TUGboat, Volume 35 (2014), No. 2

MacTEX design philosophy vs.
TeXShop design philosophy

Richard Koch

I went to the Apple Developer Conference in May,
2000. Developers at this conference were supposed
to receive the release version of OS X, but in the
keynote address, Steve Jobs announced that the new
release would be renamed OS X Public Beta with
a price reduced from $130 to a handling fee of $15.
After the keynote, a knowledgeable friend translated:
“OS X has been delayed by a year.”

As a sop to the audience, Apple held a software
raffle during this conference, the only time I've heard
of them doing so. Every developer got something,
but it soon transpired that almost everybody got a
schlocky piece of software on a CD, shrink wrapped
against a flimsy piece of cardboard.

I was looking through this TUG talk and it isn’t
very interesting. So I decided to give each attendee
of the TUG conference a free piece of software.

The schlocky software Apple gave developers in
2000 was a forerunner of iTunes, in the days before
the iPod and all that. I, unfortunately, have nothing
up my sleeve.

1 The Global vs. LocalTeX PrefPanes

MacTgX installs a copy of TEX Live owned by root
in /usr/local/texlive. It also installs a small data
structure by Gerben Wierda and Jéréme Laurens in
/Library/TeX, describing the distribution.

Each year’s TEX Live distribution is in a folder
named by date in /usr/local/texlive. Users can
keep old distributions around, in case a new distri-
bution breaks something crucial. We install a Pref-
erence Pane for Apple’s System Preferences, allow-
ing users to switch between distributions. A switch
changes all GUI apps to use the selected distribution
and also changes the command line so command line
programs use it.

The PrefPane we install selects one distribution
for all users and requires root access. I'm going to
argue that we should have created a Local PrefPane
instead, so each user could choose their own default
TEX distribution and make this selection without
root access. That’s how programs work on the Mac-
intosh. Programs live in /Applications and are
accessed by all users. But each user has personal
Preference settings in ~/Library/Preferences for
these applications. One user’s default Word font
might be Times Roman, while another’s might be
Helvetica Neue.

The LocalTeX PrefPane shown below is such
a Pane; it constitutes my schlocky gift. It can be

145

installed locally for one user or globally for all users,
but it makes independent choices for each user and
does not require a password. This Pane does not
change any data created by the Global PrefPane, so
it can be used together with the Global Pane, or
when the Global Pane is completely missing.

The first item in the distribution list is always
“Use Global Preference Pane”. Selecting this item ac-
tivates the Global Pane for the current user. The next
items are distributions with TeXDist data structures,
so an individual user can select a different default
than the one chosen by the Global Pane.

800 LocalTeX
[« » |[Showal | Q|

Choose a local TeX distribution:
Use Global Preference Pane Intel 64
TeXLive-2012 Intel 64
TeXLive-2013-Basic Intel 64
TeXLive-2013 Intel 64
TeXLive-2014-Basic Intel 64

Add Distribution Configure for Local Pane

Remove Distribution Configure for Original Pane

Figure 1: Local PrefPane choices

Scrolling down in the list of distributions in the
Pane, we see that the LocalTeX pane can define and
select distributions on external disks, or distribu-
tions installed in a user’s home directory. Although
MacTEX cannot install TEX in such locations, the
native TEX Live install script can.

800 LocalTeX

|« > |[Showan | Q

Choose a local TeX distribution:
TeXLive-2013 Intel 64
TeXLive-2014-Basic Intel 64
TeXLive-2014 Intel 64

External Disk: TeXLive 2013 Intel 64
Home Directory Intel 64

| Add Distribution | | Configure for Local Pane |

| Remove Distribution | | Configure for Original Pane |

Figure 2: Local PrefPane supports external disks

Students may find this ability useful when they
use a university-owned machine and don’t have root
access. They can easily install TEX Live on a thumb
drive, carry it with them, and have access to TEX in
all locations.

The LocalTeX pane only shows distributions
that are currently available, so if a thumb drive is
removed, its distribution is no longer listed. Inserting
the drive causes LocalTeX to list it again.

