
TUGBOAT

Volume 35, Number 2 / 2014

TUG 2014 Conference Proceedings

TUG 2014 126 Conference sponsors, participants, program, and photos

130 David Latchman / TUG 2014 in Portland

134 Tracy Kidder / Visiting TUG 2014

Fonts 135 Michael Sharpe / Recent additions to TEX’s font repertoire

Publishing 139 Jim Hefferon and Lon Mitchell / Experiences converting from PDF-only to paper

142 Joseph Hogg / Texinfo visits a garden

Software & Tools 145 Richard Koch / MacTEX design philosophy vs. TeXShop design philosophy

152 Adam Maxwell / TEX Live Utility: A slightly-shiny Mac interface

for TEX Live Manager (tlmgr)

157 Doug McKenna / On tracing the trip test with JSBox

168 Julian Gilbey / Creating (mathematical) jigsaw puzzles using TEX and friends

173 Pavneet Arora / SUTRA—A workflow for documenting signals

Graphics 192 David Allen / Dynamic documents

179 Andrew Mertz, William Slough and Nancy Van Cleave /

Typesetting figures for computer science

Typography 195 Leyla Akhmadeeva and Boris Veytsman / Typography and readability:

An experiment with post-stroke patients

Macros 198 SK Venkatesan and CV Rajagopal / TEX and copyediting

202 Boris Veytsman / An output routine for an illustrated book:

Making the FAO Statistical Yearbook

Electronic Documents 205 Keiichiro Shikano / xml2tex: An easy way to define XML-to-LATEX converters

209 Robert A. Beezer / MathBook XML

212 William Hammond / Can LATEX profiles be rendered adequately with static CSS?

Abstracts 219 TUG 2014 abstracts (Bazargan, Berry, Crossland, Cunning, de Souza, Doob, Farmer,

McKenna, Mittelbach, Moore, Raies, Robertson, Tétreault, Wetmore)

222 S Parthasarathy / Let’s Learn LATEX: A hack-to-learn ebook

Book Reviews 223 Jeffrey Barnett / Book review: Fifty Typefaces That Changed The World,

by John Walters

TUG Business 225 TUG 2015 election

226 TUG institutional members

Advertisements 226 TEX consulting and production services

News 227 TUG 2015 announcement

228 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2014 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 received a $20 discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $105 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: September 2014]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Arthur Reutenauer
Philip Taylor
Boris Veytsman
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2014 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

2014 Conference Proceedings

TEX Users Group

Thirty-fifth Annual Meeting

Portland, Oregon

July 28–30, 2014

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 35, NUMBER 2 • 2014

PORTLAND • OREGON • U.S.A.

126 TUGboat, Volume 35 (2014), No. 2

July 28–30, 2014 Mark Spencer Hotel

Sponsors

TEX Users Group DANTE e.V. O’Reilly Pearson
with special assistance from many individual contributors. Thanks to all!

Conference committee

Karl Berry Jim Hefferon Robin Laakso David Walden

Bursary committee

Taco Hoekwater, chair Jana Chlebikova Kaja Christiansen
Bogusław Jackowski Paul Thompson Alan Wetmore

LATEX workshop leader

Cheryl Ponchin

Participants

Leila Akhmadeyeva, Bashkir State
Medical University

David Allen, University of Kentucky

Pavneet Arora, Bespoke Spaces

Justin Bailey, Portland, OR

Kaveh Bazargan, River Valley Technologies

Nelson Beebe, University of Utah

Barbara Beeton, AMS

Robert A. Beezer, University of Puget Sound

Karl Berry, TEX Users Group

Steven Brenton, Long Beach, CA

Andrew Caird, Ann Arbor, MI

Dennis Claudio, Alameda County Superior Court

Jennifer Claudio, Synopsys Outreach Foundation

David Crossland, Metapolator

Michael Doob, University of Manitoba

David Farmer, American Institute of Mathematics

William Hammond, San Diego, CA

Jim Hefferon, Saint Michael’s College

Julian Gilbey, London, UK

Steve Grathwohl, Duke University Press

Klaus Hoeppner, DANTE e.V.

Joseph Hogg, Los Angeles, CA

Richard Koch, University of Oregon

Yusuke Kuroki, Yokohama, Japan

Evguenia Kvistorf, ICAO

Robin Laakso, TEX Users Group

Jason Lake, Minneapolis, MN

David Latchman, TEXnical Designs

Richard Leigh, St Albans, UK

Adam Maxwell, Port Angeles, WA

Doug McKenna, Mathemaesthetics

Andrew Mertz, Eastern Illinois University

Frank Mittelbach, LATEX3 Project

Ross Moore, Macquarie University

Kruti Pandya, Portland State University

Cheryl Ponchin, Center for Communications
Research, Princeton, NJ

Daniel Raies, University of Oregon

CV Rajagopal, River Valley Technologies

Will Robertson, University of Adelaide

Chris Rowley, LATEX3 Project

Herbert Schulz, Naperville, IL

Heidi Sestrich, Carnegie Mellon University

Michael Sharpe, UC San Diego

Joe Shields, Portland State University

Keiichiro Shikano, Tokyo, Japan

William Slough, Eastern Illinois University

Alistair Smith, Sunrise Setting

Paulo Ney de Souza, Books in Bytes

Étienne Tétreault-Pinard, Plotly

Nancy Van Cleave, Eastern Illinois University

SK Venkatesan, TNQ Books and Journals

Boris Veytsman, George Mason University

David Walden, East Sandwich, MA

Alan Wetmore, US Army Research Lab

Ward Cunningham (special guest), Portland, OR

Tracy Kidder (special guest), MA & ME

TUG2014—Portland, Oregon, USA

TUG2014—program and information
Sunday, July 27: opening reception and registration.
Monday, July 28: concurrent LATEX workshop, Cheryl Ponchin.
Monday, July 28: post-session workshops: TeXShop, Herb Schulz; and arXiv.org, Steve Grathwohl et al.

Monday

July 28

8:00 am registration

8:50 am Robin Laakso, TUG Opening

9:00 am Ross Moore “Fake spaces” with pdfTEX—the best of both worlds

9:35 am Frank Mittelbach Regression testing LATEX packages with Lua

10:10 am Doug McKenna Lib
t
erate

TEX

C
Top part: JSBox

10:45 am break

11:00 am Doug McKenna Lib
t
erate

TEX

C
Bottom part: literac

11:35 am Paulo Ney de Souza A call for standards on the way to internationalization of TEX

12:10 am Robert Beezer MathBook XML

12:45 pm lunch

1:45 pm group photo

2:00 pm David Farmer Converting structured LATEX to other formats

2:35 pm William Hammond Will static CSS someday suffice for online rendering

of profiled LATEX?

3:10 pm Keiichiro Shikano The easy way to define customized XML-to-LATEX converters

3:45 pm break

4:00 pm Julian Gilbey Creating mathematical jigsaw puzzles using TEX and friends

4:35 pm Pavneet Arora SUTRA—A workflow for representing signals

5:15 pm q&a

Tuesday

July 29

8:55 am announcements

9:00 am Karl Berry Building TEX Live

9:35 am Adam Maxwell TEX Live Utility: A slightly-shiny Mac interface for tlmgr

10:10 am Richard Koch MacTEX design philosophy vs. TeXShop design philosophy

10:45 am break

11:00 am Dave Crossland Metapolator: Why Metafont is finally catching on

11:35 am Michael Sharpe Recent additions to TEX’s font repertoire

12:10 am Etienne Tétreault-Pinard Plotly: Collaborative, interactive, and online plotting with TEX

12:45 pm lunch

2:00 pm Joseph Hogg Texinfo visits a garden

2:35 pm SK Venkatesan and CV Rajagopal TEX and copyediting

3:10 pm Boris Veytsman An output routine for an illustrated book

3:45 pm break

4:00 pm Kaveh Bazargan Creating a LATEX class file using a graphical interface

4:35 pm Will Robertson and Frank Mittelbach LATEX3 and expl3 in 2014: Recent developments

5:15 pm q&a

Wednesday

July 30

8:55 am announcements

9:00 am David Allen Experiences with tikzDevice

9:35 am Andrew Mertz, William Slough,

and Nancy Van Cleave

Typesetting figures for computer science

10:10 am Michael Doob Using animations within LATEX documents

10:45 am break

11:00 am Dan Raies LATEX in the classroom

11:35 am Jim Hefferon Moving an online book to paper

12:10 pm Kaveh Bazargan PDF files both to print and to read on screen

12:45 pm lunch

2:00 pm Leyla Akhmadeeva and Boris Veytsman Typography and readability: An experiment

with post-stroke patients

2:35 pm Alan Wetmore A quarter century of näıve use and abuse of LATEX

3:10 pm Ward Cunningham Another wiki? OMG why?

3:45 pm break

4:00 pm Tracy Kidder Trying to write about technical topics

4:35 pm David Walden, moderator Panel: TEX and the Wider Wilder World—

Hefferon, McKenna, Mittelbach, Rowley, Sharpe

≈ 5:15 pm end

6:30 pm banquet at Bluehour (bluehouronline.com), 409 SW 11th Ave.

128 TUGboat, Volume 35 (2014), No. 2

Some snapshots from the TUG 2014 meeting in
Portland, Oregon. Photo credits (as noted):
Pavneet Arora, Dennis Claudio, and
Alan Wetmore. Thank you.

Michael Doob

P
A

Cheryl Ponchin, Andrew Mertz
(background: Keiichiro Shikano,
Yusuke Kuroki)

P
A

Herb Schulz and Frank Mittelbach,
at lunch

P
A

Steve Grathwohl

P
A

Tracy Kidder, at the banquet

P
A

The traditional group photo. Smile!

A
W

TUGboat, Volume 35 (2014), No. 2 129

David Latchman, Keiichiro Shikano,
Pavneet Arora, Yusuke Kuroki,
Will Robertson

D
C

Michael Sharpe

P
A

Leyla Akhmadeeva

A
W

Daniel Raies
P
A

Nelson Beebe

P
A

Boris Veytsman

P
A

SK Venkatesan

P
A

Will Robertson, Doug McKenna

P
A

CV Rajagopal, David Farmer

P
A

Paulo Ney de Souza

P
A

Alan Wetmore, Richard Leigh,
Heidi Sestrich

P
A

130 TUGboat, Volume 35 (2014), No. 2

TUG 2014 in Portland

David S. Latchman

This year’s TUG conference took place in the city of
Portland, the home of the TEX Users Group. The city
straddles the Willamette River near its confluence
with the Columbia River, physically dividing the city
into east and west Portland. The downtown area,
where the Mark Spencer Hotel is located and where
the conference was held, is in the west. Commonly
known as the “City of Roses”, Portland features
many famous rose gardens, most prominently the
International Rose Test Garden. There is certainly
a lot to do, from the micro-breweries, restaurants
and food trucks found all over the city. If hands-on
science demonstrations is something you might be
interested in, the Oregon Museum of Science and
Industry (OMSI) is worth a visit.1 You can also
visit the USS Blueback, a diesel–electric fast attack
submarine moored in the river by the museum.

Figure 1: View from the SW Hawthorne Bridge

1 OMSI

The Oregon Museum of Science and Industry is a sci-
ence and technology museum that features a variety
of hands-on permanent exhibits focused on natural
history, sciences, industry and technology. The mu-
seum was established in 1944, when it displayed its
first collection of natural history objects at the Port-
land Hotel. In 1949, the museum moved to its first
location on 908 NE Hassalo but by 1955, growing
annual attendance entailed the building of a new
site at Washington Park (this building is now occu-
pied by the Portland Children’s Museum). Museum
attendance would continue to rise and by the mid-
1990s, continued expansion at Washington Park was
deemed infeasible. The museum moved to the Sta-
tion L power plant, donated by Portland General
Electric, where it resides today.

1
Editor’s note: OMSI has a place in TEX history. The

manual for the OMSI Pascal compiler was produced in TEX in
1982 by Dave Kellerman and Barry Smith, before they went
off to form Kellerman & Smith, which handled the first TEX
distribution for VAX/VMS systems.

Figure 2: An animatronic Dilophosaurus

Figure 3: The USS Blueback

1.1 The USS Blueback (SS-581)

In 1994, the museum purchased the USS Blueback.
This submarine appeared in the first season of the
1970s TV show, “Hawaii Five-O”. She also appeared
in the 1990 film, “The Hunt for Red October”, where
her crew was paid $50US to cut their hair and put
on Soviet Navy uniforms.

The USS Blueback is a Barbel-class submarine.
This diesel–electric fast-attack submarine was one of
the first production warships to utilize a teardrop
shaped hull. The Barbel class submarines were de-
signed to dive to a depth of over 700 feet, with a
crush depth of 1050 feet. At the time of construc-
tion, the Blueback and her two sisters were the most
technologically advanced submarines in the world.

The Blueback was the last non-nuclear subma-
rine to join the United States Navy, entering ser-
vice on 15 October 1959. She was also the last
conventionally-powered combat-capable submarine
to be decommissioned, leaving the US Navy with a
fully nuclear submarine fleet.

2 Monday, July 28

2.1 “Fake spaces” with pdfTEX—the best
of both worlds

The first presentation was by Ross Moore of Mac-
quarie University. Moore began his talk by explain-
ing that we can’t resize text and have it reflow in

David S. Latchman

TUGboat, Volume 35 (2014), No. 2 131

PDFs in the same way text can be resized in an Inter-
net browser or word processor. This isn’t a problem
with the PDF but rather with TEX itself.

Moore explained that when Donald Knuth cre-
ated TEX, he chose to omit space characters from the
output and carefully position the start of each word
and punctuation character. Though this allowed for
better full-justification and typesetting, the ‘missing’
spaces prevent on-the-fly justification and re-flow.

Moore said that this can be solved by getting
the right spaces into the document—a special space
character that can be stretched as needed. These
interword space characters are available as new prim-
itives in pdfTEX as of TEX Live 2014 and can be con-
trolled when and where they are used, e.g., they’re
not needed in mathematical content. These new
word spaces conform to ISO-19005 standards and
meet the PDF/A archival standards.

2.2 A modern regression test suite for
TEX programming

Regression testing is the process of testing changes
made to a system to ensure that older code still works
and isn’t in conflict with new code. One problem
discussed in this talk by Frank Mittelbach is the
hidden dependencies in LATEX; packages can hook
onto various layers or replace macros.

For many years, LATEX2ε used a custom Perl
script to perform regression testing on a large num-
ber of files to ensure that any changes do not break
anything. This type of test is also useful for high-
lighting changes to TEX Live. One of the steps in
the development of LATEX3 was to produce a similar
system to ensure that the development process was
as smooth as possible.

Mittelbach discussed the various ways in which
this can be done, e.g. making use of the TEX log
file. One problem is that the log contains much
unnecessary information. Today, TEX ships with
LuaLATEX. The included standalone Lua interpreter
allows users to write platform-independent scripts
without the need to install additional frameworks.
Joseph Wright has rewritten the LATEX3 build scripts
in Lua to avoid maintaining two separate systems.
This should allow for an easy-to-use regression test
suite for the TEX community.

2.3 Liberate TEX, top part: JSBox

Doug McKenna discussed his monumental work in
progress, JSBox, a TEX-language interpreter writ-
ten in portable C. McKenna hopes to remove some
of the limitations of the TEX engine by providing
integrated support for 21-bit Unicode, namespaces,
and OpenType, to name a few. To illustrate what is

possible with this new interpreter, McKenna showed
how a fractal image could be placed and dynamically
rendered in a TEX document.

2.4 Liberate TEX, bottom part: literac

McKenna’s second presentation focused on his pro-
gram literac, a command line C program that en-
ables literate commenting by converting source code
written in languages that use C-style commenting
syntax into a LATEX document.

Within the comments there are special com-
mands to support common typesetting tasks. The
literac.c is itself documented using the literate
style and can typeset itself into its own manual.
McKenna demonstrated how this can be done.

2.5 A call for standards on the way
to internationalization of TEX

Though TEX can typeset documents in hundreds
of languages, there has been little to no internal
support with regard to language. Paulo Ney de Souza
explained how the introduction of standards like ISO-
639, ISO-15924, ISO-3166-1 and RFC-5646 can help
TEX users, especially those for whom English is not
the preferred language.

2.6 MathBook XML

Robert Beezer discussed the need for a source for-
mat that can capture the structure of a scholarly
document and convert it into a variety of formats.
Though XML may have a bad reputation, Beezer con-
tended that it can be compact and a good solution;
MathBook XML is both lightweight and practical and
simple enough for authors to create mathematical
and scientific texts. He discussed a current project
to convert XML to LATEX and HTML. As the project
matures, conversions to other formats such as Sage
and SageMathCloud worksheets and iPython note-
books will be developed.

2.7 Converting structured LATEX to
other formats

David Farmer explained that while PDF is good
for printing, reading on screen is less than ideal,
especially when a reader clicks on a link to view
a reference or equation—the page “jumps around”
making it difficult for a reader to visually scan a
document.

Farmer said that his project, a collaboration
with Beezer, to convert mathematics papers and text-
books from LATEX to HTML can solve this problem
and provide an alternative to online PDF documents.
When a reader clicks on a link, the reference appears
in a box below which improves readability.

TUG 2014 in Portland

132 TUGboat, Volume 35 (2014), No. 2

2.8 Will static CSS someday suffice for
online rendering of profiled LATEX

In this talk, William Hammond discussed the use
of static CSS and its potential to render LATEX on
the web. The use of MathJax has shown that it
is possible for CSS, along with JavaScript, to ren-
der mathematics online in HTML pages. Hammond
explained that the problem with this method isn’t
quality but speed.

In recent times, CSS has become more powerful
and though quality of rendering remains an issue,
CSS by itself has become an adequate fallback option
for online presentations. Hammond showed what
CSS is capable of.

2.9 The easy way to define customized
XML-to-LATEX converters

In his talk, Keiichiro Shikano discussed the need for
an XML-to-LATEX converter. Shikano explained that
though XML syntax may be considered ugly, it can
be used to typeset books by applying a preferred
LATEX style.

This means that xml2tex is not a single con-
verter application but rather a framework that adds a
presentation layer in LATEX; rules relating each XML

element directly to a LATEX command or environment
is needed. Shikano demonstrated a straightforward
and intuitive tool written in a dialect of Scheme to
do this. The tool has been used to create and publish
dozens of books.

2.10 Creating mathematical jigsaw puzzles
using TEX and friends

Julian Gilbey first demonstrated a free Windows-
based WYSIWYG software, Formulator Tarsia, that
can be used to author mathematical puzzles. These
puzzles are made of triangles and squares with ques-
tions and answers printed along the edges. Some of
these puzzles were distributed to the audience for
their solving pleasure.

Gilbey then described a similar TEX and Python-
based system he created which can run on most
operating systems.

2.11 SUTRA—A workflow for representing
signals

Pavneet Arora talked about a practical workflow for
representing signals of an electrical system.

3 Tuesday, July 29

3.1 Building TEX Live

Karl Berry gave the first presentation of the second
day, an overview of TEX Live’s construction. Berry
explained that TEX Live follows the TEX Directory

Structure (TDS) which segregates files by type rather
than placing packages in separate folders of their own.
E.g., the .cls or .sty files are located in one folder
while the documentation is located in another. Berry
explained what this means for users and package
designers. He ended with a discussion of how Knuth’s
original TEX is built from source.

3.2 TEX Live Utility: A slightly-shiny Mac
interface for tlmgr

In his talk, Adam Maxwell discussed his program
TEX Live Utility, a MacOSX graphical user inter-
face for the TEX Live Manager command-line tool.
Maxwell explained that many Mac users appreciated
a native Mac GUI interface.

Maxwell discussed some of the goals of a GUI

interface. tlmgr works behind the scenes and does
most of the heavy lifting. The program uses a model/
view/controller design to give users a consistent Mac-
like experience.

3.3 MacTEX design philosophy vs.
TeXShop design philosophy

Richard Koch explained that MacTEX is an unmodi-
fied installation of TEX Live that, when installed, is
fully configured and ready to use. TeXShop, on the
other hand, is a Macintosh TEX front-end, written
in Cocoa that incorporates some modern features
that Apple recently introduced. This means that
TeXShop is not cross-platform, unlike MacTEX.

Programming the front-end in Cocoa means that
it automatically supports and can take advantage
of many new Mac features, such as support for au-
tomatic saving and reloading of documents and the
Retina display.

3.4 Metapolator: Why Metafont is finally
catching on

This talk by Dave Crossland was a followup to his
2008 TUG presentation, “Why didn’t METAFONT

catch on?” Crossland introduced the Metapolator
project, a tool allowing typeface designers to harness
the power of METAFONT’s parametric capabilities
without writing any METAFONT code. Crossland
gave several demonstrations.

3.5 Recent additions to TEX’s
font repertoire

In this talk, Michael Sharpe examined some of the
newer additions and changes to the font families in
LATEX. Most of the additions have been new Roman
text fonts. Sharpe also talked about the issues of
matching math fonts.

David S. Latchman

TUGboat, Volume 35 (2014), No. 2 133

3.6 Plotly: Collaborative, interactive, and
online plotting with TEX

Etienne Tétreault-Pinard introduced Plotly, an in-
teractive online graphics platform that allows a user
to embed and export graphics for publication. In the
same way a core goal of TEX is to allow anyone to
produce high-quality documents with minimal effort,
Plotly hopes to do the same with graphics.

Users can use data from Python, MATLAB, R,
and Excel, among others, to create graphs. Graphs
are rendered using JavaScript and annotations are
done using TEX in a MathJax display engine. As all
data is stored in the cloud, users can not only get
the same results across multiple platforms, they can
share graphs online, publicly or privately.

3.7 Texinfo visits a garden

Joseph Hogg discussed using GNU Texinfo to doc-
ument a collection of about 400 plants in the Herb
Garden at The Huntington in San Marino, CA. The
Huntington maintains a plant list as a resource for
gardeners, docents, and visitors. This list was done
in Word before The Huntington moved over to LATEX.

Though the Herb Garden is one of the smaller
gardens, the plant list is updated every six months.
By using Texinfo and other free software, Hogg and
other volunteers are able to list and map on a grid the
plants in the garden, which can then be downloaded
or printed as a PDF. Visitors to the garden can view
this PDF as they tour the gardens.

3.8 TEX and copyediting

SK Venkatesan and CV Rajagopal described how
their copyediting package can be used to help copy-
editors. It provides macros to help editors make
corrections and improve consistency.

3.9 An output routine for an
illustrated book

In this talk, Boris Veytsman showed how LATEX can
be used to produce an illustrated book. Veytsman
explains that producing an illustrated book in TEX
is difficult because the engine’s algorithms assume
there is a lot of text occasionally interrupted by an
image; TEX assumes that the text tells the story. In
an illustrated book, on the other hand, the illustra-
tions tell the story rather than the text. Veytsman
discussed a method for creating an illustrated book
using TEX.

3.10 Creating a LATEX class file using
a graphical interface

Kaveh Bazargan explained that writing LATEX class
files is a difficult and specialized job that requires an

intimate knowledge of TEX. This makes it difficult
for users to get into the deeper workings of LATEX
as, quite often, potential programmers don’t know
all the options and inner workings of the individual
packages that go into a class file. A graphical user
interface (GUI) might help address this problem.

In his talk, Bazargan demonstrated such a GUI.
A programmer can drag and drop, even order pack-
ages in the user interface and see the various options
that are available. This system, named Batch Com-
mander and created using LiveCode, dynamically
updates the output so the effects of any changes are
immediately visible. It is data-driven so that any
package or parameter can be supported.

3.11 LATEX3 and expl3 in 2014:
Recent developments

In the last talk of the day, Will Robertson and Frank
Mittelbach reported on LATEX3 and expl3. Robert-
son explained that LATEX3 and expl3 are not the
same and neither is LATEX3 the next version of LATEX;
rather, LATEX3 is an alternative to LATEX where some
of its ideas can be layered onto LATEX2ε. expl3 orig-
inally stood for experimental LATEX3. Though this
has changed, the name has stuck.

Robertson explained that expl3’s goal is to
make it easier to write LATEX packages and is now
being used by many people “in the wild” and for
many different package types. Both Robertson and
Mittelbach discussed some ideas for rounding out
the feature set.

4 Wednesday, July 30

4.1 Dynamic documents

Dynamic documents are documents that can be up-
dated as the data changes. David Allen talked about
using R, tikzdevice, knitr and LATEX to accom-
plish this. As an example, Allen used polling re-
sults from Kentucky’s current senate election race
to demonstrate how the above components can be
used to track, graph and generate a report of both
candidates’ current standing.

4.2 Using animations within LATEX
documents

Though TEX exists primarily for typesetting books,
the software has evolved to where animations can be
placed inside a document. Michael Doob discussed
how this can be done, and how it can help students
solve mathematical problems.

4.3 LATEX in the classroom

Dan Raies discussed his experiences of using LATEX
to teach mathematics to his undergraduate students.

TUG 2014 in Portland

134 TUGboat, Volume 35 (2014), No. 2

Raies said that using LATEX is great for students to
submit assignments, and learning to use LATEX is
an important skill for their academic studies. Raies
showed the audience some techniques for helping
students get past common problems.

4.4 Typesetting figures for
computer science

Colleagues Andrew Mertz, William Slough and Nancy
Van Cleave highlighted some LATEX graphics pack-
ages to produce informative, high-quality diagrams
and figures in computer science.

4.5 Moving an online book to paper

Jim Hefferon talked about his experiences bringing
his Linear Algebra book into print. The book was
initially available only online, as a free download,
but Hefferon was eventually convinced to produce a
printed book that students could purchase. Hefferon
described the self-publishing landscape and many
different price considerations.

4.6 PDF files both to print and read

Kaveh Bazargan talked about techniques one can
use to make a PDF suitable for both print and on-
line reading. Instead of creating two separate PDFs,
Bazargan mentioned various packages that will allow
a user to pack the information for both into one file.
One example is the use of PDF layers. A reader can
select between color and black and white images for
screen reading or printing respectively. These layers
can be shown or hidden as needed.

4.7 Typography and readability: An
experiment with post-stroke patients

Reading is a complex mental process and cognitive
impairments may influence how well a patient can
read and understand instructions. In this talk, Leyla
Akhmadeeva and Boris Veytsman discussed their
experiments on whether typeface design has an effect
on readability on post-stroke patients.

Tests were done comparing legibility of the Para-
type serif and sans serif fonts with post-stroke pa-
tients. Reading speed and comprehension were com-
pared with results from healthy volunteers. If ty-
pography does indeed influence comprehension, pub-
lishers of books for post-stroke patients should take
this into account. Though the sample size was small,
the study found that differences in reading speeds
between both font types were minimal. It is possible
that, even after a stroke, the human brain remains
remarkably adaptable.

4.8 A quarter century of näıve use and
abuse of LATEX

Alan Wetmore recounted his experiences with TEX
and how it has evolved to what it is today. When
Wetmore first encountered TEX, it was much more
difficult to install and use but the strong community
around TEX made this easier. Today, installing and
maintaining TEX is much easier and its capabilities
have grown.

4.9 Another wiki? OMG why?

Ward Cunningham, the inventor of the wiki, talked
about and demonstrated rebuilding the wiki concept
to solve more complex sharing situations addressing
some of society’s toughest problems.

4.10 Trying to write about technical topics

In the final talk, Pulitzer Prize–winning writer Tracy
Kidder described some of his experiences with a
computer engineering team as they created a next-
generation computer, eventually becoming his book
The Soul of a New Machine. He also mentioned his
current work in progress, where he is coming back
to the technical world for the first time since Soul.

⋄ David S. Latchman
Bakersfield, CA 93309
david.latchman (at)

texnical-designs dot com

http://texnical-designs.com

Visiting TUG 2014

Tracy Kidder

I came to the conference partly to spend time with
my friend Karl, partly to meet others who could
help to educate me on the history of computer pro-
gramming, and partly to find out what TUG is all
about. For the past year and a half I have been hang-
ing around in a corner of the world of commercial
software development. I thought it would be both
interesting and refreshing to be among people who
are working on the extension and maintenance of a
venerable piece of free software. During many of the
formal talks, I found myself quite confused, lost in
the technical details, but pleasantly so. One could
do much worse than spend time among smart people
who are obsessed with fonts. In short, the conference
was everything I’d hoped for. And I am grateful for
the great kindness and hospitality I was shown.

Tracy Kidder

TUGboat, Volume 35 (2014), No. 2 135

Recent additions to TEX’s font repertoire

Michael Sharpe

Garalde family

The first 150 years of the printing industry, beginning
with Gutenberg in 1450, bear a striking resemblance
to the early years of the personal computer industry.
Both were intensely commercial enterprises, though
with some high-toned gloss—Bibles then, scientific
computing now. However, the real money driving
the printers of the late 15th century was to a con-
siderable extent indulgences —big money-makers for
the Church as well as printers. As I learned from
the fascinating books of Andrew Pettegree [2, 3],
some monasteries were ordering from printers and
selling to sinners hundreds of thousands of generic
indulgences as soon as the technology to do so be-
came available. The closest modern analogue may be
the claim that pornographic movies drove the rapid
growth of VCR and, later, DVD players.

The Lutheran Revolt of the early 16th century
against the excesses of the Church did not hurt print-
ers, as they worked overtime to bring forth the vo-
luminous tracts generated by the religious conflict.
(One must bear in mind that the first newspaper did
not appear until 1605.)

Given the importance of printed media in that
period, it is not surprising that much talent coalesced
around the technology, and the fonts developed dur-
ing that brilliant advance are, in my opinion, some of
the most appealing ever created. They are referred
to now as “old-style” or Garalde in honor of Aldus
Manutius and Claude Garamont [Garamond].

Gutenberg worked with fonts that we now call
Blackletter, which remained the dominant typeface
in the German countries through the first part of the
20th century. Caxton, the first English printer to
use Gutenberg’s technology, apprenticed in Belgium
and set up the first printing house in England in
1476, and also used Blackletter exclusively. The
first Roman font was developed by Nicolas Jenson
of Venice, then the dominant commercial center of
Europe, in the 1470s. Twenty years later, there ap-
peared one of the great figures in publishing history—
Aldus Manutius, also of Venice. Among other inno-
vations, his company, the Aldine Press, invented the
pocket book, italic type, greatly reduced the cost of
books, standardized punctuation (introducing the
semicolon), redefined book layout, and, through its
“punchcutter” Francesco Griffo, whom we would now
call a type designer, made a beautiful Roman font for
the short book De Aetna by the poet Pietro Bembo,
who became a major literary figure in the Italian Re-

naissance— lover of Lucrezia Borgia, major influence
in standardizing the Italian language, creator of the
madrigal form, and later, Cardinal of the Church.
(The love letters between him and Lucrezia Borgia
were considered by Lord Byron to be among the
“prettiest” ever penned.) Modern revivals of the font
used for De Aetna usually involve the name Bembo,
though the basic free version is called Cardo, an
obvious contraction of Cardinal Bembo. The fairly
recent fbb package is based on Cardo, but with many
changes—the ancient glyphs were stripped out, a
kerning table was constructed for the Roman font,
there being none in Cardo, and a Bold-Italic variant
was created. Glyphs were added in all variants so
that fbb has a full slate of textcomp characters and
figures are available in proportional lining and old-
style as well as tabular lining and oldstyle. Small
Caps are provided in all variants. (Cardo had small
caps only in Roman, regular weight.)

Sample of fbb:

This is f bb, a free font package similar to Bembo.
It has SMALL CAPS, a fine Italic, and a choice of number
styles such as tabular oldstyle 0123456789.

