202

An output routine for an illustrated book:
Making the FAO Statistical Yearbook

Boris Veytsman

Abstract

Output routines involving illustrations (“floating
bodies” in the BTEX lingo) are the most complex
part of TEX. For most algorithms used in TEX, BTEX
and ConTEXt the basic concept is a flow of text, oc-
casionally interrupted by illustrations which can be
placed anywhere close to the point they are men-
tioned. The story is told mainly by the text, and
illustrations have a secondary role.

Here we discuss the different case of an llus-
trated book, where the main story is told by the illus-
trations and their interaction. The simplest examples
of such books are art albums. Another (surprising)
example is the FAO Statistical Yearbook, where the
story is told primarily by maps, charts and tables,
while the text has a secondary role.

We describe a concept of a relatively simple
output routine for such books and its implementation

in IATEX.

1 Introduction

A recent report by the IWTEX3 team [4] contained the
exhortation to engage in “collecting and classifying
design tasks”. In this paper we describe a design
task and propose a way to solve it. While the code
here is IXTEX 2¢-specific, we hope the algorithm and
concepts may be useful for other formats as well.

Probably one of the most difficult concepts in
TEX is illustrations (“foats” in KTEX nomenclature).
They interrupt the galley, and TEX should put them
on the page outside of the normal flow, using an
asynchronous output routine (OTR). Various OTRs
for plain TEX are described in the series of papers by
Salomon [5, 6, 7]; the last part deals specifically with
insertions, the usual way to typeset illustrations in
plain. IATEX 2¢ algorithms are described in [1], prob-
ably the most complex part of M TEX code. These
algorithms deal with one- or two-column typesetting
with illustrations of arbitrary height occupying one or
two columns. ConTEXt can deal with a more general
situation of n-columns with illustrations occupying
m columns of text [3].

It should be noted that all these cases assume
that the main story is told by the text. Ilustrations
are put on the pages almost as an afterthought. They
do not interact with each other. The only task of the
algorithm is to put them somewhere not too far from
the point they are mentioned, and without creating
too much empty space on the pages.

Boris Veytsman

TUGboat, Volume 35 (2014), No. 2

;f'

Figure 1: An example of an art album spread
(from [2])

1 The Setting @&

Figure 2: Mock-up spread of FAO Statistical
Yearbook 2014

One can imagine the opposite situation: the
story is told primarily by the illustrations and their
interaction, while the text plays an auxiliary réle. In
this case the author spends much effort in putting
the illustrations exactly where she wants them to
be, and the task of the compositor is to put the text
in the remaining empty space in a pleasing manner.
We will call books created in this manner illustrated
books, for lack of a better term.

An immediate example of an illustrated book is
an art album (Figure 1). The importance of inter-
action between the pictures is well known to artists;
this is why good exhibitions usually have “Hanging
Committees” that carefully discuss the order and po-
sitions of the pieces. It is evident from Figure 1 that
the author first put the illustrations on the pages,
and then filled the rest with the text.

A more surprising example is the FAO Statistical
Yearbook (Figure 2). The Yearbook uses tables,
charts and maps to illustrate the statistical trends.
Their positions on the pages is determined by the
graphic designer; the text must fill the gaps.

In the rest of the paper we discuss how the design
shown in Figure 2 was implemented in KXTEX. The

TUGboat, Volume 35 (2014), No. 2

ul | ur UL | UR
1l Ir LL | LR
Verso page Recto page

Figure 3: FAO Yearbook spread

code is available in the repository at http://github.
com/filippogheri/FAOSYBLaTeXpackage, and a for-
matted version is available online with this article.

2 User interface

The main unit of the FAO Yearbook is the spread.
As shown in Figure 3, it is split into eight quadrants,
four per page. The quadrants are denoted by two-
letter combinations like ul for upper left and 1r for
lower right. Lowercase is used for verso (even) pages,
and uppercase for recto (odd) pages.

