
162 TUGboat, Volume 36 (2015), No. 2

When to stop . . .

Hans Hagen

Abstract

A flexible system like TEX permits all kinds of so-
lutions for (weird) problems, so as soon as you run
into a special case it is tempting to come up with a
solution. When many such solutions are built into a
macro package at some point they start to compete.
How far should one go in being nice for users and cus-
tomers, especially when demands are mostly based on
tradition, expectations, and of course subjective, non-
rational and disputable artistic considerations? This
article looks at three examples: removing already-
typeset material, support for the ASCIIMATH for-
mat, and profiling. Do we really need these, and if
so, where and when do they need to be available?

1 Removing material already typeset

The primitive \unskip often comes in handy when
you want to remove a space (or more precisely: a
glue item) but sometimes you want to remove more.
Consider for instance the case where a sentence is
built up stepwise from data. At some point you
need to insert some punctuation but as you cannot
look ahead it needs to be delayed. Keeping track
of accumulated content is no fun, and a quick and
dirty solution is to just inject it and remove it when
needed. One way to achieve this is to wrap this
optional content in a box with special dimensions.
Just before the next snippet is injected we can look
back for that box (that can then be recognized by
those special dimensions) and either remove it or
unbox it back into the stream.

To be honest, one seldom needs this feature. In
fact I never needed it until Alan Braslau and I were
messing around with (indeed messy) bibliographic
rendering and we thought it would be handy to have
a helper that could remove punctuation. Think of
situations like this:

John Foo, Mary Bar and others.

John Foo, Mary Bar, and others.

One can imagine this list to be constructed pro-
grammatically, in which case the comma before the
and can be superfluous. So, the and others can be
done like this:

\def\InjectOthers

{\removeunwantedspaces

\removepunctuation

\space and others}

John Foo, Mary Bar, \InjectOthers.

Notice that we first remove spaces. This will give:

John Foo, Mary Bar and others.

where the commas after the names are coming from
some not-too-clever automation or are the side ef-
fect of lazy programming. In the sections below I
will describe a bit more generic mechanism and also
present a solution for non-ConTEXt users.

1.1 Marked content

The example above can be rewritten in a more gen-
eral way. We define a couple macros (using ConTEXt
functionality):

\def\InjectComma

{\markcontent

[punctuation]

{\removeunwantedspaces,\space}}

\def\InjectOthers

{\removemarkedcontent[punctuation]%

\space and others}

These can be used as:

John Foo\InjectComma

Mary Bar\InjectComma

\InjectOthers.

Which gives us:

John Foo, Mary Bar and others.

Normally one doesn’t need this kind of magic
for lists because the length of the list is known and
injection can be done using the index in the list. Here
is a more practical example:

\def\SomeTitle {Just a title}

\def\SomeAuthor{Just an author}

\def\SomeYear {2015}

We paste the three snippets together:

\SomeTitle,\space \SomeAuthor\space (\SomeYear).

But to get even more abstract, we can do this:

\def\PlaceTitle

{\SomeTitle

\markcontent[punctuation]{.}}

\def\PlaceAuthor

{\removemarkedcontent[punctuation]%

\markcontent[punctuation]{,\space}%

\SomeAuthor

\markcontent[punctuation]{,\space}}

\def\PlaceYear

{\removemarkedcontent[punctuation]%

\space(\SomeYear)%

\markcontent[punctuation]{.}}

Used as:

\PlaceTitle\PlaceAuthor\PlaceYear

we get the output:

Just a title, Just an author (2015).

but when we have no author:

\def\SomeAuthor{}

\PlaceTitle\PlaceAuthor\PlaceYear

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 163

now we get:

Just a title (2015).

Even more clever:

\def\SomeAuthor{}

\def\SomeYear{}

\def\SomePeriod

{\removemarkedcontent[punctuation].}

\PlaceTitle\PlaceAuthor\PlaceYear\SomePeriod

The output is:

Just a title.

Of course we can just test for a variable like
\SomeAuthor being empty before we place punctu-
ation, but there are cases where a period becomes
a comma or a comma becomes a semicolon. Espe-
cially with bibliographies your worst typographical
nightmares come true, so it is handy to have such a
mechanism available when it’s needed.

1.2 A plain solution

For users of LuaTEX who don’t want to use ConTEXt
I will now present an alternative implementation.
Of course more clever variants are possible but the
principle remains. The trick is simple enough to show
here as an example of Lua coding as it doesn’t need
much help from the infrastructure that the macro
package provides. The only pitfall is the used signal
(attribute number) but you can set another one if
needed. We use the gadgets namespace to isolate
the code.

