TUGDboat, Volume 36 (2015), No. 3

Typesetting the “Begriffsschrift”
by Gottlob Frege in plain TEX

Udo Wermuth

Abstract

A macro package, gfnotation, is described that
can be used to typeset the monograph “Begriffs-
schrift” published by Gottlob Frege in the year 1879.
The package contains two methods to input the un-
usual notation invented by Frege. The “symbolic
representation” allows complete control about the
elements and their positions and the “short form”
simplifies the complexity to enter the formulas. The
package includes macros to build chains of inferences
and avoid problems with page breaks. It has been
successfully applied to typeset the “Begriffsschrift”.

1 Introduction

A well-known strength of TEX is its capability to
typeset mathematics. In the long history of print-
ing mathematical formulas, some notations have ap-
peared which are no longer in use. To typeset such
notations TEX sometimes does not provide an easy
solution. A book with such an outdated notation,
which probably only its inventor ever used, is the
“Begriffsschrift” [4] published by Gottlob Frege in
1879. Figure 1 shows a page from the book.

T own a facsimile reprint of the “Begriffsschrift”,
and asked myself how it can be typeset with plain
TEX. Of course, I realized that this would require
much macro programming. My first goal was to
produce a layout that comes as close as possible to
the one used in the original printing of the “Begriffs-
schrift”. A second goal was to create a useful set
of macros to typeset the whole book without great
difficulty and not just a single formula. The output
of my macros [25] for Fig. 1 is shown in Fig. 2.

In this article the macros that I developed to
typeset the whole book are sketched, several exam-
ples of their output are given, and my approach to
the problem is discussed. But first, in the next
subsection, I briefly introduce the author. Then
I discuss the contents of the “Begriffsschrift” and
describe the importance of this monograph. The
focus of the next subsections is on the notation and
the challenge of typesetting it. In sections 2 and 3 I
explain the two macro packages (a symbolic repre-
sentation and a short form) that I wrote to allow a
practical handling of Frege’s notation in plain TEX.
Finally, in the last section I describe the changes to
the format of Frege’s notation that occurs in Frege’s
main work [7] of 1893.

243
66
7 F ()
e re)
T
8/ F(a)
(
a\f(d e
T’gﬁ f @y yp)
(12) :
al|F (y) — Fy
bl —2——F) I d(F@
1— flz,a) a\f(d, a)
clf (F () —3% —— F(0)
a\ £ (6, a) —f (x, @)
| % £ @y yp) %[@y yp) ®s.
(19) :
b F@ I he
Tt TTT [,
a\f (6, a) — | (s
c|—& r® . ;(a';(’“)
——f(x,a) =~ —f(
y x, a)
al— F(Z) — ﬂ f(xyi yﬂ)
—fe F@
6<F(a) —f(y 2
a\f (8 (e
a\f(d, a)
F(y)
I_ d(F(a)
a\f(d, a) (86.
(73) :
vlz ———F (2).
2y — @2
dl" (F (@)
al\f(d, a)
& F(a)
)
L r@ynyp (81.

Figure 1: Page 66 of the Begriffsschrift [4]
(approx. 62% of original area)

The author Gottlob Frege. Friedrich Ludwig
Gottlob Frege (1848-1925) was a German mathe-
matician and according to his own words partly a
philosopher [3]: “Every good mathematician is at
least half a philosopher, and every good philoso-
pher at least half a mathematician.” Several of
his articles treat topics in the borderland between
mathematics and philosophy. He was interested in
an exact and rigorous foundation of mathematics
and is one of the founders of the mathematical school
called logicism, whose ultimate goal is to derive all
of mathematics from logic [26]. To reach his goal
Frege needed to capture imprecise linguistic phrases
by exact and unambiguous statements. And he had
to develop an automated system that can transform
such statements without using their meaning or ac-

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

244
77 I F(y)
L\T“ F(a)
f(z,a)
0 (F(a)
(e
%’f(ww yg)
(12) :
a | Fly) F— F(y)

0 (F(a)

b F(a) | (
a\ f(d,a)
flz,a) : F(a)

6 (F(a)
c || f(z,a)
a\f(d,a)
d | 3@ 5Hys) (85.
(19) :
f F(2)
b F(y) |—f(?/72)
—[? F(a) f F(a)
a\ f(4,a) a\ f(4,)
c ¢ F(a) 2 F(a)
[f(% a) flz,a)

d %f(lw yﬂ)
a ——[F(z) F(2)
f(yrz) Lf(y'z)
is (F(a) f (F(a)
a\ f(6,a) a\f(d,a)

F(y)
f (F(a)

£(6,) (86.

%f(wmya)

«

z' ' | F(z)
Y |—f(w)
1)

| (F(a)
a\f(5,a)
¢ F(a)

<f(I7 a)
%f(wy/j) (87.

Figure 2: Page of Fig.1 in plain TEX
(approx. 58% of original area)

tual content. This is why he invented a new for-
mal syntax that is introduced in the book “Begriffs-
schrift”. More about Gottlob Frege and his work
can be found, for example, online in [27].

W. Quine wrote in 1955 (see [19, p.158]) “All
of modern logic owes an incalculable debt to Frege.
If anyone can be singled out as the founder of math-
ematical logic, it is by all odds he.” But during
his lifetime the work of Frege was not appreciated
and mostly ignored. As a consequence of unfavor-
able reviews of his work, which show that the con-
temporary reviewers did not understand the impor-
tant points, Frege’s academic career was severely
hampered. He worked as an underpaid Honorary

Udo Wermuth

TUGDboat, Volume 36 (2015), No. 3

Professor in Jena until his retirement in 1918. In
[18] Bertrand Russell is cited with the words: “In
spite of the epoch-making nature of [Frege’s] discov-
eries, he remained wholly without recognition until
I drew attention to him in 1903.” This neglect of
his work by other researchers hit Frege hard and
filled him with bitterness (see [2]). Maybe even
harder was the setback for the scientist through the
discovery of a contradiction in his main work. A
year before Frege published the second volume of his
main work “Grundgesetze der Arithmetik” [7] (Ba-
sic Laws of Arithmetic [8]) Bertrand Russell wrote
him a letter and pointed out that a contradiction can
be constructed from his axioms in the first volume
(see Russell’s letter [23] and Frege’s response [6]).
Frege wrote an epilogue for the second volume of
the “Grundgesetze” [7, pp.253-265], in which he
explained the problem Russell found. He tried — un-
successfully, as is known today (see [19]) — to solve
it. Russell used for the contradiction an axiom of
Frege about which Frege wrote in the preface of the
first volume of the “Grundgesetze” that it might
cause controversy [7, p. vii].

It seems that Frege was, or more likely became,
a man with a difficult personality. In some of his
works he attacked other scientists, and he wrote
polemical texts (see [2, pp.46-47] and [3]).

