General Delivery

Letters

Fonts

IATEX

Electronic Documents
Survey
Software & Tools

Hyphenation
Graphics
Bibliographies

Macros

Hints & Tricks
Book Reviews

Production Notes
Abstracts

TUG Business

Advertisements

News

o O Ut

10
12
13
15
16
18
22
25
28
37
39
41
45
48
93
58
66
66
67
71
79
82

89
91
93

94
97
88
98
99
99

100
101
102
103
104

TUGBoAT
Volume 37, Number 1 / 2016

Editorial comments / Barbara Beeton
R.I.P. Sebastian Rahtz, 1955-2016; George Greenwade, 1956—2003;
Peter Breitenlohner, 1940-2015; biblatex— Request for feedback;
IATEX courses for credit; Cooper Type; More typography videos

Peter Breitenlohner, 1940-2015 / Joachim Lammarsch and Marion Lammarsch

The continuing TEX Users Group membership drive / Boris Veytsman

ATypl 2016 with GUST participating / Jerzy Ludwichowski

The Board’s suspension of the President / Jonathan Fine

The libertine gets mathematical / Khaled Hosny

IATEX news, issue 24, January 2016 / IATEX Project Team

IATEX news, issue 25, March 2016 / IATEX Project Team

On managing large documents / Thomas Thurnherr

medstarbeamer: A new beamer class / Anagha Kumar

Glisterings: Assemblies; Table talk / Peter Wilson

Randomising assignments with SageTEX / Sabri Al-Safi

Indexing: Goals, strategies and tactics / Ron Fehd

TEXShop review / Frans Absil

TEXworks: A simple GUI with advanced options / Sytse Knypstra

TEXstudio: Especially for IATEX newbies / Siep Kroonenberg

10 years of TEX Live in Debian / Norbert Preining

Paragraph designer with galley approach / Oleg Parashchenko

LuaTgX 0.90 backend changes for PDF and more / Hans Hagen

Still expanding LuaTEX: Possibly useful extensions / Hans Hagen

Hyphenation languages in LuaTEX 0.90 / Hans Hagen

MetaPost arrowhead variants / Alan Braslau and Hans Hagen

A personal book catalogue: bookdb / Peter Wilson

OPmac-bib: Citations using *.bib files with no external program / Petr Olsak

Exploring \romannumeral and expansion / Joseph Wright

The apnum package: Arbitrary precision numbers implemented in TEX macros /

Petr Olsak
The treasure chest / Karl Berry
IATEX for Administrative Work by Nicola Talbot / Boris Veytsman

Tout ce que vous avez toujours voulu savoir sur IATEX sans jamais oser le demander
by Vincent Lozano / Charles Thomas

Giambattista Bodoni: His Life and His World by Valerie Lester / Boris Veytsman
Note on the publisher of the Bodoni book: David R. Godine / David Walden
Production notes / Karl Berry

Die TgXnische Komédie: Contents of issue 1/2016

MAPS: Contents of issue 46 (2015)

FEutypon: Contents of issue 34-35 (October 2015)

TUGboat editorial information

TUG institutional members

TUG financial statements for 2014 / Klaus Hoppner

TEX consulting and production services

Calendar

CTAN

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: http://tug.org/TUGboat.

Memberships and subscriptions
2016 dues for individual members are as follows:

= Regular members: $105.

m Special rate: $75.
The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount.

= Regular members (early bird): $85.

= Special rate (early bird): $55.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and respon-
sibilities as voting in TUG elections. For detailed
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate for 2016 is $110.

Institutional membership

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat
should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: April 2016]
Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana®
Kaveh Bazargan, President* (suspended)

Jim Hefferon®, Vice President

Klaus Hoppner*, Treasurer

Susan DeMeritt*, Secretary

Pavneet Arora

Barbara Beeton

Kaja Christiansen

Michael Doob

Steve Grathwohl

Steve Peter

Cheryl Ponchin

Norbert Preining

Arthur Reutenauer

Boris Veytsman

Raymond Goucher, Founding Ezecutive Director?
Hermann Zapf (1918-2015), Wizard of Fonts?
*member of executive committee

fhonorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses Electronic Mail

TEX Users Group (Internet)

P.O. Box 2311 General correspondence,
Portland, OR 97208-2311 membership, subscriptions:
U.S.A. office@tug.org
Telephone Submissions to TUGboat,

letters to the Editor:
TUGboat@tug.org

+1 503 223-9994

Fax Technical support for
+1 815 301-3568 TEX users:
support@tug.org

Web
http://tug.org/
http://tug.org/TUGboat/

Contact the
Board of Directors:
board@tug.org

Copyright © 2016 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included.

We make the mistake of referring to a specific
computer program as a tool. ...
Each tool becomes several tools and each requires
an underlying body of knowledge for it to be used
successfully.
And there is very little that is user friendly.
Frank Romano
Too Many Tools, in Color Publishing
(Volume 1, Number 4, Winter 1991)

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
Epitor BARBARA BEETON

VoLuME 37, NUMBER 1 . 2016

PORTLAND

OREGON . U.S.A.

TUGDboat editorial information
This regular issue (Vol. 37, No. 1) is the first issue
of the 2016 volume year.

TUGDboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG
store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after print publication, to give members
the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are assumed to be the
experts. Questions regarding content or accuracy
should therefore be directed to the authors, with an
information copy to the Editor.

Submitting items for publication

Proposals and requests for TUGboat articles are
gratefully received. Please submit contributions by
electronic mail to TUGboat®@tug.org.

The second 2016 issue will be the proceedings of
the TUG’16 conference (http://tug.org/tug2016);
the deadline for receipt of final papers is August 8.
The third issue deadline is September 29.

The TUGboat style files, for use with plain
TEX and IATEX, are available from CTAN and the
TUGboat web site, and are included in common
TEX distributions. We also accept submissions us-
ing ConTEXt. Deadlines, templates, tips for authors,
and other information is available at:
http://tug.org/TUGboat/location.html

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site, as
well as in print. Thus, the physical address you pro-
vide in the manuscript will also be available online.
If you have any reservations about posting online,
please notify the editors at the time of submission
and we will be happy to make special arrangements.

TUGDboat, Volume 37 (2016), No. 1

TUGDboat editorial board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns,

Robin Laakso, Steve Peter, Michael Sofka,
Christina Thiele

Other TUG publications

TUG is interested in considering additional manu-
scripts for publication, such as manuals, instruc-
tional materials, documentation, or works on any
other topic that might be useful to the TEX commu-
nity in general.

If you have such items or know of any that you
would like considered for publication, send the in-
formation to the attention of the Publications Com-
mittee at tug-pub@tug.org.

TUGDboat advertising

For advertising rates and information, including con-
sultant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html
http://tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat
should not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.

PostScript is a trademark of Adobe Systems, Inc.

TEX and ApS-TEX are trademarks of the American
Mathematical Society.

TUG 2016 -~ Toronto, Canada
July 25-27, 2016
excursions before and after
http://tug.org/tug2016

TUGboat, Volume 37 (2016), No. 1

Editorial comments

Barbara Beeton

R.I.P. Sebastian Rahtz, 1955—2016

SPQR — Sebastian Patrick Quintus Rahtz — suc-
cumbed to a long illness on 15 March 2016. He came
by the memorable initials honestly, as the fifth child
of a professor in archaeology.

Sebastian was involved in more signal TEX proj-
ects than one can imagine— TEX Live, two I TEX
Companions (Graphics and the Web), hyperref and
many other packages,' as well as numerous TUGboat
articles.? He gave a good account of himself in a
2009 interview.?

Professionally, he started out to follow the fam-
ily tradition in archaeology, and was involved in
typesetting books on classical subjects, but became
fascinated by the capabilities of TEX when it became
available in the early 1980s. His efforts to make
TEX available to others led him to work on the UK
TEX Archive, and on CTAN when that succeeded
the UK Archive. From this emerged the TEX Live
distribution, which he created, named, and edited
until 2004. (The full TEX Live Guides for the 3rd
and 4th editions* were published in TUGboat.) As
a key contributor to the architecture of the TEX Di-
rectory Structure,® his legacy remains important to
TEX users to this day.

I first met Sebastian at a TEX meeting in the
UK sometime during the 1980s. His enthusiasm and
dedication were obvious, as were his sharp intelli-
gence and dry wit. By the 1990s, he was active in
the organized user groups, joining the TUG board
from 1994-1997, becoming secretary in 1995 and
chair of the technical council in 1996, relinquishing
both positions at the end of his board tenure.

He was a prime instigator in arranging for the
first TUG meeting in Kerala, India, in 2002, and for
the formation of TUG India.

TUG 2000 took place at Wadham College, Ox-
ford University, where by then Sebastian was on
the computing support staff, having been brought
there to “work on bringing documentation into a
common format using XML”.? Unlike TEX, XML can
be validated (i.e., forced to conform to a predefined

1 http://ctan.org/author/rahtz

2 http://tug.org/TUGboat/Contents/listauthor.html#
Rahtz, Sebastian

3 http://tug.org/interviews/rahtz.html

4 ftp://tug.org/historic/systems/texlive/1998/
tldoc/live.pdf
The early Guides included an exhaustive annotated listing
of the contents, a feature no longer needed now that on-line
documentation is so readily available.

5 http://tug.org/TUGboat/tb16-4/tb49tds . pdf

structure); for scholarly publications especially in the
humanities, this is not as restricting as it is for math-
ematics, and even for math, a number of publishers
have adopted its use. The XML bug bit Sebastian
quite as effectively as the TEX bug had earlier, and
with less time to devote to TEX, he threw himself fully
into the effort to develop and encourage the use of
TEI (the Text Encoding Initiative) among academics.

Sebastian will be greatly missed both by the TEX
and TEI communities and by his former colleagues.

George Greenwade, 1956-2003

Very belatedly, we learned of the death of George
Greenwade, a former board member (1994-1997) and
treasurer of TUG (1994-1995). He died unexpectedly
on 2 August 2003.

George was an economist, on the faculty of Sam
Houston State University, in Huntsville, Texas. He
had, for the early 1990s, an unusually strong inter-
est in the possibilities of the World Wide Web for
economics, and established a website that quickly
became recognized as an important resource both
by the economics community and by PC Magazine,
which featured it on a map of outstanding internet
sites in 1994.

Along with interest in the Web came an in-
terest in effective communication and publication,
hence George’s interest in TEX. The rationale for
and realization of CTAN were a product of these
interests, introduced by George at the 1993 annual
meeting and published in the proceedings.® At first,
CTAN was based on the FTP protocol, and the site
ftp.shsu.edu quickly became a familiar target for
exploration. Even now, George’s paper makes for in-
teresting reading, identifying the participants in the
archive effort (including the part played by Sebastian
Rahtz).

George’s participation as an active member of
the TUG board was cut short by responsibilities of
his primary field; we were sorry to lose his energy and

6 http://tug.org/TUGboat/tbl4-3/tb40green. pdf

expertise, but his legacy remains in an irreplaceable
resource for the TEX community.

Peter Breitenlohner, 1940-2015

Peter’s legacy to DANTE and his German friends is
honored elsewhere in this issue by Joachim and Mar-
ion Lammarsch. Here we can reveal one of Peter’s
activities that was purposely kept “under wraps”.

Don Knuth has, since the creation of TEX, of-
fered a reward to the first finder of a bug in the code.
Peter was the recipient of a number of such checks,
including one of the last “big ones”; this is mentioned
in Knuth’s Digital Typography, on page 658 of “The
final errors of TEX”.

Behind the recognition of errors is a corps of
knowledgeable volunteers, individuals whose under-
standing of TEX internals is thorough enough that
Don trusts them to vet reports and provide expla-
nations that will demonstrate to the submitters of
non-bugs that their finding does not pass muster.
For many years, Peter was one of these “go-to” vol-
unteers. His analysis of bug reports was thorough,
accurate, and understandable by even a non-program-
mer. That was my principal area of interaction with
Peter, and it made the task of “TEX entomologist”
much easier and more enjoyable. Thank you, Peter.

biblatex — Request for feedback

The biblatex team are looking for feedback on what
real users are doing, particularly in terms of what
back-ends they are using. A wvery short survey is
posted at https://surveymonkey.com/r/X2FWPNR
If you are a biblatex user, your participation would
be most welcome, per Joseph Wright. (And spread
the word, please.)

No “drop dead” date was given, but it may be
assumed that feedback should be registered no later
than 1 July 2016.

IXTEX courses for credit

It seems rare enough that formal courses in (I#)TEX
are offered in convenient locations, but the idea that
such a course might be offered for credit is even more
surprising — although it would certainly be a useful
study topic for someone pursuing a degree in math
or physics, for example. It has come to light that
there are in fact such courses in a few places.

A course at the University of Verona offers
two credits, and is well attended; 66 students were
counted at the first lecture and an additional 20 were
expected for the second (scheduling conflicts pre-
cluded their attendance the first week). At Cedarville
University (Cedarville, Ohio), a course in Technical
Writing using IXTEX earns one semester hour of credit;

TUGDboat, Volume 37 (2016), No. 1

the current professor is “second generation”, having
been taught by the former professor who taught the
class for 18 years before his retirement. In some other
places, although no credit is given, the material is
presented as a “soft skill” course which is required to
graduate.

If anyone reading this knows of other places
where such courses are offered, please send feedback.
We will try to compile a list and make it available
for reference.

Cooper Type

While checking Don Knuth’s “news” page to get more
information about an “All Questions Answered” ses-
sion in Stockholm, I noticed that he will be giving a
public lecture on Tuesday, May 17, at the San Fran-
cisco Public Library on “32 Years of METAFONT”.
This is part of the Type@CooperWest program orga-
nized by Sumner Stone.

CooperWest is the west coast branch of the
Cooper Union postgraduate certificate program in
typeface design. The “main office”, so to speak, is
the Continuing Education department of The Cooper
Union in New York City, where a parallel lecture pro-
gram sponsored by the Herb Lubalin Study Center
takes place. Many of the New York-based lectures
have been filmed and are made available on line. The
listing of topics is wide-ranging, and can be explored
at http://coopertype.org/lectures/nyc. (The
first one I viewed is entitled “How Aldus Manutius
Saved Western Civilization”, a lecture by G. Scott
Clemons. A good place to start.)

There’s no indication that the west coast lectures
are also being recorded, but we can hope.

More typography videos

Listed below are a few videos on type-related topics
that I've stumbled upon recently or were recom-
mended by friends. Such pointers will be collected
on a page on the TUG website for easy reference,
at http://tug.org/video. I'll go back and include
relevant items that have been mentioned in previous
columns.

e “Teaching to See”, by Inge Druckrey, is posted
on Edward Tufte’s website.
http://www.edwardtufte.com/tufte/

e David Brailsford tells the story of the “jailbreak”
of the Linotron 202. https://www.youtube.
com/watch?v=CVxeuwlvi8w and https://www.
youtube. com/watch?v=HdModNEK_1U

e The trailer for a movie “Carl Dair at Enschedé,
The last days of metal type”. (The full movie will
be shown as part of the program at TUG 2016.)

TUGboat, Volume 37 (2016), No. 1

https://www.sheridancollege.ca/news-and-
events/typeforming.aspx

e A TED talk, “Pace matters”, by stone-carver
Nick Benson. https://www.youtube.com/
watch?v=A8IeEYwVQSA

e Casting type: Five videos by Stan Nelson show-
ing how punches are made and how type pro-
duced using them. https://www.youtube.com/
playlist?1ist=PLD1C918AD04AF88EO

If you come across other videos along these lines,
please let us know!

© Barbara Beeton
http://tug.org/TUGboat
tugboat (at) tug dot org

Peter Breitenlohner, 1940-2015

Joachim Lammarsch, Marion Lammarsch

With deep regret and heavy sadness I learned that
our DANTE member Peter Breitenlohner unexpect-
edly passed away in October. Peter wasn’t only a
member, but a helper whenever there was a need.

Peter’s TEXnical story started before the time
when the DANTE e.V. association was founded. He
was involved in TEX when it was published. He
found several errors in the software, thus one of the
people who got several checks from Donald E. Knuth
(DEK). He developed a program to manipulate DVI
files and also a special TEX version which was able
to write from right to left. Once DEK commented
that probably Peter knew the TEX code better than
he himself.

When I got the PublicTEX software from Klaus
Thull and was looking for people who were willing to
help me to revise the software and to distribute it to
our members, he joined immediately. His overriding
interest was to make the TEX system better. He
developed a improved TEX version called e-TEX which
was able to act like the original TEX, but contained
a number of TEXnical innovations to improve and to
make it better.

Furthermore, when we started to design NTS,
Peter joined immediately to help. In 1994, during
the TUG conference in Santa Barbara, California,
when I organized an appointment with DEK, for him
it wasn’t any problem to drive quickly 300 miles
to Stanford. Together with other colleagues they
discussed the idea of NTS with DEK, and after that

First published in Die TEXnische Komédie 1/2016, pp. 10-11.
Translation by the first author. Reprinted with permission.

he drove back to UCSB. He was a very active member
of the NTS team.

It would be easy to tell you a lot more from
Peter. During the time when I was the president
of DANTE e.V. he was always available. He was
absolutely modest, as we learned when we tried to
get official money for the NTS project from the Euro-
pean Union. There were some professors in different
counties who were willing to support the project,
but unfortunately none from Germany. So we were
sitting in the ZOO restaurant considering what to
do. Until Peter unexpectedly asked us: why don’t
you ask me. And so after several years we found out
that Peter was a professor.

Peter had his very special humor and every-
one who knew him a little bit better, knew about
the special history about Professor Kabelschacht.
What exists behind that story one can read on the
Internet or ask at one of the next DANTE meet-
ings. [Ed. note: Prof. Kabelschacht also published
once in TUGboat: vol.8, no.2, pp.184-185, tug.
org/TUGboat/tb08-2/tb18kabel.pdf.] At DANTE
meetings we always enjoyed these stories from Peter.

Here also we will miss him as a special individual
as well as active member in the TEX world. For
myself and for many other people in our association a
man passed away who we monumentally appreciated.
But just as much for many of us he was more than
a good colleague: he was a very good friend.

¢ Joachim Lammarsch,
Marion Lammarsch
jola (at) psychologie dot
uni-heidelberg dot de

TUGDboat, Volume 37 (2016), No. 1

The continuing TUG membership drive

Boris Veytsman

Any organization is only as strong as its membership.
Thus one of the important metrics of the health of
TUG is the number of our members. The historical
data for this metric are shown in Figure 1. They
tell a worrying story of a steady decline. There are
many possible explanations for this decline. One
of the most probable might be the growth of the
Internet. In the 1990s, the best decade for TUG,
the membership was provided a number of clear
benefits. First, there were CDs (and later DVDs)
with the latest TEX distributions, which every TUG
member got in the mail. Second, TUGboat and
TUG conferences were among the rare possibilities
for exchanging TEX experiences and learning about
TEX.

Nowadays, almost everyone can download a TEX
system for free: the traffic cost is (usually) low and
the connections are (usually) fast. While TUGboat
is still a great journal (full disclaimer: T am an Asso-
ciate Editor, so my opinion may be biased), and TUG
meetings remain highly useful, the growth of virtual
meeting places like StackExchange has created many
alternatives. It is now easily possible to become a
knowledgeable TEX user without being a TUG mem-
ber. Thus while TEX usage as measured by CTAN
downloads and traffic on TEX-related sites is far from
declining, TUG membership is slowly dropping.

Nonetheless, it seems that the role of TUG as
the steward and advocate of the development of
TEX and TEX-related software is still important (this
role was the topic of a heated discussion at the
Darmstadt conference; see Stefan Kottwitz, “TUG
2015 conference report”, in TUGboat 36:2, tug.org/
TUGboat/tb36-2/tbl13kottwitz.pdf). The loss of
TUGboat and TUG meetings would be felt by the
community. Thus the TUG Board and the Mem-
bership Committee are trying to make our society
known and attractive to the new generation of TEX
users.

In doing so we try to learn from the experience
of other professional societies. For some time, the
American Chemical Society has conducted a very in-
teresting campaign which recruits the existing mem-
bers to promote ACS. Those members who attract
new ones get modest thank you gifts. At the end of
2014 we on the Membership Committee decided to
try this approach.

Thus, we started the 2015 membership cam-
paign, publicizing the following rules:

1. Any new member can indicate on the member-

Boris Veytsman

Inviter Points

Kai Von Fintel

Julian Gilbey

Jim Hefferon

Humberto Madrid

Fritz Scholz

Juan Luis Varona Malumbres
Edward Baudrez

Peter J. Pupalaikis
Francoise Mulhauser

Joseph Wright

Jean-luc Doumont

Michael Henning Juul Staehr
Robert L Knighten

C.V. Radhakrishnan

JFQA

Table 1: Inviters in 2015. The “points” column
corresponds to drawing rules, see text.

— O R PR PR PR RPRPRRFRR PO~

ship form the name of the existing member who
invited or inspired her to join TUG (the “in-
viter”).

2. Each inviter gets a beautiful postcard printed
by Peter Wilson on a letterpress (Figure 2).

3. At the end of the campaign a randomly chosen
winner would get the main prize: a specially
commissioned drawing by Duane Bibby (Fig-
ure 3). All inviters except members of the TUG
board would be eligible for the drawing, with a
chance of winning proportional to the number
of invited members; each institutional member
counted as eight individual ones.

The campaign was announced at the end of 2014
and continued throughout 2015. At the end of the
year, we counted fifteen inviters, two of them bring-
ing institutional members. Evidently the campaign
contributed to the small uptick at the right end of
the curve on Figure 1.

The inviters are listed in Table 1. The column
“Points” corresponds to final drawing:

1. Jim Hefferon and C.V. Radhakrishnan each in-
vited an institution, which gives eight points in
the scoring.

2. Jim, being a board member, was ineligible for
the final prize, so in the end he got zero points.

I volunteered to devise the procedure for the
final drawing. I wanted it to be open source, verifi-
able and TEX-related. At the end I decided to use
the popular free program R (r-project.org). The
package knitr provides a literate way to program in
R and outputs the results in IATEX, so it is well suited

TUGDboat, Volume 37 (2016), No. 1

3000
|

Number of paid members
2000

1000

1320 1360
|

1280

1240
|

2014 2015 2016

1980 1990

I I
2000 2010

Year

Figure 1: TUG membership at the end of a calendar year (I am grateful to Karl
Berry and Robin Laakso for the data for this figure). The dotted line is the predicted

membership without invited members.

for the task (I reviewed a book about the package
in TUGboat 35:1, 2014, tug.org/books/reviews/
tb109reviews-xie.html). R has a handy function
sample which does weighted random sampling from
a given list of entries. The only remaining problem
was verifiability. To achieve it we need to explicitly
set the seed of the random number generator. Using
the current version of TEX (from the current TEX
Live) written as an integer seemed a good idea.

The full program in R for the random drawing
and its result are shown below:

inviters <-
c('Kai Von Fintel',
'Julian Gilbey',
'Jim Hefferomn',

'Humberto Madrid',
'Fritz Scholz',
'Juan Luis Varona Malumbres',
'Edward Baudrez',
'Peter J. Pupalaikis',
'Francoise Mulhauser',
'Joseph Wright',
'Jean-1luc Doumont',
'Michael Henning Juul St\\ae hr',
'Robert L Knighten',
'C.V. Radhakrishnan',
'JFQA'
)
weights <- ¢c(1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1

The continuing TUG membership drive

set.seed(314159265)
winner <- sample(inviters,
size=1,
prob=weights)
cat('And the winner is: \\bfseries',
pasteO(winner, '!'))

And the winner is: Jean-luc Doumont!
Congratulations to the winner and many thanks

to all participants!

Onward into 2016

Now to the present. It seems that our 2015 campaign
had at least some success. Thus we decided to extend
it through 2016. We again ask TUG members to

invite TEX users and typography lovers to join TUG.

As in the previous year, each inviter will get Peter
Wilson’s beautiful postcard (Figure 2).

Some words about the main prize, which, as in
the previous year, will be given to a randomly-chosen
winner at the end of 2016. In 2016, it will be a limited
edition book, Manuale Zapficum, printed in 2009 on
the occasion of the ninetieth birthdays of Hermann
Zapf and Gudrun Zapf (Hermann’s death in 2015
was a profound loss for the worldwide typographic

community). The book was designed by Jerry Kelly.

About it, the publisher says (ritpress.rit.edu/
publications/books/manuale-zapficum.html):

The Manuale Zapficum’s innovative specimen
pages employ timeless Zapf faces such as Di-
otima, Optima, Palatino, and Zapfino, while
including fresh uses of proprietary typefaces
such as Hallmark Uncial and Hallmark Tex-
tura. A variety of the specimens were letter-
press printed using historic metal type from
the Cary Collection. Each is printed in tradi-
tional red and black on Hahnemiihle Biblio
paper. The Campbell-Logan Bindery of Min-
neapolis, MN, bound an edition of 100 copies
in luxurious vellum and Fabriano paper.

We need to make our community stronger. A
healthy and vibrant TUG is one of the ways that
supports our technology and ensures the future of
TEX as well as computer typography. Thus let me
finish this note by asking our members to go forth
and spread the word about TEX and TUG.

¢ Boris Veytsman
Computational Materials Science
Center, MS 6A2
George Mason University
Fairfax, VA 22030
borisv (at) 1k dot net
http://borisv.lk.net

Boris Veytsman

TUGboat, Volume 37 (2016), No. 1

EHPERRDRHREREDEHRCIEEE)

Donald E. Knuth (creator of the TpX typesetting program), 1984

Final exhortation:
Go FortH now
and create

masterpieces of the

publishing art!

Peter Wilson, The Herries Press, 2015 TgX Users Group, www.tug.org

Figure 2: Peter Wilson’s postcard, for all inviters.

Figure 4: 2016 main prize: Manuale Zapficum.

TUGDboat, Volume 37 (2016), No. 1

ATyplI 2016 with GUST participating
Jerzy B. Ludwichowski

Abstract

A note concerning the planned GUST participation
at ATypI’16, the annual Association Typographique
Internationale conference in Warsaw, Poland.

GUST at ATypI’l6

October 2016 in Warsaw will see ATypI’16, the an-
nual conference of Association Typographique Inter-

nationale, with the theme of Convergence (atypi.

org). GUST has been invited to participate, thanks
to Andrzej Tomaszewski and Adam Twardoch, both
well known to BachoTEX participants.

The details of our participation are still in the
making at this writing, with a deadline of March 31.
The presentations will be rehearsed at BachoTEX
2016 (gust.org.pl/bachotex).

The following are planned:

e A workshop or rather demonstration of automa-
tion with TEX, using presentation and testing
of fonts as an example. This should give the
participants an idea of the possibilities for using
TEX for similar tasks, e.g., dictionaries, cata-
logs, mass production like invoices, multimedia
publications (print, PDF, HTML, EPUB, et al.).

e Another workshop or demonstration: A lesson
in math font anatomy, i.e., math fonts in gen-
eral and detail, based on a particular font, its
anatomy, constituent alphabets and additional
information within the MATH table.

e At the Technology forum, which should have
a larger audience, a communique by Bogustaw
Jackowski on math fonts, and ways of automat-
ing their production, with a short mention of
MetaTypel: block schema and an overview of
the guiding principles.

e Also planned for the Technology forum, a pre-
sentation by Piotr Strzelczyk on the merits and
demerits of Unicode in connection with typog-
raphy.

e At the General session, a two-voiced presenta-
tion Slurs, Braces, Radicals— Obstacle or Chal-
lenge with 1. Obstacle by Bogustaw Jackowski
and 2. Challenge by Marek Rycko. This is about
a “philosophy of typography”, a proposal of a
new typesetting paradigm, in the making by
both gentlemen since some time. BachoTEX reg-
ulars should know what to expect. We hope the
presentations to be both eye- and mind-opening.

e Also at the General session, a short promotional
presentation on TEX, GUST, the e-foundry and
its math fonts, most likely presented by myself.

e GUST will also be present at the Fonts for Sci-
ence exhibition, with math fonts posters.

There is an undercurrent of activity directed
toward some other members of the TEX math fonts
community to coerce them into participating, but
nothing more is settled yet.

A little bit of history

This will be the second ATyplI conference in Warsaw.
The first, in 1975, is notable for two events.

Peter Karow and Hermann Zapf for the first
time publicly presented the idea of outline fonts.

The other was due to Marek Decowski and Ry-
szard Dulewicz from the Polish Academy of Sciences,
who described and presented software for a scanner
for texts typed with Frutiger’s OCR-B. The scanner
was used in a semi-automated process at DSP, a
printing house in Warsaw. Poland, after the US
and UK, became the third country producing OCR
scanners.

There is a connected story involving Adrian
Frutiger and Roman Tomaszewski, Andrzej Toma-
szewski’s father, a renowned Polish printing master
and editor. Roman Tomaszewski was ATypl dele-
gate for Poland and its Board Member in the years
1965-1992. Under his leadership Osrodek Pism Dru-
karskich (then Poland’s central institution for type-
faces) produced Litera, a magazine for which such
prominent figures as, among others, Jan Tschichold,
Adrian Frutiger, Hermann Zapf, Max Caflisch or
Matthew Carter wrote. They all were Tomaszew-
ski’s colleagues and often friends. Osrodek Pism
Drukarskich complemented Frutiger’s OCR-B with
Polish diacritics. The problem was to get the so-
augmented IBM Selectric Typewriter printing heads
to Poland, past the then-prevailing COCOM import
restrictions. Frutiger caused some twenty such heads
to be made at the IBM factory in Paris, and sim-
ply put them into the pockets of a Polish Airlines
pilot, to be received by Roman Tomaszewski at the
Warsaw airport.

At the 1975 Warsaw ATypl conference, Frutiger
was given a medal commemorating 500 years of print-
ing in Poland. Only a few participants were aware
of the underlying main feat.

o Jerzy B. Ludwichowski
Migdatowa 21
87-100 Torun
Poland
Jerzy.Ludwichowski at gmail dot com

ATyplI 2016 with GUST participating

10

Letters

Editor’s mote: Material printed in the Letters sec-
tion does not necessarily reflect the opinion of the
editors or the TUG board and is the sole responsi-
bility of the authors.

The letter below has not been edited in any way.

The Board’s suspension of the President

Jonathan Fine

1 The crisis

Kaveh Bazargan took office as President of TUG
in May 2015. I was shocked to read the Board’s
announcement, on 13 October, that they had sus-
pended him from office. This, if not reversed, would
lead to his removal. I had many questions and some
advice to offer.

On 13 December, I wrote to acting President
Jim Hefferon (the defeated candidate for President)
and the Board. My letter is the next section. I got
no reply other than acknowledgement. The rest of
the article discusses the situation.

By the way, I first joined TUG in about 1990,
was on the TUG Board 2009-13, and am a former
Chair of UK TUG. I rejoined TUG this year.

This article uses primary documents published
by Kaveh, via a link on the comp.text.tex news-
group. The Board has published no such documents.

2 My message to the TUG Board

Dear Jim

You are, while the elected President Kaveh Bazargan
is suspended, acting President on the TeX Users
Group. Please ask the TUG Board to think again
about this suspension. First some background.

In May 2015 Bazargan was elected President of
TUG, 307 votes to 110. It was the first contested
election since 2005. He took office in July 2015.
You were Bazargan’s opponent in this election. The
Board’s decision has reversed the outcome of the
election. This is a difficult situation. Also, you are
potentially in a conflict of interest.

I do not know if Bazargan has exercised his
right to ask the Board to reconsider. I hope he has,
and that the Board treats this email as additional
information they should consider.

Is the Board sure that it has behaved properly?
Please ask the Board to carefully consider the fol-
lowing five issues. I know that they are somewhat
procedural, and don’t get to the heart of the mat-
ter. However, they raise real concern that the Board
itself has not got to the heart of the matter.

1. On 20 October, on behalf of the Board, you
told me that the Board voted on

Jonathan Fine

TUGDboat, Volume 37 (2016), No. 1

whether Kaveh is “deemed to be no longer
working in the interests of TUG” and thus
should be suspended |...]

The TUG Bylaws require this decision be made
on the basis of the Board members actions (or inac-
tions). But the motion voted on gives no examples
of actions (or inactions) that justify the conclusion
that Bazargan was not working in the interests of
TUG. Is it fair and reasonable?

I'm not aware of any actions (or inactions) done
by Bazargan, in his capacity as President of TUG,
that would justify his being removed from office.
The Board’s statement, after the suspension, does
not provide any.

2. Also on 20 October you wrote “FYI, per the
TUG bylaws, this was a special vote, not a normal
motion.” The TUG Bylaws allow the Board to con-
duct business by email. The procedure is proposal
of a motion, seconder, one-week discussion period,
voting for up to a week. There is no provision for
“a special vote”.

It seems that the procedure in the Bylaws was
not followed. If not followed then perhaps Bazargan
was substantially disadvantaged, and the vote taken
is null and void. If so, this would leave Bazargan as
President.

3. A law-suit between Bazargan and CV Rad-
hakrishnan (CVR) was central to the Board’s case
for suspension. This, like any other business inter-
est, can give rise to a conflict of interest. According
to https://www.councilofnonprofits.org/
tools-resources/conflict-of-interest,

A conflict of interest policy should (a) require
those with a conflict (or who think they may
have a conflict) to disclose the conflict/poten-
tial conflict, and (b) prohibit interested board
members from voting on any matter in which
there is a conflict.

Did the Board attempt to apply such principles,
to ensure that Bazargan’s business interests did not
conflict with his responsibilities to TUG? Again, the
Board’s statement does not give any examples of
where it might.

4. Tt seems that CVR has a close relationship
with at least one Board member, and that through
that relationship CVR gave the Board information
that was used to damage to Bazargan. Did any
Board members disclose any potential conflict of in-
terest relating to the suspension of Bazargan, and if
so what action did the Board take in response?

5. TUG is US 501(c)(3) tax-exempt charitable
organisation, which gives tax benefits for donations
to TUG. It also means that TUG is not a 'mem-
bers club’, owned by and organised for the benefit

TUGDboat, Volume 37 (2016), No. 1

of its members. The TUG Board, arguably, sus-
pended the President to help protect a member of
TUG from legal action. Did the Board take legal
or other expert advice, particularly on conflict of
interest, before suspending the President?

By the way, if the Board it did not take and
follow such advice, then Board members individu-
ally might not be protected by any directors and
officers liability insurance held by TUG, in respect
to their suspending the President. In other words,
they might be personally liable for any harm done.

Please ask the Board to consider carefully the
five issues above. I intend to publish this letter, and
I hope the Board will publish a response.

One final point. The Board’s statement on the
suspension of President said that it “potentially af-
fects the entire TeX community”. I am not a mem-
ber of TUG (although I am a past Board member).
Please do not use this as a reason to not commu-
nicate with me. I am affected by this, as are many
other non-members of TUG.

3 The Board’s case

On 6 October 2015 someone sent an email message
from board@tug.org to Kaveh Bazargan, the Pres-
ident of TUG. It wrote:

As TUG president, you have a duty to
represent all TUG members to the best of
your ability (just as we do as TUG directors).
It is not possible to fulfill this responsibility
when you are involved in a lawsuit against
another TUG member.

This is the basis for the Board’s actions. The
message closes by threatening suspension if Kaveh
does not resign. It is signed ‘TUG Directors’.

4 The duties of a TUG Board members

TUG is a USA 501(c)(3) tax-exempt non-profit or-
ganisation. Its articles of incorporation state that
it “shall be operated exclusively for charitable, ed-
ucational and scientific purposes” associated with
technical typesetting, font design and so forth.

The US National Council of Nonprofits states
that the legal duties of nonprofit Board members are
(I summarize, and adapt for TUG):

e Duty of due care in use of TUG assets, over-
seeing its activities, and advancing TUG effec-
tiveness and sustainability.

e Duty of loyalty to the best interests of TUG
(rather than personal interests).

e Duty of obedience to laws, ethical practices,
and promotion of typesetting, font design, etc.

There is no duty to avoid lawsuits with other
members, unless it follows from these three duties.

11

5 The legal action

Kaveh and CVR were in business together. A falling
out led to a dispute, which Kaveh has taken to court
for resolution. This is, as Kaveh’s appeal says, a
universal right. The Board’s action interferes with
this right. It may even bring TUG into the lawsuit.

Imagine the mischief that could be caused if a
nonprofit organisation, such as the Linux Founda-
tion, had as a Bylaw that a Board member involved
a lawsuit with another member must resign.

6 Conflict of interest

When a Board member’s personal interest conflicts
with his duties as a Board member the conflicted
party should report it, and the rest of the Board
should remove that member from the decision. The
lawsuit, like any other business relationship, could
give rise to a conflict of interest.

Surely there is a better way to cure the lawsuit
headache, than to cut off TUG’s head, its President.

7 TUG Bylaws

The Board members have a duty of obedience to the
Bylaws of TUG. They allow the Board to conduct
business by email. The procedure is proposal of a
motion, seconder, one-week discussion period, with
voting for up to a week.

The Bylaws also provide every TUG member
with access to Board minutes. On 6 October 2015
someone used board@tug.org to send a message,
in the name of ‘The Directors’, threatening Kaveh
with suspension. I would like to see the motion that
authorised this cowardly action.

If there is none, then is the suspension be a legal
action of the Board? Perhaps Kaveh never stopped
being President of TUG.

8 Conclusion and questions

Kaveh Bazargan was elected 307 to 110 in the first
contested election since 2005, and the acting Pres-
ident is now Kaveh’s opponent Jim Hefferon. Did
the Board represent to the best of their ability the
roughly 25% of members who voted for Kaveh? Did
CVR get special and preferential treatment?

Please think carefully as to whether the Board
members followed their duties of due care, loyalty,
and obedience. Put it another way, have they be-
haved properly? Did the suspension promote TUG’s
charitable, educational, and scientific purposes? Is
TUG now more effective and sustainable, as a result
of this decision?

¢ Jonathan Fine
Milton Keynes
England
jfine2358@gmail.com

The Board’s suspension of the President

12

The libertine gets mathematical
Khaled Hosny

Linux Libertine is a popular libre font family (re-
leased under the SIL Open Font License) and one of
the early typefaces to be designed from the ground
up as a libre project. Together with its organic sans-
serif companion, Linux Biolinum, they serve as an
excellent type family for many scholarly works.

Due to their attractiveness, Linux Libertine and
Linux Biolinum fonts are often used for mathemati-
cal and other scientific works heavy in mathematical
typesetting, but the lack of a mathematical compan-
ion forced people to try to find matching mathemat-
ical typefaces with varying degrees of success. A
mathematical companion was thus one of the most
requested features for this type family.

In late 2012 I started playing with the idea of
creating a mathematical companion for this family
using the existing text characters for basic mathemat-
ical alphabets, adding an OpenType MATH table,
and some symbols needed for basic mathematical
typesetting. I got the basics working, but then had
to put it on the back burner for a while. In 2014 TUG
showed interest in funding the development of this
mathematical companion and work resumed. Devel-
opment took a while, as usual, but in January 2016
the typeface was finally released.

Linux Libertine and Linux Biolinum are big
typefaces with thousands of glyphs that were de-
veloped over the course of almost 10 years, and it
had accumulated many issues over the time. While
working on the mathematical companion, I couldn’t
help but try to fix many of these issues, and after
a while it became clear that this is becoming a full
fork of the original project, not just an additional
member of the family.

With this in mind, I went ahead and made it a
full fork. Since the original typefaces use the OFL
“reserved names” clause, I had to rename my modified
fonts. I first wanted to just drop the “Linux” part and
release under the name “Libertine” (why should a
typeface be named after an operating system kernel?),
but it turns out I can’t use either of the words “Linux”
or “Libertine” in my fork, not just the combined
name. Frédéric Wang suggested the Latin word
“Libertinus” which I liked much, so Linux Libertine
became Libertinus Serif and Linux Biolinum became
Libertinus Sans, with the brand new mathematical
companion being named Libertinus Math.

Libertinus Math is an OpenType font with a
MATH table, so it can be used only with a mathe-
matical typesetting engine that supports such fonts,

Khaled Hosny

TUGDboat, Volume 37 (2016), No. 1

k=0
||_—x, x<0
x| = x, x=0
a2y %y 92
V-Vy = ¢+ ¢+ v

1 d d
——— | sin0— <r2—¢>

r2 sin 0 or or
Figure 1: Sample of Libertinus Math

Libertinus Serif

Libertinus Serif Italic
Libertinus Serif Semibold
Libertinus Serif Semibold Italic
Libertinus Serif Bold
Libertinus Serif Bold Italic
Libertinus Serif Display
Libertinus Sans

Libertinus Sans lItalic
Libertinus Sans Bold
Libertinus Math
Libertinus Mono

LEBEHOBDHRWE KR (e EE

Figure 2: List of Libertinus fonts

like XA{TEX, LuaTEX, Mozilla Firefox, and MS Office,
among others. Unfortunately, it cannot be readily
used with traditional TEX implementations that lack
support for such fonts.

The work on the mathematical companion in-
volved using the existing serif and sans-serif glyphs
to provide corresponding mathematical alphabets,
drawing a missing lower case for the blackboard
alphabet, and adding many missing mathematical
symbols and big variants to cover symbols used in
plain TEX and the KXTEX kernel. Not all alphabets
are covered, though. There are no script, fraktur,
sans-serif bold italic, or typewriter alphabets.

The original Linux Libertine fonts were devel-
oped using free software, mainly FontForge. That
tradition continues in this fork, but replacing Font-
Forge by its fork Sorts Mill Editor (bitbucket.org/
sortsmill/sortsmill-tools), and adding (a fork
of) FontTools (github.com/behdad/fonttools) to
the mix.

The new font files can be downloaded from:
github.com/khaledhosny/libertinus/releases
ctan.org/pkg/libertinus

¢ Khaled Hosny
khaledhosny.org

TUGDboat, Volume 37 (2016), No. 1

IXTEX News

Issue 24, February 2016

Contents

LuaTgX support 1
Unicode data 1
More support for east European accents 2
Changes in Graphics 2
Changes in Tools 2
Improving support for Unicode engines 2
LuaTgX support

This release refines the LuaTEX support introduced in
the 2015/10/01 release. A number of patches have been
added to improve the behavior of Itluatex (thanks
largely to code review by Philipp Gesang). The kernel
code has been adjusted to allow for changes in LuaTgX
v0.85-v0.88. Most notably, newer LuaTEX releases allow
more than 16 write streams and these are now enabled
for use by \newwrite, but also the experimental
newtoken Lua library has been renamed back to token
which required small adjustments in the LuaTgX setup.

The biggest change in LualTgX v0.85-v0.87 compared
to previous versions is that all the primitives (originally
defined in pdfTEX) dealing with the PDF “back end”
are no longer defined, being replaced by a much smaller
set of new primitives. This does not directly affect the
core INTEX files in this release but has required major
changes to the .ini files used by TEX Live and similar
distributions to set up the format files. These changes
in the LuaTgX engine will affect any packages using
these back end commands (packages such as graphics,
color, hyperref, etc.). Until all contributed packages are
updated to the new syntax users may need to add
aliases for the old pdfTEX commands. A new
luapdftexalias package has been contributed to CTAN
(not part of the core WTEX release) that may be used
for this purpose.

See also the sections below for related changes in the
tools and graphics bundles.

Unicode data

As noted in BTEX News 22, the 2015/01/01 release of
ITEX introduced built-in support for extended TEX
systems. In particular, the kernel now loads appropriate

13

data from the Unicode Consortium to set \lccode,
\uccode, \catcode and \sfcode values in an
automated fashion for the entire Unicode range.

The initial approach taken by the team was to
incorporate the existing model used by (plain) XgTEX
and to pre-process the “raw” Unicode data into a
ready-to-use form as unicode-letters.def. However,
the relationship between the Unicode Consortium files
and TEX data structures is non-trivial and still being
explored. As such, it is preferable to directly parse the
original (.txt) files at point of use. The team has
therefore “spun-out” both the data and the loading to a
new generic package, unicode-data. This package makes
the original Unicode Consortium data files available in
the texmf tree (in tex/generic/unicode-data) and
provides generic loaders suitable for reading this data
into the plain, IWTEX 2¢, and other, formats.

At present, the following data files are included in
this new package:

CaseFolding.txt
EastAsianWidth.txt
LineBreak.txt
MathClass.txt
SpecialCasing.txt
UnicodeData.txt

These files are used either by BTEX 2¢ or by expl3

(i.e. they represent the set currently required by the
team). The Unicode Consortium provides various other
data files and we would be happy to add these to the
generic package, as it is intended to provide a single
place to collect this material in the texmf tree.

Such requests can be mailed to the team

as usual or logged at the package home page:
https://github.com/latex3/unicode-data.

The new approach extends use of Unicode data in
setting TEX information in two ways. First, the
\sfcode of all end-of-quotation/closing punctuation is
now set to 0 (transparent to TgX). Second, \Umathcode
values are now set using MathClass.txt rather than
setting up only letters (which was done using an
arbitrary plane 0/plane 1 separation). There are also
minor refinements to the existing code setting,
particularly splitting the concepts of case and
letter /non-letter category codes.

For X+#TEX, users should note that \xtxHanGlue and
\xtxHanSpace are no longer defined, that no

IATEX News, and the INTEX software, are brought to you by the IATEX3 Project Team; Copyright 2016, all rights reserved.

BTEX News #24

14

assignments are made to \XeTeXinterchartoks and
that no \XeTeXintercharclass data is loaded into the
format. The values which were previously inherited
from the plain XqTEX setup files are not suitable for
properly typesetting East Asian text. There are
third-party packages addressing this area well, notably
those in the CTeX bundle. Third-party packages may
need adjustment to load the data themselves; see the
unicode-data package for one possible loader.

More support for east European accents

As noted in BTEX News 23, comma accent support was
added for s and t in the 2015/10/01 release. In this
release a matching \textcommaabove accent has been
added for U+0123 (\c{g}, g) which is the lower case of
U+0122 (\c{G}, G). In the OT1 and T1 encodings the
combinations are declared as composites with the \c
command, which matches the Unicode names “latin
(capital|small) letter g with cedilla” and also allows
\MakeUppercase{\c{g}} to produce \c{G}, as
required. In T1 encoding, the composite of \c with k, 1,
n and r are also declared to use the comma below
accent rather than cedilla to match the conventional use
of these letters.

The UTF-8 inputenc option utf8 has been extended
to support all latin combinations that can be reasonably
constructed with a (single) accent command an a base
character for the T1 encoding so g, u and similar
characters may be directly input using UTF-8 encoding.

Changes in Graphics

The changes in LuaTgX v0.87 mean that the color and
graphics packages no longer share the pdftex.def file
between LuaTgX and pdfTEX. A separate file
luatex.def (distributed separately) has been produced,
and distributions are encouraged to modify
graphics.cfg and color.cfg configuration files to
default to the luatex option if LuaTgX v0.87 or later is
being used. The team has contributed suitable .cfg
files to CTAN to be used as models.

Normally it is best to let the local graphics.cfg
automatically supply the right option depending on the
TEX engine being used; however the color and graphics
(and so graphicx) packages have been extended to have
an explicit luatex option comparable to the existing
pdftex and xetex options.