Fifty years later, in Paris, Garamont introduced
and continued to refine his Roman and Italic fonts,
based initially on the De Aetna font and Griffo’s later
italic. Among the notable changes was the taming of
De Aetna, reducing its ascenders and its over-arching
‘f’, planing off some of its more prickly features and
creating more elegant capital letters. The remarkable
account of Garamont’s fonts, their origins and influ-
ences, by Beatrice Warde [1] is highly recommended.
It contains, among other things, reproductions of
much of the famous Egenolff-Berner specimen from
1592. The short version is that most Garamond
fonts created in the early twentieth century were in
fact based on later fonts by Jannon (c. 1620), not
Garamont. Stempel Garamond (1925) is an excep-
tion, being based on a copy of the Egenolff-Berner
specimen (see [1]) owned by the Stempel foundry.

By the late sixteenth century, fine printing was
well established in parts of Europe, though not in
England, judging by the mediocre quality of printing
in Shakespeare’s plays published during that period.

Recent Garamonds (URW++ Garamond No. 8,
Garamond Premier Pro, EBGaramond) have followed
Egenolff-Berner and Garamont’s metal punches which
appear to have been passed down to the Plantin
foundry in Antwerp.

LATEX now has a choice of two Garamonds:

• garamondx is an extension of Garamond No. 8,
adding small caps and oldstyle figures in both
weights and both shapes. Because of the license,

Recent additions to TEX’s font repertoire

136 TUGboat, Volume 35 (2014), No. 2

which is rather permissive but does not allow
charging a fee, it cannot be distributed as part
of TEX Live. Navigate to the url http://tug.
org/fonts/getnonfreefonts for a script you
can download that will install garamondx on
Unix-like systems.

• ebgaramond (regular and italic only, no bold
yet) is a very fine realization of Garamond that
was recently added with LATEX support.

Sample of garamondx:

This is garamondx, an extension of URW++ Gara-
mond No 8. It has Small Caps in all four styles, Italics
and Bold Italics, and a choice of figures in all four styles,
such as tabular oldstyle 0123456789.

Sample of ebgaramond:

This is ebgaramond, a new realization of Garamond
based on the Ebenolff-Berner specimen. It has very nice
Small Caps, a very fine Italic, and a choice of figures in
all four styles, such as tabular oldstyle 0123456789.

Other serifed roman families

Palatino:

Named for the Italian writing master Giambattista
Palatino, and inspired by Italian Renaissance fonts,
Palatino has a larger x-height than typical old-style
fonts and is more readable on-screen. It was one
of the earliest fonts outside the Computer Modern
family to gain TEX support, and remains one of the
best-represented fonts for TEX.

• OpenType:

– TeX Gyre Pagella + Asana Math;

– TeX Gyre Pagella + Pagella Math.

• PostScript:

– newpxtext + newpxmath;

– TeX Gyre Pagella + newpxmath;

– mathpazo (text and math), fewer features
than the preceding;

– eulervm as math can be used for a more
informal appearance.

• Kpfonts (complete text and math) is based on
URW++ Palatino clones, but has its own distinc-
tive, light appearance.

Times:

Many choices are now available.

• OpenType:

– STIX (text + math), and its unofficial ex-
tension XITS;

– TeX Gyre Termes + STIX math;

– TeX Gyre Termes + Termes Math.

• PostScript:

– newtxtext + newtxmath/STIX;

– TeX Gyre Termes + newtxmath/STIX;

– STIX (text and math).

• STIX math has an unparalleled collection of
mathematical symbols and alphabets matched
to Times;

• STIX text fonts, as of version 1.1, lack some
of the features of packages such as TeX Gyre
Termes and newtxtext, but more is promised
for 2.0.0 (http://stixfonts.org);

• the main difference between TeX Gyre Termes
and newtxtext is that the latter has an option to
use oldstyle figures as the default in text mode;

• MathTime (commercial but reasonably priced)
is still a worthwhile Times-based math package
with symbols generally lighter than STIX and
having a number of features distinct from STIX;

• older choices such as mathptmx have now out-
lived their usefulness.

Libertine:

LinuxLibertine is no longer new, but has undergone
many fairly recent changes. It works well with the
math package [libertine]newtxmath. In my opin-
ion, this is an excellent choice for both screen and
print. A number of recent math e-publications have
used this combination.

Sample of libertine:

This is LinuxLibertine. It has Small Caps, Italic,

and a choice of number styles such as tabular oldstyle

0123456789.

Baskerville:

A “transitional” font (c. 1760), as was Plantin, the
Times precursor. Baskerville (“the English Manu-
tius”), was a master of fine detail, having been in the
furniture finishing business (japanning) for a number
of years. He set out to improve on Caslon, the then-
dominant font throughout England and its colonies.
Baskerville’s fonts, which bear the unmistakable her-
itage of oldstyle fonts, were favorites of Benjamin
Franklin. Many commercial versions are available,
most notably Storm Baskerville Pro. Free versions
include:

• Baskervald (BaskervaldADF) was not designed
with TEX in mind, and requires modifications
to its ligature side bearings, its basic math char-
acter heights, and its kerning tables.

• (OpenType):
Baskervaldx.otf, derived from BaskervaldADF,
works OK with TEX.

• (PostScript):
Baskervaldx + [baskervaldx]newtxmath works
OK. Baskervald[x] lacks the high contrast that
gives Baskerville its distinction as a print font,

Michael Sharpe

TUGboat, Volume 35 (2014), No. 2 137

and when scaled up to an x-height that matches
the italic, it becomes a rather heavy Roman
font.

• GFSBaskerville— for Greek, not Roman use.
• LibreBaskerville— lacks Bold Italic, and is de-

signed as a web font, with larger x-height, larger
counters and wider spacing than fonts intended
for print output.

Sample of Baskervaldx:

This is Baskervaldx, a font similar to Baskerville.
It has Small Caps, Italic, and a choice of number
styles such as tabular oldstyle 0123456789.

Utopia:

The design goals for Utopia seem to have been to
avoid any trace of old-style ornamentation, and in
this Adobe has been very successful. The font looks
quite austere, with tightly packed letters and, in my
opinion, overly small inter-word spacing.

Adobe donated the four basic PostScript fonts
to the X Consortium in 1992, though the terms of
the license were not clear. In 2006, it was rereleased
to the TEX Users Group under clarified terms which
allow modification and redistribution provided no
name trademarked by Adobe is used.

• Fourier (Utopia text, fourier math) will make
use of full (expert, Adobe) Utopia, if available.

• MathDesign [utopia] (Utopia text, MathDe-
sign math) can also use expert fonts from Adobe.

• The ADF Venturis fonts are based on Utopia.
• An extension of the (free, basic part of) Utopia
by Andrey Panov, dubbed Heuristica (Evris-
tika), is available now from CTAN, TEX Live
and MiKTEX along with LATEX support files.
(The OpenType Heuristica fonts there have been
modified, adding a number of lookup tables, so
that they are parsed better by otftotfm and
should work much better with fontspec.) It
has added ligatures, oldstyle and superior fig-
ures and Roman small caps, and can be used
with matching math via [utopia]newtxmath.
(Fourier and MathDesign cannot currently use
the Heuristica extensions, being tied to Adobe’s
organization of Utopia Expert.)

• The LATEX support files for Heuristica now con-
tain an option to set the factor by which to
multiply the inter-word spacing, \fontdimen2.
The default value is 1, and the value 1.2 is sug-
gested as a starting point.

• As of version 1.04, a sinf lookup has been added
for subscript figures, superior letters have been
added to each font and the sups lookups have
been extended to cover letters so that French
abbreviations like Mme are available.

Sample of Heuristica:

This is Heuristica, an extension of Utopia. It has

SMALLCAPS, Italic, and a choice of number styles such

as tabular oldstyle 0123456789.

Charter:

Bitstream contributed their four basic Charter fonts
to the X Consortium under a very liberal license,
and they have been available in TEX for many years.
Their low contrasts, high x-heights and use of piece-
wise linear outlines where possible may make them
interesting again as fonts that will render well on
small devices and perhaps projected slides. (It’s
worth noting that their designer, Matthew Carter,
created Georgia for Microsoft. It is widely considered
to be one of the clearest serifed fonts for viewing on
screen, and bears a number of similarities to Charter,
though the latter is heavier.)

The XCharter fonts add superior figures and
small caps in all styles, plus oldstyle figures (propor-
tionally spaced only) with options to select the form
of ‘one’— oldstyle gives you 1 (the default if no
option is specified) and oldstyleI gives you 1. The
original Charter fonts had some idiosyncratic kerning,
especially with P-comma, P-period and P-hyphen.
These have now been corrected in all styles.

Sample of XCharter:

This is XCharter, an extension of Charter. It has

Small Caps, Italic, and a choice of number styles such

as proportional oldstyle 0123456789.

Typewriter fonts

The courier font that has long been available on
CTAN is too light and too spread out for any use
I can imagine in TEX, except to generate examples
of what not to use. There are now several choices
that are more attractive than you might expect for a
monospaced font. Most are not new, but have been
renovated recently so may appear new to you.

Serifed Typewriter Fonts:

• The zlmtt package provides access to all fea-
tures of TeX Gyre Latin Modern Typewriter, a
very substantial extension of cmtt. Best suited
to lighter Roman fonts, though it can be scaled
to be a better match up for some heavier Roman
faces. The fonts themselves have been described
thoroughly by Will Robertson in [4]. Small

Caps are available in regular, upright only. The
font does have a bold variant, but the boldness
is almost imperceptible due to the design goal of
keeping the widths of bold glyphs the same as
those in regular weight. The individual pieces
are regrettably inconvenient to access through
the lmodern package.

Recent additions to TEX’s font repertoire

138 TUGboat, Volume 35 (2014), No. 2

A sample of text using lmtt and its

bold variant.

• The newtxtt package is built on an enhanced
version of the typewriter fonts from the txfonts
package, with the addition of several choices of
forms for ‘zero’. The fonts are of the same width
as cmtt, but are heavier and taller, matching
Times weight and size. Small Caps are avail-
able in upright shape only. The newest version
of the package has an option to reduce the inter-
word space, so that, while it is no longer mono-
spaced, it looks better for blocks of text that do
not need to be aligned letter by letter.
A sample of text using newtxtt and its

bold variant.

Sans Serif Typewriter Fonts:

Two good packages are now available.

• Inconsolata--zi4 is an extension of the origi-
nal Inconsolata package by Karl Berry, offering
regular and bold weights, a choice of styles for
‘zero’, ‘l’ and quotes. It is based on an extension
of Raph Levien’s fine Inconsolata fonts, which
are not dissimilar to Microsoft’s Consolas.
A sample of text using inconsolata and its

bold variant.

• The beramono package is based on Bitstream’s
Vera Sans Mono. All glyphs are unmistakable.
It is available only in T1 and TS1 encodings.
The more recent DejaVu Sans Mono package is
a further extension with many more encodings
and accented glyphs.
A sample of text using beramono and its

bold variant.

Sans serif fonts

There are now several choices of (proportionally
spaced) sans serif fonts available to TEX users, among
the more recent being cabin (similar to Gill Sans),
raleway and SourceSansPro. As fonts of this type
are frequently made available in a multiplicity of
weights, their support files can profit from use of
the mweights package that allows you to choose
which weight will be called “regular” and which will
be called “bold”, independent of the corresponding
choices for roman and typewriter.

Sans serif fonts are often used to render slides,
as their simpler geometry is usually less corrupted
by rasterization than serifed fonts. They are in many

cases poor at distinguishing homoglyphs such as
upper case ‘i’, lower case ‘el’ and the lining figure
‘one’ [5]. This makes their use for file names prob-
lematic. In much the same way, it can be difficult
to distinguish a sans serif proportional glyph from
a sans serif typewriter glyph, and if both are used
to indicate distinct objects (e.g., sans serif for menu
items and display items in a computer program, tt
for file names), then confusion is quite possible. (If
you use sans serif for headings, as in German typog-
raphy, and only for headings, this is not an issue.)
If you make serious use of sans serif for other than
headings, it may be wise to choose a serifed type-
writer font even though your eye may wander to sans
serif typewriter.

Note one peculiarity of cabin if you use it for
email addresses, as in person@example.org—that
white-on-black @ is unfortunate and the font would
benefit from an alternate, black-on-white, symbol.

Further

For an expanded collection of descriptions and sam-
ples of many of the fonts mentioned above, see
http://math.ucsd.edu/~msharpe/RcntFnts.pdf.

References

[1] Beatrice Warde, writing as “Paul Beaujon”.
The “Garamond” types, sixteenth and
seventeenth century sources reconsidered.
The Fleuron, pp. 131–179, 1926. http:

//www.garamond.culture.fr/kcfinder/

files/3_3_4_article_beatrice_warde.pdf

[2] Andrew Pettegree. The Invention of News: How

the World Came to Know About Itself. Yale
University Press, New Haven, 2011.

[3] Andrew Pettegree. The Book in the Renaissance.
Yale University Press, New Haven, 2014.

[4] Will Robertson. An exploration of the Latin
Modern fonts. The PracTEX Journal, 2006-1,
2006. http://tug.org/pracjourn/2006-1/

robertson/robertson.pdf

[5] Charles Bigelow. Oh, oh, zero! TUGboat 34:2,
pp. 168–181, 2013. http://tug.org/TUGboat/
tb34-2/tb107bigelow-zero.pdf

⋄ Michael Sharpe

http://math.ucsd.edu/~msharpe

Michael Sharpe

TUGboat, Volume 35 (2014), No. 2 139

Experiences converting from PDF-only

to paper

Jim Hefferon and Lon Mitchell

Abstract

Offering a textbook for free download has become
common. With the growth of on-demand printing,
adding a paper option is an easy way to distribute
the work in a format that some users prefer. We
will give an overview of today’s landscape of print
on demand and discuss some differences in delivering
works in the two media.

1 Background

The text Linear Algebra1 by the first author has
been available since 1996, with LATEX source, un-
der a license that is Free, in this case either the
GNU Free Documentation License (GFDL) or Cre-
ative Commons CC-BY-SA. It covers a standard US

first course, has extensive question sets with worked
answers for every question, and is supplemented by
classroom beamer slides and a lab manual. In elec-
tronic form it is widely accessed; during the aca-
demic year it has 30K–40K downloads per week. In
the past it has only been available online but it is
now also offered as a paper version. The experience
of that addition is detailed here.

Until now, to get paper copies to students an
instructor would download a PDF, make a master
copy, produce bound copies of that, and then stu-
dents paid to defray the cost, usually at their college
bookstore.

This model has implications. First, it suggested
that the page size should be US letter, 8.5×11 inches,
since that is the most convenient form for printing,
copying, and binding here in the US. Second, typi-
cally instructors would use a black and white printer
so the book design couldn’t be ambitious with color
(hyperlinks are in blue, which prints to a dark gray).
Finally, print resolution was an issue. In 1996 print-
ers were typically 300 dots per inch. That is low
enough that some shading and graphics vanished so
illustrations had to limit those. Another impact of
the low resolution is that, since in this model stu-
dents got copies of copies, Computer Modern char-
acters often had dropouts, particularly in subscripts
or superscripts. Consequently the book style was
switched to use Concrete, with Euler for math.

Thus, even with a distribution model that was
online-only, printer capabilities influenced book de-
sign decisions.

1 http://joshua.smcvt.edu/linearalgebra

2 Desire for paper

Through the almost twenty years the book has been
available, requests for paper copies have come in
regularly.2 Some came from self-studiers who were
simply used to a certain format. More worrying
was that sometimes instructors who were potential
adopters said that they would not use the text be-
cause of the hassle of having it printed.

Despite those requests, the prospect of dealing
with bounced checks, return copies, and lost-in-the-
mails kept the book officially available online only.

3 Publishing

Those who lay out their own text using TEX and
post the result for free download on a website have
provided (in a basic way) two of the main services
historically provided by publishers: typesetting and
marketing. Although many books produced this
way could benefit from additional effort and advice
in both areas, TEX and the Internet can make self-
publishing feasible and attractive.

A print edition requires a printer, distribution,
and retail (all of which are disjoint from what typi-
cally defines a publisher: owning an ISBN). Multiple
companies now offer the convenience of a combina-
tion of two or all three, but beware those who would
also bundle in other services such as marketing or
book layout; such services, if needed, are almost al-
ways better when acquired separately. Perhaps the
most important caveat is that companies that offer
all three services may also act as the publisher (be-
cause they own and provide the ISBN). This is not
necessarily bad, as it can save time and effort, but
it will mean that you may lose control over some de-
cisions normally made by a publisher, such as those
discussed below.

Publishers choose a list price and a ‘discount’
for each title. Retailers pay the list price less the dis-
count, and publishers must pay the print cost and
distribution fees from this revenue. The industry
standard discount is 55%, but some distributors will
allow less. Smaller discounts can discourage retail-
ers from carrying your title. For many years, on-
line retailers and university bookstores seemed con-
tent with discounts as low as 25%, but that may
be changing. This is particularly unfortunate as the
higher costs of print on demand (when compared to
offset printing) are amplified by higher discounts.

2 Studies suggest up to 75% of students prefer a
paper copy: http://www.studentpirgs.org/reports/

cover-cover-solution

Experiences converting from PDF-only to paper

140 TUGboat, Volume 35 (2014), No. 2

In our opinion, the ideal print edition of a Free
book should have a (very) low price, be easily avail-
able to college bookstores and sold by multiple on-
line retailers, and require little or no effort of the
author beyond initial setup. Unfortunately, to the
best of our knowledge, there is not currently an easy
way for an author working alone to achieve all of
these simultaneously. There is a great need for a
new model in the book business that is attuned to
open-source projects, but that business is dominated
by a few large companies and change seems far off.

With Linear Algebra, using a “low-profit” com-
pany (L3C) created by the second author to act as
the publisher, we have achieved (for the moment)
each of the three goals above.

4 Why do it yourself?

The GFDL has a fascinating premise, providing spe-
cific language that allows anyone to publish your
book. This turns the usual relationship between
author and publisher around—anyone can grab a
GFDL-licensed work and offer a version for sale, in-
cluding a print version. That has happened a num-
ber of times with Linear Algebra. This may be at-
tractive to authors who would like to have a print
edition but would rather not have to do any of the
work. The GFDL may not be to everyone’s liking,
however, as it does not place many limits on what
the publisher can and cannot do; for example, previ-
ous print versions of Linear Algebra offered for sale
have not been updated when the online text has
been updated. One could easily adapt a more re-
strictive license to a similar function by offering spe-
cific exceptions to reputable potential publishers.

If you are interested in having your work pub-
lished in this way, you can be of great help to poten-
tial publishers in your use of TEX. For example, it is
likely a publisher will need to reformat your work to
an industry-standard page size; using already pro-
vided descriptive commands (such as \emph instead
of \textit) and/or providing new commands that
can easily be redefined in the preamble (such as a
\beforeexercisesskip instead of a \medskip) is
highly recommended.

Open source books need not be new material;
if you own the copyright to an out-of-print book (or
can acquire it from the publisher), you can make a
quality contribution to this growing movement.

5 Money

With reputable printers, costs are significantly less
for industry-standard book sizes. The original size
of Linear Algebra, US letter 8.5 × 11 inches, is not
standard in printing, and is expensive. Lower-level

textbooks often have a larger page size than upper
level ones, so we went with one of the larger stan-
dards, 7.5×9.25 inches. One advantage of this size is
that we can retain LATEX’s default text width and so
downloaders have the option to print onto US letter.

We had some other costs: setup fees, an annual
listing fee, and ISBNs. (Traditionally, if two copies
of a book had the same ISBN then a buyer could
depend on them being substantially the same, so
any major or even many minor changes in a book
should trigger a new ISBN.)

On the revenue side, having a little extra from
each copy helps with things like being able to display
and distribute free books at the Joint Math Meeting.
In any event, rounding up to the nearest multiple of
five is safer than rounding down.

Note that with a GFDL book, anyone could un-
dercut the price. However, most readers interested
in the book go to its web page, which points to the
official paper edition. The price of that is so reason-
able that we don’t see users looking for a non-official
(and possibly outdated) version.

The takeaway is that we used Ingram’s print on
demand service at a $20 list price, which splits into
(about) thirds for printing, the retailer, and us.

6 The outside

Coming out with a paper copy seemed to call for giv-
ing it a nice cover. With print on demand services,
the cover is uploaded as one file that shows the front,
back, and spine. Any revision that adds or removes
pages changes the size of the spine (Linear Algebra’s
498 pages yield a spine of 1.001 inches). This means
that an author should create the cover using a pro-
cess that is easily redone. In this case, the elements
in the cover file were arranged in a LATEX picture

environment to get exact locations.
There is no printing on the inside of the cover.

Consequently the driver file book.tex got a flag so
that if the PDF is for paper then it makes an extra
inside sheet, a title page, whose back is the page with
the list of symbols. (This flag also prints hyperlinks
in the book’s body in black instead of the electronic
PDF’s blue.)

Traditionally the back cover has some market-
ing text, which is a challenge to write for an aca-
demic unused to selling. The ISBN and bar code go
there also, in a box about an inch tall.

6.1 Art

The main difficulty with the cover was not techni-
cal. Getting a capable person to execute a graphic
proved to be hard. For example, a colleague in Me-
dia Studies recommended a talented student who

Jim Hefferon and Lon Mitchell

TUGboat, Volume 35 (2014), No. 2 141

seemed interested and agreed to produce it for a
fair price. But it never appeared. After a half dozen
such episodes, out of embarrassment at how long it
was taking, ten minutes spent in Asymptote draw-
ing the planes and a half hour spent on Kuler3 gave
the result below.

7 The inside

Here are the basic dimensions.

\usepackage[papersize={7.5in,9.25in},

textwidth=345pt,

inner=.8in,

top=.85in, bottom=.85in,

headsep=12pt,

bindingoffset=0.4in,

]{geometry}

The top and bottom setting squeezes more lines on
a page. The more pages there are, the more the
binding will use up page space, so the inside margins
needed to be set a little larger.

Repaginating took a long time. The microtype
package helped with linebreaks, and forbidding wid-
ows and orphans along with using \raggedbottom

helped with page breaks. But each page required
individual attention, including some rewriting.

7.1 Lurking culprits

At the first submission, besides the binding margin
there was only one thing to fix: a non-embedded
Type 3 font somewhere in the document. The pro-
gram pdffonts gave a page number. The only sus-
picious things there were two graphs from Sage.

Some spelunking4 revealed that Sage required
passing to the plot the parameter typeset=latex.

3 http://kuler.adobe.com
4 http://trac.sagemath.org/ticket/14664

With that, the fonts were embedded and the print
on demand technical requirements were satisfied.

7.2 Shades of gray

The major issue remaining in the text is that many
of the illustrations use shaded lines. One example
pictures the linear map h(x) = x+ y from the plane
to the line. The text has three drawings: first, a vec-
tor from the line x+ y = w1; second, another vector
from the line x+y = w2; and finally, the vector that
is the sum of the two, drawn as ending at the line
x+y = w1+w2. Each of the three gives its vector in
normal face with the associated line shaded. In the
PDF a level of 0.85 gray seemed visually right (this
is mostly white, with fifteen percent black). But on
the printed page this sometimes came out too light,
to the point where it was nearly invisible.

To bring out the lines on paper without com-
promising the online version, the illustrations were
adjusted to make the lines thicker and to have the
darkness 0.70. (A few illustrations in the book used
this darkness level and it seemed to print fine.) How-
ever, even with this change, in the current paper
version of the text some lines are too light and the
quality of the illustration suffers. An author consid-
ering this issue may want to go with dashed lines,
or some other larger stylistic change.

7.3 In print, mistakes look really bad

The book has been available for twenty years and
there have been any number of corrections of typos,
and some errors of fact as well. That was routine.
But when the paper version came from the printer
with a glaring error, it was startling. (A LATEX
picture environment was picking up a \setlength

that had not been put inside a group and so the en-
vironment was three times the size of the page.) The
next PDF sent to the printer got very close scrutiny.

8 The result

The book is now available at the usual online retail-
ers and can be ordered at wholesale pricing by col-
lege bookstores from Ingram’s catalog. The down-
load page gives a link. This answers the requests
that have come in over the years, without requiring
any book-toting by the author.

⋄ Jim Hefferon

Saint Michael’s College

jhefferon (at) smcvt dot edu

⋄ Lon Mitchell

Orthogonal Publishing

l3c (at) orthogonalpublishing dot com

Experiences converting from PDF-only to paper

142 TUGboat, Volume 35 (2014), No. 2

Texinfo visits a garden

Joseph Hogg

Abstract

Texinfo [6] offers PDF, HTML, and Info output for-
mats from a single source file. This feature appealed
to me because I wanted to produce both HTML and
PDF files to describe the plant list for the Hunting-
ton’s Herb Garden in San Marino, CA. Although
used primarily to document GNU software, Texinfo
offers a simple framework for publishing enumerated
lists that can be manipulated with shell scripts to
provide information about 400 plants in 25 beds in
this one-quarter to one-half acre garden.

1 Introduction

The Herb Garden (Figure 1) is one of the smaller
gardens at the Huntington Library, Art Collection,
and Botanical Gardens located in San Marino, Cal-
ifornia (huntington.org). There is a Curator and
full-time Gardener for the Herb Garden. In addition,
about 60 docents and volunteers help maintain the
Garden and interact with visitors. I have been a
volunteer in this Garden for about five years.

There have always been plant lists for the Gar-
den, but the mix of plants changes by season and a
greater variety of plants is being introduced. Having
an up-to-date plant list helps docents and volunteers
learn the Garden and be able to inform visitors on a
plant’s identity, history, and uses.

2 File formats and file hosting

I initially thought an HTML version of the plant list
would give users access to the plant list in a familiar
web interface and the printed PDF version would be
available in the Garden. I later learned that a web
server hosted at the Huntington was not available
for volunteers to upload files, but hosting PDF files
for docents and volunteers has been available for
several years. Huntington staff uploads PDF files as
needed. Today, docents can view the PDF file on the
Huntington’s Volunteer web site, hard copy in the
Garden, and look at the PDF file on their tablets or
smart phones. I send the Plant List to docents and
volunteers in an email attachment.

3 Texinfo: Simple markup,

full-featured documents

In addition to the multiple output formats possible
from a single source, another attractive feature of
Texinfo is the simple markup scheme. Enumerated
lists, @enumerate, are used in every bed. Each item
in the list uses @item for a list item, @i{italicized
botanical name}, and @uref{web link} for each

Figure 1: Herb garden map

of the approximately 400 plants on the list. Common
names and family names are not italicized for plants.
A plant’s names, family, and web links are placed
on the same line. This is important for the shell
scripts I wrote since counting plants is equivalent
to counting lines. A table of contents, @contents,
with entries from @chapter or @unnumbered, and an
index, @printindex, are similarly straightforward.

With a list of plants done, I wondered how many
there were in the list and how many were distinct
in the Garden, which has 25 beds containing some
duplicates. A botanically distinct plant appears only
once in a list of plants for a specific bed even though
its copies in that bed are indicated on a map drawn
in Inkscape [4]. For example, there are two Bay trees
in the Culinary bed and two in the Dye and Fiber
bed. We count only one of them in each bed and
only one as a distinct plant summarizing across the
Garden. Since we captured plant families, I wanted
to know how many families were represented in the
Garden and how many distinct plants were members
of each family.

4 Plant list summary

Attempting to answer these questions by manual
counting would be error-prone and tedious. But
writing a shell script [2] to calculate this information
directly from the Texinfo source file was a matter
of applying classic Unix tools [5] and piping them
together to process each line in the Plant List. I was
surprised by the results.

Joseph Hogg

TUGboat, Volume 35 (2014), No. 2 143

Figure 2: Bed 16 Liqueur page, output

In the Preliminary Plant List of July 15, 2014,
there are 394 plants in the list of which 333 are
distinct. These 333 distinct plants are distributed
among 59 plant families. Five of these plant families
contain 63 percent of the distinct plants in the Gar-
den. They are the mint, sunflower, rose, geranium,
and nightshade families. This represents a concen-
tration of plants probably typical of herb gardens
with their emphasis on edible, scent, and medici-
nal plants. Equally surprising to me was that 28
of the 59 families contain only one distinct plant.
For example, the Henna Tree, Jojoba, and Caper
bush. This represents diversity in the Garden. This
concentration and diversity of plants gives docents
many opportunities to develop histories, stories, and
plant relationships to inform and entertain visitors.
Each plant in the list has one or two web links that
docents can use as starting points for developing
their own information.

5 Web links

In an early discussion with the Gardener about re-
quirements for this list, we talked about adding a
few sentences about some of the plants. This had
been a feature with plant lists in the past when
web access was limited and resources like Wikipedia
(en.wikipedia.org) and Plants for a Future (www.
pfaf.org) were not available. Trying to maintain
these comments in a changing plant list seemed like
a headache for both the Gardener and me. Besides,
the authors at Wikipedia and Plants for a Future are

@node Liqueur (16)

@chapter Liqueur, south

@image{./graphics/16_liqueur070114, 4in, }

@sp 1

@enumerate

@item Wood Rosemary, @i{Rosmarinus officinalis} ‘Wood’,

Lamiaceae, @uref{http://www.pfaf.org/..., pfaf}, ...

@cindex @i{Rosmarinus officinalis} ‘Wood’ (Rosemary, Wood)

@cindex Rosemary, Wood (@i{Rosmarinus officinalis} ‘Wood’)

@cindex Lamiaceae (Mint family)

@cindex Mint family (Lamiaceae)

@item Clary Sage, ...

...

@item Centennial Hops, ...

...

@end enumerate

@sp 1

@noindent Updated July 1, 2014

Figure 3: Bed 16 Liqueur page, Texinfo source

already knowledgeable, filter the information they
present, and update their pages regularly.

6 Index

The Texinfo manual offers advice on creating indices
that will be useful for a variety of readers. Many
persons know a plant’s common name, but not its
botanical name, and may not know its family. Fur-
thermore, a variety of common names may be used.
In this Index, a plant’s botanical name and common
name are cross-referenced as are the plant’s family
name with its common name if it has one. That’s
four index entries for each of about 400 plants. Edi-
torial judgment is also needed when redundancy in
an alphabetized index is caused by the similarity of a
common name and its botanical name, for example,
Jasmine and Jasminum.

A shell script [3] is one way to reduce this effort,
while adding accuracy and consistency. Since both
botanical, common, and family names are available
in the line describing each plant, it is, in theory, easy
to create four index entries and write them directly
into the Texinfo source file. Exceptions need to be
made for names that are similar, or that have unusual
common names (Vick’s Plant, Jupiter’s Beard). Each
time the plant list is revised, I run the script to create
index entries. Since this script takes the names from
the list item, it is important to check for spelling
errors that would ripple through the main document
and Index. Figure 2 shows the page in the list about
Bed 16 Liqueur, and Figure 3 the corresponding
Texinfo source (abridged), after the index entries
have been added.

Texinfo visits a garden

144 TUGboat, Volume 35 (2014), No. 2

7 Plant ranks

The Plant List Summary offers a glimpse into family
memberships. That suggests that we should pub-
lish a list of all the plant families, the genera in
each family, and the species in each genera. This
information is already available in the @item line,
but needs to be consolidated in its own hierarchy.
The Unix sort utility organizes the hierarchy alpha-
betically, but Texinfo markup needs to be added
to indicate sections and subsections. Again, a shell
script works through the sorted plant hierarchy to
add @section and @subsection markup and then
writes this revised hierarchy to a file. This file is
then integrated into the Texinfo source file with an
@include statement before the Index.