The book “Begriffsschrift”. Frege published his
first major work in 1879 under the title “Begriffs-
schrift, eine der arithmetischen nachgebildete For-
melsprache des reinen Denkens” (Begriffsschrift, a
formula language, modeled upon that of arithmetic,
for pure thought) [4]. This long title is always short-
ened to “Begriffsschrift” (Concept Notation; I use
the translation of the German terms as they appear
in [5]). In this monograph Frege presented his auto-
mated system in the framework of a formal syntax; it
was the preparation for his subsequent works where
he considered the topics “number” and “quantity”.
The Begriffsschrift consists of three parts. In the
first part the formal system is introduced. The sec-
ond part shows how to express in this system judg-
ments of pure thought (for example, syllogisms and
tautologies like “If a or b takes place, then b or a
takes place.”). In the last part Frege applied the
system to the mathematical theory of sequences.
The Begriffsschrift is a short book of less than
a hundred pages but great importance is attached
to it. The introduction to the translated text in [5,
p. 1] contains the words “... it is perhaps the most
important single work ever written in logic.” And
on page 53 of [2] one can find the statement: “It was
also the first example of a formal artificial language

TUGDboat, Volume 36 (2015), No. 3

constructed with a precise syntax. From this point
of view, the Begriffsschrift was the ancestor of all
programming languages in common use today.”

From a typographic point of view the Begriffs-
schrift is special because of Frege’s notation for his
formal syntax. This notation did not become an
accepted standard and therefore the book is not easy
to read. The opposition to the notation included
the waste of space and the vertical writing. Frege
answered that mathematical formulas are written in
a sequence of lines to obtain the advantage of the
two dimensions that paper offers [9, p. §].

Later in the first volume of the Grundgesetze [7]
Frege repeats the definitions of his formal system,
but with some small changes to the notation. He
wrote [8, p.5]: “My Begriffsschrift (Halle a. S. 1879)
no longer corresponds entirely to my present stand-
point; it is therefore to be consulted as an elucida-
tion of what is presented here only with caution.”
(See [13] for a discussion of the notation and the
symbols of [7].)

Frege’s Notation. Let’s look at the notation of the
Begriffsschrift in more detail as this is the main topic
of the article. Greek letters are used for terminal
strings: A, B, ... (uppercase Alpha, Beta, etc.).
Gothic type (i.e., Fraktur) is used for a construc-
tion called concavity— Frege called them German
letters. The following notation is used by Frege:

e (Content stroke written as —— A; it generates
an idea of A; i.e., it is a statement. The truth
of A has not yet been judged.

Judgment: b— A; it confirms the truth of A.
Negation: —— A; it states the opposite of A.
Affirmation written as double negation: —— A.
Condition: B; it represents a conclusion.

_EA

Frege used a truth table to define the meaning
of the condition: I—I:B excludes the case in
A

which A is true but B is false, i.e., A = B.

o Generality: —&~ &(a); it formulates a state-
ment for all possible values of a, i.e., it is a “for
all” quantification.

e Identity of content: — (A = B); it establishes
the same content for A and B, i.e., A and B are
interchangeable.

Frege allowed as variables in the generality not
only elements like a but also functions, i.e. §. A
quantification with a function appears, for example,
in formula 76 of the Begriffsschrift (see Fig.5(b)).

As Frege defined only one binary relation, the
condition, some well-known operations lack the sym-
metrical form in Frege’s syntax as they have in mod-

245

ern notation. For example, Frege analyzed words
like “and” and “or” and described them in his no-
tation as ——+ B for “and” and B for “or”.
A -A

Besides the notation for formulas he introduced
a notation for rules, i.e., inferences. At first he used
only one inference and stated that later applications
of the system shall define more modes of inference
(see [4, p.vii]). Frege did this in [7]; his notation is
described in more detail in section 4.

An inference creates from two formulas a third:

4
——B

—A.
It means: If it is true that A is a conclusion of B
and the truth of B is known, then A must be true.
Although there is only one inference three dif-
ferent notations are used in the Begriffsschrift to
avoid the repetition of a formula. One of the two

input formulas might be referenced by its number
instead of being listed again. For example, if |—|: A
B

was established and if this formula is called X then
the above inference is abbreviated:

—B

F—A.
On the other hand, if —— B is known and called
XX then Frege put two colons after the reference

number:
4

——A.
And in some places more than two formulas are
involved in an inference. If the formula — 1" is
called XXX then the chain of inferences

A
4
I

(X) :

(XX) ::

(XXX) 10 —m8 ™
|—|:A
B

——A.

(XX) ::

can be written:
F— A
|:B

—1T

(XX, XXX) P —
——A.

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

246
58 1 ()
f(4) f(4) g(b)
Lta) © /(o)
c b g(a)
(30) :
a | f) | o f(a)
. o
a a L
Lo L—— "oty .

Figure 3: The inference for formula 59 of [4]

In Fig. 1, the second kind of abbreviation is used
in the last inference with formula 73. The first two
inferences with formulas 12 and 19 are examples of
the first kind of abbreviation.

Another important notation is used for substi-
tutions. In a previously derived formula substitu-
tions with other formulas are possible as long as
the substitution is done consistently. Frege used a
vertical line to the left of a formula and wrote to the
left of that line the statement that is replaced and
to the right, the replacement. The formula in which
the substitution shall be performed is referenced by
its number over the top of the line. Figure 3 shows
an example.

The first formula has the number 58 and reads

|—|: f(c). The formula is printed above the
2-f(a)

horizontal line with two changes: f(A) is replaced
by f(A) and c is replaced by b. Formula 30 is
[g(A)

used in the inference but it is not shown. And in this
formula substitutions are performed too: The three
substitutions are listed below the number 30. To al-
low the reader to perform the inference of formula 59
himself, here is formula 30:

I ~b
[a
¢
a
L.
b (30.
And here, the abovementioned substitutions have
been applied to it: } 0 |_f(a). If this
g(a)
g(b)
B f(b)
g(b)
(

formula is placed at the top of Fig. 3, the inference
for formula 59 is clear.

Udo Wermuth

TUGDboat, Volume 36 (2015), No. 3

Typesetting Frege’s notation. Of course, Frege
was aware that the typesetting of his notation is
very difficult. He argued [10, p.364] that his two-
dimensional form was easier to read and understand
than the usual compression of all formulas into a
single line. And he was not willing to change his
layout to make the work of the typesetters easier.
Using one half of a verse by Friedrich Schiller, he
wrote (loosely translated): “The ease of typesetting
is not, however, the supreme good.”

In the next section I present my symbolic cod-
ing to reproduce Frege’s notation as closely as pos-
sible. Then a recursive notation is introduced that
allows writing the input for a formula on a single
line. Of course, the output is the two-dimensional
structure defined by Frege and the lengths of con-
tent strokes are automatically calculated to have all
terminal strings aligned.

Other people have worked on the problem to
typeset Frege’s notation in TEX. J. Parsons devel-
oped a package begriff.sty for IWTEX [21]. Tt doesn’t
fulfill my above mentioned goals; for example, the
overall look of the notation of the Begriffsschrift is
not reached and the alignment of judgment strokes
or terminal strings is not easy, as the lengths of the
content strokes are set manually. The look of the
output is improved in [20]. The article [17] describes
a GUI to support the manual work and outputs
formulas in the coding of begriff.sty; it was used
in a translation project for Frege’s Grundgesetze
(see [1]). The team created its own package grund-
gesetze.sty [22] to typeset the English translation
[8] of Frege’s main work [7]. The package is based
on begriff.sty and inherits some of its weak points.
The style of Frege’s notation in his main work differs
from the style of the Begriffsschrift (see section 4).

