32

The box-glue-penalty algebra of TEX
and its use of \prevdepth

Frank Mittelbach

Contents

1 The box-glue-penalty algebra 32
2 Splitting lists 32
3 Assembling a vertical box or galley 33
4 Calculation of vertical glue 34
5 Standard output routines 34
6 Special output routines 35
7 An unsolvable problem? 35
8 Some answers 36
Abstract

This article discusses certain aspects of TEX’s ap-
proach to line breaking and its consequences for au-
tomatically calculating the right amount of vertical
space between lines in more complex layouts.

It starts with giving a short introduction to the
box-glue-penalty algebra used by TEX to model ma-
terial to typeset. We then look at how the program
calculates the vertical glue between lines in which
the parameter \prevdepth plays a crucial role. Next
we examine different types of output routines and
evaluate how and to what extent the TEX algorithms
can accommodate their goals.

The final conclusion is that this is an area where
we can pose problems that cannot be resolved us-
ing current TEX, e-TEX, pdfTEX, or XH{IEX, unless
you restrict the allowable input, as there is no way
to obtain some of the information used by TEX’s
algorithms for later manipulation of the result.

Like the answer to many questions these days,
the situation is (probably) different with LuaTEX —
probably, because I haven’t actually tried it, but
given the additional possibilities offered by LuaTEX
a solution should be feasible.

1 The box-glue-penalty algebra

TEX’s typesetting is built around a model that is
known as the box-glue-penalty algebra [1]. At the
lowest level we have (character) boxes that have (as
far as TEX is concerned) no inner structure. These
(character) boxes intermixed with glue (representing
spaces) and penalties (representing possible break
points) are what TEX combines to form higher level
objects and eventually build up pages.

The first level of construction is called a hori-
zontal list and such a list can either form a new box
of its own (a horizontal box also known as an \hbox)

Frank Mittelbach

TUGDboat, Volume 36 (2015), No. 1

or it can be passed to the paragraph builder that
then (using a large number of parameters) will break
the list apart into sub-lists (possibly dropping some
content at the break points) to form the individual
lines (again \hboxes) of a paragraph.

It is also possible to build vertically oriented
lists, again consisting of boxes, glue and penalties.
Here the glue represents vertical spaces and any
penalties guide splitting the list later on. Such a
list can become a box of its own (a vertical box or
\vbox) or it can simply form a “galley” from which,
by some method, TEX once in a while chops off a
certain amount to form the content for a page to be
produced.

Boxes in vertical lists are different though: while
all lists can contain explicitly or implicitly construc-
ted boxes, only horizontal lists can contain character
boxes. If, while constructing a vertical list, TEX
encounters a character box it puts the current con-
struction on hold and starts building a horizontal
list. If it then encounters a \par command (or an
empty line) it will pass the constructed horizontal list
to the paragraph builder. That in turn chops it up
into individual lines and returns those as horizontal
boxes (paragraph lines) intermixed with glue and
penalties. These are then added into the vertical list
and construction of the vertical list continues.

2 Splitting lists

Splitting of horizontal lists can only be done by
passing the list to the paragraph builder. The result
in that case is a vertical list (or rather something that
will become part of a vertical list) and it contains a
varying number of horizontal boxes forming the lines
of the paragraph. In other words it is not possible
directly to take a horizontal list (or box) and split it
into two horizontal lists.

In the case of vertical lists the situation is slightly
different: on the so-called “main vertical list” on
which the material for pages is gathered, TEX mon-
itors the amount of material being gathered and
at certain points, either directed by some explicit
penalty or simply because it decided that there is now
enough material, it will chop off the right amount
of material for a single page and then fire up a sub-
routine called the output routine to process that
material and build a final page from it.

In addition to that, TEX offers the possibility
to split off a chunk of a specified size from a given
vertical box and place it into a new box. Technically
speaking this is more or less what the output routine
process on the main vertical list does when it gets
fired up. The only difference is that on boxes this is
an explicit command that needs to be invoked in the



TUGDboat, Volume 36 (2015), No. 1

programming code and it operates only on explicit
boxes formed earlier.

