
58 TUGboat, Volume 37 (2016), No. 1

Still expanding LuaTEX: Possibly useful
extensions

Hans Hagen

Abstract

New LuaTEX programming features in a variety of
areas: rules, spaces, token lists, active characters,
\csname, packing of lists, and error handling.

1 Introduction

While working on LuaTEX, it is tempting to intro-
duce all kinds of new fancy programming features.
Arguments for doing this can be characterized by
descriptions like ‘handy’, ‘speedup’, ‘less code’, ‘ne-
cessity’. It must be stated that traditional TEX is
rather complete, and one can do quite a lot of macro
magic to achieve many goals. So let us look a bit
more at the validity of these arguments.

The ‘handy’ argument is in fact a valid one. Of
course, one can always wrap clumsy code in a macro
to hide the dirty tricks, but, still, it would be nicer
to avoid needing to employ extremely dirty tricks.
I found myself looking at old code wondering why
something has to be done in such a complex way,
only to realize, after a while, that it comes with the
concept; one can get accustomed to it. After all,
every programming language has its stronger and
weaker aspects.

The ‘speedup’ argument is theoretically a good
one too, but, in practice, it’s hard to prove that a
speedup really occurs. Say we save 5% on a job.
This is nice for multipass on a server where many
jobs run at the same time or after each other, but
a little bit of clever macro coding will easily gain
much more. Or, as we often see: sloppy macro or
style writing will easily negate those gains. Another
pitfall is that you can measure (say) half a million
calls to a macro can indeed be brought down to a
fraction of its runtime thanks to some helper, but,
in practice, you will not see that gain because saving
0.1 seconds on a 10 second run can be neglected.
Furthermore, adding a single page to the document
will already make such a gain invisible to the user as
that will itself increase the runtime. Of course, many
small speedups can eventually accumulate to yield
a significant overall gain, but, if the macro package
is already quite optimized, it might not be easy to
squeeze out much more. At least in ConTEXt, I find
it hard to locate bottlenecks that could benefit from
extensions, unless one adds very specific features,
which is not what we want.

Of course one can create ‘less’ code by using
more wrappers. But this can definitely have a speed

penalty, so this argument should be used with care.
An appropriate extra helper can make wrappers fast
and the fewer helpers the better. The danger is in
choosing what helpers. A good criterion is that it
should be hard otherwise in TEX. Adding more prim-
itives (and overhead) merely because some macro
package would like it would be bad practice. I’m
confident that helpers for ConTEXt would not be that
useful for plain TEX, LATEX, etc., and vice versa.

The ‘necessity’ argument is a strong one. Many
already present extensions from ε-TEX fall into this
category: fully expandable expressions (although
the implementation is somewhat restricted), better
macro protection, expansion control, and the ability
to test for a so-called csname (control sequence name)
are examples.

In the end, the only valid argument is ‘it can’t be
done otherwise’, which is a combination of all these
arguments with ‘necessity’ being dominant. This is
why in LuaTEX there are not that many extensions
to the language (nor will there be). I must admit that
even after years of working with TEX, the number of
wishes for more facilities is not that large.

The extensions in LuaTEX, compared to tradi-
tional TEX, can be summarized as follows:

• Of course we have the ε-TEX extensions, and
these already have a long tradition of proven
usage. We did remove the limited directional
support.

• From Aleph (follow-up on Omega), part of the
directional support and some font support was
inherited.

• From pdfTEX, we took most of the backend code,
but it has been improved in the meantime. We
also took the protrusion and expansion code,
but especially the latter has been implemented
a bit differently (in the frontend as well as in
the backend).

• Some handy extensions from pdfTEX have been
generalized; other obscure or specialized ones
have been removed. So we now have frontend
support for position tracking, resources (images)
and reusable content in the core. The backend
code has been separated a bit better and only a
few backend-related primitives remain.

• The input encoding is now UTF-8, exclusively,
but one can easily hook in code to preprocess
data that enters TEX’s parser using Lua. The
characteristic catcode settings for TEX can be
grouped and switched efficiently.