\directlua {

gadgets = gadgets or { }

local marking = { }

gadgets.marking = marking

local marksignal = 5001

local lastmarked = 0

local marked = { }

local local_par = 6

local whatsit_node = 8

function marking.setsignal(n)

marksignal = tonumber(n) or marksignal

end

function marking.mark(str)

local currentmarked = marked[str]

if not currentmarked then

lastmarked = lastmarked + 1

currentmarked = lastmarked

marked[str] = currentmarked

end

tex.setattribute(marksignal,currentmarked)

end

function marking.remove(str)

local attr = marked[str]

if not attr then

return

end

local list = tex.nest[tex.nest.ptr]

if list then

local head = list.head

local tail = list.tail

local last = tail

if last[marksignal] == attr then

local first = last

while true do

local prev = first.prev

if not prev

or prev[marksignal] ~= attr

or (prev.id == whatsit_node and

prev.subtype == local_par) then

break

else

first = prev

end

end

if first == head then

list.head = nil

list.tail = nil

else

local prev = first.prev

list.tail = prev

prev.next = nil

end

node.flush_list(first)

end

end

end

}

These functions are called from macros. We use
symbolic names for the marked snippets. We could
have used numbers but meaningful tags can be sup-
ported with negligible overhead. The remover starts
at the end of the current list and goes backwards till
no matching attribute value is seen. When a valid
range is found it gets removed.

\def\setmarksignal#1%

{\directlua{gadgets.marking.

setsignal(\number#1)}}

\def\marksomething#1#2%

{{\directlua{gadgets.marking.mark("#1")}{#2}}}

\def\unsomething#1%

{\directlua{gadgets.marking.remove("#1")}}

The working of these macros can best be shown
from a few examples:

before\marksomething{gone}{\em HERE}%

\unsomething{gone}after

before\marksomething{kept}{\em HERE}%

When to stop . . .

164 TUGboat, Volume 36 (2015), No. 2

\unsomething{gone}after

\marksomething{gone}{\em HERE}%

\unsomething{gone}last

\marksomething{kept}{\em HERE}%

\unsomething{gone}last

This renders as:

beforeafter
beforeHEREafter
last
HERElast

The remover needs to look at the beginning of
a paragraph marked by a local par whatsit. If we
removed that, LuaTEX would crash because the list
head (currently) cannot be set to nil. This is no big
deal because this macro is not meant to clean up
across paragraphs.

A close look at the definition of \marksomething
will reveal an extra grouping in the definition. This
is needed to make content that uses \aftergroup

trickery work correctly. Here is another example:

\def\SnippetOne

{first\marksomething{punctuation}{, }}

\def\SnippetTwo

{second\marksomething{punctuation}{, }}

\def\SnippetThree

{\unsomething{punctuation} and third.}

We can paste these snippets together and make
the last one use and instead of a comma.

\SnippetOne \SnippetTwo \SnippetThree\par

\SnippetOne \SnippetThree\par

We get:

first, second and third.
first and third.

Of course in practice one probably knows how
many snippets there are and using a counter to keep
track of the state is more efficient than first typeset-
ting something and removing it afterwards. But still
it looks like a cool feature and it can come in handy
at some point, as with the title-author-year example
given before.

The plain code shown here is in the distribution
in the file luatex-gadgets and gets preloaded in
the luatex-plain format.

2 Supporting ASCIIMATH

In ConTEXt we have supported MathML for a long
time alongside TEX input and we use it in projects
mostly related to educational typesetting. In these
days of multiple output from one source that sounds
handy but unfortunately support in browsers is less
than optimal, especially if you consider the long time
MathML has been around. For that reason, in a
recent project, the web folks involved in the project

u� ⊗ u� = u�u�
u�u�u�u� = u�u�
∞× = u�u�
u�u�× = u�u�

Figure 1: Surprising output.

u�u� + sin u� + u�
√

u� + sin
√

u� + sin
√

u�
Figure 2: Tolerance for space-less input.

forced a move to something called ASCIIMATH. As
with most ASCII-based encodings such a format
starts out simple but due to demands it eventually
becomes as complex as anything else.1 In being tol-
erant to user input interesting side effects occur. You
can imagine that when dealing with tens of thou-
sands of files coming from dozens of authors keeping
consistency is an issue. In spite of providing fea-
tures for quality control (not hard in a TEX-driven
backend) one runs into interesting situations.

