
220 TUGboat, Volume 36 (2015), No. 3

Glisterings: Longest string;
Marching along; A blank argument;
A centered table of contents

Peter Wilson

Plain as the glistering planets shine
When winds have cleaned the skies,
Her love appeared, appealed for mine,
And wantoned in her eyes.

Songs of Travel, Robert Louis Stevenson

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

The chief defect of Henry King
Was chewing little bits of string.

Cautionary Tales, Hillaire Belloc

1 Longest string
Romildo wrote to comp.text.tex saying that he
tried to implement a macro for determining the long-
est string in a list but was having problems with
the code [18]. Romildo’s user view of the macro
(\Widest) was like this:
\newdimen\mydimen
\def\Format#1{{\itshape\tiny #1}}
\Widest{\mydimen}{\Format}{Good,morning,world}
\the\mydimen

There were several responses, including ones
from GL [8] and Heiko Oberdiek [16] who got into a
bit of a discussion about their suggested solutions,
partly because GL preferred the strings to look like
multiple arguments (e.g., {a}{bbb}{cc}) and Heiko
appeared to lean more towards a single argument
with the strings being separated by commas (e.g.,
(a,bbb,cc)) .

GL suggested (I have used \Widestg for GL’s
macro and \Widesth for Heiko’s to distinguish be-
tween them):
\makeatletter
\newskip\result
\def\Widestg#1#2#3\Widestg{% #1 = Format

\setbox\z@\hbox{#1{#2}}%
\ifdim\wd\z@>\result

\result\wd\z@
\edef\longest{#2}% % added by PW
\def\flong{{#1{\longest}}}% % added by PW

\fi
\ifx\relax#2\else

\Widestg{#1}#3\Widestg
\fi}

\makeatother

...
\result=0pt
\Widest{\textbf}{one}{two}{three}\relax\Widest
\the\result \\
\longest\ \the\result\\ % added by PW
\flong\ \the\result % added by PW

I added the code for \longest which contains the
longest string and \flong to typeset it using the
specified format. This code, applying the macro to
the list {one}{two}{three}, results in:

26.13898pt
three 26.13898pt
three 26.13898pt

Heiko came up with a version that uses the
kvsetkeys package [14] for parsing a comma-separated
list where spaces at the beginning and end of an entry
are ignored.
\usepackage{kvsetkeys}
\newcommand*{\Format}[1]{\textit{\tiny #1}}
\newlength\WidestResult
\makeatletter
\@ifdefinable{\Widesth}{%

\def\Widesth#1#2(#3){%
#1=\z@ % 0 pt
\comma@parse{#3}{%

\settowidth\dimen@{#2{\comma@entry}}%
\ifdim#1<\dimen@

#1=\dimen@
\edef\longest{\comma@entry}% PW added
\def\flong{#2{\longest}}% PW added

\fi
\@gobble % ignore list entry argument

}%
}%

}
\makeatother
...
\Widesth{\WidestResult}{\Format}(Good,morning,

world)
\the\WidestResult \\
\longest\ \the\WidestResult\\ % added by PW
\flong\ \the\WidestResult % added by PW

Just as with \Widestg I added the \longest and
\flong code. Note that the comma-separated list
of strings is enclosed in parentheses and not braces.
The result from Heiko’s example is:

21.64417pt
morning 21.64417pt
morning 21.64417pt

Applying GL’s macro to Romildo’s example as:
\result=0pt
\Widestg{\tiny\textit}{Good}{morning}

{world}\relax\Widestg
\longest\ \the\result \\

Peter Wilson

TUGboat, Volume 36 (2015), No. 3 221

\flong\ \the\result

results in:

morning 21.64417pt
morning 21.64417pt

which is the same as that from \Widesth.
Although both macros give the same result I

prefer Heiko’s user interface to GL’s, but then you
may think it should be the other way round.

Tear along the dotted line.

Instruction, Anonymous

2 Marching along
2.1 Oddment
On ctt Roger said that he was
. . . planning to take a string of the form mm.nn.pp
where mm, nn, and pp are all integers, and test if
pp is odd. So I’d like to write a macro that does that
and use that as the parameter to \ifodd.