• The font machinery has been opened wide so
that we can use the embedded Lua interpreter
to implement any technology that we might

Hans Hagen

TUGboat, Volume 37 (2016), No. 1 59

want, with the usual control that TEXies like.
Some further limitations have been lifted. One
interesting point is that one can now construct
virtual fonts at runtime.

• Ligature construction, kerning and paragraph
building have been separated as a side effect of
Lua control. There are some extensions in that
area. For instance, we store the language and
min/max values in the glyph nodes, and we also
store penalties with discretionaries. Patterns
can be loaded at runtime, and character codes
that influence hyphenation can be manipulated.

• The math renderer has been upgraded to sup-
port OpenType math. This has resulted in many
new primitives and extensions, not only to de-
fine characters and spacing, but also to control
placement of superscripts and subscripts and
generally to influence the way things are con-
structed. A couple of mechanisms have gained
control options.

• Several Lua interfaces are available making it
possible to manipulate the (intermediate) results.
One can pipe text to TEX, write parsers, mess
with node lists, inspect attributes assigned at
the TEX end, etc.

Some of the features mentioned above are rather
LuaTEX specific, such as catcode tables and at-
tributes. They are present as they permit more
advanced Lua interfacing. Other features, such as
UTF-8 and OpenType math, are a side effect of more
modern techniques. Bidirectional support is there
because it was one of the original reasons for going
forward with LuaTEX. The removal of backend prim-
itives and thereby separating the code in a better
way (see companion article) comes from the desire
to get closer to the traditional core, so that most
documentation by Don Knuth still applies. It’s also
the reason why we still speak of ‘tokens’, ‘nodes’ and
‘noads’.

In the following sections I will discuss a few new
low-level primitives. This is not a complete descrip-
tion (after all, we have reported on much already),
and one can consult the LuaTEX manual to get the
complete picture. The extensions described below
are also relatively new and date from around version
0.85, the prelude to the stable version 1 release.

2 Rules

For insiders, it is no secret that TEX has no graphic
capabilities, apart from the ability to draw rules. But
with rules you can do quite a lot already. Add to
that the possibility to insert arbitrary graphics or

even backend drawing directives, and the average
user won’t notice that it’s not true core functionality.

When we started with LuaTEX, we used code
from pdfTEX and Omega (Aleph), and, as a conse-
quence, we ended up with many whatsits. Normal
running text has characters, kerns, some glue, maybe
boxes, all represented by a limited set of so-called
nodes. A whatsit is a kind of escape as it can be any-
thing an extension to TEX needs to wrap up and put
in the current list. Examples are (in traditional TEX
already) whatsits that write to file (using \write)
and whatsits that inject code into the backend (us-
ing \special). The directional mechanism of Omega
uses whatsits to indicate direction changes.

For a long time images were also included using
whatsits, and basically one had to reserve the right
amount of space and inject a whatsit with a direc-
tive for the backend to inject something there with
given dimensions or scale. Of course, one then needs
methods to figure out the image properties, but, in
the end, all of this could be done rather easily.

In pdfTEX, two new whatsits were introduced:
images and reusable so-called forms, and, contrary
to other whatsits, these do have dimensions. As a
result, suddenly the TEX code base could no longer
just ignore whatsits, but it had to check for these
two when dimensions were important, for instance
in the paragraph builder, packager, and backend.

So what has this to do with rules? Well, in
LuaTEX all the whatsits are now back to where they
belong, in the backend extension code. Directions are
now first-class nodes, and we have native resources
and reusable boxes. These resources and boxes are
an abstraction of the pdfTEX images and forms, and,
internally, they are a special kind of rule (i.e. a blob
with dimensions). Because checking for rules is part
of the (traditional) TEX kernel, we could simply
remove the special whatsit code and let existing rule-
related code do the job. This simplified the code a
lot.

Because we suddenly had two more types of
rules, we took the opportunity to add a few more.