2 Symbolic representation

It is easy to understand that Frege’s notation can be
applied in a longer text only if macros are available
to support the input. My first decision: Greek and
Fraktur letters are entered using control words of
length 2; the letter that must be typeset is preceded
by either a ‘g’ for uppercase Greek, or a ‘k’ for low-
ercase Greek, or a ‘d’ for Fraktur. The assignments
of characters to Greek letters follows [16, p.20]. For
example, \gA produces an uppercase Greek Alpha
(A) and \da gives a. The Fraktur font is taken from
AMS-TEX’s Euler family of fonts. (Not all combi-
nations of two letters are allowed. For example, the
control word \dp is already used by TEX.)

First, I thought to use \halign for the formu-
las, but this approach has some major drawbacks:

TUGDboat, Volume 36 (2015), No. 3

e Page breaks in long inferences are not possible
when they are typeset as a single alignment.
Frege never broke a formula; page breaks occur
inside an inference only after the inference line.

e The templates and the horizontal positions of
formulas have to be carefully aligned if each
formula is an \halign itself.

e Laborious counting of &-signs inside a formula
is needed to position the parts correctly.

As the notation requires control words for the
line segments anyway, the following simple approach
seems to be possible:

1. All symbols (and the empty space) of the nota-
tion are defined in a uniform length.

2. Normal text lines are used (which might have
to be typeset without interline spacing).

I observed that the symbols consist of three
parts. This can be seen most easily in the condi-
tion. Therefore 1 defined a macro * with three
parameters. (I saved the plain TEX meaning of *
as \discretionarytimes.)

For example, I write the triple *--- for the
content stroke (—), which consists of three equal
parts. *-"- is the single negation (——). *-:-
gives the then-part (——) of a condition, which finds
in *_’- its partner () in the following line. A
*_!_(|)isused toconnect a then- and its if-part
over several lines. And *.a. builds the concavity
(=&~) with the letter a. Although one might think
that the colon appears only in the middle of a triple
one should consider a triple like *:-: (+—) to get a
more compact variant to code two then-parts. (This
compact form is required in the Grundgesetze [7],
which has a two-column page layout. Figure 7 shows
the compact form of the formulas of Fig. 1.) In order
to connect the symbols in this coding all elements
must have the same length. And of course, all hor-
izontal lines must have the same thickness and the
same position above the baseline.

First, I identified 19 different parts without the
concavity. The flexibility in defining symbols from
these parts is more than the Begriffsschrift requires:
It uses 8860 triples in the whole text but only 73
different ones; 21 triples occur just once and only 10
more than 100 times.

Here is the list of the seven basic parts:

is the empty space;

- is a horizontal line for the content stroke and

the inference rule;

is a horizontal line with centered negation;

+ is a horizontal line with two centered negation
indicators (affirmation);

: is the then-part of the condition;

247

> is the if-part of the condition;

! is a vertical line (part of the so-called condi-
tion stroke) that connects an if-part with the
corresponding then-part over several lines.

Four symbols are used for special situations:

[is a vertical line placed left and starts a hori-
zontal line (a judgment with a content stroke);
| is the vertical line for the substitution;
= is two horizontal lines used for an inference that
involves more than two formulas;
3 is two vertical lines used for definitions (see
Fig.5).
And finally there are eight symbols to fine-tune the
output to match the original in certain situations:

" a skip, that is, no output at all;

(negation, with the indication of negation moved
to the left;

negation, indicator moved to the right;
negation, indicator placed at the left end;
negation, indicator placed at the right end;
affirmation, with indicators moved to the left;
affirmation, indicators moved to the right;

a vertical line placed right, that is, only the
judgment stroke is printed.

Y VAN~

— N

Second, the definition of the concavity requires
typesetting of letters. The width of such a letter is
considered to be counted as two elements of a triple.
So special symbols for shorter elements are defined,
which must be used in pairs. Three additional basic
symbols are needed:

a is the letter for the concavity (‘a’ can be re-
placed by other letters);

. is a short vertical line (i.e., a content stroke);

, is a short vertical line with a centered negation
indicator;

; is a short vertical line with double negation.

And two more are needed for fine-tuning:

@ signals (without any output) that a letter for
the concavity follows;

represents negation but the indicator is moved
to the left;

A triple for the concavity must be started with one
of the following symbols: ., ¢;@. If it is not @, then
the symbol after the letter must be one of ., ‘;.

I call the definition of formulas in this encoding
the symbolic representation of Frege’s notation. Of
course, the production of the input needs a lot of
keystrokes. But it allows the creation of any for-
mula, even those not obeying the rules, so that I
could typeset the errors in the Begriffsschrift. And
using an editor with a monospaced font means that
the formula can be read in the input file.

¢

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

248

TUGboat, Volume 36 (2015), No. 3

\nlpi\ci{\hss\thinspace58\hss}\rep3*___*_[-*—:-*k-—-*-:-\ce{$£f (b) $}
\nlpci{$£ (A)$I*_| _*-:-\ci{$£ (A)$F\rep2*___*_!_*___\x_’-\ce{$g(b)$}
\nlpi*_| _*_’-\ci{$g(A) $F\rep2*___*_’-\x.a.*-:-\ce{$f (\da) $}

\nlpc1{cI*_|_\ci{b}
\bcc1/m30: . \rep3*___\null

\nlpci{a}I*_| _\ci{$f (b)$}

\nlpci{cF*_| _\ci{$g(b)$2}

\fono{59}

\rep3*___*___*___*_"-\ce{$g(\da) $}

\rep6*x---\ecc

\rep2*___*_[-*-:-*-:-*,a.*-:-\ce{$f (\da) $}
\rep2*___*___*_1_*_!_*___\x_"-\ce{$g(\da)$}
\nlpcl{bI*_| _*.a.*-:-\ci{$f (\da)$}

\nlpi*_|_*___*_’-\ci{$g(\da) $}

Nk N1\ = \k———\k——(\ce{$£ (b) $}
Nk __ N\ =\k———\sk———\k——-\ce{$g (b) $}

Figure 4: Symbolic representation for Fig. 3

The output scales with the size of the font if
size-changing macros are set up similarly to p.414
of [14]. For example, here is a formula in sizes 10 pt,

9pt, and 8pt: A, A, A (with con-
Ly Ly L

stant baselineskip here; that can be changed too).

A detailed example. As an example, the input
of Fig. 3 with formula 59 is given here in detail; see
Fig. 4. So it is a real world example, containing more
than the code for a single formula. Several macros
must be introduced to handle the whole structure of
the original text.

First, since spaces after the * macro count,
I use a \null to ignore spaces and to align the
substitution and the formulas for the inference in
this example.

The control words \ci (Character Inside) and
\ce (Character at the End) place their arguments in
an \hbox. In the case of \ci the box has the width
of the * macro and possibly following spaces are
ignored. The macro \fono (FOrmula NO.) outputs
the number of the formula at the right of the text
line with an opening parenthesis and a period. And
\rep (REPeat) is a macro with two arguments. The
second argument must be a * sequence. The out-
put looks as if this sequence was entered as many
times as the first argument states. For example,
\rep3*___ produces exactly the same output as
Nk \ok___*___.