The trig package has been updated so that
pre-computed values such as sin(90) now expand to
digits (1 rather than the internal token \@one in this
case). This allows them to be used directly in PDF
literal strings.

Changes in Tools

LuaTgX from version v0.87 no longer supports the

ITEX News #24

TUGDboat, Volume 37 (2016), No. 1

\writel8 syntax to access system commands. A new
package shellesc has been added to tools that defines a
new command \ShellEscape that may be used in all
TgEX variants to provide a consistent access to system
commands. The package also defines \writel18 in
LuaTEX so that it continues to access system commands
as before; see the package documentation for details.

Improving support for Unicode engines

Stability concerns are always paramount when
considering any change to the INTEX 2¢ kernel. At the
same time, it is important that the format remains
usable and gives reliable results for users. For the
Unicode TEX engines XfTEX and LualgX there are
important differences in behavior from classical (8-bit)
TEX engines which mean that identical default
behaviors are not appropriate. Over the past 18 months
the team has addressed the most pressing of these
considerations (as detailed above and in WTEX News 22
and 23), primarily by integrating existing patches into
the kernel. There are, though, important areas which
still need consideration, and which may result in
refinements to kernel support in this area in future
releases.

The default font setup in WTEX 2¢ at present is to use
the 0T1 encoding. This assumes that hyphenation
patterns have been read using appropriate codes: the T1
encoding is assumed. The commonly-used hyphenation
patterns today, hyph-utf8, are set up in this way for
8-bit engines (pdfTEX) but for Unicode engines use
Unicode code points. This means that hyphenation will
be incorrect with Unicode engines unless a Unicode font
is loaded. This requires a concept of a Unicode font
encoding, which is currently provided by the fontspec
package in two versions, EU1 and EU2. The team is
working to fully understand what is meant by a
“Unicode font encoding”, as unlike a classical TEX
encoding it is essentially impossible to know what
glyphs will be provided (though each slot is always
defined with the same meaning). There is also an
overlap between this area and ideas of language and
writing system, most obviously in documents featuring
mixed scripts (for example Latin and Cyrillic).

As well as these font considerations, the team is also
exploring to what extent it is possible to allow existing
(8-bit) documents to compile directly with Unicode
engines without requiring changes in the sources.
Whether this is truly possible remains an open question.

It is important to stress that changes will only be
made in this area where they do not affect documents
processed with e-TEX/pdfTEX (i.e. documents which are
written for “classical” 8-bit TEX engines). Changes will
also be made only where they clearly address
deficiencies in the current setup for Unicode engines

TUGDboat, Volume 37 (2016), No. 1

IXTEX News

Issue 25, March 2016

LuaTgX

This ITEX release sees several internal changes designed
to ensure that the system is still usable with LuaTgX
versions greater than 0.80, which have introduced many
changes into the engine, most notably the removal or
renaming of most of the primitive commands introduced
by pdfTEX. Also the lists of Lua callbacks handled by
the callback allocation mechanism has been updated to
match the callbacks defined in LuaTgEX version 0.90.

These changes have also required updates in tools and
amsmath as described below.

This is the first release of IXTEX for which the test
suite reports no failures when used with LuaTgEX.

Documentation checksums

The doc package has always provided two mechanisms
that were mainly intended to guard against file
truncation or corruption when files were commonly
distributed by email through unreliable mail gateways:
a Character Table of the ASCII character set could be
inserted (and checked) and a “checksum” (count of the
number of backslashes in the code sections) could be
checked. These features are not really needed with
modern distribution mechanisms and can be a
distraction when reading the source code and so have
been removed. The doc package has been updated so
that if you use a \CheckSum command then, as before,
the number is checked; however, if you omit the
command then no error or warning is given.

Updates to inputenc

The UTF-8 support in inputenc has been further
extended with support for non-breaking hyphens and
more dashes.

Updates in Tools

The varioref package has been updated with improved
documentation of multilingual support, and avoiding
unnecessary warnings in some cases with
\reftextfaraway.

The tabularx package’s handling of \endtabularx in
environment definitions has been fixed to again match
its documentation.

The bm package has been updated as required by the
changes to \mathchardef in LuaTgX.

15

amsmath

Since the launch of BTEX 2¢ in 1993, the amsmath
bundle has been part of the required packages in the
core WTEX distribution, with bug reports

handled by the KTEX bug database at
https://latex-project.org/bugs-upload.html.

The amsmath packages and the amscls classes have
been maintained by the American Mathematical
Society.

With this release a new arrangement has been agreed
between the American Mathematical Society and the
ETEX3 project. The BTEX3 project will take over
maintenance of the amsmath bundle, with the American
Mathematical Society retaining maintenance of amscls.

The recommended installation of these files in the
TgEX directory structure remains unchanged as
tex/latex/amsmath and tex/latex/amscls
respectively.

This release of amsmath includes several updates so
that amsmath does not generate errors when math is
used with LuaTgX v0.874, which has changes to
\mathchardef that are incompatible with the previous
version of amsmath. It also improves \dots handling so
that \long macros are correctly handled (for example,
\dots \Rightarrow now uses centered dots), as well as
commands expanding to character tokens (for example,
\times \dots \times will use centered dots with
\times defined as in the unicode-math package).

Related updates

In addition to the updates in the core IXTEX release,
some files in the CTAN “contrib” area have also been
updated. Notably there have been further updates to
the unicode-data files; also, the files required to build
plain and BTEX formats have now been submitted to
CTAN as tex-ini-files. The addition of a new luatex
option for graphics-related packages (luatex-def on
CTAN) has required updates to the configuration files
to select a default option and these have similarly been
uploaded to CTAN as graphics-cfg. (Previously these
files were maintained directly in the TEX Live
repository, and were not available on CTAN.)

IATEX News, and the INTEX software, are brought to you by the IATEX3 Project Team; Copyright 2016, all rights reserved.

ETEX News #25

16

On managing large documents

Thomas Thurnherr

Abstract

Whether you are working on a book, a doctoral the-
sis, or an extensive report, large documents can be
difficult. The source code becomes confusing; you
scroll back and forth to find what you are looking for;
and processing the document can take minutes rather
than seconds. In this article, I describe some tools
and thoughts which might help to keep large docu-
ments organized so you can focus on the essential:
the content.

1 Focus on one thing at a time

Focusing on one thing is generally more efficient than
trying to do multiple things at the same time. For
example, I find it better to work on the document
layout, or edit a figure or table, or focus on writing
a chapter. It does not mean that I work on the
chapter until it is done. Rather, I concentrate on a
chapter for a while and then switch to working on
the document layout or a figure when I need a break
from writing.

2 Keep things separate

A good way to keep focused is to have multiple
source files, especially to keep the preamble separate
from all contents. To that end, I often create a file
main.tex with the preamble. In the preamble, T
load all required packages, define new macros, set
the header and footer, and configure other features
of the document layout. Also in the main source file,
I load all document contents. This is illustrated in
the brief example below.

\documentclass{report} % main.tex

% Preamble

% Load packages and set document style

\usepackage{microtype}

\usepackage{biblatex}

\bibliography{references}

\...

% Main document

% Include all content

\begin{document}
\include{titlepage}
\include{contents} % toc/lof/lot
\include{chapterl}
\include{chapter2}
\include{...}
\printbibliography
\include{appendix}

\end{document}

Thomas Thurnherr

TUGDboat, Volume 37 (2016), No. 1

2.1 Include and input macros

In the example above, I used the \include macro.
The macro loads content from a source file. For
example, suppose I physically saved the content of
the first chapter in chapterl.tex. Now, I can add its
content to the document using \include{chapter1}.
Moreover, \include adds a page break before the
added content. This is great for chapters, which are
physically separated from previous and subsequent
contents. To add smaller chunks of content, I can
use \input{filename} instead, which does not force
page breaks. For example, \input is a good choice
to add a formula or table from a separate source file.
Moreover, this command is a great way to reuse code.
Finally, the \input macro can be nested, which is
not possible with \include.

Taken together, \include and \input help to
stay on top of things in a large document by splitting
the source into multiple files. An additional advan-
tage is that I can reduce processing time of the docu-
ment while working on it, by using \includeonly or
by commenting out all \include and \input macros
with content I am not currently editing.

3 Keep the project directory uncluttered

In order to keep the main project directory clean,
I usually place figure files in a figures sub-folder
and chapter source files in a chapters sub-folder.
This helps to reduce the number of files in the main
project directory. To load these files, I now have
to provide their path as seen from the main project
directory.

%Load figure from figures sub-folder
\includegraphics{figures/figure-filename}

%Load chapter from chapters sub-folder
\include{chapters/chapterl}

With some additional effort, I can move all meta-
files into a metafiles sub-folder. Meta-files are files
generated by the TEX engine and other programs
invoked to generate the output. These have file
endings: log, aux, toc, lof, lot, bbl, ber, etc. To
save meta-files to a sub-folder, pdflatex and other
programs need to be called with various options.
These are described in their respective manual pages.

4 Use a script for document processing

If you set out to write a lengthy document, it may
be a good idea to learn latexmk [4]. The idea of
latexmk was borrowed from Makefiles, which are
frequently distributed with source code for C pro-
grams. A latexmk Makefile contains instructions
on how to process a document by the TEX engine.

TUGDboat, Volume 37 (2016), No. 1

latexmk is distributed with major IATEX distribu-
tions and therefore most likely available on your
system. For more information, take a look at the
documentation or search for tutorials and example
Makefiles online.

Alternatively, with some basic bash or similar
knowledge, you could write your own script or (orig-
inal) Makefile to process the source. The script
should at least have two options: 1) to typeset text
only; and 2) to properly process references, the bib-
liography, and glossaries.

5 Mind the package order

Large documents frequently depend on a long list of
packages. Sometimes the order in which packages
are loaded matters, although this is generally less
of a problem nowadays. One notable case remains,
however: the hyperref package [2] tends to cause
conflicts when used with other packages. As a rule of
thumb, hyperref should be last, with some excep-
tions [6]. Usually, package conflicts are documented
in the package documentation or online.

6 Labels and cross-referencing

A label is used to cross-reference a numbered element
of a document. The quantity of labels increases with
the size of a document and it quickly becomes difficult
to remember all label names and to omit duplicates.
It is good practice to use a label prefix, such as fig:
for figures and tab: for tables, as in fig:workflow.
There are no predefined prefixes, but often the first
three letters of the command to reference are used. In
addition, no prefix is recognized by the TEX program;
their usage is entirely for the author’s convenience.
Finally, I have not seen prefixes used for bibliographic
references. Instead, for BIBTEX entries, I recommend
concatenating the name of the first author, the year,
and the first word of the title to form unique citation
identifiers.

The showlabels package [5] can help keep track
of labels. It prints their names in the margins of the
processed document. The package either shows all
labels (default) or only labels of specific commands
(see example below). To generate the final version
of a document, I can either manually remove the
package or mute all its functions through its final
option.

\usepackage [nolabel] {showlabels}
\showlabels{cite}

17

7 Draft mode

The draft option of the document class macro pro-
duces a visible mark for Overfull hbox warnings.
These are positions in the document where the text or
other content reaches into the margins. In addition,
the option may alter the behavior of loaded pack-
ages. For example, with the draft option set, the
graphicx package [1] indicates a figure with a black
canvas instead of loading the actual figure. This can
drastically reduce document processing time.

’ \documentclass [draft]{report}

The ifdraft package [3] allows additional cus-
tomization of the behavior in draft mode. For exam-
ple, I might want to define a todo command to mark
unfinished content. By defining todo as empty com-
mand in final mode, I make sure no todo output
is produced in the final version of the document.

\usepackage{xcolor}

\usepackage{ifdraft}

\ifdraft{% with draft option
\newcommand{\todo}[1]{%

\textcolor{red}{[TODO: #1]}}

}{% with final option
\newcommand{\todo}[1]{}

}

References

[1] graphicx—enhanced support for graphics.
https://www.ctan.org/pkg/graphicx.
Accessed: 2016-02-25.

[2] hyperref —extensive support for hypertext in
IXTEX. https://www.ctan.org/pkg/hyperref.
Accessed: 2016-02-25.

[3] ifdraft—detect “draft” and “final” class
options. https://www.ctan.org/pkg/ifdraft.
Accessed: 2016-02-25.

[4] latexmk —fully automated WTEX document
generation. https://www.ctan.org/pkg/
latexmk. Accessed: 2016-02-25.

[5] showlabels —show label commands in
the margin. https://www.ctan.org/pkg/
showlabels. Accessed: 2016-02-25.

[6] Collection of BTEX package conflicts.
http://www.macfreek.nl/memory/LaTeX_
package_conflicts. Accessed: 2016-02-25.

¢ Thomas Thurnherr
thomas . thurnherr (at) gmail dot com
http://texblog.org

On managing large documents

18

medstarbeamer: A new beamer class

Anagha Kumar
Abstract

Beamer’s popularity as a document class for creating
slides has grown considerably since its release in
2003. This paper is intended to serve as a guide to
beamer users on how to go about writing their own
beamer document class. A new beamer document
class, medstarbeamer, is presented as an example.

1 Introduction

With its many handy features, Till Tantau’s beamer
class is widely used for making presentations. While I
find the pre-existing beamer themes pleasing, I recog-
nize that not everyone shares the sentiment. Further,
even those who find the existing themes satisfactory
may feel the need to exercise fine control over the
layout of their slides. While the beamer user guide
is an excellent resource, I thought a paper outlining
the process and providing an example of a beamer
document class constructed from scratch would be a
useful addition to the existing literature. This paper
goes over medstarbeamer, an original beamer docu-
ment class written by me. The package is available
at https://www.ctan.org/pkg/medstarbeamer.

In addition to what is covered in this paper,
a useful resource for those contemplating writing

their own document class is the website http://www.

r-bloggers.com. A post from November 2011 titled
“Create your own Beamer template” provides a nice
introduction to how beamer themes are typically
written. In writing the beamer class, Till Tantau de-
fined several inner, outer, color, and font themes.
Extensive documentation on these can be found
in the beamer user guide. Additional information
is available at https://en.wikibooks.org/wiki/
LaTeX/Presentations. Perhaps most importantly,
the style files for these themes are easily download-
able from CTAN and can prove a valuable resource
while customizing one’s own theme.

In writing the medstarbeamer package, I chose
to write a color theme (in the package, this is the style
file beamercolorthemeMedStarColors.sty) and a
separate .cls file (medstarbeamer.cls). Maintain-
ing distinct files makes writing packages easier since
it is less cumbersome than sorting through command
after command in one very long .cls file. Further,
users who have defined several themes of their own,
be they inner, outer, color or font themes, find it
easier to mix-and-match these themes while creating
slides if the themes are saved in separate files. On the

Anagha Kumar

TUGDboat, Volume 37 (2016), No. 1

other hand, for simpler themes with fewer features,
one file should suffice.

Section 2 covers how the document class was
written, section 3 covers salient features of the color
theme, and section 4 provides examples of usage.
The reader is urged to download and compile the
example presentation (example.tex) provided with
the package on CTAN.

2 Writing the document class

I chose to write the document class by borrowing
features from the beamer themes infolines and
miniframes. The .sty files for both of these themes
are downloadable from CTAN. To define the foot-
line, I customized the footline command from the
infolines theme. Here is the customized version:

\defbeamertemplatex{footline}{}{\hbox{’

\begin{beamercolorbox}[center,
wd=.3333333\paperwidth,ht=0.25cm,dp=0.2cm]
{author in head/foot}},
\usebeamerfont{author in head/foot}},
\insertshortauthor

\end{beamercolorbox}/,

\begin{beamercolorbox}[center,
wd=.3333333\paperwidth,ht=0.25cm,dp=0.2cm]
{title in head/foot}Y
\usebeamerfont{title in head/foot}}
\insertshorttitle

\end{beamercolorbox}’,

\begin{beamercolorbox}[center,
wd=.3333333\paperwidth,ht=0.25cm,dp=0.2cm]
{date in head/footl}%
\usebeamerfont{date in head/foot}},
\insertshortdate{}\hfill
\insertframenumber{} /
\inserttotalframenumber

\end{beamercolorbox}’,

1

For my document class, I altered the height
(ht) and depth (dp) and deleted some of the other
features included in the infolines theme, such as
the inclusion of the institute name. Since I feel
more comfortable using (constant) centimeters as
a metric of measurement, I used cm instead of ex.
Additionally, the width for each beamercolorbox
was set to one-third the paper width.

Notice the first beamercolorbox corresponds to
the leftmost box at the bottom of the slides pro-
vided in section 4. The second beamercolorbox
contains the title of the talk. Lastly, the third
beamercolorbox contains the date as well as the
current frame number. The reader should be aware
that certain commands such as totalframenumber
and framenumber, shortauthor, etc. have been pre-
defined in the beamer document class.

TUGDboat, Volume 37 (2016), No. 1

While the code above gives the reader an idea
of how the document class was constructed, it is also
important for the reader to grasp how it’s used. Here
is the preamble from the example.tex file included
with the package:

\documentclass{medstarbeamer}

\title[Applied Bayesian Data Analysis]

{Binary Response Regression and Model Selection}
\institute[1{}

\author [Anagha Kumar]{Anagha Kumar}

\date{August 26th, 2015}

One sees that the text provided in square brack-
ets appears in the footline. The institute is delib-
erately left blank as I chose to exclude it from the
footline in the construction of this document class.

I modified the headline from the miniframes
theme similarly, as follows:
\defbeamertemplate*{headline}{}{%

\begin{beamercolorbox}{section in head/foot}
\vskip3pt\insertnavigation{\paperwidth}y
\vskip3pt

\end{beamercolorboxl}’

\ifbeamer@theme@subsection

\begin{beamercolorbox} [ht=0.25cm,dp=0.2cm,

leftskip=0.5cm]

{subsection in head/foot}
\usebeamerfont{subsection in head/foot}’
\insertsubsectionhead

\end{beamercolorboxl}’

\fi}

My headline is a greatly simplified version of the
headline definition from miniframes.sty. Again, I
altered the height (ht) and depth (dp) values to
suit my liking. The first beamercolorbox corre-
sponds to the topmost yellow (I defined a new color
medstaryellow which will be described in detail in
the following section) band in the slides presented in
section 4. The section name (in bold) along with the
other sections are presented in this topmost color box.
Next, if a subsection exists, the second navy blue
band (medstarblue) contains the subsection heading
(notice the command \insertsubsectionhead).

Next, I customized the layout even further by
specifying margin sizes:

\setbeamersizetext{margin left=0.5cm,
text margin right=0.75cm}

I wanted to include the MedStar logo in every
frame:
\logo{\includegraphics[height=1cm, width=2.5cm]
{medstarlogo}}
I chose to suppress the navigation symbols and
number the captions in my slide deck:

\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{caption} [numbered]}

19

Finally, I defined two new commands as follows,
\sizecontentsoutline, \sizecontentscurrent:

\newcommand{\sizecontentsoutline}[1]1{%
\ifnum#i=1
\begin{frame}
\tableofcontents
\end{frame}
\fi
\ifnum#1=2
\begin{frame}
{\footnotesize \tableofcontents}/
\end{frame}
\fi
}
\newcommand{\sizecontentscurrent}[1]1{%
\AtBeginSection{’,
\ifthenelse{\thesection > 1}{}
\ifnum#i=1
\begin{frame}
\tableofcontents [currentsection]
\end{frame}
\fi
\ifnum#1=2
\begin{frame}
{\footnotesize
\tableofcontents[currentsection]}’
\end{frame}
\fi}%
i3
Each command consists of two if statements
which are set up such that if the parameter value is 1,
then the table of contents (of the whole document
for the first command, of the current section for the
second) appears in the normal font. If the parameter
is 2, on the other hand, the table of contents is
reduced by using the font size \footnotesize. Users
need only specify one of

\sizecontentsoutline{1}
\sizecontentsoutline{2}

or

\sizecontentscurrent{1}
\sizecontentscurrent{2}

respectively, in their .tex file. Notice that there is no
need to enclose these commands in \begin{frame}
and \end{frame} since these options have already
been specified in the body of the command defini-
tions. This option has proven a handy feature in
presentations with several sections and subsections
since a lengthy table of contents can be displayed in
a smaller font size if needed.

Another useful feature of this document class is
a new command called class. I wrote this command
after noticing that when I give lectures, the students
find it useful to have space for taking notes included

medstarbeamer: A new beamer class

20

in the handouts themselves. Therefore, I wrote a

simple if statement:

\newcommand{\class}[1]{%

\ifnum #1=1
\begin{frame}{Notes}\end{frame}

\fi

\ifnum #1=2
\begin{frame}{Notes}\end{frame}
\begin{frame}{Notes}\end{frame}

\fi

\ifnum #1=3
\begin{frame}{Notes}\end{frame}
\begin{frame}{Notes}\end{frame}
\begin{frame}{Notes}\end{frame}

\fi}

The above command takes one parameter as
an argument. The parameter specifies the number
of blank slides to be inserted, up to three. I chose
to limit the number of slides inserted at once to
three since I have yet to encounter a situation where
more than three pages of notes would be required
to be taken by students after a given slide. That
said, of course the code can easily be altered to suit
individual requirements.

As for usage, one need merely type \class{1},
\class{2} or class{3} to insert the desired number
of slides. As before, there is no need to enclose this
command in \begin{frame} and \end{frame}.

3 Designing a color theme

My highest priority in writing this document class
was to design an interesting color theme. I chose
to use the MedStar logo as inspiration. The first
step was to define my own colors. I elected to
define three colors: medstaryellow, medstarblue,
and medstarred. The colors were defined so as
to match the colors in the MedStar logo. Should
one want to use existing I#TEX colors, the website
http://latexcolor.com provides color definitions
and syntax for a very extensive range of colors and
should prove an invaluable resource.

I chose to stick with white as the background
color but users can alter this using the command

\setbeamercolor{background canvas}{bg=(color)}

Table 1 presents a summary of how the colors for the
theme were specified. These commands are in the file
beamercolorthemeMedStarColors.sty. The next
section has examples of what the slides look like.

e The primary palette controls the foreground and
background colors for the rightmost colorbox
in the footline.

e The secondary palette controls the foreground
and background for the leftmost colorbox in

the footline, and the second strip in the headline.

Anagha Kumar

TUGDboat, Volume 37 (2016), No. 1

Table 1: Summary of commands used in
beamercolorthemeMedStarColors.sty.

Author \setbeamercolor{author}
{fg=medstarblue}
Date \setbeamercolor{date}
{fg=medstarblue}
Title \setbeamercolor{title}
{fg=medstarblue}
Subtitle \setbeamercolor{subtitle}

{fg=medstarblue}
\setbeamercolor{normal text}
{fg=medstarblue}
\setbeamercolor{caption}
{fg=medstarblue}
\setbeamercolor{caption name}
{fg=medstarblue}

Normal text
Captions
Caption names
Items \setbeamercolor{item}
{fg=medstarblue}
Primary palette \setbeamercolor{palette primary}
{fg=white, bg=medstarblue}
Secondary palette \setbeamercolor{palette secondary}
{fg=white, bg=medstarblue}
Tertiary palette \setbeamercolor{palette tertiary}
{fg=medstarblue,bg=medstaryellow}
\setbeamercolor
{date in head/foot}
{parent=palette primary}

Date in footline

Author in footline \setbeamercolor
{author in head/foot}
{parent=palette secondary}
\setbeamercolor
{title in head/foot}
{parent=palette tertiary}

Title in footline

Frame Title \setbeamercolor{frametitle}

{fg=medstarblue,bg=medstaryellow}

e The tertiary palette controls the foreground and
background for the middle colorbox in the foot-
line, and the topmost strip in the headline.

As shown in the table, the date, author, and title
in the footline were set to the primary, secondary,
and tertiary palettes respectively.

In addition to the above, sections, subsections,
and subsubsections in the table of contents were set
to medstarblue using the commands

\setbeamercolor{section in toc}
{fg = medstarblue}
\setbeamercolor{subsection in toc}
{fg = medstarblue}
\setbeamercolor{subsubsection in toc}
{fg = medstarblue}

respectively. Similarly, I inserted a shaded table of
contents at the beginning of each section, with the
current and shaded sections shown in medstarblue,
using the commands:

\setbeamercolor{section in toc shaded}

TUGDboat, Volume 37 (2016), No. 1

The Problem of Interest The Dataset

0000

The Approach Background
o o

Binary Response Regression and Model Selection

Anagha Kumar

August 26th, 2015

MedStar Health

Applied Bayesian Data Analysis August 26th, 2015 1/12

Figure 1: Title slide.

The Dataset
0000

The Problem of Interest The Approach Background
o)

The Problem of Interest

The Dataset
Motivation

The Approach
Methods for categorical response data
The Problem of Interest

Background
Notation
The Mathematical Motivation

MedStar Health

August 26th, 2015

Applied Bayesian Data Analysis

Anagha Kumar

Figure 2: Overview slide.

{fg = medstarblue}
\setbeamercolor{subsection in toc shaded}
{fg = medstarblue}
\setbeamercolor{subsubsection in toc shaded}
{fg = medstarblue}

It is usually considered good practice to stick
to two, or perhaps three, colors while designing a
color theme though readers should feel free to tailor

themes to their individual needs and preferences.

Several other features can be fine-tuned in a given
color theme. Readers can explore color themes at
even greater length to construct one to their liking.

4 Examples

Figures 1, 2, 3, and 4 present examples of slides
made using this document class. (Grayscaled for the
printed TUGboat.)

21

The Dataset
0000

Dataset

The Problem of Interest The Approach Background
o o

1. The dataset used was from “Survival Analysis - Techniques for
Censored and Truncated Data”.

2. It was a hypothetical study of the mortality experience of diabetics.
3. 30 diabetics were followed till death or the end of the study.

4. The subject’s age at entry into the study and the age at the end of
the study or death were recorded.

5. Rather than time to event analysis, | was interested in how “entry
age” and “exit age”, affected survival.

6. The response variable, survival, was binary (=1 if alive, =0 if

dead). —
MedStar Health
Applied Bayesian Data Analysis August 26th, 2015

Figure 3: Typical content slide, with title.

The Dataset
0000

The Problem of Interest The Approach Background
o o

The Dataset

Motivation
—
MedStar Health
RrpieilBa eI Da A A n e August 26th, 2015 4/12

Figure 4: Shaded table of contents slide.

5 Discussion

Since XTEX users often need to customize their slides
to suit institutional or personal needs, this paper
intends to shed some light on the often daunting
task of creating a custom beamer document class.
By introducing a novel document class and detailing
each command used in its construction, I hope to
have provided a high-quality example of how to go
about doing so. With the help of the many resources
mentioned in this paper, users should find it possible
to write their own beamer document classes.

As always, I urge users to upload their contri-
butions to CTAN and accompany such uploads with
appropriate documentation.

¢ Anagha Kumar
1711 35th Street NW Apt. 23
Washington DC 20007
anaghakumar2405 (at) gmail dot com

medstarbeamer: A new beamer class

22

Glisterings: Assemblies; Table talk
Peter Wilson

It did a ghastly contrast bear
To those bright ringlets glistering fair.

Marmion, SIR WALTER SCOTT

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

FEric, or, Little by Little

Book title, FREDERICK W. FARRAR

1 Assemblies
1.1 Adding to a macro

On occasions it is useful to be able to extend a pre-

existing macro. For instance, to assemble a list of

the names of the members of some organization, or

the reviewers of some article, and then print them.

In simple cases the ETEX kernel

\g@addto@macro{({macro)} {addition)}

can be used for this.

\makeatletter

\newcommand*{\member} [1] {7
\@ifundefined{@members}{/

% a new list of members

% define it as the argument (member name)

\newcommand{\@members}{#1}}{/,
% a list exists, add the argument to it
\g@addto@macro{\@members}{, #1}}}

\newcommandx*{\showmembers}{%
\ignorespaces\@members}

\newcommand*{\themembers}{\showmembers
\let\@members\relax}

\makeatother

The macro \member{(name)} can be used several
times to add (name) to the \@members macro. The
macro \themembers can then be called to print the
contents of \@members and clear \@members so a new
list may be started. If you want to print the list more
than once then use \showmembers which prints, but
does not clear, the list.

\member{Fred} \member{Joe}
\member{Susan} \member{Faye}

\themembers = Fred, Joe, Susan, Faye

For more complex additions, for instance when
the macro to be extended takes arguments, then the
patchcmd package [4] could be the answer.

Once having created a list of members it might
have to be changed because one or more members

Peter Wilson

TUGboat, Volume 37 (2016), No. 1

have left. This is more complicated and I present it
only as an example of what could be done.

The \deletemember{(name)} will go over the
list of members, creating a new temporary working
list with the exception of the (name) member, then
replace the original list with the working one.

\makeatletter
\let\xpf\expandafter) just a shorthand
\newcommand*{\deletemember} [1]{},
\let\@tempmembers\relax
\def\@dm@num{1}7
\@f or\member@:=\@members\do{/,
\ifnum\@dm@num<2\relax
\def\tCmp@b{#13}%
\ifx\member@\t@mpQAbY
\def\@dm@num{0}7,
\else
\def\t@mp@b{\space #1}} later entries
\ifx\member@\t@mpabJ,
\def\@dm@num{0}7
\fi
\fi
\fi
\ifnum\@dm@num=0\relax
\def\@dm@num{2}%
\else
\xpf\xpf\xpf\transfer\xpf{\memberal}y,
\fi}h
\let\@members\@tempmembers}
\makeatother

initial entry

The coding of \deletemember is not straightfor-
ward. The IMTEX kernel’s \@for construct is used to
loop over the comma-separated entries in \@members,
putting, in turn, each entry into the \member®@ macro.
Due to the way that \@members is constructed, the
name of the initial entry is recovered as name, while
a later entry is recovered as _name; hence the two
tests for the argument (name) against the recovered
\member@ name.

The \@dm@num macro is used to track the state
of the process. At the start it is set to 1. If it is less
than 2, attempts are made to match the argument
with the current list name and if a match is found
then \@dm@num is set to 0. After the argument check,
if the argument is matched (\@dm@num = 0) then
\@dm@numn is reset to 2, otherwise the current member
name is added to the working list. This all means
that once the list name matches the argument then
no further attempts at matching are needed or done,
and the remaining original members are simply added
to the working list. At the end the original list is set
to the temporary working list.

The tricky part is that the current contents of
\member@, not the macro itself, should be added

TUGDboat, Volume 37 (2016), No. 1

to the working list.! The bunch of \expandafters
around the call to \transfer expands \member@ to
its definition before it gets handed over as the argu-
ment to \transfer.

The macro \transfer{(name)} adds (name)
to the macro \@tempmembers containing a list of
comma separated names. It has the same general
form as the earlier \member macro.

\makeatletter
\newcommand*{\transfer} [1]{%
\@ifundefined{@tempmembers}{y
\newcommand*{\@tempmembers}{#1}%
H%
\g@addto@macro{\@tempmembers}{,#1}%
1}
\makeatother

Here are some examples of adding and deleting

members to and from the original member list above.

\member{Alice} \member{Bob} \member{Claire}
\member{David} \member{Erica}

\showmembers = Fred, Joe, Susan, Faye, Alice,
Bob, Claire, David, Erica
\deletemember{David}\showmembers = Fred,
Joe, Susan, Faye, Alice, Bob, Claire, Erica
\deletemember{Fred}\showmembers = Joe,
Susan, Faye, Alice, Bob, Claire, Erica
\member{Xerxes} \member{Zeno}

\showmembers = Joe, Susan, Faye, Alice, Bob,
Claire, Erica, Xerxes, Zeno
\deletemember{Miriam}\showmembers =- Joe,
Susan, Faye, Alice, Bob, Claire, Erica, Xerxes,
Zeno

1.2 Piecing a paragraph

Ron Aaron wanted a different kind of assembly. He
wrote [1]:

What I wish to do is accumulate text into a paragraph
‘as I go’. My simple approach is to allocate a box,
and then unbox and add the text. But this doesn’t
work as I intend:

\newbox\textbox
\def\addbox#1{Y%
\setbox\textbox\vbox{
\unvbox\textbox#1}}
\addbox{Hello}
\addbox{there!}
\box\textbox

What I get is each appended bit of text in a separate
line. I've tried to \unskip’ and \unkern’ etc. after

1 If the macro is added then the list will consist of nothing
but a series of \member@, thus all expanding to the identical
name (the current definition of \member@ when the list is
printed).

23

the \unvbox but whatever I do I get a list of lines

Trying out Ron’s example the result is:

ello

there!

The squashed vertical spacing between the lines is
real, not an artifact of this article.

In responding, Philip Taylor [5], having said
that using a \vbox would be difficult, then gave two
suggestions; either use an \hbox directly or a token-
list register. His \hbox solution (and my example)
is:

\newbox\textbox
\def\addbox #1{%
\setbox \textbox = \hbox
\bgroup
\unhbox \textbox #1%
\egroup}
\addbox{Hello}
\addbox{ World!'}
\addbox{ Now isn’t that a rather
common saying?}
\unhbox\textbox

with the result:

Hello World! Now isn’t that a rather common
saying?

At various points after this I have used code like
\addbox{ (n) text}
as an example of assembling a paragraph piece by
piece and at the end showing the result via:
\unhbox\textbox
\addbox{(1) Start of a paragraph.}
Philip’s second solution uses a token register:
\newtoks\texttoks
\def\addtoks #1{%
\texttoks =
\expandafter {\the \texttoks #1}}
\addtoks {Goodbyel}
\addtoks { \emph{vain} world. Ah, the
weariness in that statement
does one no good.}
\the \texttoks

and the example produces:

Goodbye vain world. Ah, the weariness in that
statement does one no good.

\addbox{ (2) After an interruption
add more.}

Note that with both of Philip’s solutions you
have to explicitly incorporate spaces where you want

Glisterings: Assemblies; Table talk

24

them to occur in the assembled paragraph. It seemed,
though, that Ron really wanted to use a \vbox but
I have neither seen nor been able to come up with
satisfactory code.

\addbox{ (3) This is the end
of the piecewise
paragraph.}

\unhbox\textbox

Now print the piecewise paragraph giving:

(1) Start of a paragraph. (2) After an interrup-
tion add more. (3) This is the end of the piecewise
paragraph.

Beneath those rugged elms, that yew-tree’s
shade,

Where heaves the turf in many a
mouldering heap,

Each in his narrow cell for ever laid,

The rude forefathers of the hamlet sleep.

Elegy Written in a Country
Churchyard, THOMAS GRAY

2 Table talk

Arbo [2] wanted a tabular layout like the one shown
in Figure 1 and tried using code like this to produce
it.
\begin{tabular}{r|c|1}
\hline
First & Second & Third \\
Text &

\multicolumn{i}{clclclcl|}

{C1&C2&C3&C 4}

& More text \\
Words &

\multicolumn{1}{clclc}%

{C5&C6&CT}

& Text \\
Title &

\multicolumn{1}{clc}%

{C 8 & C 9}

& Some text \\
\hline
\end{tabular}

If you try it you will find, like Arbo, that it
doesn’t work, resulting in a string of error messages
beginning with:

First Second Third

Text Cl‘C2‘C3‘C4 More text
Words | C5 ‘ C6 ‘ C 7| text

Title | C 8 \ C 9 | Some text

Figure 1: Desired tabular layout

Peter Wilson

TUGboat, Volume 37 (2016), No. 1

! Missing } inserted.
<inserted text>
}
1.6945 {C1&C2&C3&C 4}

The problem is that \multicolumn merges mul-
tiple columns into one whereas the requirement here
was to split one column into several.

Donald Arseneau [3] responded that ‘They don’t
look aligned at all, so don’t call them columns’, and
provided code for an \addcell macro. Arbo modi-
fied it very slightly to center the \vlines, with the
final version as follows:
\newcommand{\addcell}{\unskip\hfill

\hspace\tabcolsep\vline\hspace\tabcolsep
\hfill % added by Arbo
\ignorespaces}
Using this, the tabular in Figure 1 is created by:
\begin{tabular}{|r|c|1|}\hline
First & Second & Third \\
Text & C 1
\addcell C 2 \addcell C 3 \addcell C 4
& More text \\
Words & C 5
\addcell C 6 \addcell C 7
& text \\
Title & C 8 \addcell C 9 & Some text \\
\hline
\end{tabular}

References

[1] Ron Aaron. How to append text to a paragraph
(in an existing vbox)? Post to xetex mailing

list, 16 July 2010.

[2] Arbo. How to produce multiple columns
within a multicolumn. Post to comp.text.tex
newsgroup, 2 November 2010.

[3] Donald Arsencau. Re: How to produce
multiple columns within a multicolumn. Post to
comp.text.tex newsgroup, 2 November 2010.

[4] Michael J. Downes. The patchcmd package,
2000. http://ctan.org/pkg/patchcmd.

[5] Philip Taylor. Re: How to append text to a
paragraph (in an existing vbox)? Post to xetex
mailing list, 16 July 2010.

o Peter Wilson
12 Sovereign Close
Kenilworth, CV8 15Q
UK
herries dot press (at)
earthlink dot net

TUGDboat, Volume 37 (2016), No. 1

Randomising assignments with SageTEX
Sabri W. Al-Safi

Abstract

SageTEX allows for the processing of SageMath code
embedded in a TEX document, and the automated
generation of TEX code to display SageMath objects.
This article reports on the use of SageTEX to generate
individualised coursework assignments (with corre-
sponding answers) for students in an undergraduate
mathematics module.

1 Motivation

One of the modules I teach to third year undergrad-
uate mathematics students involves an individual
coursework assignment; this is perhaps the type of
assessment that is most vulnerable to concerns about
plagiarism. In previous years, the same assignment
was given to every student, which did little to help
things. Hence I was curious to know if there was a
relatively easy way to randomise the assignment so
that each student is given a unique paper, and their
solutions could be marked according to a correspond-
ing markscheme (a.k.a. list of answers).

Various packages exist which can be used to
generate randomised problems. The e-assessment
system Numbas [4] is a popular example in which
authors can define randomised variables when dis-
playing mathematical objects in a question. Students
can refresh the question to re-randomise these vari-
ables at will, and an automated script can be used
to mark answers according to the variables’ values.

Numbas is well-suited to computer-based assess-
ment, but there are obstacles to using it for the
formal assessment of advanced mathematics. Firstly,
I wanted to hand out a neatly typeset document
for an examination or assignment. Whilst Numbas
can handle TEX syntax (and can even be tweaked to
create printable PDF worksheets and markschemes),
its typesetting capabilities are limited, and I would
not have as much fine control over the output as
when using TEX on my own computer.

A second drawback to Numbas is the lack of a
sophisticated computer algebra system. The package
contains a custom algebra system which includes
some basic methods, but does not possess the ad-
vanced capabilities of, say, Mathematica. I would
be forced to use a degree of effort and cunning to
test my students’ ability to transform a matrix into
Jordan Canonical Form.

25

2 SageTgX

The TEX package SageTEX [1, 2] overcomes these
drawbacks by integrating SageMath into IZTEX docu-
ments. SageMath [5] is a powerful computer algebra
system which is a free, open source alternative to
Maple, Mathematica, Matlab or Magma. SageTEX
allows a user to embed SageMath code into a TEX
document, have that code executed, and automati-
cally generate TEX code based on the results of those
computations.

TUGboat has previously featured a comprehen-
sive review of SageTEX [3], so I will cover only the
salient aspects. I'll assume that both KTEX and
SageMath are installed on the system (it’s possible
to run SageMath remotely, but we won’t get into
that here). The following line must be added to the
preamble:

\usepackage{sagetex}

The SageMath code is usually written into ei-
ther a sageblock or a sagesilent environment in
the TEX document. When IXTEX is run, all text
within these environments is copied to a single, sepa-
rate .sage file for execution (sageblock additionally
typesets the code verbatim into IXTEX's output). The
code within these environments is collectively consid-
ered as a single SageMath program. As an example,
if I want to assign to the variable A a diagonalizable
3 X 3 matrix with randomised integer entries and
integer eigenvalues, I can write, anywhere in the TEX
document (broken across lines here for TUGboat):

\begin{sagesilent}

import sage.matrix

A = random_diagonalizable_matrix(
MatrixSpace(ZZ, 3))

\end{sagesilent}

In SageMath, each object has associated TEX
code which renders an accurate representation of
that object in math mode. One can automatically
generate this code via the \sage macro. This allows
the results of calculations to be displayed without
having to do those calculations yourself, which is
especially useful if your objects have been randomly
generated. Thus, continuing, if I want to display a
list of the eigenvalues of our matrix A later in the
same document, I can write:

The eigenvalues of
\sage{A} are $\sage{A.eigenvalues()1}$.

The \sageplot command instructs Sage to gen-
erate graphical plots which are then included in the
document. This circumvents some of the need to fuss
with graphics files or \includegraphics commands

Randomising assignments with Sage TEX

26

(since SageTEX does it for you). Again, this can also
be useful when applied to functions that depend on
randomly generated variables.

\begin{sagesilent}

r = ZZ.random_element (10)
\end{sagesilent}
\sageplot{plot(sin(r*x), x, 0, 2*pi)} .

Getting SageMath to evaluate the SageMath
code, produce plots and generate TEX code requires
an additional couple of steps when compiling the
document. When KTEX is first run on the .tex file,
an auxiliary file with the extension .sagetex.sage
is generated. The user must then run SageMath on
this file, before running IXTEX once again on the
original .tex file. This series of steps can become te-
dious, although it is straightforward to automate (as
I describe in the next section) and is only necessary
when the SageMath commands are changed.

3 Method for individualising assignments

The assignment and the markscheme were written
as separate TEX documents (Questions.tex and
Answers.tex) to avoid having to split several PDF
files into two. They were individualised by heavy use
of randomly generated SageMath objects, so that
although the students were required to use the same
mathematical techniques, they would be applying
them to different numbers, matrices and functions.

I needed the markscheme to use the same ran-
domised objects as the assignment, therefore I needed
control over the random state of the SageMath pro-
gram. This was achieved by setting the same ran-
dom seed at the beginning of Questions.tex and
Answers.tex, which was read from a text file named
random_seed.txt:

\begin{sagesilent}
set_random_seed(

int(open('random_seed.txt').read()))
\end{sagesilent}

In addition, any creation of a random object
in Questions.tex had to be mirrored by the exact
same operation in Answers.tex. I was otherwise free
to use SageMath to compute and display anything
I wanted in the markscheme. This even included
plotting functions, against which the student’s own
plots could be checked. The random seed approach
had the added bonus that in order to re-generate
the assignment or markscheme for a given student
at any time, one could simply write the appropriate
number into random_seed. txt.

The random seeds were chosen to correspond to
the students’ university numbers so that they were

Sabri W. Al-Safi

TUGDboat, Volume 37 (2016), No. 1

unique to each student and easy to recover. It was
straightforward to export the relevant list of student
numbers from the university’s online learning environ-
ment, strip out all alphabetic characters, and save it
to the file student_numbers.csv. The subsequent
6-digit numbers were used in turn to set the ran-
dom seed at the beginning of both Questions.tex
and Answers.tex. For both of these files the “TEX-
SageMath—TEX” compilation procedure was carried
out as outlined in the previous section, and the out-
put PDF was renamed according to the student num-
ber. This whole process was entirely automated
by the following Python script, named (for myself)
compile.py:

import subprocess
import os

def CompileSageTex(fileName):
subprocess.call(['pdflatex', fileName+'.tex'])
subprocess.call(['sage',
fileName+'.sagetex.sage'])
subprocess.call(['pdflatex', fileName+'.tex'])

for seed in open('student_numbers.csv')

.read() .split(',"):
open('random_seed.txt', 'w+').write(seed+'\n')
CompileSageTex('Questions')
CompileSageTex('Answers')
os.rename ('Questions.pdf',

'Assignment_'+seed+'.pdf')
os.rename ('Answers.pdf',
'Markscheme_'+seed+'.pdf"')

The assignments were then ready to be sent to
the students using a mail merge.

4 Observations

One of the drawbacks to SageMath and SageTEX
is the initial difficulty of installation. SageMath is
most at home in a Unix environment; using it on a
Windows system requires a virtual machine, which
makes SageTEX a much less viable option. It is
possible to run SageMath remotely, but it may not
be very easy to do this in an automated fashion
as presented here. However, once I had configured
SageTEX on my system, I found it intuitive and
powerful.

SageTEX adds a significant amount of time to
the compilation process. On my laptop running
GNU/Linux, a test run of compile.py using a string
of ten student numbers took a little over two minutes
to produce assignment and markscheme documents
with sizes roughly 123kb and 152kb respectively. If
the CompileSageTex function was stripped down to
a single call to pdflatex, it took about five seconds.

TUGDboat, Volume 37 (2016), No. 1

5 Discussion

SageMath is not the only language that can be in-
tegrated with TEX. Haskell and R are two notable
examples for which similar tools exist to mix their
code with TEX code, and generate TEX code on the
fly. T used SageTEX primarily because:

e [already had some familiarity with Python and
SageMath;

e | knew that SageMath was adept at linear alge-
bra and symbolic computation;

e | could instantly see how to use SageTEX to
achieve my goals.

I haven’t tried the other alternatives myself, and a
cursory search does not reveal any rigorous compar-
ison of the available tools. Before deciding on one
or another, consideration should probably be given
to the differing capabilities of, and to one’s prior
familiarity with, each language.

My use of text files and a Python script is un-
likely to be the fastest or most efficient method,
although it served my immediate purposes. If the
size of the assignment and the number of students is
large, then disk space may be an issue. In this case,
it may be desirable to print or email to each student
the assignment immediately after compilation, and
then delete the associated files.

Any use of SageMath aids its proliferation as
a free alternative to proprietary software. The lead
developer, William Stein, has written about his con-
siderable efforts to improve and sustain its user base,
especially for undergraduate teaching [6, 7]. If the
method described in this article were somehow to
be made simpler and faster, I believe teachers would
find it very appealing as a way of cutting down on
plagiarism, generating original problem sets, and
maintaining strict correctness between questions and
solutions.

27

References

[1] Drake, Dan, et al. “The SageTEX Package”
(2010). http://w.astro.berkeley.edu/
~domagalski/latex/sagetexpackage.pdf

[2] Drake, Dan, et al. SageTEX on CTAN.
http://ctan.org/pkg/sagetex

[3] Joshi, Manjusha. A dream of computing
and I TEXing together: A reality with
SageTEX. http://tug.org/TUGboat/tb32-3/
tb102joshi .pdf

[4] Numbas. https://numbas.mathcentre.ac.uk
[5] SageMath. http://www.sagemath.org

[6] Stein, William. “What is SageMath’s strategy?”
http://sagemath.blogspot.co.uk/2015/09/
what-is-sagemaths-strategy.html

[7] Stein, William. “You don’t really think
that Sage has failed, do you?” http:
//sagemath.blogspot.co.uk/2014/08/
you-dont-really-think-that-sage-has.
html

o Sabri W. Al-Safi
School of Science & Technology,
Nottingham Trent University,
Burton Street, Nottingham,
NG1 4BU, UK
Sabri dot Alsafi (at) ntu dot ac
dot uk

Randomising assignments with Sage TEX

28

Indexing: Goals, strategies and tactics
Ronald J. Fehd

Abstract

In this article I review my index production notes
from a previous project and make a checklist of goals,
strategies and tactics for my next book. I compare
the writing roles of author, editor and proofreader
with the indexing team of author and indexer.

