
TUGboat, Volume 37 (2016), No. 2 163

MFCONFIG: A METAFONT plug-in module
for the Freetype rasterizer

Jaeyoung Choi, Sungmin Kim, Hojin Lee and
Geunho Jeong

Abstract

One of METAFONT’s advantages is its ability to cre-
ate font variants by changing values of parameters
representing font characteristics. This advantage
can be applied not only to Latin alphabetic charac-
ters, but also to complicated CJK (Chinese-Japanese-
Korean) characters. Second, font families like bold,
italic, and bold-italic do not need to be created sepa-
rately for METAFONT, because it can automatically
generate a variety of styled fonts via changing pa-
rameter values. Therefore, METAFONT can reduce
the development time and cost for production of a
font family. It is not possible, however, to directly
use METAFONT in modern font engines; the output
must be changed to an outline font format if it is to
be used in a current computing environment.

In this paper, a module named MFCONFIG,
enabling direct usage of METAFONT on Linux is pro-
posed. It is a plug-in module for the FONTCONFIG

library, and must also be installed with the popular
rasterizer Freetype. FONTCONFIG and Freetype are
already compatible with other digital font types, both
bitmap and outline; MFCONFIG adds METAFONT

support. Furthermore, by setting various parame-
ters, the proposed module supports a variety of font
styles, all generated from METAFONT.

1 Introduction

Text is an effective way to communicate and record
information. With the growing use of smart devices,
digital fonts are more commonly used than analog
fonts. Although many styles of digital fonts have
been created, they still do not meet the requirements
of all users, and users cannot change digital font
styles freely [10]; for instance, if a user wants to use
a thinner outline font, either he/she has to find a
thinner styled font, or an in-application function to
change the font thickness. As several different fea-
tures of font style are needed, though, such searching
or changing of font style of an existing font is typi-
cally not easy. A perfect application satisfying users’
diverse requirements regarding font styles does not
exist. Also, it is impossible to provide all styles of
all fonts in accordance with users’ preferences.

Currently, popular digital fonts, either bitmap or
outline, have limits on changing font style [8]. How-
ever, METAFONT is a structured font definition that
allows users to change the font style freely. META-

FONT, a font system for TEX, was created by D. E.
Knuth [4]. It has functions for drawing characters
and parameters to determine the font styles. When
the user changes the parameters, the font style is
changed automatically. Therefore, a variety of styled
fonts can be generated from one METAFONT font.
Figure 1 shows a variety of styled fonts created by
the changing of the thickness and slant; examples of
two thickness and slant styles for the Latin letter “A”
and the Chinese character “ ” are shown. If other
features such as serif and pen are applied together,
a greater variety of styled fonts can be generated.

Most users, however, are unable to use META-
FONT on their PCs because current font engines do
not support METAFONT. METAFONT fonts are ex-
pressed as program source code, completely different
from standard digital bitmap and outline fonts. If
a user wants to use a specific METAFONT font in a
general font engine such as Freetype, then he/she
needs to convert the METAFONT font into the needed
outline font format.

In the case of Roman characters, the design of
“only” several hundred characters is required; more-
over, their shapes are generally simpler than those of
CJK (Chinese-Japanese-Korean) characters. In the
mid-1980s, when METAFONT was introduced, hard-
ware was not fast enough for real-time conversion of
the METAFONT fonts into the corresponding bitmap
or outline fonts. Moreover, outline fonts are more
commonly used than METAFONT.

Current PC hardware, however, has sufficient
performance for the real-time execution of META-
FONT. If METAFONT could be used directly in a

Figure 1: METAFONT style variations

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer



164 TUGboat, Volume 37 (2016), No. 2

Figure 2: Architecture of FONTCONFIG

PC, then users could easily make and use a variety
of styled fonts by themselves. As we previously saw,
one METAFONT font can generate a variety of styled
fonts by changing style parameter values. Therefore,
METAFONT can save great amounts of time and re-
peated effort in terms of font design to make font
families of plain, italic, bold, and bold-italic fonts.
In particular, in the case of CJK usage, METAFONT

could be an effective way to make and display a
variety of font styles — because, compared to alpha-
betic scripts, CJK characters are both complicated
in shape and expressed by combinations of radicals.

In this paper, a METAFONT module that en-
ables direct METAFONT usage on Linux is proposed.
It is possible to plug this module into FONTCONFIG

to provide digital font information to the FreeType
engine. When the MFCONFIG module is used, con-
version of a METAFONT into corresponding outline
fonts becomes unnecessary. It is simple to change
font styles by applying new parameter values. Also,
this module can interact with most existing FONT-

CONFIG functions without modification of either
FONTCONFIG or Freetype. The MFCONFIG mod-
ule therefore has good usability and compatibility for
the support of METAFONT in the Freetype engine.