Making the taxonomic hierarchy accessible raises
awareness of relationships in the Garden and can help
docents summarize information they provide to visi-
tors. At a recent docent and volunteer meeting, one
of the docents talked about the uses of plants in the
ginger family. And, many docents are pleased to
know that madder, dyer’s woodruff, gardenia, and
coffee are in the same family (Rubiaceae).

8 Hybrid plants

The Chicago Manual of Style [1] recommends using
the mathematical times symbol to identify a hybrid
plant, as in Sweet Lavender or Lavandula × hetero-

phylla. In earlier versions of the Plant List, I used the
familiar lower case roman ‘x’. I was able to change it
to the × symbol in the Texinfo source file, but could
not get it to appear in the Index. How to do this
turned into a question to Karl Berry by email and
Karl replied with a TEX macro that worked. This ad-
justment to hybrid plants in the source files, Texinfo
and plant ranks, is done with a one-line sed script
after the other scripts have been run and just before
processing the Texinfo file to PDF output. The ty-
pographical quality of the Plant List has improved.
Thank you Karl.

9 Recap and next steps

The Gardener for the Herb Garden selects plants,
supervises volunteers, and interacts with docents,
volunteers, and visitors. She revises the designs of
various beds as the Garden evolves. The diversity
of plants and ongoing changes to the Garden make
an accurate plant list an asset for the Curator, Gar-
dener, docents, volunteers, and visitors who often
ask for help identifying plants and are interested in
the history and uses of these plants. Each of the

25 beds in the Garden contains plants used for a
particular purpose, for example, perfume, dye and
fiber, cooking, and medicine.

Each of these 25 beds appears in the Plant List
with a diagram showing the location of each of the
plants growing in that bed. The diagram is produced
in a SVG format in Inkscape and then imported by
Texinfo as a PNG graphic file and placed at the top
of the PDF page for that bed.

Before this project, the Plant List was the re-
sponsibility of the Curator or the Gardener. This
project has been a productive effort between a Hunt-
ington staff member and a volunteer. The Gardener
has told me she would like to take over the mainte-
nance of this list and I will work with her over the
next year to make this transition successful.

The Huntington and the Gardener use MS Win-
dows on their computers. Moving to Windows ver-
sions of Inkscape, Texinfo, and TEX should not be
difficult. I also don’t anticipate difficulties using a
plain text editor for the Texinfo source and entering a
few commands in some shell. The difficulty may come
from having to move the scripts from my GNU/Linux
(Ubuntu) machine to a Windows machine. The Unix-
like environment Cygwin (cygwin.com) is one option.
Another is to rewrite the scripts in Perl.

We will work through these alternatives in the
coming months; comments are welcome.

References

[1] The Chicago Manual of Style, Sixteenth edition,
University of Chicago Press, 2010,
ISBN-13: 978-0-226-10420-1.

[2] Classic Shell Scripting, Arnold Robbins and
Nelson H. F. Beebe, O’Reilly, 2005,
ISBN: 978-0-596-00595-5.

[3] Effective awk Programming, Third edition,
Arnold Robbins, O’Reilly, 2001,
ISBN: 978-0-596-00070-7.

[4] Inkscape. http://www.inkscape.org/en.

[5] sed & awk, Second edition, Dale Dougherty and
Arnold Robbins, O’Reilly, 1997,
ISBN-13: 978-1-565-92225-9.

[6] Texinfo. http://www.gnu.org/software/
texinfo.

⋄ Joseph Hogg

Los Angeles, CA, USA

joseph dot hogg (at) gmail dot com

Joseph Hogg

TUGboat, Volume 35 (2014), No. 2 145

MacTEX design philosophy vs.

TeXShop design philosophy

Richard Koch

I went to the Apple Developer Conference in May,
2000. Developers at this conference were supposed
to receive the release version of OS X, but in the
keynote address, Steve Jobs announced that the new
release would be renamed OS X Public Beta with
a price reduced from $130 to a handling fee of $15.
After the keynote, a knowledgeable friend translated:
“OS X has been delayed by a year.”

As a sop to the audience, Apple held a software
raffle during this conference, the only time I’ve heard
of them doing so. Every developer got something,
but it soon transpired that almost everybody got a
schlocky piece of software on a CD, shrink wrapped
against a flimsy piece of cardboard.

I was looking through this TUG talk and it isn’t
very interesting. So I decided to give each attendee
of the TUG conference a free piece of software.

The schlocky software Apple gave developers in
2000 was a forerunner of iTunes, in the days before
the iPod and all that. I, unfortunately, have nothing
up my sleeve.

1 The Global vs. LocalTeX PrefPanes

MacTEX installs a copy of TEX Live owned by root

in /usr/local/texlive. It also installs a small data
structure by Gerben Wierda and Jérôme Laurens in
/Library/TeX, describing the distribution.

Each year’s TEX Live distribution is in a folder
named by date in /usr/local/texlive. Users can
keep old distributions around, in case a new distri-
bution breaks something crucial. We install a Pref-
erence Pane for Apple’s System Preferences, allow-
ing users to switch between distributions. A switch
changes all GUI apps to use the selected distribution
and also changes the command line so command line
programs use it.

The PrefPane we install selects one distribution
for all users and requires root access. I’m going to
argue that we should have created a Local PrefPane
instead, so each user could choose their own default
TEX distribution and make this selection without
root access. That’s how programs work on the Mac-
intosh. Programs live in /Applications and are
accessed by all users. But each user has personal
Preference settings in ~/Library/Preferences for
these applications. One user’s default Word font
might be Times Roman, while another’s might be
Helvetica Neue.

The LocalTeX PrefPane shown below is such
a Pane; it constitutes my schlocky gift. It can be

installed locally for one user or globally for all users,
but it makes independent choices for each user and
does not require a password. This Pane does not
change any data created by the Global PrefPane, so
it can be used together with the Global Pane, or
when the Global Pane is completely missing.

The first item in the distribution list is always
“Use Global Preference Pane”. Selecting this item ac-
tivates the Global Pane for the current user. The next
items are distributions with TeXDist data structures,
so an individual user can select a different default
than the one chosen by the Global Pane.

Figure 1: Local PrefPane choices

Scrolling down in the list of distributions in the
Pane, we see that the LocalTeX pane can define and
select distributions on external disks, or distribu-
tions installed in a user’s home directory. Although
MacTEX cannot install TEX in such locations, the
native TEX Live install script can.

Figure 2: Local PrefPane supports external disks

Students may find this ability useful when they
use a university-owned machine and don’t have root
access. They can easily install TEX Live on a thumb
drive, carry it with them, and have access to TEX in
all locations.

The LocalTeX pane only shows distributions
that are currently available, so if a thumb drive is
removed, its distribution is no longer listed. Inserting
the drive causes LocalTeX to list it again.

The “Add Distribution” button is used to in-
form the LocalTeX pane about TEX distributions
without a TeXDist structure. It brings up a panel

MacTEX design philosophy vs. TeXShop design philosophy

146 TUGboat, Volume 35 (2014), No. 2

shown below (fig. 3). The “Name” field can be any
desired name, since it will only appear in the Local-
TeX pane. The “Path to Distribution” and “Path to
Binaries” fields can be filled in by dragging appro-
priate locations to the dialog.

Figure 3: Local PrefPane: adding distributions

The “Remove Distribution” button produces
a list of extra distributions which can be removed
one-by-one from those listed by the panel. Only
distributions without a TeXDist data structure can
be removed.

2 Installing and configuring the

LocalTeX Pane

The LocalTeX Pane can be obtained from http:

//pages.uoregon.edu/koch/LocalTeX.zip. Then,
installing the LocalTeX pane is easy: Find and dou-
ble click LocalTeX.prefPane. This brings up a dia-
log offering to install the Pane for all users or for
only one user. Choose “only one user” and the Pane
is installed for the current user without requiring
a password. Or choose “all users” and the Pane is
installed for everyone, but acts as a local pane for
these users; installing this way requires a password.

After the Pane is installed, push the button
“Configure for Local Pane” on the right. This recon-
figures TeXShop, TEX Live Utility, and BibDesk to
use the new Pane. It also reconfigures the shell for
some users, namely those whose home directory con-
tains none of the three “hidden” files .bash_profile,
.bash_login, and .profile. Other shell users can
read the Local Pane documentation.

To return to the Global Pane and stop using
the LocalTeX Pane, push “Configure for Original
Pane” to reconfigure TeXShop, TEX Live Utility,
and BibDesk.

3 How does the LocalTeX Pane work?

The LocalTeX Pane creates three symbolic links in

~/Library/TeX/LocalTeX:

• texroot → directory of the default distribution

• texbin → binaries of the default distribution

• texdist → TeXDist structure for the default
distribution, if it exists

GUI applications should be configured to look for
TEX binaries in ~/Library/TeX/LocalTeX/texbin

rather than in /usr/texbin, the corresponding link
for the Global pane. This is done automatically by
the “Configure for Local Pane” button for TeXShop,
TEX Live Utility, and BibDesk. Reconfigure other
applications by hand. Many applications require a
full path rather than one containing a tilde.

4 No system changes needed

Wierda and Laurens carefully selected the location
for the link /usr/texbin, arguing that Apple would
probably not remove this link. That reasoning turned
out to be wrong, and users who upgrade OS X often
find that they can no longer typeset even though
their TEX distribution remains, because the link is
gone. The location ~/Library is not likely to present
this problem because third party programs use it.

Creating Preference Panes with root access re-
quires dealing with Apple’s often-changing security
framework. The Local Pane is immune to security
concerns. It currently runs on Yosemite betas. It re-
quires Mountain Lion and above, since it uses Apple’s
newer ARC memory protection scheme.

5 Removing everything

If you install the LocalTeX Pane and decide that you
don’t want it, here is how to remove absolutely every
trace from your computer.

• Using the Local Pane, push the “Configure for
Original Pane” button to reconfigure TeXShop,
TEX Live Utility, and BibDesk. If you config-
ured other apps, return them to their original
configuration.

• Move LocalTeX.prefPane from

~/Library/PreferencePanes to the trash.
• Move the folder LocalTeX from ~/Library/TeX/

to the trash.
• Modify your shell startup script to change ~/

Library/TeX/LocalTeX/texbin back to /usr/

texbin.
• The LocalTeX PrefPane stores its local data in
the defaults system of OS X. To remove this
data, type the following in Terminal:

defaults remove \

com.apple.systempreferences \

localTeXExtrasData

6 LocalTeX and MacTEX

Will the LocalTeX preference pane be in a future
edition of MacTEX? No. A choice between two Pref-
erence Panes would confuse most users. Moreover,

Richard Koch

TUGboat, Volume 35 (2014), No. 2 147

it is easy to configure the shell automatically for the
global pane, but user intervention is required to do
this for the Local Pane.

7 MacTEX design philosophy

Now I’ll switch to the topic promised by the title. I
work on the Macintosh in a small pond in the big
TEX world. I wear two hats. I maintain MacTEX,
the TEX install package for the Mac produced once
a year by TUG. I also write, with collaborators, a
GUI front end for TEX called TeXShop.

MacTEX is a “one button” package installing
TEX, Ghostscript, and a few GUI applications. It
presents a familiar interface for Mac users, asks no
questions, and produces a completely configured in-
stallation. The installer was written by Jonathan
Kew in an all-night programming session at the North
Carolina TUG conference in 2005, and willed to me
at breakfast the next day.

Jonathan’s package installed a TEX distribution
by Gerben Wierda, based on teTEX. But around
this time, Thomas Esser abandoned teTEX and told
his users to switch to TEX Live. Gerben produced a
new distribution loosely based on TEX Live, which
he announced at a TUG conference in Marrakesh in
November of 2006. But at that same conference, he
announced that he would immediately end support
for the new distribution. This left us in a quandary
and for several months it was unclear which distri-
bution we would install. I had been attending TUG

meetings since 2001, and oddly, in all that time, Karl
Berry never asked me, “Why don’t you Mac folks
use TEX Live?” But as soon as we switched to it, we
were happy and never looked back.

Here is the philosophy: MacTEX installs a com-

pletely unmodified full version of TEX Live. It is
exactly the distribution used on GNU/Linux, Unix,
and Windows (for those not using MiKTEX). We
would never reach into the distribution and make con-
figuration changes. When someone complains “my
Mac collaborators cannot typeset my code” we get
to respond vigorously, “Sir, it is your fault because
Mac folks use standard TEX Live!”

Collaboration is common in research. Knuth
worked very hard to make TEX produce the same
results on all platforms. We have a responsibility
to make TEX platform-independent. Open source
forever!

(But a small voice: we are in Portland, Ore-
gon, the home of Textures. Barry Smith rewrote
the Pascal compiler for TEX , and then rewrote TEX
to produce absolutely precise synchronization be-
tween source and output, and to support direct use
of Macintosh fonts. His code was proprietary, not

open source. Textures users remember it with great
passion. Every philosophy has a “yes, but . . . ”)

8 TeXShop design philosophy

Perhaps surprisingly, TeXShop has a very different
design philosophy. A front end mediates between the
paradigms of a computer platform and the paradigms
of TEX. I’ll argue that a GUI front end to TEX
should rigorously follow the design standards of the
particular platform it supports and should use the
latest technology on that platform. This is difficult
to achieve if the app supports many platforms.

To understand why, consider the following ex-
change from the TEX on OS X mailing list:

From: Warren Nagourney

I am using TeXShop 2.47 on a retina MBP and have

noticed a slight tendency for the letters in the

preview window to be slightly slanted from time

to time. The slant is enough to make the text

appear italicized, which is annoying.

From: Giovanni Dore

I think that this is not a problem of TeXShop. I

use Skim and sometimes I have the same problem.

From: Victor Ivrii

Try to check if the same distortion appears in

TeXWorks and Adobe Reader: TeXShop and Skim are

PDFKit based, while TW is poppler based and

AR has an Adobe engine.

All three messages are from knowledgeable peo-
ple active in the TEX on OS X list. As the third mes-
sage states, TeXShop and Skim use Apple’s PDFKit
to display PDF files, while Adobe Acrobat Reader
has its own PDF rendering code, and TEXworks uses
poppler to render PDF. And indeed, TeXShop and
Skim have a display problem but Acrobat Reader
and TEXworks don’t.

However, there is a missing ingredient here. The
author of the original message has an Apple portable
with a Retina display. TeXShop and Skim sup-
port the Retina display because they were written
with Apple’s Cocoa language. Acrobat Reader and
TEXworks don’t support the Retina display, so Ap-
ple runs them in “magnify by two” mode. The real
problem is a bug in Apple’s Cocoa Retina code, sub-
sequently fixed. The bug also goes away if you turn
off Retina support in TeXShop and Skim.

If you select “Get Info” in the Finder with a
program selected, you get a panel of information
about the program. That panel is shown below for
TeXShop and Adobe Reader.

The key difference is the option to open in Low
Resolution mode. This is selectable in TeXShop but
is grayed out in Reader. That means that TeXShop

MacTEX design philosophy vs. TeXShop design philosophy

148 TUGboat, Volume 35 (2014), No. 2

by default supports the Retina display, while Reader
does not. In case of trouble, TeXShop can be con-
verted to a mode in which it writes at normal reso-
lution and the Mac magnifies by two, while Reader
always runs in this magnify mode.

Figure 4: About TeXShop

Figure 5: About Adobe Reader

I had a very smart student who now works in
the Portland software industry, so I boasted that
TeXShop supported the Retina display from the start.
But he was too smart, and without skipping a beat
he said “yeah, and how many lines of code did that
take?” The answer is zero.

There are many ways to write GUI apps on the
Mac. If an app is written in Cocoa, then it automat-

ically supports the Retina display. Otherwise not.

9 NeXT at Apple, 1997–2007

Many of you have read the book about Steve Jobs by
Walter Isaacson. It is an interesting book, but has
been criticized for getting the story of NeXT, and its
role in Apple’s second act, wrong. I agree, and here’s
a short version of that story from my perspective.

Apple bought NeXT in December of 1996, a
sale that was finalized in February of 1997. Each
May or June, Apple holds a Worldwide Developer
Conference (WWDC). So in May of 1997, Apple had
to give developers its strategy for using the NeXT

operating system.
At the conference, Apple said that old Macin-

tosh applications would continue to run in a sort of

purgatory called the Blue Box, but new applications
needed to be written in Objective C using NeXT’s
class library, then called OpenStep, later renamed
Cocoa. Among commercial developers, the announce-
ment went over like a lead balloon, and Apple got
no significant endorsement at the conference.

So in 1998, Steve Jobs announced a completely
different strategy. He called this new model “Car-
bon” because, he said, “Carbon is the basis of all
life.” Carbon programs were written in C and C++

using the old Macintosh API, except that about 10%
of the calls were replaced by new equivalents because
the original calls wouldn’t work on a modern multi-
tasking operating system. This made it possible
to start with an old Macintosh program, find the
changed calls using an Apple-supplied script, revise
them, and release the code on OS X. Apple immedi-
ately received endorsements from Microsoft, Adobe,
Wolfram Research, and others.

Many Apple engineers proclaimed that Cocoa
was only for prototyping. At the 2000 developer
conference I attended, the Carbon sessions were held
in the main auditorium packed with thousands of
developers, while the Cocoa sessions were in a small
converted church across the street, attended by 35
people who all seemed to know each other.

I attended WWDC regularly from 2003 to 2011,
and this pattern continued for several years.

The situation began to change in 2005, when
Apple switched to Intel processors. At WWDC, they
told developers that moving a Cocoa app to Intel
involved a 10 minute recompile, while Carbon tran-
sition would often take a month.

In 2006 the developer conference was postponed
until August. At the conference, Apple gave develop-
ers a preliminary copy of Leopard, the next version
of OS X, promising a release in March of 2007. A
key feature of this release was full 64-bit support
for all of Apple’s important APIs. A key slide of
the keynote explained that “Leopard has full 64 bit
support for Carbon and Cocoa”.

But by June of 2007, Leopard was still not out.
Why not? In January of that year, Apple announced
the iPhone, and Apple engineers were pulled from
the Leopard team to finish the software. Outside
developers couldn’t program the iPhone, so the 2007
conference was essentially a repeat of the 2006 ver-
sion, with a keynote address using the same slides.

There was just one electric moment in 2007.
Unfortunately, I completely missed its significance.
When Jobs came to the slide promising “full 64 bit
support for Carbon and Cocoa”, the slide had been
changed to read “full 64 bit support for Cocoa”. Lots
of developers noticed, and they mobbed Apple engi-

Richard Koch

TUGboat, Volume 35 (2014), No. 2 149

neers during the lunch which followed the keynote.
It rapidly became clear that Carbon was deprecated.
Apple work on it had ceased.

So by 2007 Apple had the courage, and the
prowess, to kill Carbon and throw its support totally
behind Cocoa. Behind the scenes, they knew that
both the iPhone and the as-yet-unannounced iPad
could only be programmed in Cocoa. From 2008
on, there have been no Carbon sessions at WWDC.
Commercial developers were among the last to switch
to Cocoa, and some of their apps are still in Carbon.

During these turbulent times I was oblivious to
the drama. TeXShop was written in Cocoa because
I owned a NeXT machine, but it remained a 32-
bit application. Finally, a few months before Lion,
I made the transition to 64 bits. What I didn’t
know was that dramatic changes were happening at
Apple, and my 64-bit conversion was done in the
nick of time.

10 Fragile base classes and 64 bits

An object is a self-contained collection of code and
data. Its data is referenced by variables known as in-
stance variables and its code is known as methods or
functions. According to a common metaphor, an ob-
ject oriented program contains many objects, which
talk to each other through method calls, and act on
these calls by processing the data in their instance
variables. Cocoa programs are object oriented.

To see how this works in practice, consider the
Cocoa object called NSView. Each NSView corre-
sponds to a rectangular portion of a particular win-
dow. The view has an instance variable pointing
to its window, a second instance variable giving
the coordinates of its rectangular region, and so
forth. Among the methods defined for an NSView is
drawRect, which draws the view on the screen.

When a program uses NSView, the developer
defines a subclass of the view with a name like
myNSView. This subclass has all the instance vari-
ables and methods of NSView, plus any other instance
variables and methods added by the programmer.
But in addition, it can override the original methods
of NSView. For instance, the drawRect method in
NSView does nothing, but myNSView can override
drawRect so that it draws, say, our conference logo.
In this situation, we call NSView the base class, de-
fined in Cocoa, and call myNSView a subclass, defined
by the programmer.

The advantage of all this is that base classes
typically come already connected up. Cocoa calls
drawRect when the window first appears, when a
covering window is moved out of the way, when a dia-
log box goes away, etc. Apple once gave developers

a t-shirt with the text “Don’t call us; we’ll call you”.
The slogan means that the programmer’s myNSView
doesn’t have to worry about when to draw because
Cocoa will tell it when to draw. It just has to draw
the logo when called.

The takeaway is easy: a Cocoa program runs
cooperatively, with some tasks handled by the base
classes in Cocoa and other tasks handled by sub-
classes defined by the programmer.

After object oriented programming appeared,
programmers began to dream of a time when the
system could be improved by just revising the base
classes, without even recompiling the programs. You
could install Mavericks, and suddenly say “wow,
Word never did that before!”

Unfortunately, a barrier stood in the way of real-
izing this dream. The barrier was called “the fragile
base class problem”: when revising base classes, Ap-

ple was not allowed to add extra instance variables or

extra methods to the base class. This was a problem
in Objective C, in C++, in Java, and elsewhere. The
problem wasn’t quite as bad in Objective C as else-
where because that language allowed extra methods
in base classes. But still: no extra instance variables.

When Apple added 64-bit libraries in the Leop-
ard timeframe, they realized that they had a once-
in-a-lifetime opportunity to fix this problem. Since
there were no existing 64-bit applications, every 64-
bit app would have to be compiled from scratch. So
they took the opportunity to make changes to Objec-
tive C when run in 64 bits, including completely solv-
ing the fragile base class problem. Incidentally, they
also made these changes in the iPhone even though
it ran in 32 bits. So Objective C on the iPhone, iPad,
and 64-bit Mac applications is a different beast than
Objective C in 32-bit Mac applications.

After this, Apple rapidly increased hardware re-
quirements for its operating systems. Snow Leopard
required Intel processors, Lion required 64-bit proces-
sors, and Mountain Lion required machines running
the kernel in 64 bits. I believe that the reason for
these policies is not that 64-bit programs run faster,
but instead that Apple can now use all the extra
added properties of Objective C, including adding
instance variables and methods to base classes.

11 Lion remembers window positions

Lion is the first Apple system to make real this great
dream of improving programs by revising the base
classes. Programs written in 64 bits with Cocoa got
crucial added functionality for free, even without
recompiling.

One of the standard requests for TeXShop was
that it remember window sizes and positions when

MacTEX design philosophy vs. TeXShop design philosophy

150 TUGboat, Volume 35 (2014), No. 2

Figure 6: Editing (left) is normal, but past versions are available (right)

quit, and restore these windows automatically when
next restarted. To shame me into working on this,
users told me of other GUIs for TEX which already
had the ability.

Imagine my surprise, then, when I discovered
that TeXShop on Lion got the requested ability au-
tomatically for free.

An advantage of letting Apple do this is that
Apple had second thoughts and slightly modified the
behavior in Mountain Lion and Mavericks. TeXShop
inherited those changes for free. For instance, holding
down the option key changes the Quit menu to “Quit
and Close All Windows”, and if the shift key is down
when opening a program, then old windows aren’t
reopened. These tricks work in TeXShop just as in
all other Cocoa applications.

12 Automatic file saving

Saving window positions is something I could have
done myself if I weren’t lazy. But the second Lion
feature is something I would never have tried on my
own: automatic file saving.

Suppose you are using TeXShop in Lion, you
have several source files open and have made changes
in each. Suddenly you receive an emergency call
and quit TeXShop. You won’t receive pesky dialogs
asking you to save each file; instead, TeXShop imme-
diately quits.

But the next time you open TeXShop, your
(seemingly unsaved) edits will be there.

But wait— there’s more. TeXShop doesn’t just
save when you quit. It saves every five minutes or so.
If you live in a thunderstorm area with frequent power
outages, no need to worry. When your computer
starts up again, all changes you made will reappear.

“Gulp. Every five minutes the computer saves
my 1000 page document?” Of course not. The
program only saves changes, and in five minutes how
much source did you change? In practice, you never
notice the saving process.

“Whoa. When I send a document to someone
else, are all those changes in the document? My
reference letter says ‘works like a dog’, but originally
I wrote ‘even a dog wouldn’t be interested in his line
of research.’ ” Not to worry; files only contain the
latest version.

“But there are so many edge cases where this
scheme could go wrong.” I absolutely agree. Indeed,
I would never dare add automatic saving to TeXShop
myself, or monkey around in any serious way with
the file system. I have always dreaded getting a
letter from a user claiming my program destroyed
his only copy of a proof of the Riemann hypothesis.
But Apple is doing this, with a thousand engineers
testing the code. Their responsibility.

“But wait. Suppose I delete some material, type
an experimental new sentence, and then decide not to
keep it. In the old system, I just don’t save. But with
automatic saving, the new stuff I don’t want may
be part of the document.” The pictures at the top
of this page (fig. 6) show why this is not a problem:
the screenshot on the left shows a document you are
reading while it was being edited; all looks normal.
The right-hand image shows the effect of selecting
the menu item Revert To → Browse All Versions,
with a stack of old versions to work with.

As you see, this feature, called AutoSave, gives
a Time Machine-like view of the document, and we
can retreat to an earlier version, or copy a portion
of an earlier version to the current document. Time
Machine itself need not be running to get this. Any
application with AutoSave activated gets it for free.

Apple has been refining the interface for Auto-
Save. It is intrusive on Lion, less intrusive on Moun-
tain Lion, and less still on Mavericks. I couldn’t live
without it. If your TEX GUI has it, then it works the
same as your other Mac applications.

AutoSave makes many changes under the hood.
One of the most surprising is changes to program
menus. The most controversial is the loss of a

Richard Koch

TUGboat, Volume 35 (2014), No. 2 151

Figure 7: File menu in source code (left) and
as displayed by Mavericks (right)

“Save As. . . ” menu item. I received many email mes-
sages demanding that I put it back. I replied that
it was still present in my code, but Apple removes
it while running the program. My correspondents
found this explanation incomprehensible.

The truth is that Apple automatically modifies
the program’s File menu when AutoSave is turned on.
This is shown in fig. 7. On the left is the File menu
as defined in current TeXShop source code. On the
right is the actual menu as displayed in Mavericks.
As can be seen, the middle section of the menu has
been drastically altered.

After one email exchange on “Save As”, I wrote
what I thought was a brilliant defense of Apple’s
actions, telling my readers to “grow up and go with
the flow”. The next day another user pointed out
that “Save As. . . ” had been restored by Apple in
Mountain Lion. Sure enough, if you hold down the
option key when accessing the File menu, “Duplicate”
changes to “Save As”. Apparently the people on the
mailing list were also writing Apple.

The main point I’m trying to make here is that
for programmers who use Cocoa, solving the fragile
base class problem allows Apple to make surprisingly
many changes under the surface.

After all this, you probably want me to come
clean. To implement AutoSave, how much code did
I write? Well, Apple’s NSDocument object contains
a function called autoSavesInPlace, which returns
NO by default. In TeXShop I override it to return
YES. That’s it. One line gives all of AutoSave.

Lots of collaborators help with TeXShop, pro-

viding features I haven’t mentioned. Today I just
wanted to show what is made possible by adhering
to Apple’s Cocoa standards.

TeXShop doesn’t adopt everything, of course.
It isn’t in the Apple Store because working in a
sandbox would limit its interaction with TEX Live
and third party programs. It doesn’t allow you to
store documents in the Cloud because the Cloud is
only available to applications in the store. But when
an addition makes sense, it will be adopted.

13 Automatic reference counting

One problem with object oriented programming is
that a program can create thousands of objects as
it runs. The program is supposed to throw away
objects after it is done with them; if it doesn’t, then
computer memory becomes clogged and the program
becomes sluggish. On the other hand, objects can
be passed around, so just because one part of the
program is done with an object doesn’t mean that
it isn’t used somewhere else. If an object is thrown
away too soon, the program will crash when another
part of the program tries to use the object.

There are three solutions. The first is to force
programmers to manually handle memory manage-
ment. That is how TeXShop worked until recently,
and it is prone to errors that are hard to find.

The second method is called “garbage collec-
tion”. Apple introduced it in Leopard, but it didn’t
work well on the iPhone.

Then as part of the enhancement of Objective C,
Apple introduced Automatic Reference Counting, or
ARC, the third memory management technique. In
ARC, the compiler automatically adds the code to
handle memory management, without the program-
mer needing to do anything. Since ARC does what a
programmer would do managing memory manually,
some files in a program can be compiled with ARC

and some can be compiled without it.
This spring, I spent several weeks recompiling

TeXShop with ARC, gradually working through the
program file by file. The ARC code first appeared in
TeXShop 3.34 and makes the program much more
stable. A couple of remaining issues are solved in
TeXShop 3.38, released at this conference, and this
version ends the transition to ARC.

Adding ARC support is an example of extensive
work with no immediate gain; no interface changes
are visible. But it is essential work if the program is
to survive for the long run.

⋄ Richard Koch
http://pages.uoregon.edu/koch

MacTEX design philosophy vs. TeXShop design philosophy

152 TUGboat, Volume 35 (2014), No. 2

TEX Live Utility: A slightly-shiny Mac
interface for TEX Live Manager (tlmgr)

Adam R. Maxwell

Abstract

TEX Live Utility is a MacOSX graphical user inter-
face for the TEX Live Manager command-line tool,
tlmgr. I’ll discuss the goals of the program, several
usage examples, and some of the tricky issues in
wrapping a tool in order to make it accessible to
graphical user interface users. Many of these issues
(e.g., error handling and selection of features to ex-
pose) are not platform-specific, so could also be of
interest to non-Mac users.

1 Introduction

The TEX Live Manager was introduced in TEX Live
2008 [4]. It allows users to manage a TEX Live in-
stallation, giving easy access to updates from CTAN

(the Comprehensive TEX Archive Network) for var-
ious packages, and allowing global configuration of
options such as paper size [2]. It has a graphical user
interface (GUI) mode, based on the cross-platform
Perl/Tk toolkit, as well as a command-line tool,
tlmgr.

Although Mac users usually prefer a GUI over a
command-line program, the initial response to the
Perl/Tk interface ranged from tepid to antagonistic.
In general, users felt that it was not “Mac-like”, and
that it exposed more features than users commonly
needed. Following a discussion on the MacTEX mail-
ing list, initiated by Jérôme Laurens in October 2008,
providing a native GUI for MacOSX seemed useful.

The benefit of a native GUI is that it can be
instantly familiar to a user of a particular platform,
and is less likely to require installation of 3rd party
libraries such as Perl/Tk in order to work. Ideally,
this would serve to reduce complaints and pleas for
help from Mac users to the TEX Live team, thereby
insulating them from a vocal and occasionally ob-
noxious subgroup.1

I started work on a trivial program on 6 De-
cember 2008, and had an alpha release ready for
the MacTEX working group the next day. Whatever
your opinion of Apple, their Cocoa frameworks al-
low rapid development of software by doing much of
the work for the developer. After several iterations

1 My fellow Mac users may resent this generalization. How-

ever, it is not uncommon to receive reports from users saying

“You need 25 pixels on the bottom of this window, and you

have 23. Also, your text field in the preferences settings is

1 pixel misaligned at the right edge. See page thus-and-such

of Apple’s Human Interface Guide.” I admit that I have sent

such reports to Apple, regarding their own software.

and feedback on feature requirements, a beta ver-
sion was announced on 30 December to the “TEX on
MacOSX mailing list.2 It was released under the new
BSD license, and initially hosted on Google Code at
http://mactlmgr.googlecode.com. As Google no
longer allows hosting of binary downloads, as of Au-
gust 2014 the project is now maintained on GitHub
at http://github.com/amaxwell/tlutility.