The purpose of this article is twofold: the first
is to provide a workflow for documents with indexes
that makes debugging, proofreading and polishing of
index entries across multiple files easier. The second
is to provide a template document that supports
that workflow. The packages chappg, fancyverb,
and indextools are used in the template.

The expected audience of this article is authors
and technical writers who want to become proficient
in the art and science of indexing.

1 Introduction

What is an index? A simple description is an index
assists the reader in finding information in a docu-
ment. The term index has two components, what
and where. The what is the entry; the where is the
locator, usually a page number. An index is an as-
set to the reader. Its presence is a selling point for
the document. Consider the reader before sale, as a
customer, and after sale, as a user.

A knowledgeable reader picks up a book and
wants to access the quality of the index. A coarse met-
ric of quality is quantity, the simple easy-to-calculate
ratio of the number of pages of the index divided
by the number of pages of the book. The range of
this fraction, as a percentage, is 2-15%, where 2%
indicates a trivial index and 10+% shows a concerted
effort, as for a reference book or technical manual,
that will be both useful and often used.

Mulvany [15, table 3.2, pg. 72], shows the corre-
lation between this percentage and the professional
indexer’s estimated work effort; this metric is known
as entries per page (E/pg) discussed below in the
section ‘Budget and quality’.

Team work In writing there are three people on
the team: author, editor and proofreader. The edi-
tor’s role has two tasks: micro, concerned with pro-
ducing accurate and consistent syntax; and macro,
concerned with focus, winnowing and elimination
of redundancy. The proofreader’s role is to detect
inconsistency and do fact checking.

In indexing, there are apparently two people on
the team: the author and the indexer. In project
management we have the three choices of fast, ac-

Ronald J. Fehd

TUGDboat, Volume 37 (2016), No. 1

curate, or cheap. Professional indexers are paid to
be the pair of choices of goodness: fast and accu-
rate. Their job description encompasses both of the
writers’ team roles of editor and proofreader for the
index.

The task of this article is to examine the work
of editing and proofreading an index and present a
workflow for writers which makes those tasks obvious,
defined and easy to accomplish. Additional interme-
diate documents are needed for the index review; an
example template which supports the review process
is shown on page 35.

A professional definition Mulvany [15, pg. 8],
provides this definition.

An index is a structured sequence —result-
ing from a thorough and complete analysis
of text— of synthesized access points to all
the information contained in the text. The
structured arrangement of the index enables
users to locate information efficiently.

Concepts In mathematics we have the concept of
an array which contains a set of values; an index is
an integer, a pointer to an element in the array. The
concepts of array and index are separate from the
values in the array; the concepts are a method of
accessing the values in an iterative loop.

In natural languages we can apply the concept
of an associative array. An abbreviation or acronym
is used as shorthand to refer to a longer word or
concept; e.g., two-letter abbreviations for country
names used in urls and two-letter state abbreviations
used by the United States Postal Service.

In database theory, we have two types of tables,
fact tables and dimension tables. A fact table is a
record of a transaction, and contains two types of
columns: foreign keys which are pointers to rows
in dimension tables, and facts which are the mea-
surements or quantities of the transaction. A row
may be uniquely identified by a composite key, a
set of the foreign keys. A dimension table contains
two types of columns: a primary key (row identifier)
which matches the values of the fact tables’ foreign
keys and columns of information about the key.

In the associative array examples, given an ab-
breviation, the primary key (country code, state
abbreviation, etc.), we can retrieve the information
about the entity — capital city, location, etc.

Index, my definition I propose that a document
is a knowledge base, that the index is a database
and that the words of an index entry are an item
of an associative array, a composite key, of and for
that document, that points to the information that
the reader is seeking. The locator is the unique row

TUGDboat, Volume 37 (2016), No. 1

identifier, the page number, that the reader uses to
access the information in the document. Just as the
table of contents is a sequential exposition of the ideas
in the document, the index is an alphabetical listing
of the concepts, ideas, and tasks in the document.
The index, in that sense, is a further extension and
expansion of the table of contents.
Implications of this idea are discussed below.

1.1 How professionals work

For professional indexers the project of producing
an index for a document consists of the tasks shown
in Table 1.

Table 1: The professional indexer’s process

0. read the complete document
1. identify, record ranges
2. for each page:
identify terms or tasks
recording: insert new or update old
3. polishing the database:
add redirects
contract single item!sub-item
to item, sub-item
expand items with too many references
by adding sub-items
contract series into ranges
4. transform database to output

Professional software offers support for the pol-
ishing processes during the item recording process,
by saving the entries in a database so that each new
entry is compared to its predecessors and a decision
must be made to use an existing entry and add a
locator, or create a new entry.

Compare this to the markup process shown in
Table 2 where entries are written to an .idx file so
we have a sequential list of entries, which are then
sorted, duplicates removed, and formatted in one
step.

1.2 Review of indexing markup commands

There are three types of indexing commands in IMTEX:
words(s), ranges and redirects.

» word(s) Words may be marked in three styles,
plain, special font, or special locator.

plain: The indexer marks up plain entries in a
document with this form:
\index{word(s)}

The word(s) can be any string. In support of

later polishing, word(s) can be subdivided into as
many as three levels with ! characters:

29

\index{item!sub-item}
\index{item!sub-item!sub-sub-item}

special font: For the case where a word is to
be set in another font the syntax is:

\index{item@\texttt{item}}

special locator: Special pages may be marked
so that the locator appears in a different font by
adding a vertical bar (1) plus the font shape (italic)
or series (bold).

\index{item|textbf}

It is customary to mark a page containing a
definition in bold. Pages in a glossary may be marked
in italic. Any such special locator emphasis ought
to be explained in a prologue to the index. For an
example of an index prologue see Guide to IMTEX [12].
The indextools package [17] contains the command
\indexprologue for this purpose.

m ranges To mark up a page range use a pair of
commands, the first with | (and the second with |):

\index{autoexec| (})range begin

\index{autoexec|)}/range end

No markup is necessary for the consolidation
of sequential locators. The makeindex processor
consolidates sequential page numbers, e.g., 2, 3, 4
is changed to 2--4.

m redirects A locator can be in one of three forms,
either a single page number, or a page range such
as 8-13, or a redirect, a reference to another index
entry, without a page number. The syntax is

\index{canines|see{dogs}}

This produces an index entry without a page
number, as in:
canines, see dogs

1.3 The makeindex process

Producing an index of a document using ITEX and
makeindex consists of the steps shown in Table 2.
I highlight two intermediate steps in this process,
sorting and removing duplicates, both of which are
done in memory by makeindex. They can be split
out into the creation of the two temporary files,
sorted.idx, and nodups.idx. See Listing 2 for the
system commands to produce the sorted.idx file.

Listing 1 shows a demonstration file. Processing
the document produces output file \jobname.idx
with the locator information (page numbers) added:
\indexentry{fox}{1}
\indexentry{dog}{1}

Processing with makeindex produces an output
file named \jobname.ind, the formatted output:

Indexing: Goals, strategies and tactics

30

Table 2: The makeindex process

Processor

(pdf)latex
makeindex

Input, Action Output

jobname.tex jobname.idx
jobname.idx
sort:
remove dups:
nodups.idx

jobname.tex

sorted.idx*
nodups.idx*
jobname.ind

(pdf)latex jobname.pdf

* temporary file

Listing 1: Document with simple indexing
%this is the file demo-1-makeindex.tex
\documentclass{article}

\title{Example of Simple Indexing}
\author{R.J. Fehd}
\usepackage{makeidx}\makeindex
\begin{document}\maketitle

The quick brown fox\index{fox} ¥%*
jumped over the lazy dog\index{dog}.
\printindex

\end{document}

© ® N o w A W N =

-
o

* The index markup is placed after the word as
recommended by the package documentation.

\begin{theindex}
\item dog, 1
\item fox, 1

\end{theindex}

The \printindex command (line 9) reads that
.ind file if it exists:
\IfFileExists{\jobname.ind}
{\input{\jobname.ind}}
{3

2 Discussion of my experience

I will use a project of my own as an example. I
worked on writing a book over a period of about a
year. There were six chapters of 15-30 pages each.
I spent about a month writing a chapter. Since I
knew I would produce the index myself, I added the
markup as I wrote.

In early chapters I used a form for noun in
category {noun category} that I later changed to
{category!noun}, e.g., from {scan function} to
{functions!scan}.

In the middle chapters, I was echoing these en-
tries, marking both
{noun category?}

{category!noun}

In the last chapters I decided that I wanted
{category!noun}, so I marked {noun category}
as a redirect:

Ronald J. Fehd

TUGDboat, Volume 37 (2016), No. 1

{noun categoryl|see{category, noun}}

in those chapters. Since each redirect has a separate
locator the duplicate removal process leaves multiple
entries, only one of which is to be retained. At the
end I changed all the {noun category} entries to
redirects and placed them in a separate file.

2.1 Lessons learned from my mistakes

In this section I provide a summary of the categories
of mistakes that I made.

These are the categories: macros, multitasking,
ranges, redirects, repair, testing, and vocabulary.

macros [used macros for a while but gave up on
them for two reasons. The first was that macros intro-
duced extra spaces, which I was not a sophisticated
enough TEXnician to fix; and second, complexity.
Because I was marking up item, sub-item and sub-
sub-item, with font changes, I realized that managing
the set of macros might consume as much time as
plain long-form markup. Swapping out the macros
with long-form markup contributed to the rework
budget.

multitasking Writing, editing and polishing are
very different intellectual activities from indexing.
Adding markup while I was polishing produced dif-
ferent entries e.g., directories and folders. Identifying
synonyms, deciding which one to use, and then find-
ing and fixing the other occurrences contributed to
the rework budget.

ranges One of my most common problems in get-
ting the index working for a chapter was incomplete
ranges; these errors are noted in the \jobname.ilg
file. Ranges may cross one or more sections and the
pair of markup commands may be many pages apart.

redirects The markup syntax for redirects is the
same as for word(s). What is different is that the
locator in the printed result is not a page number,
but a reference to another word. My mistake was
in thinking that the makeindex process removed
duplicate redirects. Moving these entries to a central
file contributed to the rework budget.

repair where? All the items listed here required
that I return to one of the many chapter files in
order to fix the problem entries. The index entry
repair problem is discovering in which file the entry
is located. The problem is that the locator is the
page number of the complete document. Finding the
name of the chapter file is a two-step process, first,
note the page number, then return to the table of
contents to find the page range of the chapter.

testing During the retrospective for this paper I
realized that I spent a lot of time reviewing the

TUGDboat, Volume 37 (2016), No. 1

complete index. My solution for future work will
be to do unit tests for each chapter and one final
complete integration review.

vocabulary As noted above in the multitasking
paragraph, choice of vocabulary is a key task to ac-
complish before beginning indexing. Indexing science
addresses this idea with the concept of controlled vo-
cabulary. Much to my surprise, words in the entries
did not occur as phrases in the text.

Summary In this section I have described a num-
ber of mistakes. Time spent on this work can be
reduced by discovering ways to implement these tasks.
In short:

change page number to include chapter number
control vocabulary used in entries
centralize redirects
manage ranges early
process each chapter independently,
for both writing and indexing
e review temporary files:
\jobname.idx, \jobname.ilg, sorted.idx
e polish the complete index only once

3 Budget and quality

Budget and daily job diary Table 3 is from
Frederick Brooks’ classic book, The Mythical Man-
Month [3]. This table highlights the under-estimated
items in the budget: unit and integration testing. I
show this table in my presentations and point out
the difference in the time spent coding, where much
time is spent debugging — getting the code to work —
and the two aspects of testing: testing the program
against its expectations —unit testing—and how
a program works as a caller or callee: integration
testing.

Table 3: Time spent in program development
(from [3])

Phase Time Action Time
design 1/ understand problem: 1/
education, research
development coding s
testing 1h unit test Ly
integration test Ly

For the task of indexing I want to carry forward
the ideas of planning and markup, typing the entries,
unit test of entries in a chapter, and the integration
test of all the chapters of a document. Editing and
proofreading of index entries in a chapter are sepa-
rate tasks from proofreading the index of the whole
document.

31

Table 4: Estimates of percentage of index pages and
entries per page (E/pg), by book type*

index size as

Book type % of book E/pg
light text, few details 2-5 3-5
reference -8 6-8
documentation, light 10 8-10
manuals, heavy 15+ 10+

* adapted from [15, table 3.2]

The daily job diary (djd) is a necessary part of
budgeting. If we keep track of time spent on a task
then we can monitor and estimate whether we will
be under or over budget.

Metrics for quality As explained in the intro-
duction, an interested purchaser can calculate the
percentage of pages of the index in a book. This is a
rough estimate of the depth of the index: how much
information is in the index and how easy is it to use
the index to find information as compared to reading
the table of contents.

There are two metrics of index quality: entries
per page (E/pg) and locators per entry (L/E).

Entries per page (E/pg) This quantity is used
as a forecasting aid; it is an indexing science term
mentioned in [15] and is derived from the type of
document. It is used to estimate the size of the index,
the number of pages set aside in the document, as
a percentage of the number of pages of text. In
the section in which this table appears, studies are
quoted as discovering that the average size of an
index is three percent. Table 4 is my adaptation of
the information.

Locators per Entry (L/E) This quantity is an
integer, typically in the range 3-13, decided on before
polishing the final draft of the index to subdivide
entries and therefore increase the size of the index.

4 About goals, strategies and tactics

We have two goals. The first is to prepare an index
for a reader with sufficient detail and depth for the
type of document. The second is to be aware of
the budget and enhance the production process by
reducing time spent on indexing tasks.

We'll discuss some packages, other tools, and
tactics to meet these goals.

4.1 Strategies: packages

Several of the problems noted earlier have solutions
that are outside the set of indexing tasks. Three

Indexing: Goals, strategies and tactics

32

packages can help reduce the time spent in admin-
istration of the document (all have many features
besides what’s mentioned here):

chappg changes locator output formatting from page
to chapter. page.

fancyvrb provides \VerbatimInput{file.ext} to
typeset external files verbatim.

indextools provides \makeindex[intoc] to put an
index in the table of contents (instead of us-
ing \addtocontents), and \indexprologue, to
typeset introductory text before the index, e.g.,
to describe the formatting conventions used.

More information about these packages is available
through CTAN, at http://ctan.org/pkg/pkgname.
They are all included in the usual TEX distributions.

4.2 Strategies: tools

This section discusses methods for using (I)TEX
commands that can help in index (and document)
development.

m flags A flag is a variable which takes only boolean
values, true or false. These are the TEX commands to
initialize a new boolean switch named ReviewIndex:
\newif\ifReviewIndex
\ReviewIndexfalse % set to false
\ReviewIndextrue % set to true

Then, this is the template for conditionally exe-
cuting statements with this flag:
\ifReviewIndex

% statements if true
\else

% statements if false
\fi %end:ReviewIndex
The \else part is optional.

As seen in the template document of Listing 3
(in the appendix), I use this flag to control formatting
and display of various intermediate indexing files for
review.

This set of statements may be implemented in
BTEX with the ifthen package [12, pg. 440]. I use
the plain TEX statements because I use it to choose
the \documentclass options.

m \IfFileExists This is a KIEX programming
command [12, pg. 436]. This command can be used
to ensure that the document compiles before tempo-
rary files are created.
\IfFileExists{filename.ext}

{statements if true}

{statements if false}

m \includeonly This is a BTEX command used to
process only one subpart of a document, such as a
chapter. Its use requires two statements, the first in
the preamble:

Ronald J. Fehd

TUGDboat, Volume 37 (2016), No. 1

\includeonly{ch-A}/,disable after unit test
and then in the body [12, pg. 206]:

% in text part, list all chapters
\include{ch-A}

\include{ch-Z}

4.3 Tactics during markup

Here are some minor habits I developed to help
produce a cleaner document.
e Mark up ranges after outlining in a file, e.g.,
ch-0-outline-index
e One index command per line better supports
later searching.

e End entries with percent sign (%) to avoid
multiple spaces between words.

e Place all redirects (see and seealso) in one file
to be input after \begin{document}, as in:
\input{ch-0-index-redirects}

5 Suggestions for a workflow

Table 5 lists the major steps in index creation.

Table 5: Overview of workflow for indexing

Step Idea Task
1 setup make files
2 for chapters writing

indexing, unit test
integration test

3 for chapters
4 review index
5 finish

We’ll now discuss each of these in turn.

m setup The first task is setting up files for the
project and getting the document working with the
various chapter and other files that support review.
(The listings are in the appendix to this article.)

File Task Listing
a-book.tex copy 3
ch-0-outline-index.tex outline 5
draft index,
mark ranges
ch-0-index-redirects.tex redirects 4
a-book.bat doc working 2

The most important task in the setup, right
after outlining the text, is to begin to draft the
index. Make an entry for every task mentioned in
the section commands. This is the first draft of
the database — sorted.idx —that we will use as a
reference when marking up each chapter.

= writing a chapter Create a new chapter file
and copy the draft outline and index entries from file

TUGDboat, Volume 37 (2016), No. 1

ch-0-outline-index.tex into it. Record amounts
of time worked in a daily job diary.

File Task

\includeonly{ch-X}
\include{ch-X}
write, type, edit, etc.

a-book.tex

ch-X.tex

» indexing a chapter The task of indexing re-
quires a change of intellectual attitude. Remove
your author’s hat and put on your proofreader’s hat;
change mode from exposition to reader and reviewer;
become objective. Part of indexing is comparing the
draft index of the complete document to what has
been written in the chapter under review. Each entry
ought to be either new or already existing in the draft
database, sorted.idx. This comparison is a step
in the quality assurance of the index. Remember to
record time-start and -end in the daily job diary.

File Task

disable this chapter:
%#\includeonly{ch-X}

a-book.tex

a-book.bat process whole document
a-book.pdf print only sorted.idx
a-book.tex \includeonly{ch-X}
a-book.pdf print galley of ch-X
ch-X.tex for each page:
move draft entries to correct line
compare markup to sorted.idx
type index entry
a-book.bat process chapter
a-book.ilg confirm unit test correct

add new entries to draft file

a-book.tex ¥%\includeonly{ch-X}

Refer to the showidx listing at the top of each page;
count and enter the number of index entries per page
in the Entries-per-Page (E/pg) log. Calculate the
mean and standard deviation of E/pg. Examine
pages with E/pg more than 2.5 standard deviations
from mean. Review the daily job diary; compare
time spent writing with time spent indexing.

m reviewing index Choose the maximum locators
per entry (L/E), e.g., from the Fibonacci series: (3, 5,
8, 13). This choice indicates the depth of the index.
A large L/E indicates a shallow or small index. A
reader will have to look up that many entries in the
text to find what they want. Entries with more than
that are to be subdivided.

33

File

a-book.tex

Task

disable all:
%\includeonly{ch-X}

a-book.bat process whole document
a-book.pdf print sorted.idx

find entries with large L/E:
ch-7.tex expand entries

find entries with single sub-items:
ch-7.tex contract entries
a-book.bat process whole document
a-book.ilg confirm integration test complete
a-book.pdf print index

= finish With all unit tests of chapters completed
and the integration test of the document complete,
print the final document and review the budget.

File Task

a-book.tex disable flag:
%\ReviewIndextrue

a-book.bat process whole document

a-book.pdf print

Review the daily job diary; compare time spent
reviewing the complete index (integration test) with
sum of chapter times (unit tests). Compare time
spent on indexing with time spent writing.

6 Suggested reading

This section contains inspiration, manuals, budgeting,
macros, standards, and types of indexing.

inspiration In 2001, Robert Horn received a Life-
time Achievement Award from the Association of
Computing Machinery. His acceptance speech is ti-
tled What Kinds of Writing Have a Future? His
discipline of presenting information is called struc-
tured writing. This article and [5] are examples of
the author’s work using structured writing.

manuals After a dictionary and thesaurus, an au-
thor perhaps most needs a style guide. For American
English writers, the essential guide is The Chicago
Manual of Style [7]. The University of Chicago Press
also publishes the bible of professional indexers, In-
dexing Books [15]. Chapter 9, Editing the Indez, is
the basis for my recommendation of polishing the
complete index — the integration test — as a separate
activity.

As a technical writer I found Ament’s Indexing
Guide [1] to be just the reference book that I needed.
While he does not use the term task his explana-
tion of deconstructing index entries into verbs and
nouns made sense to me. His basic discipline can be
expressed as follows:

A task consists of a verb and a noun. Always
mark verbs in gerund form and nouns as plurals,

Indexing: Goals, strategies and tactics

34

i.e.: \index{<verb>ing <noun>s}
e.g.: \index{copying files}

He states that the task of indexing can be used
as feedback to improve the quality of the writing,
because text that is poorly written is difficult to
easily and accurately index.

This book is small (97 pages) and concise, writ-
ten in plain language (centerforplainlanguage.
org). I recommend it.

The Indexing Companion [4] provides an over-
view of the ideas and sources of controlled vocabulary.
That discussion led me to the concept of an index as
a database of the document, the knowledge base.

The database concepts I used in the explanation
of my definition of an index are from [8].

The American Society of Indexers publishes Best
Practices for Indexing [13]; it has appendices which
provide guidance for authors in various genres.

budgeting How to Communicate Technical Infor-
mation [16] describes the issues of budgeting in large
projects of software and hardware documentation.

macros Gregorio, in [6], provides guidance for find-
ing extra spaces when writing macros.

standards The Global English Style Guide [11]
lays out a discipline of writing standardized English
in technical manuals, which supports machine trans-
lation.

types of indexing This article is a discussion of
the issues of closed-system indexing, i.e., finding in-
formation in one document. The Organization of
Information [18] is an exposition of the theory and
practice of information science which is concerned
with open-system indexing, the issues of retrieval
from multiple documents.

closing quotation The IATEX Companion [14]
ends the discussion of index markup with this quote:

While all of these tools help to get the correct
page numbers in the index, the real difficulty
persists: choosing useful index entries for
your readers. This problem you still have to
solve. ...to produce a comprehensive index
that helps you, the reader, find not only
the names of things ...but also the tasks,
concepts, and ideas described in the book.

7 Future work

I see several ideas that can reduce or eliminate time
spent on indexing tasks. These ideas are external
input, metrics and redirects.

external input For the case when both the author
and a professional indexer are employed to mark up

Ronald J. Fehd

TUGDboat, Volume 37 (2016), No. 1

the entries we need a description of a file format,
such as .csv, for use by packages which write *.idx
files. Vendors of professional indexing software must
be able to supply this file format to the TEXnician.

metrics I have identified the metrics entries per
page (E/pg) and locators per entry (L/E) as sum-
maries that may be reviewed for quality assurance.
The data for these sums are in file \jobname. idx.
E/pg: This data can be seen when using the package
showidx, but the count must be manually tallied
and recorded. L/E: This data can be seen in the file
sorted.idx, but the count must be manually tallied
and recorded.

redirects Add an index command for redirects
which uses the same syntax as \index but which
writes its output with the locator set to one. This
allows multiple redirects in many files, which elimi-
nates the task of moving them to a central location.

8 Conclusion

Marking up index entries is simple. The hard part of
index preparation is polishing, which is perhaps 80%
of the effort in preparing the index. In this paper I
have presented several ideas to make the polishing
effort less complicated. The first is sorting and sav-
ing the entries in the .idx file. The second is adding
a flag ReviewIndex to turn on additional features.
Another is to change the definition of \thepage so
that it contains more information — the chapter num-
ber —in the sorted.idx file so that problem entries
can be more easily located in their respective files.
The last is to use the ReviewIndex flag to display
various index files during review. I believe this set of
packages, tools and workflow can help significantly
reduce the time spent polishing the index in your
next project.

9 Appendix

We've seen Listing 1 (demo-1-makeindex.tex, a
minimal document with indexing) earlier (pg. 30).
This appendix contains the remaining program list-
ings.

It is left as an exercise for the reader to cre-
ate the file ch-A.tex in order to get the template
a-book.tex (Listing 3) working.

Listing 2: a-book.bat, Windows batch file for
processing a document

rem this is a Windows DOS batch file
rem this is file a-book.bat

set jobname=a-book

pdflatex %jobname}

sort %jobname.idx /o sorted.idx
pdflatex %jobname,

[N R

TUGDboat, Volume 37 (2016), No. 1

Listing 3: a-book.tex, template document with
several index review features
1 % this is template document a-book.tex
2 \newif\ifReviewIndex\ReviewIndexfalse

3 \ReviewIndextrue %disable for final
4 \ifReviewIndex
5 \documentclass[12pt,oneside]{book}

6 \else\documentclass[10pt,twoside] {book}
7 \fi end:ReviewIndex

s h
o %\includeonly{ch-A}/unit test
10 %

11 \title{Example of Complex Indexing with

12 ChapterPage, IndexTools and ShowIdx}

13 \author{R.J. Fehd}

14 \date{2016-March}

15 \ifReviewIndex

16 \usepackage{showidx}/in right margin

17 \setlength\oddsidemargin{Optl}joneside

18 \usepackage{chappg}

19 \fi

20 \usepackage{fancyvrb} ¥VerbatimInput

21 \usepackage{indextoolsl}/after showidx

22 \makeindex[intoc] %write \jobname.idx
23 %\usepackage{hyperref}

24 %\usepackage{glossaries}jafter hyperref

25 %\input{glossary-entries}

2% h

27 \begin{document}

2s %\frontmatter %pg: i--x

20 %\input{c-frontmatter}title, toc, etc.

30 /%\mainmatter %Chapter 1--N, pg 1--N
31 \ifReviewIndex \input{ch-O-outline-index}\fi
32 \input{ch-O-index-redirects}

33 \include{ch-A}/{ch-B}...{ch-Z}

34 %\input{c-backmatterl})bib, gloss, etc.

35 \ifReviewIndex

36 \newcommand\Echo [1]{/arg=filename.ext
37 \chapter {#1}

38 \IfFileExists {#1}

39 {\VerbatimInput{#1}} Yfancyvrb
40 {file missing: #1 } }V%end:Echo
41 \Echo{\jobname.ilg} %index log

42 \Echo{ch-0-index-redirects.tex}

43 \Echo{sorted.idx}

44 \fi Yend:ReviewIndex

45 \indexprologue %an indextools command

46 {This text explains font conventions.}
47 \printindex

a8 \end{document}

Listing 4: ch-0-index-redirects.tex, template for
index redirects

1 % this is file ch-0O-index-redirects.tex

2 \index{canines|see{dogs}}

3 \endinput

35

Listing 5: ch-0O-outline-index.tex, template
chapter file

1 % this is file ch-0O-outline-index.tex

2 \chapter{Draft: Outline and Index}

3

4 \section{chapter: Caninesl}canine
\index{dogs|textbf}/definition in bold
6 \index{foxes|textbf}/definition in bold

o

s \section{chapter: Dogsl}dog
9 \index{dogs| (}/irange begin
10 \index{dogs!breeding}y,

11 \index{breeding dogs}%

12 \index{dogs|)}/range end

13

12 \section{chapter: Foxesl}fox
15 \index{foxes!habitat}’

16 \index{foxes'hunting}y,

17 \endinput

About the author R. J. Fehd is a member of the
TEX Users Group, and has been writing programs in
SAS®! alanguage for statistical analysis, since 1986.
He first published in 1997 and began using ITEX in
2004; in 2006 he hacked other conference classes to
produce sugconf. After retiring in 2012, he began
work on a compilation of his papers; he continues
to present papers and seminars at SAS user group
conferences and is Senior Statistical Programmer at
Stakana Analytics. He has been recognized as a peer
for his contributions to the SAS-L listserv, and is a
contributor to the sasCommunity.org wikipedia.

References

[1] Kurt Ament. Indexing, A Nuts-and-Bolts
Guide for Technical Writers. William
Andrew Publishing, Norwich, NY, June
2001. 97 pp., 3 chap., index: 11 pp. (11%).
https://www.elsevier.com/books/
indexing/ament/978-0-8155-1481-7.

[2] David Bausum. TgX Reference Manual.
Springer, 2002. 388 pp., 2 chap., 3 app.,
index: 6 pp. (1%).

[3] Frederick P. Brooks Jr. The Mythical
Man-Month: Essays on Software Engineering,
Anniversary Edition. Addison-Wesley, 24
edition, 1995. 322 pp., 19 chap., index: 14 pp.
(4%); theory and story based on development
of the IBM System/360 operating system.
https://en.wikipedia.org/wiki/The_
Mythical_Man-Month.

1 SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS Insti-
tute Inc. In the USA and other countries ® indicates USA
registration.

Indexing: Goals, strategies and tactics

36

[4]

Glenda Browne and Jon Jeremey. The
Indexing Companion. Cambridge University
Press, New York, NY, April 2007. 249 pp.,

9 chap., index: 23 pp. (9%).
http://www.cambridge.org/9780521689885.
Ronald J. Fehd. An autoexec companion,
allocating location names during startup.

In MidWest SAS Users Group Annual
Conference Proceedings, 2015.
http://www.lexjansen.com/mwsug/2015/BB/
MWSUG-2015-BB-10.pdf.

Enrico Gregorio. Recollections of a spurious
space catcher. TUGboat, 36(2):149-161,
2015. http://tug.org/TUGboat/tb36-2/
tbl13gregorio.pdf.

John Grossman, editor. The Chicago Manual
of Style. University of Chicago Press, 14"
edition, 1993 (15" ed., 2006). 921 pp.,

19 chap., gloss., bib., index: 25 pp. (6%);
locators are chap.section, not page numbers.
http://press.uchicago.edu/ucp/books/
book/chicago/I/b03625262 . html.

Ralph Kimball and Margy Ross. The Data
Warehouse Toolkit, The Complete Guide

to Dimensional Modeling, Second Edition.
John Wiley & Sons, Inc., New York, 2002.

387 pp., 17 chap., gloss.: 29 pp., index: 18 pp.

(4%). http://vwww.kimballgroup.com/html/
booksDWT2.html.

Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. 483 pp., 17 chap.,

8 app., index: 25 pp. (5%).

Donald E. Knuth. Literate Programming.
CSLI, Stanford, CA, 1992. 368 pp., 12 chap.,
index: 10 pp. (2%).

John R. Kohl. The Global English Style Guide:

Wrriting Clear, Translatable Documentation
for a Global Market. SAS Press, 2008.

310 pp., 9 chap., 4 app., index: 14 pp. (4%).
http://www.globalenglishstyle.com.
Helmut Kopka and Patrick W. Daly. Guide to
IMTEX. Pearson Education, Inc., Boston, MA,
4*0 edition, February 2004. 597 pp., 18 chap.,
bib., index: 39 pp. (6%).

Ronald J. Fehd

[13]

[15]

[16]

[17]

[18]

TUGDboat, Volume 37 (2016), No. 1

Fred Leise and Devon Thomas. Best Practices
for Indexing. American Society for Indexing,
Tempe, AZ, 2015. 76 pp., 11 chap., index:

6 pp. (7%); 7 appendices for categories of
books.

Frank Mittelbach, Michel Goossens with
Johannes Braams, David Carlisle, and
Chris Rowley. The ETEX Companion.
Addison-Wesley, 2" edition, 2004. 961 pp.,
14 chap., bib., index: 98 pp. (10%).

Nancy C. Mulvany. Indexing Books.
University of Chicago Press, 2"¢ edition, 2005.
315 pp., 10 chap., gloss., index: 25 pp. (8%).
http://press.uchicago.edu/ucp/books/
book/chicago/I/bo3625262.html.

Jonathan Price and Henry Korman. How

to Communicate Technical Information:

A handbook of software and hardware
documentation. Addison-Wesley, 1993. 402 pp.,
21 chap., index: 22 pp. (5%).

Maieul Rouquette. indextools — producing
multiple indices, 2015. http://ctan.org/pkg/
indextools.

Arlene G. Taylor. The Organization of
Information. Libraries Unlimited, 1999. 280
pp., 10 chap., 3 app., gloss., 22 pp., index:
25 pp. (8%). http://wuw.abc-clio.com/
product.aspx?isbn=9781591585862.

¢ Ronald J. Fehd
ronald dot j dot fehd (at) gmail dot com
https://www.linkedin.com/in/
ronald-fehd-5125991

The compiling of an index is interesting work,
though some authors are apt to find it te-
dious and delegate the work to others. The
proofreader who undertakes it will find that
it is splendid mental exercise and brings out
his latent editorial capability.

Albert H. Highton,

Practical Proofreading, (1926)

quoted by Knuth, The TEXbook, pg. 481

TUGDboat, Volume 37 (2016), No. 1

TEXShop review
Frans Absil

Abstract

This paper is an introduction to and review of the
TEXShop Mac OSX program for typesetting TEX
document source files and previewing the output.
Features of this tool and user experience will be pre-
sented. This information might be helpful to the
novice user looking for a TEX typesetting environ-
ment on the Mac.

1 Introduction

For some decades now I have been using plain TEX
and I TEX computer typesetting for scientific docu-
ments, lecture notes and other stuff. After starting
typesetting on DEC VAX/VMS computer terminals I
was pleased to see the integrated development envi-
ronments for both Windows and MacOS.

Currently, I use TEXShop version 1.42, installed
with the teTEX distribution on an old Mac Power-
Book G4. (My office PC runs a MiKTEX distribution
with TEXnicCenter.) My first impression was that
TEXShop is fairly basic, but reliable.

The next section will describe a sampling of the
features included in TEXShop, and report on my user
experience.

2 TgXShop features

This section lists essential features of TEXShop, with
some user comments added. In a typical typeset-
ting session the program will open three windows,
as shown in Figure 1: the source editor, the PDF
preview and the console window that reports the
document compilation progress, warnings and errors.

2.1 Preferences and typesetting engine

The Preferences menu contains a number of tabs:
e.g., the source Document editor font setting and win-
dow position, Preview window parameter settings,
the typesetting Engine binary path and and options
lists. The default typesetting engine is tickmarked in
the Typesetting tab. A full range of engines, includ-
ing TEX, BTEX, ConTEXt, and XelATEX is available
in the pulldown menu Typeset; there, also, work-
flow enhancement scripts or tools such as pdfTEX,
TEX+Ghostscript, BIBTEX and Makelndex can be
found.

As a IMTEX user I select either the pdfTEX or
TEX+Ghostscript typesetting engine; the latter is re-
quired for including scientific diagrams created with

First published in MAPS 46 (Najaar 2015), pp. 5-7.
Reprinted with permission.

37

asename #1.1f png}

low of the \TeXVShop editor for the Mac. We wil discuss the features
s

have boen using the plain \TeX\/ and La\TeX/ computer
wriling scientlic documents and lecture notes. Starting on DEC VAX!

Figure 1: Overview of the three TEXShop windows:
editor, previewer and console

the PStricks package. Naturally, in that case all fig-
ures have to be available as separate PostScript .eps
files, whereas for the former option all figures are
included as PDF files. And, by the way, if one drops
a recognized figure file type on the editor window,
it will generate the appropriate \includegraphics
command.

2.2 Editor features

The source file editor uses colour coding, with BTEX
commands shown in blue, comments in red, and
parenthesis grouping in green, for easy code consis-
tency checks. Although line numbers are not dis-
played, the Edit menu contains a Line Number and
Go to Error command. This menu also contains
items for running a spell checker and showing doc-
ument statistics, such as word, line and character
count excluding the KTEX commands.

The Find panel, under the Window menu, has
a number of nifty options: it accepts regular expres-
sions for advanced search, it applies find and replace
to selected subregions in the source document (local
scope) and it will list all appearances of the search
string, a convenient option for navigation and as
check before a global replace. It will also remember
all previous search and replace strings for the current
session.

2.3 Panels for the novice user

ITEX commands are mnemonic. However, at the
entry level TEXShop contains menu items and special
panels for entering source code. Figure 2 shows the
menu for font selection. A separate ITEX panel (see
Figure 3) shows the most frequently used symbols,
environments and other document elements. Clicking
an item on the panel will put the ATEX source code

TEXShop review

38

@ Texshop File Edit Format

Typeset Preview Window Help

| Open Macro Editor... 2ps_texshop_absil.pdf eone

Applescript : aie[100 |2 page1 of 2

Column macros
Insert reference 3R
Open quickly %0
Claus Gerhardt Macros »

% maps_texs|
% fg] absil, 07
| “\documentc
\documentela:
\usepackage
\geometry{ad|

Begin/End
SourceDoc

s\geometry(li
susepackag:
\usepackage(
\usepackage(
\usepackage(
\usepackage[i
\usepackage{
\usepackage(
\usepackage(
\DeclareGrap!

Headings »
Subdivisions >
Mathematics >
emphasize
Lists > ypeface b
Offsets > IR
Insertions > | style > | scripsize
Tables » | Underline footnotesize || <4 hoaders
Figures > ProTpE— small
i normalsize \chead(}
| large || whead(today.
o oot Frans Al
ARCE ™ \ciooly
\rioot{ithepa
Huge \seﬂengmf\hg

ort) (_Trash Aux Files

| Huge ||

Figure 2: TEXShop’s Format menu with font
selection items

in the current document in the editor.
supports multiple editor windows.

In the Preview window there are the usual
scrolling, paging and scaling functions. A nice fea-
ture is the magnifying glass; when selected, clicking
anywhere in the previewed document will show that
section in sufficient magnification to inspect typeset-
ting details.

The novice user might also refer to the concise
but adequate Help menu.

TEXshop

2.4 Miscellaneous

The Format menu has items for (un)commenting
or indenting blocks of source code, a feature that is
useful when debugging documents.

The Macros menu contains items for automat-
ing a workflow. My favourite from this set is the
Insert reference: it opens a window with a list of
\label commands in the current document for se-
lecting the appropriate entry. Also convenient is the
Bibliography Applescript, which does the multiple
runs needed for creating bibliographical references
in a document.

For larger documents, which consist of a set
of smaller files (e.g., book chapters), there is the
option of setting the project root, i.e., the path to
the project main. tex file; this is available under the
File menu. What is missing, however, is a window
representing the structure of a large-scale project
as a tree graph with directory paths to source files,
figures etc. TEXnicCenter has this window, which is
a great help during editing and debugging report or
book class documents.

Frans Absil

TUGboat, Volume 37 (2016), No. 1

5] . laTeXPapel

[Math | Greek = Symbols Functions | International -
v g tRS Dood VA
el Ee
NUYSE@®ORRRR

S o . z ~= alx
abe abe abe abe abe Vabe vabe abe abe
Iy sub
s — Wt , L .~ f— e - (Rl .I'
a a a a a a a a a a a
! Environments Typeface Custom
ltemize Enumerate Description Cases
Figure Center Align Tabbing
Table Tabular Array Matrix
Equation Dizplaymath Eqnarray Customized

Figure 3: I'TEX panel for selection of common
symbols and document elements.

(Newer versions of TEXShop than mine can dis-
play a PDF outline, e.g., as made by hyperref, in
the Preview Window. Clicking in the outline, then
CMD-clicking in the PDF, will get to the correspond-
ing source file and position. This is some of the same
functionality, though quite a different approach.)

3 Conclusion

This old version of TEXShop, running on a Mac
OS 10.3.8 operating system, is a reliable workhorse.
Although there are differences I have no problem
using this tool and TEXnicCenter on my Windows
PC in parallel.

A much more recent version, at this writing
TEXShop v. 3.59 for Mac OSX 10.7 (Lion) and later
systems, is available at http://www.uoregon.edu/
~koch/texshop/. It is also included on the TEX Live
DVD. A comparison between many KTEX editors
can be found at https://en.wikipedia.org/wiki/
Comparison_of_TeX_editors; this has a table with
the features of each program.

o Frans Absil
frans dot absil (at) gmail dot com

TUGDboat, Volume 37 (2016), No. 1

TEXworks: A simple GUI with advanced
options

Sytse Knypstra

1 Abstract
Out of the many available TEX (KTEX, ConTEXt)

editors, TEXworks is relatively new. It excels in sim-
plicity of the user interface, the linking between the
source text and the PDF output and in its substantial
degree of flexibility. With the use of scripts the user
can add nearly any desired option.

2 Introduction

As a small-scale user of ConTEXt I don’t much care
which editor I use, as long as it is easy to install, easy
to type in the source text and transform this into a
PDF file by simply pressing a button. Furthermore, a
PDF viewer should be attached which doesn’t protest
if after a new run an old version has to be overwritten.
My starting point is in fact: the simpler the better.

3 Simplicity

TEXworks meets these requirements. It is easy to
install and use and a viewer is attached that shows
the PDF result without any problems, even with a
magnifying glass. This simplicity in use is not a
consequence of the fact that the program is in its
infancy. It is deliberate. The authors, originally
Jonathan Kew and now Stefan Loffler, were inspired
by the success of TEXShop which is available only
for the Mac OS X platform. That program made TEX
(IWTEX, ConTEXt) more widely accessible to a large
group of new users.

TEXworks is available for all common platforms,
including Linux and Windows. It does not look
intimidating for newbies: no screen populated with
pop-up menus, no menu bars with mathematical
symbols, only two plain windows that fill the screen
(see figure 1). On the left hand side we see a window
for the source text, with an output panel below which
disappears when the TEX-engine does not report
any errors, and on the right hand side a window
with the resulting PDF. It is easy to jump between
corresponding places: ‘Ctrl4left mouse click’ causes
the matching paragraph to be highlighted. This
linkage is provided by SyncTgX.

TEXworks does not focus on one macro package
as some other editors do. This means that specific
IMTEX options are absent in the menu, which adds to
the simplicity of the user interface. But it also has
its downside. Some more advanced or specific KTEX

First published in MAPS 46 (Najaar 2015), pp. 13-15.
Translation by the author. Reprinted with permission.

39

options which in other editors are included in the
menu have to be added by editing configuration files.
This applies in particular to spellchecking and auto-
completion. T have been satisfied with the standard
options of TEXworks, but for the preparation of this
paper I investigated some additional options.

4 Spellchecking and auto-completion

First, spellchecking. Normally T don’t bother to in-
stall spellcheckers (I never make spelling mistakes :)),
but of course it is possible to do so. In TEXworks it is
rather simple: you need a .aff and a .dic file of the
language to be used. I found them somewhere hidden
in my Linux installation under ~/ .mozilla/firefox,
and it seems they are also included in LibreOffice.
Next you copy them to /usr/share/myspell/dicts,
or you can create a link to that directory. If you then
start TEXworks, you can tick the desired language
in the menu under Edit — Spelling. The result,
with fy (West-Frisian, my mother tongue), can be
seen in figure 1. The spellchecker ignores all words
beginning with \, regardless of whether they are TEX,
ITEX, or ConTEXt commands.

Second, auto-completion. In the appropriate
configuration file I inserted the line: tw:=TeXworks.
Then, after typing ‘tw’, followed by ‘TAB’, one of
the two following words shows up: ‘\textwidth’ or
‘TeXworks’. The first word is a member of the set of
approximately 600 abbreviations that were entered in
advance for IATEX; for this article I need the second
word. If the wrong word appears first, you must press
‘TAB’ again. For ConTEXt a script autocomplete. js
is available, made by Henrik Skov Midtiby (see under
Sources). After copying this file to the correct folder,
your ConTEXt commands are auto-completed if you
press ‘Ctrl+M’ one or more times.

5 Scripts

This brings us to the subject of ‘scripts’. The authors
of TEXworks wanted to keep their program simple
in order to attract beginners, but at the same time
they did not want to put off experienced users who
need more advanced options. Therefore it is possible
to add scripts, in principle in one of the scripting
languages QtScript, Lua or Python. In practice all
existing scripts have been written in QtScript (very
similar to JavaScript; the filenames also end in . js).

Scripts exist in two flavours: hook scripts and
standalone scripts. Hook scripts are executed when
certain situations arise, for example immediately
after starting TEXworks, or following the compila-
tion of the source text. Standalone scripts, on the
other hand, are executed by selecting menu items
or pressing corresponding key combinations. One

TEXworks: A simple GUI with advanced options

40

File Edit Search Format IM! Scripts Window Help

@ |XeConText &|: || [|® Typeset Ctrl+T g &
38 \\NC\;\A‘R il LaTexXmk
39 \NC f,aArJ,faAn,sjg pdfrex
40 \NC S\sigma’2$ e
41 \NC S\Frac{\alpha}{\lambda ~ P%'-2™®
42 \NC 5\frac{1}{\lambda~2}$ XeTeX
43 \NC 52\nu$ XelaTeX
44 \\NC\MF; LuaTeX
45 \NC mgf
46 \NC Ser(\mu t +\frac1)z)\ “oomX
47 \NC S\left(\frac{\lambda}{}{ ~ ConText s
48 \NC S\frac{\lambda}{\lamb¢ = XeConText
49 \NC 5(1-20 A Fracf\nul2}] pibTex
2': \\gf\LR Makelndex

52 \stoptabel

53

54 \blanko

55

56 De Gaussyske of {\bf normale Ferdieling} spilet in tige belangrike rol yn de statistyk, inder mear
e

intrale Limyt Stelling:
57 as $X_1,...%_n$ Gnéfhinklik binne en gelyk ferdield (met einige fariénsje) dan is de ferdieling fan

58

59 \blanko

60

61 Bysinder gefal: de {\bf standert-normale ferdieling}, mei $\mu=0% en $\sigma”2=15.
62

63 \blanko
64

S\theta=\frac{1}{\lambda}$ nommen. ~
66
67 \blanko
68

-
71 \blanko
72

73 De {\bF chi-kwadraatferdieling} is ek in spesjaal gefal fan de
\

74 gamma =\frac{\nu}{2}$ en S\lambda=\frac{1}{2}$).

75 As it oantal fri tige grut is, komt PQRS de chi-kwadraat ferdieling benei mei in normale
ferdieling.

76

77 \stoptekst

LF | [UTF-8 | | Line 77 of 78; col 10

B PoRs.tex - Texworks [PQRS.pdF - Texworks

TUGboat, Volume 37 (2016), No. 1

« PQRS.pdf - TeXworks o X

[v]

(+TT

File Edit Search View Typeset Scripts Window Help

. DEE B

D

Normaal - Gamma — eksponensjeel — Chi-kwadraat

normaal gamma eksponensjeel chi-kwadraat
parameter(s) T>0(ofe>0) ax>0Ax>0 A=
drager >0 230
A% —laAr —Ar
Kanstichtens et e Ae
3 . 1
ferwachting 4 2 1 »
3 P a L 7
fariansje o = 2%
mef o) A (1-at)%

De Gaussyske of normale ferdieling spilet in tige belangrike rol yn de statistyk, dnder mear
fanwege de Sintrale Limyt Stelling: as X,..... X, dnéthinklik binne en gelyk ferdield (met
einige farignsje) dan is de ferdieling fan harren som (en harren gemiddelde) likerndch normaal

Bysiinder gefal: de standert-normale ferdieling, mei ;o = 0 en o = |

By de gamma ferdieling wurdt soms yn pleats fan . as twadde parameter # = L nommen
De eksponensjele ferdieling is in spesjaal gefal fan de gamma ferdieling (o = 1) en in
spesiaal gefal fan de Weibull ferdieling (b = 1); wurdt briikt by it modellearen fan wachttiden

De chi-kwadraatferdieling is ek in spesjaal gefal fan de gamma ferdieling (0 = % en A = L)
As it cantal frijheidsgraden tige grut is, komt PQRS de chi-kwadraat ferdieling benei mei in
normale ferdieling

[

87.28% |pagelofl
ol Qi) 1208

Figure 1: Screenshot of TEXworks with expanded Typeset menu.

supplied example makes a selected text bold. The
script places ‘\textbf{” and ‘}’ around the selected
text. Using scripts offers many possibilities, but in
order to create them, you have to know the scripting
language. It’s much easier to download published
scripts from the Internet, place them in the correct
folder and, if necessary, adapt them to your own
needs. The boldface example can be adapted for
ConTEXt by replacing ‘\textbf{” by ‘{\bf’.