\nohrule width 10cm height 2cm depth 0cm

\novrule width 10cm height 2cm depth 0cm

This is a way to reserve space, and it’s nearly
equivalent to the following (respectively):

{\setbox0\hbox{}%

\wd0=10cm\ht0=2cm\dp0=0cm\box0\relax}

{\setbox0\vbox{}%

\wd0=10cm\ht0=2cm\dp0=0cm\box0\relax}

There is no real gain in efficiency because key-
words also take time to parse, but the advantage is

Still expanding LuaTEX: Possibly useful extensions

60 TUGboat, Volume 37 (2016), No. 1

that no Lua callbacks are triggered.1 Of course, this
variant would not have been introduced had we still
had just rules and no further subtypes; it was just a
rather trivial extension that fit in the repertoire.2

So, while we were at it, yet another rule type
was introduced, but this one has been made available
only in Lua. As this text is about LuaTEX, a bit
of Lua code does fit into the discussion, so here we
go. The code shown here is rather generic and looks
somewhat different in ConTEXt, but it does the job.

First, let’s create a straightforward rectangle
drawing routine. We initialize some variables first,
then scan properties using the token scanner, and,
finally, we construct the rectangle using four rules.
The packaged (so-called) hlist is written to TEX.

\startluacode

function FramedRule()

local width = 0

local height = 0

local depth = 0

local linewidth = 0

--

while true do

if token.scan_keyword("width") then

width = token.scan_dimen()

elseif token.scan_keyword("height") then

height = token.scan_dimen()

elseif token.scan_keyword("depth") then

depth = token.scan_dimen()

elseif token.scan_keyword("line") then

linewidth = token.scan_dimen()

else

break

end

end

local doublelinewidth = 2*linewidth

--

local left = node.new("rule")

local bottom = node.new("rule")

local right = node.new("rule")

local top = node.new("rule")

local back = node.new("kern")

local list = node.new("hlist")

--

left.width = linewidth

bottom.width = width - doublelinewidth

bottom.height = -depth + linewidth

bottom.depth = depth

right.width = linewidth

top.width = width - doublelinewidth

top.height = height

top.depth = -height + linewidth

back.kern = -width + linewidth

1 I still am considering adding variants of \hbox and \vbox

where no callback would be triggered.
2 This is one of the things I wanted to have for a long time

but seems less useful today.

list.list = left

list.width = width

list.height = height

list.depth = depth

list.dir = "TLT"

--

node.insert_after(left,left,bottom)

node.insert_after(left,bottom,right)

node.insert_after(left,right,back)

node.insert_after(left,back,top)

--

node.write(list)

end

\stopluacode

This function can be wrapped in a macro:

\def\FrameRule{\directlua{FramedRule()}}

and the macro can be used as follows:

\FrameRule width2cm height.5cm depth.5cm line2pt

The result is:

A different approach follows. Again, we define
a rule, but, this time we only set dimensions and
assign some attributes to it. Normally, one would
reserve some attribute numbers for this purpose, but,
for our example here, high numbers are safe enough.
Now there is no need to wrap the rule in a box.

\startluacode

function FramedRule()

local width = 0

local height = 0

local depth = 0

local linewidth = 0

local radius = 0

local type = 0

--

while true do

if token.scan_keyword("width") then

width = token.scan_dimen()

elseif token.scan_keyword("height") then

height = token.scan_dimen()

elseif token.scan_keyword("depth") then

depth = token.scan_dimen()

elseif token.scan_keyword("line") then

linewidth = token.scan_dimen()

elseif token.scan_keyword("type") then

type = token.scan_int()

elseif token.scan_keyword("radius") then

radius = token.scan_dimen()

else

break

end

end

--

local r = node.new("rule")

r.width = width

r.height = height

Hans Hagen

TUGboat, Volume 37 (2016), No. 1 61

r.depth = depth

r.subtype = 4 -- user rule

r[20000] = type

r[20001] = linewidth

r[20002] = radius or 0

node.write(r)

end

\stopluacode

Nodes with subtype 4 (user) are intercepted and
passed to a callback function, when set. Here we
show a possible implementation:

