselves: that
clearly has to be done by the wider community.

In short, we want to ensure the best possible
future for the patterns and this goes through collab-
oration with all the projects that are interested in
developing them. If we kept strictly to the LPPL,
this would create an artificial divide among the lan-
guages, separating those that can be shared with
other projects and those that can’t; inevitably the
latter would tend to get less attention and become
second-class citizens. We had already noticed that
among the languages whose patterns had moved away

Mojca Miklavec and Arthur Reutenauer

TUGboat, Volume 37 (2016), No. 2 213

from the LPPL were some of the world’s major lan-
guages and we wanted to look into this fact in more
detail. We thus ordered them by decreasing number
of speakers; having grouped together all language
variants together, we had exactly 60 languages. From
this we took the top third, to see how many were still
under the LPPL, and the result was striking: only 2
out of 20. And even then, the status of these two was
quite artificial, since one had seen its licence being
chosen arbitrarily as the “popular” choice, and the
other one actually comes with several variant files,
some of which are not under the LPPL; the one that
ships in hyph-utf8 is, but external projects could just
as well take the ones whose licences are more accept-
able to them. One can of course argue about the
methodology and the difficulty of determining the
number of speakers for each language, but this figure
alone clearly points to the fact that the divide is
already there. It is very likely this had been brought
about by the fact that major languages naturally
got more attention and that pattern authors have
thus been asked to relicense more often. The “less
important” languages are thus at risk of seeing their
patterns progressively lose ground.

In conclusion, we think that in spite of all the
difficulties, we are at a point where we’re finally
able to put TEX at the centre of all efforts to create
good hyphenation patterns in the free software world.
Let’s use that opportunity and not close ourselves
to change; we want to become proactive in that
effort and we now have a plan: we are going to start
recommending to pattern authors to switch to the
MIT licence, a very permissive one that has a simple
text; other permissive licences would of course be
acceptable, if that’s the author’s preference. We
also want to start talking about hyphenation proper
instead of politico-legal issues. We accept that the
latter is inevitable but we’ve had far too much of
it lately, as the disproportionate structure of this
article makes clear.

Back to the work in progress: we have made a
few updates for TEX Live 2016. Apart from some
licence business (as usual . . .), it has a few low-level
changes: we’ve broken up the main package into dif-
ferent language groups to reflect the many packages
called hyphen-〈language〉; the patterns used to all be
in the former package while the latter were shells
merely containing instructions on how to populate
language.dat. We have also rewritten the top of

each pattern file to make the comments machine-
readable, in an effort to make the many language
files easier to process; and we’ve renamed the plain
text versions of the patterns to more human-friendly
names. Finally, we have migrated the repository to
GitHub for better visibility. These changes, how-
ever modest, should be seen as preparatory work
for making our package more palatable to external
projects.

In a separate effort, we also started looking
into patgen and, in an endeavour to understand in
detail how it worked—and to support UTF-8 in-
put—we rewrote it in Ruby using object-oriented
programming. As a result, it is hopelessly slow, by
a factor of about 60, but we have been able to re-
produce the results exactly, and we are going to
look into making it more efficient, and hopefully en-
hance it. The code is currently available at https:
//github.com/hyphenation/hydra and will be dis-
tributed through CTAN and TEX Live in due time.

3 The next few months

The future plans right now include:

• Setting up a new website for the project at
http://www.hyphenation.org.

• Getting as many pattern authors as possible to
agree to the MIT licence and Unicode’s CLA.

• Unify all the patterns from different sources and
finally become the central hub for all things
hyphenation in the free software world.

4 The future

Some more distant plans involve looking at the hy-
phenation algorithm in more detail: the hyphenation
library used by the free word processors, libhyphen,
actually does a little more than TEX’s original al-
gorithm, which is not surprising since the current
version dates from the mid-2000s, and it would cer-
tainly be nice to see if the additional features couldn’t
be included into TEX engines too. There’s always
more to do!

⋄ Mojca Miklavec

Sežana, Slovenia

⋄ Arthur Reutenauer

late of the Royal Opera House,

Covent Garden

arthur.reutenauer (at)

normalesup dot org

Hyphenation in TEX and elsewhere, past and future

214 TUGboat, Volume 37 (2016), No. 2

Zebrackets: A score of years and delimiters

Michael Cohen, Blanca Mancilla and
John Plaice

1 Introduction

In this paper, we present the resurrection of the
Zebrackets project, originally initiated by the first
author 20 years ago, with which parentheses and
brackets are zebra-striped with context information.
There are two reasons for this innovation: first, to
improve visual presentation of the necessary lineariza-
tion of hierarchical structures in text, and second,
to make a first step away from the assumption that
documents must be built up from a set of unchanging
atoms called characters.

Parentheses and other pairwise delimiters are im-
portant because they are the primary way by which
text, which is serialized, can denote higher-order
dimensionality. For example, two-dimensional struc-

tures can be directly expressed, as in

(

a11 a12
a21 a22

)

.

For 2D data structures such as matrices, such graph-
ical expression is natural, but unnecessary, as se-
rial expression is logically equivalent, albeit less
perspicuous, as in ((a11 a12) (a21 a22)), and gen-
eralizable to arbitrary rank and dimension, as in
(a1 (a21 a22) (a31 (a321 a322))). Such notation usu-
ally assumes “row-major” order, in which the hori-
zontal index changes fastest in a canonical (depth-
first) enumeration. This convention can be made
explicit, by introducing grouping delimiters, as in
(

(a11 a12)
(a21 a22)

)

. The transpose (“column-major”)

representation, is given by

((

a11
a12

) (

a21
a22

))

.

Zebrackets1 were originally developed more than
a score (20) of years ago, demonstrating the ex-
pressive power of microarticulated glyphs ✁Coh92⑨
✠Coh93⑩ ✁Coh94⑨. The basic idea is to allow parenthe-
ses ✁Len91⑨ and square brackets to take on stripes
and slits (“poles ’n’ holes”) to carry extended infor-
mation, such as functional rôle, logical position, and
nesting level in an expression. Pairwise delimiters are
“scored”, by cutting aligned typographical grooves,
to associate balanced mates and ease visual parsing.

Below, we show one possible scoring of this sam-
ple text:

[(a [b (c) d] [e (f) g]) (a [b (c) d] [e (f) g])]

Here it is, with greatly magnified brackets and paren-
theses:

1 The name, suggested by Bob Alverson, is a play on words
as the delimiters resemble zebra stripes: ✁ze✂bra✆kets✝.

�✁a✂b✄c★ d✧☎e✆f✪ g✩✦

✝a✞b✟c✭ d✬✠e✡f✯ g✮✫ ✥
Table 1 shows a number of examples of the use

of the Zebrackets infrastructure on the same sample
text.

The intervening score of years has not been es-
pecially kind to the original implementation: it was
hardly sturdier than a “paper-clips and bubble-gum”
contraption in the first place, and the slide into dep-
recation and disuse of METAFONT, accelerated by
the emergence of PDF as the interchange format of
choice, which cannot natively use characters gener-
ated by METAFONT, hastened the obsolescence of the
Zebrackets prototype. Adobe’s “Multiple Masters”
(such as Adobe Sans and Adobe Serif) and Apple’s
TrueType GX were similarly ahead of their time,
and failed to achieve critical mass and widespread
adoption. Jacques André’s contextual fonts, dynamic
fonts ✁AO89⑨ ✁AB89⑨, and Scrabble font ✁And90⑨ were
Type 3, so also withered.

Nevertheless, we believe that the principles un-
derlying the system are still valid. There is a huge
multidimensional space of potential characters and
glyphs, too big to be precompiled, and so a lazy,
demand-driven, image-time generation, both of fonts
and glyphs, with caching or memoization, as is used
in dynamic programming, is the only practicable
solution. Contemporary assumptions about fonts
do not allow this possibility ✁Har07⑨, so reviving the
existing implementation strategy is still of relevance.
The presentation here presents the font structure,
and the use, both implicit and explicit, of these fonts.

2 The fonts

The Zebrackets project relies on a set of fonts gener-
ated from the METAFONT version of the Computer
Modern fonts. The names of the fonts are all of the
form z(a)(b)(c)(d)(e), where:

(a) is a single letter, either ‘b’ or ‘p’; the font con-
tains either all brackets (b) or all parenthe-
ses (p).

(b) is a single letter, one of ‘b’, ‘f’, or ‘h’; the marks
in the font are all either slots (b for background),
ticks (f for foreground), or ticks within slots
(h for hybrid).

(c) is a single letter, one of ‘a’ through ’h’; the font
will contain 2m pairs of left and right delimiters,

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 215

Table 1: Stripes, slits, and slots: Examples of zebrackets with various arguments.
Each zebracket has a set of slots (here computed automatically), which can be striped
according to the chosen style: plain “foreground” stripes (style ‘f’ in the table); more
subtle, erasing “background” slits (style ‘b’); or “hybrid” (style ‘h’), which creates a
slit for each slot, then places foreground stripes on top thereof. Stripes generation can
automatically count unique pairs or track nesting depth, or count unique pairs at a
given depth (“breadth”). The encoding can be unary, binary, or “demultiplexing”,
up through the maximum as calculated by initial pass of a parser. Note that all
encodings have 0 as origin, but the rendered index origin can be changed to unity.

encoding style index = unique index = depth index = breadth

b �a ✁b ✄c✓ d✑ ✞e ✎f✤ g✗✏ �a ✁b ✄c✞ d✆ ✁e ✄f✞ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂
unary f �a ✁b ✄c✓ d✑ ✞e ✎f✤ g✗✏ �a ✁b ✄c✞ d✆ ✁e ✄f✞ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂

h �a ✁b ✄c✓ d✑ ✞e ✎f✤ g✗✏ �a ✁b ✄c✞ d✆ ✁e ✄f✞ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂

b �a ✁b ✂c✒ d✑ ✄e ☎f✔ g✓✏ �a ✁b ✂c✝ d✆ ✁e ✂f✝ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂
binary f �a ✁b ✂c✒ d✑ ✄e ☎f✔ g✓✏ �a ✁b ✂c✝ d✆ ✁e ✂f✝ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂

h �a ✁b ✂c✒ d✑ ✄e ☎f✔ g✓✏ �a ✁b ✂c✝ d✆ ✁e ✂f✝ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂

b �a ✁b ✂c✒ d✑ ☎e ✟f✘ g✔✏ �a ✁b ✂c✝ d✆ ✁e ✂f✝ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂
demux f �a ✁b ✂c✒ d✑ ☎e ✟f✘ g✔✏ �a ✁b ✂c✝ d✆ ✁e ✂f✝ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂

h �a ✁b ✂c✒ d✑ ☎e ✟f✘ g✔✏ �a ✁b ✂c✝ d✆ ✁e ✂f✝ g✆☎ �a �b �c✂ d✂ ✁e ✁f✄ g✄✂

Table 2: Font zphecmr12.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � ✁ ✂ ✄ ☎ ✆ ✝ ✞

✟ ✠ ✡ ☛ ☞ ✌ ✍ ✎

1 ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✗

✘ ✙ ✚ ✛ ✜ ✢ ✣ ✤

Table 3: Font zbfdcmtt12.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � ✁ ✂ ✄ ☎ ✆ ✝ ✞

✟ ✠ ✡ ☛ ☞ ✌ ✍ ✎

Table 4: Font zphecmr12, magnification 2.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � ✁ ✂ ✄ ☎ ✆ ✝ ✞
✟ ✠ ✡ ☛ ☞ ✌ ✍ ✎

1 ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✗
✘ ✙ ✚ ✛ ✜ ✢ ✣ ✤

Zebrackets: A score of years and delimiters

216 TUGboat, Volume 37 (2016), No. 2

Table 5: Font zphecmr12, magnification 4.

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � ✁ ✂ ✄ ☎ ✆ ✝ ✞
✟ ✠ ✡ ☛ ☞ ✌ ✍ ✎

1 ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✗
✘ ✙ ✚ ✛ ✜ ✢ ✣ ✤

with m ∈ 0..7, where a corresponds to m = 0
(i.e., 1 pair or 2 glyphs), b corresponds to m = 1
(i.e., 2 pairs or 4 glyphs), . . . , and h corresponds
to m = 7 (i.e., 128 pairs or 256 glyphs).

(d) is the name of a Computer Modern font family,
such as ‘cmr’.

(e) is a font size, such as ‘10’.

We consider two examples. In the first example,
font zphecmr12 (Table 2) was generated by calling
the zebraFont.py script with arguments specifying
parentheses striped in a hybrid visual style across 4
slots, using 12 pt Computer Modern Roman as the
base:

python3 zebrackets/zebraFont.py

--kind parenthesis --style hybrid

--slots 4 --size 12 --family cmr

The font contains exactly 24+1 = 32 = 0x20

parentheses. In the first half of the table, for i ∈
0x00 .. 0x0F, glyph i is an opening (left) parenthesis,
encoding i as a binary number with ticks placed in
four always-drawn slots. Similarly, in the second half
of the table, for i ∈ 0x10 .. 0x1F, glyph i is a closing
(right) parenthesis encoding (i− 0x10) as a binary
number.

In the second example, font zbfdcmtt12 (Ta-
ble 3) was generated by:

python3 zebrackets/zebraFont.py

--kind bracket --style foreground

--slots 3 --size 12 --family cmtt

specifying square brackets striped, using a foreground
style, across 3 slots, with the 12 pt typewriter font as
a base. The font contains exactly 23+1 = 16 = 0x10

brackets. For i ∈ 0x00 .. 0x07 across the top of the
table, glyph i is an opening bracket encoding i as
a binary number with ticks placed in three fixed
slots. Similarly, in the bottom half of the table, for
i ∈ 0x08 ..0x0F, glyph i is a closing bracket encoding
(i− 0x08) as a binary number.

The zebraFont.py script generates a new META-
FONT file whose name is the font name followed by
.mf, placing that file in the directory

$TEXMFHOME/fonts/source/public/zbtex

then calling mktextfm on that font name, before
finally calling mktexlsr to add the generated .mf,
.tfm, and .600pk files to the cache for $TEXMFHOME.

Thus, for the second example above, the script
zebraFont.py generates the METAFONT file:

.../source/public/zbtex/zbfdcmtt12.mf

and mktextfm generates files (assuming ljfour is
the default output mode):

.../tfm/public/zbtex/zbfdcmtt12.tfm

.../pk/ljfour/public/zbtex/zbfdcmtt12.600pk

and mktexlsr updates the cache of the list of files:

$TEXMFHOME/ls-R

We can also make magnified versions of these
fonts. Our third example (Table 4) is the zphecmr12
font with magnification 2, which corresponds to TEX
magnification

√
2 ≈ 1.414. The font was generated

by:

python3 zebrackets/zebraFont.py

--kind parenthesis --style foreground

--slots 3 --size 12 --family cmr

--magnification 2

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 217

Our last example (Table 5) shows the same
font with magnification 4, corresponding to TEX
magnification 2. The font was generated by:

python3 zebrackets/zebraFont.py

--kind parenthesis --style foreground

--slots 3 --size 12 --family cmr

--magnification 4

When a magnification argument is passed to
zebraFont.py, the mf-nowin and gftopk scripts are
called to produce larger versions of the fonts. The
magnification argument is multiplied by 600. Hence
we get:

2 .../zbfdcmtt12.1200pk

4 .../zbfdcmtt12.2400pk

8 .../zbfdcmtt12.4800pk

The METAFONT file that is created by the script
zebraFont.py is an eight-line file. It inputs the
base Computer Modern font, sets the parameters
for the number of slots and whether the marks are
foreground, background, or hybrid, then inputs a
file for generating a set of parentheses or a set of
brackets. For example, font zpfbcmr10.mf contains
the following lines:

if unknown cmbase: input cmbase fi

mode_setup;

def generate suffix t = enddef;

input cmr10; font_setup;

let iff = always_iff;

stripes:=1;

foreground:=1;

input zeromanp;

The last file input, by the last line above, is
zeromanp.mf, which is derived from the original
Computer Modern roman.mf (prefixing “ze” to in-
dicate its adaptation to zebrackets). It is one of
four METAFONT files distributed with the Zebrackets
project. The zeromanp.mf file sets some parameters,
then inputs the punctuation file zepunctp.mf, itself
derived from the Computer Modern punct.mf. For
brackets, there are corresponding files zeromanb.mf
and zepunctb.mf.