It would be interesting to have the same func-
tionality on the program level for horizontal boxes
but for some reason that never made it into the
program.

In other respects horizontal and vertical splitting
is a very similar operation (on the box-glue-penalty
algebra level). Splits can only happen at explicit
penalties or at the left of glue provided it is imme-
diately preceded by a box.! So in case of two globs
of glue directly next to each other, a split can only
happen before the first glue. Consecutive penalties
behave like a single penalty unless they both force a
break and we are in a horizontal list.?

Once a break point is chosen TEX drops all glue
and penalties following it until it comes to the next
box. The rationale behind this is that something like
white space between words should vanish if you have
a line break, and so should white space between lines
if you have a page break.

This rather simple model allows to define surpris-
ingly complex behavior, simply by specifying cleverly
constructed sequences of glue, penalties and (empty)
boxes. Appendix D in The TEXbook [2] shows a
number of examples.

In summary, the box-glue-penalty model proved
to be an ingenious way to model typesetting require-
ments and although it is not fully orthogonal and
perhaps misses one or the other feature that would
be useful, it gets the job done in a concise manner,
and it is fair to say that even after more than three
decades nobody has come up with anything better.

3 Assembling a vertical box or galley

A box in TEX terms is described by three dimensions:
its height, depth, and width. The rationale is that
characters that form words are lined up horizontally,
each having a certain height but some of them stick
out below the imaginary line (known as the baseline)
and thus have a depth. Consequently, the boxes have
a reference point at its left side with the material
above the reference point forming the height of the
box, and the material below, the depth.

1 In real life the situation is, of course, more complex.
TEX, for example, understands how to hyphenate words and
so during the paragraph breaking it might introduce addi-
tional break points (and possibly even additional characters
or variations into a list of character boxes), but abstractly one
can think of this as just another version of boxes, glue and
penalties that have been present from the beginning.

2 The value of a penalty describes the desirability to break
at a certain point (the smaller the better). The anomaly that
two forcing penalties in horizontal mode behave differently and
produce two breaks is due to some implementation decisions.

33

If a horizontal list is used to form a new box
then the inner boxes are lined up on their reference
points, glue between the boxes appears as spaces,
and the height and depth of the resulting box will be
the maximum height and depth of the inner ones.?
The width of the new box is simply the sum of all
widths including the amounts taken up by the glue
items. The reference point of the newly created box
is then again on its left side at the baseline.

The situation with vertical lists is similar: they
too align the boxes inside on their reference points
(only this time vertically) and glue between boxes
becomes spaces in the vertical direction. The width
of the newly formed box is then the maximum width
of its inner boxes. The calculation of height and
depth, however, is slightly more complicated. By
default, the depth will be the depth of the last box
inside but only if this box is not followed by glue (a
penalty would be allowed) —in the latter case the
depth would be zero. The height is then calculated
as the sum of all the heights and depths of all boxes
plus the spaces and minus the box depth that was
calculated earlier. In short you will end up with a
box that has a very large height and a (normally)
small depth.

In fact the depth of the new box is further re-
stricted by a parameter called \boxmaxdepth: if the
calculated depth exceeds this value then the refer-
ence point of the constructed box is lowered until the
depth is no longer in violation. By default the value
of this parameter is the largest possible dimension
so that the restriction doesn’t apply for manually
created boxes unless this is changed.

On the main vertical list \maxdepth is used for
the same purpose. If TEX decides that material
needs to be packaged into a box to be passed to the
output routine it uses that parameter to determine
the maximum depth and thus the height of that
box. In contrast to \boxmaxdepth this parameter
typically has a setting that allows only for small
depths to ensure that material is not “falling off the
page” if it has an unusually large depth.

As an alternative to the construction explained
above TEX also supports building a vertical box
whose reference point aligns with the first box inside
(\vtop), i.e., its height will be the height of this first
box and the depth will hold everything else. If the
list starts out with glue then the height of such a
box will be zero.

