
48 TUGboat, Volume 36 (2015), No. 1

Still tokens: LuaTEX scanners

Hans Hagen

1 Introduction

Tokens are the building blocks of the input for TEX
and they drive the process of expansion which in turn
results in typesetting. If you want to manipulate the
input, intercepting tokens is one approach. Other
solutions are preprocessing or writing macros that do
something with their picked-up arguments. In Con-
TEXt MkIV we often forget about manipulating the
input but manipulate the intermediate typesetting
results instead. The advantage is that only at that
moment do you know what you’re truly dealing with,
but a disadvantage is that parsing the so-called node
lists is not always efficient and it can even be rather
complex, for instance in math. It remains a fact that
until LuaTEX version 0.80 ConTEXt hardly used the
token interface.

In version 0.80 a new scanner interface was in-
troduced, demonstrated by Taco Hoekwater at the
ConTEXt conference 2014. Luigi Scarso and I inte-
grated that code and I added a few more functions.
Eventually the team will kick out the old token li-
brary and overhaul the input-related code in LuaTEX,
because no callback is needed any more (and also
because the current code still has traces of multiple
Lua instances). This will happen stepwise to give
users who use the old mechanism an opportunity to
adapt.

Here I will show a bit of the new token scanners
and explain how they can be used in ConTEXt. Some
of the additional scanners written on top of the built-
in ones will probably end up in the generic LuaTEX
code that ships with ConTEXt.

2 The TEX scanner

The new token scanner library of LuaTEX provides a
way to hook Lua into TEX in a rather natural way. I
have to admit that I never had any real demand for
such a feature but now that we have it, it is worth
exploring.

The TEX scanner roughly provides the following
sub-scanners that are used to implement primitives:
keyword, token, token list, dimension, glue and in-
teger. Deep down there are specific variants for
scanning, for instance, font dimensions and special
numbers.

A token is a unit of input, and one or more
characters are turned into a token. How a character
is interpreted is determined by its current catcode.
For instance a backslash is normally tagged as ‘es-
cape character’ which means that it starts a control

sequence: a macro name or primitive. This means
that once it is scanned a macro name travels as one
token through the system. Take this:

\def\foo#1{\scratchcounter=123#1\relax}

Here TEX scans \def and turns it into a token.
This particular token triggers a specific branch in
the scanner. First a name is scanned with option-
ally an argument specification. Then the body is
scanned and the macro is stored in memory. Because
‘\scratchcounter’, ‘\relax’, and ‘#1’ are turned
into tokens, this body has 7 tokens.

When the macro \foo is referenced the body
gets expanded which here means that the scanner
will scan for an argument first and uses that in the
replacement. So, the scanner switches between differ-
ent states. Sometimes tokens are just collected and
stored, in other cases they get expanded immediately
into some action.

3 Scanning from Lua

The basic building blocks of the scanner are available
at the Lua end, for instance:

\directlua{print(token.scan_int())} 123

This will print 123 to the console. Or, you can
store the number and use it later:

\directlua{SavedNumber = token.scan_int())} 123

We saved: \directlua{tex.print(SavedNumber)}

The number of scanner functions is (on purpose)
limited but you can use them to write additional
ones as you can just grab tokens, interpret them and
act accordingly.

The scan_int function picks up a number. This
can also be a counter, a named (math) character or
a numeric expression. In TEX, numbers are inte-
gers; floating-point is not supported naturally. With
scan_dimen a dimension is grabbed, where a dimen
is either a number (float) followed by a unit, a dimen
register or a dimen expression (internally, all become
integers). Of course internal quantities are also okay.
There are two optional arguments, the first indicat-
ing that we accept a filler as unit, while the second
indicates that math units are expected. When an
integer or dimension is scanned, tokens are expanded
till the input is a valid number or dimension. The
scan_glue function takes one optional argument: a
boolean indicating if the units are math.

The scan_toks function picks up a (normally)
brace-delimited sequence of tokens and (LuaTEX
0.80) returns them as a table of tokens. The function
get_token returns one (unexpanded) token while
scan_token returns an expanded one.

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 49

Because strings are natural to Lua we also have
scan_string. This one converts a following brace-
delimited sequence of tokens into a proper string.