2 Existing font systems

FONTCONFIG [7] provides extended font configu-
ration for the Freetype rasterizer, and the Xft (X–
FreeType) library [6] has been developed to provide
interfaces between applications and Freetype. These
font libraries are able to collect font information on
the current PC system such as font paths, style infor-
mation, extra meta information, and so on. Figure 2
shows a font-output sequence that is required for ap-
plications using the X Window system under Linux.

Figure 3: Architecture of VFlib

After an application sends a font request according
to name and style to the Xft library, it also delivers
the request information to FONTCONFIG. FONT-

CONFIG uses its internal commands to check the
following conditions: (1) whether the requested font
is installed, (2) whether the style of the user’s request
has been applied to the stored font, and (3) whether
the requested font has already been stored with the
printing format in the cache. (4) If the requested
font is not stored in the cache, it needs to be con-
verted into the requested printing format and stored
in the cache, and (5) the requested font in the cache
is selected and then delivered to Freetype. Lastly,
the requested font is printed with the font styles.

FONTCONFIG is a library for Freetype, and ca-
pable of supporting general digital font formats that
can also be processed in Freetype. The architecture
of FONTCONFIG is shown in Figure 2. It can support
TrueType, OpenType, Type1, CFF, PFR, and BDF,
but it does not support METAFONT. For the direct
support of METAFONT in FONTCONFIG, it might
be necessary to change the internal implementation
of FONTCONFIG; for instance, changing the overall
processes in FONTCONFIG from fc-scan (for font
searching) to fc-pattern (for the matching of the
styled font pattern). This is not a simple task.

Additionally, the Xft library interface exists be-
tween an application and FONTCONFIG, intended
for providing font information such as font name and
size. It would not be a good approach to modify
Xft to support METAFONT, as it would likely reduce
Xft’s performance.

VFlib [2, 3] is a font driver system for supporting
a variety of font types. The system supports virtual
fonts like BDF, PCF, and TrueType, as shown in
Figure 3. It provides a database of general font in-
formation, and a useful API for the supported font

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong



TUGboat, Volume 37 (2016), No. 2 165

Figure 4: Three layers of the MFCONFIG module

types. VFlib includes separate modules for each font
type, so a new module could be added to support
METAFONT. But VFlib is a complicated system con-
sisting of many different kinds of font drivers and an
information dataset of default font information. In
addition, the VFlib interface is required for an ap-
plication to use the VFlib library. Therefore, to add
a METAFONT module to VFlib, additional functions
must be implemented for every relevant application,
which is not practical. So, VFlib is not suitable to
add support for METAFONT.

The proposed MFCONFIG module in this paper
combines the following two features: (1) the process
for the printing of digital fonts in FONTCONFIG, and
(2) the font driver architecture of VFlib. The module
can process METAFONT independently, and it can
be easily installed or removed since it is implemented
as a plug-in module. Also, the steps that are used for
its implementation are similar to FONTCONFIG’s
internal commands, so METAFONT can be used along
with the existing digital font formats.

3 Implementing the MFCONFIG module

As shown in Figure 4, the MFCONFIG module con-
sists of the following three layers: communication,
management, and conversion. The communication
layer provides an interface between FONTCONFIG

and MFCONFIG. The management layer checks
whether the requested METAFONT is ready in the
cache. If not, it sends a request message to the con-
version layer to convert the METAFONT font. The
conversion layer makes a new outline font file by
using the requested METAFONT and the customized
style values. The resulting outline font is stored in
the cache.

As shown in Figure 5, MFCONFIG can be used
as a plugin for FONTCONFIG. First, an application
requests a font from the Xft library (step 1). Next,
FONTCONFIG sends the font information and the

values of the style parameters to MFCONFIG through
the interface of the communication layer (step 2).
This interface checks if the requested font is a META-
FONT font or not.

In the case of METAFONT, mf-query analyzes
the requested information, and mf-match tries to
find this METAFONT from mf-list. If mf-list does not
have the information, the requested METAFONT font
is not installed. In this case, mf-query returns a “not
found” flag to FONTCONFIG (step 3). Otherwise,
if the METAFONT font is installed and is already
stored in the cache, mf-query returns a “found” flag
to FONTCONFIG (step 3).