The ASCIIMATH module is loaded with:

\usemodule[asciimath]

Here is an example of code:

\asciimath{o ox x = xo}

\asciimath{a ax x = xa}

\asciimath{ooxx=xo}

\asciimath{aaxx=xa}

This code produces the output in figure 1. Of
course the expansion of some character sequences
is officially defined but no one will memorize all of
them.

Here is another input sequence:

\asciimath{ac+sinx+xsqrtx+sinsqrtx+sinsqrt(x)}

In figure 2 we see the result. The problem with
this kind of input is that once spaces are that optional
one loses a path to upward compatibility, and math
is not a frozen language, so . . .

A parser of ASCIIMATH is supposed to deal
with numbers properly and as such, on the one hand
assumes some syntactic consistent input, but at the
same time needs to be tolerant to whatever input
the author comes up with.

\asciimath{sqrt(1234)}

\asciimath{sqrt(1.234)}

\asciimath{sqrt(1,234)}

\asciimath{sqrt 1234}

\asciimath{sqrt 1.234}

\asciimath{sqrt 1,234}

The result of this input is shown in figure 3.
As you can see here, only periods can be part of

1 Long ago we started supporting something called calcu-
lator math because that was handy when discussing the use
of calculators in school books.

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 165

√
1234

√
1.234

√
1, 234√

1234
√

1.234
√

1, 234
Figure 3: Numbers as a unit of input.

√
1234567.1234567√
1234567, 1234567√
1234567.1234567√
1234567, 1234567

Figure 4: Sloppy input resulting in errors.

a number, a comma terminates one. But in some
European countries commas are used instead; sadly,
such cultural properties are seldom supported in
these international times. When parentheses are used
this gets unnoticed. One can argue that the spacing
after a comma can be a signal to use parentheses
(as argument delimiters). But, in an automated flow
where the end users don’t know much about how
something math should be typeset you should not be
too optimistic about that detailed of quality control.2

Of course some errors will get noticed, as in
the following example, typeset in figure 4: a space
is added after a comma (which is a punctuation
character while a period is an ordinary character)
and because a comma is not part of a number the
root symbol is too low.

\asciimath{sqrt(1234567.1234567)}

\asciimath{sqrt(1234567,1234567)}

\asciimath{sqrt 1234567.1234567}

\asciimath{sqrt 1234567,1234567}

The use of () around the number will only ob-
scure the error in coding the number. At some point
the designers of the abovementioned (educational)
math books decided that numbers should be split in
triplets. Like this:

\setupasciimath

[splitmethod=3,

symbol={{,}}]

\asciimath{sqrt(1234567.1234567)}

\asciimath{sqrt(1234567,1234567)}

\asciimath{sqrt 1234567,1234567}

\asciimath{sqrt 1234567.1234567}

In figure 5 you see the result. This will only
work well when periods are used in the input because
a comma will end the number. In that case the
spaces come out different too. So in order for that to
work one really needs to input using periods. Those
periods will be replaced by commas when typesetting.

Of course using commas in the input is a bad
idea anyway as they can also separate coordinates

2 The Dutch language market is relatively small, so there
are limits to how much time and money publishers will spend.

√
1 234 567,123 456 7√
1 234 567, 1 234 567√
1 234 567, 1 234 567√
1 234 567,123 456 7

Figure 5: Numbers grouped in triplets.

and in ASCIIMATH they are also used as separa-
tors between matrix entries. In the end, only very
consistent and redundant coding will come close to
guaranteeing a decent result. Unfortunately most in-
put was not using periods, and that’s kind of painful
when it gets noticed at the last minute, especially
when the demand for spaced numbers happens at
the last minute too.

When you code in TEX directly there is normally
more control over matters as there is a more direct
relationship between authoring and rendering. For
instance if you tag numbers like this, periods and
commas are treated alike:

$\mn{1.2} = \mn{1,2}$

Here the \mn command reflects the MathML tag
for numbers. To get this automatically you can say:

\setupmathematics

[autopunctuation=yes]

In which case a comma is punctuation only if
it’s followed by a blank space.

The project where this ASCIIMATH is needed
started over a decade ago3 with TEX input but be-
cause the web was a target too we switched to content
MathML. That not being supported, after a short
excursion to OpenMath, we ended up with presenta-
tional MathML, and finally ASCIIMATH. The ques-
tion here is not so much where to stop, but when can
I stop adding more and more input methods. Quality
is not well-served with ever-increasing variety and
input tolerance. Unfortunately the choices are often
determined by external factors. Interesting is that
ConTEXt can produce MathML as a by-product so
using TEX input works out fine.