The function scan_keyword looks for the given
keyword and when found skips over it and returns
true. Here is an example of usage:1

function ScanPair()

local one = 0

local two = ""

while true do

if token.scan_keyword("one") then

one = token.scan_int()

elseif token.scan_keyword("two") then

two = token.scan_string()

else

break

end

end

tex.print("one: ",one,"\\par")

tex.print("two: ",two,"\\par")

end

This can be used as:

\directlua{ScanPair()}

You can scan for an explicit character (class)
with scan_code. This function takes a positive num-
ber as argument and returns a character or nil.

1 0 escape

2 1 begingroup

4 2 endgroup

8 3 mathshift

16 4 alignment

32 5 endofline

64 6 parameter

128 7 superscript

256 8 subscript

512 9 ignore

1024 10 space

2048 11 letter

4096 12 other

8192 13 active

16384 14 comment

32768 15 invalid

So, if you want to grab the character you can say:

local c = token.scan_code(2^10 + 2^11 + 2^12)

In ConTEXt you can say:

local c = tokens.scanners.code(

tokens.bits.space +

tokens.bits.letter +

tokens.bits.other

)

When no argument is given, the next character
with catcode letter or other is returned (if found).

1 In LuaTEX 0.80 you should use newtoken instead of
token.

In ConTEXt we use the tokens namespace which
has additional scanners available. That way we can
remain compatible. I can add more scanners when
needed, although it is not expected that users will
use this mechanism directly.

(new)token tokens. arguments

scanners.boolean

scan_code scanners.code (bits)

scan_dimen scanners.dimension (fill,math)

scan_glue scanners.glue (math)

scan_int scanners.integer

scan_keyword scanners.keyword

scanners.number

scan_token scanners.token

scan_tokens scanners.tokens

scan_string scanners.string

scanners.word

get_token getters.token

set_macro setters.macro (catcodes,cs,

str,global)

All except get_token (or its alias getters.token)
expand tokens in order to satisfy the demands.

Here are some examples of how we can use the
scanners. When we would call Foo with regular
arguments we do this:

\def\foo#1{%

\directlua {

Foo("whatever","#1",{n = 1})

}

}

but when Foo uses the scanners it becomes:

\def\foo#1{%

\directlua{Foo()} {whatever} {#1} n {1}\relax

}

In the first case we have a function Foo like this:

function Foo(what,str,n)

-- do something with these three parameters

end

and in the second variant we have (using the tokens

namespace):

function Foo()

local what = tokens.scanners.string()

local str = tokens.scanners.string()

local n = tokens.scanners.keyword("n") and

tokens.scanners.integer() or 0

-- do something with these three parameters

end

The string scanned is a bit special as the re-
sult depends on what is seen. Given the following
definition:

\def\bar {bar}

\unexpanded\def\ubar {ubar}

% that’s \protected in e-tex etc.

\def\foo {foo-\bar-\ubar}

Still tokens: LuaTEX scanners

50 TUGboat, Volume 36 (2015), No. 1

\def\wrap {{foo-\bar}}

\def\uwrap{{foo-\ubar}}

We get:

foo foo
foo-\bar foo-bar
foo-\ubar foo-\ubar
foo-\bar foo-bar
foo-\ubar foo-ubar
foobar foobar
\foo foo-bar-ubar
\wrap foo-bar
\uwrap foo-\ubar

Because scanners look ahead the following hap-
pens: when an open brace is seen (or any character
marked as left brace) the scanner picks up tokens and
expands them unless they are protected; so, effec-
tively, it scans as if the body of an \edef is scanned.
However, when the next token is a control sequence
it will be expanded first to see if there is a left brace,
so there we get the full expansion. In practice this
is convenient behaviour because the braced variant
permits us to pick up meanings honouring protection.
Of course this is all a side effect of how TEX scans.2

With the braced variant one can of course use
primitives like \detokenize and \unexpanded (in
ConTEXt: \normalunexpanded, as we already had
this mechanism before it was added to the engine).

4 Considerations

Performance-wise there is not much difference be-
tween these methods. With some effort you can
make the second approach faster than the first but
in practice you will not notice much gain. So, the
main motivation for using the scanner is that it pro-
vides a more TEX-ified interface. When playing with
the initial version of the scanners I did some tests
with performance-sensitive ConTEXt calls and the
difference was measurable (positive) but deciding
if and when to use the scanner approach was not
easy. Sometimes embedded Lua code looks better,
and sometimes TEX code. Eventually we will end up
with a mix. Here are some considerations:

• In both cases there is the overhead of a Lua call.