The illustrations have fixed sizes: they can oc-
cupy one, two, or four quadrants. Accordingly there
are four kinds of illustrations: ‘Single’ ones take one
quadrant, ‘Tall’ ones take two quadrants stacked
vertically, “‘Wide’ ones take two quadrants stacked
horizontally, and ‘Big’ ones take all four quadrants
on a page.

The user specifies the illustration type (e.g.
chart or map), its size (S, T, W or B), and the upper
left quadrant occupied by the illustration. We used
IATEX environments for this. The name of the envi-
ronment corresponds to the illustration type, while
its mandatory arguments specify its size and position.
For example, the code

\begin{chart}{S}{LR} ... \end{chart}

specifies a chart occupying a single lower right quad-
rant on a recto page, while the code

\begin{map}{W}{ul} ... \end{map}
specifies a map occupying two top quadrants on a
verso page.

The user writes down the code for the illustra-
tions and the text, and TEX typesets them according
to the chosen pattern. The command \clearpage
typesets all illustrations and text obtained so far.

3 Algorithms

In this section we describe the algorithms used to
typeset the book.

The main problem is when to start output. If
we had just illustrations, then the answer would be
simple: as soon as we have enough illustrations for
the full page. This is the approach used by Dave
Walden in his photo album macros [8]. However,
since we have illustrations and text, we are in a more

203

complex situation. We need to check whether we
have enough text to fill the gaps. This is done by page
builder. There are ways to inform the page builder
about the space needed by illustrations [5]. However
they assume that all illustrations should be put on
the page being built. In our case we may have both
illustrations for the current page and illustrations
for following pages. Only the OTR knows which
illustrations belong to the current page, but the
OTR is started asynchronously by the page builder.
Thus our algorithms must include communication
between the page builder and the OTR.

Each of the environments described in Section 2
adds its contents to the bottom of an #llustration
boz. There are 18 such boxes corresponding to all
valid combinations of illustration size and position
(an attempt to insert, e.g. a Tall illustration starting
at the lower left quadrant produces an error since
this combination is not valid). We use \vsplit to
extract the top (oldest) illustration from the box.

We follow the basic idea of [1] for two-column
typesetting. The page builder starts the OTR when-
ever a column of text is formed. It is the job of
the OTR to determine whether we are at the first or
second column, and proceed accordingly. One can
imagine the OTR having two stages: the first deals
with a first column from the page builder, and the
second has two columns to work with.

So at the first stage we have a column of text.
We also know whether this column is the first or the
second, and whether we are on a recto or a verso
page. Thus we can check whether we already have
illustrations in the quadrants for this page.

First, it can happen that the current page is
completely covered by Wide or Big illustrations. In
this case we do not need to put any text on the
page, and simply output the illustrations. Note that
this should happen only when we typeset the first
column —otherwise we have a full column of text
which belongs to a wrong page: recto or verso.

If after this test we are still inside the OTR, then
we are free to form a column. Again, it may happen
that this column is completely taken by illustrations;
in this case we return the text to the page builder
and send illustrations to the second stage.

Now we are at the most interesting part of the
algorithm. We have text and possibly illustrations
to mix in the column. However, is the height of
the text box right? Possibly not: the page builder
might think that there were no illustrations and
not correct for them. Fortunately, TEX provides a
global parameter \vsize, which reflects the page
builder’s idea about the required text height. So we
can calculate the required height in the OTR and

An output routine for an illustrated book: Making the FAO Statistical Yearbook

http://github.com/filippogheri/FAOSYBLaTeXpackage
http://github.com/filippogheri/FAOSYBLaTeXpackage

204

TUGDboat, Volume 35 (2014), No. 2

Algorithm 1: OTR, first stage

if have Big or both top & bottom Wide

illustrations then

if second column then

L Error

Send the illustrations to the special OTR;
| Send text back to page builder
if have Tall or both top & bottom Single
illustrations then