3 Using the fonts explicitly

There are two ways to use the fonts generated by the
Zebrackets project: explicitly and implicitly. In this
section, we present the explicit approach, and show
how it is used to produce the bibliographic references
of this article.

Suppose that a font zbfhcmr10 has been gener-
ated and we wish to use it. Then we need to declare
the font and its size with a line like this— the J

encodes size 10 and the A encodes magnification 1:

\ifundefined{zbfhcmrJA}

\newfont{\zbfhcmrJA}

{zbfhcmr10 scaled 1000}\fi

Font zbfhcmr10 is a font of 256 brackets, all with
foreground ticks. To ❁ bracket some text ➻ with a
pair of delimiters with four selected ticks (in this
example, using all but two slots at the top and one
at the bottom), the .tex source code can use

{\zbfhcmrJA\symbol{60}} bracket some

text {\zbfhcmrJA\symbol{188}}

since binary 0111100 = 25 + 24 + 23 + 22 = 60 and
128 + 60 = 188.

To hint at the expressive flexibility of such func-
tionality, the bibliographic references of the original
article on Zebrackets ✠Coh93⑩ placed a tick for each
page in which a \cite-ation appeared in the left
bracket of the corresponding citation label and a tick
for each page in which a \nocite-ation appeared in
the right bracket.

In this article, we show the same extension
throughout (not just in the bibliographic References
section), with the now explicit convention that should
a document have more than seven pages, then all ref-
erences beyond the seventh page activate the seventh
tick. In the reference ✠Coh93⑩, the activation of the
first and fifth ticks in the opening bracket indicate
that reference’s citation on the 1st page of this paper
as well as here on the 4th page.

Below is some of the code needed for this func-
tionality. There are two counters used as temporary
variables:

\newcounter{bracei}

\newcounter{bracej}

For each citation x, a pair of counters is set up,
ze:x for the left bracket, and zeno:x for the right
bracket. The \zecite macro is like the standard
LATEX \cite macro, but it also calls \zecitation,
which bitwise-ors-in 2p−1 to counter ze:x for the
left bracket, should there be a \zecite{x} on page
number p:

\newcommand{\zecite}[2][]%

{\def\tmp{#1}\ifx\tmp\@empty\cite{#2}%

\else\cite[#1]{#2}\fi

\zecitation{#2}}

\newcommand{\zecitation}[1]%

{\ifundefined{c@ze:#1}%

\newcounter{ze:#1}%

\setcounter{ze:#1}{0}%

\newcounter{zeno:#1}%

\setcounter{zeno:#1}{128}\fi

...

\addtocounter{ze:#1}{...}}

Zebrackets: A score of years and delimiters

218 TUGboat, Volume 37 (2016), No. 2

There are macros corresponding to \nocite, namely
\zenocite and \zenocitation, bitwise-oring-in 2p−1

to counter zeno:x for the right bracket, should there
be a \zenocite{x} on page number p.

Finally, the generation of the \bibitem is ex-
tended, so that

{\zbfhcmrJA\symbol{\arabic{ze:x}}}

appears as the citation’s left bracket, and

{\zbfhcmrJA\symbol{\arabic{zeno:x}}}

appears as its right bracket.

4 Using the fonts implicitly

Although providing an explicit interface to the Ze-
brackets infrastructure provides great flexibility, most
of the time such invocation is “under the hood” and
used implicitly, through the use of pseudo-LATEX
commands appearing in a LATEX document.

A Zebrackets-enabled LATEX file (with conven-
tional extension .zbtex) is passed through a pre-
processor, zebraParser.py, which recognizes four
constructs:

1. \zebracketsfont declares the need for a font,
provoking its creation should it not exist.

2. \zebracketsdefaults sets default values for
the parameters of the other two constructs.

3. \zebracketstext designates text in which the
parentheses and brackets are to be replaced au-
tomatically with zebrackets (including “zeparen-
theses”).

4. \begin{zebrackets} · · · \end{zebrackets}

designates a block of text for the same treatment
as for \zebracketstext.

Because of this precompilation, from .zbtex to .tex,
the workflow for such zebracketed word-smithing is
not as convenient as with, for instance, TeXShop:2

Compilation can be managed in Unix-like shells with
a Makefile to check dependencies and invoke the
required processes, but there is no automatic preview,
synchronization, or other accustomed conveniences.

4.1 The \zebracketsfont instruction

The previous section explained how Zebrackets fonts
are generated by the zebraFont.py script. This
script cannot be called directly from a LATEX doc-
ument, but can be invoked indirectly through the
\zebracketsfont instruction. Consider, for exam-
ple, the following call to zebraFont.py:

python3 zebrackets/zebraFont.py

--kind parenthesis --style foreground

--slots 7 --size 10 --family cmr

--magnification 1

2 http://pages.uoregon.edu/koch/texshop/

The invocation of that call can be made implicitly
in the LATEX document with the following line.

\zebracketsfont[

kind=parenthesis,style=foreground,

slots=7,size=10,family=cmr,

magnification=1]

As a prelude to LATEX compilation, the preprocessing
script zebraParser.py reads and parses this line,
directly calls zebraFont.py with the appropriate
parameters, and removes the line from the LATEX
document, which is exported with the usual .tex file
extension.

One need not include the full set of key–value ar-
guments, as default values can be used (as explained
below). Further, each of the parameter names can
be abbreviated, down to just the first three letters,
and the keyword arguments can also be abbreviated,
as in:

\zebracketsfont[kin=p,sty=f,slo=7,

siz=10,fam=cmr,mag=1]

The \zebracketsfont instruction takes six ar-
guments, which can appear in any order:

1. kind can be either parenthesis (p) or
bracket (b).

2. style can be any one of foreground (f),
background (b), or hybrid (h).

3. slots is a natural number between 0 and 7,
inclusive.

4. size is a natural number for a font size, such
as 10 or 12.

5. family is a Computer Modern font family
name, such as cmr or cmtt.

6. magnification is a natural number between
1 and 32, inclusive, representing the square
of the TEX font magnification, i.e., a power
of

√
2.

4.2 The \zebracketsdefault instruction

If Zebrackets is used extensively within a document,
then a lot of calls thereto are made, perhaps with
similar or even identical parameters. In order to
reduce typing (and introduction of errors), default
values for any of the Zebrackets parameter names
can be assigned.

For example, in the following lines, four fonts
are declared, all of family cmr, size 10. All but one
use parentheses, all but one are foreground style, and
all but one have seven slots.

\zebracketsdefaults

[size=10,family=cmr,

slots=7,kind=parenthesis,

style=foreground]

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 219

\zebracketsfont[]

\zebracketsfont[kind=bracket]

\zebracketsfont[style=background]

\zebracketsfont[slots=1]

4.3 The zebrackets environment

When zebraParser.py is called, whenever it parses
text to be transformed (when the document con-
tains either the \zebracketstext command or the
zebrackets pseudo-LATEX environment), then the
zebraFilter.py script is called. The latter reads
the text, determines what fonts are needed (invok-
ing zebraFont.py, as necessary), then replaces the
brackets and parentheses in the text with font–symbol
pair invocations.

Consider the following example, presented in §3
with explicit font–symbol pairs:

❁ bracket some text ➻

That example can also be generated implicitly, with
the lines:

\begin{zebrackets}

[style=f,number=60,

slots=7,encoding=binary]

[bracket

some text]

\end{zebrackets}

The number=60,slots=7 specifications in the param-
eter list summons a font using seven slots, from which
glyph 60 (= 25 + 24 + 23 + 22) and its partner 188
(= 27 + 60) are drawn.

For automatic processing, inputs are handled as
follows:

• Parameter index can take one of three possible
values— unique, depth, breadth—as exempli-
fied in Table 1.

• Parameter number overrides the settings for pa-
rameter index. When number is set, all paren-
theses and brackets in the text being processed
get that specific glyph in the font.

• When a value for parameter slots is not pro-
vided, then the number of slots for the fonts is
the minimum needed in order to encode all of
the glyphs for the text (taking into account the
value of the index parameter).

For example,

�a ✁b ✄c✞ d✆ ✁e ✄f✞ g✆☎

was generated by the lines:

\begin{zebrackets}

[index=depth,enc=unary,style=f]

(a (b (c) d) (e (f) g))

\end{zebrackets}

There are also three additional parameter pairs, each
with two values:

• mixcount=true states there should be a
single counter for striping parentheses and
square brackets; mixcount=false, two distinct
counters.

• origin=0 states that counting starts from
zero; origin=1, from one.

• direction=topdown means that striping
starts from the top of delimiters, whereas
direction=bottomup starts from the bottom.

The automatic striping of delimiters in a region
of text is done with a two-pass algorithm: a) the max-
imal depth and breadth, and the number of distinct
delimiter pairs are computed, in order to determine
the number of distinct slots needed (maximum of 7),
and b) the correct fonts are generated, if need be,
and the correct LATEX source is created.

5 Conclusion

The Zebrackets infrastructure does not assume that
characters are changeless atoms, as standard com-
puting infrastructures do. We consider below this
innovation from several perspectives.

5.1 Representative characters

The idea of characters or words as pictures is of
course not new. Most characters— including Chi-
nese characters, Japanese kana, and the Roman al-
phabet—have origins in pictographic associations,
albeit with prehistoric abbreviations and stylizations
that make the original inspiration obscure or all
but indiscernible. Illuminated manuscripts often em-
bellished initials with vines, flowers, animals, and
other inventions. Almost a century ago, Apollinaire
published books ✥dK25⑨ featuring “calligrams”, in-
stances of “concrete poetry” or “visual poetry”, in
which the typeface and arrangement of words on a
page informs the meaning of a poem as much as the
words themselves. Contemporary typography often
plays with pictorial suggestions ✥KH08⑨, especially
for special-purpose or display faces.

5.2 Context sensitivity

TEX has always featured non-locality, including “but-
terfly-effect” propagation, in which, for instance, a
seemingly small change at the end of a document
can affect layout at the beginning, especially in the
presence of floating figures and tables. However,
such effects are large-scale, macroscopic, rearranging
the glyphs, but not mutating the glyphs themselves.
Zebrackets suggests subatomic alteration, analog iso-
topes of the heretofore inviolate characters. A charac-
ter is the smallest visual part of a notational system

Zebrackets: A score of years and delimiters

220 TUGboat, Volume 37 (2016), No. 2

that has semantic value. A glyph is one possible rep-
resentation of a character. Ligatures can be thought
of as locally context-sensitive glyph adaptation, as
can some kinds of accents, kerning, and hyphenation.
But Zebrackets represents a larger context sensitivity,
adapting symbols to the broader circumstances. In
an extreme case, its filters could be applied to an
entire document.

5.3 Analog articulation

Fonts can be thought of as embeddable in a mani-
fold3 ❅CK14⑨, and perturbations on this manifold are
equivalent to variations of the font characteristics.
Microtypography ❅Kar15⑨ is an unexploited aspect
of font design and electronic publishing. Zebrack-
ets challenges the assumption that a glyph is the
smallest representation of a character that has se-
mantic value. Such capability hints at giving glyphs
depth, not in the sense of a 3D, sculptural sense
❅Ann74⑨ ❅FVJ11⑨ ❅HF13⑨, but logical depth, in the
sense of alternate projections of a set of variations
on a character. Current technology discourages such
generality, and, since the character/glyph/font sys-
tem is so deeply and tightly interwoven with any
operating system, application, or program, tradi-
tional computer typography and character-handling
have a lot of inertia.4 Even the idioms for selection in
contemporary viewers have a resolution (understand-
ably enough) of the character level. It is impossible,
for instance, to select just an accent (without also
getting the letter to which it is attached). Even
generating kerning tables for systems like zebrack-
ets is somewhat daunting, suggesting the need for
algorithmic kerning.

5.4 Charactles

Authors Mancilla and Plaice ❅MP12⑨ proposed the
charactle—a portmanteau word combining charac-
ter and tuple—as a generalization of characters and
glyphs. A charactle consists of an index into a dic-
tionary, along with some variant or versioning infor-
mation; it incorporates the Unicode character as a
special case. According to this model, a text would
be a sequence of charactles. The zebrackets pre-
sented in this paper are completely consistent with
this approach.

3 http://vecg.cs.ucl.ac.uk/Projects/projects_

fonts/projects_fonts.html
4 Of course, for specialized purposes, such as display fonts

and “Word Art” (as in Microsoft Word or PowerPoint), charac-
ters are unique. These are sort of “one-off”s, with no attempt
to optimize their rendering by caching them into OS tables:
singletons meant to be seen as much as read, leaning towards
the pictorial and away from the purely textual.

5.5 The future of literacy

The “take home message” is not only the extensi-
bility of parentheses and brackets, but the ability
to articulate any character, like a metaMETAFONT.
Every glyph, stroke, mark, and pixel should be de-
liberately and explicitly determined for the exact
circumstances of its apprehension. A character set
should not be precompiled as an operating system re-
source, a cache of common letter forms. Such a model
patronizes characters by treating them as cliches,
overused forms of expression. Digital typography,
electronic publishing, and computer displays allow
generalization of such forms by considering charac-
ters as semi-custom instances of a richly expressive
class, with factory (instantiation) specifications in-
cluding not only such qualities as font family, size,
and magnification, but also optical balance, reader
characteristics and preferences, and arbitrary rela-
tions with any other document qualities, a kind of ne-
gotiation between aspects. Factors related to reading
in the context of ubiquitous computing (“ubicomp”)
and IoT (“internet of things”)— such as ambient illu-
mination, whether a reader is wearing glasses or not,
and time of day—should be referenced as param-
eters to optimize legibility and experience ❅Coh14⑨.
Such exponential explosion of expression space, a
hoisting of a quantized model into a seemingly con-
tinuous one, can still run on a digital computer but
requires virtually arbitrary smoothness, promoting,
as it were, integers into reals, necessitating on-the-fly
compilation. Such display is optimally realtime, but
need not be, since a document browser could initially
display unadorned versions of characters, perhaps
preconditioned to reflect anticipated layout, dynami-
cally and progressively refreshing by swinging in the
embellished versions as they are generated.

References

✁AB89⑨ Jacques André and Bruno Borghi.
Dynamic fonts. In Jacques André and
Roger D. Hersh, editors, Raster Imaging
and Digital Typography, pages 198–204.
Cambridge University Press, 1989.
ISBN 0-521-37490-1.

✁And90⑨ Jacques André. The Scrabble font.
The PostScript Journal, 3(1):53–55, 1990.

❅Ann74⑨ Mitsumasa Anno. ABC Book
(in Japanese). Tankobon,
1974. ISBN-10 4-8340-0434-1,
ISBN-13 978-4834004342.

✁AO89⑨ Jacques André and Victor Ostromoukhov.
Punk: de METAFONT à PostScript.
Cahiers GUTenberg, 4:123–28, 1989.

Michael Cohen, Blanca Mancilla and John Plaice

TUGboat, Volume 37 (2016), No. 2 221

❅CK14⑨ Neill D. F. Campbell and Jan Kautz.
Learning a manifold of fonts. ACM Trans.
Graph., 33(4):91:1–91:11, July 2014.

✁Coh92⑨ Michael Cohen. Blush and Zebrackets:
Two Schemes for Typographical
Representation of Nested Associativity.
Visible Language, 26(3+4):436–449,
Summer/Autumn 1992.
http://visiblelanguagejournal.com/

issues/issue/98/.

✠Coh93⑩ Michael Cohen. Zebrackets: A
Pseudo-dynamic Contextually Adaptive
Font. TUGboat, 14(2):118–122, July
1993. http://tug.org/TUGboat/tb14-2/
tb39cohen.pdf.

✁Coh94⑨ Michael Cohen. Adaptive character
generation and spatial expressiveness.
TUGboat, 15(3):192–198, September 1994.
Proceedings of the 1994 TUG Annual
Meeting, Santa Barbara, CA. http://tug.
org/TUGboat/tb15-3/tb44cohen.pdf.

❅Coh14⑨ Michael Cohen. From Killing
Trees to Executing Bits: A Survey
of Computer-Enabled Reading
Enhancements for Evolving Literacy.
In VSMM: Proc. Int. Conf. on
Virtual Systems and Multimedia,
Hong Kong, December 2014.
http://www.vsmm2014.org.