The “Add Distribution” button is used to in-
form the LocalTeX pane about TEX distributions
without a TeXDist structure. It brings up a panel

MacTgX design philosophy vs. TeXShop design philosophy

146

shown below (fig. 3). The “Name” field can be any
desired name, since it will only appear in the Local-
TeX pane. The “Path to Distribution” and “Path to
Binaries” fields can be filled in by dragging appro-
priate locations to the dialog.

000 LocalTeX

Name:
Path to Distribution:

Path to Binaries:

Cancel oK

Add Distribution Configure for Local Pane

Remove Distribution Configure for Original Pane

Figure 3: Local PrefPane: adding distributions

The “Remove Distribution” button produces
a list of extra distributions which can be removed
one-by-one from those listed by the panel. Only
distributions without a TeXDist data structure can
be removed.

2 Installing and configuring the
LocalTeX Pane

The LocalTeX Pane can be obtained from http:
//pages.uoregon.edu/koch/LocalTeX.zip. Then,
installing the LocalTeX pane is easy: Find and dou-
ble click LocalTeX.prefPane. This brings up a dia-
log offering to install the Pane for all users or for
only one user. Choose “only one user” and the Pane
is installed for the current user without requiring
a password. Or choose “all users” and the Pane is
installed for everyone, but acts as a local pane for
these users; installing this way requires a password.

After the Pane is installed, push the button
“Configure for Local Pane” on the right. This recon-
figures TeXShop, TEX Live Utility, and BibDesk to
use the new Pane. It also reconfigures the shell for
some users, namely those whose home directory con-
tains none of the three “hidden” files .bash_profile,
.bash_login, and .profile. Other shell users can
read the Local Pane documentation.

To return to the Global Pane and stop using
the LocalTeX Pane, push “Configure for Original
Pane” to reconfigure TeXShop, TEX Live Utility,
and BibDesk.

3 How does the LocalTeX Pane work?

The LocalTeX Pane creates three symbolic links in
~/Library/TeX/LocalTeX:

e texroot — directory of the default distribution

e texbin — binaries of the default distribution

Richard Koch

TUGDboat, Volume 35 (2014), No. 2

o texdist — TeXDist structure for the default
distribution, if it exists

GUI applications should be configured to look for
TEX binaries in ~/Library/TeX/LocalTeX/texbin
rather than in /usr/texbin, the corresponding link
for the Global pane. This is done automatically by
the “Configure for Local Pane” button for TeXShop,
TEX Live Utility, and BibDesk. Reconfigure other
applications by hand. Many applications require a
full path rather than one containing a tilde.

4 No system changes needed

Wierda and Laurens carefully selected the location
for the link /usr/texbin, arguing that Apple would
probably not remove this link. That reasoning turned
out to be wrong, and users who upgrade OS X often
find that they can no longer typeset even though
their TEX distribution remains, because the link is
gone. The location ~/Library is not likely to present
this problem because third party programs use it.

Creating Preference Panes with root access re-
quires dealing with Apple’s often-changing security
framework. The Local Pane is immune to security
concerns. It currently runs on Yosemite betas. It re-
quires Mountain Lion and above, since it uses Apple’s
newer ARC memory protection scheme.

5 Removing everything

If you install the LocalTeX Pane and decide that you
don’t want it, here is how to remove absolutely every
trace from your computer.

e Using the Local Pane, push the “Configure for
Original Pane” button to reconfigure TeXShop,
TEX Live Utility, and BibDesk. If you config-
ured other apps, return them to their original
configuration.

o Move LocalTeX.prefPane from
~/Library/PreferencePanes to the trash.

o Move the folder LocalTeX from ~/Library/TeX/
to the trash.

e Modify your shell startup script to change ~/
Library/TeX/LocalTeX/texbin back to /usr/
texbin.

e The LocalTeX PrefPane stores its local data in
the defaults system of OS X. To remove this
data, type the following in Terminal:

defaults remove \
com.apple.systempreferences \
localTeXExtrasData

6 LocalTeX and MacTgEX

Will the LocalTeX preference pane be in a future
edition of MacTEX? No. A choice between two Pref-
erence Panes would confuse most users. Moreover,

TUGboat, Volume 35 (2014), No. 2

it is easy to configure the shell automatically for the
global pane, but user intervention is required to do
this for the Local Pane.