2 This lookahead expansion can sometimes give unexpected
side effects because often TEX pushes back a token when a
condition is not met. For instance when it scans a number,
scanning stops when no digits are seen but the scanner has
to look at the next (expanded) token in order to come to
that conclusion. In the process it will, for instance, expand
conditionals. This means that intermediate catcode changes
will not be effective (or applied) to already-seen tokens that
were pushed back into the input. This also happens with, for
instance, \futurelet.

• In the pure Lua case the whole argument is
tokenized by TEX and then converted to a string
that gets compiled by Lua and executed.

• When the scan happens in Lua there are extra
calls to functions but scanning still happens in
TEX; some token to string conversion is avoided
and compilation can be more efficient.

• When data comes from external files, parsing
with Lua is in most cases more efficient than
parsing by TEX.

• A macro package like ConTEXt wraps function-
ality in macros and is controlled by key/value
specifications. There is often no benefit in terms
of performance when delegating to the men-
tioned scanners.

Another consideration is that when using macros,
parameters are often passed between {}:

\def\foo#1#2#3%

{...}

\foo {a}{123}{b}

and suddenly changing that to

\def\foo{\directlua{Foo()}}

and using that as:

\foo {a} {b} n 123

means that 123 will fail. So, eventually you will end
up with something:

\def\myfakeprimitive{\directlua{Foo()}}

\def\foo#1#2#3{\myfakeprimitive {#1} {#2} n #3 }

and:

\foo {a} {b} {123}

So in the end you don’t gain much here apart
from the fact that the fake primitive can be made
more clever and accept optional arguments. But
such new features are often hidden for the user who
uses higher-level wrappers.

When you code in pure TEX and want to grab a
number directly you need to test for the braced case;
when you use the Lua scanner method you still need
to test for braces. The scanners are consistent with
the way TEX works. Of course you can write helpers
that do some checking for braces in Lua, so there are
no real limitations, but it adds some overhead (and
maybe also confusion).

One way to speed up the call is to use the
\luafunction primitive in combinations with pre-
defined functions and although both mechanisms can
benefit from this, the scanner approach gets more out
of that as this method cannot be used with regular
function calls that get arguments. In (rather low
level) Lua it looks like this:

luafunctions[1] = function()

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 51

local a token.scan_string()

local n token.scan_int()

local b token.scan_string()

-- whatever --

end

And in TEX:

\luafunction1 {a} 123 {b}

This can of course be wrapped as:

\def\myprimitive{\luafunction1 }

5 Applications

The question now pops up: where can this be used?
Can you really make new primitives? The answer
is yes. You can write code that exclusively stays on
the Lua side but you can also do some magic and
then print back something to TEX. Here we use the
basic token interface, not ConTEXt:

\directlua {

local token = newtoken or token

function ColoredRule()

local w, h, d, c, t

while true do

if token.scan_keyword("width") then

w = token.scan_dimen()

elseif token.scan_keyword("height") then

h = token.scan_dimen()

elseif token.scan_keyword("depth") then

d = token.scan_dimen()

elseif token.scan_keyword("color") then

c = token.scan_string()

elseif token.scan_keyword("type") then

t = token.scan_string()

else

break

end

end

if c then

tex.sprint("\\color[",c,"]{"); end

if t == "vertical" then

tex.sprint("\\vrule")

else

tex.sprint("\\hrule")

end

if w then

tex.sprint("width ",w,"sp"); end

if h then

tex.sprint("height ",h,"sp"); end

if d then

tex.sprint("depth ",d,"sp"); end

if c then

tex.sprint("\\relax}"); end

end

}

This can be given a TEX interface like:

\def\myhrule{\directlua{ColoredRule()}

type {horizontal} }

\def\myvrule{\directlua{ColoredRule()}

type {vertical} }

And then used as:

\myhrule width \hsize height 1cm color {darkred}

giving (grayscaled for TUGboat on paper, sorry):

Of course ConTEXt users can use the following
commands to color an otherwise-black rule (likewise):

\blackrule[width=\hsize,height=1cm,

color=darkgreen]

The official ConTEXt way to define such a new
command is the following. The conversion back to
verbose dimensions is needed because we pass back
to TEX.