2 Design

The initial list of features was fairly minimal, and
included:

• List/install updates

• List installed packages

• Reinstall tlmgr itself

• Change paper size

Over time, various other features have been added,
but the most frequently used is the update feature,
as far as I know. TEX users on MacOSX tend to be
compulsive updaters and early adopters, for better
or for worse, often updating once a week or even
more frequently. To the TEX Live team’s credit, they
have done an excellent job at providing a reliable
infrastructure for this purpose.

The overall design goals for TEX Live Utility
have always been to:

1. Expose only the most common tasks

2. Give users a consistent (Mac-like) interface

3. Use tlmgr, instead of reimplementing it

4. Give useful feedback for errors

5. Do not require command-line interaction

6. Avoid blocking the GUI with long-running oper-
ations

The architecture of TEX Live Utility has re-
mained largely consistent with the original releases.
I could claim this is due to a great design, but it’s
also due to a certain amount of inertia on my part;
in other words, I’m too lazy to redesign it. Apple
recommends a Model-View-Controller architecture
([1] gives a brief introduction), with logic for these
general tasks split up into separate objects. It uses
the Cocoa frameworks, and is written in Objective-C
(and plain C, as Objective-C is a superset of the C
language). Since MacTEX

3 requires administrative
privileges to install, TEX Live Utility also requires ad-
ministrative privileges to update and change various
options. This is handled via a separate command-
line tool called tlu ipctask, which executes tlmgr with
root privileges and passes its standard output and

2 https://email.esm.psu.edu/mailman/listinfo/

macosx-tex
3 http://www.tug.org/mactex

Adam R. Maxwell

TUGboat, Volume 35 (2014), No. 2 153

Figure 1: The TEX Live Utility main window, with

packages listed for update. Note that the uppermost

package will be automatically removed, as it has been

removed on the server.

standard error back to TEX Live Utility over a Dis-
tributed Objects communications channel.4

The first and last items of the design goals have
driven most of the decisions. Each tlmgr command
that is invoked by TEX Live Utility is encapsulated
in an NSOperation subclass. An NSOperation is an
object which can be enqueued for asynchronous ex-
ecution on a separate thread. This avoids blocking
the GUI thread (“main thread”, in Cocoa parlance)
while waiting for a tlmgr command to finish execut-
ing. Very little data is shared between threads, in
order to avoid locking and reduce complexity.

3 Usage examples

The main window of TEX Live Utility is tabbed, and
the present iteration of the GUI is intended to give a
web browser-style interface to the repository.

3.1 Updates

Figure 1 shows the main window and packages listed
for update; this tab is an interface for tlmgr update

--list and allows you to run tlmgr update foo0

foo1...fooN for specific packages, or tlmgr update

--all to update all packages.

3.2 Packages

Figure 2 shows the second tab of the main window,
which lists all available packages; this tab is an in-
terface for tlmgr list. When a network connection
is not available, TEX Live Utility runs tlmgr list

--only-installed. Actions available from this tab

4 https://developer.apple.com/library/mac/

documentation/Cocoa/Conceptual/DistrObjects/

DistrObjects.html

Figure 2: The TEX Live Utility main window,

with packages listed. Note that binaries for various

architectures are shown via a disclosure triangle.

Figure 3: The TEX Live Utility main window,

with backups listed.

include install, reinstall, and removal of specific pack-
ages. Forcible removal can be accomplished by hold-
ing down the option key and choosing the “Remove
Selected Packages” menu item.

3.3 Backups

The Backups tab shown in Figure 3 gives a listing of
available backups, from tlmgr restore. This allows
the user to select a previous revision of an updated
package. . . one of the most useful features of TEX
Live Manager! The default setting for backups can
be configured via an options sheet, and I recommend
that users keep at least 1–2 versions of packages.
Updates from CTAN can occasionally break packages,
as they’re not tested at all.

TEX Live Utility: A slightly-shiny Mac interface for TEX Live Manager (tlmgr)

154 TUGboat, Volume 35 (2014), No. 2

Figure 4: The TEX Live Utility repository interface,

showing potential hosts.

3.4 Repositories

Managing and interacting with repositories is one of
the more tedious parts of the program. In general,
the CTAN multiplexor5 works quite well, and is the
default repository. It automatically selects a “good”
server for your geographic location, and typically
provides servers that are up-to-date. However, ar-
bitrary servers often have different sync states with
their master CTAN node, so if you run tlmgr update

--list your next call to tlmgr update --all may
use a different server and update a different set of
packages. For this reason, TEX Live Utility uses the
same server for updates as it does for listing them.

Users can also set a default repository, based
on the available CTAN mirrors at the time TEX Live
Utility was released.6 Figure 4 shows the interface
for choosing a repository; this is analogous to the
“Bookmarks” interface in a web browser, and supports
drag-and-drop to/from browsers. Arbitrary reposito-
ries can also be added, in the event that you have a
private mirror or want to connect to an add-on repos-
itory such as http://tlcontrib.metatex.org.

Within the TEX Live Utility main window, you
can choose a specific mirror by typing part of its name
or location (e.g., usa) in the location bar, as shown
in Figure 5. The location bar also offers standard
“Reload” and “Cancel” buttons, and draws a progress
bar during package installation (a user’s suggestion,
inspired by web browsers such as Safari).

5 http://mirror.ctan.org/
6 This list of mirrors is developed by parsing http://www.

tex.ac.uk/tex-archive/CTAN.sites using a Python script.

Figure 5: The TEX Live Utility address bar, showing

the autocompletion feature.

Figure 6: The TEX Live Utility Info panel, showing

documentation and various associated files for a given

package, along with a short description from the TEX

Live Manager database.

3.5 Info

Double-clicking on a given package in one of the
main listings will show information for that pack-
age, along with the files associated with it in the
TEX Live Manager database and any documentation
found by texdoc. This is shown in Figure 6. For
more advanced users, it’s easier just to type texdoc
fontspec than to launch TEX Live Utility just for
this task. However, it’s convenient if you’re browsing
the package list and wonder what is (being) installed
on your system.

3.6 Logging

I attempted to hide the log window shown in Figure 7
during a UI redesign, but that was not possible. It

Adam R. Maxwell

TUGboat, Volume 35 (2014), No. 2 155

Figure 7: The TEX Live Utility Log window,

showing progress and debugging output.

turns out to be a critical feature, given that problems
will occur sooner or later during an update, whether
due to a problem with the TEX Live infrastructure
or a bug in TEX Live Utility itself. Log sessions are
saved, and you can select a previous session from the
list on the left. Unfortunately, there’s a significant
amount of clutter in the list, as TEX Live Utility
logs many operations internally; this makes it less
generally useful to users, who can easily mistake
routine diagnostics for an actual problem.

3.7 Miscellaneous

TEX Live Utility also provides a means to schedule
update checking, which ties into the Notification
Center on MacOSX 10.8 and later, and provides an
alert dialog on 10.7 and earlier. The update notice
lets you start TEX Live Utility and begin the update
process, without having to remember to manually
launch it and check for updates.

Various preferences can also be set, and there is
a nascent feature for installation using the TEX Live
network install script. This allows a user to install
in an alternate location, and is mainly intended for
users who do not have admin privileges. The TEX
Live Utility Help menu describes how to enable and
use it.

TEX Live Utility attempts to use the OS proxy
configuration, and sets the necessary environment
variables to work with tlmgr and other tools that it
uses. This is one of the more complicated features
from a code perspective (and one of the more fragile).

Obsolete versions of TEX Live can also be man-
aged. TEX Live Utility will detect whether your
installed version is older than the one on the re-
mote repository, and switch to a historical archive
as needed.

By holding down the option key, the menu item
for reinstalling TEX Live Manager can also install it
from the tlcritical repository, where test versions
of TEX Live Manager are uploaded. This allows Mac
users to easily test the latest version, and provide
feedback to the TEX Live development team. Re-

verting to the current official version of TEX Live
Manager is straightforward, via the same process
without the option key.

A Spotlight importer for DVI files is included
with TEX Live Utility, as is a Quick Look plugin for
DVI files. These aren’t strictly related to TEX Live
Utility’s core functionality, but it’s a convenient way
to distribute them.

4 Pitfalls

This section contains a mixture of description, com-
plaints, and advice for anyone contemplating a simi-
lar exercise, perhaps on another platform. Determin-
ing the intent of each piece is left as an exercise for
the reader.

4.1 Error handling

Error handling is the biggest challenge in working
with tlmgr; viz., trying to communicate comprehen-
sible errors to the user. For example, if a call to
updmap-sys fails as part of the overall update pro-
cess, there is no way for TEX Live Utility to know
which command failed, or give the user any helpful
instruction for resolving the problem. The standard
error output from tlmgr contains the necessary in-
formation, but parsing it for individual errors is not
a practical solution; each tool such as fmtutil or
updmap-sys has its own error message style, and
they are designed to be read by humans rather than
parsed by a machine.

4.2 Asynchronous processing

An update can be hundreds of megabytes, especially
if you update infrequently. This justifies the need
for an asynchronous process model, in my opinion,
although that adds complexity. However, running
multiple operations at once could be problematic;
TEX Live Utility doesn’t allow you to do a restore
while doing an update, for instance, although you
can show the Info panel for various packages during
an update.

4.3 TEX Live Manager updates

The original TEX Live Manager in 2008 had a bug
whereby it would delete itself during an update, and
at Karl Berry’s suggestion, I modified TEX Live Util-
ity to download and execute the standalone shell
script updater from CTAN. This has turned out to
be a good thing in the long run, as it also allows
easy testing of the tlcritical version, and recovery
from future installer problems is trivial.

4.4 Environment variables

Environment variables have caused the most painful
support issues. Some users alter their PATH, TEX*, or

TEX Live Utility: A slightly-shiny Mac interface for TEX Live Manager (tlmgr)

156 TUGboat, Volume 35 (2014), No. 2

PYTHON* environment variables using various obscure
and poorly documented techniques.7 Unfortunately,
they typically forget having done it, so TEX Live
Utility checks for these settings, logs a mildly rude
warning message, and unsets their environment vari-
ables in its process space. Another clever user set
his umask to 077 using these techniques, in the name
of security. This meant that TEX Live Utility could
not install updates, even as root, and was extremely
puzzling.

5 Future plans

Future development plans for TEX Live Utility are
limited at this time, since it works pretty well, and
has only a single, very lazy, developer. However,
a few things are in the works, presented here in
probable order of appearance.

5.1 BasicTEX documentation

The BasicTEX distribution provided by Dick Koch is
a small subset of TEX Live, provided for users with
limited bandwidth or storage. One of the ways it
saves space is by not including documentation, but
some users have requested the capability to install
documentation for packages on a case-by-case basis.

5.2 Interface updates

A few cosmetic problems exist on MacOSX 10.9 and
later; in fact, it’s surprising that users have not yet
pointed out that the progress bar should be drawn
differently. More importantly, I plan to add toolbar
buttons for the update action once again.

5.3 Network install

The network installer (a hidden feature) needs to
be refined, and options simplified so that it’s more
usable; manually editing cryptic shell script variable
names, needed at present, does not meet TEX Live
Utility’s design goals! It should also integrate with
the TEX Distribution structure on MacOSX [3].

7 This used to be via ~/.MacOSX/environment.plist, and

can now be accomplished via other means. I strongly advise

against this, as it affects all programs spawned by the login-

window, but is overridden in the Terminal by shell init files.

It can literally take days of email exchanges to sort these

problems out.

5.4 Privileged code

Apple has deprecated the AuthorizationExecuteWith-
Privileges() C function that TEX Live Utility uses to
run tasks as root, and is currently recommending
that developers use launchd to run their privileged
process. This will require significant effort, mainly
in rewriting the communication code between the
two processes.

6 Acknowledgments

This program would not be as effective as it is with-
out the testing and feedback of Bruno Voisin, Herb
Schulz, Justin C. Walker, Dick Koch, Will Robertson,
and other members of the MacTEX group. The icon
was drawn by Jérôme Laurens, and I thank him for
letting me use it for this project.

Thanks to the TEX Live team for being sup-
portive, especially Karl Berry in suggesting which
features to include (or not!). Norbert Preining added
the --machine-readable option to tlmgr, so I could
do away with my gruesome ad-hoc parsing code, and
has made numerous other improvements as main-
tainer of TEX Live Manager. Hopefully TEX Live
Utility makes their lives a bit easier, in that they
have to deal with fewer obnoxious Mac users like me!

References

[1] Pavneet Arora. YAWN—A TEX-enabled
workflow for project estimation. TUGboat,
33(2):196–198, 2012. http://tug.org/

TUGboat/tb33-2/tb104arora.pdf.

[2] Karl Berry, editor. The TEX Live Guide—2014,
2014. Available online: http://tug.org/
texlive/doc/texlive-en/texlive-en.pdf.

[3] Richard Koch. Support for multiple TEX
distributions in i-Installer and MacTEX.
TUGboat, 28(3):329–334, 2007. http:

//tug.org/TUGboat/tb28-3/tb90koch.pdf.

[4] Norbert Preining. TEX Live 2008 and the
TEX Live Manager. ArsTEXnica, 6:67–75, 2008.
http://www.guitex.org/home/numero-6.

⋄ Adam R. Maxwell

Port Angeles, WA 98362

USA

amaxwell (at) mac dot com

http://github.com/amaxwell/tlutility

Adam R. Maxwell

TUGboat, Volume 35 (2014), No. 2 157

On tracing the trip test with JSBox

Doug McKenna

Abstract

A new TEX language interpreter library (currently
called JSBox) I’ve been writing and debugging can
accurately execute and completely trace the trip

test, including recursive expansion, error interrupts,
alignment table processing, and more. Relying on
the log file that JSBox creates during tracing, this
article explains how JSBox differs from TEX in trac-
ing implementation and formatting philosophy, and
reveals what’s going on in a few of the many delib-
erately puzzling areas of the trip test.

Introduction

As is well-known in the TEX community, Knuth’s
self-described “diabolical” trip test helps validate
any new or extended TEX language interpreter. Ab-
sent some similar test, the trip test is necessary—
though not quite sufficient— to guarantee that one’s
interpreter is faithful to the core TEX language and
the myriad lines of TEX code that have been written
and relied upon for the last three decades. Knuth
deliberately designed his test to be very difficult for
both a non-conforming TEX interpreter and a hu-
man (conforming or not!) to understand.

The TEX code in trip.tex creates 16 pages of
nothing useful typographically. But processing the
convoluted input invokes nearly all the language’s
primitive commands, and most of the code paths
each one depends upon. The test also relies on a
font metric file, trip.tfm, with absurd ligature and
kern programs in it. Many boundary conditions,
where most errors occur, are deliberately triggered.

By design, there is almost no commenting nor
documentation on what the trip test does. Val-
idation generally means finding no non-trivial dif-
ferences between an output log file and a reference
log file. But this means that validation can occur
without really understanding what the test does.

Worse, regardless of the job that TEX is per-
forming, TEX only traces a portion of what’s going
on under its hood anyway. All of which is to say
that the job of creating a conforming TEX language
interpreter is not an easy or pretty one. Nonethe-
less, the trip test is invaluable in ferreting out bugs
in any TEX language interpreter’s implementation.

Tracing vs. hidden state

Basic user-interface theory teaches that modes fos-
ter human error. And all hidden state represents a
mode of some kind. Hence, revealing hidden state—

such as inserting individual temporary print state-
ments in one’s code— is always a key component
of debugging. The TEX virtual machine and its
quite complicated typesetting algorithms represent
a great deal of hidden rules and state. So any TEX
language interpreter must be pre-infused with spe-
cial print statements to reveal (if asked) what is
happening. The purpose of tracing is not only to
create a record of what the macro interpreter has
done on the user’s behalf, but also to reveal what
the machine is not doing that a user thinks it should
be doing, because of some mode-induced user error.

To save code space, in one place (its inner ex-
ecution dispatch loop) TEX generically traces the
meaning of a primitive command that it is about
to execute, on behalf of the upcoming snippet of
code that implements that command. But because
of this, there are still lots of holes in TEX’s tracing
that regularly cause user confusion. For instance,
TEX only traces the first in a sequence of characters
(i.e., a word), because characters after the first are
handled by a separate inner loop looking for liga-
tures. Unfortunately, this violates the user’s idea of
the world, not to mention the reasonable expecta-
tion that if tracing is good enough for one character
it ought to be good for them all.

TEX was designed to output quite short lines,
and to break longer lines at arbitrary points, with-
out regard to content. This in turn means there is no
indentation to indicate in the log file where any sub-
ordinate set of executed commands start and end.
All of which makes reading log files unpleasant. Re-
gardless, often there is ensuing recursive expansion
that is not (or only partially) traced.

Other examples abound: for instance, a large
amount of complex behind-the-scenes processing oc-
curs during any \halign or \valign command, yet
much of it remains hidden during tracing. Many
group contexts are unlabeled, e.g., when typesetting
math formulas. \global definitions are not traced
well, due to the internal design of how the prefix is
processed. The places where a file is not found prior
to being found are important to know when things
go wrong. That missing information is a constant
source of confusion ever-addressed by questions on
various TEX-support web sites or mailing lists.

All of this hidden state represents a significant
cognitive load on anyone reading a job’s log file, be-
cause every lacuna violates the user’s view of things,
which is formed primarily by the sequence of com-
mands and characters in his or her source code.
There have been a variety of extensions made to
TEX’s tracing over the years, but as a relatively

On tracing the trip test with JSBox

158 TUGboat, Volume 35 (2014), No. 2

recent user I find the results unsatisfactory: overly
generic and/or still incomplete.

Redesigning tracing

As a self-defensive tech-support measure, I wanted
my TEX language interpreter to be as communica-
tive as possible to myself and any other user in ex-
plaining what it is doing, or not doing. So my goal
has been to accomplish 100% tracing in a more com-
plete and understandable format than what the clas-
sic TEX (or ε-TEX) engine does, without any signifi-
cant hit on efficiency when not tracing. This means
creating long-lined log files that no longer can be
compared (e.g., with diff) to TEX’s log files. The
downside is that passing the ill-defined trip test
becomes a tedious manual exercise, and either prob-
lematic or impossible, depending on what it means
to be “the same”. I don’t really care, because I’m
willing to label this new interpreter with something
other than “TEX”. The goal is to faithfully execute
TEX source code and get the same typeset results.

In the JSBox library, each class of related primi-
tives is implemented by a subroutine that is respon-
sible for tracing each variant’s operation, using a
common set of tracing utilities and formatting rules.
The utilities include a stack of output staging buf-
fers in which to construct lines of text. The bottom
buffer in the stack is always used for tracing. Higher
buffer levels can interrupt tracing in the service of
constructing strings, error messages, or other for-
matting. The stack is usually one level deep, and
almost never more than two levels deep.

The start of any line of output from a program
is usually better-defined in both time and space than
the line’s end. This means that it is the responsibil-
ity of any tracing or other output code initially to
flush the last tracing line, then to start a new line,
and to never worry about terminating that line. Dif-
ferent code paths can append to the line as needed,
without being responsible for knowing the line needs
to end. This is not dissimilar to what TEX does, but
in JSBox we allow the end of the current text buf-
fer to be trimmed prior to flushing. As we will see,
interruptions can then be unambiguously formatted
in a nice way. (It also allows JSBox to coalesce se-
quences of input characters so that all characters in
a spacer-separated word are traced in one readable,
delimited group of characters per trace, without do-
ing any internal lookahead.)

Lines in a JSBox log file are not length-limited;
the library can indent tracing to indicate different
execution or nested group context stack levels. So
every trace of a command or character(s) not only
starts with a newline, but is then followed by inden-

tation representing execution, group nesting depth,
or trace-continuation status. (If occasionally inden-
tation gets excessive, it is pinned.) For nearly all
normal execution I find the clarity to be worth it. I
place a high value on vertical alignment and white
space. So a log file is best viewed in a fixed-width
programmer’s font.

The name, not the meaning, of the command
being executed is enclosed by a pair of matching
braces, as in {\indent}. A sequence of letter or
other characters is also collected and placed at the
start of the trace line, e.g., {xyzzy}, even though
each input character is processed one at a time as
it is read. If there is any further information or
commentary about the command, a colon follows,
and a description of what’s going on, any special
meaning, or what any collected argument value is,
is appended next. Extra commentary is placed in-
side a pair of matching brackets. Unicode characters
are presented as is (converted to UTF-8) and usually
with added commentary showing both a base 10 and
a hex integer value (and even more information for
math characters). If a large amount of information
is needed, any number of extra lines can be used in
a single trace. All information on subsequent lines
is indented to the same position as the line’s initial
information, after the announcement of the name of
the primitive being executed or the word of charac-
ters being appended.

Internally, every new (multi-line) trace is as-
signed an integer code that immediately increments
to guarantee uniqueness. If there is any chance that
tracing might be interrupted by expansion, recur-
sion, paragraph/page building output, an error mes-
sage issued, or any sub-system tracing (such as a
macro stack frame popping while looking for the
next token), then the partial trace’s text line has
"..." appended. Later tracing then checks to see
if there was an interruption. If not, the "..." at
the end of the still-unflushed trace text is erased,
and further tracing information is appended to the
current line. But if there was any sub-tracing, er-
ror messages, or other output, then the trace buffer
with its trailing ellipsis was flushed, and we create
a repeated trace continuation line that starts with
an ellipsis and re-traces the command again, at its
usual indentation level, so that newly collected in-
formation can be presented to the user.

This is a lot of work, but clarity, not efficiency,
is the user’s focus during tracing. The TEX lan-
guage’s peculiarities make it really important to “go
the distance” on this. Indeed, a significant portion
of the JSBox library’s code is devoted to tracing its
own operation, in order to reveal hidden state.

Doug McKenna

TUGboat, Volume 35 (2014), No. 2 159

Tracing examples from trip.tex

Consider the following line of nonsense code, from
line 288 of trip.tex, but treated as line 1 here:

\raise1pt\hbox{\special{\the\hangafter} } \penalty-10000

This is a single \raise command, operating on a
horizontal box with “embraced” contents, followed
by a space, and then a \penalty command with its
trailing integer argument. The TEX log file tracing
this would contain (again, changing line 288 to 1):

{\raise}

{entering hbox group (level 2) at line 1}

{restricted horizontal mode: \special}

{blank space }

{end-group character }}

{leaving hbox group (level 2) entered at line 1}

{horizontal mode: blank space }

{\penalty}

This is concise, but unfortunately too concise. Im-
portant information remains confusingly hidden.

Here, on the other hand, is how JSBox traces
the same code:

{\raise}: by 1.0pt ...

{\hbox}

>>> restricted horizontal mode

{{}: entering \hbox group [level 2 at line 1]

{\special} ...

{\the} ...

{\hangafter}: -12 [parameter]

... {\the}: Pushing {-12} [3 chars] onto input

... {\special}: {-12} [appending external command]

{ }: appending font \rip’s inter-word glue [4.0 plus 2.0 minus 1.0]

{}}: leaving \hbox group [level 2 at line 1]

.. {\raise}: appending hbox : [id=581] (0.0 + 0.0) x 4.0 [rigid] [2 items] shifted by -1.0pt [upward]

>> horizontal mode

{ }: appending font \rip’s inter-word glue [4.0 plus 2.0 minus 1.0]

{\penalty}: -10000 [always] [appending to horizontal list]

It’s twice as many (longer) lines of tracing (and
I’ve asked this journal’s editor not to reformat the
above to fit in a narrow column), which helps the
reader discern pretty much everything that’s gone
on. So let’s explain some of the design decisions
that went into formatting the foregoing.

To start, the final (usually first) line of any trace
that is interrupted ends in an ellipsis. And every
trace so interrupted is re-traced (using the same in-
dentation) after the interruption ends, showing the
final information collected by the command’s end.
In the foregoing, the \raise, \special, and \the

commands are interrupted and therefore re-traced
using the latest state and argument information.

Every trace contains the command or a charac-
ter or set of characters, enclosed in braces. The rule
I try to follow is that, whatever the item is, it should

be the same as what is in the user’s original source
code (TEX’s tracing violates this in several ways).

Unlike TEX, we don’t integrate changes to the
layout’s current typesetting mode as a modifier to
the brace-enclosed item being executed or appended
to the layout. Each such change is traced on its own
line, with an indication (e.g., ">>>") of semantic
nest stack depth, which is independent of execution
stack or group context indentation. More impor-
tantly, this makes it easy to find, or easy to ignore,
the state of the layout mode. And it doesn’t vio-
late the rule that the first and only thing executing
is what’s enclosed by a pair of braces at the start
of each trace. That information is more important,
and needed to synchronize source code with log file.

We strive to place a bracketed hint mentioning the
internal meaning of numeric values. A “penalty” of
-10000 is really an (infinite) incentive to “always”
do something. A negative \raise is upward on the
page (unlike, say, PostScript, TEX’s page coordinate
system has its origin near the page top).

When a primitive appends a new item to the
current layout list, it says so. For instance, when
a spacer is processed in a horizontal mode, it ap-
pends a particular glue value, which is announced.
And the \raise command, after all forward-looking
recursive expansion is finished, is left with a hori-
zontal box with two items inside that is appended
to the current layout list after shifting. Another

On tracing the trip test with JSBox

160 TUGboat, Volume 35 (2014), No. 2

hint reminds the user that this particular box can-
not stretch or shrink. The library assigns a unique
ID number to each box it constructs— searching a
log file for a particular box is thus much easier.

There are other subtle formatting issues going
on, in the service of maintaining vertical alignment
of information. For example, the ellipsis in front of
the re-traced \raise command is truncated by one
dot, because there’s one column too few in the in-
dentation area in which to place three dots followed
by a space (here, standard indentation is three col-
umns per level).

Another difference from TEX is that nodes in a
layout list (boxes, ligatures, kerns, penalties, glue,
math, output nodes, etc.) are always described with
a four-character identifier that never begins with a
backslash. This regularizes vertical alignment of lay-
out list dumps, which TEX minimally indents with
visually noisy sequences of dots, sometimes followed
by pseudo-commands (e.g., \glue) that don’t oc-
cur in your source code. So the description of the
box being appended by the \raise command is not
\hbox. It is hbox, followed by a colon. The former
is a command, the latter a type. Notice also that in
talking to the user, we avoid the internal implemen-
tation and graph-theoretical term node. The generic
word item suffices and is more user-friendly.

The trip test essentially consists of two parts.
The first executes if one’s virtual machine is unini-
tialized. The second runs if the interpreter is ini-
tialized from a format file, trip.fmt, created when
the \dump command is issued at the end of the first
part. The second, more substantive, part is where
the trip test does most of its work. Because I desire
this interpreter to be able to avoid using format files,
JSBox currently treats a \dump as a no-op. Fortu-
nately, by virtue of the trickery in trip.tex (see the
definition of \next on line 90), this merely results
in executing both parts of the trip test in one run.

In the first (format-creating) clause, trip.tex
turns tracing off. Only various error or other mes-
sages are issued. Because JSBox can be compiled to
suppress all “turn tracing off” commands that arise
from source code, we can trace all parts of trip.tex
without adding extra trace commands at the start
of the input file.

On line 2 of trip.tex, the very first primitive
is an \immediate command, followed by a \catcode
command. The former’s use is not an error, but is
deliberately incorrect and/or unnecessary. That’s
because \immediate modifies only output-related
commands that follow it (the \catcode command
is not subject to the immediate vs. delayed execu-
tion distinction). An interpreter created by JSBox

can be configured at run-time to comport with the
constraints of a classic TEX82 interpreter, for which
the trip test was designed. But JSBox’s client pro-
gram can enable warnings for situations like this,
because a command that does nothing when mis-
used may still be worthy of the user’s attention. So,
the log file contains both the trace and the warning
message:

{\immediate}: [ignored]

Context : "trip.tex"[Line 2]

Warning : Ignoring \immediate. It only modifies

output-related commands (e.g., \write),

not \catcode.

Line 2 : \immediate\catcode ‘{ = 1 \endlinechar=13

^^^^^^^^^^

Trace lines are usually indented one level from
the left margin, because most jobs start with the in-
clusion of a TEX source file or memory string. This
pushes an input stack frame, to which trace inden-
tation pays attention. While some might consider
this a waste of space, it has the salutary effect of
making non-trace messages (errors, warnings, etc.)
easier to pick up in the log file, where they start at
the left margin. And the extra space leaves room
to signify re-tracing with a (partial) ellipsis, as our
earlier example shows.

Because \immediate can be completely traced
prior to the warning message being issued, there is
no need for any trailing ellipsis: a re-trace wouldn’t
be able to add any new information. But in case
warnings are disabled, the trace still provides a hint
to the user that the command is useless and ignored.

Subsequent lines of interpreter-generated mes-
sages like the above are indented. This makes visual
parsing of the log file much easier. Furthermore, the
message itself is not generic. It has been tailored
to include mention of the command (or character)
which rendered the \immediate worthy of flagging.
Non-generic messages are more work to create, but
they keep the user grounded, preventing bad as-
sumptions. Again, the goal in debugging is to reveal
as much hidden state as possible.

Unlike TEX, the input line (or for longer lines, a
portion thereof) is not broken into two pieces to im-
plicitly show the position of the scanner when the
message was issued. To do so violates the user’s
view of his or her source code, and thereby unnec-
essarily adds to a cognitive load at an inopportune
time. So JSBox’s scanner maintains the starting and
ending position of each item parsed on an input line,
and preserves that information for the benefit of any

Doug McKenna

TUGboat, Volume 35 (2014), No. 2 161

formal message reporters. In the case of writing
the error to a fixed-width format log file, we un-
derscore—as best we can in a fixed-width log file
font—the command (or character) responsible for
the message. This is sometimes difficult to do in a
manner that doesn’t confuse the user, even though
it might be internally accurate. Non-generic error
messages can alleviate the problem somewhat.

Here is another traced snippet from line 4 at the
start of trip.tex that illustrates more of JSBox’s
tracing philosophy and formatting. This code tem-
porarily changes the category code of the math for-
mula shift character ($) inside a group context.

{\catcode}: ‘$ <- 3 [math shift] [no change]

{{}: entering simple group [level 1 at line 4]

{\catcode}: ‘$ <- 13 [active] [was 3 = math shift]

{}}: leaving simple group [level 1 at line 4]

restoring [mapping] \catcode of ‘$ to 3 [math shift]

{ }: [ignored in vertical mode]

In this case, it is now TEX that would trace the
above using nearly twice as many (shorter) lines:

{\catcode}

{reassigning \catcode36=3}

{begin-group character {}

{entering simple group (level 2) at line 4}

{\catcode}

{changing \catcode36=3}

{into \catcode36=13}

{end-group character }}

{restoring \catcode36=3}

{leaving simple group (level 2) entered at line 4}

{blank space }

I invariably can’t recall the implicit (hidden) mean-
ings of numeric codes, such as 36 or 3. So when
JSBox traces the \catcode command, adding com-
mentary (i.e., [math shift]) on the syntactic mean-
ing of the numerical argument 3 saves mental energy
and prevents errors, and the character itself is used,
not just its ASCII code 36. We also note actual
value changes, but unlike TEX, we don’t use two
more lines to accomplish this trace generically. And
in the main trace we strive to inform the user of the
new value prior to what the old value was, because
the new value is what the user is nearly always in-
terested in.