Joseph Wright responded [22] that it sounded
as though he wanted something like:
\makeatletter
\newcommand*{\MyFunction}[1]{%

\My@function#1..\@nil\@stop}
\def\My@function#1.#2.#3#4\@stop{

\def\My@mm{#1}%
\def\My@nn{#2}%
\def\My@pp{}%
\ifx#3\@nil\else

\My@function@#3#4
\fi
% 0 below makes the test work when
% \My@pp is empty
\ifodd0\My@pp\relax

Odd
\else

Even
\fi}

\def\My@function@#1..\@nil{\def\My@pp{#1}}
\makeatother
...
\MyFunction{11.22.33}
\MyFunction{11.22.44}
\MyFunction{11.22.}
\MyFunction{11}

With Joseph’s code, running his suggested test ex-
amples results in:

Odd Even Even Even

Quite frankly, I do not understand just how his
code works. In order to get a better feel for it I
decided to write my own macros for dot-separated
lists of one, two, and three numbers and then try to

extend them to deal with a list of arbitrary extent.
Here are my efforts for the one, two, and three length
lists. I included some diagnostic output to help when
my code didn’t work as I thought that it should.

Firstly, here are the code shorthands that I have
used for the diagnostics— the \cs macro is defined
in the ltugboat class, as shown.
%\DeclareRobustCommand\cs[1]{%
% \texttt{\char‘\\#1}}
\newcommand*{\sarg}[1]{\texttt{\{#1\}}}
\newcommand*{\csparg}[2]{\cs{#1}\sarg{#2}}
\newcommand*{\LRA}{%

\ensuremath{\Longrightarrow} }

For a single number the command is:
\MyFunctionI{〈N 〉}
\newcommand*{\MyFunctionI}[1]{%

\csparg{MyFunctionI}{#1} \LRA
\ifodd0#1\relax

#1 Odd
\else

#1 Even
\fi}

Some example results are:

\MyFunctionI{11} ⇒ 11 Odd
\MyFunctionI{22} ⇒ 22 Even
\MyFunctionI{} ⇒ Even

For a list of two numbers the command is:
\MyFunctionII{〈N.N 〉}
\makeatletter
\newcommand*{\MyFunctionII}[1]{%

\csparg{MyFunctionII}{#1} \LRA
\My@FunctionII#1\@nil
\ifodd0\My@last\relax

\My@last\ Odd
\else

\My@last\ Even
\fi}

\def\My@FunctionII#1.#2\@nil{%
\def\My@last{#2}}

\makeatother

Example results are:

\MyFunctionII{11.22} ⇒ 22 Even
\MyFunctionII{11.33} ⇒ 33 Odd
\MyFunctionII{11.} ⇒ Even

For a list of three numbers the command is:
\MyFunctionIII{〈N.N.N 〉}
\makeatletter
\newcommand*{\MyFunctionIII}[1]{%

\csparg{MyFunctionIII}{#1} \LRA
\My@FunctionIII#1\@nil
\ifodd0\My@last\relax

\My@last\ Odd
\else

Glisterings: Longest string; Marching along; A blank argument; A centered table of contents

222 TUGboat, Volume 36 (2015), No. 3

\My@last\ Even
\fi}

\def\My@FunctionIII#1.#2.#3\@nil{%
\def\My@last{#3}}

\makeatother

Some results are:

\MyFunctionIII{11.22.33} ⇒ 33 Odd
\MyFunctionIII{11.22.44} ⇒ 44 Even
\MyFunctionIII{11.33.} ⇒ Even

Based on the underlying idea—delimited argu-
ments [1, 6, 9, 20]—of the above macros I then tried
to develop one that would take a dot-separated list
of any length and return whether the last number
was odd or even.

I failed.
Eventually I remembered that the LATEX ker-

nel includes an \@for macro for marching along a
comma-separated list of elements and decided to try
and create a version that would handle dot-separated
lists. It is effectively a copy of the \@for code replac-
ing every ‘,’ with a ‘.’. I can’t pretend to understand
how it works. I have named it \@ford as shorthand
for ‘\@fordot-separated-list’.
\makeatletter
% \@ford NAME := LIST \do {BODY}
\long\def\@ford#1:=#2\do#3{%

\expandafter\def\expandafter\@fortmp
\expandafter{#2}%
\ifx\@fortmp\@empty \else

\expandafter
\@forloopd#2.\@nil.\@nil\@@#1{#3}

\fi}

\long\def\@forloopd#1.#2.#3\@@#4#5{%
\def#4{#1}\ifx #4\@nnil \else

#5\def#4{#2}\ifx #4\@nnil
\else #5\@iforloopd #3\@@#4{#5}\fi\fi}

\long\def\@iforloopd#1.#2\@@#3#4{%
\def#3{#1}\ifx #3\@nnil
\expandafter\@fornoop \else
#4\relax
\expandafter\@iforloopd\fi#2\@@#3{#4}}

\makeatother

I did use this for a macro to handle unlimited
length lists of the kind that Roger was interested in.
Then there was a further posting from him [17] in
response to Joseph (which I have abbreviated):

Thank you. That works (and was quite educa-
tional). However, I failed to completely specify my
problem . . .