3 As there are some operations to lower or raise boxes with
respect to their reference point, this is not quite accurate, but
one could consider such a manipulation simply as an operation
that forms a new box with new dimensions.

The box-glue-penalty algebra of TEX and its use of \prevdepth



34

4 Calculation of vertical glue

In the previous sections we explained how lists in
the box-glue-penalty algebra are turned into new
boxes. We also mentioned that the paragraph builder
splits a horizontal list into a sequence of box-glue-
penalty items but so far we haven’t explained how
this precisely happens and what kind of glue items
are constructed during this process.

The main goal in paragraph building is to form
lines of text that are (normally) vertically positioned
in a way that the distance from baseline to baseline
is constant. TEX manages this in the following way:
whenever it builds a vertical list it keeps track of
the depth of the last box appended to the list in a
parameter called \prevdepth. At the beginning of
a list it has a sentinel value of -1000pt to indicate
that no box has been added so far.

When the paragraph builder builds a line box
this box will have a certain height and depth. TEX
then calculates the glue to be placed before the box
by using the parameter that holds the standard base-
line to baseline distance (\baselineskip) and sub-
tracts from it the height of this box and the cur-
rent value of \prevdepth. The resulting value is
then appended as a glue item unless it is smaller
than \lineskiplimit (i.e., the box height or the
previous depth was very large). In that case TEX
simply appends a glue item with a fixed value de-
fined by another parameter called \lineskip.* The
\prevdepth is then updated to hold the depth of the
box just appended so that the calculation for the
next line will be correct.

When a box is manually added to a vertical list,
e.g., via \box\mybox, the same happens i.e., baseline
glue gets prepended to the box and \prevdepth
gets updated to hold the depth value of the newly
appended box and thus any following box added
manually or by the paragraph builder would correctly
calculate glue for baseline separation. There is only
one exception to this process: when the material is
added as part of an \unvbox operation then TEX will
neither update \prevdepth nor prepend any glue.

It is possible to inspect and even change the cur-
rent value of \prevdepth within macro code while
TEX is in vertical mode, i.e., while it is building a ver-
tical list. Thus this only works between paragraphs
and not within a paragraph as the paragraph builder
acts on a horizontal list after all macro code has been

4 Again this is a bit of an oversimplification. There are
some more parameters involved and in certain circumstances
nothing is appended. Also, if we are at the beginning of the
list, or more precisely when \prevdepth has this special value,
no glue is appended. For precise details see [2], especially
chapters 12 and 14.

Frank Mittelbach

TUGDboat, Volume 36 (2015), No. 1

expanded. In other words, you can determine the
depth of the last line in a paragraph and by changing
\prevdepth, pretend that it has a different value and
thereby influence the baseline calculation for the first
line of a following paragraph. However, you can’t do
the same for lines within the paragraph.

It is also very important to understand that this
parameter is special in that it is local to the current
vertical list being built and that it doesn’t obey the
normal scoping rules. So if you change it within a
group it will keep its value when the group ends.
Instead it only (and always!) reverts to a previous
value if the construction of a vertical list has come to
an end and TEX resumes building an outer vertical
list, e.g., if boxes are nested within each other or if
we return to the main vertical list after building a
box or return from an output routine.

5 Standard output routines

TEX’s paragraph builder is a sophisticated piece of
software that uses dynamic programming to optimize
the line breaking over the paragraph as a whole
(with the sometimes surprising result that a change
near the end modifies line breaking decisions much
earlier on).

In contrast, TEX’s page breaking concepts are
much simpler. In essence, TEX assembles material
on the main vertical list until it is clear that there
is more material than can possibly fit on the page.
At that moment TEX stops assembling material for
the main vertical list and instead looks through all
material gathered and decides on a final break point
for the page using a number of parameters to guide
this process. The material prior to this break point
(which is a vertical list) is then packaged into a box
(\box255) and a special piece of code, “the current
output routine”, is fired up.