\startluacode

local bpfactor = (7200/7227)/65536

local f_rectangle = "%f w 0 0 %f %f re %s"

local f_radtangle = [[

%f w %f 0 m

%f 0 l %f %f %f %f y

%f %f l %f %f %f %f y

%f %f l %f %f %f %f y

%f %f l %f %f %f %f y

h %s

]]

callback.register("process_rule",function(n,h,v)

local t = n[20000] == 0 and "f" or "s"

local l = n[20001] * bpfactor -- linewidth

local r = n[20002] * bpfactor -- radius

local w = h * bpfactor

local h = v * bpfactor

if r > 0 then

p = string.format(f_radtangle,

l, r, w-r, w,0,w,r, w,h-r, w,h,w-r,h,

r,h, 0,h,0,h-r, 0,r, 0,0,r,0, t)

else

p = string.format(f_rectangle, l, w, h, t)

end

pdf.print("direct",p)

end)

\stopluacode

We can now also specify a radius and type, where
0 is a filled and 1 a stroked shape.

\FrameRule

type 1

width 3cm height 1cm depth 5mm

line 0.2mm radius 2.5mm

Since we specified a radius we get round corners:

Possibly useful extensions 9

type 1

width 3cm

height 1cm

depth 5mm

line 0.2mm

radius 2.5mm

Because we specified a radius we get round corners:

The nice thing about these extensions to rules is that the internals of TEX are

not affected much. Rules are just blobs with dimensions and for instance

the par builder doesn’t care what they are. There is no need for further

inspection. Maybe future versions of LuaTEX will provide a few more useful

subtypes.

1.3 Spaces

Multiple successive spaces in TEX are normally collapsed into one. But,

what if you don’t want any spaces at all? In fact this is pretty hard to

achieve. You can, of course, change the catcodes, but that won’t work well if

you pass text around as macro arguments. Also, you would not want spaces

that separate macros and text to be ignored, but only those in the typeset

text. For such use, LuaTEX introduces \nospaces.

This new primitive can be used to overrule the usual \spaceskip related

heuristics when a space character is seen in a text flow. The value 1 triggers

no injection while a value of 2 results in injection of a zero skip. Below we

see the results for four characters separated by a space.

x x x

x

xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

In case youwonder why setting the space related skips to zero is not enough,

even when it is set to zero you will always get something: what gets inserted

The nice thing about these extensions to rules
is that the internals of TEX are not affected much.
Rules are just blobs with dimensions and the par
builder, for instance, doesn’t care what they are.
There is no need for further inspection. Maybe future
versions of LuaTEX will provide more useful subtypes.

3 Spaces

Multiple successive spaces in TEX are normally col-
lapsed into one. But, what if you don’t want any
spaces at all? It turns out this is rather hard to
achieve. You can, of course, change the catcodes,
but that won’t work well if you pass text around as
macro arguments. Also, you would not want spaces
that separate macros and text to be ignored, but
only those in the typeset text. For such use, LuaTEX
introduces \nospaces.

This new primitive can be used to overrule the
usual \spaceskip-related heuristics when a space
character is seen in a text flow. The value 1 specifies
no injection, a value of 2 results in injection of a zero
skip, and the default 0 gets the standard behavior.
Below we see the results for four characters separated
by spaces. (Output has been rescaled.)

Possibly useful extensions 9

type 1

width 3cm

height 1cm

depth 5mm

line 0.2mm

radius 2.5mm

Because we specified a radius we get round corners:

The nice thing about these extensions to rules is that the internals of TEX are

not affected much. Rules are just blobs with dimensions and for instance

the par builder doesn’t care what they are. There is no need for further

inspection. Maybe future versions of LuaTEX will provide a few more useful

subtypes.

1.3 Spaces

Multiple successive spaces in TEX are normally collapsed into one. But,

what if you don’t want any spaces at all? In fact this is pretty hard to

achieve. You can, of course, change the catcodes, but that won’t work well if

you pass text around as macro arguments. Also, you would not want spaces

that separate macros and text to be ignored, but only those in the typeset

text. For such use, LuaTEX introduces \nospaces.