✥dK25⑨ Guillaume Apollinaire
(Wilhelm Apollinaris de Kostrowitzky).
Poémes de la paix et de la guerre
1913–1916 (Poems of war and peace
1913–1916). Nouvelle Revue Française,
Paris, 1918, 1925.

❅FVJ11⑨ FL@33, Tomi Vollauschek, and
Agathe Jacquillat. The 3D Type
Book. Laurence King Publishing,
2011. ISBN-10 1856697134,
ISBN-13 978-1856697132.

✁Har07⑨ Yannis Haralambous. Fonts & Encodings.
O’Reilly, 2007. ISBN-10 0-596-10242-9,
ISBN-13 978-0-596-10242-5.

❅HF13⑨ Steven Heller and Louise Fili.
Shadow Type: Classic Three-Dimensional
Lettering. Princeton Architectural
Press, Thames and Hudson Ltd.,
2013. ISBN-10 1616892048,
ISBN-13 978-1616892043.

❅Kar15⑨ Peter Karow. Digital typography with
Hermann Zapf. TUGboat, 36(2):95–99,
2015. http://tug.org/TUGboat/tb36-2/
tb113zapf-karow.pdf.

✥KH08⑨ Robert Klanten and Hendrik Hellige,
editors. Playful Type: Ephemeral
Lettering & Illustrative Fonts.
Dgv, 2008. ISBN-10 3899552202,
ISBN-13 978-3899552201.

✁Len91⑨ John Lennard. But I Digress:
Parentheses in English Printed
Verse. Oxford University Press, 1991.
ISBN 0-19-811247-5.

❅MP12⑨ Blanca Mancilla and John Plaice.
Charactles: More than characters. In
Cyril Concolato and Patrick Schmitz,
editors, ACM Symposium on Document
Engineering, pages 241–244. ACM, 2012.

⋄ Michael Cohen
University of Aizu, Japan
mcohen (at) u-aizu.ac.jp

⋄ Blanca Mancilla
Mentel, Montreal, Canada
blancalmancilla (at) gmail.com

⋄ John Plaice
Grammatech, Ithaca, USA;
UNSW, Sydney, Australia
johnplaice (at) gmail.com

Zebrackets: A score of years and delimiters

222 TUGboat, Volume 37 (2016), No. 2

A Telegram bot for printing LATEX files

Amartyo Banerjee and S.K Venkatesan

Abstract

A proof of concept of a Telegram bot running on a
Raspberry Pi is described here. The bot will accept
a LATEX file from the user, process it and send back
to the user a PDF file resulting from that processing.
The following are discussed:

1. The genesis of the idea of the bot.

2. The use case for the bot as it exists at present,
and after additional functionality is implemented.

3. The learning process and obstacles encountered
in developing it.

4. Additional functionality planned to be imple-
mented, such as processing a multi-file LATEX
document, and printing the PDF file.

5. Steps needed to make it production ready, in-
cluding robust error handling and proper input
sensitization.

6. Potential for a complete rewrite to meet scalabil-
ity requirements and get around file download
limitations in the Telegram bot API.

1 Introduction

The authors present a proof of concept of a Tele-
gram [1] bot [2], meant to run on the Raspberry
Pi [3]. The purpose of this bot is to accept (LA)TEX
files submitted by a user running the Telegram client
on a mobile phone or on a PC/laptop browser, and
to send back a PDF file produced by compiling the
(LA)TEX files using pdfTEX or X ETEX or whatever
(LA)TEX compiler is invoked by the files.

2 Genesis of the idea

The idea for implementing this bot arose out of a
brainstorming session when the various uses that
could be made of the Raspberry Pi were discussed.
The question that came up was if it is possible to
run TEX on the Raspberry Pi. After checking online,
it was found that not only could TEX be run on the
Raspberry Pi, but people were in fact running it [4].
At this point we considered a potential use case for
the Raspberry Pi, wherein people could type up a
TEX file on their mobile phone, send it to server
software running on the Pi which could compile the
TEX file into PostScript or PDF and print it out. The
person who had submitted the TEX file could then
come and collect the typeset and printed output of
that TEX file. This service could be a paid service.

Figure 1: A Raspberry Pi

3 The use case for the bot

At the moment the printing functionality is not yet
implemented. Even the current functionality, how-
ever, has some use cases. A user could use (LA)TEX
to write a music score [5], and see what the type-
set output would look like. Or they could type a
chess game of a certain move in LATEX chess notation,
and get back a view of what that looks like when
typeset [6].

The idea is to eventually have a system where a
person can submit one or more (LA)TEX files which
will be processed and the resulting output will be
printed out. The print can be collected later on,
which would make the bot suitable for use in a print
shop. So a user could submit a (LA)TEX file to the
bot, it would be processed into a Postscript or PDF

file and this file could then be printed out. The user
could then pay to collect the print.

4 The learning process and obstacles

encountered

Initially the idea was for the TEX files to be submitted
via SMS. However, we decided against this on the
basis of our recollection of the difficulties in working
with SMS messages in computer programs, especially
as there are also restrictions in India on how many
SMS messages can be sent by a particular number
and to a particular number, as also restrictions on
what sort of attachments can be sent by SMS, and on
their size. Last but not least each SMS costs money.

For these reasons we decided to use messaging
software that does not depend on SMS messages to
send messages and attachments. In the authors’ cir-
cle of friends and acquaintances, the most often used
messaging applications on their mobile phones are
WhatsApp [7] and Viber [8], with more WhatsApp
users than Viber, and those contacts in the first au-
thor’s phonebook who use both are far more likely
to check WhatsApp than Viber.

Amartyo Banerjee and S.K Venkatesan

TUGboat, Volume 37 (2016), No. 2 223

This seemed to make WhatsApp the software
of choice for transmitting TEX files to the proposed
server software. The case seemed to be strengthened
by the fact that in past searches for ideas of things
that could be done with a Raspberry Pi, the first
author had seen a write-up on using WhatsApp on
the Raspberry Pi to send notifications to the owner
of the Raspberry Pi [9] whenever events occurred
which the owner was interested in knowing about.

To the best of the first author’s recollection how-
ever, in the comments made on the web page [9], it
had been pointed out that the use of WhatsApp in
this manner involved the use of reverse engineered
knowledge of the WhatsApp protocol, which is pro-
prietary. The protocol could be changed anytime by
WhatsApp, which would break any software relying
on the reverse engineered understanding of the proto-
col. Writing such software and using it also had the
potential of violating WhatsApp’s terms of service,
which could result in termination of the WhatsApp
account of the person whose mobile phone number
had been used to register the unofficial software that
used the reverse engineered WhatsApp protocol.

In these same comments, it was pointed out that
in contrast to WhatsApp, the Telegram messaging ap-
plication had an officially documented protocol [10],
permitted the existence of open source clients [11],
and provided not just one but two APIs [12] which
could be used to interact with Telegram and its
servers, and which could be used to write software us-
ing Telegram as the messaging part of that software.

As it turns out, the first author’s recollection
turns out to be faulty in this case. They have been un-
able to find any comments stating anything listed in
the above two paragraphs. Perhaps such comments
had indeed been seen on that website but in that case
they have subsequently been deleted. Checking in
the Wayback Machine [13] for past versions of the url
in [9] does show certain comments which have been
deleted from the live site, but not the comments the
first author seems to recall. Alternatively, the first
author saw such comments elsewhere but now cannot
recall where that could have been, nor have they been
able to discover in their recent web searches any other
website containing such comments. It is possible that
in the first author’s memory they have conflated their
reasoning with a url where they thought they had
seen someone else make those points.

That being said, the substance of the first au-
thor’s objections remains valid. The url mentioned
in [9] refers to the use of a python library named
Yowsup [14]. This library uses a reverse engineered
API for WhatsApp, named Chat API [15]. On one
of the Chat API web pages [16], they mention that

they have received a cease and desist letter from
WhatsApp’s lawyers, a copy of which they have made
publicly available at the url listed in [17]. Although
the author of Chat API states in [16] that they will
maintain the repository mentioned whose url is [15],
the letter shown in [17] does confirm that Chat API

is a reverse engineering of WhatsApp’s API, and
that WhatsApp considers the development and use
of Chat API to be a violation of its terms of service.

It is also the case that the author of the tutorial
in [9] mentions partway through [18] the risks of
getting one’s mobile phone number banned through
repeated attempts to register the same number, and
recommends using Telegram.

Remembering these objections, however hazily,
when the time came to choose how a potential user
could send TEX files to the proposed server software
running on the Raspberry Pi, it was decided to use
Telegram. The authors discussed the reasoning and
concerns of the first author. Given that SMS is intrin-
sic to every mobile phone and WhatsApp is already
widely installed the second author might have in-
sisted on using either of these. Instead the second au-
thor agreed with the first author, reasoning that the
potential users they had in mind could be persuaded
to install Telegram on their mobile phones, and in
any case at some future date a mobile phone applica-
tion could be written integrating a text editor with
the ability to send TEX files to the server software. In
that case potential users would have to be persuaded
to install that application on their phone anyway.

As mentioned above, Telegram provides a choice
of two APIs to interact with it. One is an API to write
a full-fledged Telegram client [19]. Our program, if
written using the Telegram client API, would thus
be a client from the point of view of the Telegram
servers while also being a server. In other words,
it would be a client from the point of view of the
Telegram servers, but a server from the point of view
of our users. The service provided by it would be
the fact that as mentioned above, if sent a (LA)TEX
file it would return a typeset PDF and/or print said
PDF.

The second API [20] allows one to write a bot for
Telegram. The exact definition of what a Telegram
bot is and can do can be found on the Telegram
website [2, 20]. That being said, the closest analogy
that comes to mind is the variety of bots [21] written
for IRC [22]. In some sense it seems to the authors
that Telegram bots are a repackaging of an old idea
for a generation of Internet users whose primary
interaction with the Internet is via smartphones,
who might have never come to know about IRC and
IRC bots.

A Telegram bot for printing LATEX files

224 TUGboat, Volume 37 (2016), No. 2

On reviewing the two APIs, it seemed to the
first author that writing a bot might be an easier
thing to get started with, especially if one wanted
to get a proof of concept implementation up and
running quickly. It helped that a write-up on how to
implement a Telegram bot on the Raspberry Pi [23]
was easily found. Before going any further it should
be mentioned that a third possible way exists, which
is to use a command line desktop/laptop Telegram
client [11], which would run on the Raspberry Pi,
and could be configured to perform certain tasks on
certain events, such as the receipt of a file from a user,
etc. This approach has both advantages and disad-
vantages. The disadvantages led to the bot approach
being chosen, but the advantages might lead to the
software being implemented using the command line
Telegram client after all in a future iteration.

Just as in the case of running a Telegram bot
on the Raspberry Pi, it was easy to find web pages
giving instructions on using the Telegram command
line client on the Raspberry Pi [24], as a means of
controlling the Raspberry Pi remotely [25] and receiv-
ing notifications from the Raspberry Pi when certain
events happened. Although we worked through the
tutorials listed on those web pages, it was not imme-
diately obvious how to extend the examples given to
achieve what we wanted to achieve.

In contrast, the web pages providing instructions
on implementing a Telegram bot on the Raspberry
Pi [23] lead to a GitHub page containing the software
used to implement the bot [26], which in turn had
slightly more complex examples [27, 28] that could
be extended to achieve what we wanted. The fact
that the bot examples were written in Python, which
the first author is more familiar with, as compared
to Lua, which the Telegram command line client
examples were written in, was also a factor that led
the first author to choose the bot approach. Yet
another factor in choosing the bot approach was
the fact that using the Telegram client required the
first author to use their mobile phone number to
register with the Telegram server [24], as compared
to a bot, which does not require a mobile phone
number [20, 23].

Nevertheless, there is one advantage of using
the Telegram command line client which may lead
to it being used in a future iteration of the software.
The advantage is that as per the existing Telegram
bot API, the maximum size of a file that may be
downloaded by a bot from the Telegram servers is
20MB [29]. This means of course, that the maximum
size of a file that can be sent by a user of our software
is 20MB. For the command line client, as also official
Telegram clients released for various platforms, the

size limitation is much higher, perhaps even as much
as an order of magnitude.

Now, 20MB seems like more than enough for
(LA)TEX files, which are after all like source code.
However, one can never predict how large a (LA)TEX
file a user might wish to compile and print. Further-
more, this 20MB limit can be reached much more
quickly if the user chooses to make references to fig-
ures and other graphics files in their (LA)TEX files, to
be included in the final typeset PostScript/PDF file.

During discussions, the second author stated
that they did not anticipate many of the users they
had in mind needing to exceed that 20MB limit, so
for now the bot approach is the only implementation
that exists. If the software is found generally useful,
a new implementation using the command line client
approach will be done in future.

The implementation of the code took a few days.
Much of this time was spent working through the
tutorial for implementing a Telegram bot on the
Raspberry Pi [23], trying to understand and then
extend the more complex examples given on the
website of the software used to implement the bot
API [27, 28, 30], known as telepot [26], trying to
understand the Telegram bot API [31] per se, and
simply brushing up the first author’s Python and
general programming knowledge.

Further time was taken up when the function
provided by telepot to download a file [32] was found
not to work. In this case that meant the code would
hang at that point, until one was forced to kill the bot.
Initially a workaround was coded whereby wget [33,
34] was used to directly download the file from the
Telegram servers. After digging into the implemen-
tation of the file download function, and doing some
research online [35], using comments in the telepot
source code itself [36], we were able to patch the tele-
pot source files to make the download file function
work correctly. The patch itself is trivial although
the effort to figure out what to do was not. It will
be submitted to the author of telepot.

There was also the time involved in searching
for LATEX server implementations, i.e. some software
that listens on the network, receives LATEX files from
clients and does something with it, either compile
it and send back the typeset output or print it or
something else. We found a few interesting links
but nothing that fit our purpose [37–41]. On the
other hand, those web searches did provide pointers
to what was eventually implemented [42, 43].

5 User experience and implementation

As currently implemented, the user will have the
following experience when interacting with the bot.

Amartyo Banerjee and S.K Venkatesan

TUGboat, Volume 37 (2016), No. 2 225

First, the prerequisites. The user will have to down-
load and install the official Telegram client for their
smartphone [44–46]. There is a registration process
which requires providing a mobile phone number,
which is used by the Telegram server for verification
and to complete the installation of the client pro-
gram. This is similar to the process used to install
other mobile phone centric messaging applications
like WhatsApp and Viber. Any user who has suc-
cessfully installed and used these other applications
to communicate with others should have no problem
completing this process on Telegram.

After this, they have to search for the bot,
named AmartyoFirstBot. On selecting this bot from
the search results, initially a button labelled ‘Start’
will appear, which has to be pressed. According to
the bot API documentation [47], this is one of the
commands to which the bot must give a response,
but at present it does nothing. At this point a chat
session will be opened with the bot. The interface at
this point is similar to opening a chat with a user on
the other messaging applications mentioned earlier.

Now the user has to select an attachment to
send, by pressing the button on the phone touch-
screen that resembles a paper clip. This brings up
a series of icons, which are meant to select photos,
videos, music, voice clips and documents. The icon to
send documents must be selected, and then a LATEX
file selected using the file manager interface. Once
selected the user is taken back to the chat session,
and an icon appears the pressing of which sends the
LATEX file to the bot.

It must be emphasized at this point that the
process of installing Telegram, searching for a contact
or another Telegram user or a bot, is identical for
every Telegram user whether or not they ever interact
with our bot. The same applies to starting a chat
session, either with a user or a bot, and for selecting
an attachment to send and sending it.

What is unique in our case is that when a LATEX
file is sent, the user will ultimately see that a bot has
sent a PDF file as a message, and will have an option
to download it. On downloading it, they can tap on
the icon and the PDF file will display in whichever
application is configured to display PDF files.

On the server side, the bot, on receiving a chat
message, checks if it has been sent a document, and
if that document is a LATEX file. If so, it down-
loads that file and saves it in a temporary directory.
It then changes to that directory and invokes the
latexmk [48] command on the received LATEX file,
using Python’s facility for calling external programs.
In the invocation it passes certain parameters to
latexmk, along with the name of the LATEX file. One

Figure 2: The LATEX bot

of these specifies that latexmk should try to create a
PDF file, which by default latexmk does by invoking
the pdflatex [49] command. The bot checks the
return code of latexmk, and if the return code indi-
cates that latexmk succeeded, it proceeds to send the
PDF file created by latexmk to the user who had sent
the LATEX file. At this point the bot changes back to
the directory it was in before it received the LATEX
file. It continues running, waiting for messages.