\startluacode

local myrule = tokens.compile {

{

{ "width", "dimension", "todimen" },

{ "height", "dimension", "todimen" },

{ "depth", "dimension", "todimen" },

{ "color", "string" },

{ "type", "string" },

}

}

interfaces.scanners.ColoredRule = function()

local t = myrule()

context.blackrule {

color = t.color,

width = t.width,

height = t.height,

depth = t.depth,

}

end

\stopluacode

With:

\unprotect \let\myrule\scan_ColoredRule \protect

and

\myrule width \textwidth height 1cm

color {darkblue} \relax

we get:

There are many ways to use the scanners and
each has its charm. We will look at some alternatives
from the perspective of performance. The timings
are more meant as relative measures than absolute

Still tokens: LuaTEX scanners

52 TUGboat, Volume 36 (2015), No. 1

ones. After all it depends on the hardware. We
assume the following shortcuts:

local scannumber = tokens.scanners.number

local scankeyword = tokens.scanners.keyword

local scanword = tokens.scanners.word

We will scan for four different keys and values.
The number is scanned using a helper scannumber

that scans for a number that is acceptable for Lua.
Thus, 1.23 is valid, as are 0x1234 and 12.12E4.

function getmatrix()

local sx, sy = 1, 1

local rx, ry = 0, 0

while true do

if scankeyword("sx") then

sx = scannumber()

elseif scankeyword("sy") then

sy = scannumber()

elseif scankeyword("rx") then

rx = scannumber()

elseif scankeyword("ry") then

ry = scannumber()

else

break

end

end

-- action --

end

Scanning the following specification 100000 times
takes 1.00 seconds:

sx 1.23 sy 4.5 rx 1.23 ry 4.5

The “tight” case (no spaces) takes 0.94 seconds:

sx1.23 sy4.5 rx1.23 ry4.5

We can compare this to scanning without key-
words. In that case there have to be exactly four
arguments. These have to be given in the right or-
der which is no big deal as often such helpers are
encapsulated in a user-friendly macro.

function getmatrix()

local sx, sy = scannumber(), scannumber()

local rx, ry = scannumber(), scannumber()

-- action --

end

As expected, this is more efficient than the pre-
vious examples. It takes 0.80 seconds to scan this
100000 times:

1.23 4.5 1.23 4.5

A third alternative is the following:

function getmatrix()

local sx, sy = 1, 1

local rx, ry = 0, 0

while true do

local kw = scanword()

if kw == "sx" then

sx = scannumber()

elseif kw == "sy" then

sy = scannumber()

elseif kw == "rx" then

rx = scannumber()

elseif kw == "ry" then

ry = scannumber()

else

break

end

end

-- action --

end

Here we scan for a keyword and assign a number
to the right variable. This one call happens to be
less efficient than calling scan_keyword 10 times
(4 + 3 + 2 + 1) for the explicit scan. This run takes
1.11 seconds for the next line. The spaces are really
needed as words can be anything that has no space.3

sx 1.23 sy 4.5 rx 1.23 ry 4.5

Of course these numbers need to be compared
to a baseline of no scanning (i.e. the overhead of a
Lua call which here amounts to 0.10 seconds. This
brings us to the following table.

keyword checks 0.9 sec
no keywords 0.7 sec
word checks 1.0 sec

The differences are not that impressive given the
number of calls. Even in a complex document the
overhead of scanning can be negligible compared to
the actions involved in typesetting the document. In
fact, there will always be some kind of scanning for
such macros so we’re talking about even less impact.
So you can just use the method you like most. In
practice, the extra overhead of using keywords in
combination with explicit checks (the first case) is
rather convenient.

If you don’t want to have many tests you can
do something like this:

local keys = {

sx = scannumber,

sy = scannumber,

rx = scannumber,

ry = scannumber,

}

function getmatrix()

local values = { }

while true do

for key, scan in next, keys do

if scankeyword(key) then

values[key] = scan()

3 Hard-coding the word scan in a C code helper makes
little sense, as different macro packages can have different
assumptions about what a word is. And we don’t extend
LuaTEX for specific macro packages.

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 53

else

break

end

end

end

-- action --

end

This is still quite fast although one now has to
access the values in a table. Working with specifi-
cations like this is clean anyway so in ConTEXt we
have a way to abstract the previous definition.

local specification = tokens.compile {

{

{ "sx", "number" },

{ "sy", "number" },

{ "rx", "number" },

{ "ry", "number" },

},

}

function getmatrix()

local values = specification()

-- action using values.sx etc --

end

Although one can make complex definitions this
way, the question remains if it is a better approach
than passing Lua tables. The standard ConTEXt way
for controlling features is:

\getmatrix[sx=1.2,sy=3.4]

So it doesn’t matter much if deep down we see:

\def\getmatrix[#1]{%

\getparameters[@@matrix][sx=1,sy=1,

rx=1,ry=1,#1]%

\domatrix

\@@matrixsx

\@@matrixsy

\@@matrixrx

\@@matrixry

\relax}

or:

\def\getmatrix[#1]{%

\getparameters[@@matrix][sx=1,sy=1,

rx=1,ry=1,#1]%

\domatrix

sx \@@matrixsx

sy \@@matrixsy

rx \@@matrixrx

ry \@@matrixry

\relax}

In the second variant (with keywords) can be a
scanner like we defined before:

\def\domatrix#1#2#3#4%

{\directlua{getmatrix()}}

but also:

\def\domatrix#1#2#3#4%

{\directlua{getmatrix(#1,#2,#3,#4)}}

given:

function getmatrix(sx,sy,rx,ry)

-- action using sx etc --

end

or maybe nicer:

\def\domatrix#1#2#3#4%

{\directlua{domatrix{

sx = #1, sy = #2,

rx = #3, ry = #4

}}}

assuming:

function getmatrix(values)

-- action using values.sx etc --

end

If you go for speed the scanner variant without
keywords is the most efficient one. For readability the
scanner variant with keywords or the last shown ex-
ample where a table is passed is better. For flexibility
the table variant is best as it makes no assumptions
about the scanner — the token scanner can quit on
unknown keys, unless that is intercepted of course.
But as mentioned before, even the advantage of the
fast one should not be overestimated. When you
trace usage it can be that the (in this case matrix)
macro is called only a few thousand times and that
doesn’t really add up. Of course many different sped-
up calls can make a difference but then one really
needs to optimize consistently the whole code base
and that can conflict with readability. The token
library presents us with a nice chicken–egg problem
but nevertheless is fun to play with.

6 Assigning meanings

The token library also provides a way to create to-
kens and access properties but that interface can
change with upcoming versions when the old library
is replaced by the new one and the input handling
is cleaned up. One experimental function is worth
mentioning:

token.set_macro("foo","the meaning of bar")

This will turn the given string into tokens that
get assigned to \foo. Here are some alternative calls:

set_macro("foo")

≡ \def \foo {}

set_macro("foo", "meaning")

≡ \def \foo {meaning}

set_macro("foo", "meaning", "global")

≡ \gdef \foo {meaning}

The conversion to tokens happens under the
current catcode regime. You can enforce a different
regime by passing a number of an allocated catcode

Still tokens: LuaTEX scanners

54 TUGboat, Volume 36 (2015), No. 1

table as the first argument, as with tex.print. As
we mentioned performance before, setting at the Lua
end like this:

token.set_macro("foo","meaning")

is about two times as fast as:

tex.sprint("\\def\\foo{meaning}")

or (with slightly more overhead) in ConTEXt terms:

context("\\def\\foo{meaning}")

The next variant is actually slower (even when
we alias setvalue):

context.setvalue("foo","meaning")

but although 0.4 versus 0.8 seconds looks like a lot
on a TEX run I need a million calls to see such a
difference, and a million macro definitions during a
run is a lot. The different assignments involved in,
for instance, 3000 entries in a bibliography (with an
average of 5 assignments per entry) can hardly be
measured as we’re talking about milliseconds. So
again, it’s mostly a matter of convenience when using
this function, not a necessity.

7 Conclusion

For sure we will see usage of the new scanner code
in ConTEXt, but to what extent remains to be seen.
The performance gain is not impressive enough to
justify many changes to the code but as the low-level

interfacing can sometimes become a bit cleaner it will
be used in specific places, even if we sacrifice some
speed (which then probably will be compensated for
by a little gain elsewhere).

The scanners will probably never be used by
users directly simply because there are no such low
level interfaces in ConTEXt and because manipulat-
ing input is easier in Lua. Even deep down in the
internals of ConTEXt we will use wrappers and ad-
ditional helpers around the scanner code. Of course
there is the fun-factor and playing with these scan-
ners is fun indeed. The macro setters have as their
main benefit that using them can be nicer in the Lua
source, and of course setting a macro this way is also
conceptually cleaner (just like we can set registers).

Of course there are some challenges left, like
determining if we are scanning input of already con-
verted tokens (for instance in a macro body or token
list expansion). Once we can properly feed back
tokens we can also look ahead like \futurelet does.
But for that to happen we will first clean up the
LuaTEX input scanner code and error handler.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

http://luatex.org

ConTEXt 2015

Nasbinals, France

September 14–18, 2015

meeting.contextgarden.net/2015