This new primitive can be used to overrule the usual \spaceskip related

heuristics when a space character is seen in a text flow. The value 1 triggers

no injection while a value of 2 results in injection of a zero skip. Below we

see the results for four characters separated by a space.

x x x

x

xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

In case youwonder why setting the space related skips to zero is not enough,

even when it is set to zero you will always get something: what gets inserted

In case you wonder why setting the space re-
lated skips to zero is not enough: even when it is
set to zero you will always get something. What
gets inserted depends on \spaceskip, \xspaceskip,
\spacefactor and font dimensions. I must admit
that I always have to look up the details, as, nor-
mally, it’s wrapped up in a spacing system that you
implement once then forget about. In any case, with
\nospaces, you can completely get rid of even an
inserted zero space.

4 Token lists

The following four new primitives are provided be-
cause they are more efficient than macro-based vari-
ants: \toksapp, \tokspre, and \e... (expanding)
versions of both. They can be used to append or
prepend tokens to a token register.

However, don’t overestimate the gain to be
found in simple situations with not that many tokens
involved (read: there is no need to instantly change
all code that does it the traditional way). The new
method avoids saving tokens in a temporary register.
Then, when you combine registers (which is also pos-
sible), the source gets appended to the target and,
afterwards, the source is emptied: we don’t copy but
combine!

Their use can best be demonstrated by examples.
We employ a scratch register \ToksA. The examples
here show the effects of grouping; in fact, they were

Still expanding LuaTEX: Possibly useful extensions

62 TUGboat, Volume 37 (2016), No. 1

written for testing this effect. Because we don’t use
the normal assignment code, we need to initialize a
local copy in order to get the original content outside
the group.

\ToksA{}

\bgroup \ToksA{}

\bgroup \toksapp\ToksA{!!} [\the\ToksA=!!]

\egroup [\the\ToksA=]

\egroup

[\the\ToksA=]

result: [!!=!!][=][=]

\ToksA{}

\bgroup \ToksA{A}

\bgroup \toksapp\ToksA{!!} [\the\ToksA=A!!]

\egroup [\the\ToksA=A]

\egroup

[\the\ToksA=]

result: [A!!=A!!][A=A][=]

\ToksA{}

\bgroup \ToksA{}

\bgroup

\ToksA{A} \toksapp\ToksA{!!}[\the\ToksA=A!!]

\egroup [\the\ToksA=]

\egroup

[\the\ToksA=]

result: [A!!=A!!][=][=]

\ToksA{}

\bgroup \ToksA{A}

\bgroup

\ToksA{} \toksapp\ToksA{!!} [\the\ToksA=!!]

\egroup [\the\ToksA=A]

\egroup

[\the\ToksA=]

result: [!!=!!][A=A][=]

\ToksA{}

\bgroup \ToksA{}

\bgroup

\tokspre\ToksA{!!} [\the\ToksA=!!]

\egroup [\the\ToksA=]

\egroup

[\the\ToksA=]

result: [!!=!!][=][=]

\ToksA{}

\bgroup \ToksA{A}

\bgroup

\tokspre\ToksA{!!} [\the\ToksA=!!A]

\egroup [\the\ToksA=A]

\egroup

[\the\ToksA=]

result: [!!A=!!A][A=A][=]

\ToksA{}

\bgroup \ToksA{}

\bgroup

\ToksA{A} \tokspre\ToksA{!!}[\the\ToksA=!!A]

\egroup [\the\ToksA=]

\egroup

[\the\ToksA=]

result: [!!A=!!A][=][=]

\ToksA{}

\bgroup \ToksA{A}

\bgroup

\ToksA{} \tokspre\ToksA{!!} [\the\ToksA=!!]

\egroup [\the\ToksA=A]

\egroup

[\the\ToksA=]

result: [!!=!!][A=A][=]

Here we used \toksapp and \tokspre, but there
are two more primitives, \etoksapp and \etokspre;
these expand the given content while it gets added.

The next example demonstrates that you can
also append another token list. In this case the
original content is gone after an append or prepend.