The three main macros are: (a) \nlp (NewLine
and Position), (b) \nlpc (NLP with Character), and
(¢) \bcc #1/#2#3:#4#5\ecc (Begin/End ConClu-
sion). In the five parameters of (c) the third is the
number of the used formula that is placed above
the substitution rule. The number of colons, which
shows the type of inference, is specified by the fourth
parameter. The fifth parameter, which is ended by
the \ecc marker, draws the line or lines required in
the notation of the inference. The second parameter
positions the colon(s). In the above-displayed case
an ‘m’ (middle) is used. The other possibilities are ‘I’
(left) and ‘r’ (right). (In fact, only the ‘m’ is required
by the description given above. But in order to

Udo Wermuth

reproduce the original text at one place an ‘I’ is
needed.) The first parameter has the same meaning
as the parameter of the \nlp macro: it gives the
indent from the left as a multiple of the width of
the * macro. But the \nlp macro does more than
just the indentation. It finishes the previous line
and uses a strut to specify the height and depth of
the new line. This macro is discussed later in more
detail. The last macro \nlpc is an abbreviation:
\def\nlpc#1#2{\nlp{#1}\1lap{#2}}. It does the
work of the \nlp macro and places its second argu-
ment in the empty space created by the indentation.

My first goal is achieved with this output. It is
very close to the text as it is printed in the original.
The second goal, to have a set of macros to make
the typesetting of the whole book “easy”, is not
completely achieved. The amount of typing is huge
and some counting for the positioning of symbols is
required. So the output is acceptable, but the input
has to be improved.

Parameters. The macros for the symbolic repre-
sentation were written to take some parameters for
changing the appearance. This is necessary as Frege
made some changes in this area for the Grundge-
setze [7]. All the internal macro names start with
the prefix \gfbs and most of them have a German
name after this prefix. For example, the dimen
register \gfbsstrichdicke sets the thickness of the
content stroke. And \gfbsraise gives the height of
the content stroke above the baseline.
Here is a list of a few dimen registers:

e \gfbsstrichdicke for horizontal lines; default
is 0.5 pt.

e \gfbsurteildicke for the judgment bar; de-
fault is 1 pt.

e \gfbsersetzungdicke for the line that is used
in the substitution part; default is 0.8 pt.

e \gfbsschlussdicke for the thick inference line;
default is 0.8 pt.

e \gfbsraise for the height of horizontal lines;
default is 0.5 ex.

e \gfbsneg for the height of the negation indica-
tor; default is 0.25 ex.

TUGDboat, Volume 36 (2015), No. 3

e \gfbsuht for the height of the judgment stroke;
default is 1.5 ex.

e \gfbsudp for the depth of this stroke; default
is 0.5 ex.

e \gfbsschlussabstand for the distance between
the two lines in an inference; default is 2.5 pt.

e \gfbsvolleeinheit for the width of a single
part in the * macro; default is 0.57 em.

These parameters are used to calculate the values
of other dimen registers; for example, the register
\gfbselementdimen contains the width of a com-
plete * macro and is roughly 3\gfbsvolleeinheit.
(The units overlap a little bit to make sure that
no gaps appear between the line parts.) The above
dimen parameters are not used directly in the main
macros of the code so that values can be adjusted for
different output formats. For example, the following
dimensions are used in the Begriffsschrift:

\gfbshoehe equals \gfbsraise;

\gfbsnegdp equals \gfbsneg;

\gfbssdicke equals \gfbsstrichdicke;

\gfbsht is the sum of the value \gfbshoehe

and the value \gfbssdicke;

e \gfbseinheit is the width of one part of the
* macro minus the overlap;

o \gfbszweiheit is 2 x \gfbsvolleeinheit mi-

nus the overlap.

Besides the listed dimens two flags are defined:

e \gfbsnegdirekt controls whether the negation
indicator and content stroke touch or leave a
small gap; the gap occurs in the Begriffsschrift,
but not in the Grundgesetze. The default is
\gfbsnegdirektfalse, so the gap is present.

e \gfbsfonoohnepunkt controls whether the clos-
ing period in a formula number is omitted. The
default is \gfbsfonoohnepunktfalse, i.e., the
period is printed.

Macros. In this subsection a few aspects of the
macro definitions needed for the symbolic represen-
tation are discussed. Let us look at the definition of
\nlp:
\def\nlp#1{\hfil\break\gfbsstrut
\hskip#1\gfbselementdimen\relax}

The \hskip sets the current position to a multiple
of the width of the * macro.

The control word \gfbsstrut provides a strut
(see [14, p.82]) whose height and depth can be set
inside the text. Such a strut is needed to get ac-
ceptable page breaks. (See pages 79 and 80 of [5]
for bad breaks that can occur.) The macro pack-
age provides two commands to change the height

249

and depth of the strut either by a specified percent-
age (\gfbsreduziereabstandum) or by an explicit
value (\gfbssetzeabstand). The control sequence
\gfbsabstandzuruecksetzen resets the strut to its
original height and depth.

The main macro of the symbolic representation
is simply a nested \if sequence. Well, at its end
are 36 \fis, so it might not look very simple. The
macro \gfbsteilelement processes one parameter
of the * macro.

Let’s look at a few (simplified) examples:

\def\gfbsteilelement#1{%
\if...
\else\ifx #17Y, negated content stroke
\hbox to \gfbsvolleeinheit{%
\gfbsrulefill}y
\hskip-0.5\gfbseinheit
\hskip-0.5\gfbssdicke
\ifgfbsnegdirekt
\vrule width \gfbssdicke
height \gfbshoehe
depth \gfbsnegdp
\else
\vrule width \gfbssdicke
height .8\gfbshoehe
depth \gfbsnegdp
\fi
\hskip-0.5\gfbssdicke
\hskip 0.5\gfbseinheit
\else\ifx...
\else\ifx #1:% then-connection
\hbox to \gfbsvolleeinheit{}
\gfbsrulefill}y,
\hskip-0.5\gfbseinheit
\hskip-0.5\gfbssdicke
\vrule width \gfbssdicke
height \gfbshoehe
\hskip-0.5\gfbssdicke
\hskip 0.5\gfbseinheit
\else\if...
\fi\fi.. . \fi\fi...\fi}

\gfbsrulefill defines a macro for horizontal
rules that have a distance of \gfbshoehe above the
baseline. It acts like \hrulefill (see [14, p.357]).

\def\gfbsrulefill{y

\leaders\hrule height \gfbsht

depth -\gfbshoehe
\hfill}

The concavity is built with the symbol \smile:
— (I don’t use [11]). It is placed so that the hor-
izontal lines are attached at its ends. At the right
and left the — has a little bit more than 1u empty
space. The symbol itself has a total width of 18u
(see [15, p.441]). This data is used to calculate the
seamless junction with the horizontal lines. For very
thick lines the thicker — of ApMS-TEX is used. The
Fraktur letter is placed above this symbol with the
macro \buildrel (see [14, p.437]).

