
114 TUGboat, Volume 36 (2015), No. 2

Joseph’s Adventures in Unicodeland
Joseph Wright

1 Unicodeland
The rich variety of human language has over time led
us to a plethora of ways of writing down our commu-
nications. Historically, computer systems handled
this poorly. The 26 letters of the English alpha-
bet have defined the landscape of computerized text
storage, first through the ASCII standard and later
as the basis of many 8-bit systems. Over roughly
the past quarter-century, this situation has begun to
change with the development of the Unicode stand-
ard (The Unicode Consortium, 2015). Unicode takes
us beyond the limitations of the 7- or 8-bit world
into a much richer environment. In this ‘Unicode-
land’ every character has its proper place, and every
character can and should be correctly handled by
compliant software.

The Unicode Consortium have defined not only
a rich (and expanding) set of characters (or more ac-
curately code points) to handle this variety of data,
but have also explored and defined how these should
be manipulated under a range of transformations.
As befits a standards organisation, the Unicode Con-
sortium have not tied this information to any partic-
ular implementation. Rather, they provide a set of
machine-readable files and documentation guidelines
to allow compliant implementations to be built for
the range of tasks we use computers for.

In the TEX world, we have today two Unicode-
capable engines in general use: X ETEX and LuaTEX.
Following a careful TEX tradition, these engines do
not hard-code Unicode data or behaviours into the
engines. Rather, they allow us to handle Unicode
input and to control behaviours by reading in the
appropriate data.

Here, I will look at two areas where we need to
get Unicode data into the engine: setting up TEX’s
codes correctly for the Unicode range, and imple-
menting case-changing. Whilst the focus here is on
how we are tackling these problems for LATEX, the
ideas should apply to all TEX users.

2 Setting up characters
As X ETEX and LuaTEX can accept input across the
full Unicode range they need to know how to treat
a much greater number of characters than classical
TEX engines. For example, with an 8-bit engine
we usually restrict ‘letters’ for creating control word
names to A–Za–z. With a Unicode engine that’s not
reasonable: anything that is a letter according to
the agreed standard can and should be set to cat-

egory code 11. However, what we don’t want to do
is code all of that in by hand. Luckily, all of the
core Unicode data files are provided in plain text
format (and indeed are written in ASCII) and are
machine-readable. ‘All’ we have to do is parse the
appropriate files as part of the TEX run.

The details of course are a little more complex.
It turns out that we want to set up several things

• \catcode
• \lccode
• \uccode
• \Umathcode
• \XeTexintercharclass (X ETEX only)

for all appropriate characters. To do that, we need
to first work out which Unicode data files have the
relevant information in them and then to parse it
into a usable form.

As the Unicode Consortium deal with data for
many purposes, it is not surprising that things like
TEX’s \catcode concept don’t feature directly in the
data files. Instead, we need to make some system-
atic decisions about relating Unicode properties to
TEX. Most of this work was done by Jonathan Kew
when he first released X ETEX; at that time, he cre-
ated a Perl script (unicode-char-prep.pl) to do
the work (Kew, 2015). The LATEX team has now
created a very similar script, using pdfTEX rather
than Perl for the parsing but retaining most of the
logic.

Much of the conversion is relatively obvious.
Thus for example characters described by the Uni-
code Consortium as falling into one of the letter
types are mapped to \catcode 11. However, there
are other characters that need to be \catcode 11:
combining marks and East Asian ideographs. Pick-
ing these up requires a bit of thought: the details of
parsing the source files are more technical than con-
ceptual. Reading all of the data with pdfTEX takes
a few seconds, but luckily this only has to happen
on the machine of one of the members of the team.
For users, the processed file can be read very quickly:
indeed, as part of format-building, it’s negligible.

What the team has added in this area is set-
ting up a single file to be read by both X ETEX and
LuaTEX, with the necessary conditionals inside the
file. That means that the common outcomes are
the same in all cases, with just the additive part
for X ETEX covering \XeTexintercharclass. Hav-
ing the file provided by the team also means that
it will be updated as part of wider kernel changes,
which should provide some regularity as to when this
takes place.

Joseph Wright

TUGboat, Volume 36 (2015), No. 2 115

3 Case changing
3.1 The background
TEX provides us with two primitives for case chan-
ging, \lowercase and \uppercase. The logic be-
hind these is simple: they convert single characters
from one case to another based on the idea of one-
to-one relationships. That’s fine when we have a
simple situation with two cases, one language and
everything mapping neatly. This is, of course, TEX’s
background: for English, \lowercase and \upper-
case are entirely reasonable.

Life gets more complicated once we introduce
more variation. First, even apparently simple one-
to-one relationships can be language-dependent. Per-
haps the most obvious example is Turkish, where the
upper case equivalent of i is İ, not I. Second, there’s
no context-dependence available: mappings are not
always the same for the same characters. The Greek
‘final sigma’ rule is perhaps the best known of these
situations: the correct lower casing of ὈΔΥΣΣΕΎΣ

for example is ὀδυσσεύς, using the two different
lower case sigma characters in Greek. There is then
the question of the one-to-one mappings themselves:
fußball in upper case is FUSSBALL with an extra
character. It’s clear from these issues (and other
subtleties) that a more nuanced approach is needed.

In practice, making everything work with Uni-
code input requires a Unicode engine, so the ideas
here work fully only with X ETEX and LuaTEX. With
pdfTEX, the best fall-back is to cover just the ASCII
range. Unlike the first part of this article, here we
are also discussing code for LATEX3, thus at the expl3
programming level (The LATEX3 Project, 2015). The
commands therefore have ‘real’ names that might
seem unusual: to avoid obscuring the ideas, I’ll give
them ‘design’ (CamelCase) names in the examples
here.