\ToksA{A}

\ToksB{B}

\toksapp\ToksA\ToksB

\toksapp\ToksA\ToksB

[\the\ToksA=AB]

result: [AB=AB]
This is intended behaviour! The original content

of the source is not copied but really appended or
prepended. Of course, grouping works well.

\ToksA{A}

\ToksB{B}

\bgroup

\toksapp\ToksA\ToksB

\toksapp\ToksA\ToksB

[\the\ToksA=AB]

\egroup

[\the\ToksA=AB]

result: [AB=AB][AB=AB]

5 Active characters

We now enter an area of very dirty tricks. If you
have read The TEXbook or listened to talks by TEX
experts, you will, for sure, have run into the term ‘ac-
tive character’. In short, it boils down to this: each
character has a catcode and there are 16 possible
values. For instance, backslash normally has catcode
zero, braces have values one and two, and normal
characters can be 11 or 12. Very special are charac-
ters with code 13 as they are ‘active’ and behave like
macros. In Plain TEX, the tilde is one such active
character, and it’s defined to be a ‘non-breakable
space’. In ConTEXt, the vertical bar is active and
used to indicate compound and fence constructs.

Below is an example of a definition:

\catcode‘A=13

\def A{B}

Hans Hagen

TUGboat, Volume 37 (2016), No. 1 63

This will make the A into an active character
that will typeset a B. Of course, such an example is
asking for problems since any A is seen that way, so
a macro name that uses one will not work. Speaking
of macros:

\def\whatever

{\catcode‘A=13

\def A{B}}

This won’t work out well. When the macro is
read it gets tokenized and stored and at that time the
catcode change is not yet done so when this macro
is called the A is frozen with catcode letter (11) and
the \def will not work as expected (it gives an error).
The solution is this:

\bgroup

\catcode‘A=13

\gdef\whatever

{\catcode‘A=13

\def A{B}}

\egroup

Here we make the A active before the definition
and we use grouping because we don’t want that
to be permanent. But still we have a hard-coded
solution, while we might want a more general one
that can be used like this:

\whatever{A}{B}

\whatever{=}{{\bf =}}

Here is the definition of whatever:

\bgroup

\catcode‘~=13

\gdef\whatever#1#2%

{\uccode‘~=‘#1\relax

\catcode‘#1=13

\uppercase{\def\tempwhatever{~}}%

\expandafter\gdef\tempwhatever{#2}}

\egroup

If you read backwards, you can imagine that
\tempwhatever expands into an active A (the first
argument). So how did it become one? The trick is
in the \uppercase (a \lowercase variant will also
work). When casing an active character, TEX applies
the (here) uppercase and makes the result active too.

We can argue about the beauty of this trick or
its weirdness, but it is a fact that for a novice user
this indeed looks more than a little strange. And so,
a new primitive \letcharcode has been introduced,
not so much out of necessity but simply driven by
the fact that, in my opinion, it looks more natural.
Normally the meaning of the active character can be
put in its own macro, say:

\def\MyActiveA{B}

We can now directly assign this meaning to the active
character:

\letcharcode‘A=\MyActiveA

Now, when A is made active this meaning kicks in:

\def\whatever#1#2%

{\def\tempwhatever{#2}%

\letcharcode‘#1\tempwhatever

\catcode‘#1=13\relax}

We end up with less code but, more important, it
is easier to explain to a user and, in my eyes, it looks
less obscure, too. Of course, the educational gain
here wins over any practical gain because a macro
package hides such details and only implements such
an active character installer once.

6 \csname and friends

You can check for a macro being defined as follows:

\ifdefined\foo

do something

\else

do nothing

\fi

which, of course, can be obscured to:

do \ifdefined\foo some\else no\fi thing

A bit more work is needed when a macro is
defined using \csname, in which case arbitrary char-
acters (like spaces) can be used:

\ifcsname something or nothing\endcsname

do something

\else

do nothing

\fi

Before ε-TEX, this was done as follows:

\expandafter

\ifx\csname something or nothing\endcsname

\relax

do nothing

\else

do something

\fi

The \csname primitive will do a lookup and cre-
ate an entry in the hash for an undefined name that
then defaults to \relax. This can result in many un-
wanted entries when checking potential macro names.
Thus, ε-TEX’s \ifcsname test primitive can be qual-
ified as a ‘necessity’.