JSBox internally traffics in full 21-bit Unicode
code point integer values, with all of them above
the initial ASCII range initially classified as charac-
ters of type “other”. And any Unicode character
(code point) can have a syntactic catcode assigned
to it. For printable ASCII characters in the initial
7-bit plane, such as the $ above, we don’t output the
character’s integer code (for arbitrary Unicode, we

would). In extended mode (i.e., when not limited
to just TEX82 features) the JSBox library can han-
dle non-UTF-8 Unicode using ^^uxxxx or ^^Uxxxxxx
extended escape sequences to specify Unicode code
points in hex, or via the usual \char command,
which will take any 21-bit integer argument (but
limited to 8-bit values in TEX82 emulation mode).

Notice also that the information about popping
a group context stack frame, and restoring any non-
globally changed values, is properly traced solely by
the recognition of the }. Restoration is indented to
indicate its subordinate status to the closing brace,
and there can be an arbitrarily long list of lines an-

nouncing each restoration. Because it’s hard to dis-
tinguish between various control sequence names, a
hint as to whether a name is a parameter, register,
mapping, etc., is also inserted for good measure.

Finally, by announcing that a space in vertical
mode is ignored, there is no need to label the space
character as a blank space; { }: does a perfectly
fine and unambiguous job.

Here is another example, from line 10 of trip.tex:

\defaulthyphenchar=‘-

JSBox traces this as

{\defaulthyphenchar}: - [was ^^@] [‘- = "2D = 45]

The new character code for the parameter is shown,
followed by bracketed commentary on the parame-
ter’s previous value, which changed. Then further
commentary on the integer and hex value of the new
character is added in case it might be useful. Notice
that the old value was 0, a null. Unlike TEX, JSBox
strives never to write a null byte to a log file or to
the terminal. Programs that display text files do not
treat nulls uniformly. So unless it’s writing a data
file, JSBox converts each null byte to a printable ^^@.

The general philosophy I’m guided by is that
too much information is a lesser evil than too lit-
tle. For commands that expect character code point
values, the numbers are there, but on the right, in
commentary, where it can be easily ignored.

On tracing the trip test with JSBox

162 TUGboat, Volume 35 (2014), No. 2

Consider lines 59–60 of trip.tex:

\def\weird#1{\csname\expandafter\gobble\string#1 \string\csname\endcsname}

\message{\the\output\weird\one on line \the\inputlineno}

ε-TEX’s trace of this peculiar code would be

{\def}

{changing \weird=undefined}

{into \weird=macro:#1->\csname \expandafter \gobble \ETC.}

{blank space }

{\message}

\weird #1->\csname \expandafter \gobble \string #1 \string \csname \endcsname

#1<-\one

{\csname}

{\expandafter}

{\string}

\gobble #1->

#1<-\

{\string}

{changing \one \csname=undefined}

{into \one \csname=\relax}

\one \csname on line 60

{blank space }

whereas JSBox can trace the same input as follows:

1 {\def}: \weird#1->\csname \expandafter \gobble \string #1 \string

2 \csname \endcsname

3 { }: [ignored in vertical mode]

4 {\message} ...

5 {\the} ...

6 {\output}: [parameter] ->

7 ... {\the}: Pushing {} [token list] onto input

8

9 Calling \weird #1->\csname \expandafter \gobble \string #1 \string

10 \csname \endcsname

11 #1: \one

12 {\csname} ...

13 {\expandafter}: postponing {\gobble} until after expanding {\string}

14 {\string}: Pushing {\one} [4 chars] onto input

15

16 Calling \gobble #1->

17 #1: \

18 Returning from \gobble [empty body]

19 {\string}: Pushing {\csname} [7 chars] onto input

20 ... {\csname}: 11 characters collected

21 {\endcsname}: \one \csname constructed [=\relax [internal]] [{\one \csname} has a space in it]

22 Returning from \weird, resuming reading from file "trip.tex"

23 {\the} ...

24 {\inputlineno}: 60

25 ... {\the}: Pushing {\one \csname on line 60} [23 chars] onto input

26 .. {\message}: [to "trip.log" and terminal]

27

28 \one \csname on line 60

29

30 { }: [ignored in vertical mode]

Doug McKenna

TUGboat, Volume 35 (2014), No. 2 163

In lines 1–2, we wrap a longer token list onto
a new line without breaking any command name
internally, and we continue the token list indented
to the same column as it started on, just to the
right of the ->. A longer list will be truncated, but
JSBox’s threshold is larger than TEX’s.

Like TEX, we insert a blank line in front of each
macro call, but unlike TEX, we label each macro call
with Calling to distinguish macros from primitives
(or \let-created synonym names). Arguments col-
lected are indented further— their collection is all
part of the same trace of the macro call. We addi-
tionally can trace the end of the macro, when its
stack frame gets popped, and announce later (at
line 22) where the next input will come from (ei-
ther a file, or a previously called macro in which
execution was nested). In between, we’ve entered a
new nested and indented command execution level.

At line 13, the often confusing \expandafter

command is traced non-generically. At line 18, the
\gobble macro expands to nothing, so we add a
commentary hint saying [empty body]. At line 21,
we specifically add commentary for any constructed
control sequence name that (here deliberately) has
a space in it, which can otherwise be very confusing.

Finally, we place a blank line on either side of
any non-tracing text being output to the same des-
tination (log file or terminal) that interleaves with
traces. This sets the output off and makes it much
easier to find by scanning down the page, especially
as most such non-tracing, internally generated mes-
sage output is not indented. (JSBox can insert an
extra blank line automatically between any two dif-
ferent classes of text in log/terminal output.)

Redesigning the \show... commands

Each of the TEX language’s \show... commands
formats and prints the value of some internal vari-
able or list. But TEX re-uses some of its error re-
porting machinery to do so, which I find confusing.
For example, lines 29–30 of trip.tex seem to me
to result in a hard-to-read formatting mess:

> \errorstopmode=\errorstopmode.

l.29 ...=256 \show\errorstopmode

> \rip .

<recently read> \font

l.30 \showthe\font

\showthe\pageshrink \showthe\pagegoal

> 0.0pt.

l.30 ...font \showthe\pageshrink

\showthe\pagegoal

There’s too much extraneous information, and it’s
a cognitive load to be presented with the effect of
the command prior to seeing the command causing
that effect. So JSBox avoids displaying non-relevant
parts of the input line and/or breaking it apart to
show where the scanner is, puts cause and effect
back in order, skips the unnecessary detail about
what was <recently read>, and displays just the
answer on its own line. Also, we label lines with
Line, not l., because of the time-honored principle
that a lowercase l in a fixed-width font will invari-
ably be confused with the digit 1. A new trace of
lines 29–30 “shows” the difference:

{\show}: \errorstopmode

Line 29 | \show \errorstopmode

\errorstopmode

{\showthe} ...

{\font}: \rip

... {\showthe}:

Line 30 | \showthe \font

\rip

{\showthe} ...

{\pageshrink}: 0.0pt

... {\showthe}:

Line 30 | \showthe \pageshrink

0.0pt

Without interleaved tracing, this would simply be:

Line 29 | \show \errorstopmode

\errorstopmode

Line 30 | \showthe \font

\rip

Line 30 | \showthe \pageshrink

0.0pt

The delimiters > and . are not used, because I find
that they add more ambiguity/noise to TEX’s output
than they resolve. Also, JSBox doesn’t insert blank
lines between these similar \show... commands be-
cause it knows that each result fits on one line. For
other \show... commands that result in multiline
answers, such as \showlists or the extended JSBox

\showfont command (which shows the metrics and
all other data of an entire loaded font), blank lines
are used to help the user understand where the com-
mand’s group of output lines ends.

On tracing the trip test with JSBox

164 TUGboat, Volume 35 (2014), No. 2

Tracing alignments

Perhaps the most complicated primitive commands
in the TEX language are \halign and \valign, each
of which converts a one-dimensional stream of com-
mands and text into a two-dimensional table on the
page. Both commands work almost identically, by
swapping horizontal rows with vertical columns. And
they’re recursive, since an element of a table’s cell
can be a sub-table. Material that looks like it might
be executed is recorded, and material that looks like
it might be recorded is executed. Expansion can oc-
cur. There are hidden contexts. The purpose is to
allow the entire power of TEX to be applied to any
cell in a table. Knuth describes them as working
almost magically.

Consider line 120 of trip.tex. It contains a
curious empty table, as part of the \output routine
for the page executed later at line 150:

\globaldefs1\halign{#\tabskip\lineskip\cr}

Among other things, this tests whether one has ex-
ecuted a \tabskip command, with attendant ex-
pansion and implicit global definition, in the align-
ment’s preamble, rather than recording it into the
preamble’s token list(s), as would be nearly all other
commands and characters. TEX82’s trace of this, as
taken from trip.log, is about as minimal as can
be:

{\globaldefs}

{\halign}

ε-TEX does a little better with its tracing extensions
turned fully on, but here’s what’s really going on
under the hood, as traced by JSBox, using its inter-
ruption and indentation rules:

1 {\globaldefs}: 1 [was 0]

2 {\halign}: building successive rows, each containing entries in horizontally tabbed columns ...

3 {{}: entering \halign group [level 3 at line 151]

4 ... {\halign}: [preamble] recording templates for each column ...

5 {#}: end of prefix material for column 1’s template; collecting suffix

6 {\tabskip}: [not recorded in template] ...

7 {\lineskip}: 0.0pt plus 40.0pt [parameter]

8 ... {\tabskip}: changing \tabskip [inter-column glue] to 0.0 plus 40.0 [global]

9 {\cr}: end of column 1’s suffix and template

10 ... {\halign}: preamble has declared template for 1 column ...

11 \tabskip [= 0.0]

12 column 1: [no extra material to insert]

13 \tabskip = 0.0 plus 40.0

14 {column entry}: entering hidden alignment item group [level 4 at line 151]

15 {column entry}: leaving hidden alignment item group [level 4 at line 151]

16 {}}: leaving \halign group [level 3 at line 151]

17 ... {\halign}: [done] appending 0 rows of aligned material

As \halign fires up (see line 2 above), exactly what
is about to happen is announced, because there’s

simply not enough information in the name of the
command to disambiguate what the command does,
should the user not be sure. As processing of input
proceeds, the \halign will retrace itself three more
times (with ellipses as appropriate), at the same
indentation level, even though the execution stack
level is changing up and down at the same time.
Notice that every token in the source code is rep-
resented as the start of a full trace line or lines—
tracing should not break the user’s mental model of
what’s going on. Because there will be one last trace
line announcing the final result of the command, we
indent the opening { and closing } of the \halign

group, to make it easier to scan down the log file
looking for the start of the final trace line.

At line 4, the alignment’s preamble starts being
recorded. When the preamble material ends with
the first \cr, we trace again, and then synopsize the
template material for each column. Unlike TEX’s
opaque and overly mathematical u-part and v -part
terminology, I’ve used the more descriptive and user-
friendly terms prefix and suffix.

TEX processes each column’s material inside a
hidden group context, as if surrounded by a pair of
braces, to prevent changes to registers and parame-
ters from leaking to the following column’s material.
In this example, there is no material at all, so after
all is done and the final } is “executed”, the column
is empty, leaving the table with no rows at all. If
a sub-table is processed, the alignment stack’s cur-
rent level (other than 1) is also traced, which makes
searching for matching traces easier.

If that’s what goes on in an empty table, imag-
ine how important full tracing is in a non-trivial ex-
ample, of which there are many more in trip.tex.

Doug McKenna

TUGboat, Volume 35 (2014), No. 2 165

Tracing synonyms and conditionals

TEX traces the meaning of the executing control se-
quence, not its name. So if the control sequence is a
synonym for a register, or a primitive command, or
other name (e.g., created by a \let), it can get con-
fusing. For example, here’s line 161 from trip.tex:

\dimendef\varunit=222\varunit=+1,001\ifdim.5\mag>0cc0\fi1pt

This defines a name \varunit for the dimension reg-
ister at index 222, and assigns a value to it. The
value’s digits are conditionally expanded using an
\ifdim conditional smack dab in the middle of col-
lecting the value’s digits. The test asks if half of
\mag, whose value is 2000, is greater than 0 (Ci-
cero) points, which is true. But there’s an implicit
conversion from an integer .5\mag (1000) to a fixed-
point dimension (0.01526pt).

ε-TEX would trace some of the statements of
this line generically as

{\dimendef}

{changing \varunit=undefined}

{into \varunit=\relax}

{changing \varunit=\relax}

{into \varunit=\dimen222}

{\dimen222}

{\ifdim: (level 1) entered on line 161}

{true}

{\fi: \ifdim (level 1) entered on line 161}

{changing \dimen222=0.0pt}

{into \dimen222=1.001pt}

whereas JSBox traces the same code, in both shorter
and more faithful-to-the-source fashion, as

{\dimendef}: \varunit = \dimen222

{\varunit} ...

{\ifdim} ...

{\mag}: 2000 = "07D0 [parameter]

... {\ifdim}: 0.01526 > 0.0 ? true [line 161]

{\fi}: [end of \ifdim on line 161]

.. {\varunit}: \dimen222 = 1.001pt [was 0.0pt]

Notice that the extra definition to an interme-
diate \relax is an arcane internal TEX implementa-
tion detail (see the comments in "tex.web") that is
of no interest to 99.999% of users, but ε-TEX traces
it anyway due to the generic nature of how it reports
changes to interpreter values. JSBox’s focused trac-
ing during name definition elides this extra internal
reference management step.

We announce {\varunit} at the start of its
trace (as opposed to {\dimen222}), because it com-
ports with the source code. When the command
has finished recursively expanding its argument, the
final re-trace shows the value assigned, and the reg-
ister index, and the former value, all in one line.

When JSBox traces a conditional, it shows the
values used in the test as such, followed by a ?, fol-
lowed by the answer, either true or false, all in
one line. A hint can be added, followed by the test’s
line number as final commentary. If a \fi ends a
multi-line conditional, the line range is used.

The only other information that might arguably
be brought to the user’s attention is what happens
to the single character 0 collected as another digit
in the dimension’s value, and the fact that the orig-
inal source tries to present (after the conditional is
through mucking with things) the value 1.00101pt

as \varunit’s value. But the final 1 is insignificant
as there is round-off to 1.001pt, which is what’s
traced.

Line 360 of trip.tex has a crazy \ifcase con-
ditional statement, with nested \ifcases:

\ifcase\iftrue-1a\else\fi

\ifcase0\fi\else\ifcase5\fi\fi

that JSBox traces fairly cogently and concisely as

{\ifcase} ...

{\iftrue}: true [line 360]

.. {\ifcase}: looking for case -1 [only matches

an \else clause, if any] [line 360]

{\else}: false

{\fi}: [end of \iftrue on line 360]

{\ifcase}: looking for case 0 [matched]

[line 360]

{\relax [internal]}

{\fi}: [end of \ifcase on line 360]

{\else}: true [no previous case matched -1]

{\ifcase}: looking for case 5 [line 360]

{\fi}: [end of \ifcase on line 360]

{\fi}: [end of \ifcase on line 360]

[no case matched]

A TEX language interpreter must insert an inter-
nal \relax to enable expansion to parse an inner
nested conditional involved, as here, in constructing
the condition of an outer conditional. The only re-
maining information that might be traced in some
way, but isn’t, is which commands or characters in
the source code are skipped over for false matches,
and why. This would help explain the mysterious
disappearance of the letter ‘a’ when executing the
foregoing code (it ends up being part of the outer
case 0, which is skipped while scanning for case -1).

The trip test has another strange boundary
condition test: what happens to an \if... state-
ment with more than one \else clause. Peculiarly,
sometimes it’s an error, and sometimes it’s not. So

On tracing the trip test with JSBox

166 TUGboat, Volume 35 (2014), No. 2

I had fun ensuring that JSBox’s trace of line 389,
where multiple \elses are not an error,

\ifx T\span\else\par\if\span\else\else\else\fi\fi

would be enlightening to the user:

{\ifx}: T = \span ? [Chr = Cmd] false [line 389]

{\else}: true

{\par}: [building more page]

% t=30.0 plus 42.0 plus 1.0fil minus 8.0 g=16383.99998 b=0 p=0 c=0# [# = best break so far]

{\if}: \span=\relax [internal] ? [neither is a character, treated as equal] true [line 389]

{\else}: false

{\else}: still false [ignoring extra \else clause]

{\else}: still false [ignoring extra \else clause]

{\fi}: [end of \if on line 389]

{\fi}: [end of \ifx on line 389]

Note that when tracing an \else clause, its line
number is suppressed if it is the same as that of its
initial \if... condition. This makes tracing short
conditionals like the above less noisy. And again,
notice in the above trace the paragraph building
data that’s caused by executing the \par command.
When output of a different class is created, we strive
to set it off with blank lines from the surrounding in-
dented trace lines, so as to stand out as non-tracing.

Other tracing niceties

Every hundred or so traces, JSBox inserts a short
context announcement that shows the current set
of included files and the line number in each from
which the scanner is reading. For example, if we
were including trip.tex from another file, such as
test.tex, the announcement might look like:

>> display math mode

{^}: [superscript]

{\mathop}

"test.tex"[Line 4] > "trip.tex"[272]

{b}: letter maps to "7162

[class 7 (inner);

\fam 1 \char "62 = 98 = b]

{\nolimits}

This makes it easier for the reader to under-
stand where nearby tracing in the log file is arising
from in an included source file. It also lessens the
need to include line numbers in individual traces.

Formal error reports are usually preceded by a
full execution stack dump, showing included files,
the macro call stack, and an indication of empty
stack frames, deleted to allow tail recursion.

When executing trip.tex the execution stack
is never very deep when errors are reported. So the
following is an example of a stack dump showing
nested macro calls while executing a test file called
plainstory.tex that relies on footnote macros de-
fined in the plain format, whose non-\dumped source
code is read in at the start of the job:

Context | "plainstory.tex"[Line 112] >> \story >

| \rhubarb > \fubaru > \bar > \foo >

| \testparagraph > \note >> \footnote >

| \vfootnote

The >> indicates that there were empty stack frames
that were deleted during regular stack cleanup (the
last two macro names are defined in plain.tex).

Another nicety in JSBox, tracing the resolution
of input files, is not as demonstrable using the trip
test. JSBox is a system-agnostic library that can be
linked into a client program. The client is respon-
sible for mediating between the interpreter and the
system, and must install a callback function with
which the interpreter asks the client to do various
tasks.

In particular, when JSBox executes the \input
command, it first asks the client to vet each charac-
ter in the file name. This lets the interpreter issue
an error message at precisely the right time for any
illegal or unwanted character. Once the file name
is collected and analyzed a bit more, the interpreter
then asks the client to construct a list of directories
in the client’s file system where to look for that file.
As the list is iterated, a back and forth between the
client and the interpreter allows all the unsuccessful
folders to be traced as well as the final one where
the file is found. To gate this, JSBox implements an-
other integer parameter, \tracingfiles, that can

Doug McKenna

TUGboat, Volume 35 (2014), No. 2 167

be set to 1. For example, when a source file inputs
plain.tex, the trace might look like:

{\tracingfiles}: 1 [was 0]

{\input}: plain.tex

[not found at ./Projects/TUG Article/plain.tex]

[not found at ./JSBox/Projects/plain.tex]

[aha! it’s at ./JSBox/Library/Formats/plain.tex]

Thus, the input resolution strategy is up to each
individual client program, but the interpreter can
reveal and record some of that strategy for the user
at the right time and in the right place. This is
particularly important when, contrary to the user’s
expectation, no file is found, or when an incorrect
file of the same name but with a different path is
found first (e.g., the wrong version of a file).

The complete JSBox trip test trace

The foregoing should give the seasoned TEX log file
tracer/reader a good idea of how the execution of a
piece of TEX source code can be traced in a much
nicer and more useful manner than what the TEX
engine does, even considering the ε-TEX extensions.

The entire and latest complete JSBox trace of
the trip test can be found as a PDF at http://www.
mathemaesthetics.com/JSBox/triplog.pdf. It’s
about 160 landscape pages long. I continue to refine
and add to the library’s tracing, so the log file will be
updated occasionally. Indeed, I tweaked at least one
feature (eliding line numbers in \else traces when
on the same line as the initial \if...) as a result of
creating examples for this article.

Conclusion

Over the course of this multi-year project, I have
perhaps four times re-designed and re-written how
tracing should work, each time realizing that what I
was doing in the previous iteration wasn’t complete
enough. There are still a few indentation bugs in
the code, and some older cruft that deserves to be
re-written or cleaned up.

The JSBox library is a work-in-progress. Over
2000 pages of portable C code, half of it English
comments, it supports plenty of other interesting
features, a description of which can be saved for

another time. The library is not yet ready to be
deployed as a new TEX language engine. When I
started on this project in 2009, I had very little idea
of the complexity of the task of being compatible
with the TEX language, which I barely knew. Its
many quirks as a Turing-complete macro language
seem as closely tied to its program’s implementa-
tion details as they are to any overarching language
syntax specification. And the greater TEX ecosys-
tem is even more complex. Indeed, my goal of com-
plete tracing is to make executing TEX code as self-
documenting as possible.

Debugging the interpreter so that it would ex-
ecute the trip test correctly— i.e., mathematically
and functionally equivalent to what TEX does—re-
quired many months of work. Each bug it revealed
had to be fixed prior to moving on to the next, due
to the cascading nature of layout calculations. In
several cases, I had to completely re-implement how
certain primitives worked internally, after my initial
assumptions proved invalid.

There’s a lot of work left to do. But at the
very least, this interpreter can— in full and gory
detail—now tell the world nearly all of what it’s
doing under the hood. Which is why the chapter on
tracing utilities in JSBox’s source code has the title

Understanding Interpreter Execution

Vanishes Without A Trace!

⋄ Doug McKenna

Mathemæsthetics, Inc.

PO Box 298

Boulder, Colorado 80306, USA

doug at either mathemaesthetics

dot com or dmck dot us

Editor’s note: An overview of JSBox is available
via the slides at http://tug.org/tug2014/slides/
mckenna-JSBox.pdf. We hope to publish additional
related papers on this work as it progresses.

On tracing the trip test with JSBox

168 TUGboat, Volume 35 (2014), No. 2

Creating (mathematical) jigsaw puzzles
using TEX and friends

Julian Gilbey

Abstract

The jigsaw puzzles considered here are constructed
from shapes such as triangles, squares and so on,
with questions and answers written along their edges.
The aim is to match them up correctly. Related
puzzle varieties are card sorts and dominoes. We
describe a TEX- and Python-based system designed
to author such puzzles. The input is a text-based
YAML file; the output can include both printable
PDFs for cutting up and Markdown files for potential
conversion to HTML.

1 Background

1.1 History and benefits of (mathematical)
jigsaw puzzle software

In 2005, Hermitech Laboratory created Jigsaw 2005,
software designed to create mathematical jigsaws.
These are puzzles consisting of square and/or trian-
gular pieces which fit together to make a hexagon
or other shape. Two edges match if a question on
one matches the answer on the other; figure 1 shows
an example of a completed jigsaw. These can be
used within classrooms to help make learning more
engaging and enjoyable. For example, some students
feel disengaged by having to continuously write in
mathematics lessons. Students may well attempt
many more questions than normal and participate
more willingly when solving a jigsaw puzzle than
when answering textbook questions. It is also dif-
ferent from working with a computer-based activity
in that it is more physical and can easily involve an
element of collaboration with classmates.

Jigsaws can also be used to develop certain log-
ical thinking skills. For example, some questions
could have the same answer, so that students would
have to realise this and determine which one of the
possible pieces fits all of the constraints. There can
also be blanks or ‘?’ symbols used to indicate that an
answer has been left out. Deliberate mistakes could
be introduced to raise the level of challenge. Finally,
the edges could be used to introduce distractors (as
in the example shown), or they could be left blank,
or they could be used to spell out a relevant word,
phrase or sentence.

While the Jigsaw 2005 software was originally
designed for use in the mathematics classroom, the
same puzzle structure could easily be used to assist
in learning languages, scientific facts, and so on.

1
0
0
0

10
23 ÷ 10

21

10
8

1

1
3
3

100

9 4

×
9 5

3

(3
2)

2

39

99

2

8
1

6×6
2

13 2

× 13

6

1
0

21
6

24

÷26

5

1
0
6
÷
1
0
3

−1

1
4

4

Figure 1: A small completed jigsaw

In addition to jigsaws, the software also offered
dominoes, where each card has an answer and an-
other question; these then match up to create a
domino chain. Another type is a card sort, where
a set of cards is to be sorted either into order (for
example, a proof of the irrationality of

√
2 or the

derivation of the formula for solving quadratic equa-
tions), or into groups (for example, “Which of these
statements are always true, which are sometimes
true, and which are never true?”).

The Jigsaw 2005 software was distributed to
all UK schools and colleges with 16–18 year-old stu-
dents as part of a project to improve the quality
of mathematics learning. Since then, the software
has been further developed, and is now freely avail-
able as Formulator Tarsia [3] (though it is not open
source). Hundreds of classroom activities have now
been written using this software.

The Formulator Tarsia software is Windows-
based, and every question–answer pair is entered
on a separate input screen. There are keyboard
shortcuts available, but even having learnt them all,
there is still a fair amount of mouse-work required
to enter the questions. One also has to switch to
different ‘tabs’ to see an overview of all entered pairs.
On the other hand, the software learning-curve is
very gentle, which is a huge bonus for busy teachers:
though it may take time to create each jigsaw, there
is very little up-front time investment required. Also,
the data storage format is XML, with MathML for
the mathematics, so it is potentially possible to edit
the files outside of the software or to export the data.

Julian Gilbey

TUGboat, Volume 35 (2014), No. 2 169

1.2 The desire for a TEX-based system

I am currently developing mathematical resources
for the Cambridge Mathematics Education Project
(CMEP) [2]. We are aiming to provide innovative
resources to help support and inspire teachers of
advanced mathematics for 16–18 year-old students.
In the UK, most of these students will study an
A-level mathematics curriculum, but the material
we are producing can certainly be used in other
teaching situations and for other curricula.

Our build system involves authors writing the
original content in Markdown, which is then con-
verted using pandoc [4] to HTML for viewing and
to LATEX for producing a printable PDF document.
(There are more steps in addition, but this lies at
the heart of the conversion process.)

Among the resources we are developing are a
variety of card-sorting activities, and there is a pos-
sibility that we may also offer some jigsaw activities.
The Tarsia Formulator software does not meet our
needs for a variety of reasons:

• All of our developers use either MacOSX or
GNU/Linux, so it would be hard for us to use
Windows-based software.

• The resources are going to be made available
via the web, so we require a way of having the
content of our cardsorts available both for easy
printing and for viewing online. It would be
painful to have to enter the content from scratch
into both a card-sort creator and a Markdown
document.

• The WYSIWYG input system is quite laborious.

• We like the flexibility of LATEX’s mathematical
typesetting abilities (in spite of the limitations
imposed by using pandoc and MathJax [5]).

• It is desirable to have more fine-grained control
over the output, should that be desired; without
access to the source code, it is very hard to make
any systematic changes to Formulator Tarsia’s
output.

• When an activity has been created in Formula-

tor Tarsia, it seems to be impossible to change
the activity type (say from a triangle-based jig-
saw to a domino puzzle) without either editing
XML files by hand or re-entering all of the data;
it would be much nicer to have a text-based
input file which can simply have its header in-
formation modified appropriately or the content
cut-and-pasted into another document.

• The output quality of the various TEX engines
is superior.

For all of these reasons, I decided to create a
TEX-based solution to address our needs and produce
beautiful resources.

2 The new software

2.1 Design goals

My aim in creating this new software was to build on
the great work that the creators of Formulator Tarsia

had done, while addressing some of the shortcomings
that we had identified above. The audience of this
new software is also crucially different, in that it
assumes its users have both a working knowledge of
LATEX and a TEX system installed. They will also
need to have Python 3 and be able to install some
standard Python modules. (I might endeavour to
make the software compatible with Python 2.7 at
a later stage if I have time and people express an
interest in this.)

The primary design goals were:

• The content should be easy to input using a text
editor (assuming they have a basic knowledge
of LATEX).

• The puzzle layouts should be editable if desired.

• New puzzle types should be easy to create, ide-
ally without having to modify the source code.

• It should be easy to create the printable jigsaws
from the input files.

• There should be sensible defaults which can be
overridden if desired.

• It must be possible to include images in the
puzzles.

• The software must be able to output a Mark-
down version of the puzzle content for including
into our CMEP build process. The precise for-
mat of this must also be customisable.

• The software must be able to run on at least
MacOSX and GNU/Linux, and ideally on Win-
dows too.

• It should be easy to install and use.

• The dependencies should be kept to a minimum
(beyond a working LATEX system).

• It should be easy to maintain (time is always in
short supply).

• It should be possible for the jigsaw pieces to be
automatically numbered.

For the last item, I often found as a teacher
that it was very time-consuming to check whether
a jigsaw puzzle or card sorting activity had been
completed correctly. I would therefore number the
pieces before photocopying a puzzle, to make this
task more efficient. However, I still had to go to
the effort of identifying the pieces in the solution to

Creating (mathematical) jigsaws

170 TUGboat, Volume 35 (2014), No. 2

determine where the numbers would end up. So the
ability to automatically number the pieces, both in
the puzzle and solution, is very desirable. To make
this effective, though, the cards had to be shuffled
randomly for each different puzzle, so as to prevent
the students from ‘solving’ a puzzle just by arranging
the card numbers in some standard order.

A possible additional feature would be to create
some form of graphical data input system, but I have
no immediate plans to do so.

2.2 Implementation overview

The most important files from a user’s perspective are
the data input files. These specify the type of puzzle
(a hexagonal jigsaw or a card sort, for example), any
options for the jigsaw (such as whether to number
the cards or not) and the text to appear on the
puzzle. Sensible defaults are provided for all of the
options if they are not specified. We decided fairly
early on that YAML was a suitable markup language
for writing these files, as it is a very easy format
for humans to read and write, with little “noise”.
It also made more sense to use a standard, well-
known markup language than to create a new one
specifically for this project: it will then be easy for
other software to read the input files or to change
the files to a different format (such as JSON) should
this ever be desired.

The puzzle templates are LATEX files with tem-
plating marks. For the templates I have created, I
have used PGF/TikZ for the graphics and to place the
text items. My initial templates were written when
I was using version 2.10 of PGF/TikZ, as distributed
with TEX Live 2013. However, it turned out that I
ran into a bug related to the placement of text along
cyclic paths, which has been fixed in version 3.0.0
(distributed in TEX Live 2014). It is therefore neces-
sary to have an up-to-date TEX Live distribution (or
at least an up-to-date PGF) for these templates to
work correctly. Alternative templates can be written
if this is desired. For example, someone might prefer
to use Asymptote or another graphical package, or
they may wish to modify the existing templates in
various ways.

There is also a template description file (again
written in YAML) for each puzzle type: this specifies
various parameters required to create the puzzle.

Both of these template types (the puzzle tem-
plates and the description files) are described in detail
in the software documentation.