A convenient script for INTEX users is an avail-
able hook script that is executed immediately after
compiling (at the event AfterTypeset). If an error
is detected during compilation, it opens a second tab
page in the output panel with a list of errors found,
which you can then trace and correct. The first tab
page contains all output notifications.

6 Overview

Not (yet) implemented is a method of folding text,
which would give you a better overview over long
stretches of text. But there is an alternative: you
can open a panel (next to the source text) in which
the structure of chapters and (sub)sections is shown,
along with possible bookmarks. A bookmark is cre-
ated by putting a % at the start of a line. Hence it
does not appear in the resulting PDF. By clicking

Sytse Knypstra

the section title or bookmark you jump to the desired
place in the source text.

In summary, TEXworks is a very suitable edi-
tor to start with in the TEX world. A convenient
option is the possibility to easily jump between cor-
responding places in the source text and the PDF file.
For more experienced users (mastering the QtScript
language) adding scripts will extend the options avail-
able almost without limit.

References

[1] http://www.tug.org/texworks. TEXworks site.
[2] http://github.com/texworks. Development site
for TEXworks.
http://www.youtube.com/watch?v=9-Z43CSPgMO.
Jonathan Kew’s presentation for the TUG 2010
conference: TEXworks for newcomers and what’s
new for old hands.

8l

[4] http://twscript.paulanorman.info/index.html.
The scripting site of Paul A. Norman.
https://github.com/henrikmidtiby/
TeXworks-scripts. Contains the script
autocomplete. js for ConTEXt by Henrik Skov

Midtiby.

[5]

¢ Sytse Knypstra
sytse dot knypstra (at) home dot nl

TUGDboat, Volume 37 (2016), No. 1

TeXstudio: Especially for BTEX newbies

Siep Kroonenberg

Abstract

TeXstudio is the default editor of the TEX Live in-
stallation at the Rijksuniversiteit Groningen. This
article tries to show how TeXstudio can help new
users come to grips with A TEX and what makes it a
good choice for a IATEX introduction.

Introduction

The TEX installation at our university, the Rijks-
universiteit Groningen in the Netherlands, includes
TeXstudio as one of three (I8)TEX editors. TeXstudio,
the subject of this article, is the initial default editor.
Its features make it especially suitable for first-time
IXTEX users: there are many GUI elements for enter-
ing mathematics and ITEX code, there are buttons
for one-click compiling and previewing IXTEX docu-
ments, and the editor gives a lot of useful feedback.

TeXstudio is open source and cross-platform,
and is actively being developed. This article refers
to version 2.10.4.

The main window

In the TeXstudio window, as shown in figure 1, the
editing area is surrounded by various panels and
toolbars: on the left a ‘structure view’ of the doc-
ument which can be used for navigation, below a
message area and on the right a preview window.
The previewer has been adopted from TeXworks and
supports source—pdf synchronization.

For illustration purposes, a document of some
complexity has been loaded. The section ‘Historical
remarks’ is in view in both the editor and the pre-
viewer, and is highlighted in the structure view at
the left. The message panel shows the command-line
used for the latest compilation.

Help and documentation

TeXstudio help consists of two HTML documents.
The first is a manual for TeXstudio itself, with sec-
tions on configuration, editing, compiling and more.
The other one is a copy of the third-party docu-
ment ‘KTEX 2¢: An unofficial reference manual’, but
linked to a custom stylesheet. This file is also used
for popup help.

For an introduction to ITEX you need to look
elsewhere, such as ‘The Not So Short Introduction
to INTEX 27, or my own tutorial-style ‘RUG BTEX
Course’ which specifically refers to TeXstudio. Both
introductions, and the original version of the refer-
ence mentioned above, are available from CTAN. Our

41

local TEX installation has menu entries for all three
documents.

Starting out

We have a few choices for starting a new document.
The File menu has items ‘New’, which starts with a
blank document, and ‘New from Template’, which
creates a new document and adds templates for a
title and abstract.

But in this article we start a new document with
the ‘Quick Start’ entry from the Wizards menu; see
figure 2. If we just click the OK button, we see the
following in the edit panel:

I untitied

1 “documentclass[l@pt,adpaper]{articie}
2 ‘usepackage[utfd]{inputenc}

3| \usepackage{amsmath}

4 ‘Zusepackage{amsfonts}

5 \usepackage{amssymb}

b ‘“usepackage{graphicx}

7 ‘\begin{document}

8

9

vend{document}

Subsequently we can start entering text between
\begin{document} and \end{document}.

Previewing Now that we have some text, it is a
good moment to save the file and get acquainted with
the edit—compile—preview cycle. After saving the file,
we click first the Compile button (P) and then the
View button (%) or, more efficiently, just the The
Build & View button (W) which does everything in
one go. Either way, the on-screen result is a much
emptier version of figure 1.

ETEX markup

Our next undertaking is adding text with markup.

Bold and italic. This is to assure new users that
they are not on completely alien soil. The inner verti-
cal toolbar, i.e. at the left of the editing area, contains
buttons for these: Bl and [I. Of course, these text
styles will be applied to any text which happens to be
selected at the time: “textit{Hel}lo, “textbf{world},

The LaTeX menu. These and other styles are
also available via the LaTeX / Font Styles menu,
but this menu contains many more items and sub-
menus, e.g. clicking LaTeX / Tabular Environment
/ \begin{tabular} gets us:

"| \begin{tabular}{EoLumnsl}

‘end{tabular}
wend{document}

Autocompletion and tooltip help. To see
these features at work, we start typing: \tabl....

TeXstudio: Especially for M TEX newbies

42

TUGboat, Volume 37 (2016), No. 1

—i|_/home/siepo/tentest/lin_reg: T

in_r - Texstudio |
File Edit ldefix Tools LaTeX Math Wizards Bibliography Macros View Options Help
‘D HO AL > RAFE EEESEEH
Struchire ® lin_regression.tex X = »
[=] |7 lin_regression.tex
= LABELS & can be written as £ e
m » BIBLIGGRAPHY 29 ‘\begin{equation}
= Histarical remar... 36 \beta_ @ + \beta_1X 1 + \beta_2X 2 + \cdots + \beta_pX_p+\varepsilon
- © Tne linear regre.. 31 abel{regression}
= » @ Types of linear 32 equation}
b D Assessing the le.. ;z
=+ 35 where $\beta 0% is the intercept\index{intercept} (' ’constant'' term), the
{} L S\beta i%'s are the respective parameters of independent variables, and $ps
& 1is the number of parameters to be estimated in the linear regression.
A = L Linear regression can be contrasted with nonlinear regression.
. = 36
25 4 37 \includegraphics[width=.7\linewidth]{figuur}
38
v 39 This method is called ~“linear'' because the relation of the '
e (13 L response\index{response} (the dependent wariable ¥4} to the independent
@ i & wariables is assumed to be a limear function of the parameters. It is often
. erroneously thought that the reason the technigue is called " linear
4 L regression'' is that the graph of &Y = \beta B + \beta x5 is a straight
I% £ & line or that §Y§ is a linear function of the $X§ variables. But if the
o] j‘, « model is (for example)
= 4@ \[Y = X\beta + \epsilon \]
£ = 41 the problem is still one of \textbf{linear} regression, that is, linear in
(. L 5x§ and $x"2% respectively, even though the graph on $x§ by itself is not a
B 53 L straight line. In words, 5Y$ can dered a linear function of
s . the parameters (s\: . even though it is not a
L linear function of
e a2
w 43 \section{Hiskorical remarks}
Tl 44 \label{sec:HistoricalRemarks}
jas| Line: 43 Column: 12 INSERT ~
Messages | Log Preview | Search Results X
Process started: pdfiatex -synctex=1 -interaction=nonstopmeode "lin_regression" tex
Process exited narmally
1 Historical remarks
.
Alla Pages1to3of5 75% _ || ==} 5
([l en US ., UTF-8, Ready Automatc H B H
Figure 1: Main TeXstudio window
—| Quick Start Al . . .
| B occasionally did not manage to extract useful infor-
Class Options Geometn 1 i i
L mation. The control sequence remains pink/orange
DosumentClass | Gl |4 until it has become a valid BTEX command.
Typeface Size 10pt bod
— e =Iry Cross-references. Also of note is the handling of
St =5 = cross-references. If we enter \ref, we are presented
41 As Packages | makeiox Package 7] Graghic Package with a list of existing labels. This is how such a list
Auther looks when we entered \ref via the GUI:
Title
sec:AssessingTheleastSquaresModel
landscape Z _|| TeXst| i = !
draft sec:CheckingModelvalidity
final =
aneside (1o | sec:HistoricalRemarks
twoside :
openright sec:LeastSquaresAnalysis
Other Options openany o
onecoelumn - . . .
Suitcglimi With one section and one cross-reference label in the
titlepage .
netitlepage document, the Structure panel might look as follows:
apenbib
leann b
Structure 3]
| oK I Cancel
- = = test.tex
= LABELS
Figure 2: The Quick Start wizard (] segiiSiec
{.3 A section

TeXstudio offers a list of completions, including
\tableofcontents, and adds a tooltip with infor-
mation about the highlighted command.

‘\tablename{rname}
23.1 Tables of contents

A table of contents is produced with the
‘tableocfcontent= command. You put the

typical] most used all

Atabl

The tooltip text is taken from the IXTEX reference
mentioned earlier. However, in my tests TeXstudio

Siep Kroonenberg

Math. TeXstudio has an extensive Math menu,
including inline and display math and constructs
such as \frac and \begin{array}. Selecting e.g.
the \frac item results in the following: \frac{{}{Eenl
\frac and various other common constructs are also
represented in the inner vertical toolbar (¥).

The Structure panel can turn into one of several
palettes of mathematical symbols. These can be
invoked with the buttons of the outer vertical toolbar,

TUGboat, Volume 37 (2016), No. 1

—| Tnsert Graphics

File] Mome/siepo/Documents/figures/figuur.pdf

Graphics Options

(&) width/Height Width Iu.? \I'mewidt]'i']
[] Height I \textheigl:']

O User Defined

Center Horizontally

Place in Figure Environment

Caption Below graphic |-

short |

Long

Label Ifig:ﬁguur

Position | (.,

D Span Two Columns

H as Default OK J

Figure 3: Include Graphic wizard. The graphic path
will show up in the source as ‘figures/figuur’.

Cancel J

at the far left of the TeXstudio window. Here is a
fragment of the Operators palette:

Operator symbaols 3]
+ F| x | k| %O
|Bad|

Command: \div
[® % X X

= L IIlelelelole

Arrays and tabulars. There are fairly basic
array- and tabular wizards, but the LaTeX menu
also contains a ‘Manipulate Tables’ submenu, with
items for removing and adding rows and columns,
and for pasting columns (it is best first to apply the
item ‘Align Columns’ ¥1). This submenu handles
both math mode arrays and text mode tabulars.
These operations are also accessible via a section of
the toolbar at the top: ® ¥ & =¥ K 5

Insert Graphic wizard. Another wizard to men-
tion here is the Insert Graphic wizard; see figure 3.
It uses a file browser, and creates a relative path for
the graphic file if at all possible.

Previewing a selection. When we right-click
with some text selected we can choose an option
Preview Selection/Parentheses. Depending on the
configuration, this produces a preview of the selection
either in the Preview tab of the message area, or
inline in the text, like this:

43

“error term' ' WEREE)

he term $\epsilon% is the model's

The term ¢ is the model’s “error term”
In addition, if the mouse cursor hovers for a while

inside a display math environment, a preview of the
equation will pop up:

W Asum {i=8}~{Ainfty}\alpha {i} \]

Outline mode. TeXstudio has an outline mode,
which can be accessed via the Collapse- and Expand
submenus of the View menu:

Bibliography support

During compilation, TeXstudio automatically runs
BIBTEX if necessary, or biber if that has been con-
figured as the default.

In addition, TeXstudio has some support for
editing BIBTEX databases, although it does not pre-
tend to be a full-blown bibliography manager.

The Bibliography menu contains a long list of
publication types. If we select e.g. ‘Article in Con-
ference Proceedings’ then the following code is gen-
erated:

@InProceedings{ID,

author = {author},

title = {title},
booktitle = {booktitle},
OPTcrossref = {crossref},

OPTannote = {annote},

}

The idea is to remove OPT from those fields which
we actually use. When we are done with the entry,
the menu item Bibliography / Clean will remove all
remaining OPT fields.

Error handling

TeXstudio is rather emphatic about error reporting,
e.g.

Jx 51
Q 52 hsectio{The linear regression model}
| Error: Undefined control sequence. \sectio IS ionModel}

55 The linear regression model, represented by equation \ref{regre
L compactly in vector-matrix notation as

56 \begin{equation}
57 ¥ = X \heta + \ensilon
Line: 52 Column: 0 INSERT
Messages | Log I Preview Search Results | Log File |I55ues |O | |r§! e S
J Fill Messag:

= AR

TeXstudio: Especially for M TEX newbies

44

In the editing area, the cursor has jumped to the
error, and the message area now shows the Log tab,
with the first error highlighted. There are also previ-
ous/next error buttons: ‘

Configuration

TeXstudio has extensive options for configuration
under Options / Configure TeXstudio; here are a few
highlights.

For finding I¥TEX and friends (Options / Com-
mands), it relies on the search path and, by default,
does not explicitly store their locations, but on Win-
dows there are exceptions, particularly the various
viewers.

On the Build tab, there are options for setting
the default engine (Compiler) and bibliography pro-
Cessor.

The editor is also very configurable: font and
font size, various aspects of spell-checking, grammar
checking, encoding detection, tooltips, syntax high-
lighting, etc. Turning off some of these options can
help to make the editor less noisy.

More advanced configuration includes customiza-
tion of the menus, of keyboard shortcuts, and of the
set of autocompletion files.

Users can add templates via File / Make Tem-
plate, and macros via Macros / Edit Macros. Users
can add options to the Quick Start wizard; see the
% symbols in the Quick Start screenshot (figure 2).

Under Windows, TeXstudio does not use the
registry, but stores configuration information in a
series of text files in a subdirectory texstudio of
%appdatal, analogous to what it does under Linux.

TeXstudio, Texmaker and Kile

TeXstudio is a fork of Texmaker, which is also cross-
platform. If you find TeXstudio a bit over the top
you may want to try Texmaker. Pascal Brachet,
the author of Texmaker, is also the original author
of Kile, a WTEX editor running under KDE. Not
unexpectedly, there is a family resemblance between
the three editors.

Siep Kroonenberg

TUGDboat, Volume 37 (2016), No. 1

Summary

I have given some examples of how the TeXstudio
interface helps new users on their way and saves the
instructor a lot of explaining. Many users seem to
like it well enough, even for the long haul.

Notes

This article is based on a Dutch-language article
‘TeXstudio, speciaal voor ITEX starters’, pp. 16-22,
MAPS 46, 2015 (http://ntg.nl/maps). It describes
a slightly earlier version of TeXstudio.

The document loaded in figure 1 consists of a
Wikipedia page on linear regression manually con-
verted to KTEX.

Screenshots for this article have been newly
created from TeXstudio 2.10.z, running on Ubuntu
15.10.

URLs

Kile home page:
http://kile.sourceforge.net/

IATEX 2¢: An unofficial reference manual:
http://ctan.org/pkg/latex2e-help-texinfo

Texmaker home page:
http://www.xmlmath.net/texmaker/

TeXstudio home page:
http://texstudio.org/

TeXstudio repository:
http://sourceforge.net/p/texstudio
/hg/ci/default/tree/

The Not So Short Introduction to BTEX 2¢:
http://ctan.org/pkg/lshort

RUG ETEX Course:
http://ctan.org/pkg/latexcourse-rug

¢ Siep Kroonenberg
Groningen
The Netherlands
siepo (at) cybercomm dot nl

TUGDboat, Volume 37 (2016), No. 1

10 years of TEX Live in Debian
Norbert Preining

Abstract

TEX Live has turned into the most widely used TEX
distribution since support ended for teTEX. Debian
has carried a packaged version of TEX Live for 10
years now. We review the history of TEX packages
in Debian, and in particular the history of TEX Live
packaging.

1 Introduction

Getting older, people usually start looking back at
things that happened in the past, and I am no differ-
ent. So I recently realized that this year (2016) there
are several anniversaries of my involvement in the
TEX world: 14 years ago I started building binaries
for TEX Live, 11 years ago I proposed packaging TEX
Live for Debian, 10 years ago the TEX Live packages
entered Debian. There are other things to celebrate
next year (2017), namely the 10 year anniversary of
the (no longer new) infrastructure (esp. tlmgr) of
TEX Live packaging, but this will come later. In this
article I want to concentrate on my involvement with

TEX Live in Debian.

2 Debian releases and TEX systems

The TEX system of choice in Debian was for many
years teTEX [8], curated by Thomas Esser. Digging
through the Debian archive and combining this with
ChangeLog entries as well as personal experiences
since I joined Debian, the timeline of TEX in Debian
to the best of my knowledge can be found in Table 1.

The history of TEX in Debian is thus split more
or less into 10 years of teTEX, and 10 years of TEX
Live. While I cannot check back to the ultimate
origin, my guess is that already in the very first
Debian releases (te)TEX was included. The first re-
lease I can confirm (via the Debian archive) shipping
teTEX is the release Bo (June 1997). Maintainership
during the first 10 years showed some fluctuation:
The first years/releases, till about 2002, were domi-
nated by Christoph Martin with Adrian Bunk and
few others, who did most of the packaging work on
teTEX version 1. After this Atsuhito Kohda with
help from Hilmar Preusse and others brought teTEX
up to version 2, and from 2004 to 2007 Frank Kiister,
again with the help of Hilmar Preusse and others,
took over most of the work on teTEX. Other names
commonly appearing throughout the ChangeLog are
Julian Gilbey, Ralf Stubner, LaMont Jones, and C.M.
Connelly — and there were many more bug reporters
and fixers.

45

Looking at table I have to mention the incredible
amount of work that both Atsuhito Kohda and Frank
Kiister have put into the teTEX packages, and many
of their contributions have been carried over into
the TEX Live packages. While there weren’t many
releases during their maintainership, their work has
inspired and supported the packaging of TEX Live
to a huge extent.

3 Start of TEX Live

I got involved in TEX Live back in 2002 when I started
building binaries for the alpha-linux architecture. I
can’t remember when I first had the idea to package
TeX Live for Debian, but here is a timeline from
my first email to the Debian Developers mailing list
concerning TEX Live to the first accepted upload:

2005-01-11: binaries for different architectures

in debian packages [1]

This is my first email to the Debian community about
packaging TEX Live. It is easy to see that I didn’t
have much of a clue about Debian packaging at that
time, as I proposed to simply reuse the binaries that
are included in TEX Live, instead of properly building
them for Debian.

2005-01-25: Debian-TeXlive Proposal II [2]

After the initial round of feedback (and flames) I
proposed a new layout with adaptations, but still
continued to try to avoid rebuilding the binaries.

2005-05-17: Proposal for a tex-base package [3]

As we were planning to have two distinct (and over-
lapping) TEX systems in Debian, together with Frank
Kiister we proposed a package tex-base, later to
be named tex-common, as basis for both the teTEX
and TEX Live packages, providing common basic
infrastructure.

2015-06-10: Bug#312897: ITP: texlive [4]
The first official step in packaging a new ‘program
for Debian is the ITP bug— Intend to package.

)

2005-09-17: Re: Take over of texinfo/info packages [5]
In the course of preparing TEX Live package I needed
to put my hands on several other TEX-related pack-
ages, the first being texinfo, which was orphaned
(without a Debian maintainer) at that time. It was
also based on this package that I became a Debian
Developer.

2005-11-28: Re: texlive-basic_2005-1 _i386.changes
REJECTED [6]

When a new package is the first time uploaded to
Debian, it cannot enter immediately but has to
go through a severe scrutiny by the so-called ‘ftp-
masters’. They check for license compliance, Debian

10 years of TEX Live in Debian

46 TUGboat, Volume 37 (2016), No. 1
Date Version Name teTEX/TEX Live Maintainers
1993-96 <1 ? ? Christoph Martin
6/1996 1.1 Buzz ?
12/1996 1.2 Rec ?
6/1997 1.3 Bo teTEX 0.4
7/1998 2.0 Ham teTEX 0.9
3/1999 2.1 Slink teTEX 0.9.9N
8/2000 2.2 Potato teTEX 1.0
7/2002 3.0 Woody teTEX 1.0
6/2005 3.1 Sarge teTEX 2.0 Atsuhito Kohda
4/2007 4.0 Etch teTEX 3.0, Frank Kiister
TEX Live 2005 NP
2/2009 5.0 Lenny TeEX Live 2007 NP
2/2011 6.0 Squeeze TEX Live 2009
5/2013 7.0 Wheezy TEX Live 2012
4/2015 8.0 Jessie TEX Live 2014
? 7?7 Stretch TgX Live >2015

Table 1: History of TEX systems in Debian

policy compliance, and some say their daily level
of comfort, before allowing a new package to enter
Debian. After my first upload I got extremely neg-
ative feedback, including statements like ‘Why do
we need another TEX system.” Together with Frank
Kiister we drafted a response, which sparked a long
discussion about packaging and helped improve the
naming of packages (but not especially the packaging
itself).

2006-01-12: Upload of TEX Live 2005-1 to Debian
The first upload that successfully passed the scrutiny
of the ftp-masters.

2006-01-22: Accepted texlive-base 2005-1 (source

all) [7]

TEX Live packages accepted to Debian/experimental.

One can see from the first emails that at that time
I had no idea of correct Debian packaging and pro-
posed to ship the binaries built within the TEX Live
system on Debian. What followed was first a long
discussion about whether there is any need for “just
another” TEX system. The then maintainer Frank
Kiister took a clear stance in favor of including TEX
Live, and after several rounds of proposals, tests, re-
jections and improvements, the first successful upload
of TEX Live packages to Debian/experimental hap-
pened on 12 January 2006, so exactly 10 years ago.

4 Packaging

From the beginning, Debian has used a meta-pack-
aging approach. That is, instead of working directly
with the TEX Live sources, (Perl) scripts generate

Norbert Preining

Debian source packages from a set of directives. We
introduced this extra layer for several reasons:

e The original format of the TEX Live packaging
information (tpm) was XML files that Debian
parsed with an XML parser (1ibxml). I surmise
(from what I have seen over the years) that only
the Debian packages did proper parsing of these
.tpm files for packaging.

e TEX Live packages were often reshuffled, and De-
bian package names changed, which would have
otherwise caused a certain level of pain during
the creation of original tar files and packaging.

o General flexibility in creating additional pack-
ages and arbitrary dependencies.

Although I have never been 100% sure that it
was the best idea, the scripts nevertheless remain in
place to the present day, only adapted to the new
packaging paradigm in TEX Live (without XML) and
adding new functionality. This allows me to just
kick off one script that does all the work, including
building .orig.tar.gz, source packages, and binary
packages.

For those interested in following the frantic
activity during the first few years, there is a file
CHANGES . packaging [9] which extensively documents
the changes made for the years from 2005 to 2011. I
don’t want to count the hours that went into this.

5 Development over the years

TEX Live 2005 was just another TEX system but not
the preferred one in Debian Etch and earlier. But

TUGDboat, Volume 37 (2016), No. 1

in May 2006, Thomas Esser announced the end of
development for teTEX, which cleared the path for
TEX Live as the main TEX system in Debian (and the
world!). The next release of Debian, Lenny (1,/2009),
already carried only TEX Live. Unfortunately it was
only TEX Live 2007 and not 2008, mostly due to
my having been involved in rewriting the upstream
infrastructure based on plain text package descrip-
tions instead of the notorious XML files. This took
quite a lot of attention and time from Debian away
to upstream development, but this will be discussed
in a different post.

Similarly, the release of TEX Live included in
Debian Squeeze (released 2/2011) was only TEX
Live 2009 (instead of 2010), but in the releases since
then (Wheezy and Jessie), the versions of TEX Live
in Debian have been the latest releases.

6 Current status

Since about 2013 I am trying to keep a regular sched-
ule of new TEX Live packages every month. These
helps me to keep up with the changes in upstream
packaging and reduces the load of packaging a new
release of TEX Live. It also brings to users of unsta-
ble and testing a very up-to-date TEX system, where
packages at most lag one month behind the TEX Live
network updates.

7 Future

As most of the readers here know, besides caring for
TEX (Live) and related packages in Debian, I am also
responsible for the TEX Live Manager (tlmgr) and
most of upstream’s infrastructure including network
distribution. Thus, my (spare, outside work) time
needs to be distributed between all these projects
(among others) which leaves less and less time for
Debian packaging. Fortunately the packaging is in
a state that makes regular updates once a month a
light enough burden to accomplish, since most steps
are automated. What remains a bit of a struggle is
adapting the binary package (src:texlive-bin [10])
to new releases. But also this has become simpler
due to less invasive changes over the years.

All in all, I don’t have many plans for TEX Live
in Debian besides keeping the current system running
as it is. And this is in itself already a good reason
to search for new contributors and maintainers!

8 Search for and advice to future
maintainers and collaborators

I would be more than happy if new collaborators
appear, with fresh ideas and some spare time. Un-
fortunately, my experience over these 10 years with

47

people showing up and proposing changes (anyone
remember the fellow proposing a complete rewrite in
ML?) has been that nobody wants to invest serious
time and energy, but merely searches for quick solu-
tions. This is not something that will work with a
package like TEX Live, with a size of several gigabytes
(the biggest in the Debian archive), and complicated
inner workings.

I advise everyone interested in helping to pack-
age TEX Live for Debian (or for that matter any other
operating system distribution), to first install normal
TEX Live from TUG, get used to what actions hap-
pen during updates (format rebuilds, hyphenation
patterns, map file updates). One does not need to
have a perfect understanding of what exactly hap-
pens down there in the guts (I didn’t have in the
beginning, either), but if you want to help with pack-
aging but have never heard of format dumps or map
files, this just might be a small obstacle.

9 Conclusion

TEX Live is the only TEX system in wide use across
many hardware architectures and operating systems.
The only comparable system, MiKTEX, is Windows-
specific (although it contains some traces of ports to
Unix). Backed by all the big user groups of TEX, TEX
Live will remain the prime choice for the foreseeable
future, and thus also TEX Live in Debian.

References
[1] https://goo.gl/3EKZul.
[2] https://goo.gl/GeY5eT.
[3] https://goo.gl/oGb61lo.
[4] https://goo.gl/6rR5bs.
[5] https://goo.gl/Hs4UkJ.
[6] https://goo.gl/SrKtkI.
[7] https://goo.gl/sz5BNj.
[8] The teTEX home page.
http://tug.org/tetex/.
[9] CHANGES.packaging. http://goo.gl/ukVYCk.

[10] texlive-bin source package on Debian QA.
https://goo.gl/MGmRd3.

¢ Norbert Preining
Japan Advanced Institute of
Science and Technology
Nomi, Ishikawa, Japan
norbert (at) preining dot info
http://www.preining.info

10 years of TEX Live in Debian

48

Paragraph designer with galley approach
Oleg Parashchenko

Abstract

The ITEX package paravesp. sty controls the space
above and below paragraphs.

The Python script parades.py generates para-
graph styles with support of space above, space below
and tabulators.

The system imposes the galley approach on the
document.

1 Introduction

The goal was to support one layout specification
defining the space above and below paragraphs. This
is not how TEX works. To satisfy the requirement,
the package paravesp (PARAgraph VErtical SPace)
was developed.

The solution imposes the galley approach on
the document. Paragraphs need to be wrapped by
a tracking code, which controls how the material is
added into the TEX vertical list.

The paragraph designer appeared as a gener-
alization of the tracking code to other paragraph
properties. The user describes the formatting op-
tions in a Python file. The program parades.py
converts the definitions into TEX code.

The system works successfully in production,
but so far is limited to my needs. A complete set
of paragraph properties is not an immediate goal.
Switching to the package xgalley from the ETEX3
project might be a step in future development.

This article starts with the definition of the
space between paragraphs and how it is implemented.
The example demonstrates the use of the commands,
which are then described using pseudocode.

The paragraph designer is first illustrated by a
sample I#TEX fragment, which uses the paragraph
styles. For each of the three types of styles, we
give a sample definition in Python and the result
of translating to TEX code, with explanations. Fi-
nally, a reference section lists all the supported para-
graph properties and the commands of the Python
parades.py tool.

The article concludes with information on how
to get the code and run it.

2 Space between paragraphs

The notion of “space between paragraphs” can be
defined in various ways.

In one definition, the space between paragraphs
is the amount of additional space relative to what
happens inside a paragraph. This is what most

Oleg Parashchenko

TUGDboat, Volume 37 (2016), No. 1

typesetting engines implement, and what is named
parskip in TEX.

The definition for paravesp.sty is: the space
between paragraphs is the distance between the base-
line of the preceding paragraph and the top of the
next paragraph. The code ensures that this distance
is larger than prevdepth.

“Apg

space as
\parskip defined by
paravesp

2.1 Usage

The package paravesp imposes restrictions on how to
construct a document. Otherwise it can’t guarantee
the desired space above or below paragraphs.

e Switches between the vertical and horizontal
modes must be controlled. TEX’s automatic
switching is partially forbidden.

o The register \parskip belongs to the controlling
code.

e The commands rely on the automatic insertion
of parskip glue by TEX.
The guidelines for the controlling code are:

e At the end of a paragraph (after \par) use the
command \ParaSpaceBelow.

e At the beginning of a paragraph, while still in
the vertical mode, use \ParaSpaceAbove.

e At the beginning of block content, for which
TEX will not insert \parskip automatically, use
both \ParaSpaceAbove and \IssueParaSpace.

An example:

\ParaSpaceAbove{20pt}%
{\HeadingStyle Heading}\par
\ParaSpaceBelow{20pt}%

)

\ParaSpaceAbove{10pt}/,

A paragraph of normal text. .. \par
\ParaSpaceBelow{10pt}%

A

\ParaSpaceAbove{10pt}%

Another paragraph of normal text. .. \par
\ParaSpaceBelow{10pt}%

)
\ParaSpaceAbove{20pt}\IssueParaSpace
\vbox{\fbox{Some info in a box}}V
\ParaSpaceBelow{20pt}%

TUGDboat, Volume 37 (2016), No. 1

2.2 Technical details

Below is a simplified version of what happens. Special
cases are not shown.

After \ParaSpaceBelow{length}:

e vertical list is not changed

e parskip := length — prevdepth

e prevdepth is not changed

The command \ParaSpaceBelow splits its argu-

ment between two lengths, prevdepth and parskip.
This is a precaution for the case when the next ele-
ment in the vertical list is not controlled by the galley.
Thanks to the retained prevdepth, a possible layout
corruption is avoided.

After \ParaSpaceAbove{length}:

e vertical list: vskip —prevdepth,
penalty as before vskip
e parskip := max(length, old_length)
e prevdepth := —1000pt
The command \ParaSpaceAbove, which pre-
cedes a paragraph, can’t know how much interline
glue induced by baselineskip will be added. As a
solution, the command disables this glue completely
by setting prevdepth to minus infinity.

After \IssueParaSpace:
e vertical list: vskip parskip,
penalty as before vskip
e parskip := Opt
e prevdepth := —1000pt
You need the command \IssueParaSpace when
TEX does not insert \parskip automatically, for
example, before a box.
The command expects that it is called after
\ParaSpaceAbove.

After \IgnoreSpaceAboveNextPara:
e vertical list is not changed
e parskip := —0.01pt
e prevdepth is not changed
The special case is parskip less than Opt, which
cancels the vertical spacing. It is useful when display
content (image, list, etc.) is the first element inside
a table cell.

3 Paragraph designer

The paragraph designer transforms Python objects
with desired paragraph properties into TEX code
which implements these properties.

The main benefit is that the paragraphs defini-
tions can be constructed in such way that the repe-
titions (for example, font names) can be extracted
into common settings.

49

The system proposes that every block-level ele-
ment of a document should be wrapped into a com-
mand or an environment, which support the galley
approach. The suggested sorts of the paragraphs:

e long body text paragraphs, wrapped by an en-
vironment,

e short paragraphs, wrapped by a command, and

e short paragraphs with tab stops, also wrapped
by a command.

A document made using this approach looks
structured. Here is an example.
\HeadI{Universal Declaration of Human Rights}
\HeadII{Preamble}
\begin{para}Whereas recognition...\end{para}
\begin{para}Whereas disregard

and contempt...\end{para}

\HeadII{Article 14}

\begin{udhrlist}

\listitem{1}{Everyone has the right ...}
\listitem{2}{This right may not be invoked ...}
\end{udhrlist}

The sample is generated automatically from the
XML source. The generation script, the paragraph
styles as Python definition, the .sty code, and the
PDF result are included in the package in the direc-
tory example.

3.1 Example: the command \Headl

Commands are recommended for small paragraphs,
such as headings and captions.
\HeadI{Universal Declaration of Human Rights}
A sample definition in Python:
add_style (ParagraphOptions (cmd=’HeadI’,
space_above=’20pt’,
space_below=’20pt’,
fontsize=’12pt’, baseline=’14pt’,
fontcmd=r’\fontseries{b}\selectfont’,
afterpar=r’\nobreak’,

)

The properties of the paragraph are stored inside
the object ParagraphOptions. As in many other
programming languages, the backslash (\) is nor-
mally an escape character (not in the TEX sense!),
and must be doubled inside strings (\\). An alter-
native in Python, as seen in the example here, is to
prefix the string with r, which disables the escape.

The function add_style remembers the object
in the global styles list. At the end of the Python
script, the objects in the list are converted to TEX
code.

The result of the conversion:

\newcommand{\HeadI}[1]1{{%

Paragraph designer with galley approach

50

\fontsize{12pt}{14pt}\fontseries{b}\selectfonty
\ParaSpaceAbove{20pt}/

\noindent #1\parl}/,
\nobreak\ParaSpaceBelow{20pt}}

The peculiarities are:

e The paragraph is created explicitly with
\noindent #1\par.

e The text and the pre-paragraph settings are in
a group. This way settings such as font changes
affect only the given paragraph and not the rest
of the document.

3.2 Example: the environment para

Environments are recommended for wrapping para-
graphs in the text body.

\begin{para}Whereas recognition...\end{para}
\begin{para}Whereas disregard

and contempt...\end{para}

A sample definition in Python:
add_style(ParagraphOptions(cmd=’paracmd’,

env=’para’,

space_above=’10pt pluslpt minusipt’,

))

The result of the conversion, in a .sty file:
\newenvironment{paral}{%

\ParaSpaceAbove{10pt plusipt minusiptl}y
\noindent \ignorespaces}
{\par\global\def\pd@after@parad{y
\ParaSpaceBelow{Opt}}%
\aftergroup\pd@after@para}

The paragraph is started explicitly with the
command \noindent, followed by \ignorespaces,
and finished, also explicitly, with \par.

The changes inside an environment, including
post-paragraph settings, are again local and thus au-
tomatically discarded when the environment’s group
is finished. Therefore, using \aftergroup, the post-
paragraph settings are applied after the end of the
environment.

3.3 Example: tab stops in listitem

Paragraphs with tab stops are used to implement list
items, captions, table of content entries and similar
elements. The list paragraphs in the following exam-
ple have one tab stop to store the list numbering.
\listitem{1}{Everyone has the right ...}
\listitem{2}{This right

may not be invoked ...}

A sample definition in Python:
add_style(ParagraphOptions(cmd=’listitem’,

moresetup=’\\interlinepenalty=150\\relax’,

space_above=’8pt’,

boxes=((’0cm’, °0.5cm’),),

leftskip=’0.5cm’))

Oleg Parashchenko

TUGDboat, Volume 37 (2016), No. 1

The argument boxes is a list of pairs. Each
pair gives the offset of the tab stop from left and
the width of the box. Due to peculiarities of Python,
one-element lists of pairs need an extra comma inside.

The position of the paragraph text should be
tuned manually to avoid overlapping with the tab
stop boxes. In the example above, the left margin is
set to 0.5cm using \leftskip.

The result of the conversion, in a .sty file, is
complicated:

\newcommand{\listitem} [2]{{%
\ParaSpaceAbove{8ptl}/
\interlinepenalty=150\relax
\noindent \advance\pd@leftskip by 0.5cm 7%
\hbox to Opt{\hss\hbox to 0.5cm{#1\hssl}/

\dimen0=0.5cm %

\advance\dimenO by -Ocm %

\advance\dimenO by -0.5cm \hskip\dimenO}/

\the\everypar #2\par}’
\ParaSpaceBelow{Opt}}

The skeleton of the list paragraph has these
elements:

\noindent tab stops \everypar text \par

The use of \noindent and \par is clear. The
paragraph starts with the tab stop boxes, therefore
TEX does not insert \everypar automatically, there-
fore the code does it.

The token \pd@leftskip is a \let-synonym for
\leftskip. In a right-to-left document one would
set the token to \rightskip.

A tab stop is constructed from two nested boxes.
The inner box gives the width of the tab stop and
aligns the content to the left:

\hbox to width{content \hss}

The outer box puts the inner box at the specified
offset.

\hbox to Opt{\hss inner box
\dimenO=leftskip
\advance\dimenO by -offset
\advance\dimenO by -width
\hskip\dimen0}/,

The calculation is not obvious. The illustration
in figure 1 provides the source for it.

The image reflects how the boxes, glues and
lengths are related. We see that offset+width+x is
leftskip, therefore x (\dimen0) is leftskip minus
offset minus width.

4 Paragraph designer reference

Denomination: cmd, env, stylecmd. These are
the names for the generated commands and environ-
ments.

TUGDboat, Volume 37 (2016), No. 1

\leftskip

offset :
Inner hbox !

——— \hbox to Opt
\hss

width X

Figure 1: Calculation for tab stops.

Examples of cmd and env have already been
given. The command for stylecmd makes a char-
acter style, which affects the font and does not set
the paragraph properties (vertical spacing, tabulars,
etc.).

A sample paragraph definition:
ParagraphOptions (cmd="Caption,

stylecmd="UseCaption", ...)

In a BTEX document you could then write:

{\UseCaption Article 1.} All human beings
are born free and equal in dignity ...

All the three denominators can be mixed to-
gether at once. You must specify cmd even if you
don’t need it.

Fonts: fontsize, baseline, fontcmd.

The only supported font properties are its size
and line spacing. The other properties, such as width
and series, need to be manually defined in fontcmd:
ParagraphOptions(.. .,

fontcmd=r’\fontseries{b}\selectfont?’,

)

Dimensions:
space_below.

The names are self-explanatory.

The default value for both space_above and
space_below is Opt. This means that if you haven’t
given a value, then two consecutive paragraphs will
touch each other, as if \nointerlineskip were given
between them.

Use the special value #natural to disable the
use of \ParaSpaceAbove or \ParaSpaceBelow and
instead restore the default TEX behaviour.
ParagraphOptions(...,

space_above=’#natural’,
space_below=’#natural’, ...)

leftskip, hsize, space_above and

Tuning: moresetup, afterpar, preamble_argl,

preamble_arg?2, preamble_arg3, preamble_arg4.
The content of moresetup is literally copied into

the style definition at the end of the paragraph setup,

51

just before \noindent. A few ideas what can be set
in moresetup:

e A color for the paragraph text,
e \penalty to suggest a page break,

e \interlinepenalty for list item paragraphs, to
avoid a page breaks inside.

The content of afterpar is literally copied into
the style definition directly after {...\par}. This is
a good place to put \nobreak or some other penalty.

The content of preamble_argN is copied literally
into the style definition directly before #N. Possible
applications:

o Add \ignorespaces if the text might contain
spurious spaces at the beginning.

e For list item paragraphs, \hfil centers the tab
box content, \hfill aligns to the right.

Tab stops. Tab stops are hboxes of a given width
at given offset. All the offsets are relative to the left
border of the text flow.

ParagraphOptions(...,
boxes=(
(offsetl,widthl) ,
(offset2, width2) ,

(offset _n,width _n)),

L)

Due to Python peculiarities, a one-element list
of lists needs an additional comma, otherwise Python
unwraps one level of parentheses. Thus, the correct
way is:

ParagraphOptions(.. .,
boxes=((offset, width) ,), # comma inside

L)

The content of the boxes is left-aligned. To cen-
ter or right-align the content, add \hfil or \hfill
through the parameter preamble_argN.

Inheritance. The parameter parent uses an ex-
isting paragraph object as the starting point for the
paragraph being defined. Properties not specified
in the new paragraph definition are taken from the
parent.
head_i = ParagraphOptions(

cmd=’HeadI’,

fontsize=’12pt’, baseline=’14pt’,

fontcmd=r’\fontseries{b}\selectfont’,

)

ParagraphOptions (cmd=’HeadII’,
parent=head_i, # Inheritance
fontsize=’11pt’, baseline=’13pt’,

)

Paragraph designer with galley approach

52

In the example, the paragraph HeadII inherits
fontcmd from HeadI, but uses the custom fontsize
and baseline settings.

The infrastructure. A Python file with defini-
tions: (1) starts by importing the support code;
(2) continues with collecting the definitions; and
(3) finishes with the command to dump the TEX
result.

from parades import * # (1)

add_style(ParagraphOptions(...)) # (2)
add_style(ParagraphOptions(...))

add_style(ParagraphOptions(...))

main(’paras’) # (3)

The parameter of the function main (in this
example paras) is the name of the generated sty-
package as given by \ProvidesPackage.

5 Getting and running the code

All the files, including the example, are contained
in the CTAN package parades (http://ctan.org/
pkg/parades). Alternatively, you can get the source

code from github in the repository http://github.

com/olpa/tex, in the folder paragraph_designer.
Put the file paravesp.sty into a directory in
which TEX will find it. Put the file parades.py into
a directory in which Python will find it.
The paragraph generator runs from the com-
mand line.

$ python input-defs.py [output-defs.sty]
The script input-defs.py is the file with the
Python definitions of the paragraphs. The optional
argument is the name of a .sty file with the gener-
ated TEX definitions. If the output file is not speci-
fied, the code is dumped to the standard output.

The directory example contains a sample project.

Refer to the file README in this directory for details
how to use it.

Oleg Parashchenko

TUGDboat, Volume 37 (2016), No. 1

6 Conclusion

The paragraph designer helps both on the technical
and organization levels. On the technical level, it
helps generating code for paragraph styles. It would
be an unpleasant and error-prone task to write this
code manually:

e Space above and below a paragraph.

e Paragraphs with tab stops such as list items,
table of content entries, headers.

On the organizational level, the Python scripts
allow one to have a common code base and adapt it
to the needs of specific layouts.

The ITEX package paravesp can be used inde-
pendently of the paragraph designer to implement
vertical spacing.

There are problems with the package paravesp
and the paragraph designer:

e Many features are not implemented and some
need rework.

e The KTEX code written in the galley style is too
verbose to be typeset manually.

The paragraph designer has been used in a pro-
duction system for years. Thus the benefits can
outweigh the problems.

¢ Oleg Parashchenko
bitplant.de GmbH
Fabrikstr. 15
89520 Heidenheim, Germany
olpa (at) uucode dot com
http://uucode.com/

TUGDboat, Volume 37 (2016), No. 1

LuaTgX 0.90 backend changes for PDF
and more

Hans Hagen

Abstract

LuaTgX 0.90 brings a sweeping reorganization of the
backend, especially PDF-related features. Many fun-
damental primitives, both commands and variables,
have been renamed and generalized. Some primitives
have been removed from the TEX interface, but can
be made available through Lua. Internally, some uses
of whatsits have been converted to regular nodes.

1 Introduction

The original design of TEX has a clear separation
between the frontend and backend code. In principle,
shipping out a page boils down to traversing the to-
be-shipped-out box and translating the glyph, rule,
glue, kern and list nodes into positioning just glyphs
and rules on a canvas. The DVI backend is therefore
relatively simple, as the DVI output format delegates
to other programs the details of font inclusion and
such into the final format; it just describes the pages.

Because we eventually want color and images
as well, there is a mechanism to pass additional
information to post-processing programs. One can
insert \specials with directives like insert image
named foo. jpg. The frontend as well as the backend
are not concerned with what goes into a special; the
DVI post-processor of course is.

The PDF backend, on the other hand, is more
complex as it immediately produces the final type-
set result and, as such, offers possibilities to insert
verbatim code (\pdfliteral), images (\pdfximage
cum suis), annotations, destinations, threads and all
kinds of objects, reuse typeset content (\pdfxform

cum suis); in the end, there are all kinds of \pdf. ..

commands. The way these were implemented in Lua-
TEX prior to 0.82 violates the separation between
frontend and backend, an inheritance from pdfTEX.
Additional features such as protrusion and expansion
add to that entanglement. However, because PDF is
an evolving standard, occasionally we need to adapt
the related code. A separation of code makes sure
that the frontend can become stable (and hopefully
frozen) at some point.!

In LuaTEX we had already started making this
separation of specialized code, such as a cleaner im-

plementation of font expansion, but all these \pdf. ..

Author’s note: Thanks to Alan Braslau and Karl Berry for
text corrections.

1 In practice nowadays, the backend code changes little,
because the PDF produced by LuaTgX is rather simple and is
easily adapted to the changing standard.

53

commands were still pervasive, leading to fuzzy de-
pendencies, checks for backend modes, etc. so a log-
ical step was to straighten all this out. That way
we give LuaTEX a cleaner core constructed from tra-
ditional TEX, extended with e-TEX, Aleph/Omega,
and LuaTgX functionality.

2 Extensions

A first step, then, was to transform generic (i.e. inde-
pendent from the backend) functionality which was
still (sort of) bound to Aleph and pdfTEX, into core
functionality. A second step was to reorganize the
backend specific PDF code, i.e. move it out of the
core and into the group of extension commands. This
extension group is somewhat special and originates
in traditional TEX; it is the way to add your own
functionality to TEX, the program.