The normal purpose of this output routine is to
repackage and possibly embellish the material stored
in \box255, e.g., by adding a running header or a
page number, and then shipping it out to the output
file. When everything has been done, control is given
back to the process that fills the main vertical list
and processing continues there.

As the lines of a paragraph are always added in
one go to the main vertical list, TEX has typically
accumulated more than it actually can use in the
output routine. So when it returns from processing
the page material, the main vertical list is not empty
but contains a few boxes (and glue) that TEX had
seen but decided not to use.

Furthermore, the output routine code is allowed
to put some material from \box255 back (typically
after splitting it into several pieces) and in fact it



TUGDboat, Volume 36 (2015), No. 1

can even generate new material to be put back into
the main vertical list. To allow for this, TEX starts a
new vertical list when the output routine starts and
the output routine can then place box-glue-penalty
items into this list while working. Once the output
routine has ended, this vertical list (if it contains
anything) is placed at the head of the main vertical
list, followed by any material already on it but not
chosen for the current page.

Now what happens with \prevdepth during
that time? When the output routine starts, it holds
the depth of the last box contributed to the main
vertical list, which may or may not be the last box
that shows up in \box255. As the output routine
starts a new vertical list, this value is shelved away
and this new list gets its own instance starting out
with —1000pt as usual. So if the output routine does
something fairly complicated that includes build-
ing paragraphs, these paragraph lines are vertically
spaced out using the rules explained above. Once
the output routine ends, the value for \prevdepth
from the main vertical list is restored.

This is normally the correct decision: if some
material was not being used for the current page,
then this will form the end of the main vertical
list after the output routine has ended and thus
\prevdepth will correctly reflect the depth of the
last box appended there.

If on the other hand all material got used for the
last page, then the value of \prevdepth no longer
reflects the real situation as it still contains the depth
from the last box. However, as long as the main
vertical list is effectively empty at this point, this
doesn’t matter as TEX throws away any glue item
after a page break until it sees the first box. It then
inserts new glue, based on the height of this box and
the current value of a parameter, namely \topskip.
So all that happens is that the paragraph builder
may have calculated a glue to go in front of the first
paragraph line based on wrong assumptions but as
this glue is thrown away later it doesn’t matter.

6 Special output routines

But there is one further case: everything from the
main vertical list got used but the output routine
itself put something back. In that case the last
box on the main vertical list will be whatever the
output routine has deposited there, but the value of
\prevdepth still reflects the last box that was there
before the output routine was called.

The standard output routines in KTEX and plain
TEX do not have this issue as they do not put any-
thing back. However, the situation is quite differ-
ent if you look at special output routines. These

35

output routines typically get explicitly invoked by
setting some explicit penalty and thus there will be
no leftovers on the vertical list that correspond to
the \prevdepth value.

For example, the multicol package, on reaching
the end of a multicols environment, invokes an out-
put routine that takes the gathered material, splits it
up into balanced columns and then pushes the result
back as a single block for reprocessing.

In that case the value of \prevdepth on the
main vertical list will be the depth of the last box
in the last column, but after balancing the overall
depth of the result may very well be quite different
(as the last column may be the shortest one, so its
depth isn’t even taken into account). As a result the
baseline calculation of a following paragraph line will
be based on wrong assumptions.

In fact multicol tried to account for this and
added a negative space and then set \prevdepth to
zero. However this happened inside the output rou-
tine so that the negative space survived but the value
of \prevdepth got reverted after the output rou-
tine returned! (And it doesn’t help to use \global
from within the output routine as \prevdepth sim-
ply doesn’t care.) As the difference is typically less
than 2pt and multicol additionally adds a space of
\multicolsep this bug remained undetected for a
long time.

The solution to this problem then is, of course,
to carefully keep track of what the output routine
intends to put back, measure the final depth within
the output routine and store it away in a global
variable. Then, once the output routine has ended,
explicitly set \prevdepth to the saved value to make
it reflect the true situation.