6 Future functionality

As mentioned above, the bot is strictly a proof of
concept at this point. It lacks functionality and also
robust error handling, not to mention any effort at
sanitizing what it receives from the user. In terms of
functionality, the most obvious thing missing is the
ability to handle anything more than a single TEX
file. Thus, a user who has written a thesis or report
in LATEX, which typically include a single master TEX
file with reference to multiple other LATEX files, each
containing either the text of a chapter, or maybe
references to other LATEX files, as well as figures and
other pictures, will not be able to use the bot to
compile and print that report or thesis.

The authors have an idea for implementing this
functionality. It involves allowing the user to send
the bot a zip file containing all the LATEX and other
files needed to compile and produce a report, such
as figures. It will be the user’s responsibility to
make sure the folder structure inside the zip file
corresponds to the declarations in the main LATEX
file, such that invoking latexmk on the main file
will successfully find all the other LATEX files and
any (Encapsulated) PostScript or other graphics files
needed, as well as any non-standard fonts or other
files. If the user wishes to use fonts beyond those
that every TEX installation is expected to have by
default, it will be their responsibility to include those

A Telegram bot for printing LATEX files

226 TUGboat, Volume 37 (2016), No. 2

font files inside the zip file at the correct path such
that latexmk can find them.

The bot will expect the name of the zip file, the
part before the .zip extension, to be the same as the
name of LATEX file inside it. This LATEX file contain-
ing the same name as the zip file will be expected
to be the main LATEX file, on which latexmk will
be invoked. On successful compilation, the resulting
PDF file will be sent back to the user and/or printed.

Other ideas for functionality include options for
letting the user indicate if they wish to simply receive
the PDF file or to actually print it. In the latter case,
they will initially receive the PDF file to verify that
the output is as they expect, and then an option to
approve the final print. This will be important in
case the bot is used in a business, such as a print
shop. Requiring the user to approve the PDF before
printing should help in avoiding disputes where the
user claims the printed output does not look like
they wanted it to and refuses to pay for the print.

At this point it is not clear how this “approve
before printing” functionality will be implemented.
The Telegram bot API already provides a variety of
information such as the user id, the chat session id,
the message id, etc. This will have to be kept track
of in some sort of database, using which the bot will
be able to know whom it received a particular TEX
or zip file from, that the compilation succeeded and
the PDF file was successfully sent back to that user,
and that the user has approved it and agreed to print
it. Some sort of record will have to kept of the fact
that a user has approved a printout. On the user
end, perhaps a combination of custom keyboards,
which is functionality provided by the Telegram bot
API, can be used to provide a user interface for this
approval functionality.

Other functionality that needs to be implemented
is the /start command, which every bot is expected
to implement, along with a few others [47].

7 Becoming production ready

As far as error handling is concerned, at present
if latexmk returns a non-zero error code, the bot
simply exits with an error code of 1. This is obviously
not suitable for production purposes. If latexmk fails
to compile the TEX document, the bot should send
relevant error messages back to the user, to enable
the user to correct whatever errors caused latexmk

to fail, whether in the syntax of a single LATEX file,
or in the paths where other LATEX files or graphics/
font files are supposed to exist.

It might also be the case that latexmk fails be-
cause the user intended to produce PostScript as
the final output, not PDF, and that pdfLATEX has

failed because the LATEX files refer to PostScript files
for use as figures, not Encapsulated PostScript. In
that case, since PostScript is perfectly suitable for
printing, the bot should attempt to invoke latexmk
with the option to produce a PostScript file as the
final output, not PDF. Software for viewing PDF

files is widespread nowadays, but this is not the case
for PostScript files. For the purpose of sending some-
thing back to the user, the PostScript file produced
by latexmk should be converted using ps2pdf [50],
and this PDF file can then be sent by the bot. On the
other hand, the PostScript file produced by latexmk

should be the one sent to the printer by the bot.
Similarly, the user may have intended for their

files to be compiled by X ELATEX [51, 52] rather
than pdfLATEX, in which case the bot should invoke
latexmk appropriately.

Perhaps one approach is to invoke latexmk by
default with the -pdf option, then try with the
-xelatex option, and if that fails try with the -ps

option. If all these fail, the bot should give up and
send an appropriate error message back to the user.

A more tricky case arises in cases where latexmk
returns 0, but the resulting PDF still does not contain
what the user intended. This can happen for exam-
ple when trying to typeset music using LATEX and
the abc [53] notation. We noticed that if there was
a syntax error in the abc notation within the LATEX
file [54, 55], a PDF file might get successfully created
but with the actual typeset music missing. This
is because in this case latexmk, or even pdflatex,
invokes another program called abcm2ps [56, 57],
which fails to compile the erroneous abc syntax. The
abcm2ps program does print error messages indicat-
ing that it has failed. However, it either does not exit
with appropriate error codes, or those are ignored
by pdflatex and/or latexmk, most likely pdflatex.
As a result latexmk returns 0 to indicate success
when in fact this is not the case.

Perhaps one option is to check if the LATEX file
is using the relevant LATEX package for abc notation,
and in that case check the output of latexmk for
the known error messages by abcm2ps indicating
that it has failed. In which case the misleading zero
exit code of latexmk should be ignored, and the
bot should send back the relevant error messages
of abcm2ps. However, this will make the bot code
more complicated, so perhaps a better approach is to
make changes to either abcm2ps or pdflatex, which
ever it needs to be, such that if abcm2ps fails then
pdflatex should exit with a non-zero value.

What is to be done if latexmk received a sig-
nal [58] causing it to exit uncleanly is not clear to the
authors at the moment. It seems to the first author

Amartyo Banerjee and S.K Venkatesan

TUGboat, Volume 37 (2016), No. 2 227

at present that the options are for the bot to treat it
as a transient error and try invoking latexmk again,
or assume that something is seriously wrong with the
system it is running on, try to send an appropriate
error message to the user, and exit as cleanly as it
can. More thought and discussion is required before
any decision can be taken.

Last but not least, to be production ready, the
bot must implement sanitization of inputs submit-
ted by the user. This is a necessity for any internet
facing server software in this era of SQL injection
attacks [59], cross site scripting attacks [60], priv-
ilege escalation [61] and arbitrary remote code ex-
ecution vulnerabilities [62], which are often made
possible by not sanitizing or improperly sanitizing
user inputs [63, 64], especially when provided by
some unknown and untrusted user over the Internet.
Measures to be taken that come to mind immediately
are making sure the names of files submitted by the
user are sane, and that certain metadata needed by
the bot are present, even in cases where the bot API

says such metadata is optional [65]. Other measures
include making sure that the contents of files submit-
ted by the user match their claimed mime type, and
that they are not in fact viruses and/or some other
malware. This is a subject in which the first author
does not have much expertise, and more research
is needed to ensure that the bot implements proper
input sanitization.

8 Potential for a complete rewrite

In the long run the bot may need to be re-written
in Python 3, simply to take advantage of the fact
that telepot provides an API to write asynchronous
code, which might well be a necessity for scalability
reasons at some point in the future, but only for
Python 3 [66]. This will involve learning about the
differences between Python 2 and Python 3, and
about how to program asynchronously in Python 3,
and then how to use telepot in an asynchronous man-
ner. This will take quite a lot of time, so we only
expect to do it if and when the bot becomes popular
enough that scalability issues matter. At any rate,
it will be done after implementing necessary func-
tionality and fixing the error handling and sanitizing
user inputs as listed above.

9 Epilogue

At the time of completion of the first draft of this
paper, the bot had been written and was running
on the first author’s laptop. The Raspberry Pi on
which the bot was meant to run was delivered to the
first author on 10th June, 2016. Subsequently the
Raspberry Pi was powered up and made to run and

the prerequisites for getting the bot running on the
Raspberry Pi were installed and configured. As of
the current date the bot is installed on the Raspberry
Pi. It currently needs to be started manually, once
the Raspberry Pi is powered up.

Making sure the bot starts running automati-
cally upon powering up the Raspberry Pi is one of
the improvements to be done in future, along with
all the other improvements outlined above, including
printing functionality.

References

[1] telegram.org

[2] core.telegram.org/bots

[3] www.raspberrypi.org/help/what-is-a-
raspberry-pi

[4] www.raspberrypi.org/forums/viewtopic.
php?f=63&t=8279

[5] martin-thoma.com/how-to-write-music-
with-latex

[6] www.highschoolmathandchess.com/2011/10/
06/creating-chess-diagrams

[7] www.whatsapp.com

[8] www.viber.com/en

[9] www.instructables.com/id/WhatsApp-on-
Raspberry-Pi/?ALLSTEPS

[10] core.telegram.org/mtproto

[11] github.com/vysheng/tg

[12] core.telegram.org/api

[13] archive.org/web

[14] github.com/tgalal/yowsup

[15] github.com/mgp25/Chat-API

[16] github.com/mgp25/Chat-API/wiki/
WhatsApp-incoming-updates#11-july-2015

[17] www.docdroid.net/gWpFsXz/whatsapps-
cease-and-desist-and-demand-against-

chat-api.pdf.html

[18] www.instructables.com/id/WhatsApp-on-
Raspberry-Pi/step2/Registration

[19] core.telegram.org/api#telegram-api

[20] core.telegram.org/api#bot-api

[21] en.wikipedia.org/wiki/IRC_bot

[22] en.wikipedia.org/wiki/Internet_Relay_
Chat

[23] www.instructables.com/id/Set-up-
Telegram-Bot-on-Raspberry-Pi/?ALLSTEPS

[24] www.instructables.com/id/Telegram-on-
Raspberry-Pi/?ALLSTEPS

[25] www.instructables.com/id/Raspberry-
remote-control-with-Telegram/?ALLSTEPS

A Telegram bot for printing LATEX files

228 TUGboat, Volume 37 (2016), No. 2

[26] github.com/nickoala/telepot

[27] github.com/nickoala/telepot/blob/
master/examples/simple/skeleton.py

[28] github.com/nickoala/telepot/blob/
master/examples/simple/skeleton_route.

py

[29] core.telegram.org/bots/api#getfile

[30] github.com/nickoala/telepot/blob/
master/doc/reference.rst

[31] core.telegram.org/bots/api

[32] github.com/nickoala/telepot/blob/
master/telepot/__init__.py#L460

[33] en.wikipedia.org/wiki/Wget

[34] www.gnu.org/software/wget

[35] stackoverflow.com/questions/17285464/
whats-the-best-way-to-download-file-

using-urllib3

[36] github.com/nickoala/telepot/blob/
master/telepot/__init__.py#L473

[37] alex.nederlof.com/blog/2013/02/22/
latex-build-server

[38] web.archive.org/web/20120120210031/
http://bugsquash.blogspot.com/2010/

07/compiling-latex-without-local-

latex.html

[39] scribtex.wordpress.com/2010/01/17/the-
common-latex-service-interface

[40] github.com/jpallen/clsi

[41] launchpad.net/rubber

[42] superuser.com/questions/173914/dropbox-
latex-automated-pdf-compile

[43] latex-community.org/forum/viewtopic.
php?f=28&t=9512

[44] telegram.org/dl/android

[45] telegram.org/dl/ios

[46] telegram.org/dl/wp

[47] core.telegram.org/bots#global-commands

[48] users.phys.psu.edu/~collins/software/
latexmk

[49] tug.org/applications/pdftex

[50] www.ghostscript.com/doc/current/Ps2pdf.
htm

[51] xetex.sourceforge.net

[52] tug.org/xetex

[53] abcnotation.com

[54] martin-thoma.com/how-to-write-music-
with-latex/#abc

[55] martin-thoma.com/how-to-write-music-
with-latex/#example

[56] moinejf.free.fr

[57] abcplus.sourceforge.net/#abcm2ps

[58] en.wikipedia.org/wiki/Unix_signal

[59] en.wikipedia.org/wiki/SQL_injection

[60] en.wikipedia.org/wiki/Cross-site_
scripting

[61] en.wikipedia.org/wiki/Privilege_
escalation

[62] en.wikipedia.org/wiki/Arbitrary_code_
execution

[63] en.wikipedia.org/wiki/Improper_input_
validation

[64] xkcd.com/327

[65] core.telegram.org/bots/api#document

[66] github.com/nickoala/telepot#async

⋄ Amartyo Banerjee and S.K Venkatesan

TNQ Books and Journals

Chennai, India

http://tnqsoftware.co.in

Amartyo Banerjee and S.K Venkatesan

TUGboat, Volume 37 (2016), No. 2 229

Book review: Palatino: The natural history of a
typeface by Robert Bringhurst

Boris Veytsman

Robert Bringhurst, Palatino: The natural history of a
typeface. David R. Godine, Publisher; Boston, 2016,
296pp, ill. US$65.00. ISBN 978-1-56792-572-2.

The participants of TUG2016 in Toronto had the
rare treat of attending lectures by two prominent
contemporary typographers, Robert Bringhurst and
Chuck Bigelow. The Elements of Typographic Style by
Bringhurst is considered one of the most influential
treatises on book design; Hermann Zapf wished “to
see this book become the Typographers’ Bible”.

Interestingly enough, both Bringhurst and Big-
elow discussed major typeface designs. The latter
told the story of Lucida by Bigelow and Holmes,
while the former discussed the Palatino family by
Hermann Zapf. Bringhurst’s lecture could be con-
sidered a presentation of his book Palatino, pub-
lished in a limited (order now) trade edition this
fall by David R. Godine.

The name Hermann Zapf strikes many chords
in the TEX community. He collaborated with DEK,
and was until his death an honorary member of the
TUG board, the Wizard of Fonts. Thus while a book
by a great typographer about a great font designer
is a gift to any bibliophile, this book has a special
meaning for our community.

The book discusses the long evolution of the
Palatino family by Zapf. It lists all known variants
from No. 1, Palatino text Roman trial cutting

(1949) to No. 112, Aldus Nova bold italic, re-
leased in True Type and Open Type in 2005 (the
classification and enumeration are by Bringhurst).
Hermann Zapf was notable for his eager embrace
and understanding of new technologies, and Pala-
tino fonts were made for many different typesetting
systems: letterpress, Linotype, phototypesetting
and many digital formats. TEX users are quite fa-
miliar with this font family. The printed version of
this review is typeset in Adobe Palatino with LATEX
package mathpazo (using sc and osf options for real
Small Caps and old style figures in text). This font
remains one of the most elegant and noble fonts in
modern digital typography.

The technological changes require changes in
the fonts themselves: the color and feel of copy
produced by different means are quite different.
The subtle changes in each redesign of Palatino
show the care and skill of the great master Zapf.
The font family includes Cyrillic and Greek letters
as well as accented Latin ones, titling fonts, and
many other typographic niceties.

The world of font design, even when we talk
about one (admittedly large) family, is complex. A
journey into this world requires a wise guide, gen-
erous to share his knowledge and experience with
the reader. Robert Bringhurst is, without a doubt,
such a guide. His book fortunately avoids the trap
of becoming a catalog of font designs, interesting
only to a few connoisseurs. Instead, the lucid ex-
planations of the reasons behind the evolution of
the design, the challenges and Zapf’s ingenuity in
meeting them, make reading the book a wonderful
experience. For example, he devotes several pages
to study of just one character, the humble asterisk
(∗), and uncovers the beauty behind this modest
typographic device.

Besides being a typographer, Robert Bringhurst
is a renowned poet, and this shows in the book. For
example, it is clearly seen in the description of the
difference between the original Palatino and the
later variation Aldus:

Aldus is not just narrower than Palatino, it
also has a slightly lighter stroke and smaller

Book review: Palatino: The natural history of a typeface by Robert Bringhurst

230 TUGboat, Volume 37 (2016), No. 2

x-height with taller ascenders. The transition
from thick to thin (or from pull stroke to
edge stroke), which in Palatino often have
a slightly angular articulation, are more dis-
tinctly and consistently angular in Aldus.
This gives a page of Aldus greater crisp-
ness — some would say coldness — than a
page of Palatino. If Palatino is like a big,
round, fully flavored red wine, then Aldus
is like a flinty, dry white — equally deep
but more narrow in flavor, and best served
chilled, to keep the flavors closely focused.
The proportions of the letters, with their
modest eye and tall ascenders, emphasize
their Italian humanist heritage, yet the hint
of angularity in the round forms also alludes,
ever so subtly, to the blackletter tradition.
This allusion is reinforced by the shapes of
Aldus apostrophe and quotation marks: they
are long, sloped, tapered but uncurved —
something rarely found in roman and italic
but altogether typical of fraktur.