Form a column from the illustrations;

Send the column to the second stage;
| Send the text back to page builder

Calculate column height;
if column height equals \vsize then
Add illustrations to the column;
Send the column to the second stage
else

Change \vsize;

Send text back to page builder;
L Leave OTR

Algorithm 2: OTR, second stage
if first column then
| Save column
else
Add first column and wide illustrations,
add decorations and ship the page out
Reset \vsize; Leave OTR

compare it with \vsize. If they coincide, we are
good. If not, we change \vsize and return the text
to the page builder. It is easy to see that this code
produces at most two passes of OTR.

This finishes the first stage of the OTR, (Algo-
rithm 1). The second stage of OTR is relatively
simple (Algorithm 2): we either save the column for
the next pass or form the page for shipout.

The special OTR deals with pages completely
covered by Wide or Big illustrations (Algorithm 3):
we put them on the page and add decorations.

Our implementation of \clearpage is simpler
than the one in ITEX 2c. The latter needs to tell
the OTR that this is a special case, and illustrations,
if any, must be put on the page. In our case we are
guaranteed that if there are illustrations for the given
page number “parity” (i.e. for even or odd pages),
they will in fact be put on the page. Thus we just
repeatedly call OTR (Algorithm 4).

As usual, we need to add \clearpage to the
\AtEndDocument hook to avoid loss of illustrations.

4 Conclusions

We see that TEX can be coaxed to provide a relatively
unusual layout. This document model might be of
interest for the designers of new TEX-based formats.

Boris Veytsman

Algorithm 3: OTR, special case

Put illustrations on the page;

Add decorations and ship the page out;
Reset \vsize;

Leave OTR

Algorithm 4: \clearpage

while some illustration boxes are not empty do
L Call OTR

Acknowledgments

This work would have been impossible without great
and patient people at FAO UN: Filippo Gheri, Amy
Heyman, Shira Fano, and many others.

I am grateful to Hans Hagen and Frank Mittel-
bach for the discussion of ConTEXt and KTEX float
routines and to Dave Walden for letting me know
about his paper.

As always, the participants of the TUG meeting
gave me many interesting comments and suggestions.

References

[1] Johannes Braams, David Carlisle, Alan Jeffrey,
Leslie Lamport, Frank Mittelbach, Chris
Rowley, and Rainer Schopf. ltfloat.dtx, 2014.

[2] Rick Cusick. What Our Lettering Needs: The
Contribution of Hermann Zapf to Calligraphy
& Type Design at Hallmark Cards. RIT Cary
Graphics Art Press, 2011.

[3] Hans Hagen. Columns, 2003. http:
//www.pragma-ade.nl/general/manuals/
columns.pdf.

[4] BTEX Project Team. KTEX3 news, issue 9.
TUGboat, 34(1):22-26, 2014.

[5] David Salomon. Output routines: Examples
and techniques. Part I: Introduction and
examples. TUGboat, 11(1):69-85, 1990.

[6] David Salomon. Output routines: Examples
and techniques. Part II: OTR techniques.
TUGboat, 11(2):212-236, 1990.

[7] David Salomon. Output routines: Examples
and techniques. Part I1I: Insertions.
TUGboat, 11(4):588-605, 1990.

[8] David Walden. Every IWTEX document
brings new (to me) programming issues.
http://walden-family.com/texland/
tex-programming.pdf, 2014.

¢ Boris Veytsman
George Mason University
borisv (at) 1k (dot) net
http://borisv.lk.net

http://www.pragma-ade.nl/general/manuals/columns.pdf
http://www.pragma-ade.nl/general/manuals/columns.pdf
http://www.pragma-ade.nl/general/manuals/columns.pdf
http://walden-family.com/texland/tex-programming.pdf
http://walden-family.com/texland/tex-programming.pdf

	Introduction
	User interface
	Algorithms
	Conclusions

