TUGboat, Volume 36 (2015), No. 2

Through the \parshape, and what Joseph
found there

Joseph Wright

1 Paragraph shape

The shape of the paragraph defines how text looks
on the page. To talk about paragraph shape, we
first need to think about how it relates both to the
text itself and to the outer ‘container’ in which we
are placing the paragraph (see Figure 1). Text in
paragraphs is placed in vertical containers, ‘galleys’,
which are themselves then placed on the page. The
galley edges (thick black lines in the figure) may
be separated by a margin from the edges of the
paragraph (the light grey box in the figure). The
paragraph shape itself may be a simple rectangle,
as illustrated, or may be a more complex shape, as
we will see below. Within that shape, the text itself
is placed on a line-by-line basis. Not all of those
lines of text will necessarily use the full width of the
paragraph shape: the last line is often ended short
of the margin, while in many styles the first line of a
paragraph has a marker indent.

TEX provides us with a variety of primitives
which are in some way linked to the shape of a
paragraph. TgX by Topic (Eijkhout, 1992) lists seven
primitives in the ‘Paragraph Shape’ chapter:
\parindent
\hsize
\leftskip
\rightskip
\hangindent
\hangafter

\parshape

The \parindent primitive can be thought of as
controlling appearance within the paragraph shape,
whilst \hsize controls what the shape has to fit

Figure 1: Paragraph shape

117

within. Both \leftskip and \rightskip are linked
more to justification than to paragraph shape. This
leaves \hangindent, \hangafter and \parshape to
set up the shape of the paragraph itself. And the
two \hang... primitives are in fact special cases
of \parshape, so if we want to think about para-
graph shape in TEX primitive terms we must focus
on \parshape.

2 Views of \parshape

Matching up the TEX view of paragraph shape with
the ways we can think about design requires us to
think carefully about manipulating \parshape. Dif-
ferent design elements interact; thus, creating com-
plex layouts by hand is time-consuming. Rather than
do this, an alternative approach is to conceptualise
these different design aspects and to provide inter-
faces (and data structures) for each of them. We can
then construct the necessary \parshape program-
matically, freeing us to describe design in a more
natural way (at the cost of the effort in creating the
underlying logic).

As part of the experimental IXTEX3 galley mod-
ule (The BTEX3 Project, 2015), the team has been
exploring how we can achieve this separation. Some
of the concepts are easy to implement, whilst others
are more challenging, particularly given the nature
of the underlying TEX model. Here, I will survey
the design concepts we have identified and how we
have currently tackled each one. The focus is very
much on ideas rather than code: for the latter, read-
ers are encouraged to consult 13galley.pdf and
xgalley.pdf, both available on CTAN.

2.1 Margins

The paragraph shape will have left and right margins
separating it from the galley edges. (These margins
may of course be of zero length.) This is by far the
most straightforward part of the design description
of a paragraph. We can add margins to a paragraph
either by specifying the absolute distance from the
edge of the galley, or by describing a margin relative
to any existing margin. An interface for both of these
requires only three data items

e The left margin

e The right margin

e Whether to apply these on a relative or absolute
basis

A suitable \parshape can then be created to imple-
ment these requirements: existing margins can be
tracked separately or can be recovered from the ex-
isting \parshape using the e-TEX \parshapeindent
and \parshapelength primitives.

Through the \parshape, and what Joseph found there



118

2.2 Shapes

Within the margins, the next design concept we can
identify is the most obvious one of all: an actual
shape applying to the paragraph. Such shapes are
commonly seen in lists, which may use either a first-
indented or first-hanging design. To allow maximum
flexibility in this area it is useful to minimise the
number of fixed decisions, which leads to an interface
which requires

e A number of ‘normal’ (unmodified) lines
e A list of indents from the left margin
e A list of indents from the right margin

e A flag to indicate if the normal margins should
resume after the last modified line

2.3 Cutouts

In contrast to margins and fixed paragraph shapes,
which typically apply to a particular part of a docu-
ment (for example, all quotations, all headers, and so
on), the third view of paragraph shape is used on a
one-off basis. A ‘cutout’ is a section of the paragraph
which is (normally) indented to allow space for the
insertion of an independent element: almost always
a figure, with the text wrapping around it.

The current interface for this element is based on

e The side of the paragraph to cut
e The number of normal lines to leave
e A list of indents to apply to altered lines

In contrast to shaping a paragraph, there is no ques-
tion here that the normal line length will resume: a
cutout applies to a strictly fixed number of lines.

2.4 Combinations

On their own, each of the three different design views
for \parshape are clear. The challenge at a code
level is allowing fluid combinations of one or more
of them to occur without the user needing to know
that they are implemented using a single primitive.

By separating out the design elements and more
importantly by tracking them in appropriate data
structures, this is achievable. Notably, whilst the
expectation is that margins and shapes obey TEX
groupings (in BTEX terms, they are tied to environ-
ments), cutout parts need to act globally within the
galley they apply to.

3 Challenges

By far the most challenging concept in the design of
paragraph shape is handling cutouts in a ‘complete’
sense. These constructs are unused in many docu-
ment designs but where they are used, they throw
up a wide range of issues.

Joseph Wright

TUGDboat, Volume 36 (2015), No. 2

The \parshape primitive is a rare example of a
grid-like approach to typesetting in the TEX engine.
The primitive works in terms of lines of text, an
approach which only makes complete sense if the
baseline-to-baseline distance is known. For simple
designs this will be no issue, but once a rich mix
of display-like elements (maths, headings, etc.) is
included, creating cutout shapes which work reliably
becomes much more challenging. At the same time,
describing cutout elements is likely more naturally
done using distances than numbers of lines: ‘leave a
space for a figure which is 5cm high’, for example.
Accommodating these more complex design descrip-
tions requires both more code and, more importantly,
a more thorough focus on user expectations.

The link between \parshape and number of
lines also shows in the fact that we can talk about
unaltered lines at the start of a paragraph but not at
the end. A short consideration of the implementation
shows why this is: to deal with a paragraph ‘bottom
up’ means breaking the lines to some fixed length,
then finding if any of the lengths need altering, then
re-breaking, etc. This contrasts with the ‘top down’
algorithm we have in TEX: for each line to break, we
know the length allowed as part of the first pass.

Cutout parts are usually used in cases where
they need to be applied as a single block: it is no
good leaving part of the space for a wrapped figure at
the bottom of one page and the remainder at the top
of the next! Handling this requires some information
from the page-breaking system, and a definition of a
cutout which includes a floating element.

However, the biggest single challenge in using
the new code is that xgalley requires full control of
the \par primitive, and in manipulating \parshape
we require that no other code modifies it. As such,
whilst at present the xgalley code works well in con-
trolled tests, it is likely to break badly with ‘real
life’ documents. This is an area we are currently
addressing.

References

Eijkhout, Victor. TgX by Topic. Addison-Wesley,
Wokingham, United Kingdom, 1992.
http://www.eijkhout.net/texbytopic.

The IXTEX3 Project. “The xgalley package”. Available
on CTAN: macros/latex/13experimental/
xgalley, 2015.

¢ Joseph Wright
Morning Star
2, Dowthorpe End, Earls Barton
Northampton NN6 ONH UK
joseph.wright (at)
morningstar2.co.uk


http://www.eijkhout.net/texbytopic
macros/latex/l3experimental/xgalley
macros/latex/l3experimental/xgalley

	Paragraph shape
	Views of \parshape
	Margins
	Shapes
	Cutouts
	Combinations

	Challenges