As an example for future programmers, Don
Knuth added four (connected) primitives as exten-
sions: \openout, \closeout, \write and \special.
The Aleph and pdfTEX engines, on the other hand,
put some functionality in extensions and some in
the core. This arose from the fact that dealing with
variables in extensions is often inconvenient, as they
are then seen as (unexpandable) commands instead
of integers, token lists, etc. That the write-related
commands are there is almost entirely due to being
the demonstration of the mechanism; everything re-
lated to reading files is in the core. There is one
property that perhaps forces us to keep the writers
there, and that’s the \immediate prefix.?

In the process of separating, we reshuffled the
code base a bit; the current use of the extensions
mechanism still suits as an example and also gives
us backward compatibility. However, new backend
primitives will not be added there but rather in
specific plugins (if needed at all).

3 From whatsits to nodes: images, forms,
directions

The PDF backend introduced two new concepts into
the core: (reusable) images and (reusable) content
(wrapped in boxes). In keeping with good TEX prac-
tice, these were implemented as whatsits (a node
type for extensions); but this created, as a side effect,
an anomaly in the handling of such nodes. Consider
looping over a node list where we need to check di-
mensions of nodes; in Lua, we can write something
like this:

while n do
if n.id == glyph then

2 Unfortunately we’re stuck with \immediate in the back-
end; a deferred keyword would have been handier, especially
since other backend-related commands can also be immediate.

LuaTEX 0.90 backend changes for PDF and more

54

-- wd ht dp
elseif n.id == rule then
-- wd ht dp
elseif n.id == kern then
-- wd
elseif n.id == glue then
-- size stretch shrink
elseif n.id == whatsits then
if n.subtype == pdfxform then
-- wd ht dp
elseif n.subtype == pdfximage then
-- wd ht dp
end
end
n = n.next
end
So for each node in the list, we need to check
these two whatsit subtypes. But as these two con-
cepts are rather generic, there is no evident need to
implement it this way. Of course the backend has to
provide the inclusion and reuse, but the frontend can
be agnostic about this. That is, at the input end, in
specifying these two injects, we only have to make
sure we pass the right information (so the scanner
might differentiate between backends).
Thus, in LuaTEX these two concepts have been
promoted to core features:

\pdfxform \saveboxresource

\pdfximage \saveimageresource
\pdfrefxform \useboxresource
\pdfrefximage \useimageresource
\pdflastxform \lastsavedboxresourceindex
\pdflastximage \lastsavedimageresourceindex

\pdflastximagepages \lastsavedimageresourcepages
The index should be considered an arbitrary
number set to whatever the backend plugin decides
to use as an identifier. These are no longer whatsits,
but a special type of rule; after all, TEX is only
interested in dimensions. Given this change, the
previous code can be simplified to:
while n do
if n.id == glyph then

-- wd ht dp

elseif n.id == rule then
-- wd ht dp

elseif n.id == kern then
-- wd

elseif n.id == glue then

-- size stretch shrink
end
n = n.next
end

The only consequence for the previously existing
rule type (which, in fact, is also something that
needs to be dealt with in the backend, depending
on the target format) is that a normal rule now has

Hans Hagen

TUGDboat, Volume 37 (2016), No. 1

subtype 0 while the box resource has subtype 1 and
the image subtype 2.

If a package writer wants to retain the pdfTEX
names, the previous table can be used; just prefix
\let. For example, the first line would be (spaces
optional, of course):

\let \pdfxform \saveboxresource

3.1 Direction nodes

A similar change has been made for “direction” nodes,
which were also previously whatsits. These are now
normal nodes so again, instead of consulting whatsit
subtypes, we can now just check the id of a node.

It should be apparent that all of these changes
from whatsits to normal nodes already greatly sim-
plify the code base.

4 Commands promoted to the core

Many more commands have been promoted to the
core. Here is an additional list of original pdfTEX
commands and their new counterparts (this time
with the \let included):

\let\pdfpagewidth \pagewidth
\let\pdfpageheight \pageheight
\let\pdfadjustspacing \adjustspacing
\let\pdfprotrudechars \protrudechars
\let\pdfnoligatures \ignoreligaturesinfont
\let\pdffontexpand \expandglyphsinfont
\let\pdfcopyfont \copyfont
\let\pdfnormaldeviate \normaldeviate

\let\pdfuniformdeviate \uniformdeviate

\let\pdfsetrandomseed \setrandomseed
\let\pdfrandomseed \randomseed
\let\ifpdfabsnum \ifabsnum
\let\ifpdfabsdim \ifabsdim
\let\ifpdfprimitive \ifprimitive
\let\pdfprimitive \primitive
\let\pdfsavepos \savepos
\let\pdflastxpos \lastxpos
\let\pdflastypos \lastypos
\let\pdftexversion \luatexversion
\let\pdftexrevision \luatexrevision
\let\pdftexbanner \luatexbanner
\let\pdfoutput \outputmode
\let\pdfdraftmode \draftmode
\let\pdfpxdimen \pxdimen
\let\pdfinsertht \insertht

TUGDboat, Volume 37 (2016), No. 1

\protected\def\pdfliteral {\pdfextension
\protected\def\pdfcolorstack {\pdfextension
\protected\def\pdfsetmatrix {\pdfextension
\protected\def\pdfsave {\pdfextension
\protected\def\pdfrestore {\pdfextension
\protected\def\pdfobj {\pdfextension
\protected\def\pdfrefobj {\pdfextension
\protected\def\pdfannot {\pdfextension
\protected\def\pdfstartlink {\pdfextension
\protected\def\pdfendlink {\pdfextension
\protected\def\pdfoutline {\pdfextension
\protected\def\pdfdest {\pdfextension
\protected\def\pdfthread {\pdfextension
\protected\def\pdfstartthread {\pdfextension
\protected\def\pdfendthread {\pdfextension
\protected\def\pdfinfo {\pdfextension
\protected\def\pdfcatalog {\pdfextension
\protected\def\pdfnames {\pdfextension

\protected\def\pdfincludechars {\pdfextension

\protected\def\pdffontattr {\pdfextension
\protected\def\pdfmapfile {\pdfextension
\protected\def\pdfmapline {\pdfextension
\protected\def\pdftrailer {\pdfextension

\protected\def\pdfglyphtounicode {\pdfextension

literal }
colorstack }
setmatrix }
save\relax}
restore\relax}
obj }

refobj }

annot }

startlink }
endlink\relax}
outline }

dest }

thread }
startthread }
endthread\relax}

info }

catalog }
names }
includechars }
fontattr }
mapfile }
mapline }
trailer }
glyphtounicode }

Table 1: List of pdfTEX commands and their new \pdfextension equivalents in LuaTgX.

5 Commands: from \pdf...
to \pdfextension

There are many commands that start with \pdf
and, over the history of development of pdfTEX and
LuaTgX, some have been added, some have been
renamed, others removed. Instead of the many, we
now have just one: \pdfextension. A couple of
usage examples:

\pdfextension literal {1 0 0 2 0 O cm}
\pdfextension obj {/foo (bar)}

Here, we pass a keyword that tells for what to
scan and what to do with it. A backward-compatible
interface is easy to write. Although it delegates a bit
more management of these \pdf commands to the
macro package, the responsibility for dealing with
such low-level, error-prone calls is there anyway. The
full list of \pdfextensions is given in table 1. The

scanning after the keyword is the same as for pdfTEX.

6 Variables: from \pdf... to \pdfvariable

As with commands, there are many variables that
can influence the PDF backend. The most important
one was, of course, that which set the output mode
(\pdfoutput). Well, that one is gone and has been
replaced by \outputmode. A value of 1 means that
we produce PDF.

55

One complication of variables is that (if we want

to be compatible), we need to have them as real TEX
registers. However, as most of them are optional,
an easy way out is simply not to define them in the
engine. In order to be able to still deal with them as
registers (which is backward compatible), we define
them as shown in table 2.

You can set them as follows (the values shown
here are the initial values):

\pdfcompresslevel 9
\pdfobjcompresslevel 1
\pdfdecimaldigits 3
\pdfgamma 1000
\pdf imageresolution 71
\pdfimageapplygamma 0
\pdfimagegamma 2200
\pdfimagehicolor 1
\pdfimageaddfilename 1
\pdfpkresolution 72
\pdfinclusioncopyfonts 0
\pdfinclusionerrorlevel 0
\pdfignoreunknownimages 0
\pdfreplacefont 0
\pdfgentounicode 0
\pdfpagebox 0
\pdfminorversion 4
\pdfuniqueresname 0

LuaTEX 0.90 backend changes for PDF and more

56 TUGhboat, Volume 37 (2016), No. 1
\edef\pdfminorversion {\pdfvariable minorversion}
\edef\pdfcompresslevel {\pdfvariable compresslevel}
\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}
\edef\pdfdecimaldigits {\pdfvariable decimaldigits}
\edef\pdfhorigin {\pdfvariable horigin}
\edef\pdfvorigin {\pdfvariable vorigin}
\edef\pdfgamma {\pdfvariable gamma}
\edef\pdfimageresolution {\pdfvariable imageresolution}
\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}
\edef\pdfimagegamma {\pdfvariable imagegammal}
\edef\pdfimagehicolor {\pdfvariable imagehicolor}
\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}
\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}

\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}
\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}
\edef \pdfpkmode {\pdfvariable pkmode}
\edef\pdfpkresolution {\pdfvariable pkresolution}
\edef\pdfgentounicode {\pdfvariable gentounicode}
\edef\pdflinkmargin {\pdfvariable linkmargin}
\edef\pdfdestmargin {\pdfvariable destmargin}
\edef\pdfthreadmargin {\pdfvariable threadmargin}
\edef\pdfformmargin {\pdfvariable formmargin}
\edef\pdfuniqueresname {\pdfvariable uniqueresname}
\edef\pdfpagebox {\pdfvariable pagebox}
\edef\pdfpagesattr {\pdfvariable pagesattr}
\edef\pdfpageattr {\pdfvariable pageattr}
\edef\pdfpageresources {\pdfvariable pageresources}
\edef\pdfxformattr {\pdfvariable xformattr}
\edef\pdfxformresources {\pdfvariable xformresources}

Table 2: List of pdfTEX variables and their new

\pdfvariable equivalents in LuaTEX.

\pdfhorigin lin
\pdfvorigin lin
\pdflinkmargin Opt
\pdfdestmargin Opt
\pdfthreadmargin Opt

Their removal from the frontend has helped
again to clean up the code and, by making them
registers, their use is still compatible. A call to
\pdfvariable defines an internal register that keeps
the value (of course this value can also be influenced
by the backend itself). Although they are real regis-
ters, they live in a protected namespace:

\meaning\pdf compresslevel
which gives:
macro:->[internal backend integer]

It’s perhaps unfortunate that we have to remain
compatible because a setter and getter would be
much nicer. I am still considering writing the exten-
sion primitive in Lua using the token scanner, but

Hans Hagen

it might not be possible to remain compatible then.
This is not so much an issue for ConTEXt that always
has had backend drivers, but, rather, for other macro
packages that have users expecting the primitives (or
counterparts) to be available.

7 Read-only variables: from \pdf...
to \pdffeedback

The backend can report on some properties that
were also accessible via \pdf ... primitives. Because
these are read-only variables, another primitive now
handles them: \pdffeedback. This primitive can be
used to define compatible alternatives, as shown in
table 3.

The variables are internal, so they are anony-
mous. When we ask for the meaning of some that
were previously defined:

\meaning\pdfhorigin
\meaning\pdfcompresslevel
\meaning\pdfpageattr

TUGDboat, Volume 37 (2016), No. 1

57

\def\pdfcolorstackinit {\pdffeedback colorstackinit}

\def\pdfcreationdate {\pdffeedback creationdate}
\def\pdffontname {\numexpr\pdffeedback fontname\relax}
\def \pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}
\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}
\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}
\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}
\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}
\def\pdfpageref {\numexpr\pdffeedback pageref\relax}
\def\pdfretval {\numexpr\pdffeedback retvallrelax}
\def\pdfxformname {\numexpr\pdffeedback xformname\relax}

Table 3: List of read-only pdfTEX variables and their new \pdffeedback equivalents in LuaTgX.

we will get, similar to the above:

macro:->[internal backend dimension]
macro:->[internal backend integer]
macro:->[internal backend tokenlist]

8 \pdf...

Finally, here is the list of primitives that have been re-
moved, with no TEX-level equivalent available. Many
were experimental, and they can be easily be pro-
vided to TEX using Lua.

\knaccode

\knbccode

\knbscode

\pdfadjustinterwordglue

\pdfappendkern

\pdfeachlinedepth

\pdfeachlineheight

\pdfelapsedtime

\pdfescapehex

\pdfescapename

\pdfescapestring

\pdffiledump

\pdffilemoddate

\pdffilesize

\pdffirstlineheight

\pdfforcepagebox

\pdfignoreddimen

\pdflastlinedepth

\pdflastmatch

\pdflastximagecolordepth

\pdfmatch

\pdfmdfivesum

\pdfmovechars

primitives removed

\pdfoptionalwaysusepdfpagebox
\pdfoptionpdfinclusionerrorlevel
\pdfprependkern
\pdfresettimer
\pdfshellescape
\pdfsnaprefpoint

\pdfsnapy

\pdfsnapycomp

\pdfstrcmp

\pdfunescapehex
\pdfximagebbox

\shbscode

\stbscode

9 Conclusion

The advantage of a clean backend separation, sup-
ported by just the three primitives \pdfextension,
\pdfvariable and \pdffeedback, as well as a collec-
tion of registers, is that we can now further clean the
code base, which remains a curious mix of combined
engine code, sometimes and sometimes not converted
to C from Pascal. A clean separation also means that
if someone wants to tune the backend for a special
purpose, the frontend can be left untouched. We will
get there eventually.

All the definitions shown here are available in
the file luatex-pdf.tex, which is part of the Con-
TEXt distribution.

¢ Hans Hagen
Pragma ADE
http://pragma-ade.com

LuaTgX 0.90 backend changes for PDF and more

58

Still expanding LuaTEX: Possibly useful
extensions

Hans Hagen
Abstract

New LuaTgX programming features in a variety of
areas: rules, spaces, token lists, active characters,
\csname, packing of lists, and error handling.

1 Introduction

While working on LuaTgX, it is tempting to intro-
duce all kinds of new fancy programming features.
Arguments for doing this can be characterized by
descriptions like ‘handy’, ‘speedup’, ‘less code’, ‘ne-
cessity’. It must be stated that traditional TEX is
rather complete, and one can do quite a lot of macro
magic to achieve many goals. So let us look a bit
more at the validity of these arguments.

The ‘handy’ argument is in fact a valid one. Of
course, one can always wrap clumsy code in a macro
to hide the dirty tricks, but, still, it would be nicer
to avoid needing to employ extremely dirty tricks.
I found myself looking at old code wondering why
something has to be done in such a complex way,
only to realize, after a while, that it comes with the
concept; one can get accustomed to it. After all,
every programming language has its stronger and
weaker aspects.

The ‘speedup’ argument is theoretically a good
one too, but, in practice, it’s hard to prove that a
speedup really occurs. Say we save 5% on a job.
This is nice for multipass on a server where many
jobs run at the same time or after each other, but
a little bit of clever macro coding will easily gain
much more. Or, as we often see: sloppy macro or
style writing will easily negate those gains. Another
pitfall is that you can measure (say) half a million
calls to a macro can indeed be brought down to a
fraction of its runtime thanks to some helper, but,
in practice, you will not see that gain because saving
0.1 seconds on a 10 second run can be neglected.
Furthermore, adding a single page to the document
will already make such a gain invisible to the user as
that will itself increase the runtime. Of course, many
small speedups can eventually accumulate to yield
a significant overall gain, but, if the macro package
is already quite optimized, it might not be easy to
squeeze out much more. At least in ConTEXt, I find
it hard to locate bottlenecks that could benefit from
extensions, unless one adds very specific features,
which is not what we want.

Of course one can create ‘less’ code by using
more wrappers. But this can definitely have a speed

Hans Hagen

TUGDboat, Volume 37 (2016), No. 1

penalty, so this argument should be used with care.
An appropriate extra helper can make wrappers fast
and the fewer helpers the better. The danger is in
choosing what helpers. A good criterion is that it
should be hard otherwise in TEX. Adding more prim-
itives (and overhead) merely because some macro
package would like it would be bad practice. I'm
confident that helpers for ConTEXt would not be that
useful for plain TEX, KTEX, etc., and vice versa.

The ‘necessity’ argument is a strong one. Many
already present extensions from e-TEX fall into this
category: fully expandable expressions (although
the implementation is somewhat restricted), better
macro protection, expansion control, and the ability
to test for a so-called csname (control sequence name)
are examples.

In the end, the only valid argument is ‘it can’t be
done otherwise’, which is a combination of all these
arguments with ‘necessity’ being dominant. This is
why in LuaTgX there are not that many extensions
to the language (nor will there be). I must admit that
even after years of working with TEX, the number of
wishes for more facilities is not that large.

The extensions in LuaTEX, compared to tradi-
tional TEX, can be summarized as follows:

e Of course we have the e-TEX extensions, and
these already have a long tradition of proven
usage. We did remove the limited directional
support.

e From Aleph (follow-up on Omega), part of the
directional support and some font support was
inherited.

e From pdfTEX, we took most of the backend code,
but it has been improved in the meantime. We
also took the protrusion and expansion code,
but especially the latter has been implemented
a bit differently (in the frontend as well as in
the backend).

e Some handy extensions from pdfTEX have been
generalized; other obscure or specialized ones
have been removed. So we now have frontend
support for position tracking, resources (images)
and reusable content in the core. The backend
code has been separated a bit better and only a
few backend-related primitives remain.

e The input encoding is now UTF-8, exclusively,
but one can easily hook in code to preprocess
data that enters TEX’s parser using Lua. The
characteristic catcode settings for TEX can be
grouped and switched efficiently.

e The font machinery has been opened wide so
that we can use the embedded Lua interpreter
to implement any technology that we might

TUGDboat, Volume 37 (2016), No. 1

want, with the usual control that TEXies like.
Some further limitations have been lifted. One
interesting point is that one can now construct
virtual fonts at runtime.

e Ligature construction, kerning and paragraph
building have been separated as a side effect of
Lua control. There are some extensions in that
area. For instance, we store the language and
min/max values in the glyph nodes, and we also
store penalties with discretionaries. Patterns
can be loaded at runtime, and character codes
that influence hyphenation can be manipulated.

e The math renderer has been upgraded to sup-
port OpenType math. This has resulted in many
new primitives and extensions, not only to de-
fine characters and spacing, but also to control
placement of superscripts and subscripts and
generally to influence the way things are con-
structed. A couple of mechanisms have gained
control options.

e Several Lua interfaces are available making it
possible to manipulate the (intermediate) results.
One can pipe text to TEX, write parsers, mess
with node lists, inspect attributes assigned at
the TEX end, etc.

Some of the features mentioned above are rather
LuaTgX specific, such as catcode tables and at-
tributes. They are present as they permit more
advanced Lua interfacing. Other features, such as
UTF-8 and OpenType math, are a side effect of more
modern techniques. Bidirectional support is there
because it was one of the original reasons for going
forward with LuaTEX. The removal of backend prim-
itives and thereby separating the code in a better
way (see companion article) comes from the desire
to get closer to the traditional core, so that most
documentation by Don Knuth still applies. It’s also
the reason why we still speak of ‘tokens’, ‘nodes’ and
‘noads’.

In the following sections I will discuss a few new
low-level primitives. This is not a complete descrip-
tion (after all, we have reported on much already),
and one can consult the LuaTEX manual to get the
complete picture. The extensions described below
are also relatively new and date from around version
0.85, the prelude to the stable version 1 release.

2 Rules

For insiders, it is no secret that TEX has no graphic
capabilities, apart from the ability to draw rules. But
with rules you can do quite a lot already. Add to
that the possibility to insert arbitrary graphics or

59

even backend drawing directives, and the average
user won’t notice that it’s not true core functionality.

When we started with LuaTgX, we used code
from pdfTEX and Omega (Aleph), and, as a conse-
quence, we ended up with many whatsits. Normal
running text has characters, kerns, some glue, maybe
boxes, all represented by a limited set of so-called
nodes. A whatsit is a kind of escape as it can be any-
thing an extension to TEX needs to wrap up and put
in the current list. Examples are (in traditional TEX
already) whatsits that write to file (using \write)
and whatsits that inject code into the backend (us-
ing \special). The directional mechanism of Omega
uses whatsits to indicate direction changes.

For a long time images were also included using
whatsits, and basically one had to reserve the right
amount of space and inject a whatsit with a direc-
tive for the backend to inject something there with
given dimensions or scale. Of course, one then needs
methods to figure out the image properties, but, in
the end, all of this could be done rather easily.

In pdfTEX, two new whatsits were introduced:
images and reusable so-called forms, and, contrary
to other whatsits, these do have dimensions. As a
result, suddenly the TEX code base could no longer
just ignore whatsits, but it had to check for these
two when dimensions were important, for instance
in the paragraph builder, packager, and backend.

So what has this to do with rules? Well, in
LuaTgX all the whatsits are now back to where they
belong, in the backend extension code. Directions are
now first-class nodes, and we have native resources
and reusable boxes. These resources and boxes are
an abstraction of the pdfTEX images and forms, and,
internally, they are a special kind of rule (i.e. a blob
with dimensions). Because checking for rules is part
of the (traditional) TEX kernel, we could simply
remove the special whatsit code and let existing rule-
related code do the job. This simplified the code a
lot.

Because we suddenly had two more types of
rules, we took the opportunity to add a few more.

\nohrule width 10cm height 2cm depth Ocm
\novrule width 10cm height 2cm depth Ocm

This is a way to reserve space, and it’s nearly
equivalent to the following (respectively):

{\setbox0\hbox{}%
\wd0=10cm\ht0=2cm\dp0=0cm\boxO\relax}

{\setbox0\vbox{}%
\wd0=10cm\ht0=2cm\dp0=0cm\boxO\relax}

There is no real gain in efficiency because key-
words also take time to parse, but the advantage is

Still expanding LuaTgX: Possibly useful extensions

60

that no Lua callbacks are triggered.! Of course, this
variant would not have been introduced had we still
had just rules and no further subtypes; it was just a
rather trivial extension that fit in the repertoire.?
So, while we were at it, yet another rule type
was introduced, but this one has been made available
only in Lua. As this text is about LuaTgX, a bit
of Lua code does fit into the discussion, so here we
go. The code shown here is rather generic and looks
somewhat different in ConTEXt, but it does the job.
First, let’s create a straightforward rectangle
drawing routine. We initialize some variables first,
then scan properties using the token scanner, and,
finally, we construct the rectangle using four rules.
The packaged (so-called) hlist is written to TEX.
\startluacode
function FramedRule()
local width =
local height =
local depth
local linewidth

O O O o

while true do
if token.scan_keyword("width") then
width = token.scan_dimen()
elseif token.scan_keyword("height") then
height = token.scan_dimen()
elseif token.scan_keyword("depth") then
depth = token.scan_dimen()
elseif token.scan_keyword("line") then
linewidth = token.scan_dimen()
else
break
end
end
local doublelinewidth = 2*linewidth

local left = node.new("rule")
local bottom = node.new("rule")
local right = node.new("rule")
local top = node.new("rule")
local back = node.new("kern")
local list = node.new("hlist")
left.width = linewidth

bottom.width = width - doublelinewidth
bottom.height = -depth + linewidth
bottom.depth = depth

right.width = linewidth

top.width = width - doublelinewidth
top.height = height

top.depth = -height + linewidth
back.kern = -width + linewidth

1 I still am considering adding variants of \hbox and \vbox
where no callback would be triggered.

2 This is one of the things I wanted to have for a long time
but seems less useful today.

Hans Hagen

TUGDboat, Volume 37 (2016), No. 1

list.list = left
list.width = width
list.height = height
list.depth = depth
list.dir = "TLT"

node.insert_after(left,left,bottom)
node.insert_after(left,bottom,right)
node.insert_after(left,right,back)
node.insert_after(left,back,top)

node.write(list)
end
\stopluacode

This function can be wrapped in a macro:
\def\FrameRule{\directlua{FramedRule () }}
and the macro can be used as follows:
\FrameRule width2cm height.5cm depth.5cm line2pt

The result is:

A different approach follows. Again, we define
a rule, but, this time we only set dimensions and
assign some attributes to it. Normally, one would
reserve some attribute numbers for this purpose, but,
for our example here, high numbers are safe enough.
Now there is no need to wrap the rule in a box.
\startluacode
function FramedRule()
local width =
local height =
local depth =
local linewidth
local radius
local type

O O O O OO

while true do

if token.scan_keyword("width") then
width = token.scan_dimen()

elseif token.scan_keyword("height") then
height = token.scan_dimen()

elseif token.scan_keyword("depth") then
depth = token.scan_dimen()

elseif token.scan_keyword("line") then
linewidth = token.scan_dimen()

elseif token.scan_keyword("type") then
type = token.scan_int()

elseif token.scan_keyword("radius") then
radius = token.scan_dimen()

else
break
end
end
local r = node.new("rule")
r.width = width
r.height = height

TUGDboat, Volume 37 (2016), No. 1

r.depth = depth

r.subtype = 4 -- user rule
r[20000] = type

r[20001] = linewidth

r[20002] = radius or O
node.write(r)

end

\stopluacode

Nodes with subtype 4 (user) are intercepted and
passed to a callback function, when set. Here we
show a possible implementation:

\startluacode
local bpfactor = (7200/7227)/65536
local f_rectangle = "Jf w 0 O %f %f re %s"
local f_radtangle = [[
%t w %t Om
%t 01 %E WE UE UEf y
WERE L UE UE KE UE ¥
Rt KE L WE UE U UE y
hE WE L RE UL UL WLy
h %s

1]

callback.register("process_rule",function(n,h,v)

local t = n[20000] == 0 and "f" or "s"
local 1 = n[20001] * bpfactor -- linewidth
local r = n[20002] * bpfactor -- radius
local w = h * bpfactor

local h = v * bpfactor

if r > 0 then
p = string.format(f_radtangle,
1, r, w-r, w,0,w,r, w,h-r, w,h,w-r,h,
r,h, 0,h,0,h-r, O,r, 0,0,r,0, t)

else
p = string.format(f_rectangle, 1, w, h, t)
end
pdf .print("direct",p)
end)
\stopluacode

We can now also specify a radius and type, where
0 is a filled and 1 a stroked shape.

\FrameRule
type 1
width 3cm height 1cm depth 5mm
line 0.2mm radius 2.5mm

Since we specified a radius we get round corners:

The nice thing about these extensions to rules

is that the internals of TEX are not affected much.

Rules are just blobs with dimensions and the par

builder, for instance, doesn’t care what they are.

There is no need for further inspection. Maybe future

versions of LuaTEX will provide more useful subtypes.

61

3 Spaces

Multiple successive spaces in TEX are normally col-
lapsed into one. But, what if you don’t want any
spaces at all? It turns out this is rather hard to
achieve. You can, of course, change the catcodes,
but that won’t work well if you pass text around as
macro arguments. Also, you would not want spaces
that separate macros and text to be ignored, but
only those in the typeset text. For such use, LuaTgX
introduces \nospaces.

This new primitive can be used to overrule the
usual \spaceskip-related heuristics when a space
character is seen in a text flow. The value 1 specifies
no injection, a value of 2 results in injection of a zero
skip, and the default 0 gets the standard behavior.
Below we see the results for four characters separated
by spaces. (Output has been rescaled.)
D XXXxo] :0:0:0. G

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 16mm

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

In case you wonder why setting the space re-
lated skips to zero is not enough: even when it is
set to zero you will always get something. What
gets inserted depends on \spaceskip, \xspaceskip,
\spacefactor and font dimensions. I must admit
that I always have to look up the details, as, nor-
mally, it’s wrapped up in a spacing system that you
implement once then forget about. In any case, with
\nospaces, you can completely get rid of even an
inserted zero space.

4 Token lists

The following four new primitives are provided be-
cause they are more efficient than macro-based vari-
ants: \toksapp, \tokspre, and \e... (expanding)
versions of both. They can be used to append or
prepend tokens to a token register.

However, don’t overestimate the gain to be
found in simple situations with not that many tokens
involved (read: there is no need to instantly change
all code that does it the traditional way). The new
method avoids saving tokens in a temporary register.
Then, when you combine registers (which is also pos-
sible), the source gets appended to the target and,
afterwards, the source is emptied: we don’t copy but
combinel!

Their use can best be demonstrated by examples.
We employ a scratch register \ToksA. The examples
here show the effects of grouping; in fact, they were

Still expanding LuaTgX: Possibly useful extensions

62

written for testing this effect. Because we don’t use
the normal assignment code, we need to initialize a
local copy in order to get the original content outside
the group.
\ToksA{}
\bgroup \ToksA{}
\bgroup \toksapp\ToksA{!!'} [\the\ToksA=!!]
\egroup [\the\ToksA=]
\egroup
[\the\ToksA=]
result: [t1=11][=][=]
\ToksA{}
\bgroup \ToksA{A}
\bgroup \toksapp\ToksA{!!} [\the\ToksA=A!!]
\egroup [\the\ToksA=A]
\egroup
[\the\ToksA=]
result: [A!1=A!1][A=A] [=]
\ToksA{}
\bgroup \ToksA{}
\bgroup
\ToksA{A} \toksapp\ToksA{!!}[\the\ToksA=A!!]
\egroup [\the\ToksA=]
\egroup
[\the\ToksA=]
result: [A11=A11][=][=]
\ToksA{}
\bgroup \ToksA{A}
\bgroup
\ToksA{} \toksapp\ToksA{!!} [\the\ToksA=!!]
\egroup [\the\ToksA=A]
\egroup
[\the\ToksA=]
result: [!'!=11][A=A] [=]
\ToksA{}
\bgroup \ToksA{}
\bgroup
\tokspre\ToksA{!!} [\the\ToksA=!!]
\egroup [\the\ToksA=]
\egroup
[\the\ToksA=]
result: [''=11][=][=]
\ToksA{}
\bgroup \ToksA{A}
\bgroup
\tokspre\ToksA{!!} [\the\ToksA=!!A]
\egroup [\the\ToksA=A]
\egroup
[\the\ToksA=]
result: [!1A=11A] [A=A] [=]
\ToksA{}
\bgroup \ToksA{}
\bgroup
\ToksA{A} \tokspre\ToksA{!!}[\the\ToksA=!!4]
\egroup [\the\ToksA=]

Hans Hagen

TUGDboat, Volume 37 (2016), No. 1

\egroup
[\the\ToksA=]
result: [11A=11A][=][=]
\ToksA{}
\bgroup \ToksA{A}
\bgroup
\ToksA{} \tokspre\ToksA{!!} [\the\ToksA=!!]
\egroup [\the\ToksA=A]
\egroup
[\the\ToksA=]
result: [!!=11][A=A][=]

Here we used \toksapp and \tokspre, but there
are two more primitives, \etoksapp and \etokspre;
these expand the given content while it gets added.

The next example demonstrates that you can
also append another token list. In this case the
original content is gone after an append or prepend.

\ToksA{A}

\ToksB{B}
\toksapp\ToksA\ToksB
\toksapp\ToksA\ToksB
[\the\ToksA=AB]

result: [AB=AB]

This is intended behaviour! The original content
of the source is not copied but really appended or
prepended. Of course, grouping works well.

\ToksA{A}

\ToksB{B}

\bgroup
\toksapp\ToksA\ToksB
\toksapp\ToksA\ToksB
[\the\ToksA=AB]

\egroup

[\the\ToksA=AB]

result: [AB=AB] [AB=AB]

5 Active characters

We now enter an area of very dirty tricks. If you
have read The TEXbook or listened to talks by TEX
experts, you will, for sure, have run into the term ‘ac-
tive character’. In short, it boils down to this: each
character has a catcode and there are 16 possible
values. For instance, backslash normally has catcode
zero, braces have values one and two, and normal
characters can be 11 or 12. Very special are charac-
ters with code 13 as they are ‘active’ and behave like
macros. In Plain TEX, the tilde is one such active
character, and it’s defined to be a ‘non-breakable
space’. In ConTEXt, the vertical bar is active and
used to indicate compound and fence constructs.
Below is an example of a definition:

\catcode‘A=13
\def A{B}

TUGDboat, Volume 37 (2016), No. 1

This will make the A into an active character
that will typeset a B. Of course, such an example is
asking for problems since any A is seen that way, so
a macro name that uses one will not work. Speaking
of macros:

\def\whatever
{\catcode‘A=13
\def A{B}}

This won’t work out well. When the macro is
read it gets tokenized and stored and at that time the
catcode change is not yet done so when this macro
is called the A is frozen with catcode letter (11) and

the \def will not work as expected (it gives an error).

The solution is this:
\bgroup
\catcode‘A=13
\gdef\whatever

{\catcode‘A=13

\def A{B}}
\egroup

Here we make the A active before the definition

and we use grouping because we don’t want that
to be permanent. But still we have a hard-coded
solution, while we might want a more general one
that can be used like this:
\whatever{A}{B}
\whatever{=}{{\bf =}}

Here is the definition of whatever:

\bgroup
\catcode‘~=13
\gdef\whatever#1#2/,

{\uccode‘"=‘#1\relax

\catcode ‘#1=13

\uppercase{\def\tempwhatever{~}}/,

\expandafter\gdef\tempwhatever{#2}}
\egroup

If you read backwards, you can imagine that

\tempwhatever expands into an active A (the first
argument). So how did it become one? The trick is
in the \uppercase (a \lowercase variant will also
work). When casing an active character, TEX applies

the (here) uppercase and makes the result active too.

We can argue about the beauty of this trick or
its weirdness, but it is a fact that for a novice user
this indeed looks more than a little strange. And so,
a new primitive \letcharcode has been introduced,
not so much out of necessity but simply driven by
the fact that, in my opinion, it looks more natural.
Normally the meaning of the active character can be
put in its own macro, say:

\def\MyActiveA{B}

We can now directly assign this meaning to the active
character:

\letcharcode ‘A=\MyActiveA

63

Now, when A is made active this meaning kicks in:
\def\whatever#1#2J,
{\def\tempwhatever{#2}/
\letcharcode ‘#1\tempwhatever
\catcode‘#1=13\relax}

We end up with less code but, more important, it
is easier to explain to a user and, in my eyes, it looks
less obscure, too. Of course, the educational gain
here wins over any practical gain because a macro
package hides such details and only implements such
an active character installer once.

6 \csname and friends

You can check for a macro being defined as follows:
\ifdefined\foo
do something
\else
do nothing
\fi
which, of course, can be obscured to:
do \ifdefined\foo some\else no\fi thing

A bit more work is needed when a macro is
defined using \csname, in which case arbitrary char-
acters (like spaces) can be used:

\ifcsname something or nothing\endcsname

do something
\else

do nothing
\fi

Before e-TEX, this was done as follows:
\expandafter

\ifx\csname something or nothing\endcsname
\relax

do nothing
\else

do something
\fi

The \csname primitive will do a lookup and cre-
ate an entry in the hash for an undefined name that
then defaults to \relax. This can result in many un-
wanted entries when checking potential macro names.
Thus, e-TEX’s \ifcsname test primitive can be qual-
ified as a ‘necessity’.

Now take the following example:

\ifcsname do this\endcsname

\csname do this\endcsname
\else\ifcsname do that\endcsname

\csname do that\endcsname
\else

\csname do nothing\endcsname
\fi\fi

If do this is defined, we have two lookups. If it
is undefined and do that is defined, we have three
lookups. So there is always one redundant lookup.

Still expanding LuaTgX: Possibly useful extensions

64

Also, when no match is found, TEX has to skip to
the \else or \fi. One can save a bit by uglifying
this to:
\csname do¥%
\ifcsname do this\endcsname this\else
\ifcsname do that\endcsname that\else
nothing\fi\fi
\endcsname

This, of course, assumes that there is always a
final branch. So let’s get back to:
\ifcsname do this\endcsname

\csname do this\endcsname
\else\ifcsname do that\endcsname

\csname do that\endcsname
\fi\fi

As said, when there is some match, there is
always one test too many. In case you think this
might be slowing down TEX, be warned: it’s hard to
measure. But as there can be (m)any character(s)
involved, including multi-byte UTF-8 characters or
embedded macros, there is a bit of penalty in terms
of parsing token lists and converting to UTF-8 strings
used for the lookup. And, because TEX has to give
an error message in case of troubles, the already-seen
tokens are stored too.

So, in order to avoid this somewhat redundant
operation of parsing, memory allocation (for the
lookup string) and storing tokens, the new primitive
\lastnamedcs is now provided:

\ifcsname do this\endcsname

\lastnamedcs
\else\ifcsname do that\endcsname

\lastnamedcs
\fi\fi

In addition to the (in practice, often negligible)
speed gain, there are other advantages: TEX has
less to skip, and although skipping is fast, it still

isn’t a nice side effect (also useful when tracing).

Another benefit is that we don’t have to type the
to-be-looked-up text twice. This reduces the chance
of errors. In our example we also save 16 tokens
(taking 64 bytes) in the format file. So, there are
enough benefits to gain from this primitive, which
is not a specific feature, but just an extension to an
existing mechanism.

It also works in this basic case:
\csname do this\endcsname
\lastnamedcs

And even this works:

\csname do this\endcsname
\expandafter\let\expandafter\dothis\lastnamedcs

And after defining;:
\bgroup

Hans Hagen

TUGDboat, Volume 37 (2016), No. 1

\expandafter
\def\csname do this\endcsname{or that}
\global\expandafter
\let\expandafter\dothis\lastnamedcs
\expandafter
\def\csname do that\endcsname{or this}
\global\expandafter
\let\expandafter\dothat\lastnamedcs
\egroup
We can use \dothis that gives or that and
\dothat that gives or this, so we have the usual
freedom to be able to use something meant to make
code clean for the creation of obscure code.
A variation on this is the following:

\begincsname do this\endcsname

This call will check if \do this is defined, and,
if so, will expand it. However, when \do this is not
found, it does not create a hash entry. It is equivalent
to:

\ifcsname do this\endcsname\lastnamedcs\fi

but it avoids the \ifcsname, which is sometimes
handy as these tests can interfere.

I played with variations like \ifbegincsname,
but we then quickly end up with dirty code due to
the fact that we first expand something and then
need to deal with the following \else and \fi. The
two above-mentioned primitives are non-intrusive
in the sense that they were relatively easy to add
without obscuring the code base.

As a bonus, LuaTEX also provides a variant
of \string that doesn’t add the escape character:
\csstring. There is not much to explain to this:

\string\whatever<>\csstring\whatever
This gives: \whatever<>whatever

The main advantage of these several new primi-
tives is that a bit less code is needed and (at least for
ConTEXt) leads to a bit less tracing output. When
you enable \tracingall for a larger document or
example, which is sometimes needed to figure out
a problem, it’s not much fun to work with the re-
sulting megabyte (or sometimes even gigabyte) of
output so the more we can get rid of, the better. This
consequence is just an unfortunate side effect of the
ConTEXt user interface with its many parameters.
As said, there is no real gain in speed.

7 Packing of lists

Deep down in TEX, horizontal and vertical lists even-
tually get packed. Packing of an \hbox involves:

1. ligature building (for traditional TEX fonts),
2. kerning (for traditional TEX fonts),
3. calling out to Lua (when enabled) and

TUGDboat, Volume 37 (2016), No. 1

4. wrapping the list in a box and calculating the
width.

When a Lua function is called, in most cases,
the location where it happens (group code) is also
passed. But say that you try the following:

\hbox{\hbox{\hbox{\hbox fool}}}

Here we do all four steps, while for the three
outer boxes, only the last step makes any sense. And
it’s not trivial to avoid the application of the Lua
function here. Of course, one can assign an attribute
to the boxes and use that to intercept, but it’s kind
of clumsy. This is why we now can say:
\hpack{\hpack{\hpack{\hbox foo}}}

There are also \vpack for a \vbox and \tpack
for a \vtop. There can be a small gain in speed when
many complex manipulations are done, although in,
for instance, ConTEXt, we already have provisions for
that. It’s just that the new primitives are a cleaner
way out of a conceptually nasty problem. Similar
functions are available on the Lua side.

8 Errors

We end with a few options that can be convenient
to use if you don’t care about exact compatibility.
\suppresslongerror

\suppressmathparerror

\suppressoutererror

\suppressifcsnameerror

When entering your document on a paper tele-
type terminal, starting TEX, and then going home
in order to have a look at the result the next day, it
does make sense to catch runaway cases, like prema-
ture ending of a paragraph (using \par or equivalent
empty lines), or potentially missing $$s. Nowadays,
it’s less important to catch such coding issues (and
be more tolerant) because editing takes place on
screen and running (and restarting) TEX is very fast.

The first two flags given above deal with this.
If you set the first to any value greater than zero,
macros not defined as \long (not accepting para-
graph endings) will not complain about \par tokens
in arguments. The second setting permits and ig-
nores empty lines (also pars) in math without revert-
ing to dirty tricks. Both are handy when your content
comes from places that are outside of your control.
The job will not be aborted (or hang) because of an
empty line.

65

The third setting suppresses the \outer direc-
tive so that macros that originally can only be used
at the outer level can now be used anywhere. It’s
hard to explain the concept of outer (and the related
error message) to a user anyway.

The last one is a bit special. Normally, when
you use \ifcsname you will get an error when TEX
sees something unexpandable or that can’t be part
of a name. But sometimes you might find it to be
quite acceptable and can just consider the condition
as false. When the fourth variable is set to non-zero,
TEX will ignore this issue and try to finish the check
properly, so basically you then have an \iffalse.

9 Final remarks

I mentioned performance a number of times, and it’s
good to notice that most changes discussed here will
potentially be faster than the alternatives, but this is
not always noticeable, in practice. There are several
reasons.

For one thing, TEX is already highly optimized.
It has speedy memory management of tokens and
nodes and unnecessary code paths are avoided. How-
ever, due to extensions to the original code, a bit
more happens in the engine than in decades past.
For instance, Unicode fonts demand sparse arrays
instead of fixed-size, 256-slot data structures. Han-
dling UTF involves more testing and construction of
more complex strings. Directional typesetting leads
to more testing and housekeeping in the frontend
as well as the backend. More keywords to handle,
for instance \hbox, result in more parsing and push-
ing back unmatched tokens. Some of the penalty
has been compensated for through the changing of
whatsits into regular nodes. In recent versions of
LuaTgX, scanning of \hbox arguments is somewhat
more efficient, too.

In any case, any speedup we manage to achieve,
as said before, can easily become noise through in-
efficient macro coding or user’s writing bad styles.
And we’re pretty sure that not much more speed
can be squeezed out. To achieve higher performance,
it’s time to buy a machine with a faster CPU (and
a huge cache), faster memory (lanes), an SSD, and
regularly check your coding.

¢ Hans Hagen

Pragma ADE
http://pragma-ade.com

Still expanding LuaTgX: Possibly useful extensions

66

Hyphenation languages in LuaTEX 0.90
Hans Hagen

In LuaTEX you can define up to 16,383 separate
languages, and words can be up to 256 characters
long. The language is stored with each character.
You can set \firstvalidlanguage (a new variable)
to, for instance, 1 and thereby make language 0 an
ignored hyphenation language. Because the language
is stored in the glyph nodes this is an efficient way
to disable hyphenation locally.

The new primitive \hyphenationmin can be set
to specify the minimum length of a word considered
for hyphenation. This value is stored with the (cur-
rent) language and applies to the whole paragraph.
Because \1efthyphenmin and \righthyphenmin are
stored with the glyphs you can temporarily change
them. The \uchyph value is also saved in the actual
nodes, therefore its handling is different from TEX82:
changes to \uchyph become effective immediately,
not at the end of the current partial paragraph.

LuaTgX now uses the new language-specific vari-
ables \prehyphenchar and \posthyphenchar when
creating implicit discretionaries, instead of TEX82’s
\hyphenchar, and new variables \preexhyphenchar
and \postexhyphenchar (also language-specific) for
explicit discretionaries, instead of TEX82’s empty
discretionary.

Typeset boxes now always have their language
information embedded in the nodes themselves, so
there is no longer a dependency on the surround-
ing language settings. In TEX82, a mid-paragraph
statement like \unhbox0 would process the box using
the current paragraph language unless there was a
\setlanguage issued inside the box. In LuaTgX all
language variables are already frozen.

In traditional TEX, hyphenation is driven by
the so-called \lccode table. In LuaTgX we made
this dependency less strong. Several strategies are
possible. When you do nothing, the currently-used
\lccode’s are still the default when loading patterns,
setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value
larger than zero the current set of \lccodes will be
saved with the language but in a dedicated name-
space reflecting hyphenation-justification codes. In
this case changing a \lccode afterwards has no
effect. Instead of \lccode you can use \hjcode.
These are per-language and when set take prece-
dence over the shared \1ccodes. So, LuaTEX doesn’t
store \lccodes per language but has a dedicated
hyphenation-justification code instead. You can
change these values at any time with \hjcode‘a=‘a.

This change is global which makes sense if you

TUGDboat, Volume 37 (2016), No. 1

keep in mind that the moment when hyphenation
happens is (normally) when the paragraph or a hori-
zontal box is constructed. If \savinghyphcodes was
zero when the language was initialized you start out
with nothing, otherwise you already have a set. Be-
ware: the \hjcode values are always saved in the for-
mat, independent of the value of \savinghyphcodes
when the format is dumped.

The value of the two counters related to hyphen-
ation, \hyphenpenalty and \exhyphenpenalty, are
now stored in the discretionary nodes. This permits
a local overload when explicit \discretionary com-
mands are used. The implementation is downward
compatible but permits control for special situations.

MetaPost arrowhead variants

Alan Braslau, Hans Hagen

Some colleagues have complained that the arrow-
heads in MetaPost graphics are too blunt, and that
they would like to see a more stylish arrowhead. Per-
haps they do not appreciate how MetaPost produces
arrowheads that actually follow a curved path? Still,
we realized that one can easily modify the arrowhead
macro to produce variants to satisfy everyone while
remaining simple and elegant.

We settled on a backwards-compatible solution
of adding two new global, internal variables to the
existing ahlength and ahangle: ahvariant and
ahdimple. With the default ahvariant:=0, one
gets the traditional MetaPost arrowhead. A non-
zero value will give a more stylized arrowhead that
uses the value of ahdimple, a unitless fraction of
ahlength, by default 0.2, to create a dimple at the
base. The variant:=1 uses ... to give a rounded
dimple or “ear” and variant:=2 uses —- to create a
barb. Finally, a sort of “broadhead” can be produced
by making ahdimple negative. (We also made an
efficiency change in PDF drawing that leads to an
improvement when drawing arrowheads.)

This change is now part of MetaFun and Con-
TEXt and can be easily included as MetaPost macros.
Examples follow (scaled for TUGboat).

pickup pencircle scaled 2mm;

ahlength := 8mm;drawarrow fullcircle scaled 2cm;
ahvariant := 1; drawarrow fullcircle scaled 4cm;
ahdimple := .5; drawarrow fullcircle scaled 6cm;
ahangle := 60; drawarrow fullcircle scaled 8cm;

TUGDboat, Volume 37 (2016), No. 1

A personal book catalogue: bookdb
Peter Wilson

1 Introduction

For many years I have been collecting books. They
are located in five rooms, as well as two bookcases
in my printing and binding workshop. But recently
I found that I was buying books that I already had.
I decided that the best way to save money was to
catalogue all the books that I owned and where they
were kept.