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

250

\ifdim\gfbssdicke<0.59 pt
\setbox0=}, plain \TeX \smile
\hbox{$\mathchar"015E$}
\else
\setbox0=Y, \AmSTeX
\hbox{$\mathchar"0\hexno\cmmibfam5E$}/,
\fi
\dimenO=\gfbseinheit \advance\dimenO by-.5\wd0
\dimen2=\wd0 \divide\dimen2 by 18 % approx. 1lu
\advance\dimen0 by 1.5\dimen2
\hbox to \gfbszweiheit{’
\hbox to\dimenO{\gfbsrulefill}},
\kern-1.2\dimen2
\raise\gfbshoehe\hbox{\lower\ht0\hbox{%
$\buildrel{{\frak #1}}\over{\box0}$}}%
\kern-1.5\dimen2
\gfbsrulefill}y,

As mentioned earlier, the concavity needs twice
the width of a single unit and the two other elements
of a triple take only a half width each. So the
symbols ., ‘; must appear as a pair.

\def\gfbsteilelement#1{Y%
\if...
\else\ifx #1.%, half
\hbox to 0.5\gfbsvolleeinheit{}
\gfbsrulefill}y,
\ifgfbszweitehaelfte
\gfbszweitehaelftefalse
\else
\gfbshoehlungtrue
\gfbszweitehaelftetrue
\fi
\else\ifx #1, % half and negated

\else\ifx #1;7 half, double negation
\else
\ifgfbszweitehaelfte
\errhelp=\gfbshaelftehilfe
\errmessage{Unexpected ...}%
\gfbszweitehaelftefalse

\fi\fi...\fi...\fi...\fi}

If the flag \gfbshoehlungtrue is set then the
next symbol is used as the letter for the concavity.
The other flag \gfbszweitehaelfte signals that a
symbol of the set ., ¢; is used instead of the @.

This code snippet shows that error conditions
are caught. Using \newlinechar=‘\""J, the follow-
ing help message is shown if the pairing didn’t work.

\newhelp\gfbshaelftehilfe{After a signaled %
‘‘for all’’ omne of (1) \string., (2) \string,, %
(3) \string;""J or (4) \string‘ must directly %
follow the variable. These symbols must be %
paired™"J in any combination around the %
character that is used as the”"J variable in 7%
the ‘‘for all’’.}
In total more than 20 error messages with associated

help messages are coded in the package.

Special symbols. Figure 1 shows that the terminal
strings are another idiosyncratic aspect of the work,

Udo Wermuth

TUGDboat, Volume 36 (2015), No. 3

» e F@)) 8 (Fla)
- 0.0 | =
V—EF(O)CL o\ 7(5,0)

(69.
(a) Property F is hereditary in the f-sequence.
A 3(y)
;ﬂ §(a)
f(z,a) =7
I+ 5 () —-Kgf(xv’yﬁ)
a\f(%a) (76.
(b) y follows x in the f-sequence.
(z =1x) _q
I . %f(a:m z5) | gf(xw %) (99.
(c) z belongs to the f-sequence beginning with x.
2t (a=e) 5
I+ f@,0) | =1/(5,€)
f(2,¢) ¢ (115.

(d) The procedure f is single-valued.

Figure 5: Special symbols of [4]
and their meaning

in addition to the Frege notation. These symbols are
introduced in the third part of the Begriffsschrift,
in which the formalism is applied to the theory of
sequences. So these symbols are not part of the
formal syntax of the notation, but nevertheless they
are needed to typeset the book.

With the use of the abovementioned definition
symbol (“*_3-" outputs “ |I-), Frege introduces
four special symbols. All of them can be built with
available symbols of Computer Modern. The sym-
bol for the definition is followed by an equivalence
((A) = B). Ais a formula and B is defined as the
abbreviation for this formula. Just to show that
these definitions can be typeset with the macros the
definitions are given in Fig. 5. Because of limitations
in space the compact form is used although it is not
used in the Begriffsschrift.

The right-hand sides of the definitions are coded
as “normal” macros. The first one has one parame-
ter, the second and third two and the last none. The
right-hand sides in Fig. 5 are named \1F, \2xy, \4xz,
and \5, resp. These macros are also used in Fig. 6. (I
use digits to build control symbols: The \3 is defined
to be an abbreviation for a frequently used sub-
formula, which is written as its replacement text; see
line 1 of Fig.6. But this is not a “normal” macro
and to use it “expansion” must be called first; see
the exclamation mark in front of every use of \3 in

TUGDboat, Volume 36 (2015), No. 3

\def\3#1#2{x.a.{. . {{#t1(\da) }}
A{f(#2,\da) }}}}
\gfbskompakttrue % use compact form
\outof p0,0"77"with\thatis
\formula p5I{..{..{..{F(y)}
{!I\3Fx}}
A\F}}
A\2xy}r
\followswith p0"12"a.p4s7
\substituting p0 a:{F(y)}
b: !'\3Fx
c:\1F
d:\2xy
\whichgives
\formula p5I{..{..{..{F(y)}
{\1F}}
{!I\3Fx}}
A\2xy}r
\named "85"
\followswith p0"19"a.p4s7
\substituting p0 \ :{\ }

b:{. . {F(y)}
A\F}}
c:!\3Fx
d:\2xy
a:{..{..{F(=)}
AH{f(y,2) 1}
A\1F}}
\whichgives

\formula p5I{..{..{..{..{. {F(=)}
ALE(Gy,2) 3}
A\1F}}
{!I\3Fx}}
A\2xy}}
AL AAAF@ T
ALE(y,2) 3}
A{\1F}}
AL AF(m Y
AN\1F}}}}
\named "86"
\followswith p0"73"a:p4s7
\substituting p0 y:z

Xy
\whichgives
\formula p5/{..{..{..{. {F(2)}
ALE(y,2) 3}
{\1F}}
{I\3Fx}}
A\2xyrr
\named "87"

Figure 6: The input for Fig. 7 in short form

Fig. 6. The details are discussed in the next section,
which introduces the short form.)

3 A recursive short form

Of course, the symbolic representation is not easy to
code. It would be much better to reduce the com-
plexity of typing the symbolic representation with
additional macros. So I developed a short form that

251

TEX transforms into the symbolic representation to
reach the desired quality for the output. Figure 6
shows the input for Fig. 7 that corresponds to Fig. 2
but uses the abovementioned compact form for the
output (see line 3 in Fig. 6).

The short form has three types of commands:

1. place a content stroke (with or without negation
or affirmation indicators, i.e., signs) in front of
a formula;

2. place a concavity and optional signs in front of
a formula;

3. combine two formulas into a condition construc-
tion again with optional signs in front of the two
formulas and for the overall construction.

If the terminal strings are called a formula too then
every formula in Frege’s notation can be build recur-
sively with these commands. The optional judgment
stroke is attached after the formula is created.

I decided to use signs in the above-listed cases 2
and 3 and not only in case 1. In this way case 1 is
only needed when the content stroke stands alone.

The structures of the commands are as follows:

1. =(sign){(formula)}

2. x(sign)(character)(sign){(formula)}

3. (sign)(sign){(formula)}(sign){{formula)}
(formula) is a previously generated formula or a ter-

minal string, which is typeset in math mode. (sign)
is an optional sign and has one of three values:

. represents no sign;
- represents the negation;
+ represents the affirmation.