7 MacTEX design philosophy

Now I'll switch to the topic promised by the title. I
work on the Macintosh in a small pond in the big
TEX world. T wear two hats. I maintain MacTEX,
the TEX install package for the Mac produced once
a year by TUG. I also write, with collaborators, a
GUI front end for TEX called TeXShop.

MacTgX is a “one button” package installing
TEX, Ghostscript, and a few GUI applications. It
presents a familiar interface for Mac users, asks no
questions, and produces a completely configured in-
stallation. The installer was written by Jonathan
Kew in an all-night programming session at the North
Carolina TUG conference in 2005, and willed to me
at breakfast the next day.

Jonathan’s package installed a TEX distribution
by Gerben Wierda, based on teTEX. But around
this time, Thomas Esser abandoned teTEX and told
his users to switch to TEX Live. Gerben produced a
new distribution loosely based on TEX Live, which
he announced at a TUG conference in Marrakesh in
November of 2006. But at that same conference, he
announced that he would immediately end support
for the new distribution. This left us in a quandary
and for several months it was unclear which distri-
bution we would install. I had been attending TUG
meetings since 2001, and oddly, in all that time, Karl
Berry never asked me, “Why don’t you Mac folks
use TEX Live?” But as soon as we switched to it, we
were happy and never looked back.

Here is the philosophy: MacTEX installs a com-
pletely unmodified full version of TEX Live. It is
exactly the distribution used on GNU/Linux, Unix,
and Windows (for those not using MiKTEX). We
would never reach into the distribution and make con-
figuration changes. When someone complains “my
Magc collaborators cannot typeset my code” we get
to respond vigorously, “Sir, it is your fault because
Mac folks use standard TEX Live!”

Collaboration is common in research. Knuth
worked very hard to make TEX produce the same
results on all platforms. We have a responsibility
to make TEX platform-independent. Open source
forever!

(But a small voice: we are in Portland, Ore-
gon, the home of Textures. Barry Smith rewrote
the Pascal compiler for TEX , and then rewrote TEX
to produce absolutely precise synchronization be-
tween source and output, and to support direct use
of Macintosh fonts. His code was proprietary, not

147

open source. Textures users remember it with great
passion. Every philosophy has a “yes, but ...”)

8 TeXShop design philosophy

Perhaps surprisingly, TeXShop has a very different
design philosophy. A front end mediates between the
paradigms of a computer platform and the paradigms
of TEX. Tl argue that a GUI front end to TEX
should rigorously follow the design standards of the
particular platform it supports and should use the
latest technology on that platform. This is difficult
to achieve if the app supports many platforms.

To understand why, consider the following ex-
change from the TEX on OS X mailing list:
From: Warren Nagourney
I am using TeXShop 2.47 on a retina MBP and have
noticed a slight tendency for the letters in the
preview window to be slightly slanted from time
to time. The slant is enough to make the text
appear italicized, which is annoying.

From: Giovanni Dore
I think that this is not a problem of TeXShop. I
use Skim and sometimes I have the same problem.

From: Victor Ivrii

Try to check if the same distortion appears in
TeXWorks and Adobe Reader: TeXShop and Skim are
PDFKit based, while TW is poppler based and

AR has an Adobe engine.

All three messages are from knowledgeable peo-
ple active in the TEX on OS X list. As the third mes-
sage states, TeXShop and Skim use Apple’s PDFKit
to display PDF files, while Adobe Acrobat Reader
has its own PDF rendering code, and TEXworks uses
poppler to render PDF. And indeed, TeXShop and
Skim have a display problem but Acrobat Reader
and TEXworks don’t.

However, there is a missing ingredient here. The
author of the original message has an Apple portable
with a Retina display. TeXShop and Skim sup-
port the Retina display because they were written
with Apple’s Cocoa language. Acrobat Reader and
TEXworks don’t support the Retina display, so Ap-
ple runs them in “magnify by two” mode. The real
problem is a bug in Apple’s Cocoa Retina code, sub-
sequently fixed. The bug also goes away if you turn
off Retina support in TeXShop and Skim.