One more case: the requested METAFONT font
is installed, but the corresponding outline font is not
yet in the cache. In this case, mf-converter in the
conversion layer needs to convert the METAFONT

font into the corresponding outline font (step 2a).
In this step, the METAFONT font and the styled
parameter values from the application are required
for the conversion. After conversion, the outline font
is stored in the cache (step 2b), and mf-query sends
the “found” flag to FONTCONFIG (step 3).

After step 3, the remaining steps are the default
steps of FONTCONFIG. The font information is sent
to the internal programs of FONTCONFIG (step 4)
that try to find the corresponding outline font in the
cache (step 5); then, this outline font is sent to the
Freetype rasterizer (step 6). If MFCONFIG returns
the “not found” flag, then FONTCONFIG uses a
default font file. Lastly, the Freetype engine renders
the outline font that was made from the requested
METAFONT with the styled parameter values.

The details of the three layers in MFCONFIG

are presented below. First, the communication layer,
which is an interface between FONTCONFIG and
MFCONFIG, is the starting point of the MFCON-

FIG module. Therefore, the Freetype engine receives
METAFONT font information from FONTCONFIG

just as with existing font formats. The main func-
tions of the interface are as follows: (1) delivery of
the requested METAFONT information to the man-
agement layer, (2) returning results to FONTCON-

FIG, and (3) storage of the outline-font file from
mf-converter in the cache memory.

The major programs of the MFCONFIG mod-
ule operate in the management layer. This layer is
in charge of “searching” and “managing”. “Search-
ing” is an independent function, finding all installed
METAFONT fonts and storing the information in a
list. This list is used for checking whether a specific
font is installed or not, and for fetching its infor-
mation quickly. The searching is implemented in
mf-scan and mf-list which, as shown in Figure 6,

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer



166 TUGboat, Volume 37 (2016), No. 2

Figure 5: MFCONFIG architecture linked into fontconfig

Figure 6: Management layer, cf. FONTCONFIG

work similarly to FONTCONFIG’s fc-scan and fc-list.
“Management” is a core process of the MFCON-

FIG module that is responsible for the following ac-
tions: (1) checking if the requested METAFONT font
is prepared in the list, (2) checking if the correspond-
ing outline font is stored with the requested style in
the cache, and (3) if the outline font is not so stored,
check whether conversion of the METAFONT font
into the corresponding outline font is needed. If the
outline font has already been prepared in the cache,
then a notification is sent directly from MFCONFIG

to FONTCONFIG to use it, and FONTCONFIG sends
the cached outline font to Freetype. If the outline font
is not stored in the cache, then the conversion layer
converts the METAFONT font into the correspond-
ing outline font by applying the style parameters,
as shown in Figure 7. The resulting outline font is
then stored in the cache, and a notification from the
management layer through the communication layer
tells FONTCONFIG to use the font.

Thus, the work of the MFCONFIG module is

Figure 7: Conversion layer operation

perfectly compatible with the standard FONTCON-

FIG, and it can provide new functions to support
METAFONT. The module handles management of
METAFONT fonts and their conversion to correspond-
ing outline fonts in real time. When a different style
of an METAFONT font is requested, MFCONFIG can
conveniently display the resulting font on the screen
by applying the style values to the METAFONT fonts.
Therefore MFCONFIG provides good usability for
METAFONT. In addition, it is not necessary to gen-
erate the font family set of plain, bold, italic, and
bold-italic in advance with respect to MFCONFIG,
because the font styles can be generated easily.

4 Examining the MFCONFIG module

For performing the experiments of this study, an
application for the use of the X Window system in
Linux was developed, and the display of a text file
was attempted with the use of a variety of font files.
The TrueType font family FreeSerif was used in the
usual four font styles (normal, bold, italic, bold-italic)
and Computer Modern was used for METAFONT.
The Computer Modern fonts were examined with
the four similar styles normal, thickness, italic, and
thickness+italic. The sample text comprises over
2,000 words and over 8,800 characters, including

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong



TUGboat, Volume 37 (2016), No. 2 167

Table 1: The FreeSerif font family

Table 2: Computer Modern fonts in various styles,
made by changing style variables

space characters. For performance analysis of the
Freetype rasterizer, the time between the requesting
of a font with styles from an application and the
successful display of text on screen was measured
and compared.

Table 1 shows the FreeSerif font family in the
four styles, and Table 2 shows 12 styles for the Com-
puter Modern METAFONT. These styles were all
made from one original METAFONT font by sim-
ple changes of the style parameters. Therefore, the
METAFONT font has a good capability of generating
various font styles.