I'searched on the web for free database programs
that would be appropriate. There were only a few
that would run under Linux, which is the operating
system I am most comfortable with. Of those, some I
could not install, and the one that I could I couldn’t
get to work for me.

I contacted several booksellers that I dealt with
and asked them what they used for cataloguing their
stock. They all replied, but most used proprietary
and expensive software that included things like
preparing invoices that were irrelevant as far as I
was concerned. The two responses that grabbed my
attention were ‘use a card index’ (but I needed space
for books, not card indexes) and ‘try bibtex’, which
immediately appealed as I had used it for many years;
why I hadn’t thought of it myself I'll never know.

2 Usage

The standard BIBTEX entries did not meet my needs.
I looked at biblatex [3] but its entries also didn’t
match my requirements so I decided to tweak BIBTEX.
To that end I used Patrick Daly’s makebst pro-
gram [2] for generating a *.bst file that went some
way towards meeting my needs. This required some
hand-coded additions later; I read the articles by
Oren Patashnik [5], the creator of BIBTEX, and Nico-
las Markey [4], which helped me on my way. In
the end I had a BIBTEX file called bookdb.bst [6]
that included all the regular entries but a greatly
expanded book entry, as follows:

book A book with a publisher

Required: author or editor, title,
publisher, year

Optional: volume or number, series,
address, edition, month, note,
collator, foreword, preface,
introduction, volumes, pages,
illustrations, binding, size,
condition, copy, location,
category, value

67

Also, I created a new entry called heading, as
follows:

heading A heading in the bibliography
Required: key
Optional: note

The additional fields in the book entry are:
binding: Information about the book’s binding.
Output as:

Binding: ‘binding.’

The general theme of the book.
Output as:

Category: ‘category.’

category:

collator: The name(s) of those who collated
the book contents. Output as:

‘collator’ (collator(s))
condition: The book’s condition. Output as:
Condition: ‘condition.
For a limited edition, the particular
copy. Output as:
Copy: ‘copy.
The names(s) of the author(s) of
the book’s Foreword, if not written
by the author(s) of the main text.
Output as:
foreword by ‘foreword’

copy:

foreword:

illustrations:
Information about the number and
kind of any illustrations and possibly
who created them. Output as:
Illustrations: ‘illustrations.

introduction:
The name(s) of the author(s) of the
book’s Introduction, if not written
by the author(s) of the main text.
Output as:
introduction by ‘introduction’

Where the book is located.
Output as:
Location: ‘location’

location:

The total number of pages.
Output as:

‘pages’ pp.,

The names(s) of the author(s) of
the book’s Preface, if not written
by the author(s) of the main text.
Output as:

preface by ‘preface’

pages:

preface:

size: The book’s physical dimensions.
Output as:

Size: ‘size’

A personal book catalogue: bookdb

68

value: The book’s value. Output as:
Value: ‘value!

volumes: The number of volumes. Output as:

Volumes: ‘volumes’

I use the heading entry for putting a heading
or division marker into a bibliography. The key
is required so that the heading is sorted into the
correct position in the bibliography (normally sorting
is based on the author or editor). The contents of the
note field form the printed heading. For instance if
you wanted a heading before each alphabetical group
of authors you could do something like:

@Gheading{Al,

key = {A1},

note = {\ahead{AAAAAAAA...}}
}
@heading{B1,

key ={B1},

note = {\ahead{BBBBBBBB...}}
}
etc

where \ahead might be defined as:

\providecommand{\ahead} [1]{%
\textbf{\large #1}}

To help clarify matters, Figure 1 shows a possi-
ble entry in a *.bib file. The output after processing
in a document using bookdb.bst is illustrated in Fig-
ure 2.

As an example this is a file that I use for printing
a catalogue of my books, where the book details are
in file mybooks.bib. Note that using bookdb requires
the use of the natbib package [1].

% books.tex a catalogue of my books
\documentclass[11pt,adpaper] {memoir}
\usepackage [T1]{fontenc}
\usepackage{natbib}
\pagestyle{empty}

\begin{document}

\nocite{*}
\bibliographystyle{bookdb}
\bibliography{mybooks}
\end{document}

3 Implementation

As T said earlier I had to extend the bookdb.bst file
produced by the makebst program. I didn’t really
know how it all worked but after much trial and
many errors I got something that on the whole met
my needs. My basic process was to copy elements of
the original bst, change some names, and see what
was produced.

First of all I added the new book fields to the
bookdb.bst ENTRY command as:

Peter Wilson

TUGboat, Volume 37 (2016), No. 1

©book{ABOOK,
author = {A. N. Author and A. Nother},
title = {A Book Entry},
editor = {Smith and Jones},
collator = {Jane and Tim},
translator = {Jo and Mary},
foreword = {Alpha},
preface = {Zoe},
introduction = {Bloggs and Friend},
volume = 7,
publisher = {Herries Press},
year = 2020,
pages = {xii + 278 + vi},
edition = {Third},
isbn = {0-201-36299-8},
volumes = 9,
illustrations = {11 wood engravings},
binding = {full red leather},
size = {11 by 17 inches},
note = {This is a note},
condition = {Hot off the press},
copy = {23 of 125},
location = {my study}l,
category = {private press},
value = {\$2702}
}

Figure 1: An example entry for bookdb processing

A. N. Author and A. Nother. A Book Entry, Smith
and Jones (eds.), Jane and Tim (collators), Jo
and Mary (translators), foreword by Alpha, pref-
ace by Zoe, introduction by Bloggs and Friend,
volume 7 (Herries Press, 2020), xii 4+ 278 + vi
pp., third edition. ISBN 0-201-36299-8. Volumes:
9. Illustrations: 11 wood engravings. Binding:
full red leather. Size: 11 by 17 inches. This is
a note. Condition: Hot off the press. Copy: 23
of 125. Location: my study. Category: private
press. Value: $270.

Figure 2: The example’s output

ENTRY
{...

binding
category
collator
condition
copy
foreword
illustrations
introduction
location

pages

TUGDboat, Volume 37 (2016), No. 1

preface
size
translator
value
volumes

The next thing was to add the new entries in
the correct order to the function that output the
book bibliography entries, together with how they
should be formatted. This was the final result after
many repetitions of try it, BIBTEX it, change it. The
original code is in a typewriter font and my additions
are in slanted typewriter.

FUNCTION {book}
{ output.bibitem
author empty$
{ format.editors "author and editor"
output.check
editor format.key output
add.blank
X
{ format.authors output.nonnull
crossref missing$
{ "author and editor" editor
either.or.check }

’skip$
if$
}
if$
new.block

format.btitle "title" output.check
format.editors output
format.collator output
format.translator output
format.foreword output
format.preface output
format.introduction output
crossref missing$
{ format.bvolume output
new.block
format.number.series output
new.sentence
format.publisher.address output
X
{
new.block
format.book.crossref output.nonnull
X
if$
format.book.pages output
format.edition output
format.isbn output
format.volumes output

69

format.illustrations output
format.binding output
format.size output
new.block

format.note output
format.condition output
format.copy output
format.location output
format.category output
format.value output
fin.entry

Effectively ‘all’ I had left to do was specify the
formatting of my new fields. I used three basic forms:

1. Some introductory text, like ‘introduction by’
or ‘Illustrations:’, followed by the field data.
2. Like the first form but with the field data in a
bold font.
3. Name(s) forming the field data followed by what
their contribution was in parentheses.
As an example of the first form here is the code
for binding:
FUNCTION {format.binding}
{ binding "binding" bibinfo.check
duplicate$ empty$ ’skip$

{
new.block
"Binding: " swap$ *
}
if$

}

Life was a little more complicated for the second
form. This is the code for the value field which
requires two functions, the first dealing with the
bolding and the second with the output.

FUNCTION {boldval}
{ duplicate$ empty$
{ pop$ "" }
{ "Value: \textbf{" swap$ * "}" * }
if$
}
FUNCTION {format.value}
{ value "value" bibinfo.check
duplicate$ empty$ ’skip$
{
new.block
boldval
}
if$
}
The third form required several functions, as
in the code for collator, where if there is a single

A personal book catalogue: bookdb

70

collator this is output as ‘Name (collator)’ but if
the are multiple collators the output is ‘Namel and
Name?2 ... (collators)’

FUNCTION {bbl.collator}
{ "collator" }
FUNCTION {bbl.collators}
{ "collators" }
FUNCTION {get.bbl.collator}
{ collator num.names$ #1 >
’bbl.collators ’bbl.collator
if$
}
FUNCTION {format.collator}
{ collator "collator" format.names
duplicate$ empty$ ’skip$
{ n n *
get.bbl.collator
"(" swap$ x ")" *
}
if$
}
4 My book database

The *.bib for my book catalogue looks somewhat

like this:

%%% mybooks.bib 2015/04/22

%kt for formatting headings

@preamble{ "\providecommand{\aheadl}[1]{%
\textbf{\large #1}}" }

%%h% publishers
O@string{CUP =
"Cambridge University Press"}
% etc
%h% categories
@string{science =
"science, mathematics, computers"}
% etc

@heading{Al,

key = {A},

note = {\ahead{AAAAAAAAAAA....}
}

@book{A1KEY,

author = {First A. Author},
% etc

}

@book{A2KEY,

author = {Second A. Author},
% etc

}

% etc

Peter Wilson

TUGboat, Volume 37 (2016), No. 1

I used the BIBTEX @preamble command to pro-
vide a definition of the \ahead macro. This, if re-
quired, can be overridden by an existing definition
in the document used to print the bibliography.

I added various @string commands to provide
shorthands for many of the fields in the .bib file,
such as publisher, location, category, that would
have the same value. This meant that I could have
a shortened field entry that looked like:

publisher = CUP,
instead of:
publisher = {Cambridge University Press},

5 Afterthoughts and unresolved problems

BIBTEX uses a stack-based language which I find
hard to understand. Many years ago I wrote an
interpreter for a stack-based language whose name
I have forgotten but even so I was unable to use
the language itself. I think that it is a little like
crosswords. I like doing ‘cryptic’ crosswords but I
find that with some setters I can follow their clues
easily but with others I haven’t a clue.

My basic approach was to take an existing *.bst
file, try and see what it did, then copy and modify
what seemed relevant to my needs.

I did have a couple of infelicities that I did not
manage to resolve.

The first was that no matter what I tried I could
not stop the heading from outputting its key, so it
should be made as short and unobtrusive as possible.

The second was that I couldn’t stop the warn-
ing message issued by BIBTEX if both an author
and editor were supplied although the output was
printed including both.

In spite of these, if you are a collector then you
may want to consider tweaking a *.bst file to meet
your particular needs.

6 Other collections

Perhaps, like me, you have collections other than
books. These can also be catalogued via BIBTEX.
For instance I collect Japanese woodblock prints and
Western engravings, while you might collect pictures
in general. I have no need to create a catalogue of my
prints as I keep them in folders in one place, together
with information about each one. If I did want to cre-
ate such a catalogue I would start with bookdb.bst,
renaming it to perhaps pictures.bst. Then add in
the new fields for the prints and engravings, such as:

artist: The name (and perhaps the date) of
the artist. Output like author.
engraver: The name of the engraver.

TUGDboat, Volume 37 (2016), No. 1

censor: The name(s) of the censors. Output

like collators.

Then define a new japanese entry, based on
the book, with maybe the fields:

A Japanese woodblock print with

an artist

Required: artist, title

Optional: engraver, censor,
publisher, date, series,
note, size, value, category

japanese

And a new engraving entry, based on the book,
with possibly the fields:

engraving An engraving with an engraver
Required: engraver, title
Optional: date, series, note,
size, value, category

Then delete everything that might be irrelevant,
such as inproceedings, etc.

You could use similar enhancements to cata-
logue, say, a collection of watercolours or Dinky toys
or model trains.

It’s up to you!

References

[1] Patrick W. Daly. natbib—natural sciences
citations and references, September 2010.
http://ctan.org/pkg/natbib.

[2] Patrick W. Daly. custom-bib— customizing
bibliographic style files, November 2011.
http://ctan.org/pkg/custom-bib.

[3] Philipp Lehman and Philip Kime. biblatex —
bibliographies in XTEX using BIBTEX
for sorting only, March 2016. http:
//ctan.org/pkg/biblatex.

[4] Nicolas Markey. Tame the BeaST, October
2009. http://ctan.org/pkg/tamethebeast.

[5] Oren Patashnik. Designing BIBTEX styles,
February 1988. http://mirror.ctan.org/
biblio/bibtex/base/btxhak.pdf.

[6] Peter Wilson. bookdb—a personal book
catalogue, June 2015. http://ctan.org/pkg/
bookdb.

¢ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 15Q
UK
herries dot press (at)
earthlink dot net

71

OPmac-bib: Citations using *.bib files with
no external program

Petr Olsak

Introduction

The OPmac package [1] is a set of plain TEX macros
which implements the basic IATEX functionality in a
simple way. The OPmac-bib module is part of OP-
mac. It provides the *.bib manipulation without
any external program (such as BIBTEX [2] or biber
[3]). This allows you to forget about encoding prob-
lems when using the ancient BIBTEX, forget about
calling an external program and forget about work-
ing with the highly unconventional *.bst language.
We don’t need such complications in plain TEX. We
are able to generate bibliography references directly
from *.bib files only by simple TEX macros. This
article introduces the main principles of OPmac-bib.

The librarian.tex [4] package is used by
OPmac-bib for scanning the *.bib databases.

The OPmac and OPmac-bib packages are suc-
cessfully used by students at CTU in Prague for cre-
ating their theses using the CTUstyle template [5].

Common principles

If we need to refer to the existence of another doc-
ument in our document then such a reference is the
subject of formal rules. The rules depend on the sci-
entific discipline, journal requirement, normal con-
ventions, or a mix of these aspects. We first need to
declare the terminology about this.

We use actual document for the document
where the citation is used (linked from) and cited
document for the mentioned source (linked to).
The place in the text of actual document where we
need to refer to the cited document is the citation
point. Common rules say that authors of an actual
document only have to have a citation mark at the
citation point, and they must put the bibliographic
entry at the end of the actual document in a special
section usually called “References” or “Bibliogra-
phy”. The citation mark can be repeated next to
the bibliographic entry. The list of all bibliographic
entries cited in the actual document is the refer-
ences list. Fach bibliographic entry must include
fields (author, title, year of edition etc.). They
must unambiguously specify the cited document.
There are mandatory fields and optional fields, they
depend on the type (book, article etc.) of the cited
document and, of course, on the formal rules. The
citation marks may be numbered or non-numbered.

72

The non-numbered marks may be long (like Knuth
1984) or short (like Kn84). Only one type of the
citation marks must be used in the whole document.

The TEX user typically doesn’t care about ci-
tation marks and bibliographic entries. These are
generated automatically. The user puts only a label
at the citation point into the source text of the ac-
tual document. The label is invisible in the printed
version of the document but it must be the same as
the label which determines the bibliographic entry
in the *.bib database(s) used.

Various rules, conventions and standards gov-
ern the following:

e The format of citation marks.

e The rules for grouping citation marks if mul-
tiple documents are cited at the same citation
point.

e The type of brackets used around -citation
marks, or around groups of them, possibly with
other rules of printing the citation marks.

e Which fields are mandatory and which are op-
tional (dependent on the type of the cited doc-
ument) when printing the bibliographic entry.

e How to format the bibliographic entry: what
separators (punctuation, reserved words or ab-
breviations) must be used between fields, what
font to use for what types of fields, what order-
ing of fields to use in a given entry.

e The reserved words or abbreviations mentioned
above (like “edition”, “et al.”, “pp.”, “available
from” etc., can be printed in the language of the
actual document or in the language of the cited
document. It depends on the kind of reserved
word.

e The list of authors is a special field in the entry.
There are rules about how to print the names
of each individual author (the ordering of first
name, last name and other names, the abbrevi-
ations of these names etc.), what separators are
used between authors, what ordering of authors
may be used (alphabetical or by credit).

e There are conventions about ordering the bibli-
ographic entries in the reference list: alphabet-
ically by the first author, by the year of print-
ing, a mix of these, by the occurrence of citation
points in the actual document, etc.

It is clear that implementation of these vari-
ous rules for automatic generation of bibliographic
references is a very complicated task. But OPmac-
bib solves it and uses only clear and simple TEX
macros. No more special external format, no exter-
nal program is used. Anyone can simply change the

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

predefined TEX macros in order to follow different
conventions.

OPmac without bib

The OPmac package without the OPmac-bib mod-
ule provides the basic manipulation with citations.
We give a short summary in this section.

A user writes \citel[(label)] or \cite[({more
comma separated labels)] at the citation point. The
bibliographic entry (at the end of the document) can
be created manually with:

\bib [{label)] (text of the eniry)

The citation marks are auto-generated, num-
bered by default. When the \sortcitations dec-
laration is used then multiple citation marks at a
shared citation point are sorted sequentially; and
when \shortcitations is used then a continuous
sequence of the marks is converted to (from)—(to)
form, for example [3, 4, 5, 11, 12] is converted to
3-5, 11-12].

The OPmac documentation describes how
to print different brackets around citation marks
(square brackets are the default) or how to use a
different format for printing marks.

When \nonumcitations is declared then non-
numbered citation marks are used. The format of
these marks can be declared as a \bib parameter
when the entries are set manually:

\bib [(label)] = {(mark)} (text of the entry)

OPmac without OPmac-bib allows the use of
BIBTEX as an external program. You can write the
following at the place of the reference list:

\usebibtex{(bib-base)}{(bst-style)}

and the reference list is generated automatically.
The (bib-base) is the name (without extension) of
the *.bib file used and (bst-style) is the name the
*.bst style file used. The (labels) used in the actual
document must, of course, correspond with the la-
bels in the *.bib file. Four steps must be processed
to create the document in such case: TEX, BIBTEX,
TEX, TEX.

The format of the generated reference list is
given by the *.bst style but the obscure language
used in these files makes it difficult to modify the
formatting. So, OPmac-bib (described in next sec-
tions) gives better flexibility for setting the format
of reference list.

TUGDboat, Volume 37 (2016), No. 1

Bibliographic databases

The common format used for bibliographic entries
in the TEX world is derived from BIBTEX input and
the files have extension .bib. The main advantage
of this format is that it is a text file, and humans can
read it and modify it with an ordinary text editor.
It is a well-arranged text file from a human point
of view (not the typically obfuscated XML, for ex-
ample). Although it is a very old format, it can be
exported from almost all current bibliographic soft-
ware. And there are large amounts of data prepared
in this format. GUI-oriented programs for manipu-
lating and managing bibliographic databases in this
format are available as well.

An entry in the *.bib database looks like this:

@Book{Knuth:1984:TB,

author = "Donald E. Knuth",

title = "The {\TeX}book",

publisher = pub-AW,

address = pub-AW:adr,

pages = "ix + 483",

year = "'1984",

ISBN = "0-201-13448-9 (paperback),
0-201-13447-0 (hardcover)",

ISBN-13 = "978-0-201-13448-3 (paperback),
978-0-201-13447-6 (hardcover)",

LCCN = "Z253.4.T47 K58 1984",

bibdate = "Fri Jul 22 09:08:51 1994",

bibsource = "http://www.math.../texbook3.bib",
price = "US\$15.95 (paperback),
US\$32.95 (hardcover)",
}

The main syntax of this format for one bibliographic
entry can be expressed by:

Q(type) { (label),
(key) = "(value)",
(key) = "(value)",

}

where (type) is a type of the cited document
(book, article etc.) and (label) is the label used in
\cite[{label)].

The (key) gives the type of the field and (value)
of the field can be enclosed in quotes or braces. If no
such delimiter is used, the value is purely numeric,
or it is a string identifier or string operations. For
example, pub—AW and pub-AW:adr are string identi-
fiers in the example above. They are declared in the
same *.bib file as:

@String{pub-AW = "Ad{\-d}i{\-s}on-Wes{\-1}ey"}
@String{pub-AW:adr = "Reading, MA, USA"}

OPmac-bib

73

Unfortunately for our purposes, the *.bib for-
mat was designed to be read by BIBTEX, and was
never intended to be read directly by TEX. So, there
are many TEX-unfriendly rules: the two types of de-
limiters for (value)s, the case-insensitive identifiers
for (type)s and (key)s, the very loose rule for setting
names of given authors (described in the next sec-
tion), the special @string manipulation (we don’t
need it because we now will have much more pow-
erful TEX macro language for this), etc.

The OPmac-bib module uses the macro file
librarian.tex by Paul Isambert for scanning
the *.bib databases. This macro solves all the
TEX-unfriendly aspects mentioned above except for
one: the @string manipulation. I hope that this
does not matter because nowadays many *.bib files
(generated by bibliographic software or managed
by GUI-oriented software) don’t use the @string
feature. And if somebody uses a *.bib file where
@string is present then he/she can apply the
@string operations manually or with a conversion
script.

The Wikipedia page for BIBTEX [6] mentions
the common (type)s and (key)s used in original
BIBTEX and especially in the original *.bst styles
interpreted by BIBTEX (which are still widely used
today). If your citations go beyond this scope,
then you have a problem. For example, fields
such as isbn, url, and doi are not interpreted by
the original *.bst styles. You must modify the
*.bst file— typically a difficult task because of the
obscure postfix-based language. Or you can use
OPmac-bib to be able to modify the “bib-style”
files implemented by straightforward TEX macros.

OPmac-bib from a user’s point of view

You write \input opmac-bib at the beginning of
your document. You don’t need \input opmac
itself because opmac-bib loads opmac.tex if this
isn’t done already. The librarian.tex macro file
is loaded too, so the Librarian package must be
installed. It requires e-TEX activated in the format.

You can use \citel[(label)] or \cite[{labels)]
as usual. All (label)s must correspond with (label)s
in the used *.bib database. Similarly, you can use
\nocite [(labels)] to insert the corresponding bibli-
ographic entry in the reference list without printing
a citation mark at the citation point. If you want to
print the whole *.bib database then you can write
\nocite[*].

The reference list is generated by

\usebib/s ((style)) (bib-base)

: Citations using *.bib files with no external program

74

where (bib-base) is the name of a *.bib file, without
extension. You can read multiple *.bib files: use
a comma-separated list of such file names (without
spaces). The (style) parameter specifies the used
bib-style which determines the printed format of the
reference list. Namely, the (style) must be a part
of a file named opmac-bib-(style).tex which will
be used for the reference list format. The option
/s says that the ordering of bibliographic entries is
determined by the (style). Instead of /s, you can
use /c, which says that the ordering of entries is
given by the order of \cite or \nocite commands
in the actual document.

Two processing steps are usually required to
create the document: TEX, TEX. In the first, the
connection between citation marks and labels is es-
tablished and in the second, the citation marks are
printed correctly.

Two “bib-style” files are provided in the
OPmac-bib package: opmac-bib-simple.tex and
opmac-bib-is0690.tex. The second of these prints
the reference list in accordance with the ISO 690
standard; the first one is a simple implementa-
tion of the style and you can use it as a starting
point for your own projects. Moreover, a file
op-example.bib is included with OPmac-bib, as
an example of a *.bib file.

You can start experimenting with the following
code:

\input opmac-bib

Here is \cite[tbn,texbook] and also \cite[lech].
\bigskip

\usebib/s (simple) op-example

\bye

For instance, you can try changing simple to
is0690 for the style. If you are not using csplain
but normal pdftex, then you will see that the
accented letters in the name Ol§édk are lost. This is
due to the fact that op-example.bib uses accented
letters in the UTF-8 encoding and classic pdftex
is unable to easily interpret this. You can use
pdfcsplain instead of pdftex. Or you can use
xetex, but then appropriate Unicode-ready fonts
must be loaded, for example with

\input ucode
\input lmfonts

If multiple entries in the database have the same
(label) then the rule “first entry wins” is applied (as
of the Jan. 2016 version of OPmac-bib). This makes
it possible to store the exceptions for a particular
document in a (for example) local.bib file saved

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

in the same directory as the document and then use
a list of database files like this:

\usebib/s (is0690) local,global,op-example

The list of database files can be arbitrarily long.
Once all desired entries (declared by \cite and
\nocite) have been satisfied, then any remaining
files in the list are simply skipped.

Features of the is0690 bib-style

The detailed documentation of the iso690 style
is placed in the file opmac-bib-is0690.tex after
\endpinput. We mention only the basic features
in this article. On the other hand, we write here in
more detail of the author field in order to show the
complexity of the problem.

The is0690 style ultimately accepts the same
(type)s and (key)s in a *.bib file as the standard
*.bst styles used by BIBTEX. So, you can use exist-
ing *.bib files and the result is essentially the same.
Moreover, you can use the following fields for each
entry in a *.bib file:

option . space separated parameters, they
specify more rules for formatting

lang . two-letters specification of the
language of cited document
(en, cs, sk, de, etc.)

bibmark . the non-numbered citation mark

ednote . the editorial info
(illustrations etc.)

citedate . the date of citation in the
YYYY/MM/DD format.

numbering ... alternative format for
numbering of Journal volumes.

isbn . ISBN

issn .. ISSN

doi ... DoI

url ... URL

The author field. This field type (i.e. a (key) used
in *.bib files) is well-known from BIBTEX. But I'll
include a short review here and describe new fea-
tures of author field using the is0690 style.

The author field includes one or more authors
of the cited document. All names in the author field
must separated by _and,, separator. Each author
can be written in various formats (the “von” part is
typically missing):

Firstname(s) von Lastname

or

von Lastname, Firstname(s)

or

von Lastname, After, Firstname(s)

Only the Lastname part is mandatory. Example:

TUGDboat, Volume 37 (2016), No. 1

Leonardo Piero da Vinci

or

da Vinci, Leonardo Piero

or

da Vinci, painter, Leonardo Piero

The separator _and,, between authors is usually
changed to a comma for printing, but between the
second-to-last and final author the word “and” (or
something equivalent, depending on the language of
the cited document) is printed.

The name of the first author is printed in re-
verse order: “LASTNAME, Firstname(s) von, After”,
while all following authors are printed in normal or-
der: “Firstname(s) von LASTNAME, After”. This
follows the ISO 690 standard. The Lastname is cap-
italized using uppercase letters, but if the \sc com-
mand is defined, then it is used as a font switcher
in the form {\sc Lastname}. You can declare the
“Caps and small caps” font here.

You can specify an option aumax:{number).
Here, the (number) denotes the maximum number
of authors to be printed. Any additional authors
are ignored and the “et al.” is appended to the
list of printed authors. This text is printed only
if the aumax value is less than the real number of
authors. If you have the same number of authors
in the *.bib file as you need to print but you want
to append “et al.” then you can use the auetal
option.

There is also an option aumin:(number) to
specify the definitive number of printed authors if
the author list cannot be fully printed due to aumax.
If aumin is unused then aumax authors are printed
in such case.

All authors are printed if the aumax: (number)
option isn’t given. There is no internal limit. But
you can set the global options in your document by
setting the \biboptions macro. For example:

\def\biboptions {aumax:7 aumin:1}

means that if there are 8 or more authors, only the
first author name is printed.
Some general examples:

author = "John Red and Bob Brown and Tom Black",
output: RED, John, Bob BROWN, and Tom BLACK.

author = "John Red and Bob Brown and Tom Black",
option = "aumax:1",

output: RED, John, et al.

author = "John Red and Bob Brown and Tom Black",
option = "aumax:2",

output: RED, John, Bob BROWN, et al.

75

author = "John Red and Bob Brown and Tom Black",
option = "aumax:3",

output: RED, John, Bob BROWN, and Tom BLACK.

author = "John Red and Bob Brown and Tom Black",
option = "auetal",

output: RED, John, Bob BROWN, and Tom BLACK,
et al.

If you need to add text before or after the au-
thors list, you can use the auprint:{(value)} op-
tion. The (value) is printed instead of the authors
list. The (value) can include the \AU macro which
expands to the authors list. Example:

author = "Robert Galbraith",
option = "auprint:{\AU\space [pseudonym
of J. K. Rowling]l}",

output: GALBRAITH, Robert [pseudonym of J. K.
Rowling].

Another option is autrim: (number). All First-
names of all authors are trimmed (i.e. reduced to
initials) if the number of authors in the author field
is greater than or equal to (number). There is an
exception: autrim:0 means that no Firstnames are

trimmed. This is the default behavior. Another
example: autrim:1 means that all Firstnames are
trimmed.

author = "John Red and Bob Brown and Tom Black",
option = "auetal autrim:1",

output: RED, J., B. BROWN, T. BLACK, et al.

Language of reserved words. There are two
kinds of reserved words and abbreviations which
are automatically inserted in the bibliographic
entries:

e The word is a part of a field. Two examples
are the conjunction “and” between the second-
to-last and final author and the “et al.” phrase.
Such words have to be printed in the language
of the cited document.

e The word is prepended to a field value, and it is
desired to use the same language for it through-
out the entire reference list. For example, the
prefix phrase “available from” is used before the
url field, required by the ISO 690 norm. Such
words have to be printed in the language of the
actual document.

The language of the actual document is de-
clared by the selection of hyphenation patterns. For
example, when we are using csplain the default
hyphenation is for English, but this is changed to
Czech when \chyph or \cslang is selected at the be-
ginning of the document. You can experiment with

OPmac-bib: Citations using *.bib files with no external program

76

our example of \cite[tbn,texbook] mentioned in
the previous section. Replace simple by iso0690,
and see the result: “Available from” is prefixed be-
fore the url. But if you use csplain and declare
\chyph, then “Available from” is changed to “Dos-
tupné na” (the Czech equivalent).

The language of the cited document is supposed
to be the same as the language of the actual docu-
ment unless the lang field is specified. If the lang
field is given then it declares the language of the
cited document. For example:

author = "John Red and Bob Brown and Tom Black",
option = "auetal autrim:1",
lang = "cg"

output: RED, J., B. BROWN, T. BLACK a kol.
We see that “a kol.” (the Czech phrase) is used in-
stead of “et al.”.

Each entry is printed with hyphenation pat-
terns locally set to the language of the cited doc-
ument, as declared in the lang field.

OPmac knows only the en, cs and sk lan-
guages by default. If you are using the etex.src
macros (i.e. you are using etex, pdftex, xetex
or luatex) then you can declare new languages
with \isolangset{(long)}{(short)}; for example,
\isolangset{espanol}{es}. However, if you are
using csplain or pdfcsplain then you must re-
install the format with new hyphenation patterns;
see the file hyphen.lan. Each language has an
explicitly declared number in this file. Use this
number for declaration of the language identifier
by \sdef{lan:{number)}{(short)}, for example
\sdef{lan:26}{es} and \sdef{lan:126}{es}.

Sorting of entries. When \usebib/c is used then
the order of the entries in the reference list is given
by the order of \cite and \nocite in the document.
If (more usually) \usebib/s is specified, then the or-
der of the entries follows the ISO 690 standard: sort
by the first author (last name, first names) alpha-
betically; if entries remain the same from this, then
use the year of the edition (from older to newer). If
both of these sort keys (first author and the year)
are the same then the norm does not specify the
ordering.

But ... what does alphabetical ordering mean?
We can have many cited documents with authors
from different parts of the world. We may need to
sort names from ancient Babylon, but there is no
standard for this. Sorting has standards for par-
ticular languages only. Thus, the idea of using the
standard for sorting in the language of the actual
document is bad because no language includes all
characters used in possible author names.

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

This is the reason why I did not attempt
to solve this problem; instead, I simply used the
character-code sorting provided by librarian.tex.
Of course, this may give bad results, but we can
deal with exceptions when needed. For example, an
entry with the author “Svétla Cmejrkova” is placed
at the end of the reference list and this is wrong;
“C” must be sorted between “C” and “D” in Czech.
But we can declare the key field. When this field
is used, its value is used for sorting instead of the
names in the author field. So,

author = "Svétla Cmejrkova",
key "Czzmejrkova Svetla",

does the desired correction of sorting.

If someone needs the rule of automatically
putting self-citations before all others, key = "@"
can be added to all entries with his/her name. This
works because the code of the @ character is less
than the codes of all alphabetic characters.

Writing bib-styles

Documentation for bib-style programmers can be
found in the opmac-bib.tex file after its \endinput.
The existing styles opmac-bib-simple.tex and
opmac-bib-is0690.tex may be helpful for exam-
ples and inspiration.

The style file is read inside a TEX group when
the \usebib macro is processed. The *.bib files
are read in the same group and the reference list is
printed afterwards. Then the group is closed. This
means that all settings and definitions done in a style
file are local to this group. The \bibtexhook macro
is expanded immediately after the style file is read,
but before processing any *.bib files. Users can
set this macro in order to redefine some bib-style
features. The macro is empty by default.

The bib-style file must define a \print: (type)
macro for each (type) of bibliographic entry. These
macros are expanded to print an entry with the
given (type). For example, \print:book is ex-
panded when a processed entry has the type @book.
You must use lowercase letters in the control
sequence.

The programmer can use the helper macros
\bprinta and \bprintb. DBoth have the same
syntax:

\bprinta [{key)]l {(if exists)} {(if doesn’t exist)}

If the field given by the (key) exists then the (if
exists) part is processed, else the (if doesn’t exist)
part. The first parameter of \bprinta can include
the * character: this symbol is replaced by the value

TUGDboat, Volume 37 (2016), No. 1

of the given field. The * character cannot be “hid-
den” in next level of braces {...}. You can use
\bprintb instead of \bprinta with the same effect
but use ##1 instead of * and this parameter can be
hidden in braces—though nested macro calls need
more hashes.

Example for printing an @Book entry:

\sdef{print:book}{’

\bprinta [!author] {*\.\ } {\bibwarning}y,
\bprintb [title] {{\em##1}\.\ } {\bibwarning}},
\bprinta [edition] {*"\mtext{bib.edition}.\ }{1}%
\bprinta [address] {*: } {\bibwarning}%
\bprinta [publisher] {*, } {\bibwarning}%
\bprinta [year] {*x.\ } {\bibwarning}y,
\bprinta [isbn] {ISBN"*.\ } {\bibwarning}¥%
\bprintb [url] {\preurl\url{##1}. } 3%
}

The list of authors is printed first. The excla-
mation mark before the key author means that the
value of this field is printed by a special rule (us-
ing \authorname macro, see below). The list of
authors is printed in place of *, followed by the
“maybe dot” represented by the \. macro. This
macro prints a dot only if the preceding character
is not a dot, exclamation or question mark. Why
do we need this? The name can be ended with a
dot (due to abbreviating the first name, for exam-
ple) and we do not want to print a second dot in
such cases. A normal interword space (\) follows
after the “maybe dot”. If the field author is missing
then \bibwarning prints a warning about a missing
mandatory field for type @Book.

Then the title is printed. It is printed in italics
using \em macro. The “maybe dot” is used again,
because the title might end with a question mark, for
example. A space follows. title is another manda-
tory field, so again \bibwarning prints the warning
if the field is missing.

The optional field edition follows. The text
“edition” is appended but this text depends on the
language. So, the bib.edition label is declared in
the style file by:

% Multilinguals: English Czech Slovak
\mtdef{bib.edition} {edition} {vydani} {vydanie}

As seen here, only the Czech, Slovak and English
languages are provided by default. If you need to
support another language then you need to add the
phrases of the language like this:

\sdef{mt:bib.edition:es}{liberacién}

Let us return to the example above. The
mandatory field address follows. (Typically the
city of the publisher is here, not a full address.)

77

Then a colon and space are printed, then the
mandatory publisher field, and a comma and
space. The mandatory field year follows, then a
period and space. The mandatory field isbn is pre-
fixed by the text “ISBN” and a non-breaking space,
and followed by a period and normal space. Finally,
the optional field url is printed; the \preurl macro
can print something before such a url.

The \authorname macro must be defined in
the style file. This macro processes the authors’
names. It is called for each author name (repeatedly,
if there is more than one author in one author field).
The following data are available in the macro body:
\Namecount is the number of this author name in
the author field, O\namecount expands to the num-
ber of all authors in the field, the \Lastname macro
expands to the last name of the processed author
and similarly with \Firstname, \Von and \Junior.
Here is the definition from the “simple” style:

\def\authorname{,
\ifnum\NameCount>1
\ifnumO\namecount=\NameCount
\mtext{bib.and}\else , \fi
\else
\ifx\dobibmark\undefined
\edef\dobibmark{\Lastname}\fi
\fi
\bprintc\Firstname{* }\bprintc\Von{* 1}
\Lastname\bprintc\Junior{, *}J

We can see that the last name of the first au-
thor is saved to the \dobibmark macro (for further
processing of non-numeric citation mark). Other-
wise the comma-+space is printed before the author,
except for the last author, when \mtext{bib.and}
is used instead. This expands to the “and” conjunc-
tion, according to the language of the cited docu-
ment.

Next, the first name(s) is printed, then the
“Von” part (if it exists), then the last name, and
then the “Junior” part (if this exists, it means the
“After” part of the name). The optional parts of the
name are printed using the \bprintc macro. This
prints nothing if its first parameter is empty, other-
wise it prints its second parameter and replaces *
by its first parameter.

The style must generate non-numeric citation
marks too, but this is another story not shown
here. Interested readers can see the existing imple-
mentations in the files opmac-bib-simple.tex and
opmac-bib-is0690.tex.

OPmac-bib: Citations using *.bib files with no external program

78

More features

The bib-style files specify the format of each entry
in a reference list, but only in the context of print-
ing the fields in an (imaginary) infinite line. How to
break this into paragraph lines, what indentation to
use, where to place the citation mark (if any) etc.
is another story. This is solved by the \printbib
macro defined in OPmac itself. This macro is ex-
panded before each entry and it has the following
default definition:

\def\printbib{\hangindent=\iindent

\ifx\citelinkA\empty
\noindent\hskip\iindent\1llap{[\the\bibnum] }%

\else \noindent \fi

}

This means: The indentation is set by \iindent
value and when \nonumcitations isn’t used, the
numbered citation mark \the\bibnum is printed by
\llap. Else no citation mark is printed and only
\noindent is processed.

This is a typical OPmac approach: it doesn’t
provide/document a plethora of options and doesn’t
define complicated macros. It gives a simple default
macro with the idea: “hey, you can just redefine it
if you want something else”. This is an important
difference between OPmac and most IATEX packages
or the ConTEXt format. You needn’t remember (or
repeatedly read in documentation) the syntax and
values of dozens of options. Only one thing you
need: to be able to create macros in TEX.

There are many variants of the \printbib
macro on the OPmac tricks web page [7]. For
example, OPmac trick 0040 [8] gives a recipe for in-
denting all entries by the width of the citation mark
with the maximal number. OPmac trick 0041 [9]
solves the analogous problem for non-numbered
citation marks.

The default \printbib macro assumes that
non-numbered citation marks are in “long” format
with the full last name of the first author, and the
reference list is ordered by this last name. This
is a reason why these long citation marks are not
printed in the reference list again. If you do need to
(re)print these citation marks then you can follow
OPmac trick 0096 [10].

The style files generate non-numbered citation
marks in the format [Last name, Year| by default. If
the bibmark field is present then the value from this
field is used instead of the generated value. OPmac
trick 0097 [11] shows how to convert these long non-
numbered marks such as (Knuth, 1984) to the abbre-

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

viations like [Kn84] without any change in the style
file or *.bib file. These abbreviations are sometimes
part of citation rules.

There are special rules for grouping long non-
numbered citation marks. For example, it isn’t
a good idea to repeat the full citation mark for
multiple entries with the same author (Ol3dk, 1995,
Olsdk, 1997, Olsak, 2013). It is much better to
print (Olsdk, 1995, 1997, 2013). How to do this
automatically using macros is described in OPmac
trick 0035 [12]. The comma after the name can be
removed with OPmac trick 0043 [13].

When you are using non-numbered citation
marks, it might happen that two different entries
have the same citation mark. OPmac trick 0098 [14]
gives a recipe for diagnosing this problem. If such
a situation occurs, the author can set a different
citation mark using the bibmark field in *.bib file,
for example.

When you are preparing a proceedings or a long
monograph then you probably need to treat the ci-
tation marks and reference lists independently and
locally in each part of the work (each article, each
chapter, etc.). The citation marks and reference list
in one part must be independent of the reference
list in another part. How to handle this in a single
document is solved in OPmac trick 0042 [15].

References

http://petr.olsak.net/opmac-e.html
http://www.bibtex.org/
http://biblatex-biber.sourceforge.net/
https://www.ctan.org/pkg/librarian
http://petr.olsak.net/ctustyle-e.html
http://en.wikipedia.org/wiki/BibTeX
http://petr.olsak.net/
opmac-tricks-e.html = (opmac-tricks)

No otk N

8. (opmac-tricks)#bibnumindent
9. (opmac-tricks)#bibmarkindent
10. (opmac-tricks)#abib

11. (opmac-tricks)#bibmark

12. (opmac-tricks)#ccite

13. (opmac-tricks)#modcite

14. (opmac-tricks)#bibmarkcheck
15. (opmac-tricks)#morebibs

¢ Petr Olsék
Czech Technical University
in Prague
http://petr.olsak.net

TUGDboat, Volume 37 (2016), No. 1

Exploring \romannumeral and expansion

Joseph Wright

Abstract

The TEX \romannumeral primitive leads a double
life. As well as its obvious use for making Roman
numerals, it also offers a powerful method for con-
trolling expansion. Here, I look at why this comes
about, why we might want to use it, and give illus-
trative examples where only \romannumeral gives
the results we want.

1 Expansion control

TEX is a macro expansion language, and so methods
for manipulating exactly when tokens are expanded
are a core part of its programmer toolbox. Exper-
ienced TEXers know that \expandafter will skip
over one token and expand the next in the input
stream, so for example

\def\foo{\baz}
\def\baz{a}
\expandafter\show\foo
gives
> \baz=macro:
->a.
\foo ->\baz
Another primitive that is used regularly to con-
trol expansion is \edef, which exhaustively expands
everything in the input it is given. For example:

\def\foo{\baz}
\def\baz{a}
\edef\test{\foo}
\show\test

gives

> \test=macro:
->a.

The combination of \expandafter and \edef,
along with the \noexpand primitive, can be used
to carry out a wide range of reordering of TEX
input. However, there are some provisos. The
\expandafter primitive is itself expandable but only
carries out ezactly one expansion. Thus it cannot be
used if we don’t know exactly how many expansion
might be needed.

On the other hand, \edef will completely ex-
pand input but is an assignment so cannot be used in
an expansion context (for example, inside \csname,
an assignment of a numerical register, etc.). Using
\edef also gives us no (easy) way to stop an ex-
pansion part-way through some input. These cases
need a different approach and take us away from
primitives intended for expansion.

79

2 Enter \romannumeral

TEX’s syntax for numbers (integers) allows an op-
tional leading space (or spaces), optional leading sign
(or signs), the integer itself and an optional trailing
space. The number can be given literally (for ex-
ample 1234), can be the result of expansion or can
be an ‘internal integer’. The latter is, for example,
what using a count register or ¢ syntax results in: a
‘complete’ number where TEX will not look for any
further digits.

How does this help with expansion? TEX needs
a number (as it understands them) in several places,
for example after \count (to select a register) and
\number (to produce a literal number from various
forms of input).

TEX also needs a number after \romannumeral:
this primitive is of course meant for conversion of
that number into a Roman numeral! However, in
contrast to \number, which produces some output in
all cases, \romannumeral yields nothing at all if the
number it is given to work with is negative. Using
\romannumeral for expansion is all about exploiting
this fact in combination with TEX’s definition of a
number.

With the simple input

\romannumeral-1Y

TEX will continue expanding after the 1 character
to search for a continuation of the number or an
optional space. It will expand tokens as it goes but
will stop (without error) at the first non-expandable
non-digit. Thus, an indirect redefinition (of \foo)
like this:

\def\demo#1{%
\begingroup
\toksO=\expandafter
{\romannumeral-1#1}Y%
\showthe\toks0 %
\endgroup
}
\def\foo{\baz}
\def\baz{\def\foo{}}
\demo{\foo}

will give as a result the “interior” definition of \foo
(defined in \baz):
> \def \foo {}.
(where TEX has added spaces in the usual way to de-

limit tokens in the \show output). Contrast this with
the result of trying to use \edef here, for example:
\def\demo#1{Y
\begingroup
\edef\temp{#1}/
\toksO=\expandafter

Exploring \romannumeral and expansion

80

{\meaning\temp}/,
\showthe\toks0 %
\endgroup
}
\def\foo{\baz}
\def\baz{\def\foo{}}
\demo{\foo}

which results in:

! TeX capacity exceeded, sorry
[input stack size=5000].
\baz ->\def \foo
{3

So, using \romannumeral for expansion looks
useful but there’s an issue: what if we supply addi-
tional digits? This probably won’t be deliberate, but
the input we want to expand might just start with
some digits. The above will fail as such digits will
be used as part of the number.

Happily, the syntax for an internal integer avoids
this problem: TEX searches for an optional space but
not for any more numerical input. The notation
normally used to specify the internal integer is TEX’s
¢ notation: ‘0 or ‘\q are commonly used but have
no special meaning.

\def\demo#1{%

\toksO=\expandafter
{\romannumeral-‘0#1}/

\showthe\toks0 %

}

\def\foo{\baz}

\def\baz{123\def\foo{}456%}

\demo{\foo}

gives the desired
> 123\def \foo {}456.

3 In use

This ‘\romannumeral trick’ is commonly used where
it’s desirable to provide a macro that will give a
result in a known number of expansions. In general,
with a template like

\def\demo#1{’,
\romannumeral- ‘0%
% ... expandable code here ...

we can be sure that \demo will expand in exactly
two steps, provided of course that the code we've
supplied doesn’t stop the expansion (we’ll deal with
that below).

The one thing that will disappear from the input
when using \romannumeral expansion is a leading
space: remember that TEX is looking for an optional
trailing space to the integer we’ve used to trigger
expansion. Luckily, it’s rare to be worried about

Joseph Wright

TUGDboat, Volume 37 (2016), No. 1

retaining leading spaces in the contexts where we
might want to use this approach.

In fact, we can exploit the fact that TEX is
looking for a space: deliberately inserting one can
be used to halt expansion at a known point, leaving
potentially-expandable material untouched. That’s
handy if we want to stop once we have a ‘result’. That
naturally leads to the question of how we can arrange
to produce a ‘result’ that consists of unexpandable
tokens without ending up stopping expansion. It
turns out to be easy enough, but is best shown by
an example, as follows.

4 Two examples

To show some practical uses for the \romannumeral
trick, I'm going to take a couple examples based on
some code in the expl3 language (IWTEX3 team, 2015).
To keep a focus on what we want to think about,
these are somewhat simplified from the ‘parent’ ver-
sions, and in particular will work with TEX90: no
e-TEX primitives are used, at the cost of dropping a
few features from the actual expl3 code.