Note: The braces around (formula) are not required
if it is a terminal string of one token. Double braces
are required if the string has more than 5 tokens.
Here are some examples:

1. =.a outputs a;
2. x.a.{f (\da)} outputs —&~ f(a);

3. ..\gA.\gB outputs —EA;
B

4. . \gA.{x.a.{f(\da)}} is A
[f(a)
5. +-\gA-\gB outputs ——— A.
[. B

The fourth example shows how the formulas are
nested: In the formula of the third example the B
is replaced by the formula of example 2. The con-
struction with = that is shown in the first example
is not often used in nested formulas, as the length
of the content strokes in a condition is calculated
automatically to have a proper alignment.

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

252
7 I F(y)
¢+ F(a)
Lf[f(x,a)
0 [(F(a)
—
a\ (4, a)
L)
(12):
F(y) . F(y)
5 (F(a)
\“/-{F(ﬂ) | #(6.0)
fl.q) - F()
0 (F(a) o)
L f(z,a
a\ f(d,a)
Bf(l"yayﬁ) — 6f($73yﬁ) (85
(19) :
I F(z)
F(y) Lf(y>Z)
{5 F(a) |5 F(a)
a\ f(4,a) a\ f(4,a)
¢—F(a) ¢—F(a)
L f(z.0)
Gy | 5 e)
[y, 2) [y, =)
f F(a) f F(a)
a\ f(4,a) a\ f(0,a)
F(y)
0 (F(a)
|
a\ f(d,a) (86
(73)
y fy,2)
§ (F(a)
|
a\ (4, a)
S F(a)
f(z,a)
—— Sf(u) (87

Figure 7: Typesetting Fig. 1 in compact form;
typed into this article (Fig. 6 shows the source)

A single formula is started with the command
\frege, which has two parameters. The first param-
eter codes the decision if the formula is a judgment;

Udo Wermuth

TUGDboat, Volume 36 (2015), No. 3

it is a judgment if the first parameter is ‘|’ instead
of ¢.”. The second parameter is the formula in the
short form.

Again a few examples: \frege|{-.\gA+\gB}.
The generated formula is a condition with an overall
negation, an unsigned A, and an affirmed B. This
is the output: |.—|:A. The replacement of \gB by

{..\gB.\gG} gives \fregel{ AgA+{..\gB.\gG}}

and this code outputs A.
[B
r

Let’s go back to formula 59 of Fig. 3. The short
form for this formula is
\fregel{..{..{*-a.{. . {f(\da)}.{g(\da)}}}

-{£(3}
Ag(®)}}

with the expected output | ; |_

But remember: in the text, Formula 59 does
not stand alone. We need the complete chain of
inference with a correct placement of several for-
mulas. Such an inference is not coded with the
use of \frege, which is only used for formulas in
running text. (There are small differences between
a formula in running text and in an inference.) In
inferences it is replaced by \formula, which has an
additional parameter to determine the position of
the formula. The substitutions are coded as pairs of
formulas separated by a colon. Figure 8 shows the
complete code for Fig.3. It uses a control symbol
\O to make it easier to add the sub-formula with
the concavity as explained below.

The parameter type “pn” is used to position
the formula, in units of the * macro, as before (see
the \nlp macro above). The four-parameter macro
\outof p#l1,#2"#3"with#4\thatis starts a block
of formulas. The first parameter is the position.
The third parameter is the number of the formula
that follows. The second parameter is special: It
is used to place the formula number several lines
lower. Usually it is 0 to get the same baseline. But
in the Begriffsschrift a few cases appear that have no
substitutions and the number is placed one line or
two lines lower. (Recall that one of my goals was to
reproduce the original text as closely as possible.)
The last parameter is a sequence of formula pairs
separated by colons; this is the list of substitutions.
Such a list is also used as the second parameter of
the macro \substituting p#1 #2\whichgives.

The macro \followswith p#1"#2"a#3p#4s#5
is used to typeset the lines indicating the type of

TUGDboat, Volume 36 (2015), No. 3

\def\0o#1{*#1a.{. . {f(\da)}.{g(\da)}}}
\outof p1,0"58"with
fFCA):{. . {fWF.{gW)}}
c:b

\thatis
\formula p5|{..{.. {£(M®)}.{g(®)}}.{!\0.}}
\followswith p1"30"a.p5s6
\substituting pl a:{f(b)}

c:{g(®)}

b:{I\0.}
\whichgives
\formula p5|{..{..{I\O-}-{£(b)}}.{g(b)}}
\named "59"

Figure 8: Short form notation for Fig. 3

inference. The first parameter is the position of the
used formula number that is given as the second
parameter. The fourth parameter is the position of
the lines for the inference and their length is given by
the last parameter. The type of inference is given
by the third parameter. The whole macro stands
for the following (invalid TEX) statement in the no-
tation of the above-explained \bcc...\ecc macro:
\bcc{#1}/m{#2} : #3\rep{#4-#1-13*___\rep{#5}
*---\ecc.

Finally, the macro \named assigns a number to
the inferred formula.

Figure 3 of the inference for formula 59 shows
that the sub-formula *.a.{..{f(\da)}.{g(\da)}}
has to be entered two times. Besides the three basic
commands I defined a fourth one: macro expansion.
The token after a ! is expanded as a formula macro,
which might have up to three parameters. In Fig. 8
the macro \0 is defined as the abbreviation for the
above expression. To make it more flexible, a pa-
rameter for the first sign was added to the macro.

The output of the code is shown in Fig. 9, which
should be identical to Fig. 3.

Parameters. The number of lines in a formula is
defined by the parameter \gfbsmaxanzahlzeilen.
The default is 25 lines, which is sufficient to type-
set the Begriffsschrift. For each line two pairs of
\toks and \skip registers are created: the first pair
codes a single line of the Frege formula, the second
a substitution in front of that line. A few flags are
available in the macros. The first one is a flag that
is not defined as an \if:

e \nosubst must be given before the macro pack-
age is loaded. The value ‘t’ indicates that no
registers for substitutions are needed, so the
number of registers is reduced by 50%. (As
a result, several commands are no longer us-
able, for example, \substituting is “turned
off” and the command \outof becomes \use.)

9253
58 f(b)
f(4) f(4) g(b)
L © ()
c b g(a)
(30) :
a | f(b) I - f(a)
L "o
a —
g(a) () (59

Figure 9: Output of the source of Fig. 8

e \gfbslognotation controls if the result of the
short form is written to TEX’s log file in an
extended symbolic representation; details are in
the next subsection. The default is false.

o \gfbszeigestats controls the output of some
statistics about the maximum number of lines
used in the formulas. The output is written to
the log file and to the screen. The default is
\gfbszeigestatsfalse.

Macros. The macros for the short form are much
more complicated than those for the symbolic rep-
resentation. They cannot be explained in greater
detail in this article, but a few aspects are described;
some of them might be well-known patterns.