I wrote the program itself in Python. This was
for a few reasons. Firstly, it is a well-known, popular
language, so if other people wish to become involved
in developing this software, it will be relatively easy

type: smallhexagon

title: An example puzzle

note: 'You will have to work out the

missing number shown as `?'''

pairs:

- ['$10^6\div10^3$', '1000']

- ['$10^{23}\div10^{21}$', '100']

- ['$9^4\times9^5$', '9^9']

- - '$(3^2)^2$'

- puzzletext: '?'

solutiontext: '81'

- ['6×6^2', '216']

- ['$2^4\div2^6$', '$\dfrac{1}{4}$']

edges:

- '-1'

- '10'

- '$13^2\times13$'

- '39'

- '13^3'

- '108'

Figure 2: Example small hexagon puzzle

for them to do so. Secondly, the Python interpreter is
easy to install on the major platforms people will be
using. Furthermore, since the software is written in
pure Python, it does not require compilation, making
things a little simpler to install. Finally, it provided
me with an opportunity to learn more about this
language: as I have learnt more about Python, I
have improved my code and made it more idiomatic.
The code is currently written in Python 3.x; if I have
time and people express an interest, I will endeavour
to make it compatible with Python 2.7.

To create the jigsaws, the jigsaw generator pro-
gram is run over the data file. It reads this file along
with the relevant template description file and puzzle
template files. It then fills in the puzzle templates
with the puzzle data to create LATEX files (and Mark-
down files too, if requested). The LATEX files are
then processed with pdfLATEX (or some other LATEX
variant) to create PDFs for printing.

2.3 An example data file

Figure 2 shows the YAML puzzle file which was used
to create the example shown in figure 1 above (with
some small modifications).

The file begins with some metadata:

• the type of the puzzle: in this case, it is a ‘small-
hexagon’ puzzle, which consists of six triangles;

• the title of the puzzle, which is optional, and

• an optional note, which is printed above the
puzzle.

Julian Gilbey

TUGboat, Volume 35 (2014), No. 2 171

The existing jigsaw types at the time of writing
are hexagon, smallhexagon, triangle and parquet;
there are a few more in the pipeline, too. It is also
possible to write one’s own jigsaw types, as long as
they consist of equilateral triangles and squares. (To
write templates using different shapes would require
extensions to the software itself; I may do this in
the future.) In addition, there are three more types,
cards, cardsort and dominoes, which are described
briefly later.

The next section of the file specifies the data.
There are two parts here: the pairs data, which
lists question and answer pairs, and the edges data,
which specifies the text to appear on the edges in
an anticlockwise direction. Each pair is a sequence
of two items, the question and the answer, whereas
each edge consists of just a single item.

Each item is usually just a single string. How-
ever, there is a possibility of ‘hiding’ text in the
puzzle. This means either leaving a blank where
the text should appear or writing something else in
its place. The fourth question–answer pair in the
above example illustrates this. This pair is writ-
ten using YAML ‘block style’ for clarity, that is, the
question and answer are written on separate equally-
indented lines. The question is just a plain string
('$(3^2)^2$'), whereas the answer is a mapping
with two entries: the puzzletext appears in the
puzzle, while the solutiontext appears in the solu-
tion. This feature could be used as in the example
shown, or it could be used to introduce deliberate
mistakes in the puzzle, increasing the level of diffi-
culty for the students. There is also an alternative
notation available to simply hide the text in the
puzzle, which is described in the documentation.

If a puzzle does include such hidden text, then
the solution highlights these occurrences; in the de-
fault templates, these are shown with a yellow back-
ground.

It is also possible to include images in the items
or to change the text size of individual items or all
items. The details are described in the documenta-
tion.

2.3.1 Some notes on YAML syntax

For a full, precise description of YAML syntax, see
the YAML Specification [1]. What follows is a very
brief summary of some of the basic parts of the spec-
ification which should be sufficient for most people’s
needs when using this software.

Although YAML allows unquoted strings in gen-
eral, there are a number of restrictions on what is
permitted in them. For this reason, it may be sim-
plest to single-quote all value strings. (YAML also

offers double-quoted strings, but these interpolate
backslash-escapes; this is probably undesirable in
this context, since many TEX expressions include
backslashes.)

Within a single-quoted string, a single quote
is written as a doubled quote mark (''), hence the
three quote marks in a row at the end of the note
field in the above example (two to indicate a quote,
and the third to end the string).

For collections (‘sequences’ and ‘mappings’ in
YAML’s terminology, each of which consists of a num-
ber of ‘entries’), YAML allows two different notations:
either a flow style, which is similar to JSON notation,
or a block style. With the flow style, the entries of a
sequence, such as a question–answer pair or the list of
edges, are enclosed in square brackets and separated
by commas; for the block style, each entry appears on
a new line preceded by a vertically-aligned hyphen.

Similarly, for a mapping the entries consist of
key–value pairs, with the key and value separated
by a colon. They can be written either using a flow
style as a comma-separated list enclosed in braces,
or with a block style by writing each key–value pair
on an identically-indented new line.

Both of the sequence styles appear in the ex-
ample here, though only the block style is used for
mappings. Note also that the top-level structure of
the file is itself a mapping. This means that the
entries (type, title, pairs, and so on) can appear in
any order. However, for the benefit of the human
reader, it is wise to maintain a meaningful order to
these entries.

2.4 Card sorts and dominoes

As mentioned above, this software also offers some
other types of activities: card sorts and dominoes.

A domino puzzle is just a collection of question–
answer pairs which are laid out on a series of domi-
noes. Each domino consists of an answer and a new
question. The dominoes can then be laid out to
create a complete chain (beginning with ‘Start’ and
ending with ‘Finish’) or loop (if ‘Start’ and ‘Finish’
are not present), with each question matching its
corresponding answer. The data file used to create
this is very similar to the example shown above, only
the type is now dominoes. Within the data file, it
is also possible to specify various options such as
how many dominoes should appear on a page and
whether the cards should form a loop or chain; these
are described in more detail in the documentation.

A card sort is simply a collection of cards which
are to be sorted in some way. For the cardsort

type, the aim is to sort the cards into the correct
order, and so the cards are shuffled for the puzzle

Creating (mathematical) jigsaws

172 TUGboat, Volume 35 (2014), No. 2

and a solution is also produced by default. For the
cards type, on the other hand, there is no canonical
order (for example: “Arrange these cards into order
of importance to you” in a politics lesson), and so no
solution is produced, nor are the cards shuffled by de-
fault. Again, the data file is very similar in structure,
and details can be found in the documentation.

Both cards and dominoes offer the possibility
of having some form of title on the cards, and cards
have a further option of having labels on individual
cards. (This was introduced into the software when
we wanted to create an activity which had different
categories of cards; the categories were then written
on the cards.) Additional options are discussed in
the documentation.

2.5 Markdown output

As explained in section 1.2, our requirements include
the need to output a Markdown version of cards
data for inclusion into our build system; from there,
it is translated into HTML. Our current system re-
quires each card to be embedded in an HTML <div>

element. The cards are then displayed in an appropri-
ate way using some simple CSS. Since pandoc passes
any HTML <div> elements in a Markdown file to the
HTML output unchanged, we simply need a Mark-
down file with the <div> elements already present for
our card sorts. I have therefore created a Markdown
template file which places the card content within
these elements.

For other needs, it is perfectly straightforward
to create alternative Markdown templates, which
could then be converted into the required HTML.
For example, with the appropriate JavaScript and
supporting CSS, it would be entirely feasible to create
an interactive version of the card sort or jigsaw from
the same data file. While we have not yet done this,
it would be a very interesting next step.

3 Status of the software

As the time of writing, the software is in alpha state.
It is currently able to produce jigsaws and card sorts
in all of the ways discussed in this article. There
are a few key issues outstanding, which should be
resolved in the very near future, including:

• creation of an installable Python package;

• handling command-line options;

• the ability to read a configuration file, specifying
such things as the flavour of LATEX to use;

• offering the ability to read user-defined template
files, and

• writing the full user documentation.

Once these are done, I will consider the software
to be in either beta or release-ready state. I welcome
feedback and any suggestions for improvements or en-
hancements, as well as stories of how it has been used.

3.1 Obtaining the software

The software can be downloaded from GitHub; the
repository is https://github.com/juliangilbey/
jigsaw-generator. At the time of writing, the sim-
plest way to obtain it is to use git to clone the
repository. As mentioned above, I intend there to
be an installable Python package by the time this
article is published. It might then be appropriate
to upload this package to CTAN. Information about
this will be posted on the GitHub site.

Acknowledgements

I thank those who offered very useful ideas and feed-
back at the TEX Users Group conference; these have
helped me to solve some of the thorny issues I had
been facing.

References

[1] Oren Ben-Kiki, Clark Evans, and Ingy döt
Net. YAML Specification. Available from
http://www.yaml.org/spec/1.2/spec.html.

[2] Cambridge Mathematics Education Project.
http://www.maths.cam.ac.uk/cmep/.

[3] Hermitech Laboratory. Formulator Tarsia.
Available from http://www.mmlsoft.com/

index.php/products/tarsia.

[4] John MacFarlane. The Pandoc universal
document converter. Available from http:

//johnmacfarlane.net/pandoc/index.html.

[5] MathJax Consortium. MathJax. Available from
http://www.mathjax.org/.

⋄ Julian Gilbey

Department of Pure Mathematics

and Mathematical Statistics

University of Cambridge

Wilberforce Road

Cambridge CB3 0WB

England

J.Gilbey (at) maths dot cam dot

ac dot uk

jdg (at) debian dot org

Julian Gilbey

TUGboat, Volume 35 (2014), No. 2 173

SUTRA—

A workflow for documenting signals

Pavneet Arora

Abstract

Modern home design increasingly emphasizes elec-
tronic signals to carry not only data and entertain-
ment, but also basic comfort and security functions
throughout the house. The connected devices along
these signal paths are almost never static, but are
replaced or augmented regularly depending on the
homeowners’ needs or whims. This proliferation of
signals, often implemented on an ad hoc basis, creates
difficulties when it comes to effective implementa-
tion, but even more importantly, for diagnoses when
things inevitably go wrong. The need for some form
of documentation is clear; but what representations
make sense both for capturing the implementation
details as work progresses, and then as an aid in the
discovery phase of diagnosis? SUTRA is a documenta-
tion workflow that builds upon the earlier work intro-
duced in the YAWN framework. It relies on YAML for
data representation, the Ruby language for process-
ing, and, in this case, uses ConTEXt’s natural tables
mechanism to collate and present this information
in a useful way to round out YAWN’s model-view-
controller projection onto the problem space.

1 Introduction

The humble abode has evolved from an unserviced
shack bereft of either electricity or plumbing to an
inter-connected set of systems—power, heating and
cooling, electronic controls— that wind their way
behind walls and through floor joists. Their scope is
both dazzling and staggering in its complexity, and
yet we assume they will instantaneously and reliably
function.

On top of such basic services are layered audio
and video distribution throughout the house, surveil-
lance, alarm, data networking, and telephony. Not
to mention that all of these services, primary and
ancillary, are also being pushed outside into the gar-
den and all the way to the lot perimeter. And these
are just the elements that are the responsibility of
the homeowner. They are in turn “lit” by the utility
providers that have interfaces to the house systems.

Control and automation add yet another layer in
an effort to bring these disparate systems under some
semblance of manageability for the homeowner, but
naturally each new layer adds even more complexity
to the underlying infrastructure.

Plugging into these various systems can be fixed
wire devices such as traditional thermostats, alarm

keypads, computers, etc., as well as transient de-
vices such as mobile phones, tablets, wand remotes,
and others—both trusted and known, as well as
interlopers brought in by guests who might be given
temporary access.

Basic design documents used for construction or
renovation almost always excludes any information
about several of the layers mentioned above, as they
do not come under the governance of building per-
mits, or will leave the details of the implementation
to the supplying vendor in a form of late-binding
where details are expected to be discussed with the
homeowner at some time in the future. As a result,
it is common to go to tender for a generic “pre-wire”
package with trust placed in the cabling vendor, of-
ten lowest-cost, without much attention paid to what
this wiring will afford in terms of connectivity. Once
the equipment selection is complete it is left to the
implementation team to install the equipment using
whatever wiring they find.

It is the rare consumer that even bothers to
understand what is underneath the surface, satisfied
as they are to interact through the various interfaces.
And rightly so, as it should not concern them beyond
being able to access the service they seek, any more
so than a driver getting into their car and expecting
it to start, move and turn under their command
without requiring to know if their steering is driven
hydraulically or electrically. Unfortunately, it is the
equally rare installer that takes care to note down
what they have done on site so that there might be
an entry point of understanding in the future for
either their next visit, or that of the next technician.

The end result is that there soon grows a vast
gap between the actual as-built state of the wiring
and the systems built upon it, and what is known
about that state. This lack of information makes
the systems fragile and susceptible to failure, a most
unwelcome outcome given their increasing complexity
and the utter dependence of the homeowner on them.

2 A specific example to illustrate

the problem

To illustrate the rise in complexity of signal prop-
agation in a residential setting, let us consider, in
isolation, the example of music playback. The ar-
rival of consumer stereos in the 1960s soon resulted
in a new essential fixture in many homes, alongside
televisions. However, even its more complex forms,
e.g., a pre-amplifier driving a pair of mono-block
power amplifiers which, in turn, would drive a pair
of loudspeakers now seems laughable in its simplicity.
A cursory visual inspection would suffice to make
sense of which wire went where, and which did what.

SUTRA— A workflow for documenting signals

174 TUGboat, Volume 35 (2014), No. 2

The integrated amplifier which followed, incorporat-
ing the pre-amplifier and the power-amplifier in the
same chassis, and then its successor the audio receiver
which also included a tuner, simplified the wiring
further, now reduced to just the speaker wiring and,
perhaps, wiring from an additional source such as
a turntable.

Now consider the modern audio/video receiver,
which is tasked with not just taking source audio sig-
nal to speaker, amplifying it along the way, but also
takes responsibility for video switching, sometimes
transforming and scaling the video signal, process-
ing digital audio signals into multi-channel audio,
handling output to multiple zones while allowing re-
purposing of its amplifier channels to be assigned to
these secondary zones. Accepted video signals can be
selected from amongst a variety of interfaces, both
analogue, e.g., component video, and digital, e.g.,
HDMI. The control interface handled by the receiver
almost always includes infrared, RS-232, 12V trigger,
and increasingly IP-based control. Add to this the
variety of source equipment such as set top boxes,
dedicated media players, games consoles, mobile de-
vices, and dare I say, for some die-hards, a turntable
and CD-player. Source signals need not even be local
to the unit, but may also simply be connected via the
data network. All of this capability and complexity—
just for a single device! Now let’s consider that this
is just one such unit amongst many in a house, and I
think that one can soon appreciate the need for both
a way of capturing this information, and equally for
representing it in a way that is both digestible and
easy to navigate.

3 How to capture the information?

3.1 What information is needed?

In order to look at methods of information capture we
must first understand just what information would
be useful. The emphasis on the word signals in the
present title gives a clue, in that what is of primary
importance are the signals themselves, i.e., the con-
nections between the different components that are
the conduits for the signals. Components may act
as either the source, destination, or intermediate
processor of a signal but it is the connections that
reveal the topology of the implementation, and are
essential in understanding how the system behaves
overall and how pieces within the system interact.

Of course, identifying equipment is also neces-
sary, but we can think of equipment as a set of con-
nection termini that happen to be physically grouped
together.

The attributes of each connection that I feel
essential to reveal its purpose are:

Identity Name of the connection. This could be
just the physical port name on the component
chassis or the assigned port name in the compo-
nent’s software configuration. Using the exam-
ple of the A/V receiver mentioned earlier, this
could be, for example, Front Right Speaker or
HDMI 1.

Interface The type of physical connection.

Intent What is the purpose of the signal that the
connection is carrying?

Implementation Details about the connection. An
example might be: in connecting to the infrared
interface, we might be using the blue and green

pairs for signal and ground respectively of the
pulled UTP cable between the location IR con-
necting block and the mouse emitter. Such im-
plementation details should be captured as well.

Interaction To what component(s) does the signal
travel? And to which port(s) of that destination
equipment does it connect?

I call this set 5i in counterpoint to the exclama-
tion of frustration, “Ay-Ay-Ay-Ay-Ay”, that usually
accompanies confronting an undocumented equip-
ment closet under time pressure, trying to fix a prob-
lem that is unknown in scope.

3.2 Layers

Another aspect that is important to note is that of
layers or buses. From the audio example above, it is
clear that an individual component can operate along
different buses and may be involved in transforming
a signal so that it moves from one bus to another.
So the interaction attribute needs to encompass the
movement of a signal along a single or multiple layers.

Sharing A connection operates within a single layer
or bus.

Traversal A connection may switch or split a signal
onto multiple layers. An example of this would
be an HDMI audio extractor which decomposes
the combined signal into its requisite video and
digital audio components.

Isolation The component works in isolation. An
example of this might be a power line conditioner
that is IP-enabled to carry out scheduled or
triggered reboot functions, but on the other
hand it can also be left as a standalone unit.

3.3 A simple method to capture signals

information

For the information capture I took inspiration from
Kent Beck’s and Ward Cunningham’s seminal work

Pavneet Arora

TUGboat, Volume 35 (2014), No. 2 175

on CRC (classes, responsibilities, and collaborators)
cards [7].

I rely on 3”x 5” index cards, and each time I or
my team would come across a piece of equipment
we would jot down whatever we found out about
its connections using the 5i framework. Our field
experience indicated that discovery of a system’s
function is more effectively done bottom-up for the
simple reason that there are rarely any maps that
would facilitate a top-down approach. In other words,
when step-wise refinement is not an option then the
alternative is to turn to step-wise abstraction [2]. For
that reason, we chose to put our attention on a single
piece of equipment and its outgoing connections.

Our focus on outgoing connections exclusively
came from our belief that much of the intent of
the connection is revealed from its source. Once
this informal information capture was processed, the
software could resolve and illustrate the requisite
connections on the corresponding input ports of the
destination equipment.

4 How to present information about signals

When seeking to map out electronic connections, it
is an easy assumption that a schematic is the natural
and best representation. But is it always appropriate;
moreover, is it even an effective representation for the
domains described in this paper? There are several
problems associated with schematics:

• They work best when there is a close mapping
between the physical wiring layout and the log-
ical design, e.g., a circuit board. When the
critical information relates to the logical connec-
tion, there is a great deal of wasted real estate
on the wire traces, all of which distracts from
the essential information about the connection,
and also consequently relegates this information
to distant appendices.

• The above point relates to their use when the
design goes through repeated refinements, and
the results of this “stable” design are then pro-
duced in quantity. Unfortunately, almost every
installation of the nature described in the paper
is unique in that it is built up on an ad hoc basis,
over considerable time.

• As the number of connections grows, the re-
quired size to present the layout soon becomes
unwieldy. The schematic for the RaspberryPi,
a relatively simple device, requires five pages,
and this doesn’t begin to include the underlying
ARM Application Processor details.

• They also don’t easily allow us to distinguish
between the physical and logical location of com-
ponents.

For some years we made a concerted effort to
use Dia drawing software [5] under GNU/Linux to
capture our own wiring installations. However, we
struggled to keep our diagrams updated, and we still
didn’t have a methodology in place to quickly capture
the information about the connections we found in
the field. Upon analysis, the great shortcoming of
this type of tool is that one spends an inordinate
amount of time on layout, when one really wishes to
enter the signal information in a raw form and have
a suitable presentation generated for them. It was
this need that led to the development of SUTRA.

When seeking archetypes for data representation
the following characteristics seemed desirable:

• The ability to group connections into represen-
tative components.

• The ability to identify the layers on which a par-
ticular component might operate. This would
also help in narrowing to a subset of components
that operate on a layer or bus of interest during
a diagnostic exercise.

• A clear differentiation between the physical lo-
cation of a component and its logical location,
i.e., the zone or area on which it operates.

• When reviewing a component and its constituent
connections—both outputs and inputs—the
ability to have enough information about the
source and destination without having to flip to
different parts of the document.

• Additional information about the component,
e.g., photographs, or a manufacturer’s wiring
diagram that identifies terminals not labelled
on the component itself.

I have always been intrigued by how physicians
file patient records: the racks of colour-coded files [6]
from which could be retrieved the file of a single
patient or all the files of a family with seeming ease:

SUTRA— A workflow for documenting signals

176 TUGboat, Volume 35 (2014), No. 2

Figure 1: Sample of filing system
by Prof. Yukio Noguchi.

More recently, I came across a filing system
developed by Prof. Yukio Noguchi [3]; sample image
shown in fig. 1.

From these sources, I experimented with designs
and eventually settled on a prototype constructed us-
ing ConTEXt’s natural tables mechanism [4]. An
early but representative version of the output is
shown in fig. 2. One can see the coloured tabs around
the perimeter of the table act as visual aids to classify
the component. On the left are indications of input
and output. On top is shown the physical location
by area, room, place. At right is the analogous logical
location (which defaults to the physical location un-
less overridden) and component identity. At bottom
right are the layers on which the component operates.

The word sutra (सू्) is the Sanskrit word for
a string. It seemed an apt name for our workflow
since, unlike in a schematic where the physical lay-
out dominates the presentation, it instead places
emphasis on the source and destination, i.e., the con-
nection. Of course, a large collection of strings can
also invoke the image of a complex tapestry, which
applies when reviewing large scale wiring diagrams.
So the acronym SUTRA stands for its constituent
components:

• Signals
• Unmasked using
• Table
• Representations with
• Annotations

5 What constitutes a signal?

While SUTRA’s development initially arose from de-
mands of electronic signals, its application has been
successfully extended to domains where the defini-
tion of a signal can be a hybrid of connection types.
There is no limitation within the workflow as to what
constitutes a signal, and part of the appeal of its
design is that it concerns itself only with connections

Figure 2: Hand-crafted prototype using ConTEXt’s Natural Tables.

and components, however the user might need to
interpret those.

6 SUTRA example

For this example I have purposely chosen a more
generalized application of SUTRA. Upon my return
from the 2013 TUG conference, I arrived to find our
hydronic heating system misbehaving. Parts of it
worked, but the in-floor heating did not, in spite of
the boiler functioning as expected and a continuous
call for heat from the thermostats.

To reinforce the point made earlier of the un-
witting homeowner, I myself had not paid much at-
tention to the details when the system was installed,
and the installing technician could not recall the
specifics of the installation. So I was faced with the
ubiquitous discovery and diagnostics steps taken in
such situations.

As is common, this system operates on multiple
layers:

Pavneet Arora

TUGboat, Volume 35 (2014), No. 2 177

1. Electronic low-voltage. In reality this represents
several layers. It is used for the controls, and
in some cases the sensors. Thermostats, water
temperature loop sensors, ambient air sensors,
etc., all use low-voltage signals, but they aren’t
uniform: both AC and DC are used, as are dry
contacts feeding relays.

2. Line (mains) voltage. In some cases pumps are
controlled indirectly by connection to a control
board on the pump, e.g., variable speed pumps,
while in others they are controlled directly by
mains voltage.

3. Water. This drives domestic hot water, in-floor
heating, towel warmers, area radiators, and a
heat exchanging air handler in staged fashion.

So SUTRA came to the rescue.
The implementation uses YAML for the input

representation, following YAWN [1]. Here is some
of the YAML for defining a single thermostat in the
system:

:locAreas:

- :locArea:

:locAreaID: F1

:locRooms:

- :locRoom:

:locRoomID: Master Bedroom

:components:

THERMOSTATS

- :component:

:componentID: Tekmar 508

:componentType: Thermostat

:locPlaceID: Bottom of Steps

(East Wall)

:layers:

- :layer: thermostat control

:connections:

- :connection:

:type: thermostat

:from:

:port: 4-wire control

:to:

:sysAreaID: F0

:sysRoomID: >

Mechanical Room

:componentID: Taco ZVC406

:port: 4-wire control

:portDesc: >

Thermostat/Zone 1

:desc: >

F1 Master Bedroom in-floor

heating

In a multi-pass operation, SUTRA builds a data-
base of connections, and then resolves forward ref-
erences to the destination components. In this case,
the destination of the thermostat connection is the
“Taco ZVC406” zone valve control.

The SUTRA output is shown in fig. 3.
With the --showresources flag, SUTRA in-

cludes any ancillary material associated with a com-
ponent. Here, the wiring diagram for the zone valve
control is included in the generated output:

To bring our story to a resolution: in the end it
was discovered that the thermostat in the hot water
tank had failed open, resulting in a continuous call
for heat. Since this is the primary circuit, all hot
water generated by the boiler was directed to the
heat exchanger of the hot water tank, with none for
the floor heating.

7 ConTEXt considerations

Turning now to the ConTEXt implementation of the
output we have seen, here are a few of the cases that
the generated code must consider:

• How to handle the case when there are no output
connections, only input connections? The layers
operated upon need to shift from the bottom
of the output connections to the bottom of the
input connections, if any.

• How to handle the case when there are no input
connections, but there are output connections?
The component’s logical location and identity
would shift to the output connections.

• How to handle the case when there are neither
input nor output connections? An empty table
needs to be generated so that the tabs can be
affixed to it.

Some illustrative fragments of the ConTEXt code that
generated fig. 3 are shown in fig. 4.

8 Conclusions

The problem of documenting system-wide signal
paths in the construction industry can be overwhelm-
ing. The workflow SUTRA, built upon the YAWN

framework [1], and utilizing ConTEXt’s Natural Ta-
bles mechanism, offers a viable option to make this
problem tractable.

SUTRA— A workflow for documenting signals

178 TUGboat, Volume 35 (2014), No. 2

Figure 3: SUTRA table for Tekmar 508 thermostat.

\setupTABLE[r][first][leftframe=off,... \bTD
\setupTABLE[c][1][align={middle,lohi}] \framed
... [width=1in,
\framed[frame=off,location=top]{ align={middle},
\bTABLE corner=00,
\bTR background=color,backgroundcolor=darkred,

\bTD foreground=color,foregroundcolor=yellow]
\eTD {Taco ZVC406}
\bTD ...
... \eTD
\framed ...

[width=1.5in, \bTD
align={middle}, {F1 Master Bedroom in-floor heating}
corner=03, \eTD
background=color,backgroundcolor=darkolivegreen1, \bTD
foreground=color,foregroundcolor=brown] \framed
{\switchtobodyfont[9pt] F1}% ...

... {F1}
{\switchtobodyfont[9pt] Bottom of Steps (East Wall)} \eTD

\eTD ...
\eTR \eTR
\bTR [align=middle]

\bTD \bTD
{\em PORT} [nc=5,

... align=flushright,
{\em INTENT} offset=0in]

\eTD \dontleavehmode
\eTR \framed
\bTR [width=1.25in,

\bTD [nr=1,background=color,backgroundcolor=darkred, corner=01,
foreground=color,foregroundcolor=beige] background=color,backgroundcolor=darkseagreen1,
\framed foreground=color,foregroundcolor=brown]
[frame=off] {\switchtobodyfont[9pt] thermostat control}
{\rotate[rotation=90]{OUTPUTS}} \eTD

\eTD \bTD
\bTD \eTD

4-wire control \eTR
\eTD \eTABLE}}

Figure 4: Abridged ConTEXt Natural Tables source for fig. 3.

References

[1] Pavneet Arora. YAWN—A TEX-enabled
workflow for project estimation. TUGboat, 33(2),
October 2012. http://tug.org/TUGboat/tb33-2/

tb104arora.pdf.

[2] Ramesh Chandra, AT&T Bell Laboratories.
Private conversation.

[3] Dave Gray. The Noguchi filing system.
http://communicationnation.blogspot.ca/2005/

12/noguchi-filing-system.html, December 2005.

[4] Hans Hagen. Natural tables.
http://wiki.contextgarden.net/TABLE.

[5] Alexander Larsson et al. http://live.gnome.org/Dia.

[6] Cheryl Levitt. A patient record-filing system for
family practice. Canadian Family Physician, 34,
October 1988. http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC2219171.

[7] Nancy M. Wilkinson. Using CRC Cards—An

Informal Approach to Object-Oriented Development.
SIGS Books, New York, 1995.

⋄ Pavneet Arora
pavneet_arora (at) bespokespaces dot com

http://blog.bansisworld.org

Pavneet Arora

TUGboat, Volume 35 (2014), No. 2 179

Typesetting figures for computer science

Andrew Mertz, William Slough and
Nancy Van Cleave

Abstract

Presentation of concepts from computer science can
benefit from informative diagrams and figures. These
include trees, graphs, logic circuits, stacks and stack
frames, algorithms expressed with pseudocode, code
listings and memory layout, for example. Producing
these types of diagrams can sometimes be challenging.
Fortunately, there are a number of LATEX packages
that can be used for this purpose. In this paper, we
will illustrate the use of a few packages— including
tikz, bytefield, forest, drawstack, and listings—that
are well-suited for constructing high-quality figures
for computer science.

1 Introduction

Popular wisdom dictates that a picture is worth a

thousand words. Illustrations can be an indispensable
aid to understanding new concepts, and never more
so than in the classroom. The types of figures we
most often use in our computer science courses fall
mainly into one of four categories:

• systems: logic circuits, instruction set details,
and stack frames

• algorithms/data structures: pseudocode, graphs,
binary trees, and search trees

• theory of computation: automata, grammars,
and parse trees

• discrete mathematics: graphs and trees

In all courses, there is a need for clearly presenting
algorithms and code.

There are two approaches one can take: either
generate a graphic with some third-party software,
export it in an appropriate format and subsequently
include it in the LATEX source with the graphicx

package [1], or generate the graphic with one of the
“friends” of TEX, such as METAPOST [6] or TikZ [16].
Where practical, we prefer the latter approach, since
the results blend well with the surrounding typeset
text and produce vector graphics, contributing to
their quality. This quality derives from the fact that
images generated in this manner use the same fonts
as the typeset text and can utilize mathematical
typesetting as needed.

Additionally, there are a number of packages
designed for special purposes— such as typesetting
trees, stacks, and graphs, to name a few. Some of
the more recent packages on CTAN make use of TikZ,

adding a syntax layer to make them easier to use
while preserving excellent typeset results.

The number of packages available from CTAN

can be somewhat overwhelming to a LATEX user with
a specific task in mind. In a recent search, we found
35 packages for the topic tree. How does one choose
from this embarrassment of riches? While references
such as [4] and [10] certainly provide useful guidance
they are snapshots in time, so a number of packages
do not appear there.

Our purpose here is to provide examples of a
number of typesetting tasks that are of interest to
computer scientists. For each such task, we have
identified packages we feel are especially appropriate.
Although we are not providing tutorial introductions
to these packages, we hope these examples may in-
troduce readers to a few unfamiliar packages and
provide motivation for further exploration.

2 Typesetting code

We often have a need to typeset code in a specific
programming language, such as Python or Java. For
such situations, we recommend the use of the listings

package [5].
The listings package, introduced in 1996, is rela-

tively mature and still enjoys current support. While
perhaps best-known for its ability to produce “pretty-
printed” output, verbatim-like results can also be
produced. It provides support for more than 100 pro-
gramming languages and dialects, including (LA)TEX,
with the ability to define styles for yet others.