The first example is a macro to pick arbitrary
cases from a list of possible integer values. The
\ifcase primitive is of course extremely fast but be-
comes highly inconvenient when the values involved
are not close to 0 or are spread out. The approach
we can take is as follows:

\catcode ‘\@=11 %
\long\def\@firstoftwo#1#2{#1}
\long\def\@secondoftwo#1#2{#2}
\long\def\intcase#1#2#3{},
\romannumeral- ‘0%
\intcase@loop{#1}#2{#1}{#3}\stop
}
\long\def\intcase@loop#1#2#3{J,
\ifnum#1=#2 ¥
\expandafter\@firstoftwo
\else
\expandafter\@secondoftwo
\fi
{\intcase@end{#3}}
{\intcase@loop{#1}}%
}
\long\def\intcase@end#1#2\stop{\space#1}

Here, the idea is that we don’t know how many times
we will need to apply the \ifnum test, so if the case
statement needs to be fully expanded to a result,
using \expandafter won’t be practical. On the
other hand, by using \romannumeral we can be sure
that exactly two expansions of \intcase will leave
the result (and no other tokens). This behaviour is
going to be useful in the second example.

TUGDboat, Volume 37 (2016), No. 1

TEX provides us with the primitives \lowercase
and \uppercase to carry out case changing. These
primitives are not expandable, which makes using
them a bit tricky. It turns out to be possible to
implement fully-expandable case changing even for
complex cases. Here, I'll set up a (much) simplified
version that only works with ‘text’ input and will
ignore any spaces.

The \LowerCase user-level macro shown here
sets the \romannumeral expansion then starts off a
loop. Notice that we have an end macro too followed
by an empty brace group: this is going to allow us
to keep expansion going for as long as we want.

\def\LowerCase#1{%
\romannumeral- ‘0%
\lowercase@loop#1\lowercase@end{}%

}

The first internal macro simply looks for the end of
the loop, and either picks the end-of-loop or case-
change helper.

\def\lowercase@loop#1{%
\ifx#1\lowercase®@end
\lowercase@end
\else
\lowercase@change#1,
\fi
}

To perform the actual case change, we can use the
\intcase macro we just saw. This can be forced
to yield a result before storing the value, which is a
benefit here in terms of performance (we end up with
fewer tokens), but also comes into play if the result
we are providing needs to be examined by some other
code (which might also be forcing expansion!).

Notice that I've used another \romannumeral
to avoid a long \expandafter chain in this forced
expansion.

\def\lowercase@change#1\fi{%
\fi
\expandafter\lowercase@store

\expandafter{Y
\romannumeral- ‘07
\intcase{‘#1}

{ {“AXa}{‘BHbH ‘CHcIH‘D}{d}
{EXHeH ‘FHEH ‘GHgr{ ‘H}{h}
CIHEH I H KR { L1}
{MHmI{ NHHnI{ ‘0HoH{ ‘PHp}
{QHgH RIHrI{ SHsH THt}
{UHuH Vv WHwH X}
{YHyHZH=z ¥

{#1}Y%

Y

81

Storing the result of a case change is done by using
the marker end-of-loop macro to add the processed
token to the growing result: keeping the number of
tokens down means TEX is doing less work. Fin-
ishing the loop on the other hand needs the outer
\romannumeral to terminate, which is done by in-
serting a space then the final result.

\def\lowercase@store#1#2\lowercase@end#3{J
\lowercase@loop#2\lowercase@end{#3#11}7

}

\def\lowercase@end#1\fi#2{\fi\space#2}

This code can then be expanded in exactly two
steps to a result

\toksO=\expandafter\expandafter\expandafter
{\LowerCase{abgT&HYRI$*Z}}%
\showthe\toks0 %

> abgt&hyri$*z.
or indeed we could once again use \romannumeral

\toksO=\expandafter
{\romannumeral- ‘0%
\LowerCase{abgT&HYRI$*Z}1}7
\showthe\toks0 %

> abgt&hyri$*z.

5 Conclusions

Using \romannumeral can offer expansion control
that is otherwise difficult or impossible in TEX. Par-
ticularly when creating expandable function-like mac-
ros, it is an invaluable tool in a TEX programmer’s
arsenal.

References

ETEX3 team. “The expl3 programming language”.
http://ctan.org/pkg/13kernel, 2015.

¢ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 ONH
United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Exploring \romannumeral and expansion

82

The apnum package: Arbitrary precision
numbers implemented in TEX macros

Petr Olsak

TEX doesn’t provide a comfortable environment
for calculations at the primitive level. There are
the well-known commands \advance, \multiply
and \divide but dividing two decimal numbers
with these commands is a somewhat complicated
task for macro programmers. The additional e-TEX
primitives \numexpr and \dimexpr do not make
it easier. Of course, various I#TEX packages ex-
ist for more comfortable numerical calculations.
None of them satisfied my needs so I decided to
create my own solution: the apnum.tex package
(http://www.ctan.org/pkg/apnum). You can set
an arbitrary precision for the calculation when using
this package. You can do addition, multiplication,
division, power, square root, and evaluation of com-
mon functions sin, cos, tan, arcsin, arccos, arctan,
exp and In. The result is calculated with \apFRAC
decimal positions after the decimal point. You can
set this register to an arbitrary value. Of course, if
you need thousands of decimal digits then you must
wait a while. Nevertheless, optimization techniques
were used when implementing algorithms.

The documentation is in the file apnum.pdf. It
is not only the user-level documentation, but also
detailed technical documentation is included. You
can find the description of all internal macros and
all the numerical algorithms used.

The expression scanner

After \input apnum in your document, you can
use the macro \evaldef (sequence){(expression)}.
It makes comfortable calculation available. The
(expression) can include binary operators +, -, *, /
and ~ with the usual precedence. The operands are
“numbers”. Users can use parentheses () as usual.
The result is stored to the (sequence) as a “literal
macro”’. Examples:

\evaldef\A {2+4*(3+7)}
% the macro \A is the result, 42
\evaldef\B {\the\pageno * \A}
% \B is 42 times page number
\evaldef\C {123456789 * -123456789123456789}
% \C is -15241578765432099750190521
\evaldef\D {1.23456789 + 12345678.9 - \A}
% \D is 12345596.13456789
\evaldef\X {1/3}
% \X is .33333333333333333333

The result of division doesn’t have absolute preci-
sion; the number of digits after the decimal point is

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

limited by the value of \apFRAC, which is 20 by de-
fault. Absolute precision is implemented when +, -
* and ~ operators are used. When using / or evalu-
ating math functions like sin x, only \apFRAC digits
are calculated after the decimal point.

The operands in the (ezpression) are most sim-
ply numbers in the format

(sign){digits) . (digits)

where optional (sign) is a sequence of + and/or -
characters. A nonzero number is treated as negative
if and only if there is an odd number of - signs.
The first group or second group of decimal (digits)
(but not both) can be empty. The decimal point is
optional if the second group of (digits) is empty.

Alternatively, you can specify an operand in sci-
entific notation in the format

(sign)(digits) . (digits)E(e-sign)(digits)

The sequence before E determines the mantissa and
the sequence after E is the exponent. The (e-sign) is
+ or - or nothing. If you are using scientific notation
of operands then the result (calculated by \evaldef)
is usually in the same form. The reason is simple.
If you want to calculate (for example) 3E+2000 *
5E+1300 then apnum will not waste time working
with “full numbers” with a lot of digits (converted
from scientific form) but calculates only 3¥5=15 and
the exponent of the result 3300 is appended. Much
more information about scientific format is in the
documentation of the apnum package.

The operands in the (expressions) can be any
of the following:

e Numbers, as described above.

e \the(register) or \number(register).
lows accessing TEX register values.

e A macro which expands directly to a number.
This allows working with “variables”.

e A “function-like” macro which returns a value.
This allows the implementation of functions.
The identifier of a function-like macro can be
followed by zero or more parameters, each of
which must be enclosed in braces {7}.

This al-

For instance, \EXP is a function-like macro.
This macro has one parameter which is another
(nested) (expression). The \EXP macro returns the
value of the exponential function e” where x is the
given (expression). Example:

\def\X{.25%}

\evaldef\A{\EXP{2+x\X} - 1}
% \A is the result of e {2X} - 1

TUGDboat, Volume 37 (2016), No. 1

Users can define their own function-like macros; see
the next section. The package apnum defines fol-
lowing function-like macros (with one parameter as
nested (expression)): \SQRT, \EXP, \LN, \SIN, \COS,
\TAN, \ASIN, \ACOS, \ATAN. The meaning of these
macros is clear from their names.

Note that you must use parentheses () for
precedence settings in an (expression), but use
braces {} as delimiters of parameters of function-
like macros. The spaces in the (ezpression) are
ignored. Example:

\def\A{20}
\evaldef\B{ 30*\SQRT{ \SIN{\PI/6} +
1.12%\the\widowpenalty } / (4-\A) }

The evaluation of operators and function-like
macros works at the main processor level of TEX.
Unlike some comparable IATEX packages, the apnum
package doesn’t support calculations at the expan-
sion processor level only. The reason is calculation
speed optimization.. Moreover, I wanted it to be
possible to use apnum in classical TEX, without e-
TEX primitives. And without the e-TEX primitives
then expansion-level calculation is very complicated.
So, I rejected the expansion-only calculation. An-
other significant advantage of this decision is related
to the possibility of creating function-like macros by
users: they need not worry about main processor vs.
expansion processor evaluation when creating their
own function-like macros.

In my opinion, a skillful macro programmer
doesn’t require expansion-level calculation. He/she
can use

\evaldef\V{(ezpression)}\edef\foo{...\V...}

instead of \edef\foo{...(expression)...} when-
ever he/she needs to do this.

There are some side effects of \evaldef pro-
cessing:

e The value of the \apSIGN register. It is set to
—1, 0, 1 according to whether the result is neg-
ative, zero or positive.

e The internal macro \OUT is a copy of the result.

Creating function-like macros

Let us start with creating our own function-like
macros. We must follow two rules:

e The first token must be \relax after the first
level of expansion. This is a signal that this is a
function-like macro and not a normal numerical
constant. The expression scanner creates a new
TEX group and executes the macro in it.

83

e The function-like macro must define the macro
\OUT as the result of processing, as a number,
and the \apSIGN register must be set to the sign
of the result. The expression scanner takes con-
trol again and uses these values as one operand
in the (expression) currently being processed.

Several examples of function-like macros follow.

Hyperbolic sine (and inverse). There are some
well-known mathematical functions not predefined
in the apnum package. I believe that remembering
the name of such a function is not markedly eas-
ier than remembering its natural definition, and the
latter is much more useful and educational. So, I
left such work to users. For example the hyperbolic
sine can be defined by

\def\SINH#1{\relax ’ mandatory \relax
\evaldef\myE{\EXP{#1}}%
\evaldef\OUT{ (\myE - 1/\myE) / 2 }J

}

This corresponds to the formula

et —e "

2
First, the mandatory \relax is given in the macro.
Then the value e® is saved in a temporary macro
\myE. We need not worry about a name conflict
(\myE being used elsewhere) because the macro is
processed in the TEX group. The final \evaldef
gives the desired result (including \apSIGN setting).
A reader may have another idea:

sinhx =

\def\SINH#1{\relax
\evaldef\OUT{ (\EXP{#1} - \EXP{-(#1)})/2}}

This implementation of \SINH also works, but it is
not optimal because the slow calculation of \EXP is
done twice. The internal {ezpression) #1 must also
be evaluated twice.

Another example is the inverse of hyperbolic
sine:

\def\ASINH#1{\relax
\evaldef \X{#1\LN{\X+\SQRT{\X"2+1}}}

The following identity is used here
sinh 'z =In (;v +vVax?+ 1) .
Here, we do not need to explicitly define the \OUT

macro because \LN is another function-like macro,
so it does this work.

Sine of argument in degrees. The default
function-like macros \SIN, \COS and \TAN expect
their argument in radians, meaning they have a
period 27. Sometimes, it is useful to use degrees
instead of radians. There is a simple way to define

The apnum package: Arbitrary precision numbers implemented in TEX macros

84

functions \SINdeg, \CO0Sdeg and \TANdeg with
argument in degrees:

\def\SINdeg#1{\relax \SIN{(\PI/180)*(#1)}}
\def\COSdeg#1{\relax \COS{(\PI/180)*(#1)}}
\def\TANdeg#1{\relax \TAN{(\PI/180)*(#1)}}

Note the parentheses around the #1 argument. This
is because the argument may be an expression with
(say) an addition.

We have another problem: the values in degrees
are typically expressed in sexagesimal numeral sys-
tem (degrees, minutes, seconds). Thus we create
the function-like macro \DEG to take the value in
sexagesimal notation and return a normal decimal
number. Namely:

\DEG{12;30°45.756°’}}, means

% 12 degrees, 30 minutes, 45.756 seconds
\evaldef\a{\DEG{12;30°45.756°’}} % = 12.51271
\evaldef\a{\DEG{12;30’}}% % = 12.5
\evaldef\a{\DEG{12}}% % = 12
\evaldef\a{\DEG{12.5}}/ % = 12.5

The conversion is done only if a semicolon is used
after the degrees value. On the other hand, a dot
means the normal decimal dot in the number. The
symbol for minutes ’ and seconds ’’ at the end of
the value is optional, so \DEG{12;30} also returns
12.5. The \DEG macro can be defined using this
code:

\def\DEG#1{\relax \DEGa#1;’’\relax}

\def\DEGa#1;#2’#3’#4\relax{)
\evaldef\OUT{#1}/,

\ifnum\apSIGN<O \def\tmps{-}%
\else \def\tmps{+}\fi
\DEGb#2;\relax{\OUT+\tmp/60}%
\DEGb#3; \relax{\OUT+\tmp/3600}7%

}

\def\DEGb#1; #2\relax#3{\edef\tmp{#1}/
\ifx\tmp\empty \else
\edef\tmp{\tmps\tmp}\evaldef \OUT{#3}\fi

}

The macro reads the argument using \DEGa, where
#1 is the degrees, #2 minutes and #3 seconds. The
first \evaldef calculates degrees. If the result is
negative, we need to subtract the possible minutes
and seconds (\tmps includes -).

The \DEGb macro removes the semicolon and
next value. The raw value is stored in \tmp. Finally,
\evaldef adds the minutes part and seconds part
to the result \OUT.

Given the \DEG macro, we can now define
macros \SINd, \COSd and \TANd. They accept the
sexagesimal notation in its argument. For example,
\SINd{12;30} is the sine of 12 degrees and 30
minutes.

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

\def\SINd#1{\relax \SIN{(\PI/180)*\DEG{#1}}}
\def\COSd#1{\relax \COS{(\PI/180)*\DEG{#1}}}
\def\TANd#1{\relax \TAN{(\PI/180)*\DEG{#1}}}

If a semicolon is not present in the argument, it is
processed as a normal (ezpression) in degrees.

Maximum. We create the function-like macro
\MAX{(expression) , (expression), ..., {expression)}

Thus, the argument of this \MAX macro is a comma-
separated list of any number of (expression)s (at
least one (expression) is needed). The macro re-
turns the maximum of all given (expression)s.

We cannot use the \ifnum or \ifdim primitives
for comparison of two values because these values
can be very large or have a very small difference, for
example the first difference may be at the 50th dec-
imal digit after decimal point. The documentation
apnum.pdf recommends to use the \TEST macro,
which can be defined:

\def\TEST#1#2#3#4{/,
\evaldef\tmp{#1-(#3)}\ifnum\apSIGN #2 O }

and used:

relation) {(expression2)}

\TEST {(expressionl)} (
Y \else (false part) \fi

\iftrue (true part

where (relation) is one of the characters <, >, =.
The implementation of the \TEST macro is based
on subtraction of the given two (expression)s and
testing the resulting \apSIGN. Note that the space
after zero in the \TEST definition is needed because
it closes the scanning of the zero number.

The \MAX implementation looks like this:

\newcount\mynum
\def \TEST#1#2#3#4{/,
\evaldef\tmp{#1-(#3) }\ifnum\apSIGN #2 0 }
\def\MAX#1{\relax \MAXa#1,,}
\def\MAXa#1,{/,
\evaldef\maxOUT{#1}\mynum=\apSIGN \MAXb}
\def \MAXb#1,{%

\ifx,#1,\1et\0UT=\max0UT \apSIGN=\mynum \else
\evaldef\maxNEXT{#1}Y%
\ifnum\apSIGN>\mynum

\mynum=\apSIGN \let\maxQUT=\maxNEXT
\else \TEST\maxNEXT>\maxOUT \iftrue
\let\max0UT=\maxNEXT \fi\fi
\expandafter \MAXb \fi
}

The \MAXa macro prepares the first value into
\max0UT and the sign of this value is \mynum. Then
\MAXb is called repeatedly until #1 is empty. If #1
is empty, the resulting \apSIGN is set from \mynum
and \OUT is \maxOUT; else, the next expression #1
is evaluated. If the sign of this partial result is

TUGDboat, Volume 37 (2016), No. 1

greater than the sign of the current result, then we
do not need to execute the \TEST macro and can
simply set new \max0UT and \mynum. Else \TEST is
processed and new value of \maxOUT is set only if
the new result is greater than the current result.
We can create the analogous macro \MIN with-
out copying all this code. We can just define the
macro \mmREL as < or > and then use this macro
instead of the > character in the above code.

Linear interpolation. We can use “declaration
macros” \setF...\endF to define the function \F
via a table of values. For example:

\setF
\F{2} = 15 ;
\F{3} = 10 ;
\F{8} = 11 ;
\endF

Some \F{(expression)} = (expression); entries are
listed here. A finite number of values of the function
\F is given this way. Next, we define the function-
macro \F{(expression)} which returns the value of
the given \F using linear interpolation.

For the sake of simplicity, we don’t implement a
sorting algorithm and instead assume that the input
values are sorted by the user. The previous exam-
ple complies with this condition because 2 < 3 < 8.
Next, we suppose that the function \F is undefined
outside the boundary input values (i.e. outside the
[2,8] interval in our example). If the user tries to
evaluate \F outside this interval then an “out of
range” message is printed.

The \setF macro saves the information to
the \Flist macro. This is a list of input values,
i.e. 2;3;8; in our example. Moreover, the macros
\F: (number) are defined as the function value. The
first entry has the number 1, second 2, etc. In our
example, the \F:1 macro is defined as 15, \F:2 as
10 and \F:3 as 11. The \setF macro is defined by
this code:

\newcount\mynum
\def\setF{\mynum=0 \def\Flist{}\setFa}
\def\endF{end setF}
\def\setFa#1{%

\ifx#1\endF \else \expandafter \setFb \fi
}
\def\setFb#1#2#3; {%

\evaldef\X{#1}/

\evaldef\Y{#3}/

\advance\mynum byl

\expandafter

\edef\csname F:\the\mynum\endcsname{\Y}/
\edef\Flist{\Flist\X;}%
\setFa}

85

The function-like macro \F evaluates the input pa-
rameter z = \X and scans the \Flist contents to
find the sub-interval I of two consecutive input val-
ues where x € I. The boundary values of the in-
terval I are denoted by a = \A and b = \B, i.e.
I =[a,b). The values F(a) = \FA, F(b) = \FB are
known and linear interpolation is applied:

(x —a) (F(b) — F(a))
b—a

\OUT = F(z) = F(a) +
\def\TEST#1#2#3#4{Y,
\evaldef\tmp{#1-(#3)}\ifnum\apSIGN #2 0 }
\def\F#1{\relax
\evaldef\X{#1}%
\expandafter\Fa\Flist;\endF}
\def\Fa#1;{
\TEST{#1}>\X \iftrue
\Fe \expandafter \Fc \fi % out of range
\def\A{#1}\mynum=0
\Fb
}
\def\Fb#1;{%
\advance\mynum byl
\ifx;#1;% the last item
\TEST\X=\A \iftrue
\evaldef\OUT{\Xa}\else \Fe \fi % out range
\expandafter \Fc \fi
\TEST{#1}>\X \iftrue
\def\B{#11}J,
\edef\FA{\csname F:\the\mynum\endcsnamel}y,
\advance\mynum byl
\edef\FB{\csname F:\the\mynum\endcsnamel},
\evaldef \OUT{\FA+(\X-\A)* (\FB-\FA) / (\B-\A) }/,
\expandafter \Fc
\fi
\def\A{#1}%
\Fb
}
\def\Fc#1\endF{}
\def\Fe{\def\0OUT{0}\apSIGN=0
\message{F{\X} OUT OF RANGE}}

Printing and evaluating from shared source

So far, we have seen how the apnum package evalu-
ates (expression)s. As of version 1.5, apnum is able
to print the same (expression)s in math mode. The
format of printing is determined automatically and
is close to mathematical tradition. This is done with
the \eprint{({ezpression)}{(declaration)} macro.
You can specify the identifiers of “variables” in the
(declaration).

We illustrate this feature by defining a macro
\ep{{expression)}. It prints the (expression) and
then evaluates the same (expression), showing the

The apnum package: Arbitrary precision numbers implemented in TEX macros

86

value. The macros \X, \Y and \Z are variables for
these examples.

\def\vars{\def\X{x}\def\Y{y}\def\Z{z}}

%

\def\ep#1{$\displaystyle
\eprint{#1}\vars), printing
\evaldef\OUT{#1}), evaluation
\ROUND\OUT6&% round result to 6 digits
\corrnum\OUT % .digits -> 0.digits
\ifx\X0UT\empty =\else\doteq\fi \OUT$}

We need to give values to the variables x,y, z before
starting the experiment:

\def\X{0.51} \def\Y{-2.7} \def\Z{17}

Now, let’s apply the \ep macro in a variety of cases:

\ep{(\X"2+1) / ((\X+1)*(\X-2))}

2?2 +1
—F = —0.560069
(x4+1)-(x—2)

\ep{-((\X"2-1)/((\X+1)*(\X-1))) }
_L—_l
(z+1)-(x—1)

\ep{\SIN{\Y}"2 + \COS{\Y}"2}
sin? y 4 cos y = 0.999999

\ep{\ASIN{\X} + \ATAN{\X+1}}
arcsin x + arctan(z + 1) = 1.521041

\ep{\SIN{\PI/4}}
sin% = 0.707106

\ep{\SQRT{2}/2}

g = (0.707106
\ep{\PI}

m = 3.141592
\ep{\FAC{\Z}}

z! = 355687428096000
\ep{\SQRT{\iFLOOR{\Y}"2+1}}

V0y)?+1=3.162277

\ep{\iFLOOR{\Y} + \iFRAC{\Y}}
ly] +{y} = -2.7

\ep{\LN{\X/\Y"2}+1}
In 41 = —1.659848
y

\ep{ (\X+\Y)*-3}
(z41y) - (=3) = 6.57

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

\ep{-3*x-(\X+\Y) }
-3-(—(z+y) =—657

\ep{\BINOM{5}{1}+\BINOM{5}{2}}

GRER

\ep{2°5/2}
25
S =16
\ep{4~32}
4% = 262144
\ep{(4~3) "2}
(4%)* = 4096

\ep{\EXP{\LN{2}+\LN{3}}}
e 2+n3 = 5 999999

Note that the \eprint macro does not insert
redundant parentheses and follows traditional math
typesetting. For example \SIN{\X}"2 prints as
sin?2z. On the other hand, new parentheses are
sometimes needed, for example -3*-(\X+\Y) is

printed in the form —3 - (—(z + y)).

About the implementation

The algorithms used are described in detail in the
technical part of the apnum.pdf documentation.
This section introduces only the basic ideas.

Expression interpreter. When I was young
(about 15 years old) I was a participant in a hobby
course on programming. We were working with a
mainframe EC 1010. Our teacher taught me how to
program an expression interpreter (with operators
of various priorities) using stacks. My first imple-
mentation of this was in FORTRAN. Now, many
years later, I was able to use this knowledge and
implemented the expression scanner again, now in
apnum. The apnum package implements the expres-
sion scanner in two steps: first the (ezpression) is
converted to Polish notation and this format is used
for evaluating (or printing) in the second step.

Basic operations. Addition, subtraction, multi-
plication and division are implemented similarly to
the way pupils learn to do these operations in school.
The main difference is the base of the number sys-
tem used. Students use base 10, manipulating with
the ten different digits of this system and drilling the
“small multiplication table” up to 100. On the other
hand, apnum uses a number system with base 10000,
each “digit” has up to four decimal digits and TEX

TUGDboat, Volume 37 (2016), No. 1

supports a “multiplication table” to 10® using the
\multiply primitive. This is possible because the
maximum number that can be represented in TEX
registers is 23! = 2. 10°. For example, to multiply
two ten digit numbers, pupils need to do 100 multi-
plications but TEX needs only 9 multiplications.

TEX can only do direct access to its memory us-
ing new macro definitions. But this is not a good ap-
proach for implementing “digits” values. I did many
tests of various methods. I found that the linear ac-
cess to the sequence of “digits” in the input stream
is the most efficient. Data are expanded to the input
stream and read again. One problem is that we have
only one input stream, but we typically need to read
digits from two sources. So apnum uses a special in-
terleaved format for these calculations. The data are
converted from human-readable form to this inter-
leaved format when we need to convert pairs of four
decimal digits to one internal “digit”. Then the cal-
culation is processed (typically in a loop) over this
interleaved format.

The division algorithm is well known from
school too: the “tail” of partially calculated remain-
ders is constructed. The apnum package optimizes
this processing if the divisor is only one “digit” (i.e.
at most four decimal digits). Then the complexity
of division depends linearly on the desired number
of digits in the result. When the divisor has more
“digits”, then apnum uses the special interleaved
data format mentioned above.

Many other optimizations were done. For ex-
ample, suppose a big number with many digits is
given in the parameter #1 and a macro is written
roughly like this:

\def\macro#1{%
\ifA \ifB do something{#1}/,
\else do something{#1}\fi
\else do something{#1}\fi}

This \macro approach above is not a good idea.
Why? Because the big parameter is expanded three
times here, thus much data is skipped many times
by \if...\else...\fi primitives. This is time-
consuming. So it is much better to do \def\tmp{#1}
at the beginning of \macro and then do skipping
over \tmp only.

Mathematical functions. As a student I did a
school assignment on “long numbers” on the main-
frame installed at our university. Punch cards were
used. I implemented addition, subtraction, multi-
plication and division. My dream was to continue
with this work and implement classical math func-
tions as well. But lack of time and the unsuitable
technology was too much of barrier, so the dream

87

wasn’t realized at that time. But now, I returned
to my student days and started to implement math
functions in apnum. The dream has been fulfilled
now.

Square root. One of the algorithms for computing
square roots is similar to the division algorithm, but
its complexity isn’t linear with the number of desired
digits in the result. I had started working on this
algorithm on the mainframe as a student, but now,
I decided to use Newton’s method.

We need to find the first approximation xg of
va. Then the tangent line to the graph of the
function f(z) = 2% — a is constructed in the point
[0, f(x0)]. The position of the tangent can be found
using calculus. The intersection of this line with the
2 axis is the next approximation of y/a. This step
is repeated until the desired precision is reached. I
decided to use the linear interpolation of the func-
tion /7 in the interval [1,100] for calculating the
first approximation used by Newton’s method. The
linear interpolation uses known values in the points
1,4,9,16,...,81,100. Only classical TEX operations
(no apnum operations) are used for calculating the
first approximation. If we need 20 digits in the result
then 5 iterations of Newton’s method is sufficient
because the number of calculated digits is doubled
in each iteration step and the linear interpolation
starts with 1 digit calculated.

If the argument is outside the interval [1, 100]
then we can shift its decimal point by an even num-
ber M of positions. Then we do the calculation of
square root. Finally, we shift the decimal point back
by M/2 positions in the result. This idea is based
on the fact that v/100 = 10.

Exponential. The well-known Taylor series is used
in apnum:

xT {I?2 {E3

This series converges well for |z| < 1 because
of the factorial in the denominators. But what to
do if the argument z is outside [—1, 1]? First of all,
negative arguments are converted to positive using
identity e=® = 1/e*. If the argument = > 4 then we
calculate d = [2/1n10] and use the identity

et — €x7d~ln10 . 10d

This means that we need to calculate the exponen-
tial of the argument ' € [0,In10] C [0,4) and then
we shift the decimal point of the result by d digits.

If the argument x € [1,4) then we divide it by
two or by four in order to have z’ € [0,1). Then
we use the Taylor series mentioned above for =’ and

The apnum package: Arbitrary precision numbers implemented in TEX macros

88

finally the result is (e*')2 if 2/ = /2 or ((e*)?)? if

x’ = /4. This is based on the identity e?* = (e®)2.
We need to do about 20 steps in the Taylor

series for 20 digits of precision because 20! ~ 1019,

Logarithm. The following series derived from the
inverse of the hyperbolic tangent is used:
-1
Inz =2 tanh ™t L= —
z+1

_y(mml (a1 3+1 x—1 5+
ST\ z+1 3 \z+1 5\z+1 '
The disadvantage of this series is that it converges

well only for x =~ 1. But we are able to modify the
argument so that it is approximately equal to one.

First, we calculate A = x/ exp(Inz), where In z is an
approximation of Inz. We use linear interpolation.
It is evident that A ~ 1 because exp(Inz) = z, if
exact Inx is used. Next, we calculate/\lEA using
the series above. Finally, Inz = In A + Inz because
x=A exp(lnz) and In(ab) =Ina + Inb.

This algorithm need be implemented only for
x € [1,10). If the argument is outside this interval,
then we shift the decimal point by M positions and
then calculate z = 2/ - 10M, Inz = Ina’ + M - In 10.
The frequently used value In 10 is calculated to the
needed precision only once and saved into memory.

Because the linear interpolation for Inz differs
from the exact result at the second decimal digit,
the same is true for the difference between A and 1.
Each step of the Taylor series improves precision by
four digits because there are only odd powers.

Sine and cosine. The known Taylor series for sine
and cosine are similar to the Taylor series for the
exponential. So, we need to have the argument in
the interval [0,1). We can shift it by a multiple of
period (or half-period), but we need to know the
constant 7 first. The apnum package calculates and
saves m to 30 digits in its memory. If more preci-
sion is desired then 7 is re-calculated by the Chud-
novsky formula. It converges very well, with 14 new
exact digits per one step. It has only one problem:
to calculate 1/640320. This constant is used in the
Chudnovsky formula. So apnum stores the initial
approximation for Newton’s method (for v/z calcu-
lation) with 12 decimal digits for this special case.
This saves several steps of Newton’s method.

After the sine or cosine argument x is shifted
by a half-period multiple, we have z € [0,7). If =
is outside of [0,7/2) then we can use the identities
sinz = sin(r — x) or cosxz = —cos(m — x). Now,
we have a new argument x € [0,7/2). If x is out-
side the interval [0,7/4) then we can use identities

Petr Olsak

TUGDboat, Volume 37 (2016), No. 1

cosx = sin(mw/2 — x) or sinz = cos(n/2 — z). The
new argument is in the interval [0,7/4) C [0,1) and
the Taylor series for sine or cosine can be used.

Inverse of tangent. The function tan~ 'z =

arctan x is implemented by the series for the argu-
ment 1/x:

+ 1 x +2 T n
arctan — = =

x 1422 3(14a2)?
24 x 246 z

+35(1+z2)3 + 357 (1+a?)4 +
It converges well for x > 1. If z € (0,1) then we can
use the identity arctanz = /2 — arctan 1/ and if
the argument is negative we use the fact that the
function is odd.

Other common mathematical functions can be
expressed directly with the functions mentioned
above.

The final joke

The apnum package uses only TEX primitives and
the basic plain TEX macro \newcount. Thus, the
package works in classical or extended TEX with
any format. This is the general approach of al-
most all my macros. On the other hand, typical
IATEX packages require the IATEX format and don’t
work with anything else. This is shown explic-
itly for example by \NeedsTeXFormat{LaTeX2e}
in such macros. The IATEX macros are usu-
ally a mix of TEX primitives and IATEX con-
structs: a mix of \def and \newcommand, a mix of
\newcount and \newcounter, a mix of \advance
and \addtocounter, a mix of \hbox and \mbox, a
mix of \setbox and \sbox, a mix of \vrule and
\rule etc. Pure TEX macros (which can be used in
plain TEX too) are infrequent in the WTEX world,
unfortunately (in my view).

So, I decided to put the following code at the
end of my apnum.tex:

% please, don’t remove this message

\ifx\documentclass\undefined \else

\message{WARNING: the author of apnum
package recommends: Never use LaTeX.}\fi

Thus the above message is printed on the terminal
and in the log file when I#TEX is used. This ex-
presses my opinion about I#TEX. And I hope that
this does not matter, because a typical IATEX user
reads neither the log file nor the terminal output, be-
cause plenty of useless information is printed there.

o Petr Olsék
Czech Technical University in Prague
http://petr.olsak.net

TUGboat, Volume 37 (2016), No. 1

%?@?’ The Treasure Chest

The following is a list of selected new packages posted
to CTAN (http://ctan.org) from October 2015
through March 2016, with descriptions based on
the announcements and edited for extreme brevity.

Entries are listed alphabetically within CTAN
directories. More information about any package can
be found at http://ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred; of course, this is not intended to slight the
other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the

TEX community. Comments are welcome, as always.

o Karl Berry
tugboat (at) tug dot org

fonts

cochineal in fonts
Major extension of the Crimson fonts, including
Greek and Cyrillic.
crimson in fonts
The original Crimson (a new old style design) font
family.
libertinus in fonts
New math font and bug fixes for Libertine (see
note in this issue).
libertinustimath in fonts
Extended Type 1 support for the new Libertinus.
libertinegc in fonts
Support for Greek and Cyrillic in Linux Libertine.
*librebodoni in fonts
The Libre Bodoni font family.
miama in fonts
The Miama Nueva handwriting/script font, with
support for Latin, Cyrillic, and Greek.
*nimbus15 in fonts
Support for the 2015 Nimbus fonts, including
Greek and Cyrillic and a new weight and width
for Courier.
*noto in fonts
Support for NotoSerif and NotoSans.
yinit-otf in fonts
OpenType version of the yinit fancy initials font.

graphics
ellipse in graphics
Draw ellipses and elliptical arcs using the standard
picture environment.
mparrows in graphics/metapost/contrib/macros

Draw different types of arrowheads with MetaPost.

89

tikz-feynman in graphics/pgf/contrib
Draw Feynman diagrams with TikZ.

indexing
upmendex in indexing
Multi-lingual index processor supporting UTF-8
and Unicode sorting, mostly compatible with
makeindex.

info

einfuehrung? in info/examples

Examples from the book Einfiihrung in ETEX.
formation-latex-ul in info

Materials for a two-part introductory course in

French.
lshort/estonian in info

Estonian translation of The Not So Short ...
visualtikz in info

Visual help for TikZ: an image per command or

parameter.

language
greektoni in language/greek
Support for multi-accented Greek.

macros/generic

gobble in macros/generic
Remove following arguments, possibly optional.
* luatex85 in macros/generic
Emulation of pdfTEX and other primitives changed
in LuaTEX 0.85+ (see note in this issue).
tex-ini-files in macros/generic
Build TEX formats.
*unicode-data in macros/generic
Text files from the Unicode Consortium and TEX
files to load them.

macros/latex/contrib

adtrees in macros/latex/contrib
Draw adpositional (natural language) trees, defined
by Gobbo and Benini.
asciilist in macros/latex/contrib
Typeset lists without macros.
bibletext in macros/latex/contrib
Insert Bible passages by reference.
bitpattern in macros/latex/contrib
Typeset bit pattern diagrams for hardware, etc.
bxdvidriver in macros/latex/contrib
Enables specifying a driver option only for DVI
output.
bxpapersize in macros/latex/contrib
Synchronize output and layout paper size.
carbohydrates in macros/latex/contrib
Draw carbohydrate molecules with chemfig.
continue in macros/latex/contrib
Print continuation marks on verso pages.

macros/latex/contrib/continue

90

delimseasy in macros/latex/contrib
Easy commands for controlling size and boldness
of delimiters.
drawmatrix in macros/latex/contrib
Visually represent matrices.
econometrics in macros/latex/contrib
Simplify notation for economic writing, based on
the proposal by Abadir and Magnus.
emisa in macros/latex/contrib
Support for EMISA journal manuscripts.
eq2db in macros/latex/contrib
Convert self-contained exerquiz quiz to a
server-side submission.
*fixcmex in macros/latex/contrib
Support scalable cmex fonts.
ffslides in macros/latex/contrib
Free-form slides based on the article class.
getitems in macros/latex/contrib
Gather items from a list environment.
gitlog in macros/latex/contrib
Typeset git changelogs.
gloss-occitan in macros/latex/contrib
Polyglossia support for Occitan.
glossaries-extra in macros/latex/contrib
Add-ons to the glossaries package.
glossaries-swedish in macros/latex/contrib
Swedish language support for glossaries.
graphics-cfg in macros/latex/contrib
Default driver options for color and graphics.
iffont in macros/latex/contrib
Conditionally load fonts with fontspec.
keyvaltable in macros/latex/contrib
Typeset tables with reusable layout.
ksp-thesis in macros/latex/contrib
Support KIT Scientific Publishing works.
longfox in macros/latex/contrib
Draw framed boxes with standard CSS attributes
that can break over multiple pages.
lroundrect in macros/latex/contrib
IXTEX support for the MetaPost roundrect.
mathpartir in macros/latex/contrib
Typeset sequences of math formulas, e.g., for type
inference rules.
moodle in macros/latex/contrib
Generate Moodle quizzes via ETEX.
multidef in macros/latex/contrib
Define multiple macros with similar definitions.
mynsfc in macros/latex/contrib
XAKTEX template for Natural Science Foundation
of China proposals.
nihbiosketch in macros/latex/contrib
Class for 2015 NIH biosketches.
normalcolor in macros/latex/contrib
Save and restore a color.
nucleardata in macros/latex/contrib
Data about atomic nuclides.
parades in macros/latex/contrib
Tabulators and vertical paragraph spacing using a
galley approach (see article in this issue).

macros/latex/contrib/tkz/pgfornament

TUGDboat, Volume 37 (2016), No. 1

pgfornament in macros/latex/contrib/tkz

Draw 196 Victorian ornaments with PGF/TikZ.
prooftrees in macros/latex/contrib

Forest-based symbolic logic proof trees.
scrlttr2copy in macros/latex/contrib

Creating copies of letters made with scrlttr2.
seuthesisx in macros/latex/contrib

Thesis class for Southeast University, Nanjing.
signchart in macros/latex/contrib

Typeset sign charts.
simpler-wick in macros/latex/contrib

Simpler Wick contractions.
smartunits in macros/latex/contrib

Convert between some metric and Imperial units.
texvc in macros/latex/contrib

Support MediaWiki IXTEX commands, for

copy-and-paste of formulae from MediaWiki to

documents.
xassoccnt in macros/latex/contrib

Step associated counters simultaneously.
xduthesis in macros/latex/contrib

XAKTEX template for Xidian University theses.
xsavebox in macros/latex/contrib

Saving content without output duplication,

using PDF Form OBjects.
ycbook in macros/latex/contrib

Versatile book class.

macros/latex/contrib/babel-contrib
macedonian in m/1/c/babel-contrib
Babel support for Macedonian Cyrillic.
occitan in m/1/c/babel-contrib
Babel support for Occitan.

macros/latex/contrib/beamer-contrib/themes
beamer-verona in m/l/c/beamer-contrib/themes
The ‘Verona’ Beamer theme by Till Tantau.
beamercolorthemeowl in m/1/c/beamer-contrib/themes
Color theme to maximize visibility.
metropolis in m/1/c/beamer-contrib/themes
The modern ‘Metropolis’ theme.

macros/latex/contrib/biblatex-contrib

ecobiblatex in m/1/c/biblatex-contrib
Global ecology and biogeography styles.

macros/luatex/latex
arabluatex in macros/luatex/latex
Generate Arabic from an ASCII transliteration,
similar to ArabTEX.
luatex—-def in macros/luatex/latex
LuaTgX option file for the color and graphics
packages.

TUGboat, Volume 37 (2016), No. 1

Book reviews:
ETEX for Administrative Work

Boris Veytsman
Nicola L. C. Talbot, IMTEX for Administrative Work.

Dickimaw Books, 2015, xiv+637 pp. Paperback,
US$33.99. ISBN 978-1-909440-07-4.

Also available from http://dickimaw-books.

com/latex/admin/; released under the GNU FDL.

SINANNOU
AVIDLAAQ

Dickimaw Books

This is the third volume in Nicola Talbot’s IMTEX
series published by her own Dickimaw Books (http:
//dickimaw-books.com). These books fill an impor-
tant void in the INTEX literature. A combined review
of the first two volumes was published in TUGboat

35:1 (2014) and on the TUG web site at http://tug.

org/books/reviews/tb109reviews-talbot.html.

Let me start with a personal reminiscence. In
the middle of the 1990s I decided to learn about
all ITEX packages and spent several days studying
the documentation for all packages in the macros/
latex directory on CTAN. This was an interesting
exercise. Unfortunately, now, two decades and many

91

talented CTAN contributors later, it would be almost
impossible. At the very least, it would require a much
longer time just to read through the descriptions of
all the packages. On the one hand, this abundance is
a good thing: it indicates the health of TEX and the
ETEX community. On the other hand, however, it
poses a problem: how can one find the package that
fulfills the given task? Probably many TEXnicians
have had the embarrassing experience of re-inventing
the wheel: writing code duplicating the functionality
of an existing package (I myself certainly have!).
The TEX Catalogue at http://texcatalogue.ctan.
org/ is of great help, but sometimes a keyword search
is just not enough. Also, the Catalogue, by design,
presents a neutral point of view. A practitioner often
needs a guide to a curated collection of packages,
where one can find the discussion about different
ways to perform the task, advice about the best
methods, pitfalls and bugs, etc. For many years
the invaluable IMTEX Companion series used to be
such a guide. However, since the last edition of the
Companions there have been many changes in the
ITEX world. There are new tasks and new ways to
deal with them. Thus new books are needed.

Nicola Talbot has a clear writing style and a
great knowledge of TEX. She is the author of many
useful packages. Thus she is well positioned to pro-
duce this guide to the modern ITEX. The first and
especially the second volume in the Dickimaw series
look like an attempt to write such a guide. I am glad
to report that the third volume is of the same high
quality as the first two.

The title of the volume may require some ex-
planation (actually the titles are the most problem-
atic aspect of the series; only the first book fully
corresponds to its title). It seems that by “admin-
istrative work” the author means repetitive tasks,
those that could (and should) be automated. The
book describes such tasks as processing data, cre-
ating correspondence (including mail merging), in-
voices, résumés, memos, minutes, presentations, ex-
ams and tests, business cards, flyers, letters, filled
forms, charts, bar codes, as well as date and time for-
matting and even version control systems and their
interaction with TEX. It has a separate chapter on
online IMTEX editors and the ways to organize joint
work on a ITEX document with less TEX-savvy col-
leagues. For each task the author describes the CTAN
packages that help to solve the problem. She tries
to use only the packages that both exist in MiKTEX
and TEX Live and have English documentation. The
book discusses the main features of the packages,
compares their strengths and gives recommendations
about their usage. While reading the book I wished

Book reviews: IMTEX for Administrative Work

92

time and again that I had had it earlier: it would
have saved me much time and effort.

The task-oriented approach adopted by Nicola
Talbot has its advantages and disadvantages. Its
main strength is that it gives the reader a hands-on
understanding of the concepts, and a novice always
knows why she is asked to learn what’s at hand. This
may be preferable here to a common alternate ap-
proach, where a book first describes a set of language
constructs, and only then shows how these constructs
are used. However, the present approach does some-
times prevent systematic exposition. For example,
the book explains how TEX expansion works, with
the (in)famous \expandafter in the chapter about
reading and processing data from databases. A (quite
interesting) lesson on package writing is placed in
the chapter about making fillable forms in IATEX.
Random number generation is discussed in the con-
text of typesetting exams and tests, and so on. The
book strives to be both a textbook and a reference
book, but sometimes the different requirements of
these different kinds of texts clash.

Perhaps it would make sense to repeat the notes
about TEX and KTEX programming in a separate
volume intended for aspiring TEXnicians. The advent
of BTEX3 with its completely new programming
paradigm makes such a book with chapters on TEX,
ETEX 2¢ and IXTEX3 quite appropriate.

It is rather difficult to write a book interesting
for both novices and more experienced TEXnicians.
Nicola Talbot has this rare skill: while the explana-
tions are lucid and should be understandable to all
users, some tricks (like the use of \@afterheading to
overcome IXTEX’s tendency to redefine \everypar)
are not trivial and could be quite illuminating even
to seasoned TEX programmers.

It is inevitable that the choice of material reflects
the author’s tastes and views. For example, this book
includes the chapter on résumés: is their typesetting
logically an “administrative work”? In the same
vein, beamer is even less related to administrative
work and is well described in several recent books,
so it might be omitted here (perhaps this chapter
would be less out of place in the second volume of the
series, intended for graduate students). Nevertheless
the book does have an underlying idea, and one can
elucidate the general principle the author used in the
selection of the material.

The choice of packages also reflects the author’s
tastes. Most of the selected packages are quite im-
portant, like datatool and datetime2 by the author
herself, and etoolbox by Philipp Lehman and Joseph
Wright. On the other hand, there are some unfortu-
nate omissions. For example, the author describes

Boris Veytsman

TUGDboat, Volume 37 (2016), No. 1

the trusty but old picture environment, but does
not mention the pict2e package, which eliminates
many limitations mentioned in the book. Another
unfortunate omission is the indispensable latexdiff
program, which is quite useful in conjunction with
the version control systems discussed in the book.

The typesetting of this book, as of the other
books in the series, is very good. A book about a
system for making beautiful texts should strive to be
beautiful itself, and Nicola Talbot understands this
well. The book has generous margins used for ref-
erences and marking input and output. The author
uses a nice typographic device to show the differ-
ent levels of the text, marking them with different
symbols. While this marking has been used in TEX
books since The TEXbook, the idea to put the same
symbols in the table of contents is relatively novel.
It allows a reader to map her own route through
the book according to the needs and the level of
expertise.

The volume includes a bibliography of 151 titles,
a short (in my opinion, rather too short) glossary, a
summary of commands and environments with useful
explanations and sources for each command, and a
detailed index. Perhaps a running index for all three
volumes in the series published so far would be a
good addition. The book has many exercises ranging
from simple ones to full blown projects.

The book is free (as in free speech): it is pub-
lished under the GNU Free Documentation License
and is available from the author’s web site (http:
//dickimaw-books.com), along with the other vol-
umes in the series. Instructions there also tell how
to obtain a printed and bound copy.

My copy was made by Lightning Source Ltd.;
the paper and binding are very good —the latter
being rather important for a book of this length.

This volume, as well as the previous two vol-
umes, deserves to be on a bookshelf of any serious
IMTEX user. The series can be of considerable inter-
est to a TEX educator: it would be quite feasible to
create courses for students at almost any level from
novices to advanced users using different chapters
of the books. The presence of exercises makes this
task easier, and the free license allows students with
limited means to download the textbooks.