The symbolic representation that is produced
from the short form uses one \toks register for each
line to store the coding. The registers carry the line
number of the formula in their names. A static part
of the name for the token registers is extended by the
line number as a roman numeral (see [14, ex.7.10]):

\csname

gfbstoks\romannumeral\gfbszeile
\endcsname
This code accesses a token register whose name is
created with a \csname and \endcsname construc-
tion. If the counter \gfbszeile has the value 4 then
the above code equals \gfbstoksiv. To add the
element \gfbselement to the left of a token register
the following method is used (see [14, p. 378]):

\edef\gfbstoken{\the\gfbselement
\the\csname gfbstoks\romannumeral\gfbszeile
\endcsname}
\global\csname gfbstoks\romannumeral\gfbszeile
\endcsname=\expandafter{\gfbstoken}y,
For each line that is produced from the short
form three values are stored:

a) the length of the line counted as those parts of
the macro * that contribute to the output;

b) the number of the line to which the current line
is connected upwards;

¢) the maximum line number that is connected
directly or indirectly to the current line.

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

254

An example best shows how these numbers are
used to build a formula. For example, — A
[B

r
A and
B

I'. The first formula occupies lines 1 and 2, the
second line 3. Then line 1 gets the three values
(2,0,2), line 2 (2,1,2), and line 3 (1,0,3). First
the length of lines 1 and 3 are compared and the
shorter line and all its “descendants” are filled with
the abovementioned technique to add something to
the left of a token register. Then the two lines are
connected. So to join lines 1 and 3 with a condition
the length of line 3 (the first value of the triple) must
be increased to match the length of line 1 using one
*x—--. Next, at the left side of line 1 *~-: - is added.
And all its dependent lines, i.e., line 2, get a *_!_
Line 3 receives the matching *_’-. The data for
the lines is updated to the values (3,0, 3), (3,1,2),
and (3,1, 3), resp.

I had the (crazy?) idea to store the numbers in a
single \skip register. The length is the normal part
of the skip, the other two parameters are defined as
the stretch and the shrink value.

\def\ggobble#1#2{\relax}
\def\setskip#1#2#3#4{/,
% #1: line no.; #2: no. of parts;
% #3: line no. up; #4: max line no. down
\global\csname
gfbsskip\romannumeral #1
\endcsname=#2pt plus #3pt minus #4pt}
\def\getskip#1.#2 #3 #4.#5 #6 #7.#8{),
\global\gfbsanzahl=#1% no. of parts
\global\gfbshaengtan=#4), line no. up
\global\gfbsgehtbis=#77, max no. down
\ggobble}

The macro \setskip is called with the register
number, i.e., the line number, and the three values
to be stored. \getskip assigns the stored values
of the \skip register to three named counters when
called in this way:

\expandafter\getskip\the\csname
gfbsskip\romannumeral\gfbszeile
\endcsname

is to be formed from the two formulas

The output of \the creates characters of the
category “other” except for spaces. So a simple
“pt” cannot be used in the parameter text (see [14,
p.375]). To delete the last “pt” the macro \ggobble
is called. It deletes the next two tokens. In order to
understand \getskip, the output of a well-known
quantity, for example, \bigskipamount, should be
studied.

Outputting the created symbolic representation
in the log file of TEX is easy, as only the token
registers must be written:

Udo Wermuth

TUGDboat, Volume 36 (2015), No. 3

\wlog{\the\csname
gfbstoks\romannumeral\gfbszeile
\endcsname}

For other commands \string is used, for example:

\wlog{\string\bcc\string{#1\string}/mj,
\string{#2\string}:#3\string/
\rep\string{\the\gfbsgrundeinzugy,
\string}\string*___\string\rep/
\string{#5\string}\string*---%
\string\ecc}

Finally, I want to write a few words about the
size of the implementation. The macro package for
the notation contains more than 1800 lines of code.
It is produced from a WEB-like coding system. To
make sure that all the macros produce the desired
output 330 test cases have been coded.

The macros grew in several steps and not all
problems might have the best solution. Nevertheless
I hope I have accomplished my goals and the system
is quite usable.

4 Extensions for the Grundgesetze

To reproduce the formulas used in Frege’s Grundge-
setze [7] some adaptation of the macros is required.
Besides the abovementioned compact form, which is
used throughout the Grundgesetze, the most obvi-
ous changes were the use of lines that have a uniform
thickness and an increased set of inferences. Fig-
ure 10 shows an example of the style used in the
Grundgesetze.

This is not the place to describe the necessary
changes in detail, but a few comments are worth-
while. The command \toggleGGstyle switches be-
tween the style of the Begriffsschrift and the style of
the Grundgesetze. It uses the flag \gfbsuseGGstyle
(with the default setting \gfbsuseGGstylefalse)
to activate the line thickness of the Grundgesetze.

As explained above, several \dimen registers are
used to change the output of the symbolic represen-
tation. To change these registers into the style of
the Grundgesetze a few values are defined. Now the
control words start with \gfgg:

e \gfggstrichdicke represents the uniform line
thickness; default is 0.58 pt.

o \gfggraise is the height of the content stroke;
default is 0.14 ex.

o \gfggneg is the height of the negation indica-
tor; default is 0.47 ex.

e \gfgguht is the height of the judgment stroke;
default is 1.4 ex.

e \gfggudp is the depth of the judgment stroke;
default is 0.9 ex.

TUGDboat, Volume 36 (2015), No. 3

Compact form. Frege used a more compact form
for the formulas in the Grundgesetze. (Figure 7
shows the compact form for the formulas of Fig.2.)
The short form is able to produce this form because
it creates a kind of extended symbolic representa-
tion. The “extension” is the use of symbols that
change their output. The selection process is com-
plex and involves the * macros to the right of the
current position. Eleven more symbols are defined
and nine of them can change. In the following list
two forms are given for the new symbols: one for
the normal output and one for the compact form.

0 represents negation that is either moved to the
left (‘) or moved to the right (*)”): 0=();
represents affirmation: 1="/

again affirmation: 2="+;

represents optional content stroke: 4=-";
represents optional empty space: 5=_";
represents judgment strokes: 6=[1;

represents a negated concavity: 7=,;

again negation: 8=<7;

represents a content stroke that has only one
third of its usual length;

is a skip whose length is multiplied by 5/3;

is used only with a concavity and represents
either a short content stroke or an empty space.

© 00 N O O N =

*

©“

\gfbskompakt switches to the compact form. The
default for the flag is false. The compact form does
not always give perfect results, i.e., it doesn’t match
the original. Therefore some flags are defined that
have to be invoked in a problematic formula.

e \gfbskeinekompaktehoehlung controls the use
of the compact form for concavities. Its default
value is false.

e \gfbsaussagesichtbar controls whether a con-
tent stroke can disappear completely in front of
a statement. Its default value is also false.

Again examples might be useful to demonstrate
the effects of the flags. On the left the non-compact
form is given and on the right the same formula with
\gfbskompakttrue is output:

}_E-: U (a) }.Ku 7 (a) .
- D(e) © 9(e)
The sign in the first line gives an asymmetrical re-

sult on the right. Next, here is the same formula
with \gfbskeinekompaktehoehlungtrue as well as

\gfbskompakttrue:
}.Ku 7 (a) .
0

As a second example, we can look at the out-
put for \frege.{=.a} and \frege.{=.{=.a}}. Itis
identical in the compact form: —a and —a. The

255

111 I f(a)
Ff(a_)

%
Ef(a_)
f(a) (a
1 f(a)
The
@
i(a) (8

(IIe

(a):

|.a=a

Figure 10: Inferences from the
Grundgesetze [7], p. 66

activation of \gfbsaussagesichtbartrue shows a
difference: —a —a.