It is easy to get started with this package, know-
ing just two commands and one environment:

\lstset

\lstinputlisting

{lstlisting}

Appearance of typeset code is controlled with
\lstset, which provides options for languages, colors,
font sizes and styles, line numbering, and a host of
other possibilities. Desired options are specified using
a comma-separated list of key/value pairs, as follows:

\lstset{key1=value1,...}

An example of this is shown in Figure 1, where
a number of such options are specified: language,
showstringspaces, columns, etc. To typeset code,
we can use either \lstinputlisting or lstlisting,
the difference being where the code to be typeset is
located. The command

\lstinputlisting{filename}

typesets the contents of the file filename, using the
options previously requested. In contrast, code ap-
pears directly within an lstlisting environment:

Typesetting figures for computer science

180 TUGboat, Volume 35 (2014), No. 2

1 def gcd(p, q):
2 ”””
3 Computes the greatest common divisor of
4 two nonnegative integers p and q using
5 Euclid’s method.
6 ”””
7 if (q == 0):
8 return p
9 else:

10 remainder = p % q
11 return gcd(q, remainder)

\lstset{language = Python,

showstringspaces = false,

columns = fullflexible,

numbers = left,

numberstyle = \tiny,

frame = single}

\lstinputlisting{gcd.py}

Figure 1: Typeset Python code using the listings package, producing pretty-printed output.

1 def gcd(p, q):

2 """

3 Computes the greatest common divisor of

4 two nonnegative integers p and q using

5 Euclid’s method.

6 """

7 if (q == 0):

8 return p

9 else:

10 remainder = p % q

11 return gcd(q, remainder)

\lstset{basicstyle = \ttfamily,

columns = fullflexible,

keepspaces = true,

numbers = left,

numberstyle = \tiny,

frame = single}

\lstinputlisting{gcd.py}

Figure 2: Typeset “anonymous” code with the listings package, producing verbatim-like output.

\begin{lstlisting}

code to typeset

\end{lstlisting}

Revisiting Figure 1, we see how Euclid’s algorithm
for computing the greatest common divisor, as im-
plemented in Python and stored in the file named
gcd.py, can be typeset.

Most of the options specified here are evident
from the typeset result: a single frame enclosing the
code, tiny line numbers on the left, etc. Two of
these options, however, are perhaps less obvious—
showstringspaces and columns. Setting the first
of these to false prevents the visible space () from
appearing within any of the strings in the code. To
understand the columns setting, it helps to know
that there are two broad categories possible: fixed
and flexible. A fixed column format adjusts the
space between letters in an attempt to align columns;
a flexible format makes no such attempt. Of the
flexible formats available, we prefer fullflexible.

As a second example of the listings package, refer
to Figure 2. Here, we did not specify a language, so
no keywords are highlighted. To obtain a verbatim-
like appearance, basicstyle is set to a monospace

font. Setting the keepspaces option causes spaces
which appear in the code to be respected which, in
turn, preserves column alignment and indenting.

The listings package has many other options and
advanced capabilities. For example, it is possible to
include TEX markup within a listing by providing
“escaped” code, making it possible to blend mathe-
matical comments with code.

3 Typesetting algorithms

To display algorithms in pseudocode, we think the
style exhibited in [3] (famously known as CLRS, after
the authors’ initials) is quite attractive, recognizing
that its use requires some markup effort. For this,
the clrscode3e package [2] can be used. An older
version, clrscode, is also available; the 3e version
matches the style used by the 3rd edition of CLRS.

Presenting an algorithm in this style is done
using a codebox environment, as follows:

\usepackage{clrscode3e}

...

\begin{codebox}

algorithm, with markup

\end{codebox}

Andrew Mertz, William Slough and Nancy Van Cleave

TUGboat, Volume 35 (2014), No. 2 181

\Procname{$\proc{Euclid-gcd}(p, q)$}

\zi \Comment Pre: p and q are two nonnegative integers.

\zi \Comment Post: $\proc{Euclid-gcd}(p, q) = \func{gcd}(p, q)$.

\li \If $q \isequal 0$

\li \Then

\Return p

\li \Else

$\id{remainder} \gets p \bmod q$

\li \Return $\proc{Euclid-gcd}(q, \id{remainder})$

\End

Figure 3: Typesetting an algorithm with clrscode3e.

Euclid-gcd(p, q)

// Pre: p and q are two nonnegative integers.
// Post: Euclid-gcd(p, q) = gcd(p, q).

1 if q == 0
2 return p

3 else remainder = p mod q

4 return Euclid-gcd(q, remainder)

Figure 4: An algorithm presented with clrscode3e.

Figure 3 shows sample markup for presenting an
algorithm with this package; the typeset result is
in Figure 4. A few remarks will clarify some of
the markup details being used here. Consult the
documentation provided with this package for more
complete information.

Euclid-gcd is the name of this algorithm, so it
is being identified as such with the \proc (procedure)
macro. In a similar way, remainder is an identifier
indicated by \id. Each of \li and \zi commands
cause new lines to begin, either numbered or not.
The package also supplies miscellaneous commands
such as \gets and \isequal which produce assign-
ment and equality operators. Commands for control
structures, such as the conditional shown here, mirror
those found in modern programming languages.

4 Logic circuits

Circuits consisting of and, or, not, and nand gates are
discussed in our systems course and also play a minor
role in one of our general education mathematics
courses. We have recently been looking at ways to
produce diagrams of these types of circuits.

TikZ provides support for logic circuits and pro-
duces nice results. In this context, a circuit consists
of a number of nodes and a collection of interconnec-
tions. The placement of the nodes can be specified
either in absolute or relative coordinates. Using rel-
ative coordinates is handy, as circuits often consist

\tikzstyle{dot}=[fill,

shape = circle,

minimum size = 4pt,

inner sep = 0pt,

text height = 0pt,

text depth = 0pt]

\tikzstyle{twoAnd}=[draw,

and gate US,

logic gate inputs=nn]

\tikzstyle{threeOr}=[draw,

or gate US,

logic gate inputs=nnn,

anchor = input 2]

Figure 5: Some preliminary definitions for the
majority circuit.

of components arranged either horizontally or ver-
tically. Since the interconnections can be specified
symbolically (e.g., “the output of the first and gate
is connected to the first input of the or gate”), it is
easy to stretch or compress the final drawing with
just a minor change.

To illustrate, we will dissect some of the code
details required to draw a circuit which computes
a 3-input majority function. In the discussion that
follows, refer to Figures 5 and 6. Since we want to use
the U.S.-style gates found in the circuits library
of TikZ, the following is needed in the preamble:

\usepackage{tikz}

\usetikzlibrary{circuits.logic.US}

In order to streamline some of the code for the
circuit, Figure 5 introduces style names for each type
of gate which will appear: a two-input and, and a
three-input or. The specification

logic gate inputs = nn

Typesetting figures for computer science

182 TUGboat, Volume 35 (2014), No. 2

x y z

f(x, y, z)

\begin{tikzpicture}[x = 1cm, y = 1cm, text height = 1.5ex, text depth = 0.25ex]

% Circuit has 3 inputs

\node (x) at (0, 0) {x};

\node (y) at (1, 0) {y};

\node (z) at (2, 0) {z};

% First column of AND gates

\node[twoAnd] at ($(z) + (1, -1)$) (And1) {};

\node[twoAnd] at ($(z) + (1, -2)$) (And2) {};

\node[twoAnd] at ($(z) + (1, -3)$) (And3) {};

% Connect inputs to the AND gates

\draw (x) |- node[dot]{} (And1.input 1);

\draw (y) |- node[dot]{} (And1.input 2);

\draw (x) |- (And2.input 1);

\draw (z) |- node[dot]{} (And2.input 2);

\draw (y) |- (And3.input 1);

\draw (z) |- (And3.input 2);

% 3-input OR gate

\node[threeOr] at ($(And2.output) + (1, 0)$) (Or1) {};

% Connect AND output to OR inputs

\draw (And1.output) -- ++(0.5, 0) |- (Or1.input 1);

\draw (And2.output) -- (Or1.input 2);

\draw (And3.output) -- ++(0.5, 0) |- (Or1.input 3);

% Draw and label final output

\draw (Or1.output) -- ++(2, 0) node[above left] {$f(x, y, z)$};

\end{tikzpicture}

Figure 6: A logic circuit which computes the majority function: f(x, y, z) = true
if two or more of its inputs are true; otherwise it is false.

indicates a two-input gate in which each input is
“normal”; i.e., not inverted. The node style named
dot will be used to produce a small, filled circle to
indicate an electrical connection.

Moving on to Figure 6, let’s examine how this
circuit is specified. The tikzpicture environment
specifies x and y units of 1 cm each, which could eas-
ily be adjusted to obtain a stretched or compressed
variant. The text height and depth which appears is

present to ensure that the three inputs, x, y, and z

are typeset on the same baseline.
Within the body of the environment, the com-

ments provide some guideposts for understanding
how the circuit is drawn. A few additional remarks
may be helpful. Inputs x, y, and z are placed at
absolute coordinates, spaced one centimeter apart
horizontally. The three and gates are placed relative
to the z input: “over 1, down 1”, “over 1, down 2”,

Andrew Mertz, William Slough and Nancy Van Cleave

TUGboat, Volume 35 (2014), No. 2 183

...

Saved R1 −1

R6 (Stack Pointer)

Saved R0 0

R5 (Frame Pointer)

Previous Frame Pointer +1

Return Address +2

n +3

FACT(n)

...

\begin{drawstack}

\startframe

\tikzset{>={Stealth[width = 2mm,

length = 3mm]}}

\cell{Saved \texttt{R1}}

\cellcom{-1}

\cellptr{\texttt{R6} (Stack Pointer)}

\cell{Saved \texttt{R0}}

\cellcom{0}

\cellptr{\texttt{R5} (Frame Pointer)}

\cell{Previous Frame Pointer}

\cellcom{$+1$}

\cell{Return Address}

\cellcom{$+2$}

\cell{n}

\cellcom{$+3$}

\finishframe{FACT(n)}

\end{drawstack}

Figure 7: A simple stack frame produced by the drawstack package.

and “over 1, down 3”. The or gate is placed in a
similar way.

The interconnections are simply vertical and
horizontal line segments, specified with the -- and
|- line drawing capabilities of TikZ: a single line
segment is produced by --, whereas |- draws an
ell-shape consisting of a vertical segment followed by
a horizontal one.

To illustrate specific input values, we could use
a draw option to easily add colors (e.g., red for false,
blue for true) to this circuit. For example, replacing
the \draw commands with \draw[red] will change
the color of the lines and dots.

5 Stacks and stack frames

To understand function calls at the machine-language
level, visualization of stacks and stack frames within
memory is key. The package drawstack [11] provides
a means to illustrate memory with annotations and
explicit links. Refer to Figure 7 for an example of a
simple stack frame.

This package provides the drawstack environ-
ment. Each frame is enclosed within a pair of com-
mands: \startframe and \finishframe. The argu-
ment provided to \finishframe specifies the brace
label. The brace itself groups all of the cells within
a given frame. In this first example, just one frame
appears, but any number of frames may be produced.

Each component of a frame consists of a cell,
an optional comment, and an optional cell pointer.
The comment and pointer appear to the cell’s right.
Cell comments are useful for memory addresses or
offsets, for example. In this example, we are using

\tikzset to specify an arrowhead of a customized
size. Other features of TikZ can be used to add
additional arrows, change colors, and so on. Figure 8
provides a glimpse of the possibilities.

6 Displaying fields of bits

In computer systems courses students are introduced
to machine language instructions, written in binary.
These instructions are subdivided into fields of bits
and given mnemonic names. Similarly, memory
maps, network protocols, and file formats all con-
sist of fields of data. The package bytefield [12] can
be used to show these layouts, and provides a wide
variety of options to do so.

The bytefield environment may be used to
create diagrams similar in format to Figure 9. The
argument, 13 in this case, specifies the width of the
figure in bits. The bitwidth option controls the
amount of horizontal space given to each bit. Within
this environment, \bitbox is used to add a field one
or more bits wide in a single row. The command
\wordbox adds a field that fills one or more rows deep.
Double slashes are used to end a row in a bytefield
diagram, much like a tabular environment.

Figure 10 illustrates how bytefield can be used to
format a machine instruction; in this example, from a
hypothetical computer called LC-3 [13]. The indices
are added with \bitheader, while the endianness

option reverses the order of the indexing.
Groups can be used to add labels that span mul-

tiple rows, and can be placed on the left or the right
of the diagram. Groups do not have to nest prop-
erly, unlike most environments. Use the leftcurly

Typesetting figures for computer science

184 TUGboat, Volume 35 (2014), No. 2

...

Saved R1 x5ff1 (-1)

R6 (Stack Pointer)

Saved R0 x5ff2 (+0)

R5 (Frame Pointer)

PFP = x5ff7 x5ff3 (+1)

Return Address = x305E x5ff4 (+2)

N = 2 x5ff5 (+3)

FACT(2)

Saved R1 x5ff6 (-1)

Saved R0 x5ff7 (+0)

PFP = x5ffc x5ff8 (+1)

Return Address = x305E x5ff9 (+2)

N = 3 x5ffa (+3)

FACT(3)

Saved R1 x5ffb (-1)

Saved R0 x5ffc (+0)

PFP = x0000 x5ffd (+1)

Return Address = x3011 x5ffe (+2)

N = 4 x5fff (+3)

FACT(4)

...

Figure 8: Linked stack frames corresponding to a
recursive computation of FACT(4).

\begin{bytefield}[bitwidth = 1.5em]{13}

\bitbox{1}{bit}

\bitbox{4}{nybble}

\bitbox{8}{byte}\\

\wordbox{1}{one row}\\

\wordbox{2}{two rows with

additional text so that it will

wrap around}

\end{bytefield}

bit nybble byte

one row

two rows with additional text so that it will
wrap around

Figure 9: An example of basic bytefield commands,
and its output.

\begin{bytefield}[bitwidth = 1.2em,

leftcurly = .]{16}

\bitheader[endianness = big]{0-15}\\

\begin{leftwordgroup}{ADD}

\bitbox{4}{0001}

\bitbox{3}{DR}

\bitbox{3}{SR1}

\bitbox{1}{0}

\bitbox{2}{00}

\bitbox{3}{SR2}

\end{leftwordgroup}

\end{bytefield}

0123456789101112131415

0001 DR SR1 0 00 SR2ADD

Figure 10: Formatting a machine instruction
using bytefield.

option to set the type of brace used to highlight the
group. In the case of Figure 10, no brace was used.

When indices are shown it might be preferable
to have each bit centered under its index. The
\bitboxes command accomplishes this, as shown
in Figure 11. The first argument to bitboxes spec-
ifies the number of “symbols” to place at each bit
location. To remove the internal lines within a field,
use \bitboxes*.

By default, bytefield vertically centers bit and
word boxes without respecting the baseline of their
contents. The bytefield documentation gives a tech-
nique for adjusting this, as shown in Figure 11, by us-
ing a \raisebox command within \bytefieldsetup

to initialize boxformatting.
Extra space can be added between rows, similar

to a tabular environment. The bytefield documen-
tation also gives a technique for filling a bitbox to
gray it out. However, it is not compatible with the
technique given for aligning text on the baseline, so
the box formatting needs to be reset, as also shown
in Figure 12.

7 Automata

Central to the theory of computation is the concept
of various types of automata, such as finite-state
machines, pushdown machines, and Turing machines.
These abstract computing devices are typically pre-
sented as directed graphs with labeled edges. These
kinds of diagrams are good for understanding the
static aspect of these machines.

How might we gain further appreciation of the
dynamic aspect of automata—that is, the nature of
how these machines process input strings? One way
is to utilize a program like JFLAP [14], a Java-based

Andrew Mertz, William Slough and Nancy Van Cleave

TUGboat, Volume 35 (2014), No. 2 185

\newlength{\maxheight}

\setlength{\maxheight}{\heightof{W}}

\newcommand{\baselinealign}[1][\maxheight]

{\centering\raisebox{0pt}[#1][0pt]}

\begin{bytefield}[bitwidth = 1.2em,

leftcurly = .]{16}

\bitheader[endianness = big]{0-15}\\

\bytefieldsetup{boxformatting=

\baselinealign}%

\begin{leftwordgroup}{BR}

\bitboxes{1}{0000}

\bitboxes*{1}{nzp}

\bitbox{9}{PCoffset9}

\end{leftwordgroup}

\end{bytefield}

0123456789101112131415

0 0 0 0 n z p PCoffset9BR

Figure 11: Baseline alignment of bit boxes.

\begin{bytefield}[bitwidth = 1.5em,

leftcurly = .]{16}

\bitheader[endianness = big]{0-15}\\

\bytefieldsetup{boxformatting=

\baselinealign}%

\begin{leftwordgroup}{BR}

\bitboxes*{1}{0000}

\bitboxes*{1}{nzp}

\bitbox{9}{PCoffset9}

\end{leftwordgroup}\\[1ex]

\bytefieldsetup{boxformatting=

{\centering}}

\begin{leftwordgroup}{RSV}

\bitboxes*{1}{1101}

\bitbox{12}{\color{lightgray}

\rule{\width}{\height}}

\end{leftwordgroup}

\end{bytefield}

0123456789101112131415

0 0 0 0 n z p PCoffset9BR

1 1 0 1RSV

Figure 12: Adding space between two machine
instructions and filling a bitbox with color.

formal language and automata package now often
used in computer science education.

Using JFLAP, we can build automata using a
convenient GUI interface, then explore their behavior
on various input strings. In addition, we can ex-
periment with constructions used in proofs, such as
constructing an equivalent deterministic automaton
given a non-deterministic one.

What options exist for incorporating a JFLAP-
based automaton in a LATEX document? At present,
the software exports in JPG, PNG, GIF, BMP and
SVG formats. Unfortunately, these are less than
ideal, as Figure 13 shows: fonts do not match those
used in the document, “true” subscripts are not used,
color may not be desired, and it is difficult to achieve
accurate placement of the circular nodes, since JFLAP

does not use a “snap to” grid for node layout.
Since TikZ has a library for drawing automata,

we can imagine an export option from JFLAP which
produces appropriate TikZ code which could then be
included in a LATEX document. Such an option would
be a vector-based format and allow for TEX-based
markup, thereby eliminating most of the undesirable
effects of using one of the bitmap formats now avail-
able. The possibility of inaccurately placed nodes
would continue to be a problem.

Although not directly incorporated into the
JFLAP software, the script jflap2tikz [8] achieves the
goal of presenting automata created with JFLAP us-
ing TikZ-based graphics. The TikZ code output by
jflap2tikz for our example automaton is shown in Fig-
ure 14, and Figure 15 shows the resulting processed
output. The TikZ code produced by jflap2tikz is
human-readable and thus can be further edited, if
desired. The script allows for a “snap to” style grid
which can improve alignment of the nodes. A large
grid spacing corresponds to a coarser grid. Figure 16
shows the result of using such a grid on the example
finite-state machine.

Figure 13: An example finite-state machine excerpted
from [15], as exported by JFLAP using PNG format.

Typesetting figures for computer science

186 TUGboat, Volume 35 (2014), No. 2

\begin{tikzpicture}[>={Stealth[width = 6pt, length = 9pt]},

accepting/.style = {double distance = 2pt,

outer sep = 1pt + \pgflinewidth},

shorten >= 1pt,

auto]

\draw (62pt, -114pt) node[state, initial, initial text =](0){q_{0}};

\draw (163pt, -51pt) node[state](1){q_{1}};

\draw (184pt, -162pt) node[state](2){q_{2}};

\draw (275pt, -92pt) node[state, accepting](3){q_{3}};

\path[->] (0) edge[bend left] node{b}(2);

\path[->] (2) edge[bend left] node{a}(0);

\path[->] (1) edge node{a}(2);

\path[->] (0) edge node{λ}(1);

\path[->] (1) edge node{a}(3);

\end{tikzpicture}

Figure 14: Result of processing the source file for Figure 13 with the jflap2tikz script (slightly edited for space).

q0

q1

q2

q3

b

a

a

λ
a

Figure 15: The finite-state machine from Figure 13,
converted into TikZ and then processed as usual.

q0 q1

q2

q3

b

a

a

λ a

Figure 16: The finite-state machine from Figure 13,
converted with a grid spacing of 100.

8 Trees

Forests and trees appear in a wide variety of forms
in many areas of computer science. Drawing trees
with GUI-style graphics software can be awkward
and may yield imperfect results. Fortunately, there
are a number of TEX-based approaches. One of these

involves the use of the forest package [17], which
produces excellent results.

This package provides the forest environment,
wherein a tree can be defined using bracket nota-

tion, a well-known syntax among linguists which
captures the recursive nature of a tree. In this no-
tation, a tree with a single root node r is repre-
sented by [r]. If a tree has more than a single node,
then it has a root node r and n nonempty subtrees
T1, T2, . . . , Tn. The bracket representation for this
tree is [r br(T1) br(T2) . . . br(Tn)], where br(T) is the
bracket representation of tree T .

Figure 17 illustrates how this package can be
used to draw a tree. In this example, 6 is the root
with two subtrees, T1 and T2, so the bracket notation
for this tree is of the form [6 br(T1) br(T2)]. Using
this same pattern to expand br(T1) and br(T2), we
eventually obtain the bracketed form shown in the
figure. Notice that spaces and newlines can be in-
troduced to assist with readability and to help make
clear the structure of the tree.

Another common structure in computer science
is the binary tree, in which every node has at most
two children, referred to as left and right children.
The tree depicted in Figure 17 is not a binary tree,
since it is not clear whether the leaf node 1 is a left
child or a right child.

Indicating whether a node is a left or right child
can be accomplished with the phantom option which
reserves space for a node, but doesn’t draw an edge
to it. Phantom nodes may occur anywhere in the
tree; when one is used at the root it produces a forest.
Figure 18 shows two phantom nodes, one as the left
child of 8, the other as the right child of 7.

Andrew Mertz, William Slough and Nancy Van Cleave

TUGboat, Volume 35 (2014), No. 2 187

6

14

8

2 4

7

1

10

9 3

\begin{forest}

[6

[14

[8 [2] [4]]

[7 [1]]

]

[10 [9] [3]]

]

\end{forest}

Figure 17: A tree produced by the forest package.

6

14

8

4

7

1

10

9 3

\begin{forest}

[6

[14

[8 [,phantom] [4]]

[7 [1] [,phantom]]

]

[10 [9] [3]]

]

\end{forest}

Figure 18: Use of phantom to force node alignment.

Trees are commonly drawn with circular nodes.
This, too, is possible with the forest package since
it is built upon TikZ. Thus, options from TikZ can
be used to alter the result, and can be applied to
individual nodes, a subtree, or the entire tree. To
add circles to the tree of Figure 18, a first attempt
would be to apply this option to the entire tree:

for tree = {draw, circle}

This would draw a circle at each node of the tree, but
the size of each circle would depend on the dimensions
of the text at each node—giving circles of varying
sizes.

Specifying an appropriate minimum circle size,
as shown in Figure 19, solves that problem, producing
a tree with a uniform appearance.

It is also useful to be aware of the fit option.
Figure 20 shows the same binary search tree format-
ted in two ways. On the left is the default result,
also known as the tight fit, whereas the tree on the
right shows the result with the band fit. Compact
trees might be nice in many situations, but the wider
tree on the right is the one typically encountered for
search trees.

A red-black tree [3] is another type of binary tree,
where the color of each node is important. Figure 21
displays a red-black tree. The text has been set to
white, and the default color for nodes is black. The
red nodes have the default color overridden with the
option fill = red (printed in gray for this article).

6

14

8

2 4

7

1

10

9 3

\begin{forest}

for tree = {draw, circle,

node options = {minimum width = 5ex}}

[6

[14

[8 [2] [4]]

[7 [1] [,phantom]]

]

[10 [9] [3]]

]

\end{forest}

Figure 19: Uniform node size obtained by setting a
minimum node width.

S

E

A

C

R

H

T

S

E

A

C

R

H

T

Figure 20: Compact tree on left (fit = tight);
wider on right (fit = band).

9 Grammars and parse trees

Before looking at an example of a parse tree, we take
a short detour into grammars. A context-free gram-
mar is a formal system which describes a language
as a set of rules.

The syntax-mdw package [18] may be used to
typeset the syntax rules for a given language. A
grammar environment is used, and produces nicely
formatted output, as demonstrated in Figure 22.
The \alt command is used to specify alternative
rules, and when typeset produces the | symbol, pro-
nounced “or”. Setting the value of \grammarindent
determines the amount to indent each of the alter-
natives in the grammar definition.

Typesetting figures for computer science

188 TUGboat, Volume 35 (2014), No. 2

51

21

19

13

40

24

88

72

61 86

96

90

for tree = {fit = band, circle, draw,

fill = black, text = white,

edge = {black, very thick}}

[51

[21

[19 [13, fill = red] [,phantom]]

[40 [24, fill = red] [,phantom]]

]

[88

[72, fill = red [61][86]]

[96 [90, fill = red] [,phantom]]

]

]

Figure 21: An example of a red-black tree.

〈expr〉 ::= 〈expr〉 ‘+’ 〈expr〉
| 〈expr〉 ‘-’ 〈expr〉
| 〈expr〉 ‘*’ 〈expr〉
| 〈expr〉 ‘/’ 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| ‘-’〈expr〉
| ‘id’

\setlength{\grammarindent}{5em}

\begin{grammar}

<expr> ::= <expr> ‘+’ <expr>

\alt <expr> ‘-’ <expr>

\alt <expr> ‘*’ <expr>

\alt <expr> ‘/’ <expr>

\alt ‘(’ <expr> ‘)’

\alt ‘-’<expr>

\alt ‘id’

\end{grammar}

Figure 22: The syntax rules of a simple grammar.

A parse tree represents the syntactic structure
of a string according to some context-free grammar.
Given the grammar in Figure 22, a parse tree can be
used to represent an expression such as (a+ b) ∗ c as
shown in Figure 23.

〈expr〉

〈expr〉

(〈expr〉

〈expr〉

id

+ 〈expr〉

id

)

* 〈expr〉

id

% Expression: (a+b)*c

\newcommand{\E}{$\langle expr \rangle$}

\newcommand{\id}{\texttt{id}}

\newcommand{\plus}{\texttt{+}}

\newcommand{\mult}{\texttt{*}}

\newcommand{\lpar}{\texttt{(}}

\newcommand{\rpar}{\texttt{)}}

\begin{forest}

[\E

[\E

[\lpar]

[\E

[\E [\id]] [\plus] [\E [\id]]

]

[\rpar]

]

[\mult]

[\E [\id]]

]

\end{forest}

Figure 23: A parse tree for the expression (a+ b) ∗ c,
using the grammar from Figure 22.

10 Combinatorial graphs

In graph theory and similar courses, combinatorial
graphs must be produced in great numbers. The
package tkz-graph [7] provides a variety of styles
and macros for creating high-quality representations
of graphs. The documentation is available only in
French, but is so abundantly illustrated with well-
done examples that it is accessible to those with little
or even no knowledge of French.

Figure 24 displays several of the options avail-
able when drawing graphs. To select the vertex style
(from a list of ten possibilities, for example Simple,
Classic, or Shade), set vstyle to your choice using
the \GraphInit command.

\SetUpVertex can be used to set such options as
the position of the label relative to the node (Lpos),
the distance of the label from the node (Ldist), and
whether the label is outside of the node (LabelOut).

Andrew Mertz, William Slough and Nancy Van Cleave

TUGboat, Volume 35 (2014), No. 2 189

\begin{tikzpicture}

% Select vertex style

\GraphInit[vstyle = Classic]

% Indicate vertex color

\SetUpVertex[FillColor = gray!30]

% Set vertex size relative to label

\renewcommand*{\VertexInnerSep}{3pt}

% Position of vertex labels

\SetVertexLabelIn

% Establish Line width

\tikzset{EdgeStyle/.append style =

{line width = 2pt}}

% --- tkz-graph commands here ---

\end{tikzpicture}

Figure 24: Details of initializing values for a graph.

Alternately, macros such as \VertexInnerSep can be
redefined. Also, several macros are provided to mod-
ify default options, for example, \SetVertexLabelIn.
And finally, \tikzset can be used to modify both
the vertex and edge styles.

Figure 25 illustrates the format of a simple graph
using relative positioning to place the vertices. Ver-
tex A is established, then all the other vertices are
relative to A or the position of another vertex. It is of
interest to note that the distance given to combined
directions such as \SOEA, is applied in both directions.
Thus \SOEA[unit = 1](A){C} results in vertex C

being one unit south and one unit east of vertex A.
Recall that this code resides in the tikzpicture

environment following the code given in Figure 24.
Hence, native TikZ commands such as

\draw[help lines](0, 0) grid (4, -4);

can be issued here.
An alternative way to place the vertices can be

seen in Figure 26. Here the vertices are placed using
absolute coordinates, and all edges can be included
in the single Edges macro.

By utilizing \tikzset, it is possible to design a
new vertex style, as shown in Figure 27. Here the
shape, size, and color have been redefined.

It is also possible to modify the vertex style
within the \SetVertexSimple macro, as shown in
Figure 28, where the shape, fill color, size and line
have all been specified.

As Figure 29 shows, creating directed edges is
as simple as setting the edge style. To improve the
default arrowheads, \tikzset is used to select the
Stealth shape, with the width and height enlarged

A B

HG

C D

FE

% Two nested squares of vertices

\Vertex{A} \EA[unit = 4](A){B}

\SO [unit = 4](B){H} \WE[unit = 4](H){G}

\SOEA[unit = 1](A){C} \EA[unit = 2](C){D}

\SO [unit = 2](D){F} \WE[unit = 2](F){E}

% Outer square

\Edge(A)(B) \Edge(B)(H)

\Edge(H)(G) \Edge(G)(A)

% Inner square

\Edge(C)(D) \Edge(D)(F)

\Edge(F)(E) \Edge(E)(C)

% Connect the squares

\Edge(A)(C) \Edge(B)(D)

\Edge(H)(F) \Edge(G)(E)

% Cause a grid to appear

\draw[help lines] (0, 0) grid (4, -4);

Figure 25: A simple graph using relative positioning.

% Two nested squares of vertices

\Vertex[x = 0, y = 4]{A}

\Vertex[x = 0, y = 0]{G}

\Vertex[x = 1, y = 3]{C}

\Vertex[x = 1, y = 1]{E}

\Vertex[x = 3, y = 3]{D}

\Vertex[x = 3, y = 1]{F}

\Vertex[x = 4, y = 4]{B}

\Vertex[x = 4, y = 0]{H}

% All edges

\Edges(A, B, H, G, A, C, D, F,

E, C, E, G, H, F, D, B)

Figure 26: The same graph as Figure 25 using
absolute placement of vertices.

to improve visibility. Since the edges are now di-
rected, the order of vertices when creating edges
becomes important.

Simple changes can affect the appearance of a
graph. For example, changing the vertex style to
Shade produces a sophisticated-looking graph as seen
in Figure 30.

Typesetting figures for computer science

190 TUGboat, Volume 35 (2014), No. 2

\begin{tikzpicture}

\SetVertexSimple

\tikzset{VertexStyle/.style = {

shape = rectangle,

fill = gray,

inner sep = 0pt,

outer sep = 0pt,

minimum size = 10pt}}

\Vertex{A} \EA(A){B}

\Edge(A)(B)

\end{tikzpicture}

Figure 27: Designing your own vertex style, version 1.

\begin{tikzpicture}[rotate = 18]

\SetVertexSimple[Shape = diamond,

FillColor = gray!25,

MinSize = 12pt,

LineWidth = 4pt,

LineColor = black!75]

\tikzset{VertexStyle/.append style = {

inner sep = 0pt,

outer sep = 2pt}}

\Vertices{circle}{A, B, C, D, E}

\Edges(A, B, C, D, E, A, C, E, B, D)

\end{tikzpicture}

Figure 28: Designing your own vertex style, version 2.