¢ Boris Veytsman

Systems Biology School and
Computational Materials
Science Center, MS 6A2,

George Mason University,

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

TUGboat, Volume 37 (2016), No. 1

Book reviews: Tout ce que vous avez
toujours voulu savoir sur KTEX sans jamais
oser le demander by Vincent Lozano

Charles Thomas
Vincent Lozano, Tout ce que vous avez toujours

voulu savoir sur INXIEX sans jamais oser le demander.
Ou comment utiliser IXTEX quand on n’y connait

goutte. Framasoft; 2013, 304pp, ill. Seconde édition.
€15.00. ISBN 9791092674002. http://framabook.

org/tout-sur-latex.

In regards to reviewing and judging books about
KTEX, the following was mentioned in [1]:

The way one can judge introductory ETEX text-
books is similar to how figure skating is judged.
There are several “required elements” which must
be present in any book, like the explanation of
XTEX macros and workflow. There are also sev-
eral “free elements” like additional packages or
tricks the author chooses to include. The book
can be evaluated by the pedagogical skill with
which the author performed the “required ele-
ments”, introducing the fundamentals of ATEX,
and by his choice of the “free” ones.

This book, All You Always Wanted to Know
about BMTEX but Never Dared to Ask, by Vincent

Lozano, does well in both categories mentioned above.
This book is in French and is divided into three parts.

Book reviews: Tout ce que vous avez toujours voulu savoir sur INXTEX . ..

93

The book’s layout is nicely designed and clean. The
author sprinkles in some humor throughout the book
to make it an enjoyable read.

The first part deals with introductory informa-
tion concerning BTEX. It starts off with the installa-
tion of WTEX and goes on from there. One caveat:
the installation information is most useful to those
readers who are familiar with Unix. The rest of the
first part tackles such things as creating documents,
boxes, working with graphics and BIBTEX, and given
the francophone audience, the peculiarities of ITEX
documents in the French language. Though most
of the information can be readily found in other in-
troductory KTEX books, for a French audience this
is a very good starting point. The beginner is not
inundated with so much information as to become
overwhelmed. The author does a good job in striking
the fine balance between “coolness” and usefulness
for the beginner.

The material that makes the book of great worth
to many readers is in the second part of the book.
This part walks the reader through the process of
creating the book itself. This section deals entirely
with customizing the look of IATEX documents. I
highly recommend going through the examples and
following the explanations. It will be a beneficial
exercise for the reader.

The final part of the book contains appendices
on generating pdfs and a listing of IATEX symbols,
which makes for a good reference.

Throughout the book, the author gives ample
suggestions about packages that would be of benefit
to the readers. These suggestions will be of great
value to readers, especially those new to ITEX as
it gives them a good starting point to delve even
deeper into BTEX and reap the full extent of the
benefits INTEX has to offer.

I recommend this book and though it might not
be of great value to an experienced KTEX user, it is
a good resource for the beginning and intermediate
user. Given that it is in French, this book’s usefulness
is amplified even more. The book is available under
the Libre Art License, so anyone who wishes to can
read and benefit from it. Finally, 10% of sales of the
print edition are donated to TUG.

References

[1] Boris Veytsman, Book Review: ETEX and Friends,
TUGboat, Vol. 32 (2011), No. 3. http://tug.org/
TUGboat/tb32-3/tb102reviews-1txfriends.pdf

¢ Charles Thomas
Harris Corporation
sleonais (at) gmail dot com

by Vincent Lozano

94

Book reviews: Giambattista Bodoni: His Life
and His World by Valerie Lester

Boris Veytsman

Valerie Lester, Giambattista Bodoni: His Life and His
World. David R. Godine, Publisher; Boston, 2015,
288 pp., ill. US$40.00. ISBN 978-1567925289.

His JLife and His 2Vorlo
by VALERIE LESTER

Rarely is a subtitle as precise as the one of this book by
Valerie Lester. The reader who buys it will get exactly
what is advertised: the description of Bodoni’s life and
world —no less, and no more.

A biographer of a scientist, an inventor or an artist
has the following problem. How can one describe the
work of the person without making the biography be-
come a textbook in the corresponding field: relativity
theory, or carburetor engines, or post-impressionism?
Such a textbook inevitably is both too much and too lit-
tle: the lay public is often lost in the technical details,
while experts complain of the simplifications and pedes-
trian approach. Itis very difficult to create abook about a
complex subject which remains interesting for both the
general public and specialists. Many biographers have
been defeated by this task.

Boris Veytsman

TUGboat, Volume 37 (2016), No. 1

A way around this problem is to refuse to write too
much about the intricacies of the person’s work, focus-
ing instead on his or her life, on the premise that a genius
is interesting not only because of what he or she did, but
also because of what he or she was. The popularity of bi-
ographies of Einstein, Turing or Dante shows that even
people not much interested in physics, mathematics or
medieval Italian poetry & politics may be fascinated by
these remarkable lives. Moreover, biographies written
in this style, as life stories rather than work stories, may
also be of considerable value for experts. While the lat-
ter know only too well what the geniuses did, their back-
grounds sometimes provide insights into why they did
it. This is especially true with respect to artists’ biogra-
phies, where the background is immensely relevant for
the art. The best books of this kind give the reader the
feeling of becoming acquainted with their subjects, of
knowing them rather than knowing about them.

This book by Valerie Lester is an excellent example
of this style of biography. It does not try to be a disserta-
tion on typography. You will not find there a discussion
about Garalde vs. Didone; nowhere does the author men-
tion the difference between humanist and modern axes
or other favorite topics of font cognoscenti. Instead she
tells us about Giambattista Bodoni himself and his life.

Still, many details of his life as told by Valerie Lester
are useful to understand Bodoni’s contribution to the art
of typography. For example, one of the striking features
of Bodoni’s legacy is the huge set of polyglot alphabets
(one can enjoy the diversity of scripts in the reprint edi-
tion of his Manuale Typographico; see the reviewin TUG-
boat, Volume 32, No. 3, 2011 (http://tug.org/books/
reviews/tbl02reviews-bodoni.html). It is important
to realize that Bodoni’s interest in non-Latin scripts was
caused by his youthful apprenticeship in the typography
of Sacra Congregatio de Propaganda Fide (now Congrega-
tio pro Gentium Evangelizatione), the missionary branch
of the Roman Curia. Further, it is from the biography
that one can conclude that the huge amount of ephemera
published by Bodoni was the result of his position as the
ducal printer in Parma as well as owner of a private press.
It is fascinating to read about Bodoni’s learned friends
like Spanish diplomat José Nicolas de Azara chiding the
typographer for wasting his talent on these works.

One may think the life of Giambattista Bodoni was
rather uneventful: he spent most of his life as a well-

respected printer in Parma, happily married (albeit child-

TUGboat, Volume 37 (2016), No. 1

less) and making many beautiful books, brochures, broad-
sides and other printed matter — as well as an immense
quantity of punches for a huge variety of scripts. To
the contrary, however, Valerie Lester tells a fascinat-
ing story of a great artist trying to live a fruitful life in
a stormy world. This was a time of great political up-
heaval in Europe: the French revolution, Napoleonic
wars, diplomatic intrigues. The Italian states around
Bodoni changed their borders and allegiances. Bodoni
responded to these calamities in his own way: he just
worked more, producing beauty for the uncertain world.
This is a powerful story with relevance even now.

The words “... and his world” in the subtitle of the
book are also apt. Lester is genuinely interested in the
details of Italian life in the late 18th—early 19th centuries,
and this shows in many charming asides throughout the
book. Speaking about Bodoni’s youth, she discusses the
food he could eat, and quotes a contemporary cookbook

(p. 26):

Although no portraits exist of Bodoni as a boy,
those that appear after his arrival in Parma re-
veal a handsome man who steadily gains girth as
he grows older. He clearly relishes his food; per-
haps he enjoyed it too much, as gout would later
suggest. One thing is certain: the food on offer
in Saluzzo in his early years was of the highest
quality, reflecting the cosmopolitan nature of the
place.

Il cuoco piemontese perfezionato a Parigi is a
marvelous book, published in Turin in 1766, and
giving the idea of the kind of food available to
the growing Bodoni family. Its anonymous au-
thor (most likely a man) follows the order of the
seasons, starting with spring, which he calls the
most pleasant season of all, but sadly lacking in
chicks and ducklings, small birds, vegetables, and
fruit. However, young hares and rabbits, piglets,
lambs, calves, and kids abound, and fortunately
beef has no season. Nor do eels and frogs. (Frog
fricassée is a featured recipe.) Freshwater and
saltwater fish are available. Artichokes, aspara-
gus, certain kinds of mushrooms, peas, cardoons,
spinach, lettuce, turnip tops, sorrel, and chervil
come into season, as do strawberries, gooseber-
ries, and cherries.

Summer sees an increase in poultry, game,
and other birds, including songbirds. Beans, cau-

95

liflower, cabbage, and onions appear, along with
peaches, plums, apricots, figs, currants, mulber-
ries, melons, and pears. Autumn brings a bounty
of fish, meat, cool weather vegetables and fruit,
with the welcome addition of nuts, olives, and a
huge variety of grapes. The lean winter months
of December, January, and February, see an in-
crease in the consumption of dairy products and
dried and preserved food.

Then, with the same abundance reminding one of Dutch
still life painters, Valerie Lester talks about coffee (“How
tempting, but forbidden, the local cafés must have been
for the young Bodoni”), wine, religion, festivities, and
many, many more details of Italian life of these years.

Bodoni lives in Piazza di Spagna in Rome, which
attracted many Roman girls and women. The author won-
ders whom he could meet there after a day of work—and
this gives her alead to talkabout Roman women, their dif-
ference from contemporary Parisian women, the way the
former and the latter used and use rouge and perfume,
about Casanova, castrati, transvestites, harlequins, ac-
tors, etc., etc. We learn from the book how Italians at that
time traveled, played, prayed, celebrated, grieved. Even
the death of Bodoni was an occasion for Valerie Lester
to talk about history (p.180):

In1285, the citizens of Parmaraised funds for the
creation of a bell that could be heard as far away
as Reggio Emilia, 26 kilometers distant. The first
bell to be cast was not up to the challenge. A sec-
ond bell, very beautiful, also failed the test, but
in 1287, a third bell, Il Bajon, was struck, and
this time the citizens were satisfied. (It is unclear,
however, whether it actually made itself heard in
Reggio Emilia.) Because of its enormous size, it
was subject to rupture, and has been recast seven
times since 1287. Strict regulations dictated that
I Bajon, the largest of the six bells in the cathe-
dral tower, would only toll for the deaths of heads
of state or members of Parma’s most illustrious
families. When the populace awoke on 30 Novem-
ber 1813 and heard the great bell tolling, it was
clear that someone very important had died.

While the world of the book is full of things big
and small, the author also loves to write about people.
Bodoni’s press in Parma became a favorite destination

for many discerning visitors from Napoleon to traveling

Book reviews: Giambattista Bodoni: His Life and His World by Valerie Lester

96

scholars. Even more people corresponded with Bodoni
(a shrewd businessman, Bodoni sent a number of his
books as gifts to various dignitaries including such dis-
tant ones as Benjamin Franklin, a printer himself). This
gives Lester an opportunity to include portraits in her
prose: sometimes long, sometimes short, but always vivid
andinteresting. Besides Giambattista and his wife Ghitta
(a printer herself, who brilliantly finished her late hus-
band’s huge Manuale), the reader gets to know many con-
temporaries of the typographer: poets, printers, artists,
kings, queens, princes, princesses, ministers, ambas-
sadors, cardinals, apprentices, thieves and many oth-
ers. Everyone is distinct and clear, like the characters in
Bodoni’s characteristic fonts.

The author’s language is easy and conversational.
Sometimes it becomes perhaps too chatty, and Valerie
Lester’s levity may occasionally seem overdone, as in
“Saluzzo! Even the word sounds salutary, like a bless-
ing for a sneeze.” At times it seems that the copy edi-
tor missed an unfortunate word or phrase, for example,
“Even though Bodoni’s biographer, Giuseppe De Lama,
presumably getting it straight from the horse’s widow’s
mouth holds firm for [Bodoni’s birthday on] 16 February
[...]1”. Still, these occasions are rather rare, and the book
overall is well written.

The book is well researched. It has 220 endnotes,
quoting many sources, often not readily accessible, in-
cluding the author’s correspondence with a number of
experts. The Selected Bibliography has 73 titles. This
is very good for a popular biography. While the author,
as mentioned above, does not try to go into the intrica-
cies of typography, she adds four specialized appendices
written by experts: Cutting a Punch and Striking and Fit-
ting a Matrix by Stan Nelson, Printing on a Hand Press by
Fred & Barbara Voltmer, and The Trieste Leaf by James
Mosley (about the missing leaf from the 1788 edition of
the Manuale). These appendices are well written and
should be interesting both for the general public and for
lovers of the art of typography.

Besides these appendices, bibliography and notes,
there is a list of Principal Characters, divided into sec-
tions corresponding to the cities where the reader meets
them, a nice map of Bodoni’s Italy, and an index occupy-
ing ten pages of small print.

The book is abundant with illustrations. It shows
leaves from Bodoni’s books, from the books of his pre-

decessors and competitors, as well as portraits, land-

Boris Veytsman

TUGboat, Volume 37 (2016), No. 1

scapes, and photographs. It has 28 plates 18 portraits
and 10 plates of printed works), and a hundred more il-
lustrations in the text, frontispiece, front and back end
papers. Despite all this illustrative material, it does not
give an impression of a coffee table book, intended to be
leafed through rather than read: the pictures and pho-
tographs blend with the text. This is a notable achieve-
ment of the book designer, Jerry Kelly.

Speaking of this, Imust say that abook about a great
typographer places a high burden of expectation on the
designer. It would be a disaster to publish a pedestrian-
appearing book about a master of fine printing: too biga
contrast. Fortunately, Jerry Kelly, a leading typographer,
scholar and type designer himself (in October 2015 he
received a prestigious Frederic W. Goudy Award; we have
reviewed several of his books in TUGboat) was chosen,
and was more than up to the task. Fittingly, he typeset the
bookin beautiful ITC Bodoni and Bauer Bodoni (we used
Libre Bodoni from Impallari Type for this review). The
proportions of type block, margins and marginal folios
are exquisite, the typesetting is tasteful, and blending of
text and illustrations is subtle. Kelly provided a number
of illustrations for the book himself and drew the map of
Bodoni’s Italy. One feels that this was a work of love for
him, a tribute to the classic of typography.

The book is printed on good stock and well bound.
In our age of electronic books and sometimes shoddy
typography it is a pleasure to see that the traditions of
fine bookmaking are still alive.

The book was published by David R. Godine, a small
independent company specializing in fine printing of
“general interests for those with specific interests”; we
have a note about it by Dave Walden in this issue.

I thoroughly enjoyed this book. I think it would
find a good place on the bookshelf of anybody interested
in the art of typography, the history of Europe during
the French revolution, the past and present of Italy —
and anybody with an appreciation for an interesting and
beautiful book.

¢ Boris Veytsman

Systems Biology School and
Computational Materials
Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) 1k dot net

http://borisv.lk.net

TUGboat, Volume 37 (2016), No. 1

Note on the publisher of the Bodoni book:
David R. Godine

David Walden

Near the end of the review in this issue of Giambat-
tista Bodoni: His Life and His World by Valerie
Lester, the reviewer emphasizes the high quality
work of the typographer that went into the publica-
tion of this book. The reviewer also says of the book
overall, “[I]t is a pleasure to see that the traditions
of fine bookmaking are still alive.”

It is also worth emphasizing that beyond the
quality work of the author and the typographer, “fine
bookmaking” also requires a special publisher, in this
case the company of David R. Godine - Publisher.

David R. Godine - Publisher is well known in
the fine printing and publishing world. This Boston-
based company (godine.com) publishes 20 to 30
books a year. Occasionally they publish a volume on
books and printing (an in-print list is at godine . com/
book-category/typography — two of the books in
that list are co-authored by Jerry Kelly, the designer
of the Bodoni biography).

Another Godine-published book on printing (per-
haps out of print) that I have on my own bookshelf is
the 1989 reprint edition of Joseph Blumenthal’s The
Printed Book in America. Another Blumenthal re-
lated volume from Godine is Art Of The Printed Book
1455-1955 (Masterpieces Of Typography Through
Five Centuries From The Collections Of The Pier-
pont Morgan Library, New York, with An Essay By
Joseph Blumenthal, 1973).

For publications such as the above, the Go-
dine company won the 2014 Institutional Award
from the American Printing History Association
(printinghistory.org/awards/godine) —for “its
services in advancing understanding of the history
of printing and its allied arts.”

From reading the Boston press over the decades,
I know something more about David Godine and his
dedication to fine book printing and publishing.

David Godine is himself a printer. A Novem-
ber 18, 2015, Boston Globe article shows Godine
working at “at his Vandercook Proof Press” (“Be-
yond sales, Boston publisher’s devotion speaks vol-
umes” by Mark Shanahan, tinyurl.com/jrlqndt).

Godine printed his first book while still a stu-
dent at Dartmouth and started in business as a
letterpress printer. In time, his business converted to
being a publishing company rather than a printing
company, with a continued narrow focus on fine book
publishing. The Globe article quotes him as saying,
“I'm interested in books as works of art.” I myself

97

exchanged a pair of emails with David Godine in
May of 2012 (T don’t actually know him personally)
in which he stated that he had “a perspective that
holds that perhaps the greatest books ever printed
were issued in France between 1535 and 1560.” Go-
dine is also a collector of beautiful books. Some of
his thinking in this area may be found in an except
from a presentation he gave at Dartmouth in 1994:
tinyurl.com/gtrmnwx

DAVID R.GODINE-PUBLISHER
FORTY YEARS OF INDEPENDENT PUBLISHING
1970-2010

Godine’s company is clearly unusual. How many
other publishers would emphasize their decades in
business with an image of the president working with
metal type? The 40-years-in-business poster shown
on this page is of David Godine in his printer’s apron,
standing before a cabinet that holds cases of type,
with (hanging) composing sticks and pica rules, and
Godine looking down at a composing stick “to make
sure that the sorts have been placed in it upside
down and backwards with the nicks all aligned prop-
erly.” (The poster was designed by Glenna Lang and
provided to TUGboat by Godine associate publisher
Sue Berger Ramin.)

The company now publishes books in six differ-
ent series, each with its own imprint under the overall
Godine name (godine.com/imprints-and-series).
These “reflect the individual tastes and interests of

98

its president and founder.” Perhaps such individual-
istic perspective and dedication is necessary to get
books such as the Bodoni biography published in
today’s world.

Valerie Lester, author of the Bodoni biography
says, “‘David Godine is committed to publishing
beautiful books, and his production standards are
uncompromising. He’s a very hands-on publisher —
he himself edited my book. I thoroughly enjoyed
the experience of working with such an independent,
idiosyncratic individual, and felt that the marriage
of book and publisher was made in heaven!”

Carole Horne, general manager of the venerable
Harvard Book Store (harvard.com), says, “David
Godine is a legend in the book world. His dedication
to producing beautifully-made books is only equalled
by his extraordinary ability to find and publish im-
portant authors —among them the 2015 Literature
Nobel Prize winner — and important subjects. With-
out his genius, the world of American publishing
would be much poorer.”

¢ David Walden
walden-family.com/texland

Production notes

Karl Berry

As mentioned in the review of Lester’s book on
Bodoni, we used Libre Bodoni from Impallari Type
for the text. I need to thank Bob Tennent for creating
the (I&)TEX support files for it, essentially instanta-
neously. Impallari Type (impallari.com) has many
other excellent designs, and Bob has created support
for nearly all their released text fonts, as well as
fonts from many other sources (ctan.org/author/
id/tennent)—all this in addition to his work with
music typesetting (e.g., ctan.org/pkg/musixtex).

In the realm of font support, I'd also like to
thank Michael Sharpe (ctan.org/author/sharpe),
who has also created support for a plethora of high-
quality fonts, including designing many new glyphs.
Michael has also been instrumental in the latest
releases of Lucida fonts through TUG (tug.org/
lucida).

Finally, when looking for a so-called “modern”
font to use for the review, as I have whenever look-
ing for a font to use with TEX in past years, I've
used Palle Jgrgenson’s online font catalogue, tug.
dk/FontCatalogue. It’s recently been extended to
include a listing of fonts with OpenType support,
and a listing of serif fonts by traditional classifica-
tion (old-style, transitional, modern, slab). T can’t
recommend this resource highly enough!

TUGDboat, Volume 37 (2016), No. 1

Die TgXnische Komddie 1/2016

Die TEXnische Komddie is the journal of DANTE e. V.,
the German-language TEX user group (http://www.
dante.de). (Non-technical items are omitted.)

JOACHIM LAMMARSCH, MARION LAMMARSCH,
Peter Breitenlohner; pp.10-11

[Translated by the first author for this issue of
TUGboat.|

THOMAS HILARIUS MEYER, IXTEX in der Schule:
Zeugniserstellung [IXTEX at school: Creating
school certificates|; pp. 12-20

In schools KTEX only plays a minor role. But
some of these roles are notable. There are occasions
when ETEX is more or less life-saving, for example
when a huge number of identical, typographically-
challenging documents need to be typeset: school
certificates.

RoLF NIEPRASCHK, Weg mit den Réndern!
[Away with the margins!]; p.21

A colleague of mine asked for help. His graph-
ics, created with MS Excel were not satisfying: the
surrounding frame was much too large, and had un-
necessary white areas. Furthermore the requirement
from his publisher was that it had to be exactly
85mm wide. With a small ITEX document I was
able to help him.

HERBERT Vo0ss, Listen mit geschweiften
Klammern markieren [Marking lists with braces|;
pp- 22-23

It may sometimes be useful to group similar en-
tries within environments like itemize, description
or enumerate with braces and a corresponding label.

HERBERT Voss, BIBTEX-Felder auslesen
|[Reading BIBTEX fields|; p.24

The biblatex package defines a few macros to
extract the contents of BIBTEX database entries.

HERBERT VO0ss, Spezielle Gleitumgebung
[Special float environments|; pp.25-26

Usually one uses the float package to define a
new float environment. If the new environment is
to have a special layout, e.g. a frame, the floatrow
package may be helpful.

HERBERT Vo0ss, Eigene Beschnittmarken erstellen
[Creating one’s own crop marks|; p.27

The crop package is a good choice when crop
marks are to be provided. It allows the author to get
an overview of how the text area looks compared to
the margin, while the receiving printer can use the
crop marks for automated alignment of the print.

[Received from Herbert Vof.|

TUGDboat, Volume 37 (2016), No. 1

MAPS 46 (2015)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

MICHAEL GURAVAGE, Redactioneel [From the
editor]; pp.1-2

ERIK FRAMBACH, Memories of Kees; pp.3—4
[Printed in TUGboat 36:2.]

FrANs ABsiL, TEXShop review; pp.5-7
[Reprinted in this issue of TUGboat.]

WiLLl EGGER, TextMate; pp.8-12

When editing text or code on a Mac, TextMate
is an excellent choice. It offers an abundance of fea-
tures which makes it a great editor for TEX as well
as the macro packages KTEX and ConTEXt. Editing
HTML, XML and CSS is also supported, as are many
other programming languages. Specially tagged texts
are quick and easy to write, thanks to autocomple-
tion and placing of start and end tags. Further, the
editor supports “projects” — a sidebar to the editing
window that shows files belonging to the project. An-
other useful feature is the column selection method
and the (near) end of line selection. TextMate of-
fers a clipboard history, so multiple items can be
retrieved. TextMate can be customized to a very
large extent.

SYTSE KNYPSTRA, TEXworks; pp.13-15
[Translated by the author for this issue of TUG-
boat.]

SiEP KROONENBERG, TEXStudio: speciaal voor
KTEX starters [TEXStudio: Especially for IATEX
newbies|; pp. 16-22

[Revised and translated by the author for this
issue of TUGboat.]

KEES VAN DER LAAN, PS1ib.eps Catalogue,
preliminary and abridged version; pp.23-86

A selection of PostScript definitions collected in
my PS1ib.eps library and documented as e-book cat-
alogue is presented. Now and then variant pictures
have been included from pic.dat which comes with
Blue.tex. Old Metafont code has been included
which may be useful for MetaPost programmers.
Variants of pictures enriched by post-processing in
Photoshop show other possibilities. Escher’s dough-
nut is a teaser which has to be done in MetaPost.
Next to PS1ib.eps comes the file PDFsfromPS1ib,
which contains the pictures in .pdf format. The
complete PS1ib.eps/PDFsfromPSlib as well as the
catalogue as e-book, will be released on occasion
of NTG’s 25th anniversary which will be celebrated
in the fall of 2014, on www.ntg.nl. A prerelease

99

will be offered on the GUST file server. The (static)
library for TEX-alone pictures, pic.dat, packaged
with Blue.tex, will be redistributed as well.

KEES VAN DER LAAN, Spirals in PostScript;
pp- 8797

Curves specified in polar coordinates can be
elegantly programmed in PostScript with the rotate
command which performs rotations in user space.
This has been shown for the Cardioid, the Limacon,
the Lemniscate, the Archimedes and the Growth
spiral. The TEX Gyre logo has been analyzed and
imitated in PostScript. Printing of text along spiral-
like belts on a sphere in the projection plane has
been done, yielding poor man’s typesetting text on
a sphere in projection.

HANS HAGEN, SciTE; pp.98-100

The SciTE editor is now about 15 years old,
and still one of the nicest around. This editor is
a wrapper around the scintilla editor framework.
It is available for free for Windows and Linux, and
there is a relatively cheap version for Mac OS X.

HaNs HAGEN, Lua in MetaPost; pp.101-108

How to embed Lua code in MetaPost source, to
be immediately executed. For example, for generat-
ing graphics from external data.

[Received from Wybo Dekker.|

Eutypon 34-35, October 2015

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

In memoriam: Hermann Zapf (1918-2015);
pp. 1-13

Texts by Donald E. Knuth, Kaveh Bazargan,
Adam Twardoch, Nadine Chahine (in English), and
George D. Matthiopoulos (in Greek with English
abstract).

In memoriam: Pierre A. MacKay (1933-2015);
pp- 15-19

Texts by Diana Gilliland Wright and Lawrence J.
Bliquez. (In English.)

DoONALD J. MASTRONARDE, GreekKeys:
Keyboards and fonts for specialized scholarly use;
pp- 21-28

GreekKeys is a custom polytonic Greek key-
board program with accompanying fonts that has
been useful —for more than three decades now —
to scholars, teachers, and students of the ancient
and medieval Greek worlds. GreekKeys fonts and
keyboards provide easy access to many specialized

100

characters (e.g., for metrics, epigraphy, and papyrol-
ogy) that are absent from most system fonts and that
would otherwise have to be entered in roundabout
or obscure ways. The latest version (GreekKeys
2015) runs both under Mac OS X and Microsoft Win-
dows, and it includes four different Unicode-encoded
OpenType fonts: New Athena Unicode, AtticaU,
KadmosU, and BosporosU. (Article in English.)

APOSTOLOS SYROPOULOS, Graphics with the
TikZ/PGF package; pp.29-43

Among all solutions for the creation of linear
graphics, the author has found that the TikZ/PGF
package is the best for use with Unicode-aware type-
setting systems like Xfq¥TEX and LuaTEX. The arti-
cle describes the basic principles of use of TikZ/PGF
with examples taken from graphs the author cre-
ated for his own publications. (Article in Greek with
English abstract.)

GEORGE MATTHIOPOULOS, The Archives of
Design of Greece; pp.45-50

The Archives of Design of Greece were founded
in 2012 as a non-profit corporation, with the ob-
jectives of collecting, indexing and classifying all
archival material related to Visual Communication
in Greece. The Archives are already open to the pub-
lic through the website www.archivesofdesign.gr.
The first public presentation of the Archives was done
at the House of the Onassis Foundation in Athens
on October 22, 2015. (Article in Greek with English
abstract.)

APOSTOLOS SYROPOULOS, TEXniques: Rotations
with Rubik’s cube; pp.51-56

One note explains how to verify with IATEX if
a particular command or application exists in the
operating system, and then to take appropriate ac-
tion with IATEX. Another note explains how to make
TEX convert token sequences into something differ-
ent, e.g., to convert D2 into two printed D’s. (Article
in Greek.)

DimviTrIOS FiLipPOU, Book presentations;
pp- 5758

Short appraisal of two books:
(i) Dimitris Legakis, For a Publishers’ Archive of
Typography, Design, Graphic Arts and Advertising,
The Archives of Design of Greece, Athens 2015 (book
in Greek); and
(ii) Stefan Kottwitz, IATEX Cookbook, Packt Publish-
ing, Birmingham, UK 2015. (Article in Greek.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

TUGDboat, Volume 37 (2016), No.

TUG
Institutional
Members

TUG institutional members receive a
discount on multiple memberships, site-wide
electronic access, and other benefits:
http://tug.org/instmem.html

Thanks to all members for their support!

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey
Center for Computing Sciences, Bowie, Maryland
CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Google, San Francisco, California

IBM Corporation, T'J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses, Center for
Communications Research, Princeton, New Jersey

Maluhy & Co., Sao Paulo, Brazil
Marquette University, Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,
New York, New York

Overleaf, London, UK

River Valley Technologies, Trivandrum, India
ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg, Heidelberg, Germany
StackExchange, New York City, New York

Stanford University, Computer Science Department,
Stanford, California

Stockholm University, Department of Mathematics,
Stockholm, Sweden

TNQ, Chennai, India

University College, Cork, Computer Centre,
Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Cambridge, Centre for Mathematical
Sciences, Cambridge, United Kingdom

University of Ontario, Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,
Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGDboat, Volume 37 (2016), No. 1

TUG financial statements for 2015
Klaus Hoppner, TUG treasurer

The financial statements for 2015 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
http://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was slightly up in 2015
compared to 2014. Product sales returned to normal,
after a spike in 2014 due to a large Lucida site license.
The annual conference had a small margin, due to
good attendance and DANTE e.V. support. Other
income categories were close to steady. Overall, 2015
income was down 10%.

Cost of Goods Sold and Expenses highlights,
and the bottom line

Payroll, TUGboat, DVD production, and other over-
head continue to be the major expense items. Most
were less than budgeted; overall, 2015 COGS was
down about 16% from 2014, while office overhead
was up slightly due to election costs.

The “prior year adjustment” compensates for
estimates made in closing the books for the prior
year; in 2015, no adjustment was needed.

The bottom line for 2015 was positive: a little
more than $5,300.

Balance sheet highlights

TUG’s end-of-year asset total is up around $1,800
(not quite 1%) in 2015 compared to 2014.

Committed Funds are reserved for designated
projects: IXTEX, CTAN, the TEX development fund,
and others (http://tug.org/donate). Incoming
donations are allocated accordingly and disbursed as
the projects progress. TUG charges no overhead for
administering these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the cur-
rent year (and beyond). Most of this liability (the
2015 portion) was converted into regular Membership
Dues in January of 2015.

The payroll liabilities are for 2015 state and
federal taxes due January 15, 2016.

Summary

Membership fees remain unchanged; the last general
increase was in 2010. We ended 2015 with 20 more
members than in 2014. TUG remains financially solid
as we enter another year.

TUG 12/31/2015 (vs.2014) Revenue, Expense

ORDINARY INCOME/EXPENSE
Income

Membership Dues
Product Sales
Contributions Income
Annual Conference
Interest Income
Advertising Income
Services Income

Total Income

Cost of Goods Sold
Membership Drive
TUGboat Prod/Mailing
Software Prod/Mailing
Postage/Delivery - Members
Lucida Sales to B&H
Member Renewal

Total COGS
Gross Profit
Expense
Contributions made by TUG

Office Overhead
Payroll Expense

Total Expense

Net Ordinary Income
OTHER INCOME/EXPENSE

Prior year adjust

Other Expense
Net Other Income

NET INCOME

TUG 12/31/2015 (vs.2014) Balance Sheet

ASSETS
Current Assets
Total Checking/Savings
Accounts Receivable

Total Current Assets

LIABILITIES & EQUITY
Current Liabilities
Committed Funds
Administrative Services
Deferred Contributions
Prepaid Member Income
Payroll Liabilities

Total Current Liabilities
Equity

Unrestricted
Net Income

Total Equity

TOTAL LIABILITIES & EQUITY

101
Dec 31,15 Dec 31,14
92,455 91,780
5,736 13,529
8,320 8,776
1,837 8,720
484 425
320 390
2,616 671
111,768 124,292
(256)
(17,722) (18,703)
(3,200) (3,076)
(2,147) (2,294)
(2,195) (5,993)
(412) (406)
(25,677) (30,727)
86,091 93,566
(2,000) (2,000)
(15,444) (13,134)
(63,256) (64,752)
(80,700) (79,886)
5,391 13,680
423
(106)
317
5,391 13,997
Dec 31,15 Dec 31,14
205,582 201,400
300 2,650
205,882 204,050
31,248 30,837
1,528 1,920
45
4,085 7,610
1,087 1,094
37,948 41,507
162,543 148,546
5,391 13,997
167,934 162,543
205,882 204,050

102

TUGDboat, Volume 37 (2016), No. 1

TEX Consultants

The information here comes from the consultants themselves.
We do not include information we know to be false, but we
cannot check out any of the information; we are transmitting
it to you as it was given to us and do not promise it is correct.
Also, this is not an official endorsement of the people listed
here. We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at tug.org/
consultants.html. If you'd like to be listed, please see that
web page.

Aicart Martinez, Merce

Tarragona 102 4° 2¢

08015 Barcelona, Spain

+34 932267827

Email: m.aicart (at) ono.com

Web: http://www.edilatex.com
We provide, at reasonable low cost, IANTEX or TEX page layout
and typesetting services to authors or publishers world-wide.
We have been in business since the beginning of 1990. For
more information visit our web site.

Dangerous Curve

PO Box 532281

Los Angeles, CA 90053

+1 213-617-8483

Email: typesetting (at) dangerouscurve.org
We are your macro specialists for TEX or IATEX fine typogra-
phy specs beyond those of the average INTEX macro package.
If you use XHTEX, we are your microtypography specialists.
We take special care to typeset mathematics well.

Not that picky? We also handle most of your typical TEX
and IATEX typesetting needs.

‘We have been typesetting in the commercial and academic
worlds since 1979.

Our team includes Masters-level computer scientists, jour-
neyman typographers, graphic designers, letterform/font de-
signers, artists, and a co-author of a TEX book.

Latchman, David

4113 Planz Road Apt. C

Bakersfield, CA 93309-5935

+1 518-951-8786

Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com
IATEX consultant specializing in the typesetting of books,
manuscripts, articles, Word document conversions as well as
creating the customized packages to meet your needs.

Call or email to discuss your project or visit my website
for further details.

Peter, Steve

+1 732 306-6309

Email: speter (at) mac.com
Specializing in foreign language, multilingual, linguistic, and
technical typesetting using most flavors of TEX, I have typeset
books for Pragmatic Programmers, Oxford University Press,
Routledge, and Kluwer, among others, and have helped nu-
merous authors turn rough manuscripts, some with dozens
of languages, into beautiful camera-ready copy. In addition,
I’ve helped publishers write, maintain, and streamline TEX-
based publishing systems. I have an MA in Linguistics from
Harvard University and live in the New York metro area.

Sievers, Martin

Im Alten Garten 5

54296 Trier, Germany

+49 651 4936567-0

Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com
As a mathematician with more than ten years of typesetting
experience I offer TEX and IATEX services and consulting for
the whole academic sector (individuals, universities, publish-
ers) and everybody looking for a high-quality output of his
documents. From setting up entire book projects to last-
minute help, from creating individual templates, packages
and citation styles (BIBTEX, biblatex) to typesetting your
math, tables or graphics — just contact me with information
on your project.

Sofka, Michael

8 Providence St.

Albany, NY 12203

+1 518 331-3457

Email: michael.sofka (at) gmail.com
Skilled, personalized TEX and IATEX consulting and program-
ming services.

I offer over 25 years of experience in programming, macro
writing, and typesetting books, articles, newsletters, and the-
ses in TEX and IATEX: Automated document conversion; Pro-
gramming in Perl, C; C++ and other languages; Writing and
customizing macro packages in TEX or IATEX; Generating
custom output in PDF, HTML and XML; Data format con-
version; Databases.

If you have a specialized TEX or IATEX need, or if you
are looking for the solution to your typographic problems,
contact me. I will be happy to discuss your project.

Veytsman, Boris

46871 Antioch Pl.

Sterling, VA 20164

+1 703 915-2406

Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and IATEX consulting, training and seminars. Integra-
tion with databases, automated document preparation, cus-
tom IATEX packages, conversions and much more. I have
about nineteen years of experience in TEX and three decades
of experience in teaching & training. I have authored several
packages on CTAN, published papers in TEX related jour-
nals, and conducted several workshops on TEX and related
subjects.

Webley, Jonathan

21 West Kilbride Road

Dalry, North Ayrshire, KA24 5DZ, UK

01294538225

Email: jonathan.webley (at) gmail.com
I specialize in math, physics and IT. However, I'm comfort-
able with most other science, engineering and technical ma-
terial and I’'m willing to undertake most IATEX work. I’'m
good with equations and tricky tables. I can also proofread
and copy-edit if required. I’ve done hundreds of papers for
journals over the years. Samples of work can be supplied on
request.

TUGDboat, Volume 37 (2016), No. 1

103

Calendar
2016
Apr 8 TUG 2016 deadline for bursary TUG 2016
applications. tug.org/tug2016 Toronto, Canada.
Jul 23, 24 Optional pre-conference tours.
Apr 29— BachoTEX 2016, “Convergence — TEX, tug.org/tug2016/excursions.html
May 3 get out of the closet!” 24th BachoTEX Jul 24 Eveni i d resistrati
Conference, Bachotek, Poland. u vemntghrecep ion and registration.
www.gust . org.pl/bachotex/2016-en Jul 25-27 The 37" annual meeting of the
TEX Users Group.
May 1 TUG 2016 deadline for presentation Presentations covering the TEX world.
proposals. tug.org/tug2016 tug.org/tug2016
May 12—14 TYPO Berlin 2016, “Beyond Design”, Jul 28 Typographic excursions and banquet.
Berlin, Germany. Jul 29 Optional post-conference tour [potential]
typotalks.com/berlin
Jun 5- Rare Book School, University of Jul 24-28 SIGGRAPH 2016, “Render the Possibilities”,
Aug 5 Virginia, Charlottesville, Virginia. Anaheim, California. s2016.siggraph.org
Many one-week courses on type,
bookmaking, printing, and related topics. Aug 1-5 Balisage: The Markup Conference,
www . rarebookschool.org/schedule North Bethesda, Maryland.
www.balisage.net
Jun 8-10 The Fourteenth International Conference
on New Directions in the Humanities Aug 24-28 TypeCon 2016, “Resound”,
(formerly Books, Publishing, and Seattle, Washington. typecon.com
le‘rarle‘s), “The. EYent of the BOOk’.” . Sep 11-16 XML Summer School, St Edmund Hall,
Unlversmy of Illinois at Chicago, Illinois. Oxford University, Oxford, UK.
thehumanities.com/2016-conference xmlsummerschool . com
Jul 4-7 Blook. history. Wo.rkshop,' Ecole de Sep 13-16 ACM Symposium on Document
Vinstitut d’hlsto%re du hvr.e7 Engineering, Vienna, Austria.
Lyon, France. ihl.enssib.fr wuw . doceng2016 . org
Jul 5-9 The 6 Internatior.lal Conference‘on) Sep 13—17 Association Typographique Internationale
Typography an.d Visual Communication (ATypl) annual conference,
(ICTVC), .“A.;gamst lethe ...”, “Convergence”, Warsaw, Poland.
Thessaloniki, Greece. www.ictvc.org www.atypi.org
Jul 12-16 D?g%tal Human%t?es 2016, :Alliz.ance of Sep 16 The Updike Prize for Student Type Design,
Dlg'lt.al Humar}l.tles Organizations, application deadline, 5:00 p.m. EST.
“Digital Identities: the Past and the www.provlib.org/updikeprize
Future”, Krakéw, Poland. dh2016.org
. Sep 25— 10" International ConTEXt Meeting,
Jul 18—-22 SHARP 2016, “The Generation and Oct 1 “Piece of Cake”,
R(.egeneratlon of Boo'ks”. Soc'lety for the Kalenberg, The Netherlands.
Hlsto.ry.of Authorship, Reading & meeting.contextgarden.net/2016
Publishing, “Languages of the Book” /
“Les langues du livre”. Paris, France. Sep 30— Oak Knoll Fest XVIX, New Castle,
www . sharpparis2016.com Oct 2 Delaware. www.oakknoll.com/fest

Status as of 31 March 2016

For additional information on TUG-sponsored events listed here, contact the TUG office
(4+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings. In-
terested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

104

TUGDboat, Volume 37 (2016), No. 1

CTAN -

Dearest customer,

we are pleased to announce that we can offer our

combined product range at unbeatably low prices to

you. Latex Productions International Ltd., Shanghai ‘
has acquired the world wide exclusive rights on tex

from Donald F. Knuth. Now we will join our forces

with ctan and tug for your benefits.

We are also getting in contact with many other latex
user groups world wide. This will allow us to gain even more momentum and offer an
even further extended set of latex packages to you.

Please note that we intend to continue the presence of the former site ctan.orqg.
Nevertheless we would like to inform you that we will rename it to Comprehensive
Latex Artefact Novelties (CLAN) which is considered more appropriate. Thus you will
be redirected to our new site soon. Keep on visiting this site in order not to miss the
change and the new packages with exiting and innovative latex artefacts.

We are looking forward for your orders of our high-quality products and extended,
long-term business relations. You can help latex to rule the world!

Latex Productions International Ltd., Shanghai

| Thank “ou l

Thanks to Gerd Neugebauer.

Reports and notices

10
5
9
6

93

91

94

97

99
100
101
102
103

Jonathan Fine / The Board’s suspension of the President

Joachim Lammarsch and Marion Lammarsch / Peter Breitenlohner, 1940-2015
Jerzy Ludwichowski / ATypI 2016 with GUST participating

Boris Veytsman / The continuing TEX Users Group membership drive

Charles Thomas / Tout ce que vous avez toujours voulu savoir sur IATEX ... by Vincent Lozano
* review of this introductory and intermediate book in French

Boris Veytsman / IATEX for Administrative Work by Nicola Talbot
* review of this extensive exposition of MTEX packages for many tasks

Boris Veytsman / Giambattista Bodoni: His Life and His World by Valerie Lester
* review of this general-audience book on Bodoni’s life and context

David Walden / Note on the publisher of the Bodoni book: David R. Godine
« short profile of this unusual publisher of fine books

Other TEX journals: Eutypon 34-35 (October 2015); Die TEXnische Komddie 1/2016; MAPS 46 (2015)
Institutional members

Klaus Hoppner / TUG financial statements for 2015

TEX consulting and production services

Calendar

TUGBOAT Volume 37 (2016), No. 1

Introductory

37 Frans Absil / TEXShop review

¢ introduction to this Mac OS X TEX editor
3 Barbara Beeton / Editorial comments

* typography and TUGboat news

39 Sytse Knypstra / TEXworks: A simple GUI with advanced options
 overview of this cross-platform TEX editor emphasizing simplicity

41 Siep Kroonenberg / TEXstudio: Especially for IWTEX newbies
» overview of this cross-platform dedicated TEX editor

16 Thomas Thurnherr / On managing large documents
» advice on managing labels, drafts, splitting sources, and more

Intermediate
88 Karl Berry / Production notes
e font support from Bob Tennent and Michael Sharpe, and the online font catalogue
89 Karl Berry / The treasure chest
* new CTAN packages, October 2015-March 2016
66 Alan Braslau and Hans Hagen / MetaPost arrowhead variants
 adding ahvariant and ahdimple for other arrowhead styles
28 Ron Fehd / Indexing: Goals, strategies and tactics
e index production approaches, hints, and theories
12 Khaled Hosny / The libertine gets mathematical
* new OpenType font family Libertinus, including math, based on Linux Libertine
18 Anagha Kumar / medstarbeamer: A new beamer class
e on creating on a new beamer class, with special attention to colors
13 IMTEX Project Team / ATEX news, issue 24, January 2016
e LuaTEX support; Unicode data and support; East European accents; Changes in Tools and Graphics
15 IATEX Project Team / IATEX news, issue 25, March 2016
e LuaTEX; Documentation checksums; Updates to inputenc; Updates in Tools; amsmath; Related updates
71 Petr Olsak / OPmac-bib: Citations using *.bib files with no external program
* producing bibliographies using TEX macros and nothing else
45 Norbert Preining / 10 years of TEX Live in Debian
* history of TEX and TEX Live packaging in Debian

67 Peter Wilson / A personal book catalogue: bookdb
e creating a custom BIBTEX style for book collections and more

Intermediate Plus
25 Sabri Al-Safi / Randomising assignments with SageTEX
¢ individualized assignments and corresponding answers via SageTEX
53 Hans Hagen / LuaTEX 0.90 backend changes for PDF and more
 renaming, removing, reorganizing many \pdf. .. primitives
48 Oleg Parashchenko / Paragraph designer with galley approach
e controlling paragraph styles and space above and below via a Python script

22 Peter Wilson / Glisterings: Assemblies; Table talk
» adding to a macro, piecing a paragraph, splitting a column

Advanced

58 Hans Hagen / Still expanding LuaTEX: Possibly useful extensions
* new features related to rules, spaces, tokens, list packing, error handling

66 Hans Hagen / Hyphenation languages in LuaTgX 0.90
« generalizing TEX82 hyphenation discretionaries, \1ccode, etc.

82 Petr Olsdk / The apnum package: Arbitrary precision numbers implemented in TEX macros
* expression parsing, basic arithmetic, and many functions in generic TEX

79 Joseph Wright / Exploring \romannumeral and expansion
» controlled expansion with \romannumeral

Reports and notices
10 Jonathan Fine / The Board’s suspension of the President
5 Joachim Lammarsch and Marion Lammarsch / Peter Breitenlohner, 1940-2015
9 Jerzy Ludwichowski / ATypl 2016 with GUST participating
6 Boris Veytsman / The continuing TEX Users Group membership drive

93 Charles Thomas / Tout ce que vous avez toujours voulu savoir sur MTEX ... by Vincent Lozano
* review of this introductory and intermediate book in French

91 Boris Veytsman / IMTEX for Administrative Work by Nicola Talbot
* review of this extensive exposition of INTEX packages for many tasks

94 Boris Veytsman / Giambattista Bodoni: His Life and His World by Valerie Lester
* review of this general-audience book on Bodoni’s life and context

97 David Walden / Note on the publisher of the Bodoni book: David R. Godine
« short profile of this unusual publisher of fine books

99 Other TEX journals: Eutypon 34-35 (October 2015); Die TEXnische Komdédie 1/2016; MAPS 46 (2015)
100 Institutional members
101 Klaus Hoppner / TUG financial statements for 2015
102 TgX consulting and production services
103 Calendar