If you select “Get Info” in the Finder with a
program selected, you get a panel of information
about the program. That panel is shown below for
TeXShop and Adobe Reader.

The key difference is the option to open in Low
Resolution mode. This is selectable in TeXShop but
is grayed out in Reader. That means that TeXShop

MacTgX design philosophy vs. TeXShop design philosophy

148

by default supports the Retina display, while Reader
does not. In case of trouble, TeXShop can be con-
verted to a mode in which it writes at normal reso-
lution and the Mac magnifies by two, while Reader
always runs in this magnify mode.
-
Where: fApplications/TeX
Created: Friday, June &, 2014 at 2:31 PM
Modified: Friday, June 6, 2014 at 2:32 PM
Version: 3.36.2
Copyright: Copyright 2001-2014, Richard
Koch

http://pages.uoregon.edu/koch/
texshop ftexshop.html

|_| Open in Low Resolution
|| Locked

Figure 4: About TeXShop

Where: jApplications
Created: January 3, 2012 at 4:15 AM
Modified: February 15, 2012 at 12:01 PM
Wersion: 10.1.10
Copyright: Copyright 1984-2012 Adobe
Systems Incorporated. All rights
reserved.

l!"ll Open in 32-bit mode
| Open in Low Resolution
|| Prevent App Nap

|| Locked

Figure 5: About Adobe Reader

I had a very smart student who now works in
the Portland software industry, so I boasted that
TeXShop supported the Retina display from the start.
But he was too smart, and without skipping a beat
he said “yeah, and how many lines of code did that
take?” The answer is zero.

There are many ways to write GUI apps on the
Mac. If an app is written in Cocoa, then it automat-
ically supports the Retina display. Otherwise not.

9 NeXT at Apple, 19972007

Many of you have read the book about Steve Jobs by
Walter Isaacson. It is an interesting book, but has
been criticized for getting the story of NeXT, and its
role in Apple’s second act, wrong. I agree, and here’s
a short version of that story from my perspective.

Apple bought NeXT in December of 1996, a
sale that was finalized in February of 1997. Each
May or June, Apple holds a Worldwide Developer
Conference (WWDC). So in May of 1997, Apple had
to give developers its strategy for using the NeXT
operating system.

At the conference, Apple said that old Macin-
tosh applications would continue to run in a sort of

Richard Koch

TUGDboat, Volume 35 (2014), No. 2

purgatory called the Blue Box, but new applications
needed to be written in Objective C using NeXT’s
class library, then called OpenStep, later renamed
Cocoa. Among commercial developers, the announce-
ment went over like a lead balloon, and Apple got
no significant endorsement at the conference.

So in 1998, Steve Jobs announced a completely
different strategy. He called this new model “Car-
bon” because, he said, “Carbon is the basis of all
life.” Carbon programs were written in C and C++
using the old Macintosh API, except that about 10%
of the calls were replaced by new equivalents because
the original calls wouldn’t work on a modern multi-
tasking operating system. This made it possible
to start with an old Macintosh program, find the
changed calls using an Apple-supplied script, revise
them, and release the code on OS X. Apple immedi-
ately received endorsements from Microsoft, Adobe,
Wolfram Research, and others.

Many Apple engineers proclaimed that Cocoa
was only for prototyping. At the 2000 developer
conference I attended, the Carbon sessions were held
in the main auditorium packed with thousands of
developers, while the Cocoa sessions were in a small
converted church across the street, attended by 35
people who all seemed to know each other.

I attended WWDC regularly from 2003 to 2011,
and this pattern continued for several years.

The situation began to change in 2005, when
Apple switched to Intel processors. At WWDC, they
told developers that moving a Cocoa app to Intel
involved a 10 minute recompile, while Carbon tran-
sition would often take a month.

In 2006 the developer conference was postponed
until August. At the conference, Apple gave develop-
ers a preliminary copy of Leopard, the next version
of OS X, promising a release in March of 2007. A
key feature of this release was full 64-bit support
for all of Apple’s important APIs. A key slide of
the keynote explained that “Leopard has full 64 bit
support for Carbon and Cocoa”.