For displaying text in an application, the four
FreeSerif files from Table 1 and Style 1 of Computer
Modern from Table 2 were used. For the CM style,
the four parameter values are hair, stem, curve, and
slant. The three parameters of hair, stem, and curve
are related to the bold style, but these parameters
are different for lowercase and uppercase. The slant
parameter is related to the italic style. The chosen
parameter values for the representation of a bold
style are hair+20, stem+10, and curve+10, while
slant is 0.25 for a representation of the italic style.

Table 3 shows the average time to print both
the FreeSerif and Computer Modern contents, and
Figures 8 and 9 show the displayed results. In this
experiment, with the FreeSerif TrueType fonts, re-
sults from 10 ms to 30 ms were obtained, and the

Table 3: Average time for display of TrueType and
METAFONT fonts (milliseconds)

average time is 16 ms. Therefore, extra time was
required for the conversion of the TrueType fonts. In
the case of the Computer Modern METAFONT font,
the result is much slower than for FreeSerif, because
of the additional time needed for the conversion of
the METAFONT font into the corresponding outline
font. The obtained results are from 50 ms to 120
ms, and the average time is 90 ms. Even though this
is 10 times slower, 90 ms is still a reasonable time
for rendering text to a display. Thus, we can con-
clude that the MFCONFIG module can be used with
FONTCONFIG to support METAFONT in (almost)
real time on a modern Linux PC.

The MFCONFIG module is a convenient system
to provide users with various styled fonts on screen
by applying style parameters directly to the META-
FONT font. An METAFONT font can be used in just
the same way as a TrueType font.

In this paper, we discuss the METAFONT font
Computer Modern, which provides alphanumeric val-
ues and symbols. It is possible to perform tests with
other METAFONT fonts from CTAN (Comprehensive
TEX Archive Network) directories that support lan-
guages such as Russian and Thai. Unfortunately,
difficulty was experienced when complicated CJK

fonts are used.
CJK font definitions are very complicated com-

pared to alphabet-based fonts, and they are com-
posed of several thousand phonemes. A number
of studies have been conducted to partially imple-
ment CJK fonts, such as Hóng-z̀ı [5, 11, 12] and
Tsukurimashou [9], including the use of a structural
font generator using METAFONT for Korean and Chi-
nese [1], and others. However, CJK fonts created with
METAFONT have still not nearly reached the level
of quality and practicality reached by commercial
offerings. The authors expect that using the MFCON-

FIG module for the generation of CJK fonts will take
more time. It may, however, be possible to solve
this problem by optimizing the meta-converter in
the conversion layer. Currently, the meta-converter
works with mftrace and autotrace programs, which
take a long time to generate outline fonts.

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer



168 TUGboat, Volume 37 (2016), No. 2

Figure 8: Displayed text in FreeSerif in the usual four styles

5 Conclusion

In this paper, the MFCONFIG module, enabling the
direct use of METAFONT on Linux, is proposed. It is
installed and used with the popular Freetype raster-
izer. MFCONFIG is a plug-in module for the FONT-

CONFIG library The module supports a variety of
the styled fonts that are generated from METAFONT

by setting different parameters.
Existing digital font formats — notably the out-

line fonts of Type 1, TrueType, and OpenType —
either do not typically allow users to change their

styles, aside from font size scaling. From the experi-
ments of the present study, it has been demonstrated
that a variety of fonts can be directly generated on
screen by applying different style parameters to a
prototype METAFONT font using a Freetype raster-
izer that is installed with MFCONFIG. Furthermore,
the fonts could be seen within an average time of 90
ms, which is a barely noticeable duration.

The MFCONFIG module targets METAFONT

fonts to be used with Freetype, a well-known ras-
terizer. MFCONFIG can be used effectively with

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong



TUGboat, Volume 37 (2016), No. 2 169

Figure 9: Displayed text in Computer Modern in the usual four styles

alphabet-based fonts, which are relatively simple
and have a limited number of characters. However,
there are only a few METAFONT fonts for various
languages. It will likely take a longer time to pro-
cess CJK METAFONT fonts, which have complicated
shapes and more than several thousand phonemes.
Further work will focus on these CJK METAFONT

fonts to improve performance, and otherwise op-
timize the MFCONFIG module. In addition, this
module will be experimented with as a font driver
in the Freetype rasterizer.