Here’s what I have:
{a.b.c, x.y.z} or
{x.y.z} or

{, x.y.z}
where a,b,c, x,y,z are integers.

What I would like to do is to be able to set a
switch in the file that if set then the ... would be
included only if z is odd, but if the switch is not set
then all ... will be included.

This requirement seemed to me to be a candidate
for a combination of \@for to handle the comma-
separated parts and \@ford for the portions that are
dot-separated.

Below is what I ended up with to handle an
unlimited comma-separated list of unlimited dot-
separated lists determining whether the last entry of
all is odd or even.

First the \DotFunction for a dot-separated list
of numbers. I have added some diagnostic print
out just in case together with a means (\ifop) for
enabling it. The macro is called like:
\DotFunction{〈N.N.N...N 〉}
and sets \gotoddtrue if the last number in the list
is odd.

\newif\ifgotodd
\newif\ifop
\optrue

\makeatletter
\def\DotFunction#1{%

\ifop \csparg{DotFunction}{#1} \LRA \fi
\def\My@last{0}% in case arg is empty
\@ford\scratch:=#1\do{%

\edef\My@last{\scratch}}%
\ifodd0\My@last\relax

\gotoddtrue
\ifop \My@last\ Odd \fi

\else
\gotoddfalse
\ifop \My@last\ Even \fi

\fi}
\makeatother

Some example results are:

\DotFunction{} ⇒ 0 Even
\DotFunction{11} ⇒ 11 Odd
\DotFunction{11.22} ⇒ 22 Even
\DotFunction{11.22.33} ⇒ 33 Odd
\DotFunction{11.22.33.44} ⇒ 44 Even
\DotFunction{11.nowt.33.44.55} ⇒ 55 Odd
\DotFunction{11..33.44.55} ⇒ 55 Odd
\newcommand*{\numM}{11.22.33.44.55.66.77}}
\DotFunction{\numM} ⇒
\DotFunction{11.22.33.44.55.66.77} ⇒ 77 Odd

Note that for \DotFunction, only the last ele-
ment in the list must be an integer (or blank), earlier

Peter Wilson

TUGboat, Volume 36 (2015), No. 3 223

elements can be, for example, text. Further, un-
like all the previous \MyFunction... macros, the
argument may be a macro.

Finally, here is the end of the exercise—a gen-
eralised solution to Roger’s requests, called as
\HisFuntion{〈N.N...N, N...N, ..., N...N 〉}
\makeatletter
\def\DotCommaFunction#1{%
\csparg{DotCommaFunction}{#1} \LRA
\opfalse% stop \DotFunction printing

\@for\first:=#1\do{%
\DotFunction{\first}}%

\ifgotodd
\My@last\ Odd

\else
\My@last\ Even

\fi}
\makeatother

Some results of using \DotCommaFunction:

\DotCommaFunction{1.2.3, 4.5.7} ⇒ 7 Odd
\DotCommaFunction{, 4.5.7} ⇒ 7 Odd
\DotCommaFunction{4.5.7} ⇒ 7 Odd
\DotCommaFunction{1, 2.3, , 4.5, 7.8} ⇒ 8
Even
\DotCommaFunction{1,2.3, ,4.5,7.8} ⇒ 8 Even

All that remains is for the user to make appro-
priate changes to the actions of the odd/even result
and to eliminate, or change, the diagnostic outputs
to suit the application at hand.

2.2 Indexing into a list
Alastair asked [2]:
I’ve got a question about comma separated lists. Is
there any way that you can index elements in a list.
Lists can be iterated over in the PGF/TikZ pack-
age’s \foreach loop. How can you access an element
whilst not in a loop?

Often responses to questions on ctt provide the
bare bones of a solution, leaving the questioner to
adapt or extend it to his own situation. There were
several responses and the one I found that would best
suit me was from Ulrike Fischer [7]. The following
is essentially Ulrike’s code, edited to better fit the
column:
\usepackage{tikz}
\def\values{i5, i4, i3, i2, i1}
\newcounter{loc}
\newcommand{\getitem}[1]{%

\setcounter{loc}{0}
\foreach \x in \values{%

\stepcounter{loc}%
\expandafter\xdef\csname

alsval\the\value{loc}\endcsname{\x}}%
\csname alsval#1\endcsname}

Ulrike’s \getitem{〈N 〉} macro returns the item that
is in the 〈N 〉th location in \values as \alsvalN.
With:
\getitem{1}, \getitem{4}, \getitem{8}.

the result is:

i5, i2, .