But by June of 2007, Leopard was still not out.
Why not? In January of that year, Apple announced
the iPhone, and Apple engineers were pulled from
the Leopard team to finish the software. Outside
developers couldn’t program the iPhone, so the 2007
conference was essentially a repeat of the 2006 ver-
sion, with a keynote address using the same slides.

There was just one electric moment in 2007.
Unfortunately, I completely missed its significance.
When Jobs came to the slide promising “full 64 bit
support for Carbon and Cocoa”, the slide had been
changed to read “full 64 bit support for Cocoa”. Lots
of developers noticed, and they mobbed Apple engi-

TUGboat, Volume 35 (2014), No. 2

neers during the lunch which followed the keynote.
It rapidly became clear that Carbon was deprecated.
Apple work on it had ceased.

So by 2007 Apple had the courage, and the
prowess, to kill Carbon and throw its support totally
behind Cocoa. Behind the scenes, they knew that
both the iPhone and the as-yet-unannounced iPad
could only be programmed in Cocoa. From 2008
on, there have been no Carbon sessions at WWDC.
Commercial developers were among the last to switch
to Cocoa, and some of their apps are still in Carbon.

During these turbulent times I was oblivious to
the drama. TeXShop was written in Cocoa because
I owned a NeXT machine, but it remained a 32-
bit application. Finally, a few months before Lion,
I made the transition to 64 bits. What I didn’t
know was that dramatic changes were happening at
Apple, and my 64-bit conversion was done in the
nick of time.

10 Fragile base classes and 64 bits

An object is a self-contained collection of code and
data. Its data is referenced by variables known as in-
stance variables and its code is known as methods or
functions. According to a common metaphor, an ob-
ject oriented program contains many objects, which
talk to each other through method calls, and act on
these calls by processing the data in their instance
variables. Cocoa programs are object oriented.

To see how this works in practice, consider the
Cocoa object called NSView. Each NSView corre-
sponds to a rectangular portion of a particular win-
dow. The view has an instance variable pointing
to its window, a second instance variable giving
the coordinates of its rectangular region, and so
forth. Among the methods defined for an NSView is
drawRect, which draws the view on the screen.

When a program uses NSView, the developer
defines a subclass of the view with a name like
myNSView. This subclass has all the instance vari-
ables and methods of NSView, plus any other instance
variables and methods added by the programmer.
But in addition, it can override the original methods
of NSView. For instance, the drawRect method in
NSView does nothing, but myNSView can override
drawRect so that it draws, say, our conference logo.
In this situation, we call NSView the base class, de-
fined in Cocoa, and call myNSView a subclass, defined
by the programmer.

The advantage of all this is that base classes
typically come already connected up. Cocoa calls
drawRect when the window first appears, when a
covering window is moved out of the way, when a dia-
log box goes away, etc. Apple once gave developers

149

a t-shirt with the text “Don’t call us; we’ll call you”.
The slogan means that the programmer’s myNSView
doesn’t have to worry about when to draw because
Cocoa will tell it when to draw. It just has to draw
the logo when called.

The takeaway is easy: a Cocoa program runs
cooperatively, with some tasks handled by the base
classes in Cocoa and other tasks handled by sub-
classes defined by the programmer.

After object oriented programming appeared,
programmers began to dream of a time when the
system could be improved by just revising the base
classes, without even recompiling the programs. You
could install Mavericks, and suddenly say “wow,
Word never did that before!”

Unfortunately, a barrier stood in the way of real-
izing this dream. The barrier was called “the fragile
base class problem”: when revising base classes, Ap-
ple was not allowed to add extra instance variables or
extra methods to the base class. This was a problem
in Objective C, in C++, in Java, and elsewhere. The
problem wasn’t quite as bad in Objective C as else-
where because that language allowed extra methods
in base classes. But still: no extra instance variables.

When Apple added 64-bit libraries in the Leop-
ard timeframe, they realized that they had a once-
in-a-lifetime opportunity to fix this problem. Since
there were no existing 64-bit applications, every 64-
bit app would have to be compiled from scratch. So
they took the opportunity to make changes to Objec-
tive C when run in 64 bits, including completely solv-
ing the fragile base class problem. Incidentally, they
also made these changes in the iPhone even though
it ran in 32 bits. So Objective C on the iPhone, iPad,
and 64-bit Mac applications is a different beast than
Objective C in 32-bit Mac applications.