One can of course ask in general when to stop
with adding features. As we used some roots in the
examples, here is another one (output in figure 6):

\setupmathradical

[sqrt]

[alternative=mp]

\sqrt{k\over m}

\sqrt{\displaystyle{k\over m}}

We mentioned the comma as cultural aspect of
rendering numbers. I consider the small hook at the
(right-hand) end of the root symbol another such —

3 It concerns a free math methodology.

When to stop . . .

166 TUGboat, Volume 36 (2015), No. 2

u�u�
u�
u�

Figure 6: Another view of roots.

at least that’s what got drawn on the blackboard
when I attended math classes. We can provide this
kind of rendering out of the box using MetaPost and
it has neither a performance hit nor burdens the user.
Unfortunately no one ever asked for this, while it is
the kind of extension that I’m more than happy to
provide. In my opinion it fits well with Don Knuth’s
“fine points of math typesetting” too. So I won’t stop
implementing such features.

3 Profiling lines

Although TEX is pretty good at typesetting simple
texts like novels, in practice it’s often used for getting
more complex stuff on paper (or screen). Math is
of course the first thing that comes to mind. If for
instance you look at the books typeset by Don Knuth
you will see a rendering that is rather consistent in
spacing. This is no surprise as the author pays a lot
of attention to detail and uses inline versus display
math properly. No publisher will complain about
the result.

In the documents that I have to write styles for,
the content is rather mixed, and in particular inline
math can have display math properties. In a one-
column layout this is not a real problem especially
because lots of short sentences and white space is
used: we’re talking of secondary-school educational
math where arguments for formatting something this
or that way is not always rational and consistent but
more based on “this is what the student expects”,
“the competitor also does it that way” or just “we
like this more”. For instance in a recent project, the
books with answers to questions had to be typeset in
a multicolumn layout and because math was involved,
we end up with lines with more height and depth
than normal. That can not only result in more pages
but also can make the result look a bit messy.

Profiling lines 1

1 Profiling lines

1.1 Introduction

Although TEX is pretty good in typesetting simple texts like novels, in prac-

tice it’s often used for getting more complex stuff on paper (or screen).

Math is of course the first thing that comes to mind. If for instance you look

at the books typeset by Don Knuth you will see a rendering that is rather

consistent in spacing. This is no surprise as the author pays a lot of atten-

tion to detail and uses inline versus display math properly. No publisher

will complain about the result.

In the documents that I have to write styles for, the content is rather mixed

and especially inline math can have display math properties. In an one

column layout this is not a real problem especially because lots of short

sentences and white space is used: we’re talking of education highschool

math where arguments for formatting something this or that way is not

always rational and consistent but more based on “this is what the student

expects”, “the competitor also does it that way” or just “we like this more”.

For instance in a recent project, the books with answers to questions had

to be typeset in a multicolumn layout and because math was involved, we

end up with lines with more height and depth than normal. That can not

only result in more pages but also can make the result looks a bit messy.

This paragraph demonstrates how lines are handled: when a paragraph isH__

broken into lines each line becomes a horizontal box with a height and depthH__

determined by the size of the characters that make up the line. There is aH__

minimal distance between baselines (baselineskip) and when lines touchH__

there can optionally be a \lineskip. In the end we get a vertical list ofH__

boxes and glue (either of not flexible) mixed with penalties that determineH__

optimal paragraph breaks. This paragraph shows that there is normallyH__

enough space available to do the job.H__

We already have some ways to control this. For instance the dimensions of

math can be limited a bit and lines can be made to snap on a grid (which is

what publishers oftenwant anyway). However, another alternative is to look

at the line and figure out if successive lines can be moved closer, of course

within the constraints of the height and and depth of the lines. There is no

real way to see if some ugly clash can happen simply because when we run

into boxed material there can be anything inside and the dimensions can

be set on purpose. This means that we have to honour all dimensions and

We already have some ways to control this. For
instance the dimensions of math can be limited a
bit and lines can be made to snap on a grid (which
is what publishers often want anyway). However,
another alternative is to look at the line and decide
if successive lines can be moved closer, of course

wider
unprofiled

shorter
unprofiled

wider
unprofiled

shorter
unprofiled

wider
unprofiled

shorter
unprofiled

hsize 12cm

unprofiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en be-

tekent per honderd, dus één van elke honderd, dus
1

100 deel. Met

procenten rekenen is daarom rekenen met honderdsten: 45% =
45

100 = 0, 45. Dus 45% van een geheel is het
45

100 deel ervan en dat

kun je berekenen door te vermenigvuldigen met 0, 45.