I wondered if there was a solution that did not
involve calling the tikz package and came up with
the following which does not require any packages,
being based on the LATEX kernel’s \@for construct.
\let\xpf\expandafter % just to save some space
\makeatletter
\newcount\vindex
\newcommand*{\getit}[2]{%

\xpf\xpf\xpf\@getit\xpf{#2}{#1}%
\theans}

\newcommand*{\@getit}[2]{%
\vindex=0
\def\theans{Index #2 is out of range.}%

\xdef\alist{#1}%
\@for\tmp := #1 \do{%

\advance\vindex 1
\ifnum\the\vindex=#2

\xdef\theans{\tmp}%
\fi}}

\makeatother

The macro \getit{〈N 〉}{〈list〉} returns \theans as
the value of the 〈N 〉th item in the 〈list〉 where 〈list〉
may be either a comma-separated list or a macro
defined as one. I have included a check on whether
〈N 〉 is valid for the given list (this would be better
in the form of an error report in the log file external
to the document instead of being typeset).

With these inputs
\getit{1}{\values},
\getit{4}{\values},
\getit{8}{\values}.

\getit{1}{i5, i4, i3, i2, i1},
\getit{4}{i5, i4, i3, i2, i1},
\getit{8}{i5, i4, i3, i2, i1}.

the results are:

i5, i2, Index 8 is out of range.
i5, i2, Index 8 is out of range.

The key problem that I had to solve in my
method is that the ‘list’ that \@for operates on must
be an actual sequence of comma-separated items and
not a macro defined as such a list. That is why I
have separated the code into two macros. The first
to grab the list, be it actual or as a macro, and then

Glisterings: Longest string; Marching along; A blank argument; A centered table of contents

224 TUGboat, Volume 36 (2015), No. 3

to hand that over to \@getit as an actual list by
utilising a series of \expandafters within \getit.1

The tumult and the shouting dies,
The captains and the kings depart,
And we are left with large supplies
Of cold blancmange and rhubarb tart.

After the Party, Ronald Knox

3 A blank argument
The title of a posting by Matthew to texhax was
Finding blank argument to a macro. There is a long
history behind this kind of macro, initially posed as a
challenge in Michael Downes’ Around the Bend [5] se-
ries in the early 90s, and without looking any further
I assumed that the solution would be the ifmtarg [3]
package which provides a test as to whether a macro
argument consists of zero or more blank spaces.

However, I was mistaken, as Matthew’s posting
continued [11]:

I am trying to solve a problem in LATEX that I
thought would be relatively straightforward. I would
like to make a macro that will evaluate its argument
and tell me whether the result is blank or not . . . I
managed to come up with a TEX macro that han-
dles different types of ‘blank’ pretty well. It properly
recognizes an empty argument, empty braces, spaces,
etc. It even works on another macro that evaluates
to a blank, so I thought I was home free. However,
as soon as I fed it a macro that takes an argument,
bad things happen. I’ve attached a simple document
below that shows the problem.

The ‘simple document’ contains many lines of
code implementing his \blankArgTest{〈arg〉}, to-
gether with examples of when it worked and when it
didn’t give the required result. With the macros:
\usepackage{ifthen}
\newcommand{\testA}{%

\ifnum10=10 \empty\else A\fi}
\newcommand{\testB}{%

\ifthenelse{10=10}{\empty}{B}}
\newcommand{\testC}[1]{%

\ifnum#1=10 \empty\else C\fi}

\blankArgTest worked when 〈arg〉 was \testA but
failed for \testB and \testC.

Michael Barr [4] came up with a remarkably
simple solution which I am presenting as:
\newcommand{\IfBlank}[1]{%

1 \expandafter and when it should be used is to me among
the more difficult aspects of TEX code. I usually come to a
solution by either following what others have done in similar
circumstances or by much experimentation—otherwise known
as errors and trials.