7 An unsolvable problem?

The previous section explained how special output
routines can be written to correctly reflect the situ-
ation with \prevdepth. But this requires that the
output routine is always explicitly triggered —a sit-
uation in which we know that there is no remainder
material that could throw us off track. But what
happens if the output routine puts material back
but is invoked asynchronously by the standard TEX
mechanism?

For starters we then have a problem in regaining
control after the output routine has ended though
that can be resolved with a few tricks involving
\aftergroup and a nested set of output routines.

But even if we do this we don’t really know to
what value we should set \prevdepth. It would need
to be the depth of the material we put back in case
there was nothing left on the main vertical list, but

The box-glue-penalty algebra of TEX and its use of \prevdepth



36

it needs to be left alone if this is not the case. And
we can’t arrange for the material returned to have
the same \prevdepth that was current before the
output routine since we don’t have access to this
value within the output routine, and as the output
routine is triggered asynchronously we can’t (easily?)
obtain it beforehand or as part of the process.
So this is something to ponder.

8 Some answers

Donald Knuth already gave a partial answer to this
problem in The TEXbook [2, p. 262f] where he dis-
cussed an output routine that adds index headings
in random places in the text. The restriction in his
algorithm is that the \prevdepth is assumed to be
sufficiently small (that is, smaller than \maxdepth in
fact). In that case we can use the depth of \box255 in
the output routine as a measure for the \prevdepth
calculations that will have taken place if there is any
remainder in recent contributions, and use this to
adjust the nominal depth of the material added to
match that. And if there isn’t any remainder then
this doesn’t really matter either.

However, this approach can’t be used unmodi-
fied if this restriction isn’t guaranteed to hold, i.e., if
the material typeset may have arbitrary depth that
is then masked by the page \maxdepth adjustment.
Artificially enlarging \maxdepth is not an option ei-
ther, as that would incorrectly alter the allowed page
break positions.

A possible extension of the algorithm is to re-box
the material inside the output routine to determine
its natural depth, but unfortunately that turned out
to be not enough to cover all cases.

So after a couple of false positives (i.e., pseudo-
solutions that failed in one or another boundary case)
my conclusion is that this problem cannot be solved
within TEX or e-TEX as long as the typesetting and
line breaking is done by the engine. The main reason
for this is the following:

e If TEX is doing the line breaking and automati-
cally appends new material to the vertical lists
it calculates the necessary glue based on the
height of the newly appended box and the cur-
rent \prevdepth value to achieve a baseline to
baseline distance that corresponds to the value
of \baselineskip.

Frank Mittelbach

TUGDboat, Volume 36 (2015), No. 1

e However, if that brings two boxes too close to-
gether it adds some extra glue (\1ineskip).

e So if a “baseline skip” glue was added we can
adjust its value based on the size of newly in-
serted material as we know the target size (i.e.,
\baselineskip) and the \prevdepth used (ap-
plying a variation of Knuth’s algorithm outlined
above).

e If however, a \lineskip glue was added, our
calculations are off base and there is no way
within TEX to determine that we are in this
branch of the typesetting algorithm short of
disabling it and doing all box maneuvers manu-
ally.?

With LuaTEX the situation is different: With some
moderate Lua programming effort it should be pos-
sible to traverse a node list, say the one stored in
\splitdiscards, and determine if \lineskip was
used. Depending on the scenario one could then
either keep that node or delete it or replace it with
an appropriate new value.

Addendum

Thanks to Petr Olsak for identifying a needed cor-
rection to the text in section “Calculation of vertical
glue” on how TEX handles manually added boxes
when building a vertical list. This online version of
the article has been updated accordingly.

References

[1] Donald E. Knuth and Michael F. Plass. Break-
ing paragraphs into lines. In Digital Typography.
CSLI Publications, Stanford, CA, USA, 1999.

[2] Donald E. Knuth. The TgXbook. Addison-Wesley,
Reading, MA, 1986.

¢ Frank Mittelbach
Mainz, Germany
http://www.latex-project.org

5 T would be very much interested to be proven wrong here:
If somebody finds a solution that covers the general case using
just TEX or e-TEX, please offer it as a TUGboat article.