hsize 10cm

unprofiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is

Latijn en betekent per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten rekenen is daarom

rekenen met honderdsten: 45% = 45
100 = 0, 45. Dus

45% van een geheel is het
45

100 deel ervan en dat kun je

berekenen door te vermenigvuldigen met 0, 45.

example 1

hsize 12cm

unprofiled

Je gaat uit van de bekende eigenschappen van machten. Bijvoor-

beeld: u�u� ∗ u�u� = u�(u�+u�). Neem je hierin u� =u� log(u�) en u� =u� log u�,
dan vind je: u�u� log(u�)+u�log(u�) = u�u� log u� × u�u� log u� = u� × u�. Hierbij
gebruik je de definitieformules.

hsize 10cm

unprofiled

Je gaat uit van de bekende eigenschappen van mach-

ten. Bijvoorbeeld: u�u� ∗ u�u� = u�(u�+u�). Neem je hierin u� =u�

log(u�) en u� =u� log u�, dan vind je: u�u� log(u�)+u�log(u�) =
u�u� log u� × u�u� log u� = u� × u�. Hierbij gebruik je de definitie-

formules.

example 2

hsize 12cm

unprofiled

Omdat volgens de eigenschappen van machten en exponenten

geldt
1

u�4 = u�−4 is ook hier sprake van een machtsfunctie, namelijk

u�(u�) = 6
u�4 = 6 × 1

u�4 = 6u�−4.

hsize 10cm

unprofiled

Omdat volgens de eigenschappen van machten en ex-

ponenten geldt
1

u�4 = u�−4 is ook hier sprake van een

machtsfunctie, namelijk u�(u�) = 6
u�4 = 6 × 1

u�4 = 6u�−4.

example 3

Figure 7: Unprofiled examples.

within the constraints of the height and and depth
of the lines. There is no real way to see if some
ugly clash can happen simply because when we run
into boxed material there can be anything inside and
the dimensions can be set on purpose. This means
that we have to honour all dimensions and only can
mess around with dimensions when we’re reasonably
confident. In ConTEXt this messing is called profiling
and that is what we will discuss next.

3.1 Line heights and depths

In this section we will use some (Dutch) examples
from documents that we’ve processed. We show
unprofiled versions, with two different paragraph
widths, in figure 7. All three examples shown demon-
strate that as soon as we use something more complex
than a number or variable in a subscript we exceed
the normal line height, and thus the line spacing
becomes somewhat irregular.

The profiled rendering of the same examples are
shown in figure 8. Here we use the minimal heights
and depths plus a minimum distance of 1pt. This
default method is called strict.

In the first and last example there are some
lines where the depth of one line combined with
the height of the following exceeds the standard
line height. This forces TEX to insert \lineskip

(mentioned in the demonstration paragraph above),

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 167

wider
profiled

shorter
profiled

wider
profiled

shorter
profiled

wider
profiled

shorter
profiled

hsize 12cm

profiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en be-

tekent per honderd, dus één van elke honderd, dus
1

100 deel. Met

procenten rekenen is daarom rekenen met honderdsten: 45% =
45

100 = 0, 45. Dus 45% van een geheel is het
45

100 deel ervan en dat

kun je berekenen door te vermenigvuldigen met 0, 45.

hsize 10cm

profiled

Regelmatig kom je procenten tegen. ‘Pro centum’ is

Latijn en betekent per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten rekenen is daarom

rekenen met honderdsten: 45% = 45
100 = 0, 45. Dus

45% van een geheel is het
45

100 deel ervan en dat kun je

berekenen door te vermenigvuldigen met 0, 45.

example 1

hsize 12cm

profiled

Je gaat uit van de bekende eigenschappen van machten. Bijvoor-

beeld: u�u� ∗ u�u� = u�(u�+u�). Neem je hierin u� =u� log(u�) en u� =u� log u�,
dan vind je: u�u� log(u�)+u�log(u�) = u�u� log u� × u�u� log u� = u� × u�. Hierbij
gebruik je de definitieformules.

hsize 10cm

profiled

Je gaat uit van de bekende eigenschappen van mach-

ten. Bijvoorbeeld: u�u� ∗ u�u� = u�(u�+u�). Neem je hierin u� =u�

log(u�) en u� =u� log u�, dan vind je: u�u� log(u�)+u�log(u�) =
u�u� log u� × u�u� log u� = u� × u�. Hierbij gebruik je de definitie-

formules.

example 2

hsize 12cm

profiled

Omdat volgens de eigenschappen van machten en exponenten

geldt
1

u�4 = u�−4 is ook hier sprake van een machtsfunctie, namelijk

u�(u�) = 6
u�4 = 6 × 1

u�4 = 6u�−4.

hsize 10cm

profiled

Omdat volgens de eigenschappen van machten en ex-

ponenten geldt
1

u�4 = u�−4 is ook hier sprake van een

machtsfunctie, namelijk u�(u�) = 6
u�4 = 6 × 1

u�4 = 6u�−4.

example 3

Figure 8: Profiled examples.