After this, Apple rapidly increased hardware re-
quirements for its operating systems. Snow Leopard
required Intel processors, Lion required 64-bit proces-
sors, and Mountain Lion required machines running
the kernel in 64 bits. I believe that the reason for
these policies is not that 64-bit programs run faster,
but instead that Apple can now use all the extra
added properties of Objective C, including adding
instance variables and methods to base classes.

11 Lion remembers window positions

Lion is the first Apple system to make real this great
dream of improving programs by revising the base
classes. Programs written in 64 bits with Cocoa got
crucial added functionality for free, even without
recompiling.

One of the standard requests for TeXShop was
that it remember window sizes and positions when

MacTgX design philosophy vs. TeXShop design philosophy

150

i i

TUGboat, Volume 35 (2014), No. 2

—

Figure 6: Editing (left) is normal, but past versions are available (right)

quit, and restore these windows automatically when
next restarted. To shame me into working on this,
users told me of other GUIs for TEX which already
had the ability.

Imagine my surprise, then, when I discovered
that TeXShop on Lion got the requested ability au-
tomatically for free.

An advantage of letting Apple do this is that
Apple had second thoughts and slightly modified the
behavior in Mountain Lion and Mavericks. TeXShop
inherited those changes for free. For instance, holding
down the option key changes the Quit menu to “Quit
and Close All Windows”, and if the shift key is down
when opening a program, then old windows aren’t
reopened. These tricks work in TeXShop just as in
all other Cocoa applications.

12 Automatic file saving

Saving window positions is something I could have
done myself if I weren’t lazy. But the second Lion
feature is something I would never have tried on my
own: automatic file saving.

Suppose you are using TeXShop in Lion, you
have several source files open and have made changes
in each. Suddenly you receive an emergency call
and quit TeXShop. You won’t receive pesky dialogs
asking you to save each file; instead, TeXShop imme-
diately quits.

But the next time you open TeXShop, your
(seemingly unsaved) edits will be there.

But wait — there’s more. TeXShop doesn’t just
save when you quit. It saves every five minutes or so.
If you live in a thunderstorm area with frequent power
outages, no need to worry. When your computer
starts up again, all changes you made will reappear.

“Gulp. Every five minutes the computer saves
my 1000 page document?” Of course not. The
program only saves changes, and in five minutes how
much source did you change? In practice, you never
notice the saving process.

Richard Koch

“Whoa. When I send a document to someone
else, are all those changes in the document? My
reference letter says ‘works like a dog’, but originally
I wrote ‘even a dog wouldn’t be interested in his line
of research.”” Not to worry; files only contain the
latest version.

“But there are so many edge cases where this
scheme could go wrong.” I absolutely agree. Indeed,
I would never dare add automatic saving to TeXShop
myself, or monkey around in any serious way with
the file system. I have always dreaded getting a
letter from a user claiming my program destroyed
his only copy of a proof of the Riemann hypothesis.
But Apple is doing this, with a thousand engineers
testing the code. Their responsibility.

“But wait. Suppose I delete some material, type
an experimental new sentence, and then decide not to
keep it. In the old system, I just don’t save. But with
automatic saving, the new stuff I don’t want may
be part of the document.” The pictures at the top
of this page (fig. 6) show why this is not a problem:
the screenshot on the left shows a document you are
reading while it was being edited; all looks normal.
The right-hand image shows the effect of selecting
the menu item Revert To — Browse All Versions,
with a stack of old versions to work with.

As you see, this feature, called AutoSave, gives
a Time Machine-like view of the document, and we
can retreat to an earlier version, or copy a portion
of an earlier version to the current document. Time
Machine itself need not be running to get this. Any
application with AutoSave activated gets it for free.

Apple has been refining the interface for Auto-
Save. It is intrusive on Lion, less intrusive on Moun-
tain Lion, and less still on Mavericks. I couldn’t live
without it. If your TEX GUI has it, then it works the
same as your other Mac applications.

AutoSave makes many changes under the hood.
One of the most surprising is changes to program

menus. The most controversial is the loss of a

TUGboat, Volume 35 (2014), No. 2

m Edit Source Macros

New 8N
Edit Source Macros 1 New from Stationery...