3.2 The approach
The first thing to recognise is that when we want to
talk about case changing, we are talking about text.
There may be some embedded formatting to skip
(more on that in a bit), but we can work on the basis
that we are case-changing category code 11 and 12
tokens. Of course the TEX primitives have import-
ant uses in generating ‘funny’ tokens (as they change
character codes but not category codes): that’s got
essentially nothing to do with the case of characters
at all!

With a bit of effort it’s possible to set up an
expandable loop over a list of tokens that preserves
all of the spaces and brace groups. Using that ap-
proach, we can pull out tokens one by one for con-

version. Spaces are passed straight through, while
we need to use a recursive approach with groups.
So this leaves the question of dealing with ‘normal’
tokens.

Converting each token is done by using a look-
up table made up of 100 control sequences, each cov-
ering part of the full Unicode range. This approach
offers a balance between efficiency and performance.
Using a table of this form, we are not limited to
one-to-one look-ups: one-to-many is also available.
This core idea covers a large part of the situations
we need, but to get the context dependence needs
some specialised code. In the current approach, that
is done using look-ahead routines dedicated to each
special situation.

Covering language-dependent mappings needs a
version of the code that tracks the currently-active
language. The number of special cases we find for
this is pretty small, so each one can then be handled
using some custom code.

3.3 Features
The key features of the case changer are those re-
lated to the Unicode standards: the one-to-one map-
pings and more complex relationships follow those
given by the consortium. The basics are built-in: de-
tection of context and providing a way to indicate
the language of the text as an additional argument
to case changing. Thus
\edef\test{%
\ExplLowerCase{RAGIP HULÛSİ}%

}
\show\test
yields
> \test=macro:
->ragip hulûsi̇.
whilst
\edef\test{%
\ExplLowerCase[tr]{RAGIP HULÛSİ}%

}
\show\test
yields
> \test=macro:
->ragıp hulûsi.
We can see that in the second case we get not only
full mapping of the Unicode characters but also the
difference in treatment of the dotted and dotless I.

From a programmer’s point of view, it’s con-
venient to be able to do case changing expandably.
As we can see in the examples above, that’s exactly
what the code offers: the case changer can be used
inside an \edef. That means we can easily store

Joseph’s Adventures in Unicodeland

116 TUGboat, Volume 36 (2015), No. 2

the ‘real’ case changed text without having to jump
through any TEX primitive hoops.

At the user level, some things should be skipped
by case changing: math mode material and explicitly-
marked input. Following the pattern set up by the
textcase package (Carlisle, 2004), these are handled
by detecting $ (etc.) and using a dedicated ‘opt-out’
command, respectively. Thus we obtain
\edef\test{%
\ExplUpperCase
{Some maths $y = mx + c$}%

}
\show\text
...
> \test=macro:
->SOME MATHS $y = mx + c$.
and
\edef\test{%
\ExplUpperCase
\NoChangeCase{FeFe}-hydrogenase}%

}
\show\text
...
> \test=macro:
->\NoChangeCase {FeFe}-HYDROGENASE.

One of the subtle features of Unicode case chan-
ging is what they call titlecasing. This is the pro-
cess whereby the first character of a piece of text
is made upper case, with the rest being lower case.
The subtle part is that a few characters need spe-
cial handling if they are first: these tend to be situ-
ations where the single glyph looks a bit like two
letters. We’ve called this “mixed case”: titlecasing
in English at least implies some form of word-level
processing.
\edef\test{%
\ExplMixedCase{ǳ}%

}
\show\text
...
> \test=macro:
->ǲ.
Perhaps the best example of this behaviour is with
the combination IJ in Dutch.
\edef\test{%
\ExplMixedCase{ijsselmeer}%

}
\show\text
...
> \test=macro:
->Ijsselmeer.
\edef\test{%

\ExplMixedCase[nl]{ijsselmeer}%
}
\show\text
...
> \test=macro:
->IJsselmeer.

The final area to consider is case folding. This
looks very much like lower casing but it’s not meant
for text: it’s a process for programmers. Case fold-
ing is a strictly one to one mapping with no context
dependence. We’ve provided this using a simplified
approach (no special tests), and based on yet an-
other Unicode data file.

4 Conclusions
Using Unicode data in TEX needs a bit of thought
to match up the ideas of the two systems. However,
we can do that and benefit from the tremendous
amount of work done by the Unicode Consortium.
In return, we enable users to get predictable out-
comes from their code and to match up with the
handling of other computational systems. This will
only become more important in the future.

Thanks to Jonathan Kew for creating the Perl
script used as a basis for our Unicode data parser.
Thanks also to Bruno Le Floch who developed the
looping approach used for case changing and the
method for compacting the data into an efficient
format.

References
Carlisle, David. “The textcase package”. Available

on CTAN: macros/latex/contrib/textcase,
2004.

Kew, Jonathan. “X ETEX”. http://xetex.
sourceforge.net/, 2015.

The LATEX3 Project. “The expl3 package”.
Available on CTAN: macros/latex/contrib/
l3kernel, 2015.

The Unicode Consortium. “The Unicode
Standard”. http://www.unicode.org/
versions/latest/, 2015.

⋄ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph.wright (at)

morningstar2.co.uk

Joseph Wright

macros/latex/contrib/textcase
http://xetex.sourceforge.net/
http://xetex.sourceforge.net/
macros/latex/contrib/l3kernel
macros/latex/contrib/l3kernel
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/

	Unicodeland
	Setting up characters
	Case changing
	The background
	The approach
	Features

	Conclusions