\setbox0\hbox{$#1$}%
\ifdim\wd0=0pt

Blank
\else

Not blank
\fi}

The basic idea is to put the argument into an
\hbox and check if the box’s width is zero. This
assumes that a ‘blank’ argument is one that results
in no typeset material (or rather, anything typeset
ends with zero width). With the following definitions:
\newcommand{\blank}{ }
\newcommand{\tout}{\typeout{Typeout}}

examples of the \IfBlank macro are:

\IfBlank{} Blank
\IfBlank{ } Blank
\IfBlank{Text} Not blank
\IfBlank{\blank} Blank
\IfBlank{\tout} Blank
\IfBlank{{ }} Blank
\testA Blank
\testB Blank
\testC{10} Blank

A somewhat different need for an empty/blank
argument was expressed by Timothy Murphy who
wrote [13]:

I have a macro \cmd#1#2 . Both arguments are
given in the form {...}. I’d like an empty second
argument {} to be added if none is given, i.e., if the
next character after \cmd{...} is not { .

What is the simplest way to do this?
There were three interesting proposed solutions

which I have given below.2
Heiko Oberdiek’s was the first positive response

and was essentially as follows [15]:
\newcommand*{\CmdH}[1]{%

\begingroup
% remember parameter
\toks0={#1}%
% look forward
\futurelet\NextToken\CmdI}

\newcommand*{\CmdI}{%
\ifx\NextToken\bgroup

\edef\next{\endgroup
\noexpand\CmdImpl{\the\toks0}}%

\else
\edef\next{\endgroup

\noexpand\CmdImpl{\the\toks0}{}}%
\fi
2 I have slightly edited the code, principally by using

distinguished macro names instead of the somewhat generic
\cmd, and using a common set of tests.

Peter Wilson

TUGboat, Volume 36 (2015), No. 3 225

\next}
\newcommand{\CmdImpl}[2]{%

\textbf{Heiko:}
this is (#1) and here’s (#2).}

\CmdH{abc}{def} \\
\CmdH{ghi}\relax \\
\CmdH{jkl} %

which results in:

Heiko: this is (abc) and here’s (def).
Heiko: this is (ghi) and here’s ().
Heiko: this is (jkl) and here’s ().

Dan Luecking [10], noting that there were prob-
ably better ways (see Heiko’s reply), responded with:
\makeatletter
\newcommand*{\CmdD}[1]{%

\@ifnextchar\bgroup
{\Cmd@i{#1}}{\Cmd@i{#1}{}}}

\newcommand*{\Cmd@i}[2]{%
\textbf{Dan:}
this is (#1) and here’s (#2).}

\makeatother
\CmdD{abc}{def} \\
\CmdD{ghi}\relax \\
\CmdD{jkl} %

which results in:

Dan: this is (abc) and here’s (def).
Dan: this is (ghi) and here’s ().
Dan: this is (jkl) and here’s ().

Dan pointed out that his code does not exam-
ine the actual next character, but rather the next
nonspace character. He also commented that Heiko’s
solution emulates a portion of \@ifnextchar with-
out the skipping of spaces.

Joseph Wright [21] proposed a solution based
on the xparse package [19] developed as part of the
LATEX3 project. From the user’s viewpoint it appears
to be the simplest of the three proposed solutions.
\usepackage{xparse}
\NewDocumentCommand\CmdJ{mG{}}{%

\textbf{Joseph:}
this is (#1) and here’s (#2).}

\CmdJ{abc}{def} \\
\CmdJ{ghi}\relax \\
\CmdJ{jkl} %

which results in:

Joseph: this is (abc) and here’s (def).
Joseph: this is (ghi) and here’s ().
Joseph: this is (jkl) and here’s ().

The three very different implementations each
handled all the test cases correctly.

America is a land whose center is nowhere;
England one whose center is everywhere.

Pick Up Pieces, John Updike

4 A centered table of contents
Bogdan Butnaru3 uses the memoir class and asked
me how to have a centered table of contents (ToC).
I came up with one solution and passed Bogdan’s
request on to Lars Madsen, who is now memoir’s
maintainer, and he came up with a better solution;
both of these were based on memoir’s tools for manip-
ulating the ToC. I then came up with a more basic
solution which is also applicable to the standard book
and report classes.

In these classes a chapter entry is set by the
\l@chapter macro, a section entry by \l@section,
and so on. These may be redefined to produce cen-
tered entries. These macros have the general calling
form of:
\l@chapter{〈number-and-title〉}{〈page〉}
where 〈number-and-title〉 has the form:
{{\numberline}{num} title}
where \numberline typesets the chapter number.
The \l@... macros also take into account whether
or not the entry should be printed and the surround-
ing vertical spacing. The LATEX Companion [12, §2.3]
provides further information about ToCs and related
packages.