New 8N Open... #®0
New from Stationery... Open Recent >
Open... %0 Open for Preview...
O on Previen: " Show Consale

Show Log File
Show Console Elose W
Show Log File - .
Close ®BW Duplicate {+38S
Save ®S Rename...
Save As... {385 Move To...
Save To... Export...
Revert To Saved 28U Revert To >
Page Setup... {+38P Page Setup... {r3eP
Print... %P Print... p

Print Source... Print Source...

Convert TIFF Convert TIFF

Abort Typesetting ~3#A
Trash Aux Files ~BA

Abort Typesetting "~ "C3%A
Trash Aux Files ~ A

Figure 7: File menu in source code (left) and
as displayed by Mavericks (right)

“Save As...” menu item. I received many email mes-
sages demanding that I put it back. I replied that
it was still present in my code, but Apple removes
it while running the program. My correspondents
found this explanation incomprehensible.

The truth is that Apple automatically modifies
the program’s File menu when AutoSave is turned on.
This is shown in fig. 7. On the left is the File menu
as defined in current TeXShop source code. On the
right is the actual menu as displayed in Mavericks.
As can be seen, the middle section of the menu has
been drastically altered.

After one email exchange on “Save As”, I wrote
what I thought was a brilliant defense of Apple’s
actions, telling my readers to “grow up and go with
the flow”. The next day another user pointed out
that “Save As...” had been restored by Apple in
Mountain Lion. Sure enough, if you hold down the
option key when accessing the File menu, “Duplicate”
changes to “Save As”. Apparently the people on the
mailing list were also writing Apple.

The main point I'm trying to make here is that
for programmers who use Cocoa, solving the fragile
base class problem allows Apple to make surprisingly
many changes under the surface.

After all this, you probably want me to come
clean. To implement AutoSave, how much code did
I write? Well, Apple’s NSDocument object contains
a function called autoSavesInPlace, which returns
NO by default. In TeXShop I override it to return
YES. That’s it. One line gives all of AutoSave.

Lots of collaborators help with TeXShop, pro-

151

viding features I haven’t mentioned. Today I just
wanted to show what is made possible by adhering
to Apple’s Cocoa standards.

TeXShop doesn’t adopt everything, of course.
It isn’t in the Apple Store because working in a
sandbox would limit its interaction with TEX Live
and third party programs. It doesn’t allow you to
store documents in the Cloud because the Cloud is
only available to applications in the store. But when
an addition makes sense, it will be adopted.

13 Automatic reference counting

One problem with object oriented programming is
that a program can create thousands of objects as
it runs. The program is supposed to throw away
objects after it is done with them; if it doesn’t, then
computer memory becomes clogged and the program
becomes sluggish. On the other hand, objects can
be passed around, so just because one part of the
program is done with an object doesn’t mean that
it isn’t used somewhere else. If an object is thrown
away too soon, the program will crash when another
part of the program tries to use the object.

There are three solutions. The first is to force
programmers to manually handle memory manage-
ment. That is how TeXShop worked until recently,
and it is prone to errors that are hard to find.

The second method is called “garbage collec-
tion”. Apple introduced it in Leopard, but it didn’t
work well on the iPhone.

Then as part of the enhancement of Objective C,
Apple introduced Automatic Reference Counting, or
ARC, the third memory management technique. In
ARC, the compiler automatically adds the code to
handle memory management, without the program-
mer needing to do anything. Since ARC does what a
programmer would do managing memory manually,
some files in a program can be compiled with ARC
and some can be compiled without it.

This spring, I spent several weeks recompiling
TeXShop with ARC, gradually working through the
program file by file. The ARC code first appeared in
TeXShop 3.34 and makes the program much more
stable. A couple of remaining issues are solved in
TeXShop 3.38, released at this conference, and this
version ends the transition to ARC.

Adding ARC support is an example of extensive
work with no immediate gain; no interface changes
are visible. But it is essential work if the program is
to survive for the long run.

¢ Richard Koch
http://pages.uoregon.edu/koch

MacTgX design philosophy vs. TeXShop design philosophy

