
66 TUGboat, Volume 37 (2016), No. 1

Hyphenation languages in LuaTEX 0.90

Hans Hagen

In LuaTEX you can define up to 16,383 separate
languages, and words can be up to 256 characters
long. The language is stored with each character.
You can set \firstvalidlanguage (a new variable)
to, for instance, 1 and thereby make language 0 an
ignored hyphenation language. Because the language
is stored in the glyph nodes this is an efficient way
to disable hyphenation locally.

The new primitive \hyphenationmin can be set
to specify the minimum length of a word considered
for hyphenation. This value is stored with the (cur-
rent) language and applies to the whole paragraph.
Because \lefthyphenmin and \righthyphenmin are
stored with the glyphs you can temporarily change
them. The \uchyph value is also saved in the actual
nodes, therefore its handling is different from TEX82:
changes to \uchyph become effective immediately,
not at the end of the current partial paragraph.

LuaTEX now uses the new language-specific vari-
ables \prehyphenchar and \posthyphenchar when
creating implicit discretionaries, instead of TEX82’s
\hyphenchar, and new variables \preexhyphenchar
and \postexhyphenchar (also language-specific) for
explicit discretionaries, instead of TEX82’s empty
discretionary.

Typeset boxes now always have their language
information embedded in the nodes themselves, so
there is no longer a dependency on the surround-
ing language settings. In TEX82, a mid-paragraph
statement like \unhbox0 would process the box using
the current paragraph language unless there was a
\setlanguage issued inside the box. In LuaTEX all
language variables are already frozen.

In traditional TEX, hyphenation is driven by
the so-called \lccode table. In LuaTEX we made
this dependency less strong. Several strategies are
possible. When you do nothing, the currently-used
\lccode’s are still the default when loading patterns,
setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value
larger than zero the current set of \lccodes will be
saved with the language but in a dedicated name-
space reflecting hyphenation-justification codes. In
this case changing a \lccode afterwards has no
effect. Instead of \lccode you can use \hjcode.
These are per-language and when set take prece-
dence over the shared \lccodes. So, LuaTEX doesn’t
store \lccodes per language but has a dedicated
hyphenation-justification code instead. You can
change these values at any time with \hjcode‘a=‘a.

This change is global which makes sense if you

keep in mind that the moment when hyphenation
happens is (normally) when the paragraph or a hori-
zontal box is constructed. If \savinghyphcodes was
zero when the language was initialized you start out
with nothing, otherwise you already have a set. Be-
ware: the \hjcode values are always saved in the for-
mat, independent of the value of \savinghyphcodes
when the format is dumped.

The value of the two counters related to hyphen-
ation, \hyphenpenalty and \exhyphenpenalty, are
now stored in the discretionary nodes. This permits
a local overload when explicit \discretionary com-
mands are used. The implementation is downward
compatible but permits control for special situations.

MetaPost arrowhead variants

Alan Braslau, Hans Hagen

Some colleagues have complained that the arrow-
heads in MetaPost graphics are too blunt, and that
they would like to see a more stylish arrowhead. Per-
haps they do not appreciate how MetaPost produces
arrowheads that actually follow a curved path? Still,
we realized that one can easily modify the arrowhead
macro to produce variants to satisfy everyone while
remaining simple and elegant.

We settled on a backwards-compatible solution
of adding two new global, internal variables to the
existing ahlength and ahangle: ahvariant and
ahdimple. With the default ahvariant:=0, one
gets the traditional MetaPost arrowhead. A non-
zero value will give a more stylized arrowhead that
uses the value of ahdimple, a unitless fraction of
ahlength, by default 0.2, to create a dimple at the
base. The variant:=1 uses ... to give a rounded
dimple or “ear” and variant:=2 uses -- to create a
barb. Finally, a sort of “broadhead” can be produced
by making ahdimple negative. (We also made an
efficiency change in PDF drawing that leads to an
improvement when drawing arrowheads.)

This change is now part of MetaFun and Con-
TEXt and can be easily included as MetaPost macros.
Examples follow (scaled for TUGboat).

pickup pencircle scaled 2mm;

ahlength := 8mm;drawarrow fullcircle scaled 2cm;

ahvariant := 1; drawarrow fullcircle scaled 4cm;

ahdimple := .5; drawarrow fullcircle scaled 6cm;

ahangle := 60; drawarrow fullcircle scaled 8cm;