The same poetic eye shows in the best description of
the difference between serifed and sans serif fonts I
ever read:

Serifs — those little entry and exit strokes
through which the writing hand and the
reading eye like to find their way into and
out of a letterform — are also a means by
which letters tie themselves into a line: a
form of graphic social bonding. They are as
old as the letters themselves; but sanserif
letters — the socially disengaged — are no
younger.

Several good metaphors are used throughout
the book, illuminating its main themes. Bringhurst
compares the fonts to classic musical instruments
like cellos and pianos. This metaphor becomes espe-
cially apt when he notes that it is difficult to judge
some variants of Palatino because they were not
actually used — as we cannot judge an instrument
which was never played by a skilled musician.

Another important comparison is between ty-
pography and architecture. Bringhurst spends some
time discussing entasis: a slight convexity or con-
cavity of lines, in architecture and font design. His
juxtaposition of the profile of classic columns and
the elegant curves of the uppercase Roman “I” in
Palatino is quite enlightening.

Bringhurst further compares classification of
fonts to botany, where a naturalist must decide
which plants are close relatives, which plants be-
long to different species and which are subspecies

Figure 1: Zapf’s drawings for Linofilm Palatino

Bold Italic f

of the same kind. This is actually a fundamental
metaphor for the book: not for nothing does the
latter have the ambitious subtitle The natural history
of a typeface. Bringhurst clearly sees his work as akin
to the work of Linnaeus and Cuvier and makes us
recall the times when the lines between a scientist,
an artist and a poet were somewhat blurred.

As a poet, Bringhurst does not just reveal pro-
found truths in nature and art. His eye sometimes
turns to society, and again his observations are
deep and revealing. For example, he discusses the
changes made by Zapf to the fonts when the Stem-
pel foundry prepared variants for sale in North
America in the 1950s. To make the fonts closer to
“the limits of American typographical taste”, Zapf
revised nine letters and recut two ligatures, mak-
ing the result “tamed to suit the goût américain.”
Bringhurst discussed the changes, and then surpris-
ingly notes the difference between the copy used to
demonstrate the fonts:

The European specimens are full of quota-
tions from Goethe and Shakespeare, sam-
ple title pages for books by Bertrand Russell
and George Bernard Shaw, sample posters
for art exhibitions, menus for five- and six-
course meals, business cards for barristers
and physicians, and snippets of typographic
history. The American materials demon-
strate instead how to use some of the world’s
most elegant printing types to say such things
as “Best 100-watt bulb ever” and “Buy wash-
and-wear! Not wash-and-beware!”

The book is very well illustrated. Font sam-
ples, drawings, photographs help the author to con-
vey his thoughts clearly and convincingly (see, for

Boris Veytsman

TUGboat, Volume 37 (2016), No. 2 231

Figure 2: Kerning and ligatures in metal

Figure 3: A spread from the book

example, Figure 1, showing the pages describing
the making of Linofilm Palatino Bold Italic f).
Many illustrations will warm the heart of a ty-
pophile; for example, the one in Figure 2 shows how
kerning and ligatures were done in metal: sorts are
shaved on the sides to effect kerning and there are
separate sorts for ligature glyphs.

The book was designed by Robert Bringhurst
himself, and the design is daring and beautiful. It
uses margins for a wonderful variety of illustrations;
full page and part-page ones subtly interplay, as
shown in Figure 3. The main text is typeset in Aldus
Buchschrift and Palatino Sans. The book includes
letterpress pages printed by the well regarded book
designer and artist Jerry Kelly (Figure 4).

The publisher of the book, David R. Godine,
is also well known among bibliophiles. We have
reviewed several books from his catalogue in these
pages, and an article about his work appeared

Figure 4: An example of letterpress pages

in a recent issue (David Walden, Note on the publisher
of the Bodoni book: David R. Godine, TUGboat 37:1,
pp. 97–98, 2016, http://tug.org/TUGboat/tb37-1/
tb115walden.pdf). The book is beautifully printed
and bound.

Of course, even the best book ever printed
could be made better. I missed two features in
this book, one minor, one more important. First,
the list of fonts and font variants in the end of this
book would be more useful if accompanied by the
page numbers where the font is discussed or shown.
Second, if a font is a musical instrument, then a dis-
cussion of it is not complete without a sketch of
musicians who played it and the pieces where it
shone brightest. While it would be impossible to
list all books and typesetters working with Pala-
tino (which is more evidence of the greatness of
Zapf’s creation), it could be interesting and useful
to mention at least some notable publications that
involved Palatino.

Still, these gripes are about the things that are
not in the book. The things that are there, in my
opinion, are more than sufficient to justify its price
for any typophile, bibliophile or anyone interested
in the history and art of making elegant fonts &
beautiful books.

⋄ Boris Veytsman
Systems Biology School and

Computational Materials
Science Center, MS 6A2,

George Mason University,
Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: Palatino: The natural history of a typeface by Robert Bringhurst

232 TUGboat, Volume 37 (2016), No. 2

Book review: A Truck Full of Money

by Tracy Kidder

David Walden

Tracy Kidder, A Truck Full of Money. Random
House, 2016, xxiv+260 pp. Hardcover, US$28.00.
ISBN 9780812995224.1

In 1981 Tracy Kidder published The Soul of a New

Machine, about the team effort to develop a new
computer at Data General. Now, over thirty years
and eight books later, Kidder has returned to a topic
in the world of computing. A Truck Full of Money

is primarily a profile of computer programmer and
serial entrepreneur Paul English, who may be best
known as one of the founders of Kayak which was
sold in 2012 to Priceline for $1.8 billion (including,
as noted in the book, $120 million for English).

The book also gives insight into the mentalities
and sensibilities of various (top notch) computer pro-
grammers associated with English over the decades:
how much they enjoy programming (or at least how
easily it comes to them), how they think about the
risk of joining a startup, their reactions to having
financial success and failure, and so forth. English is
especially conflicted about making money; the jacket
line below the title on the front cover of the book is,
“One man’s quest to recover from great success.”

Paul English, now in his early 50s, grew up in a
large working class family in Boston. He was not a
particularly good or well-behaved student at Boston’s
renowned Latin (High) School, but he did find com-
puters there and found that he was a natural with
them. He went to the University of Massachusetts

1 A second review is at http://walden-family.com/
ieee/truckfull.pdf.

Boston for college, taking many classes at night so
he could work days to pay his way through college,
and over seven years received Bachelor’s and Mas-
ter’s degrees in computer science. More importantly,
perhaps, he fell in with a small group of gifted com-
puter programmers there (including Karl Berry) and
faculty member Robert Morris. In the late 1980s,
English got a programming job at Interleaf through
Morris who worked there part time.

At Interleaf, English once again found himself in
a group of like-minded people (compatible technical
viewpoints), who worked well together, and were
happy that English was willing to be “the manager”.
He got things done, and he rose through the ranks
relatively quickly to senior vice president positions
of engineering and product marketing.

At Interleaf and in later entrepreneurial activ-
ities (sketched over the course of the rest of the
book), English “collected” smart people, various of
whom joined him in startup ventures after his time
at Interleaf (and Intuit which bought Interleaf while
English was there). His latest startup, Lola, was
being developed as this book was being written and
was announced between the time the author sent his
final manuscript to the publisher and the date of the
book’s publication (tinyurl.com/globekidder).

It seems to me that author Tracy Kidder likes to tell
a certain kind of story in the nonfiction he writes. He
focuses on a few characters and their conflicts (often
internal rather than with each other or with outside
forces). He likes craft, for example, building construc-
tion in House (1985) and computer programming
in the current book. His characters are fundamen-
tally good people, albeit with foibles, who are on
a mission—people that readers, the author, and
other people in the story can admire despite what-
ever warts they may have—people who other people
want to follow, or at least put up with.

Paul English is such a character. He has an idea
a minute, he makes things happen, and he can be
brusque with people working for him even though
he likes them and mostly he is a great boss. People
in turn want to follow him, including those who
tamp down some of his wildest ideas and execute his
more plausible ideas. They trust him and believe
they can count on him despite some of his wild or
idiosyncratic ways. English is particularly conflicted
about money: he makes it, he risks it, he gives it
away. An important aspect of the book is the author,
the reader, and English himself trying to figure out
what makes him tick.

I recommend the book to readers. As is typical for
Tracy Kidder, the book is easy to read with frequent

David Walden

TUGboat, Volume 37 (2016), No. 2 233

nice turns of phrase; it features a quite fascinating
character and sketches activities in domains with
which the reader is perhaps not familiar— in this
case the worlds of computer programming, high tech
start-ups, and relatively hands-on philanthropy. The
book may be particularly relevant to members of the
TEX and TUG communities: (1) Donald Knuth and
TEX are discussed several times over the course of
the book; (2) Karl Berry plays an interesting role in
the Paul English story told by Kidder.

More personally, I especially enjoyed the book
as a one-time computer programmer myself. I got
to relive through Kidder’s prose some of the joy,
excitement, and feelings of changing the world that
come with creating innovative computer programs
and finding users for them in the world beyond the
development lab.

The first Kidder book I read was The Soul of

a New Machine (1981); it was a revelation to me in
how engaging nonfiction writing about computing
could be. I don’t think I read another of his books
until Mountains Beyond Mountains (2003). Reading
that took me to the library and bookstore to obtain
and read five more books in his oeuvre. Now reading
A Truck Full of Money has reminded me that I need
to get my hands on Among Schoolchildren (1989),
Old Friends (1993), and Home Town (1999).

The attendees at TUG 2014 in Portland, Oregon,
had a chance to hear Tracy Kidder speak and chat
with him at coffee breaks, lunches, and the banquet.
(And it’s not every day that one gets to sit near, let
alone talk to, a Pulitzer Prize-winning author.)

As part of his research for A Truck Full of Money

Kidder was in contact with Karl Berry, both as some-
one who knew Paul English well and as someone with
connections into the non-commercial part of the soft-
ware world. Karl invited Kidder to attend TUG

2014, and in return Kidder graciously agreed to give
a short presentation—which was primarily about his
research and writing of The Soul of a New Machine

and was highly engaging.
I have read a lot of books, but never before

had the opportunity to chat with an author who is
researching a book I later read. Having a little con-
nection with Kidder during the writing of this book
has led me to think about how books get written, or
at least how he writes and structures books.

Kidder’s books add context (and information) to
the story telling by having some chapters or sections
of chapters provide background information on an
aspect of the domain of the central character(s). For
instance, in his book House there is a discussion of
wood and the lumber industry.

The inclusion of Knuth in the book is a way
to provide background on the world of computer
programming. Kidder talks about Knuth’s asser-
tion that approximately one in fifty people “have a
peculiar way of thinking that makes them resonate
with computers” and that computing projects need
such “geeks” to succeed. He also recounts Knuth’s
belief that programming is an art in the sense that
programs can be written that are works of art. (I
hope the reader will not take from this discussion the
idea that programming is an art in the sense that its
practitioners don’t need learned craft and discipline.)
Knuth is also quoted as saying, “our pleasure is sig-
nificantly enhanced when we accomplish something
with limited tools.” Kidder uses the span of Knuth’s
career to note that lots of programming these days
is about putting existing pieces of software together
instead of writing innovative new programs. Finally,
Kidder uses Knuth’s parody about an “earth shak-
ing announcement” about iTEX at TUG 2010 in San
Francisco to make the point that we now live in an
app-oriented computing world. This Knuthian point
of view may help readers see computer programmers
as having a fascinating life when many people un-
doubtedly think of computers as highly bothersome
(“why can’t I make it do what I want”, is a question
I’ve heard) and sometimes completely infuriating
(“who are the idiots that create these things”).

Kidder’s TUG 2014 presentation, chats I had
with him at the conference and in a few follow-up
emails, and what he wrote in Good Prose (with
Richard Todd, 2013) brought home to me that in
writing there are two voyages of discovery: first,
discovering information about a topic; second, dis-
covering a tellable story based on aspects of the
discovered information. (For more tips on writing,
read Good Prose or at least look at tinyurl.com/
kidderonwriting.2)

As I ponder the content of the book, its writing,
and its structure, I wonder to what extent Tracy Kid-
der saw parallels between his kind of non-fiction writ-
ing and the code writing of computer programmers in
the book—both involving editing and rewrites, both
seeking a popular audience, both highly creative.
Did he come at all to identify with the computer
programmers he was writing about?

⋄ David Walden

walden-family.com/texland

2 Also, here is an interview with Kidder about how
he writes: tinyurl.com/kidder-interview (part 1),
tinyurl.com/kidder-interview2 (part 2).

Book review: A Truck Full of Money by Tracy Kidder

234 TUGboat, Volume 37 (2016), No. 2

TUG 2016 abstracts

Editor’s note: Slides and other related information
for many of the talks are posted at http://tug.org/
tug2016/program.html.

−− ∗ − −

Kaveh Bazargan

A graphical user interface for TikZ

TikZ is a powerful vector graphics program. The
capabilities are far higher than those of any interac-
tive graphics program, e.g. Adobe Illustrator. The
fact that TikZ can be coded logically, keeping the
structure of a graphic intact has many advantages,
including the generation of “semantic” SVG output,
allowing for better accessibility of graphics, e.g. for
blind and visually impaired readers. The main bar-
rier against popular usage of TikZ outside the TEX
community is that it is purely code driven, and has
a steep learning curve.

At River Valley we have a long term program to
produce rich, semantic illustrations which are acces-
sible to readers who are blind or visually impaired.
We have chosen TikZ as the engine to generate these.

To make easier to create the diagrams in the
first place, we have been working on a graphical user
interface (GUI) to generate TikZ code and to show
its output in near real-time. The first implementa-
tion addresses the relabelling of existing illustrations
(vector or bitmap) using TikZ. The system has the
following advantages: relabelling can be done as fast
or faster than conventional methods; labels do not
change size as figures are resized (similarly to Pinla-
bel); labels are saved as text and can be spell-checked
along with the main text of a TEX file.

I will give a live demo of the software.

Charles Bigelow

Looking for legibility

Scientific studies of legibility and their contributions
to typography and type design from the 19th century
to the present. With amusing anecdotes, ingenious
contraptions, clueless assumptions, cooked results,
Herculean efforts, and occasional progress toward
understanding one of our most puzzling cultural ac-
tivities.

The following bibliography covers most of the
content of the talk on legibility studies of the 20th
century, especially the first half of the century, but
sadly omits the images and the jokes in the talk.

• From 1900 to 1950

Émile Javal (1905). Physiologie de la lecture et de

l’écriture. Félix Alcan, Éditeur, Paris.
Edmund Burke Huey (1908). The Psychology and

Pedagogy of Reading. Macmillan, New York.

Barbara Roethlein (1912). “The Relative Legibility of
Different Faces of Printing Types”, The American

Journal of Psychology, Vol. 23, No. 1, Jan. 1912,
pp. 1–36.

British Association for the Advancement of Science
(1913). Report on the Influence of School-Books upon

Eyesight. Offices of the Association, London.

Lucien Alphonse Legros and John Cameron Grant
(1916). Typographical Printing Surfaces. Longmans,
Green, and Co., London.

Lucien Alphonse Legros (1922). “A Note on the
Legibility of Printed Matter: prepared for the
information of the Committee on Type Faces.”
H. M. Stationery Office, London.

L. Richard Pyke (1926). “Report on the legibility of
print.” Medical Research Council, Special report
series, no. 110. His Majesty’s Stationery Office,
London.

Gerrit Willem Ovink (1938). Legibility, Atmosphere

Value and Forms of Printing Types. A.W. Sijthoff’s
Uitgeversmaatschappij N.V., Leiden.

Donald G. Paterson and Miles A. Tinker (1940).
How to Make Type Readable. Harper & Brothers.

Mergenthaler Linotype Company (1941).
The Readability of Type. Brooklyn, N.Y.