Now take the following example:

\ifcsname do this\endcsname

\csname do this\endcsname

\else\ifcsname do that\endcsname

\csname do that\endcsname

\else

\csname do nothing\endcsname

\fi\fi

If do this is defined, we have two lookups. If it
is undefined and do that is defined, we have three
lookups. So there is always one redundant lookup.

Still expanding LuaTEX: Possibly useful extensions

64 TUGboat, Volume 37 (2016), No. 1

Also, when no match is found, TEX has to skip to
the \else or \fi. One can save a bit by uglifying
this to:

\csname do%

\ifcsname do this\endcsname this\else

\ifcsname do that\endcsname that\else

nothing\fi\fi

\endcsname

This, of course, assumes that there is always a
final branch. So let’s get back to:

\ifcsname do this\endcsname

\csname do this\endcsname

\else\ifcsname do that\endcsname

\csname do that\endcsname

\fi\fi

As said, when there is some match, there is
always one test too many. In case you think this
might be slowing down TEX, be warned: it’s hard to
measure. But as there can be (m)any character(s)
involved, including multi-byte UTF-8 characters or
embedded macros, there is a bit of penalty in terms
of parsing token lists and converting to UTF-8 strings
used for the lookup. And, because TEX has to give
an error message in case of troubles, the already-seen
tokens are stored too.

So, in order to avoid this somewhat redundant
operation of parsing, memory allocation (for the
lookup string) and storing tokens, the new primitive
\lastnamedcs is now provided:

\ifcsname do this\endcsname

\lastnamedcs

\else\ifcsname do that\endcsname

\lastnamedcs

\fi\fi

In addition to the (in practice, often negligible)
speed gain, there are other advantages: TEX has
less to skip, and although skipping is fast, it still
isn’t a nice side effect (also useful when tracing).
Another benefit is that we don’t have to type the
to-be-looked-up text twice. This reduces the chance
of errors. In our example we also save 16 tokens
(taking 64 bytes) in the format file. So, there are
enough benefits to gain from this primitive, which
is not a specific feature, but just an extension to an
existing mechanism.

It also works in this basic case:

\csname do this\endcsname

\lastnamedcs

And even this works:

\csname do this\endcsname

\expandafter\let\expandafter\dothis\lastnamedcs

And after defining:

\bgroup

\expandafter

\def\csname do this\endcsname{or that}

\global\expandafter

\let\expandafter\dothis\lastnamedcs

\expandafter

\def\csname do that\endcsname{or this}

\global\expandafter

\let\expandafter\dothat\lastnamedcs

\egroup

We can use \dothis that gives or that and
\dothat that gives or this, so we have the usual
freedom to be able to use something meant to make
code clean for the creation of obscure code.

A variation on this is the following:

\begincsname do this\endcsname

This call will check if \do this is defined, and,
if so, will expand it. However, when \do this is not
found, it does not create a hash entry. It is equivalent
to:

\ifcsname do this\endcsname\lastnamedcs\fi

but it avoids the \ifcsname, which is sometimes
handy as these tests can interfere.

I played with variations like \ifbegincsname,
but we then quickly end up with dirty code due to
the fact that we first expand something and then
need to deal with the following \else and \fi. The
two above-mentioned primitives are non-intrusive
in the sense that they were relatively easy to add
without obscuring the code base.

As a bonus, LuaTEX also provides a variant
of \string that doesn’t add the escape character:
\csstring. There is not much to explain to this:

\string\whatever<>\csstring\whatever

This gives: \whatever<>whatever

The main advantage of these several new primi-
tives is that a bit less code is needed and (at least for
ConTEXt) leads to a bit less tracing output. When
you enable \tracingall for a larger document or
example, which is sometimes needed to figure out
a problem, it’s not much fun to work with the re-
sulting megabyte (or sometimes even gigabyte) of
output so the more we can get rid of, the better. This
consequence is just an unfortunate side effect of the
ConTEXt user interface with its many parameters.
As said, there is no real gain in speed.