Coming back to the use of typefaces in electronic publishing: many of the new typogra-

phers receive their knowledge and information about the rules of typography from books,

from computer magazines or the instruction manuals which they get with the purchase

of a PC or software. There is not so much basic instruction, as of now, as there was in

the old days, showing the differences between good and bad typographic design. Many

people are just fascinated by their PC’s tricks, and think that a widely--praised program,

called up on the screen, will make everything automatic from now on.

Figure 9: Normal lines profiled (quote from
Hermann Zapf)

a dimension that is normally set to a fraction of
the line spacing (for instance 1pt for a 10pt body
font and 12pt line spacing). When we are profiling,
\lineskip is ignored and we use a settable distance
instead. The second example (with superscripts)
normally comes out fine as the math stays within
limits and we make sure that smaller fractions and
scripts stay within the natural limits of the line, but
nested scripts can be an issue.

In figure 9 we have profiled regular text, without
math. Typical text stays well within the limits of
height and depth. If this doesn’t happen for prose
then you need to adapt the height/depth ratio to the
ascender/descender ratio of the bodyfont. Thus, for
regular text it makes no sense to use the profiler, it
only slows down typesetting.

3.2 When lines exceed boundaries

Let’s now take a more detailed look at what happens
when lines get too high or low. First we’ll zoom in
on a simple example: in figure 10, we compare a

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

no excessive height and depth

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

some excessive height and depth (overlapping)

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

some excessive height and depth (out of touch)

Figure 10: Variants of profiling, using a constructed
two-line text.

sample text rendered using the variants of profiling
currently implemented. (This is still experimental
code so there might be more in the future). Seeing
profiles helps to get a picture of the complications
we have to deal with. In addition to the normal
vbox variant (used in the previous examples), we
show none which only analyzes, strict that uses
the natural dimensions of lines and fixed that is
supposed to cooperate with grid snapping.

Figure 10 shows what happens when we add
some more excessive height and depth to lines. The
samples are:

line 1 x\lower2ex\hbox{xxx}\par

line 2 x\raise2ex\hbox{xxx}\par

line 3 \par

and:

x\lower2ex\hbox{xxx} line 1 \par

line 2 x\raise2ex\hbox{xxx}\par

line 3 \par

Here the strict variant has some effect while
fixed only has some influence on the height and
depth of lines. Later we will see that fixed operates
in steps and the default step is large so here we never
meet the criteria for closing up.4

A profiled box is typeset with \profiledbox.
There is some control possible but the options are
not yet set in stone so we won’t use them all here.
Profiling can be turned on for the whole document
with \setprofile but I’m sure that will seldom
happen, and these examples show why: one cannot
beforehand say if the result looks good. Let’s now
apply profiling to a real text. If you play with this
yourself you can show profiles in gray with a tracker:

\enabletrackers[profiling.show]

We show the effects of setting distances in fig-
ure 11. We start with a zero distance:

4 In ConTEXt we normally use \high and \low and both
ensure that we don’t exceed the natural height and depth.

When to stop . . .

168 TUGboat, Volume 36 (2015), No. 2

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en betekent per

honderd, dus één van elke honderd, dus
1

100 deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% = 45
100 = 0, 45. Dus 45% van een

geheel is het
45

100 deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0, 45.
zero distance, resulting height 83.5265pt

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en betekent per

honderd, dus één van elke honderd, dus
1

100 deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% = 45
100 = 0, 45. Dus 45% van een

geheel is het
45

100 deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0, 45.
distance, resulting height 85.5265pt

Regelmatig kom je procenten tegen. ‘Pro centum’ is Latijn en betekent per

honderd, dus één van elke honderd, dus
1

100 deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% = 45
100 = 0, 45. Dus 45% van een

geheel is het
45

100 deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0, 45.
distance, double height and depth, resulting height 151.302pt

Figure 11: Example with different dimensions.

\profiledbox

[strict]

[distance=0pt]

{\nl\getbuffer[example-1]}

Because we don’t want lines to touch we then set
the minimum distance to a reasonable value (1pt).