Matthew Luckiesh and Frank Kendall Moss (1944).
Reading as a visual task. D. Van Nostrand.

• After 1950

Cyril Burt (1959). A Psychological Study of

Typography. Foreword by Stanley Morison.
Cambridge University Press, Cambridge.

Miles Tinker (1963). Legibility of Print. Iowa State
University Press, Ames.

E. C. Poulton (1965). “Letter differentiation and rate
of comprehension in reading,” Journal of Applied

Psychology, Vol. 49, No. 5.

Bror Zachrisson (1965). Legibility of Printed Text.

Almqvist & Wiksell.

François Richaudeau (1984). Recherches actuelles sur

la lisibilité. Retz.

Herbert Spencer (1969). The visible word: problems of

legibility. Lund Humphries/Royal College of Art,
London.

Erich Schulz-Anker (1970). “Syntax-Antiqua, a Sans
Serif on a New Basis; Le Syntax Romain, un
Linéale sur une base nouvelle; Syntax-Antiqua,
eine serifenlose Linearschrift auf neuer Basis.”
Gebrauchsgraphik 7/1970. Reprinted by
D. Stempel AG, n.d.

Rolf F. Rehe (1974). Typography: how to make it most

legible. Design Research International, Carmel,
Idaho.

Keith Rayner and Alexander Pollatsek (1989).
Psychology of Reading. Prentice Hall.

Dirk Wendt (1994). “What do we mean by legibility”,
in Font Technology, by Peter Karow, Springer.

TUGboat, Volume 37 (2016), No. 2 235

Paul Kolers, Merald Wrolstad, and Herman Bouma,
editors (1979). Processing of Visible Language,

Volume 1. Plenum Press.
Paul Kolers, Merald Wrolstad, and Herman Bouma,

editors (1980). Processing of Visible Language,

Volume 2. Plenum Press.
Ole Lund (1999). “Knowledge construction in

typography: the case of legibility research and
the legibility of sans serif typeface”. Ph.D. thesis,
Department of Typography and Graphic
Communication, University of Reading.

Gordon E. Legge (2007). Psychophysics of Reading

in Normal and Low Vision. Lawrence Erlbaum
Associates, Mahwah N.J.

Sofie Beier (2009). “Typeface Legibility: Towards
defining familiarity”. Ph.D. thesis, Royal College
of Art.

Robert Bringhurst

The evolution of the Palatino tribe

Palatino is not just a single typeface but a large
and varied group of faces: a taxonomic tribe pro-
duced over more than half a century. The members
include Aldus, Enge Aldus, Aldus Nova, Heraklit,
Michelangelo, Phidias, Sistina, and Zapf Renaissance,
as well as foundry Palatino, Linotype Palatino, Amer-
ican Export Palatino, Linofilm Palatino, PostScript
Palatino, Palatino Nova, and Palatino Sans.

This constellation of type designs was Hermann
Zapf’s most ambitious and enduring design project.
It began with the “Medici” sketches of 1948 — which
led to the first trial cutting of foundry Palatino ro-
man by August Rosenberger at the Stempel Foundry,
Frankfurt, in 1949 — and it continued through 2006,
when the last authentic members of the group were
drawn on screen under Zapf’s direction by Akira
Kobayashi in Bad Homburg. In between these dates,
the underlying designs adapted again and again to
changing conditions, represented by the Linotype
machine, Linofilm and other phototype machines,
and a variety of pre-PostScript digital systems.

Zapf was not the only type designer whose career
spanned the tumultuous transitions from metal type
to phototype to digital type, but Palatino and its
relatives appear to be unique in the complexity of
their evolution and the multiplicity of their successive
adaptations, under the hand of the original designer,
to repeatedly changing methods of typesetting and
printing.

Robert Bringhurst has argued for many years
that the most promising system of typeface classifica-
tion is based on botanical and zoological taxonomies.
His new book, Palatino: The Natural History of

a Typeface, published in a limited edition by the
Book Club of California, with a trade edition from
David R. Godine coming this fall, is an extended

test of this thesis. Over many years of research, he
has also accumulated hundreds of illustrations doc-
umenting the artistry and care, and the industrial
advances and collapses, involved in creating these
components of our typographic heritage.

Jennifer Claudio

The case for justified text

Documents must be aesthetically pleasing without
appearing deliberately designed. One of the basic
functions built into most word processing software is
text justification. The algorithms behind this func-
tion, however, vary based on the software and the
preset rules within the software. Some criticisms in-
clude compromised readability. Defenders of justified
text argue that as long as the typeface is appropri-
ately sized and kerned, justification does not detract
from readability. This presentation succinctly demon-
strates the behavioral differences visible in WordPer-
fect, Word, InDesign, and LATEX, and examines the
ability for people who read common printed media
to notice the differences.

Jennifer Claudio

A brief reflection on TEX and end-user needs

TEX attracts users who seek a robust method of
creating precise typographic products. However, be-
ginning with the instinct to disambiguate the pro-
nunciation of TEX and LATEX, new users often feel
daunted by the so-called learning curve of TEX and
its relatives. Given time to learn the syntax and
experience in troubleshooting errors, many fare well;
however, a population exists that would benefit from
the use of TEX who have insufficient time or comfort
in the field.

This presentation describes the following: 1) per-
sonal use of products that have been shared by other
members of this TEX user group community; 2) the
quest to recruit new users, abusers, and developers
into the TEX community; and 3) requests for specific
end-user products.

Tim Inkster

The beginning of my career

Tim Inkster was one of any number of English un-
dergraduates at the University of Toronto in the late
1960s who were entranced by the lure of Stan Bev-
ington’s shop in the alley behind 401 Huron Street.

Inkster applied for an entry-level position at
Coach House Press, the first time, in 1969, and then
a second time a couple of years later.

Unable to secure gainful employment, Inkster
felt he had little choice but to start his own small
press, the Porcupine’s Quill (1974), which has led to
bronze and silver medals at Leipzig, a Citation from

236 TUGboat, Volume 37 (2016), No. 2

the Art Directors’ Club of New York, and the Order
of Canada (2009) for both Tim and his wife, Elke,
“For their distinctive contributions to publishing in
Canada and for their promotion of new authors, as
co-founders of the Porcupine’s Quill, a small press
known for the award-winning beauty and quality of
its books.”

Stefan Kottwitz

TEX in industry I—programming Cisco switches
using TEX

I report on the pure text-based, macro-based, TEX-
programmed switch configurations which I use at
my work at Lufthansa in cruise ship projects. A
brief description is available at http://tex.tips/

programming-network-switches. A demonstration
of a non-standard use of TEX in industry.

Stefan Kottwitz

TEX in industry II—designing converged network
solutions

Pure graphics, with efficient use of TEX and TikZ
for programming drawings of network architectures
(LAN, wi-fi, VoIP, . . .). “Efficient” in the sense of
my note on good practices at tex.stackexchange.

com/a/297029/213. Sample notes are at tex.tips/
tag/industry, and example drawings at tex.tips/
LAN-1-2.pdf.

Presenting a showcase of what can be done with
TEX (instead of Visio, PowerPoint or CAD) and
how, with a view toward efficiency (time pressure on
projects).

Kevin Larson

Reading between the lines: Improving comprehension
for students

While reading is arguably a student’s most impor-
tant skill, the technology of reading is relatively un-
changed. Can the power of computing improve a stu-
dent’s reading comprehension? We will discuss what
has been learned about typography in the last 500
years, about reading psychology in the last 100 years,
and what technology can be invented right now.

Bio: Kevin Larson works for Microsoft’s Ad-
vanced Reading Technologies team. He collaborates
with type designers, reading psychologists, and engi-
neers on improving the onscreen reading experience.
Kevin received his PhD for studies of reading acqui-
sition.

Frank Mittelbach

Alice in Wonderland—The tale of the long tail in
globally optimized page breaking (part 2)

The story of Alice’s Adventures In Wonder-

land by Lewis Carroll contains a long tale about
the tail of the mouse, which starts with

’Fury said to a

mouse, That he

met in the

house,

"Let us

both go to

law: I will

prosecute

YOU.---Come,

I’ll take no

denial; We

must have a

trial: For

really this

morning I’ve

nothing

to do."

Said the

mouse to the

cur, "Such

a trial,

dear Sir,

...

many more

lines ...

...

Obviously a tail like this should be typeset in full
beauty and should not be laid out in knots or cut be-
tween pages. Unfortunately, that is more easily said
than done, given that all typesetting systems use a
greedy page algorithm that cuts page by page. Thus
chances are high that disaster strikes and we have
to manually adjust earlier page breaks to prevent it.

Using global optimization in pagination has been
envisioned already more than 30 years ago by Michael
Plass in his PhD thesis and throughout the years
other people worked on specific aspects of global
optimized pagination, but until today all typesetting
engines have taken the “easy” way out and leave the
problem essentially to the user.

This is in fact not that surprising, as the prob-
lem can get easily out of hand: A naive approach
will immediately result in exponential complexity
(without introducing float objects into the mix which
makes it worse). But even with careful restrictions
and specialized algorithms we will soon be reaching
the limits of modern hardware with any real live
document.

However, computers are getting faster and thus
get us closer to make globally optimized pagination a
reality. So this year I started to implement a frame-
work that assists in this task, in the hope that for my
next book I do not have to hand-adjust half of the
page breaks manually— first results are promising!

At Bachotek 2016 I gave some theoretical back-
ground to the problem and discussed the basic ap-

TUGboat, Volume 37 (2016), No. 2 237

proach taken by the framework, including two already
implemented optimization strategies: The automatic
change of page length on double spreads to add
flexibility and the use of automatic variation in para-
graph breaking (think \looseness) to gain further
flexibility.

This time around I like to demonstrate new
results where Alice goes “floating” and all the beauti-
ful pictures of the orginal magically appear in their
appropriate place.

So slowly the work evolves toward a usable so-
lution. Sit back, relax, and enjoy.

Norbert Preining

Security improvements in the TEX Live Manager
and installer

Since the switch to the current distribution method
and the introduction of network installs and updates,
some years ago, many things have changed in the
TEX (Live) world. But one thing has not kept up
with the new distribution methods: security.

Until now, there has been almost no verification
of a package as downloaded from the CTAN mirrors
compared to the original package created in TL. Al-
though we have been shipping MD5 checksums and
sizes in the accompanying information, these were
used only in rare instances (namely, when restarting
a failed installation).

We report about the recent improvements and
consistent confirmation of checksums and sizes of the
downloaded packages, as well as improvements re-
garding strong cryptographic signatures of the pack-
age information.

Arthur Reutenauer, Mojca Miklavec

The TEX Live M sub-project

TEX Live is the most versatile of TEX distributions,
available on a variety of platforms, and very actively
developed. It is the basis for MacTEX on Mac OS X,
and is bundled by many package managers in Unix
distributions. It has, however, a major drawback:
its titanic size. This talk will discuss a sub-project
to address that, with time for general discussion on
wishes and ideas for TEX Live’s future.

At its inception in 1996, it was contained in a CD
and started growing immediately. Packages are rarely
removed, due to compatibility considerations, and
only technical considerations are taken into account
when considering new packages: if a package fits the
requirements, it is added. Today, the texlive-full

installation scheme includes over 140,000 files and
has an installed size of over 4.5 GB.

This situation is a problem for many down-
stream package developers and also affects the TEX
community as a whole. We have started a conversa-
tion to see how we could help users find packages. We
would like to offer an option to have a more controlled
set of packages, probably by creating a new TEX
Live “scheme” in the existing distribution by select-
ing among the 3200+ (to date) packages. We could
define strict dependencies between packages, and also
strive to do some measure of quality control, in order
to create a distribution that’s truly useful for newcom-
ers and long-time users alike. The selection has to be
community-driven, but there has to be a selection.

In another area, we also want to improve how the
binaries are built: at the moment, they’re compiled
once per year by a number of volunteers who work on
one or more of the twenty or so different platforms,
and never get updated during the year. While this
strikes a good balance between stability, the demand
for reasonably recent binaries, and the workload of
volunteer builders and packagers, we thought we
could do better.

We have recently set up a build infrastructure
that can automatically build TEX binaries after ev-
ery source change for a number of platforms, send
emails when builds break, show reports, and make
the binaries available to users. This approach takes
a lot of burden off the shoulders of people previously
responsible for building TEX binaries, while at the
same time giving us freedom to run the builds a
lot more frequently, getting binaries to users much
faster and providing earlier feedback about problems
to developers. This part is almost ready and we will
give some technical details of how it works.

238 TUGboat, Volume 37 (2016), No. 2

TUG 2016, Bond Place Hotel, Toronto

Annual General Meeting Minutes

25 July 2016, 4 p.m.

Sue DeMeritt, Secretary

The meeting was called to order at 4:15 p.m. by Jim Hefferon.

Jim introduced the members of the Board of Directors who were present. He then
presented slides giving a snapshot of TUG. These included reasons why people
should join TUG and reasons why TUG is so important to the community. Financial
matters were reviewed very generally. Challenges to TUG were discussed. The
biggest challenge is membership, which is declining. This led to a discussion of
dues, with a slide showing changes since 2006. [The slides are available at http:
//tug.org/tug2016/slides/agm.pdf.]

Jim then invited Kaveh Bazargan to speak, per Kaveh’s request.

Kaveh Bazargan made a statement announcing his resignation as President of the
TEX Users Group. In 2015 he had been elected president; however, he was subse-
quently suspended by the Board. He noted that if his suspension were lifted, he
would be faced with a Board that he would not be able to work with.

Jim pointed out that there is an upcoming election in 2017 when TUG will elect a
new president and board members.

There were no immediate comments from the membership.

The floor was opened for questions and discussion.

CV Rajagopal stood up and started to discuss how his company’s reputation has
been marred as a result of a lawsuit by Kaveh Bazargan. Norbert Preining and
Jim Hefferon asked CVR not to bring private legal matters into this meeting. CVR
continued and asked the TUG Board if they agreed with the statements that Kaveh
had circulated earlier in the day. Jim Hefferon stated that the Board does not wish
to be involved in the parties’ lawsuits, but noted that the Board does not agree
with all of the points in the letter that had been circulated. [The letter will be
published verbatim in the TUG 2016 proceedings issue of TUGboat.]

Matthew Skala started a discussion about membership: What is needed to increase
membership? The number of members attending the annual conference is mostly
the same every year.

Mike Sofka stated that he feels membership has dropped because so much is now
free on the web. Getting younger people involved is crucial.

David Walden mentioned that many other groups are facing the same issues. People
don’t want to join a group with only paper journals.

Michael Doob pointed out that younger people are just not joining. It is hard to
know what the answer is. Having personal contact with a possible member seems
to help.

Kim Nesbitt discussed why it is important to get information out about why people
should join TUG.

Jim Hefferon noted that TUG has been trying many different avenues for attracting
more members.

TUGboat, Volume 37 (2016), No. 2 239

Paulo Ney de Souza said that he has no answer to membership issues but does
have a suggestion for the resultant financial problems. TUG has a number of insti-
tutional members, but many libraries aren’t allowed to use funds for institutional
memberships. It would be better to make TUGboat available as an electronic-only
journal to institutions for a larger fee. [Not mentioned at the meeting is the fact
that non-member subscriptions to TUGboat have been available for years.]

Christina Thiele pointed out that TUG originally had a large membership because
there was no web. Today’s people are digital. Perhaps TUG could try to get
donations digitally from folks in small amounts. If we come in from a different
direction it might be successful in finding more members.

Christian Gagné asked if the number of members includes institutional members.
[The institutions are not included, but the individuals named by their institutions
are included.] He would like to see the TUG website used as a portal. Jim Hefferon
discussed what ideas are being pursued. Barbara Beeton reported that AMS has
asked members what kinds of programs they would like to see; most of the topics
mentioned were already in existence, but their availability was not generally known.

Mike Sofka discussed that TUG does not provide all the information that people
would like to have. They have to have a reason to join.

Frank Mittelbach pointed out that the original reason for TUG was to get infor-
mation to users; TUG was the only place where information was available, such as
finding support for TEX infrastructure. Asking for support for something that is
not obvious is difficult. He supports the idea of donations as being a feasible theme.
He also agrees with Paulo that libraries are usually not permitted to use funds to
join as institutional members.