7 Packing of lists

Deep down in TEX, horizontal and vertical lists even-
tually get packed. Packing of an \hbox involves:

1. ligature building (for traditional TEX fonts),
2. kerning (for traditional TEX fonts),
3. calling out to Lua (when enabled) and

Hans Hagen

TUGboat, Volume 37 (2016), No. 1 65

4. wrapping the list in a box and calculating the
width.

When a Lua function is called, in most cases,
the location where it happens (group code) is also
passed. But say that you try the following:

\hbox{\hbox{\hbox{\hbox foo}}}

Here we do all four steps, while for the three
outer boxes, only the last step makes any sense. And
it’s not trivial to avoid the application of the Lua
function here. Of course, one can assign an attribute
to the boxes and use that to intercept, but it’s kind
of clumsy. This is why we now can say:

\hpack{\hpack{\hpack{\hbox foo}}}

There are also \vpack for a \vbox and \tpack

for a \vtop. There can be a small gain in speed when
many complex manipulations are done, although in,
for instance, ConTEXt, we already have provisions for
that. It’s just that the new primitives are a cleaner
way out of a conceptually nasty problem. Similar
functions are available on the Lua side.

8 Errors

We end with a few options that can be convenient
to use if you don’t care about exact compatibility.

\suppresslongerror

\suppressmathparerror

\suppressoutererror

\suppressifcsnameerror

When entering your document on a paper tele-
type terminal, starting TEX, and then going home
in order to have a look at the result the next day, it
does make sense to catch runaway cases, like prema-
ture ending of a paragraph (using \par or equivalent
empty lines), or potentially missing $$s. Nowadays,
it’s less important to catch such coding issues (and
be more tolerant) because editing takes place on
screen and running (and restarting) TEX is very fast.

The first two flags given above deal with this.
If you set the first to any value greater than zero,
macros not defined as \long (not accepting para-
graph endings) will not complain about \par tokens
in arguments. The second setting permits and ig-
nores empty lines (also pars) in math without revert-
ing to dirty tricks. Both are handy when your content
comes from places that are outside of your control.
The job will not be aborted (or hang) because of an
empty line.

The third setting suppresses the \outer direc-
tive so that macros that originally can only be used
at the outer level can now be used anywhere. It’s
hard to explain the concept of outer (and the related
error message) to a user anyway.

The last one is a bit special. Normally, when
you use \ifcsname you will get an error when TEX
sees something unexpandable or that can’t be part
of a name. But sometimes you might find it to be
quite acceptable and can just consider the condition
as false. When the fourth variable is set to non-zero,
TEX will ignore this issue and try to finish the check
properly, so basically you then have an \iffalse.

9 Final remarks

I mentioned performance a number of times, and it’s
good to notice that most changes discussed here will
potentially be faster than the alternatives, but this is
not always noticeable, in practice. There are several
reasons.

For one thing, TEX is already highly optimized.
It has speedy memory management of tokens and
nodes and unnecessary code paths are avoided. How-
ever, due to extensions to the original code, a bit
more happens in the engine than in decades past.
For instance, Unicode fonts demand sparse arrays
instead of fixed-size, 256-slot data structures. Han-
dling UTF involves more testing and construction of
more complex strings. Directional typesetting leads
to more testing and housekeeping in the frontend
as well as the backend. More keywords to handle,
for instance \hbox, result in more parsing and push-
ing back unmatched tokens. Some of the penalty
has been compensated for through the changing of
whatsits into regular nodes. In recent versions of
LuaTEX, scanning of \hbox arguments is somewhat
more efficient, too.

In any case, any speedup we manage to achieve,
as said before, can easily become noise through in-
efficient macro coding or user’s writing bad styles.
And we’re pretty sure that not much more speed
can be squeezed out. To achieve higher performance,
it’s time to buy a machine with a faster CPU (and
a huge cache), faster memory (lanes), an SSD, and
regularly check your coding.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

Still expanding LuaTEX: Possibly useful extensions