New inferences. A flag is defined to control the
use of the new inferences: \gfggschlussweisetrue
allows the following construction in the formulas.
If the first symbol in the * macro is a question
mark then the next two symbols are used to define
the building blocks of an inference in the style of
the Grundgesetze. Note that the thick line with
the centered circle in Fig. 10 is only a separator for
inference chains. It is coded as a normal macro.
The width of each of the two symbols after ‘7’
is 50% larger then the usual width of a part in the
macro *. The following symbols are defined:

? (must be the first in the triple) signals that the
next two symbols build an inference line;

- is a single horizontal stroke;

. is a single (centered) period;

= is a double stroke;

* is a single stroke in the height of the upper line

of the double stroke;

is an empty space;

" is a skip;

> has no output; the next symbol is a transition-
sign (now the translation of technical terms fol-
lows [8]);

x (must follow a >) represents the contraposition;

u (must follow a >) represents a “quantification”.

Now the eight transition-signs of the Grundge-
setze can be typeset:
a) *7>x gives X ;
b) *7>u gives «— ;
c) *?7—=*?7--*?-- gives ————;

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

?==?==*?== gives _]
*?-_*7-_*7-_ gives — — — ;
*7=_*7=_*7=_ gives —

*7=**7=**7=* gives — —
*7.-*7.-*7.- gives - — - — . —.

—)

Although I have not yet finished my copy of [7]

I assume that this is the core that is required to
typeset the formulas of the Grundgesetze. Of course,
this work has special strings too. Its 29 symbols are
different from those used in the Begriffsschrift; they
all stay on a single line. Some symbols are available
in a special font created by J. J. Green (see [12]).

References

(1]

3

4

6

[7

[8

[9

(10]

(11]

The Arché Grundgesetze Translation Project
http://www.st-andrews.ac.uk/~arche/projects/
grundgesetze/grundgesetze . shtml (accessed:
2014-11-29)

Martin Davis, “Frege: From Breakthrough to
Despair,” in The Universal Computer — The Road
from Leibniz to Turing (New York: W. W. Norton
& Company, 2000), 41-58

Encyclopeedia Britannica, “Gottlob Frege”

in Encyclopaedia Britannica online, primary
contributor: Michael A. E. Dummett.
http://www.britannica.com/EBchecked/topic/
218763/Gottlob-Frege (accessed: 2014-11-29)
Gottlob Frege, Begriffsschrift, eine der arithme-
tischen nachgebildete Formelsprache des reinen
Denkens (Halle an der Saale: Louis Nebert, 1879)
Gottlob Frege, “Begriffsschrift, a formula
language, modeled upon that of arithmetic, for
pure thought,” in [24], 1-82; this translation of [4]
was done by S. Bauer-Mengelberg

Gottlob Frege, “Letter to Russell (1902),” in [24],
126-128; the translation was done by B. Woodward
Gottlob Frege, Grundgesetze der Arithmetik —
begriffsschriftlich abgeleitet (Jena: Hermann Pohle;
Volume 1, 1893 Volume 2, 1903)

Gottlob Frege, Basic Laws of Arithmetic (Oxford:
Oxford Univ. Press, 2013); translation of [7] by
Philip A. Ebert and Marcus Rossberg
http://wuw.frege.info/index.html (accessed:
2014-11-29)

Gottlob Frege, “Uber den Zweck der Begriffs-
schrift”, Suppl. zur “Jenaischen Zeitschrift fiir
Naturwissenschaft” 16 (1882/83), 1-10

Gottlob Frege, “Uber die Begriffsschift des Herrn
Peano und meine eigene”, Berichte tiber die Ver-
handlungen der Koéniglich Sachsischen Gesellschaft
der Wissenschaften zu Leipzig, Mathematisch-
Physische Classe 48 (1896), 361-378

J. J. Green, bgugq,

http://ctan.org/pkg/bguq (accessed: 2014-11-29)

Udo Wermuth

[12]

[13]

[14]

16

[17]

[18]

[19]
[20]

21]

[22]

TUGDboat, Volume 36 (2015), No. 3

J. J. Green, fge,

http://ctan.org/pkg/fge (accessed: 2014-11-29)
J. J. Green, Marcus Rossberg and Philip A. Ebert,
“The Convenience of the Typesetter; Notation and
Typography in Frege’s Grundgesetze der Arithme-
tik,” Bull. Symbolic Logic, 21:1 (2015), 15-30
Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting (Boston:
Addison-Wesley, 1984)

Donald E. Knuth, Computer Modern Typefaces,
Volume E of Computers € Typesetting (Boston:
Addison-Wesley, 1986)

Silvio Levy, “Using Greek Fonts with TEX,”
TUGDboat 9:1 (1988), 2024
http://tug.org/TUGboat/tb09-1/tb201levy.pdf
(accessed: 2014-11-29)

R. Maclnnis, J. McKinna, J. Parsons, and

R. Dyckhoff, “A mechanised environment for
Frege’s Begriffsschrift notation,” Workshop Mathe-
matical User Interfaces 2004, Bialowieza (Poland)
The MacTutor History of Mathematics archive.
http://www-history.mcs.st-andrews.ac.uk/
Biographies/Frege.html (accessed: 2014-11-29)
W. V. Quine, “On Frege’s Way Out,” Mind New
Series, Vol. 64, No. 254 (1955), pp. 145-159.
Quirin Pamp, frege.sty,
http://ctan.org/pkg/frege (accessed: 2014-11-29)
Josh Parsons, begriff.sty,
http://ctan.org/pkg/begriff (accessed:
2014-11-29)

Marcus Rossberg, grundgesetze.sty,
http://ctan.org/pkg/grundgesetze (accessed:
2014-11-29)

Bertrand Russell, “Letter to Frege (1902),” in [24],
124-125; the translation was done by B. Woodward
Jean van Heijenoort (ed.), From Frege to Gddel:
A Sourcebook in Mathematical Logic, 1879-1931,
(Cambridge, MA: Harvard University Press, 1967)
Udo Wermuth, GFnotation.tex,
http://ctan.org/pkg/gfnotation (accessed:
2015-09-22)

Edward N. Zalta, “Gottlob Frege,” The Stanford
Encyclopedia of Philosophy (Fall 2014 Edition)
http://plato.stanford.edu/archives/fall2014/
entries/frege (accessed: 2014-11-29)

Edward N. Zalta, “Frege’s Theorem and Founda-
tions for Arithmetic,” The Stanford Encyclopedia
of Philosophy (Summer 2014 Edition)
http://plato.stanford.edu/archives/sum2014/
entries/frege-theorem (accessed: 2014-11-29)

o Udo Wermuth
Babenhéauser Strafle 6
63128 Dietzenbach
Germany
u dot wermuth (at) icloud dot com