Behdad Esfahbod reported that the reason he originally left was because he did
not feel he was getting anything for his membership. Jim Hefferon mentioned the
electronic access.

Jennifer Claudio suggested a social media approach where people can get what they
want online. Perhaps scholarship programs can get people involved. “Lifetime”
membership builds commitment. It would give more incentive to keep coming to
TUG, spreading info to friends.

John Plaice suggested that there was an elephant sitting in the room. The president
was overthrown although a majority voted for him; the Board collectively overthrew
the president. Why would people want to join if a coup had taken place?

Federico Garcia asked about the TEX user population and the funds available to
TUG. This can be a matter of marketing; people don’t know about TUG, and we
need to get the word out.

John Kerr suggested advertising in technical magazines. Readers of these magazines
may not know that TUG exists.

Dave Walden stated that someone suggested to him that a TUG blog would be a
good idea. This is a matter of finding a volunteer.

Matthew Skala proposed that maybe TUG is not giving people what they want.
It is not what the organization needs— it is what supporting the product needs.
Frank Mittelbach added that people may feel that the dues are too much for what
they are getting. Maybe a new model is needed.

Christina Thiele added that a blog is a good idea; users can write about what they
are doing so others can see it. Other users will read and spread the word.

The meeting adjourned at 5:08 p.m.

240 TUGboat, Volume 37 (2016), No. 2

Report: Suspension of Kaveh Bazargan as TUG President

TUG Board of Directors

Until the completion of all steps specified in its bylaws, the TUG Board has, on
legal advice, released to the membership only limited information regarding the
process by which Kaveh Bazargan was suspended as TUG President. The following
is the Board’s report on the matter.

Summary

Before filing as a candidate for the TUG presidency, Kaveh Bazargan had instituted
a legal suit against another TUG member (not on the Board). He did not inform the
Board or the elections committee of such litigation. After the announcement of the
election results was posted on the TUG website, Kaveh submitted that document
to the court in support of his suit, again not informing the Board or the other
candidates, whose information was included in the announcement. (The results of
the election were announced on 23 May 2015, and the news about their inclusion
in the court papers arrived on 21 August.)

When asked by the Board to either withdraw the announcement from the court
records, or submit a notice stating that the TUG Board had requested that it be
withdrawn, Kaveh did not acknowledge this request or take any steps to act on it
after repeated attempts by the Board to obtain a definitive response.

This action does not, in the Board’s opinion, demonstrate the duty of loyalty
to the organization, in that Kaveh was holding his own interests above those of the
organization.

It was on these grounds that the TUG Board acted to suspend Kaveh as TUG

President.

Since the creation of TUG, the TUG Board has consistently held to the principle
that Board members should be free from conflict of interest. This principle was
perhaps best expressed by Pierre MacKay as part of his valedictory comments
on stepping down as TUG President, in TUGboat 6:3, page 114, “Statement of
Principles” [http://tug.org/TUGboat/tb06-3/tb13gendel.pdf]:

To avoid any real or apparent conflict of interest, all members of the TUG

Steering Committee undertake that they shall make no use of their position
on that committee for personal advancement and shall make no private use
of information acquired by the Steering Committee unless and until such
information has been published to the general membership of TUG.

This principle is consistent with the legal underpinnings of TUG’s incorporation
under the Rhode Island Non-Profit Corporation Act (RINCA) [http://webserver.
rilin.state.ri.us/Statutes/TITLE7/7-6/INDEX.HTM].

Section 7-6-34.(4)(i) of RINCA states [http://webserver.rilin.state.ri.
us/Statutes/TITLE7/7-6/7-6-34.HTM]:

(4)(i) Any provisions, not inconsistent with the law, which the incorporators
elect to set forth in the articles of incorporation for the regulation of the in-
ternal affairs of the corporation, including a provision eliminating or limiting
the personal liability of a director to the corporation or to its members for
monetary damages for breach of the director’s duty as a director. However,
the provision does not eliminate or limit the liability of a director:

(A) For any breach of the director’s duty or loyalty to the corporation or
its members;

TUGboat, Volume 37 (2016), No. 2 241

Loyalty is well defined in corporate law as the duty of an individual to hold the
interests of the organization above personal interests.

Kaveh Bazargan submitted papers for his candidacy for TUG President in
January 2015. At that time he was already involved in a legal dispute in India, which
began no later than 2014, with another TUG member (not on the Board); however,
this was not made known to either the TUG Board or to the Board members charged
with setting up the election. On 21 August 2015, the TUG member who was the
target of the suit sent a message to the Board containing the information that
the TUG election announcement [http://tug.org/election/2015/candidates.
html] had been presented by Kaveh to the court as part of the documents supporting
his (Kaveh’s) case. The relevant part of this message reads:

4. Kaveh has used the results of the recent TUG elections as well as the
names and statements of other members of the board to back his claims
by including these as part of the documents filed in court on behalf of the
Plaintiff, which is himself.

Is this being done with the concurrence of the TUG Board?

This was indeed done without Kaveh having notified the Board, or asking the other
individuals involved in the election for permission to place their information and
pictures in court filings in a legal suit; although the election announcement had
been publicly posted on the TUG website, Kaveh should have notified the Board of
this action, and requested permission.

The Board acknowledged receipt of this message to its sender, but had no other
correspondence with that TUG member on the subject.

We note that use of the position of TUG President for personal benefit would
clearly be a conflict of interest. However, we do not know that this was stated
directly to the court, only that the election announcement was submitted as part
of Kaveh’s evidence.

The question asking whether the notice had been submitted with the concur-
rence of the TUG Board was forwarded in a message to Kaveh, on 27 August 2015,
along with the following request from the Board:

The answer to this is “no”. None of the candidates whose material was
submitted had any knowledge of this action until well after the documents
were submitted, and, had they been asked for permission, their responses
would have been “no”. It is our request to you that the election statements
be withdrawn from the court filings, if possible; if not possible, a note should
be added that the TUG Board has made such a request for removal.

This direct request was never acknowledged by Kaveh; instead, his responses skirted
the issue. On 28 August he replied:

It’s suddenly becoming clear to me!! There has been a misunderstanding.
Allow me to explain. [. . .]

Let me reiterate: TUG and TUG Board members are *not* involved in
this case. They are not accused of anything and not endorsing anyone. My
only intention is to prove I have been elected as the president of TUG. How
else could I have done that?

[. . .]

The Board did not accept this as a reasonable explanation, and thus sent the
following note on 3 September:

Kaveh - in your response, you neither affirmed nor denied our request (copied
below). Please respond directly. Thanks.

[forwarded copy of the full message dated 27 August]

242 TUGboat, Volume 37 (2016), No. 2

On 16 September, the following request was received by the Board from Kaveh:

I really want to put the matter of the ‘grievances’ to rest so that I can start
contributing to TUG without distraction. I replied to your concern again
last week. Please confirm that the grievance issue is now closed. In case
the board believes it is not, then in the interests of TUG, I look forward to
receiving the precise points as soon as possible so I can address them and
we can all get on with our main task, namely making TUG even better than
it is.

This was clear evidence that a serious disagreement existed, with no recognition by
Kaveh that, in the Board’s opinion, a line had been crossed. The Board waited,
without communication with Kaveh regarding the matter, for a direct reply, which
was never forthcoming. Board members discussed the matter in private email, and
on 17 September the following notice (included here in full) was sent to Kaveh:

Date: Thu, 17 Sep 2015 19:30:45 -0400
From: TUG Board

Dear Kaveh,

Over the last several weeks the Board of Directors has deliberated intensely over
the current situation. Here is our consensus opinion.

A lawsuit between TUG members concerning TEX-related activities is in itself a
very unfortunate matter for the user group. Any such involvement by a TUG

officer compromises TUG’s standing in the community. As you know, the TEX
Users Group is not a party in this suit. We cannot even give the appearance of
having taken sides. The situation of the position of TUG President having been used
for private matters in any manner is unacceptable to the Board. It is important for
the community to keep their trust in TUG as an impartial organization representing
all its members.

Thus, we think that your involvement in a lawsuit with another TUG member, while
you are TUG president, concerning TEX-related activities is a conflict of interest.
Recent events have shown that this conflict cannot be mitigated.

We do not see any way to resolve this situation while you are TUG President. Thus
we think it would be in the best interests of TUG for you to take a leave of absence
until the lawsuit and all related legal matters are settled, or to resign.

Please understand that this recommendation does not imply any judgement about
you and your skills. We recognize the valuable contributions that you have made
to TUG over the years. The Board is concerned only with the welfare of TUG and
what it represents as an organization.

This decision has been very difficult for us all, and we hope you understand that
we think this is the best route for the benefit of TUG.

TUG Board of Directors

As of 24 September, no response had been received from Kaveh, and this reminder
was sent:

Kaveh—we sent our message a week ago. Can you please provide an ETA

as to when you will reply? Thanks.

TUGboat, Volume 37 (2016), No. 2 243

Another reminder was sent on 28 September, with this warning:

We would like to hear from you before this Thursday, October 1. Otherwise
we will need to consider possible next steps, including those in Article IV

section 5 of the TUG bylaws.

Kaveh responded the same day, but made no acknowledgment of the Board’s initial
request regarding withdrawal of the election notice from the court documents. A
motion for suspension was proposed, subject to a more congenial resolution. The
next message from the Board to Kaveh was sent on 6 October:

Date: Tue, 6 Oct 2015 18:59:58 -0400
From: TUG Board

Kaveh,

The conflict is as already stated: as TUG president, you have a duty to represent
all TUG members to the best of your ability (just as we do as TUG directors).
It is not possible to fulfill this responsibility when you are involved in a lawsuit
against another TUG member. Any decision made or initiative undertook by a
TUG president while pursuing a lawsuit against another TUG member would, at
the very least, appear to be tainted.

From your messages, apparently you do not agree that this is a problem. Never-
theless, after lengthy and careful deliberation, including taking your responses into
account, the required majority of the board has concluded that your presidency
must be suspended because of this.

We think it would be better both for TUG and for you if this outcome was announced
as your decision. If you agree, we could announce that after a discussion with the
board you generously decided to step down to avoid the distraction of a pending
lawsuit from interfering with TUG business.

However, if you disagree, we will publish this decision as ours after Thursday,
October 8.

Sincerely,
TUG directors

On 10 October, Board member Steve Grathwohl had a Skype conversation with
Kaveh, urging him to voluntarily step aside. Kaveh refused. (Originally, two other
Board members had agreed to participate in the Skype call, but at the only time
Kaveh was available, they were not.) The Board voted without dissent for suspen-
sion, concluding that further discussion could not lead to a less severe outcome.

On 13 October, the Board wrote to Kaveh:

[A]s we previously wrote to you, the required majority of the board has
concluded that your presidency must be suspended because of the conflict of
interest that we see, due to your pending legal actions. Since our attempts
at mitigation have not been successful, the suspension is now effective. We
greatly regret this outcome.

The Board, on the same day, also notified all members by email:

[. . .] We believe that TUG should not take sides, or even appear to take
sides, in a lawsuit to which it is not a party. [. . .]

244 TUGboat, Volume 37 (2016), No. 2

Thus, we asked Kaveh to voluntarily suspend his presidency for the dura-
tion of the lawsuit and any related legal matters. We were not successful in
convincing him that this would be best for TUG. Further, he neither made
an explanation as to why he did not reveal the existence of the lawsuit at
the time of the election, nor made any offer to mitigate its effects now. [. . .]

The suspension became effective with this notification, 13 October 2015.
After several messages from Kaveh to the Board requesting an explanation,

this message was sent on 21 October:

Date: Wed, 21 Oct 2015 17:14:44 -0400
From: TUG Board

Kaveh,

Since originally becoming aware of the issue, over several emails to you the Board
has communicated, in detail, its concerns about the conflict of interest posed by
having the TUG President embroiled in a lawsuit with another TUG member. The
Board also expressed, very early on, its view regarding the difficulty of TUG being
seen as impartial when the member statements for the election are entered as part
of court documents supporting one side or the other. You did not accept those
concerns.

We also conveyed to you, in writing, that we felt a voluntary resignation or leave of
absence, initiated by you, would be the best course of action for TUG. When that
effort also failed, a phone call was sought. This call was extended as a courtesy to
you. Unfortunately for all of us, this didn’t work in the way we hoped for.

Sincerely,
TUG directors

According to Bylaws Section IV.5, a suspended Director “shall have an automatic
right of appeal, which must be exercised within 60 days of delivery of notification
of suspension.” (Sixty days from 13 October is 12 December.) If the appeal is
rejected, the suspended Director has the right to appeal to the members in the
Annual General Meeting.

Kaveh sent a letter of appeal by email on 10 December. Owing to the size of
attachments to the message, it was delayed for several days; however, the original
timestamp was accepted as the effective date.

As with previous communications, the appeal did not acknowledge the Board’s
initial request of 27 August; it also implied that the suspension was invalid. This
is the final item in the letter:

[. . .] I trust and hope that legal proceedings between us can be avoided by
the Board rescinding the purported notice and reinstating me as President
of TUG with immediate effect. The Board should be aware that if this does
not occur the only conclusion that I can draw is that there is a Board agenda
to damage my interests. Accordingly, in that scenario, I will have no option
but bring claims for defamation, damages for loss of reputation, breach of
statutory duty and tortious interference. The Board is reminded that its
members are personally liable for any expenses incurred in connection with
the defence or reasonable settlement of any action to which a person is made
party by reason of being a director by virtue of Article 10 of the Bylaws

TUGboat, Volume 37 (2016), No. 2 245

and, like every member placed in this situation, I shall have no option but
to defend my business interests.

In light of Kaveh’s appeal letter, the Board believed it prudent to engage legal
advice.

With the advice of counsel, the Board concluded that the appeal did not con-
tain any substantive new information, and unanimously affirmed its prior vote. The
affirmation of suspension was conveyed to Kaveh by TUG’s lawyer on 10 February
2016. A notice to all members was sent on 17 February.

With the suspension, Jim Hefferon, as Vice President, assumed the role of
acting President, effective until the issue was resolved.

In accordance with Section IV.5 of the Bylaws, a suspended Board member
is provided the right of final appeal at the next Annual General Meeting (AGM).
The onus is on the suspended member to register that appeal so that it can be
included on the agenda for the AGM. When no such appeal request was received,
on 8 July, as a courtesy, the TUG lawyer sent a message to Kaveh asking whether
he intended to appeal, and requesting a response no later than 15 July. This date
was chosen as it was the last date on which a notice could be sent to members
announcing the business to be taken up at the AGM, scheduled for 26 July at 4:15
p.m.; Section III.5 of the Bylaws requires that notice of a meeting be sent no less
than ten days before the meeting.

On 15 July, a reply was received from Kaveh, stating “This is to let you know
that I have not yet decided on the matter.”

On 15 July, a notice was sent to all members announcing the date and time of
the AGM, with (in the absence of a decision from Kaveh) the stated purpose “to
discuss normal business, including but not limited to, developing and implementing
strategies designed to increase TUG membership.” This notice was not required, as
the date and time of the meeting had already been posted for several weeks as part
of the conference schedule on the TUG website, but the formality was observed in
deference to agitation on public non-TUG websites and other TEX forums.

At the conference early on the day of the AGM (26 July), Kaveh distributed
a document entitled “Recent events in TUG” in which he set forth his point of
view, and announced his resignation as President of TUG. He requested, and was
granted, time at the AGM to make a brief personal statement. In this statement,
he reiterated his resignation, with the reason being that even if he were reinstated,
he would be faced with a Board that he could not work with.

Had the suspension come to a vote by the assembled TUG members, the two
possibilities would have been: to uphold the suspension or to reinstate. Kaveh’s
decision to avoid the vote and leave the Board through resignation was recognized
and accepted.

No mention is made in Kaveh’s document “Recent events in TUG” regarding
withdrawal of threats to sue the Board as a whole or its members as individuals.
Therefore, the Board still believes that this is an active possibility, and must conduct
the business of TUG accordingly.

The document distributed by Kaveh at the AGM is reproduced in full from
the original, following this report. The Board does not agree with the points made
in Kaveh’s statement in the section “The TUG Board”, but believes that every
member is entitled to reach their own conclusions.