\profiledbox

[strict]

[distance=1pt]

{\nl\getbuffer[example-1]}

Finally we also double the height and depth of
lines, something that normally will not be done. The
defaults are the standard height and depth (the ones
you get when you inject a so-called \strut).

\profiledbox

[strict]

[height=2\strutht,

depth=2\strutdp,

distance=1pt]

{\nl\getbuffer[example-1]}

The problem with this kind of analysis is that
deciding when and how to use this information to
improve spacing is non-trivial. One of the characteris-
tics of user demand is that it nearly always concerns
rather specific situations and that suggested solu-
tions could work only in those cases. But as soon
as we have one exceptional situation, intervention
is needed which in turn means that a mechanism
has to be under complete user control. That itself
assumes that the user still has control, which is not
the case in automated workflows. In fact, as soon
as one is in control over the source and rendering,
there are often easier ways to deal with the few cases

that need treatment. Possible interference can come
from, for instance:

• whitespace between paragraphs
• section titles (using different fonts and spacing)
• descriptions and other intermezzos
• images that interrupt the flow, or end up next

to text
• ornaments like margin words (we catch some)
• text backgrounds making spacing assumptions

After a few decades of using TEX and writing
solutions, it has become pretty clear that fully au-
tomated typesetting is a dream, if only because the
input can be pretty weird and inconsistent and de-
mands (from those who are accustomed to tweaking
manually in a desktop publishing application) can be
pretty weird and inconsistent too. So, the only real
solution is to use some kind of artificial intelligence
that one can feed with demands and constraints and
that hopefully is clever enough to deal with the in-
consistencies. As this kind of computing is unlikely
to happen in my lifetime, poor man explicit solutions
have to do the job for now. One can add all kinds of
heuristics to the profiler but this can backfire when
control is needed. Alternatively one can end up with
many options like we have in grid snapping.

3.3 Where to use profiling

In ConTEXt there are four places (maybe a few more
eventually) where this kind of control over spacing
makes sense:

• the main text flow in single column mode
• multi-column mode, especially mixed columns
• framed texts, used for all kinds of content
• explicitly (balanced) split boxes

Because framed texts are used all over, for instance
in tables, it means that if we provide control over
spacing using profiles, many ConTEXt mechanisms
can use it. However, enabling this for all packaging
has a significant overhead so it has to be used with
care so that there is no performance hit when it is
not used. Here is an easy example using \framed:

\framed

[align=normal,

profile=fixed,

frame=off]

{some text ...}

For the following examples we define this helper:

\starttexdefinition demo-profile-1 #1

\framed

[align=normal,profile=#1]

{xxx$\frac{1}{\frac{1}{\frac{1}{2}}}$

\par

$\frac{\frac{1}{\frac{1}{2}}}{2}$xxx}

\stoptexdefinition

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 169

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
21

1
2
2 xxx

xxx 1
1
1
21

1
2
2 xxx

xxx 1
1
1
21

1
2
2 xxx

vbox fixed halffixed quarterfixed eightsfixed

Latin Modern

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
21

1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

xxx 1
1
1
2

1
1
2
2 xxx

vbox fixed halffixed quarterfixed eightsfixed

Pagella

xxx
1
1
1
2

1
1
2
2 xxx

xxx
1
1
1
2

1
1
2
2 xxx

xxx
1
1
1
21

1
2
2 xxx

xxx
1
1
1
21

1
2
2 xxx

xxx
1
1
1
2

1
1
2
2 xxx

vbox fixed halffixed quarterfixed eightsfixed

Dejavu

Figure 12: A few fonts compared.

Regelmatig kom je procenten tegen.

‘Pro centum’ is Latijn en betekent

per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten

rekenen is daarom rekenenmet hon-

derdsten: 45% = 45
100 = 0, 45. Dus

45% van een geheel is het
45

100 deel

ervan en dat kun je berekenen door

te vermenigvuldigen met 0, 45.

none on grid

Regelmatig kom je procenten tegen.

‘Pro centum’ is Latijn en betekent
per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten

rekenen is daarom rekenenmet hon-

derdsten: 45% = 45
100 = 0, 45. Dus

45% van een geheel is het
45

100 deel
ervan en dat kun je berekenen door
te vermenigvuldigen met 0, 45.

strict on grid

Regelmatig kom je procenten tegen.