The following redefinition of \l@chapter will
center the chapter entries, with the chapter number
above the title, and a middle-dot between the title
and page number.
\makeatletter
\renewcommand*{\l@chapter}[2]{%

\ifnum\c@tocdepth>\m@ne % print chapter entry
\addpenalty{-\@highpenalty}%
\vskip 1em plus 0pt
\begingroup

\def\numberline##1{##1\\\nobreak}% number
{\centering\bfseries

#1~\textperiodcentered~#2\par}%
\endgroup
\fi}

\makeatother

The \tableofcontents macro uses \chapter*
to set the title ragged right. A hack to that can
be used to center the title is to make \raggedright
into \centering.
\let\saverr\raggedright

3 Private email, 2010/07/21

Glisterings: Longest string; Marching along; A blank argument; A centered table of contents

226 TUGboat, Volume 36 (2015), No. 3

\newcommand*{\rrtocenter}{%
\let\raggedright\centering}

\newcommand*{\restorerr}{%
\let\raggedright\saverr}

\let\oldtoc\tableofcontents
\renewcommand*{\tableofcontents}{%

{\rrtocenter\oldtoc}}

To typeset the ToC with the heading and chapter
entries centered is now as easy as:
\tableofcontents

If you wanted the section entries to be centered
then \l@section can be redefined in a similar, but
not identical, manner to \l@chapter. However, cen-
tered section entries following a centered chapter
entry in my view looks rather confusing.

If you want chapter headings to be centered, you
can do:
{\rrtocenter

\chapter[...]{...}
}
or
\rrtocenter

\chapter[...]{...}
\restorerr

In each case the effect of \rrtocenter is limited to
\chapter; if it were not then surprises could be in
store later on.

References
[1] Paul W. Abrahams, Karl Berry, and

Kathryn A. Hargreaves. TEX for the
Impatient. Addison-Wesley, 1990. http:
//ctan.org/pkg/impatient.

[2] Alastair. Indexing individual elements in a
comma separated list. Post to comp.text.tex
newsgroup, 17 October 2010.

[3] Donald Arseneau and Peter Wilson. The
ifmtarg package, 2009. http://ctan.org/
pkg/ifmtarg.

[4] Michael Barr. Re: [texhax] Finding blank
argument to a macro. Post to texhax mailing
list, 27 May 2010.

[5] Michael Downes (ed. Peter Wilson). Around
the Bend. The Herries Press, July 2008.
http://ctan.org/pkg/around-the-bend.

[6] Victor Eijkhout. TEX by Topic, A TEXnician’s
Reference. Addison-Wesley, 1991. ISBN
0-201-56882-9. Available at http://www.
eijkhout.net/tbt/.

[7] Ulrike Fischer. Re: Indexing individual
elements in a comma separated list. Post to
comp.text.tex newsgroup, 18 October 2010.

[8] GL. Re: Finding the widest string. Post to
comp.text.tex newsgroup, 4 May 2010.

[9] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0-201-13448-9.

[10] Dan Luecking. Re: A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[11] Matthew. [texhax] finding blank argument to
a macro. Post to texhax mailing list, 25 May
2010.

[12] Frank Mittelbach and Michel Goossens.
The LATEX Companion. Addison Wesley,
second edition, 2004. ISBN 0-201-36299-6.

[13] Timothy Murphy. A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[14] Heiko Oberdiek. The kvsetkeys package, 2010.
http://ctan.org/pkg/kvsetkeys.

[15] Heiko Oberdiek. Re: A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[16] Heiko Oberdiek. Re: Finding the widest string.
Post to comp.text.tex newsgroup, 4 May
2010.

[17] Roger. Re: ifodd question. Post to
comp.text.tex newsgroup, 18 May 2010.

[18] Romildo. Finding the widest string. Post to
comp.text.tex newsgroup, 3 May 2010.

[19] The LaTeX3 Project. The xparse package,
2015. http://ctan.org/pkg/xparse.

[20] Peter Wilson. Glisterings: More on paragraphs
regular, LATEX’s defining triumvirate,
TEX’s dictator. TUGboat, 29(2):324–327,
2008. http://tug.org/TUGboat/tb29-2/
tb92glister.pdf.

[21] Joseph Wright. Re: A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[22] Joseph Wright. Re: ifodd question. Post to
comp.text.tex newsgroup, 14 May 2010.

� Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Peter Wilson