248 TUGboat, Volume 37 (2016), No. 2

Response to Kaveh Bazargan’s message

While Kaveh Bazargan certainly has the right to insist on his interpretation of the recent
events, we feel that some statements in his letter are not accurate and deserve to be explained
from the Board’s point of view.

The numbers below correspond to the numbers in his text.

1. It is correct that the Board did not tell the membership about the request to remove
Kaveh as a President. What is not correct is the implication that this removal was
done as a consequence of the other party’s request.
We considered that request improper and did not discuss it further. Our aim was to

avoid any involvement of TUG in the lawsuit and any appearance of such involvement.
Only the repeated refusal of Kaveh to do anything towards this aim led us to the
difficult decision to suspend his presidency.

2. It is correct that the Board sought legal advice only after the removal was done. What
is not correct is the implication that such legal advice is routine in TUG business.

The decision to hire a lawyer was unprecedented, except for handling TUG’s incorpo-
ration and application for non-profit status, over the several decades of TUG’s existence.
The Board took this step only after receiving an explicit threat of lawsuits against the
Board as a whole and against its individual directors. While we felt a natural aversion
to spend TUG funds on lawyers, we felt it was necessary for the organization itself.
In light of this threat, Kaveh’s request to make the legal advice received by the

Board public is nonsensical. The lawyer who has been advising TUG has told us that
communications between his firm and the TUG Board should not be disclosed as they
are subject to the attorney-client privilege, which we will honor.

3. It is incorrect that, at the moment of suspension, Kaveh “was addressing their con-
cern about TUG references in court papers”. In fact our repeated requests to delete,
remove, and/or file a notice regarding the TUG court references were not met with
any understanding at all. We strongly felt at that time—and strongly feel now—that
this failure to act violates the duty of loyalty/conflict of interest obligation that Kaveh
owed.

4. The statement that our decision did not follow TUG bylaws has no grounds whatsoever
and is incorrect.

5. It is correct that there are no minutes for this decision. What is incorrect is the
implication that keeping minutes is either required by our bylaws or the law in general—
or that it is customary for TUG except for formal in-person meetings and at the AGM.
When TUG became an international organization with a diverse Board, such in-

person meetings became rare. Section 9 was thus added to the TUG Bylaws which
allows Directors’ consent voting by e-mail following e-mail discussion. However, there
is no requirement to keep formal minutes of such Board discussions, and this has never
been done.

6. It is incorrect that “[t]he principal ground for the suspension was the fact that the
other party in the dispute over ownership happened to be a member of TUG.” The
grounds of the suspension were the conflict of interest, the failure to disclose it and the
failure to eliminate this conflict of interest and involvement of TUG in the lawsuit—
which demonstrated the lack of loyalty to the organization.

7. It is incorrect that the grounds for removal were changed between the suspension and
appeal. The grounds, listed above, were the same.

8. It is incorrect that the Board’s request to eliminate the involvement of TUG in papers
supporting a lawsuit amounts to taking sides in the lawsuit. We are emphatically not

taking sides there. Moreover, Kaveh’s statement suggests that the TUG connection is
important evidence in the lawsuit, and confirms the existence of the conflict of interest
and impropriety of the situation.

TUGboat, Volume 37 (2016), No. 2 249

2017 TEX Users Group election

Barbara Beeton
for the Elections Committee

The positions of TUG President and nine members of
the Board of Directors will be open as of the 2017 An-
nual Meeting, which will be held in April–May 2017 in
Bachotek, Poland.

The terms of these individuals will expire in 2017:
Karl Berry, Kaja Christiansen, Steve Grathwohl, Jim
Hefferon, Klaus Höppner, Steve Peter, Geoffrey Poore,
Arthur Reutenauer, Michael Sofka.

Continuing directors, with terms ending in 2019:
Barbara Beeton, Susan DeMeritt, Michael Doob, Cheryl
Ponchin, Norbert Preining, Boris Veytsman.

The election to choose the new President and Board
members will be held in early Spring of 2017. Nomina-
tions for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/
to the Board by submitting a nomination petition in
accordance with the TUG Election Procedures. Election
. . . shall be by . . . ballot of the entire membership, carried
out in accordance with those same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline published below. A
candidate’s membership dues for 2017 must be paid be-
fore the nomination deadline. The term of President is
two years, and the term of a member of the TUG Board
is four years.

A nomination form follows this announcement; forms
may also be obtained from the TUG office, or via http:

//tug.org/election.
Along with a nomination form, each candidate must

supply a passport-size photograph, a short biography,
and a statement of intent to be included with the bal-
lot; the biography and statement of intent together may
not exceed 400 words. The deadline for receipt of com-
plete nomination forms and ballot information is 5 p.m.
(PST) 1 February 2017 at the TUG office in Portland,
Oregon, USA. No exceptions will be made. Forms may
be submitted by fax, or scanned and submitted by email
to office@tug.org; receipt will be confirmed by email.

Information for obtaining ballot forms from the TUG

website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office; see address on the form. Marked ballots must
be received by the date noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by mid-April, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

2017 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2017
will be eligible to participate in the election. The signa-
tures of two (2) members in good standing at the time
they sign the nomination form are required in addition to
that of the nominee. Type or print names clearly, using
the name by which you are known to TUG. Names that
cannot be identified from the TUG membership records
will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2017 Annual Meeting,
April–May 2017.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion on
the ballot) must be received at the TUG office in Portland,
Oregon, USA, no later than 5 p.m. (PST) 1 Febru-
ary 2017.1 It is the responsibility of the candidate to
ensure that this deadline is met. Under no circumstances
will late or incomplete applications be accepted.

� nomination form
� photograph

� biography/personal statement

TEX Users Group
Nominations for 2017 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)

1 Supplementary material may be sent separately from the

form, and supporting signatures need not all appear on the

same form.

TUG

Institutional

Members

TUG institutional members receive a

discount on multiple memberships, site-wide

electronic access, and other benefits:

http://tug.org/instmem.html

Thanks to all members for their support!

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey

Center for Computing Sciences, Bowie, Maryland

CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University, Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,

New York, New York

Overleaf, London, UK

River Valley Technologies, Trivandrum, India

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg, Heidelberg, Germany

StackExchange, New York City, New York

Stanford University, Computer Science Department,

Stanford, California

Stockholm University, Department of Mathematics,

Stockholm, Sweden

TNQ, Chennai, India

University College, Cork, Computer Centre,

Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Cambridge, Centre for Mathematical

Sciences, Cambridge, United Kingdom

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway

250 TUGboat, Volume 37 (2016), No. 2

TEXConsultants

The information here comes from the consultants themselves.

We do not include information we know to be false, but we

cannot check out any of the information; we are transmitting

it to you as it was given to us and do not promise it is correct.

Also, this is not an official endorsement of the people listed

here. We provide this list to enable you to contact service

providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at tug.org/

consultants.html. If you’d like to be listed, please see that

web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com
We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine ty-
pography specs beyond those of the average LATEXmacro
package. If you use X ETEX, we are your microtypogra-
phy specialists. We take special care to typeset mathe-
matics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and aca-
demic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers, letterform/
font designers, artists, and a co-author of a TEX book.

de Bari, Onofrio and Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles; creation of
LATEX classes and packages; graphic design; conversion
between different formats of documents.

We offer our services (related to publishing in Mathe-
matics, Physics and Humanities) for documents in Ital-
ian, English, or French. Let us know the work plan and
details; we will find a customized solution. Please check
our website and/or send us email for further details.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of books,
manuscripts, articles, Word document conversions as well
as creating the customized packages to meet your needs.

Call or email to discuss your project or visit my web-
site for further details.

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual, linguistic,
and technical typesetting using most flavors of TEX, I
have typeset books for Pragmatic Programmers, Oxford
University Press, Routledge, and Kluwer, among others,
and have helped numerous authors turn rough manu-
scripts, some with dozens of languages, into beautiful
camera-ready copy. In addition, I’ve helped publishers
write, maintain, and streamline TEX-based publishing
systems. I have an MA in Linguistics from Harvard Uni-
versity and live in the New York metro area.

Sievers, Martin

Im Alten Garten 5
54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com
As a mathematician with more than ten years of typeset-
ting experience I offer TEX and LATEX services and con-
sulting for the whole academic sector (individuals, uni-
versities, publishers) and everybody looking for a high-
quality output of his documents. From setting up entire
book projects to last-minute help, from creating indi-
vidual templates, packages and citation styles (BIBTEX,
biblatex) to typesetting your math, tables or graphics—
just contact me with information on your project.

TUGboat, Volume 37 (2016), No. 2 251

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and pro-
gramming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles, newslet-
ters, and theses in TEX and LATEX: Automated doc-
ument conversion; Programming in Perl, C, C++ and
other languages; Writing and customizing macro pack-
ages in TEX or LATEX; Generating custom output in
PDF, HTML and XML; Data format conversion; Data-
bases.

If you have a specialized TEX or LATEX need, or if you
are looking for the solution to your typographic prob-
lems, contact me. I will be happy to discuss your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and LATEX consulting, training and seminars. In-
tegration with databases, automated document prepa-
ration, custom LATEX packages, conversions and much
more. I have about nineteen years of experience in TEX
and three decades of experience in teaching & training.
I have authored several packages on CTAN, published
papers in TEX related journals, and conducted several
workshops on TEX and related subjects.

Webley, Jonathan

21 West Kilbride Road
Dalry, North Ayrshire, KA24 5DZ, UK
01294538225
Email: jonathan.webley (at) gmail.com

I specialize in math, physics and IT. However, I’m com-
fortable with most other science, engineering and tech-
nical material and I’m willing to undertake most LATEX
work. I’m good with equations and tricky tables. I can
also proofread and copy-edit if required. I’ve done hun-
dreds of papers for journals over the years. Samples of
work can be supplied on request.

2016

Sep 25 –
Oct 1

10th International ConTEXt Meeting,
“Piece of Cake”,
Kalenberg, The Netherlands.
meeting.contextgarden.net/2016

Sep 29 TUGboat 37:3, submission deadline.

Sep 30 –
Oct 2

Oak Knoll Fest XIX, New Castle,
Delaware. www.oakknoll.com/fest

Oct 7 – 9 American Printing History Association’s
41st annual conference,
“Black Art and Printers’ Devils”,
Huntington Library, San Marino,
California. printinghistory.org

Oct 14 – 18 ASIS&T 2016 Annual Meeting, “Creating
Knowledge, Enhancing Lives through
Information & Technology”, American
Society for Information Science
and Technology, Copenhagen, Denmark.
www.asist.org/events/annual-meeting

Oct 17 Award Ceremony: The Updike Prize
for Student Type Design, Speaker:
Fiona Ross, Providence Public Library,
Providence, Rhode Island.
www.provlib.org/updikeprize

Oct 29 GuIT Meeting 2016,
XIII Annual Conference, Brescia, Italy.
www.guitex.org/home/en/meeting

2017

Feb 1 TUG election: nominations due.
tug.org/election

Feb 23 – 25 Typography Day 2017,
“Typography and Diversity”,
Department of Integrated Design
University of Moratuwa, Sri Lanka.
www.typoday.in

252 TUGboat, Volume 37 (2016), No. 2

Calendar

Mar 22 – 24 DANTE 2017 Frühjahrstagung and

56th meeting,
Deutsches Elektronen-Synchrotron
(DESY), Zeuthen, Germany.
www.dante.de/events.html

Mar 30 – 31 Center for Printing History & Culture,
“From Craft to Technology and
Back Again: print’s progress in the
twentieth century”,
National Print Museum, Dublin, Ireland.
http://www.cphc.org.uk/events

TUG2017 & BachoTEX2017

Bachotek, Poland.

Apr 29 –
May 3

The 38th annual meeting of the
TEX Users Group, jointly with the

25th meeting of GUST

and GUST’s 25th birthday.
tug.org/tug2017

May 21 – 26 16th Annual Book History Workshop,
Texas A&M University,
College Station, Texas.
cushing.library.tamu.edu/programs/

bookhistoryworkshop

May 25 – 27 TYPO Berlin 2017, “Wanderlust”,
Berlin, Germany.
typotalks.com/berlin

Jul 5 – 7 The Fifteenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), “New Directions of the
Humanities in the Knowledge Society”,
Imperial College, London, UK.
thehumanities.com/2017-conference

Jul 30 –
Aug 3

SIGGRAPH 2017, “At the ♥ of
Computer Graphics & Interactive
Techniques”, Los Angeles, California.
s2017.siggraph.org

Status as of 15 September 2016

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings. In-
terested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 37 (2016), No. 2

Introductory

106 Pavneet Arora / Passport to the TEX canvas

154 Charles Bigelow / A short history of the Lucida math fonts
• development of math support in Lucida, 1980s to the present

137 Joe Clark / Type in the Toronto subway
• signage, typefaces, and (re)designs

152 David Walden / An informal look into the history of digital typography
• summary of longer online article on newspapers, individual use, algorithms, and more.

131 David Walden / Interview with Pavneet Arora

Intermediate

180 Jim Hefferon / A LATEX reference manual
• using and contributing to unofficial core LATEX2ε reference documentation

209 Mojca Miklavec and Arthur Reutenauer / Hyphenation in TEX and elsewhere, past and future
• the hyph-utf8 pattern licenses and use in Unicode and other projects

161 Michael Sharpe / New font offerings: Cochineal, Nimbus15, LibertinusT1Math
• new oldstyle, Greek/Cyrillic, and (LA)TEX math fonts

182 Matthew Skala / Astrological charts with horoscop and starfont
• computing and creating beautiful astrological charts

193 David Tulett / Development of an e-textbook using LATEX and PStricks
• rationale, implementation, open source publication of a new decision modeling textbook

183 Boris Veytsman / Remaking the ACM LATEX styles
• refactoring design and implementation across ACM publications

Intermediate Plus

148 Leila Akhmadeeva, Rinat Gizatullin, Boris Veytsman / Are justification and hyphenation
good or bad for the reader? Preliminary experimental results

• the (mixed) results of an initial experiment on reading speed and comprehension

222 Amartyo Banerjee and S.K. Venkatesan / A Telegram bot for printing LATEX files
• proof of concept Telegram bot for the Raspberry Pi

204 Federico Garcia-De Castro / TEXcel? An unexpected use for TEX
• advantages of TEX over spreadsheets for recording and reporting financial information

187 Geoffrey Poore / Advances in PythonTEX with an introduction to fvextra
• automatic line breaking, variable substitution, string interpolation in verbatim

Advanced

171 Abdelouahad Bayar / Towards an operational (LA)TEX package supporting optical scaling
of dynamic mathematical symbols

• using a PostScript Type 3 font for per-equation delimiter sizes

163 Jaeyoung Choi, Sungmin Kim, Hojin Lee, Geunho Jeong / MFCONFIG: A METAFONT plug-in module
for the Freetype rasterizer

• using METAFONT fonts in real time with FONTCONFIG and Freetype

214 Michael Cohen, Blanca Mancilla, John Plaice / Zebrackets: A score of years and delimiters
• striped parentheses and brackets; dynamic character generation philosophy

200 Christian Gagné / An Emacs-based writing workflow inspired by TEX and WEB, targeting the Web
• integrating macro-less and macro-rich notations for publishing

Reports and notices

111 TUG 2016 conference information, photos

234 TUG 2016 abstracts (Bazargan, Bigelow, Bringhurst, Claudio, Inkster, Kottwitz, Larson,
Mittelbach, Preining, Reutenauer)

125 Stefan Kottwitz / TUG 2016 Annual General Meeting informal report

115 Norbert Preining / TUG 2016 in Toronto

126 Lou Burnard / Sebastian Rahtz (1955–2016): A brief memoir

129 Frank Mittelbach / R.I.P.—S.P.Q.R; Sebastian Patrick Quintus Rahtz (13.2.1955–15.3.2016)

229 Boris Veytsman / Palatino: The natural history of a typeface by Robert Bringhurst
• review of this remarkable and beautiful book on Hermann Zapf’s Palatino family

232 David Walden / A Truck Full of Money by Tracy Kidder
• review of this narrative nonfiction book on programming and programmers

238 Susan DeMeritt / TUG 2016 Annual General Meeting minutes

240 TUG Board / Report: Suspension of Kaveh Bazargan as TUG President

249 TUG Election committee / TUG 2017 election

250 Institutional members

250 TEX consulting and production services

252 Calendar