‘Pro centum’ is Latijn en betekent

per honderd, dus één van elke hon-

derd, dus
1

100 deel. Met procenten

rekenen is daarom rekenenmet hon-

derdsten: 45% = 45
100 = 0, 45. Dus

45% van een geheel is het
45

100 deel

ervan en dat kun je berekenen door

te vermenigvuldigen met 0, 45.

fixed on grid

Figure 13: Boxed columns without and with profiling.

We apply this to predefined profiles. The macro
is called like this:

\texdefinition{demo-profile-1}{fixed}

The outcome can depend on the font used: in
figure 12 we show Latin Modern, TEX Gyre Pagella
and Dejavu. Because in ConTEXt the line height
depends on the bodyfont; each case is different.

As mentioned, we need this kind of profiling
in multi-column typesetting, so let us have a look
at that now. Columns are processed in grid mode
but this is taken into account. We can simulate
this by using boxed columns; see figure 13. One of

the biggest problems is what to do with the bottom
and top of a page or column. This will probably
take a bit more to get right, and likely we will end
up with different strategies. We can also think of
special handlers but that will come with a high speed
penalty. In the strict variant we don’t mess with
the dimension of a line too much, but the fixed

alternative will get some more control.
Although using this feature looks promising it

is also dangerous. For instance a side effect can be
that interline spacing becomes inconsistent and even
ugly. It really depends on the content. Also, as soon
as some grid snapping is used, the gain becomes less,
simply because the solution space is smaller. Then
of course there is the matter of overall look and feel:
most documents that need this kind of magic look
bad anyway, so why bother. In this respect it is
comparable to applying protrusion and expansion.
There are hardly any combinations of design and
content where micro-typography makes sense to use:
in prose perhaps, but not in mixed content. On the
other hand, profiling makes more sense in mixed
content than in prose.

Not everything that is possible should be used.
In figure 14 we show some fake paragraphs with
profiles applied, the first series (random range 2)
has a few excessive snippets, the last one (random
range 5) has many. In figure 15 we show them in a
different arrangement. Although there are differences
it is hard to say if the results look better. We scaled
down the results and used gray fake blurs instead of
real text in order to get a better impression of the
so-called (overall) grayness of a text.

3.4 Conclusion

Although profiling seems interesting, in practice it
does not have much value in an automated flow.
Ultimately, in the project for which I investigated
this trickery, only in the final stage was some last
minute optimization of the rendering done. We did
that by injecting directives. Think of page breaks
that make the result look more balanced. Optimizing
image placement happens in an earlier stage because
the text can refer to images like “in the picture on
the left, we see . . . ”. Controlling profiles is much
harder. In fact, the more clever we are, the harder it
gets to beat it when we want an exception. All these
mechanisms: spacing, snapping, profiling, breaking
pages, image placement, to mention a few, have to
work together. For projects that depend on such
placement, it might be better to write dedicated
mechanisms than to try to fight with clever built-in
features.

When to stop . . .

170 TUGboat, Volume 36 (2015), No. 2

none / 2 strict / 2 fixed / 2 halffixed / 2

none / 3 strict / 3 fixed / 3 halffixed / 3

none / 4 strict / 4 fixed / 4 halffixed / 4

none / 5 strict / 5 fixed / 5 halffixed / 5

Figure 14: Gray examples; each row has progressively
more excessive snippets.

none / 2 none / 3 none / 4 none / 5

strict / 2 strict / 3 strict / 4 strict / 5

fixed / 2 fixed / 3 fixed / 4 fixed / 5

halffixed / 2 halffixed / 3 halffixed / 4 halffixed / 5

Figure 15: The same examples, rearranged such that
each row has a different profiling variant.

vbox 1 strict 1 fixed 1

vbox 2 strict 2 fixed 2

vbox 3 strict 3 fixed 3

Figure 16: Three similar random cases.

In practice, probably only the fixed alterna-
tive makes sense and as that one has a boundary
condition similar to (or equal, depending on other
settings) snapping on gridsteps, the end result might
not be that different from doing nothing. In figure 16
you see that the vbox variant is not that bad. And
extremely difficult content is unlikely to ever look
perfect unless some manual intervention happens.
Therefore, from the perspective of “fine points of
text typesetting” some local (manual) control might
be more interesting and relevant.

In the end, I didn’t need this profiling feature
at all: because there are expectations with respect
to how many pages a book should have, typesetting
in columns was not needed. It didn’t save that many
pages, and the result would never look that much
better, simply because of the type of content. Large
images were also spoiling the game. Nevertheless we
will keep profiles in the core and it might even get
extended. One question remains: at what point do
we stop adding such features? The answer would be
easier if TEX wasn’t so flexible.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

Hans Hagen