Acknowledgements

This work was supported by an Institute for In-
formation & Communications Technology Promo-
tion (IITP) grant funded by the Korean government
(MSIP) (No.R-20160301-002987, Technology Develop-
ment Project for Information, Communication, and
Broadcast).

MFCONFIG: A METAFONT plug-in module for the Freetype rasterizer



170 TUGboat, Volume 37 (2016), No. 2

References

[1] Gyungjae Gwon, Minju Son, Geunho Jeong,
and Jaeyoung Choi. Structural font generator
using METAFONT for Korean and Chinese,
2016. In preparation.

[2] H. Kakugawa, M. Nishikimi, N. Takahashi,
S. Tomura, and K. Handa. A general
purpose font module for multilingual
application programs. Software: Practice
and Experience, 31(15):1487–1508, 2001.
dx.doi.org/10.1002/spe.424.

[3] Hirotsugu Kakugawa. VFlib: A general font
library that supports multiple font formats.
Cahiers GUTenberg, iss. 28–29:211–222,
March 1998. cahiers.gutenberg.eu.org/

cg-bin/article/CG_1998___28-29_211_0.

pdf.

[4] Donald E. Knuth. Computers and Typesetting,
Volume C: The METAFONTbook. Addison-
Wesley, 1986.

[5] Javier Rodŕıguez Laguna. Hóng-z̀ı: A Chinese
METAFONT. TUGboat, 26(2):125–128, 2005.
tug.org/TUGboat/tb26-2/laguna.pdf.

[6] Keith Packard. The Xft font library:
Architecture and users guide. Proceedings of
the 5th annual conference on Linux Showcase
& Conference, 2001. keithp.com/~keithp/

talks/xtc2001/paper/.

[7] Keith Packard, Behdad Esfahbod, et al.
Fontconfig. fontconfig.org.

[8] Y. Park. Current status of Hangul in the
21st century [in Korean]. 〈The T 〉Type and
Typography magazine, vol. 7, August 2012. www.
typographyseoul.com/news/detail/222.

[9] Matthew Skala. Tsukurimashou: A
Japanese-language font meta-family. TUGboat,
34(3):269–278, 2013. tug.org/TUGboat/

tb34-3/tb108skala.pdf.

[10] S. Song. Development of Korean Typography
Industry [in Korean]. Appreciating Korean
Language, 2013. www.korean.go.kr/nkview/

nklife/2013_3/23_0304.pdf.

[11] Candy L.K. Yiu and Jim Binkley. Qin
notation generator. TUGboat, 26(2):129–134,
2005. tug.org/TUGboat/tb26-2/yiu.pdf.

[12] Candy L.K. Yiu and Wai Wong. Chinese
character synthesis using MetaPost. TUGboat,
24(1):85–93, 2003. tug.org/TUGboat/tb24-1/
yiu.pdf.

� Jaeyoung Choi
Soongsil University, Seoul, Korea
choi (at) ssu.ac.kr

� Sungmin Kim
Soongsil University, Seoul, Korea
sungmin.kim (at) ssu.ac.kr

� Hojin Lee
Soongsil University, Seoul, Korea
hojini (at) ssu.ac.kr

� Geunho Jeong
Gensol Soft, Seoul, Korea
ghjeong (at) gensolsoft.com

Jaeyoung Choi, Sungmin Kim, Hojin Lee and Geunho Jeong

dx.doi.org/10.1002/spe.424
cahiers.gutenberg.eu.org/cg-bin/article/CG_1998___28-29_211_0.pdf
cahiers.gutenberg.eu.org/cg-bin/article/CG_1998___28-29_211_0.pdf
cahiers.gutenberg.eu.org/cg-bin/article/CG_1998___28-29_211_0.pdf
tug.org/TUGboat/tb26-2/laguna.pdf
keithp.com/~keithp/talks/xtc2001/paper/
keithp.com/~keithp/talks/xtc2001/paper/
fontconfig.org
www.typographyseoul.com/news/detail/222
www.typographyseoul.com/news/detail/222
tug.org/TUGboat/tb34-3/tb108skala.pdf
tug.org/TUGboat/tb34-3/tb108skala.pdf
www.korean.go.kr/nkview/nklife/2013_3/23_0304.pdf
www.korean.go.kr/nkview/nklife/2013_3/23_0304.pdf
tug.org/TUGboat/tb26-2/yiu.pdf
tug.org/TUGboat/tb24-1/yiu.pdf
tug.org/TUGboat/tb24-1/yiu.pdf

	Introduction
	Existing font systems
	Implementing the MFCONFIG module
	Examining the MFCONFIG module
	Conclusion