Figure 31 represents a flow network, with an
augmenting path (of flow 4) highlighted. The source
and sink nodes have been emphasized with different
colors, and the augmenting path edges are wider than
other edges and also of a different color. Observe
that an edge may be curved using the bend right

or bend left option when setting the edge style.
Additional examples from the tkz-graph package can
be seen in [9].

A B

HG

C D

FE

% Set arrow type and size

\tikzset{>={Stealth[width = 3mm,

length = 4mm]}}

% Set edge to arrow

\tikzset{EdgeStyle/.append style =

{->,line width = 1.5pt}}

% Nested squares of vertices as before

% Outer square - clockwise

\Edges(A, B, H, G, A)

% Inner square - counterclockwise

\Edges(C, E, F, D, C)

% Connect the corners

\Edge(A)(C)

\Edge(D)(B)

\Edge(H)(F)

\Edge(E)(G)

Figure 29: Example of a directed graph.

A B

HG

C D

FE

% Simple changes:

\GraphInit[vstyle = Shade]

\SetGraphShadeColor

{gray!25} % ball

{black} % edge outline

{gray!25} % inner edge

% vertices and edges as before

Figure 30: A change in vertex style.
(Partial LATEX code)

Andrew Mertz, William Slough and Nancy Van Cleave

TUGboat, Volume 35 (2014), No. 2 191

v1

v2

v3

v4

s t

16

12

9

14

413

7

20

10 4

% Change vertex attributes

\SetUpVertex[FillColor = gray!50,

InnerSep = 5pt]

% Change edge attributes

\tikzset{LabelStyle/.style =

{shape = circle, inner sep = 2pt}}

\Edge[color = gray!80,

lw = 5pt, label = 16](s)(v1)

% Add curve to edges

\tikzset{EdgeStyle/.append style =

{bend right = 15}}

\Edge[lw = 2pt, label = 10](v1)(v2)

Figure 31: A sample flow network with changing
attributes.

11 Summary

As educators in the field of computer science, we find
ourselves challenged to produce a wide variety of
figures and diagrams. Being able to replicate (or in
some cases, exceed) the quality found in textbook pre-
sentations is a practical and intrinsically rewarding
skill. Fortunately, the TEX community has provided
a wealth of resources which can be brought to bear
on this problem. We hope that the examples and
explanations provided in this paper will encourage
others to explore these and other packages further.

References

[1] David Carlisle. Guide to graphics in LATEX.
http://ctan.org/pkg/graphicx.

[2] Thomas Cormen. The clrscode3e package:
Typesets pseudocode as in Introduction to
Algorithms. http://ctan.org/pkg/clrscode3e.

[3] Thomas Cormen, Charles Leiserson, Ronald
Rivest, and Clifford Stein. Introduction to

Algorithms, 3rd Edition. The MIT Press, 2009.

[4] Michel Goossens, Frank Mittelbach, Sebastian
Rahtz, and Denis Roegel. The LATEX Graphics

Companion, 2nd Edition. Addison-Wesley
Professional, 2007.

[5] Carsten Heinz, Brooks Moses, and Jobst
Hoffmann. The listings package: Typeset source
code listings using LATEX.
http://ctan.org/pkg/listings.

[6] John Hobby. MetaPost. http://tug.org/

metapost.

[7] Alain Matthes. The tkz-graph package: Draw
graph-theory graphs. http://ctan.org/pkg/

tkz-graph.

[8] Andrew Mertz and William Slough. The
jflap2tikz script: Convert JFLAP files to TikZ.
http://ctan.org/pkg/jflap2tikz.

[9] Andrew Mertz and William Slough. Graphics with
PGF and TikZ. TUGboat, 28(1):91–99, 2007. http:
//tug.org/TUGboat/tb28-1/tb88mertz.pdf.

[10] Frank Mittelbach, Michel Goossens, Johannes
Braams, and David Carlisle. The LATEX

Companion, 2nd Edition. Addison-Wesley
Professional, 2004.

[11] Matthieu Moy. The drawstack package:
Draw execution stacks.
http://ctan.org/pkg/drawstack.

[12] Scott Pakin. The bytefield package: Create
illustrations for network protocol specifications.
http://ctan.org/pkg/bytefield.

[13] Yale Patt and Sanjay Patel. Introduction to

Computing Systems: From bits & gates to C &

beyond. McGraw-Hill, 2003.

[14] Susan H. Rodger. JFLAP: Java Formal Languages
and Automata Package. http://www.jflap.org.

[15] Susan H. Rodger and Thomas W. Finley.
JFLAP: An Interactive Formal Languages and

Automata Package. Jones and Bartlett Learning,
2006.

[16] Till Tantau. The PGF package: Create
PostScript and PDF graphics in TEX.
http://ctan.org/pkg/pgf.

[17] Sas̆o Z̆ivanović. The forest package:
Drawing (linguistic) trees.
http://ctan.org/pkg/forest.

[18] Mark Wooding. The syntax-mdw package:
Typeset syntax descriptions.
http://ctan.org/pkg/syntax-mdw.

⋄ Andrew Mertz, William Slough
and Nancy Van Cleave

Department of Mathematics and
Computer Science

Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu,

waslough (at) eiu dot edu,

nkvancleave (at) eiu dot edu

Typesetting figures for computer science

192 TUGboat, Volume 35 (2014), No. 2

Dynamic documents

David Allen

Abstract

The term dynamic document covers a wide assort-
ment of documents; see Wikipedia for a general defi-
nition. The discussion here involves a situation where
the document is a report including statistical analy-
ses and graphical displays based on data. The data
are continually being augmented or replaced. What
is needed is a way to automate the revision of the
document when the data changes. Our approach
here is to use R to do the statistical calculations and
graphics, tikzDevice (an R package) to output the
graphics to LATEX, and knitr (also an R package) to
process an input file to a LATEX file.

1 The Kentucky Senate race

On November 4, 2014, the Commonwealth of Ken-
tucky will elect a United States Senator. The can-
didates are Alison Lundergan Grimes and Mitch
McConnell. This race has high national impact and
is closely watched. A poll yields the number of people
in a sample, from a population of potential voters, fa-
voring each candidate. The proportion of the sample
favoring Alison (or Mitch) is reported. However, this
provides no indication of the sampling variability.

The parameter of interest is the population pro-
portion favoring Alison. A credible interval is such
that the parameter lies within the interval with high
probability. A credible interval is a more informative
mode of presentation, as it conveys the uncertainty
of knowledge about the parameter. Calculation of
the credible interval is the statistical analysis portion
of the report.

Denote the proportion of the population favoring
Alison by p. The first step in calculating a credible
interval is finding the posterior density function of p
given the sample results. One needs to select a level
of credibility. The value 0.95 has a strong tradition
and is used here. The 0.95 credibility interval is
an interval (p1, p2) where P (p1 < p < p2) = 0.95.
There are multiple intervals satisfying the probability
statement. The interval having minimal length is
usually used.

An example assuming a sample with 55 favoring
Alison and 45 favoring Mitch is shown in fig. 1. The
0.95 credible interval (0.4528, 0.6428) is the base of
the shaded region. A report might look like:

A current poll produced 55 potential voters
favoring Alison and 45 favoring Mitch. These
results give a 0.95 credible interval for the
proportion favoring Alison of (0.4528, 0.6428).

0.0 0.2 0.4 0.6 0.8 1.0

Proportion Favoring Alison

P
os
te
ri
o
r
D
en
si
ty

Figure 1: Graph showing credible interval.

The report might also include the above graph (fig. 1).
The preceding graphic and the credible interval

were produced with R. The output from R was then
transcribed to a LATEX file to produce the “report”.
Polling will be a continuing activity from now until
election day. Rerunning R and cutting and pasting
output into a LATEX document is tedious and error
prone. Subsequent sections show how to automate
the process.

2 TikZ graphics

TikZ is a graphics package used in conjunction with
TEX. It is included with most distributions of TEX, or
may be downloaded at http://sourceforge.net/
projects/pgf/. A large selection of examples of
TikZ graphics are posted at http://www.texample.
net/tikz/examples/.

I think it likely that most TUGboat readers
are familiar with TikZ. I give just two examples I
have composed. The graphic in fig. 2 was hand-coded
in Sketch (http://www.frontiernet.net/~eugene.
ressler/), and then processed into TikZ, and fig. 3
was written directly in TikZ.

3 An overview of R

R is a language and environment for statistical com-
puting and graphics. Its home page is http://www.
r-project.org. R is a free software project. It com-
piles and runs on a wide variety of Unix platforms
and similar systems, including FreeBSD, GNU/Linux,

Figure 2: Graphic made in Sketch and exported

to TikZ.

David Allen

TUGboat, Volume 35 (2014), No. 2 193

GI tract Plasma Other

θ4

θ1

θ2

θ3

Figure 3: Hand-coded TikZ example.

and MacOSX, as well as Windows. R is often the ve-
hicle of choice for research in statistical methodology,
and it provides an open source route to participation
in that activity.

R provides a wide variety of statistical tech-
niques including linear and nonlinear modeling, clas-
sical statistical tests, time-series analysis, classifi-
cation, and clustering. R is highly extensible and
contains a rich collection of graphical techniques.
One of R’s strengths is the ease with which well-
designed publication-quality plots can be produced,
including mathematical symbols and formulas where
needed. Defaults for the minor design choices in
graphics have been carefully considered, but the user
retains full control.

4 tikzDevice

The tikzDevice package enables LATEX-ready output
from R graphics functions. This is done by pro-
ducing code that can be understood by the TikZ
graphics language. All text in a graphic output with
the tikz() function will be typeset by LATEX and
therefore will match whatever fonts are currently
used in the document. This also means that LATEX
mathematics can be typeset directly into labels and
annotations. Graphics produced this way can also
be annotated with custom TikZ commands. An ex-
ample R graphic output using tikzDevice is shown
in fig. 4. The program that produced the graph is

setwd("~/tug2014")

source("quadratic-data.R")

source("quadratic-graph.R")

The source command executes the statements in
the named file. Here I group code into small parts
to focus discussion.

The file quadratic-data.R contains the data
generation code:

x <- (0:100)/10

y <- 10 + (x-5)^2

R formulas are different from standard mathematical
formulas. A function call operates on every element
of a vector. When vectors of different lengths are

0 2 4 6 8 10

1
0

1
5

2
0

2
5

3
0

3
5

x

y

y = 10 + (x− 5)2

Figure 4: Example output using tikzDevice.

added or subtracted, the shorter one is recycled in
an effort to make them the same length.

The file quadratic-graph.R contains the graph-
ics code:

require(tikzDevice)

tikz("quadratic-graph.tex",standAlone=FALSE,

width=4.5, height=2.5)

par(mex=0.6, mar=c(4.5,5,0,0)+0.1)

plot(x, y, type=’l’, xlab="x",ylab="y")

text(5, 25, "$y = 10+(x-5)^2$")

dev.off()

Most of this code is understandable by comparison
to the resulting graph. An exception might be the
par function used to change graphic parameters from
their default values. The ones used here are:

Arg Description

mex A character size expansion factor used
to describe coordinates in the margins of
plots.

mar Vector of the form c(bottom, left, top,
right) which gives the number of lines of
margin to be specified on the four sides.

5 Implementation

This section implements a dynamic document that
facilitates reporting the current status of the race
between Alison and Mitch. The document has a
title, a graph of the posterior density, and a short
statistical report. The data file for this senate race
is senate.dat and contains just two numbers, the
number in the sample that favor Alison, and the
number that favor Mitch. This two-number file can
be updated with an editor. For more complicated
situations a program might update the data file.

Knitr is an R package containing a function
knit, which takes a file name with an extension
.Rnw as an argument. An .Rnw file is like a LATEX
file with interspersed R chunks. The output is a pure
LATEX file containing the output from running the R
chunks. Documentation for knitr is available online
and in Yihui Xie’s book [1].

Dynamic documents

194 TUGboat, Volume 35 (2014), No. 2

R is an implementation of a language S. There
is a macro \Sexpr(), for S expression, that may be
placed in the TEX portion of the file. \Sexpr() takes
an R expression as an argument. The expression
is evaluated, converted to text, and passed into the
LATEX output. The content of senate.Rnw is

\documentclass[12pt]{article}

\begin{document}

<<setup,echo=FALSE>>=

source("chunk1.R")

@

\title{Alison Versus Mitch}

\author{David Allen\\University of Kentucky}

\maketitle

\thispagestyle{empty}

%

<<params,echo=FALSE>>=

source("chunk2.R")

@

A poll released July 28, 2014 produced

\Sexpr{a-2} potential voters favoring Alison and

\Sexpr{b-2} favoring Mitch.

These results give a \Sexpr{level} credible

interval for the proportion favoring Alison of

(\Sexpr{p1}, \Sexpr{p2}).

%

The posterior density function, with the area

over the credible interval shaded, is

<<label="density",dev=’tikz’,echo=FALSE,

fig.width=4,fig.height=2.75,

fig.align=’center’>>=

source("chunk3.R")

@

\end{document}

The R chunks have a header of the form

<< ... >>=

where commands are inside the double brackets, on
a single line (the line breaks above in the <<label...
above are editorial). A chunk ends with an @.

The content of chunk1.R is

setwd("~/tug2014")

interval.length <- function(p1,a,b,level=0.95)

{

q <- qbeta(1-level, a,b)

if(p1 > q) return(1 - q)

if(p1 < 0) return(qbeta(level, a, b))

p2 <- qbeta(pbeta(p1, a, b) + level, a, b)

return(p2-p1)

}

The function interval.length is a function I wrote
that gives the length of an interval starting at p1. The
posterior distribution of p is the beta distribution.
qbeta is a built-in function giving quantiles of the
beta distribution.

The content of chunk2.R is

vote <- vector(mode="numeric")

vote <- scan(file="senate.dat")

a <- vote[1] + 2

b <- vote[2] + 2

level <- 0.95

p1 <- optimize(f = interval.length,

interval = c(0, qbeta(1-level, a,b)),

a=a, b=b, level=level)$minimum

p2 <- qbeta(pbeta(p1, a, b) + level, a, b)

Here the built-in optimize function is used to find
the value of p1 associated with the shortest interval.
Then the corresponding p2 is computed.

The content of chunk3.R is

left <- (1:80)/80*p1

interval <- p1 + (1:80)/80*(p2-p1)

right <- p2 + (1:80)/80*(1-p2)

domain <- c(left, interval, right)

range <- dbeta(domain, a, b)

par(mex=0.6, mar=c(4.5,5,0,0)+0.1)

plot(c(0,1), c(0, max(range)), type="n",

xlab="Proportion Favoring Alison",

ylab="Density",yaxt=’n’)

polygon(c(interval, p2, p1),

c(dbeta(interval, a, b), 0, 0), col=27)

lines(domain, range); lines(c(0,1),c(0,0))

lines(c(0.5,0.5),c(0,max(range)))

This code produces the graph.
After each data update, run the following com-

mand in a terminal:

Rscript -e "library(knitr);knit(’senate.Rnw’)"

A LATEX file is produced that can be processed in
the usual ways. Rscript is just the command line
version of R. The -e option means the following are
statements to be run, as opposed to a file containing
statements.

I conclude with an exercise. A poll was released
on July 28, 2014 (the first full day of the conference in
Portland) showing 321 for Alison and 336 for Mitch.
I invite you to prepare a new data file, senate.dat,
containing

321 336

Then knit the .Rnw file and LATEX the resulting
senate.tex.

References

[1] Yihui Xie. Dynamic Documents with R and knitr.
Chapman & Hall/CRC Press, 2014. ISBN 978-
1482203530.

⋄ David Allen

University of Kentucky

david dot allen (at) uky dot edu

David Allen

TUGboat, Volume 35 (2014), No. 2 195

Typography and readability: An experiment

with post-stroke patients

Leyla Akhmadeeva and Boris Veytsman

Abstract

Typography for challenged readers has unique prob-
lems. There is a large amount of research about
reading by people with impaired vision. Since read-
ing is a complex process, other impairments, for
example, cognitive problems, may also influence it.
Should a publisher of texts for this audience be aware
of this? Which typographical devices must be used
for these texts?

In our previous reports we showed that serifs do
not influence the readability and understandability
of texts by healthy students. In this report we study
the readability and understandability of serif and
sans-serif texts by post-stroke patients. We discuss
the experimental setup and preliminary results.

1 Introduction

There is a certain typographic lore about the influ-
ence of different typographic elements on readability.
For example, every beginner “knows” that text with
serifs is read faster than sans serif, and therefore the
former should be used for body copy, and the latter
for advertisements and slides. Like the remedies of
traditional medicine, some of these pieces of knowl-
edge turn out to be corroborated by evidence, while
some do not.

Some time ago we discussed an evidence-based
approach to the verification of these old wisdoms [5].
TEX and friends turned out to be useful in this ap-
proach since they provide repeatable controlled type-
setting, where we can change a limited number of
parameters and study their influence on the results.

One of the first applications of this approach
was to test the hypothesis of difference in readabil-
ity of serif and sans serif fonts. Our experiments
with the volunteer students of Bashkir State Medical
University [1, 6] showed no discernible difference be-
tween these fonts, when either the speed of reading
or text comprehension were measured. This result re-
sembles the finding by Legge and Bigelow [3]— font
sizes used in the modern and historical typography
are within the range of fluent reading. Our exper-
iments indicate that not only font sizes but other
typographic features as well are within this range.

These conclusions are based on the experiments
with healthy readers. It is still an open question
whether subtle typographic differences influence read-
ability for people with different kinds of impairment.
A prime example of such a group is post-stroke pa-

Paratype Serif
Paratype Sans
Figure 1: Fonts used (enlarged to show the difference)

tients. It is well-known [4] that post-stroke patients
often suffer from reading problems which adversely
influence their adaptation. The study of whether
these patients can better read serif or sans serif texts
has a considerable practical importance: many ma-
terials are printed for this audience (instructional
texts, drug leaflets, etc.), and the optimal use of
typographic devices is clearly desirable.

We have started a study of reading by post-
stroke patients. In this paper we report the setup
and the first preliminary results.

2 Methods

We selected the patients for this study according to
the following criteria:

1. Post-stroke patients;
2. Ability to read text;
3. Fluency in Russian language;
4. Absence of dementia;
5. Absence of aphasia.

The study’s methods resemble those of our pre-
vious works [1, 6]. We typeset four one-page texts in
Russian using the Paratype fonts (shown in Figure 1)
at 12 pt scaled 0.95 [2]. We measured the reading
time of the page by the patients, and then asked
them to answer 10 multiple-choice questions about
the text (each question had four suggested answers).

Due to ethical considerations, all texts contained
information useful for the patients: advice for post-
stroke rehabilitation. To facilitate paired compar-
isons, we asked each patient to read all four texts
with an interval of approximately one week between
the texts. According to a randomized choice (us-
ing http://www.randomization.com) half of the pa-
tients read odd-numbered texts (1 and 3) in the serif
font, and even-numbered texts (2 and 4) in sans serif,
while the other half read odd-numbered texts in sans
serif, and even-numbered texts in the serif font.

3 Preliminary results

At this point we can report the results for N =
19 participants, including 12 males and 7 females,
average age 54± 11 years.

First, it is interesting to compare their results
with those of healthy students [1, 6], who read a
different text on the history of science. These com-
parisons are shown in Figures 2 and 3. We see that

Typography and readability: An experiment with post-stroke patients

196 TUGboat, Volume 35 (2014), No. 2

Students Patients

5
0

1
0
0

1
5
0

2
0
0

2
5
0

W
o
rd
s
p
er

m
in
u
te

Figure 2: Comparison of speed of reading
for medical students and post-stroke patients

Students Patients

2
4

6
8

1
0

N
u
m
b
e
r
o
f
c
o
r
r
e
c
t
a
n
s
w
e
r
s

Figure 3: Comparison of reading comprehension
for medical students and post-stroke patients

students definitely read faster than patients (on the
average 207.13 words per minute vs. 87.84 words per
minute with p = 6.18× 10−26). A rather unexpected
fact is that the number of correct answers is higher
for patients (5.23 vs. 6.78 with p = 5.19×10−7). One
might argue that the patients were more motivated
to learn the information related to their health than
students the historical information.

Let us now compare the reading of serif and
sans serif fonts by the patients. This is shown in
Figures 4 and 5. The figures show that there is not
much difference between serif and sans serif fonts.
A mathematical expression of this impression is the
so-called Student’s t-test. It gives p = 0.13 for the
reading speed and p = 0.68 for the reading compre-
hension. Such values usually show low statistical
significance of the measured difference.

Another way to analyze the data is to perform
paired comparisons. Instead of looking at the av-

Serif Sans

5
0

1
0
0

1
5
0

W
o
rd
s
p
er

m
in
u
te

Figure 4: Comparison of speed of reading
by patients for different fonts

Serif Sans

4
5

6
7

8
9

N
u
m
b
e
r
o
f
c
o
r
r
e
c
t
a
n
s
w
e
r
s

Figure 5: Comparison of reading comprehension
by patients for different fonts

erages, let us check how much the reading of serif
and sans serif texts differs for the same patient. To
visualize this, let us put the values for serif fonts on
the x axis, and the values for sans serif fonts on the
y axis. Each patient is a data point on this plot. If
the data tend to cluster in the upper left part of the
plot, then values for sans serif are greater than those
for serif. Otherwise the opposite is true.

The results are shown in Figures 6 and 7. Again,
there seems to be no difference between the fonts
on average. So-called paired t-tests confirm this
observation, giving the values p = 0.14 and p = 0.88,
respectively.

While there was no difference in general, some
data points on the figures are far from the diago-
nal. This means that there were patients for whom
the choice of fonts made the difference.1 The small

1 We are grateful to Karl Berry for this observation

Leyla Akhmadeeva and Boris Veytsman

TUGboat, Volume 35 (2014), No. 2 197

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

Serif

S
a
n
s

Figure 6: Paired comparison of speed of reading
by patients for different fonts

0 2 4 6 8 10

0
2

4
6

8
1
0

Serif

S
a
n
s

Figure 7: Paired comparison of reading compre-
hension by patients for different fonts

number of patients does not allow us to say at this
point whether these points are outliers, or tell an
interesting story about individual perception of fonts
by some patients. We plan to provide an in-depth
study of these patients.

4 Conclusions

The reading by post-stroke patients is an important
and interesting topic of research. So far our results,
while obtained with a very low number of patients,
show that they, like healthy readers, read with the
same speed and comprehension both serif and sans
serif texts.

Acknowledgements

We are grateful to Lilia Nurtdinova (medical student,
Bashkir State Medical University, Ufa, Russia), our

volunteers among the patients, the stuff of Republic
Clinical Hospital, Bashkortostan for the help with
this research. The participants at TUG 2014 gave
us many useful comments during our talk and after-
wards; we want to thank Karl Berry, Alan Wetmore,
Pavneet Arora, Jennifer Claudio, and many others.
Last but not least we are grateful to the TEX Users
Group for their encouragement and financial help
with attending TUG meetings.

References

[1] Leyla Akhmadeeva, Ilnar Tukhvatullin,
and Boris Veytsman. Do serifs help in
comprehension of printed text? An experiment
with Cyrillic readers. Vision Research, 65:21–24,
2012.

[2] Pavel Farář. Support Package for Free

Fonts by ParaType, May 2011. http:

//mirrors.ctan.org/fonts/paratype.

[3] Gordon E. Legge and Charles A. Bigelow.
Does print size matter for reading? A review
of findings from vision science and typography.
J. Vision, 11(5)(8):1–22, 2011. http://www.

journalofvision.org/content/11/5/8.long.

[4] Debjani Mukherjee, Rebecca L. Levin, and
Wendy Heller. The cognitive, emotional, and
social sequelae of stroke: Psychological and
ethical concerns in post-stroke adaptation.
Top Stroke Rehabil, 13(4):26–35, 2006.

[5] Boris Veytsman and Leyla Akhmadeeva.
Towards evidence-based typography: Literature
review and experiment design. TUGboat,
32(3):285–288, 2011. http://www.tug.org/

TUGboat/tb32-3/tb102veytsman-typo.pdf.

[6] Boris Veytsman and Leyla Akhmadeeva.
Towards evidence-based typography: First
results. TUGboat, 33(2):156–157, 2012.
http://www.tug.org//TUGboat/tb33-2/

tb104veytsman-typo.pdf.

⋄ Leyla Akhmadeeva
Bashkir State Medical University
3 Lenina Str., Ufa, 450000, Russia
la (at) ufaneuro (dot) org

http://www.ufaneuro.org

⋄ Boris Veytsman
Systems Biology School &

Computational Materials
Science Center, MS 6A2

George Mason University
Fairfax, VA, 22030, USA
borisv (at) lk (dot) net

http://borisv.lk.net

Typography and readability: An experiment with post-stroke patients

198 TUGboat, Volume 35 (2014), No. 2

TEX and copyediting

SK Venkatesan and CV Rajagopal

Abstract

Copyediting of a manuscript involves bringing con-
sistency at many levels, with many kinds of local
and non-local changes. The LATEX macros of the pro-
posed copyediting package offer an excellent way to
create markup that can handle the types of changes
made by a copyeditor in a consistent way.

The English language also has certain localiza-
tion requirements that could be handled through
language switches in the spirit of the Babel package.
Localization can be achieved through macros such
as \vara{color} that take care of variant spellings.
We also propose a family of macros for other copy-
editing requirements such as parenthetical commas,
serial commas, Latin abbreviations, firstly, secondly,
thirdly usages, juxtaposing and the use of appropri-
ate synonyms. This copyediting package will stream-
line the task of copyediting and bring a higher level
of quality, visibility and control to the final output.

1 Introduction

There can be many a slip between the cup and the
lip in the publishing process. The manuscript that
arrives in a modern publisher’s office, usually as a
LATEX or an MS Word file, gets transformed bit by
bit into a common XML form and then it is typeset
into its final PDF form. It is a bit like smelting and
purifying iron from its raw form and pouring it into
an XML mold, using a DTD as the sieve, to produce
the final finished products. Copyediting is a crucial
step in the process and is receiving increasing atten-
tion now, as copyediting changes are being clearly
indicated in the proofing process to the author.

Copyediting involves a broad range of activity:
the accurate conversion of the initial input to XML,
ensuring consistency of usage within the manuscript,
correcting basic language and grammar, applying
the finer aspects of the publisher’s style, and placing
XML hooks to ensure finer typographic aspects are
taken care. The XML keeps the link alive between
the present print-led world and future worlds such
as HTML5. Copyeditors and XML form the bridge
between these two worlds. Although TEX can be
misused in many ways to make life difficult for a
copyeditor [2], we have come a long way from the
earlier days when the technology was still under-
developed [1]. LATEX’s own secret little macros and
TEX4ht have also made it easier to form this bridge
between the two worlds.

Just as in all professions, copyeditors come from

a long lineage of tradition. Copyediting tries to filter
out what are deemed imperfections and inconsisten-
cies in the manuscript, and ensure that author–reader
communication is improved. Each publisher has an
in-house style guide that has been refined over many
years and forms the basis for copyediting. Our expe-
rience with different publishers has shown that it is
possible to design a generic set of TEX macros that
can be used in the spirit of BibLATEX macros.

It should be mentioned here that these macros
are not designed to replace copyeditors but to make
it easier for them to take care of mundane aspects
of copyediting in a systematic way, so that they will
be able to concentrate on improving what’s crucial,
the author–reader communication. Despite market
trends, the role of copyediting has never been more
important in the present world with varied render-
ing devices, with different aspect ratios and modern
semantic capabilities.

2 Copyediting macros

Copyediting involves quite a broad spectrum of activ-
ity. At one end of the spectrum it improves semantic
communication between the author and the reader.
At the other end of the spectrum it reinforces certain
stylistic and typographic conventions of the publisher.
Semantic aspects are much beyond the capability of
ordinary TEX macros, so it is at the latter end of the
spectrum that most of this effort will be focussed.

We break down the copyediting process into
various modular components:

1. Localization (loc)
2. Close-up, Hyphenation, and Spaced words (chs)
3. Latin abbreviations (lat)
4. Acronyms and Abbreviations (abr)
5. Itemization, nonlocal lists and labels (itm)
6. Parenthetical and serial commas (pc)
7. Non-local tokenization (nlt)
8. Genus-species identification (gsp)
9. Juxtaposing (jxt)
10. Synonyms (syn)

A macro \delins is used to indicate the copy-
editing text changes as in:

\delins[opt]{deleted text}{inserted text}

[comments about the change]

The option (opt) within the square brackets
indicate the category to which this change belongs:

opt=loc,chs,lat,abr,itm,pc,nlt,gsp,jxt,syn

However, these macros do not expose the de-
tailed information about the copyediting categories,
so we have created specific macros for each of the
copyediting categories.

SK Venkatesan and CV Rajagopal

TUGboat, Volume 35 (2014), No. 2 199

3 Localization—
British-American-Australian-Canadian

There are many sub-categories in British-American-
Australian-Canadian variations:

DG (Am) vs. DGE (Au, Br, Ca). In American
spelling, Acknowledgement, Judgement (et al.) lose
the e to become Acknowledgment, Judgment.

Z (Am, Ca) vs. S (Br, Au). American and
Canadian spelling prefers ize, while Australian and
British use ise in words like apologize/apologise and
authorize/authorise. However, the rule is different
for yze/yse patterns, in words like analyze/analyse,
where American prefers z and the rest use s.

S (Am, Ca) vs. C (Br, Au). In words like de-
fense/defence, offense/offence, American and Cana-
dian prefer s instead of c.

G (Am) vs. GUE (Br, Au, Ca). In words like
dialog/dialogue, catalog/catalogue American prefers
to drop the ue.

OR (Am) vs. OUR (Br, Au, Ca). In words like
color/colour, favor/favour American omits the u.

ER (Am) vs. RE (Br, Au, Ca). In words like
center/centre, caliber/calibre American prefers the
er spelling.

L (Am) vs. LL (Br, Au, Ca). In words like
canceled/cancelled, modeled/modelled American pre-
fers the single l spelling while the rest prefer double l.

Others. Many other differences don’t fall into
any regular pattern like the above, and so can be
handled only by a word list with their corresponding
language mapping table.

We use one macro to care of all of this com-
plexity: \vara{color}. The switch to a particular
language spelling is done in the preamble, e.g.:

\usepackage[lang=uk]{copyediting}

Both \vara{color} and \vara{colour} produce
the same output, in this case colour, so the author’s
original text need not be changed. The other options
for language switch in this context are am,ca,au.
The default language is the British spelling. In excep-
tional cases when one wants to force a particular use
in a particular instance one can use \vara*{analog},
which will leave the input unchanged.

4 Close-up, hyphenation, and spaced words

Although American spellings use fewer hyphens, that
modern preference for closed prefixes has exceptions:

1. if the root word is a proper noun or a number
(post-Depression, pre-2001)

2. for double prefix (non-self-governing)
3. if the prefix precedes a proper open compound

then en-dash is used (pre–Civil War)

4. if two instances of the letter i or the letter a
are adjacent (anti-intellectual, extra-action), or
other combinations of letters that could hamper
reading (pro-labor)

5. for a double prefix (anti-antibody)
6. for a repeated prefix with implicit use (over- and

understimulation)

We use the macro \hyp{{anti}{body}} to hy-
phenate a compound word. For a closed-up word
we use \closeup{{anti}-{body}}. For compound
words that occur as two separate words we use
\sword{{Civil} {War}}. You might wonder what
use are such complex verbose macros in a LATEX file?
They give visibility to the corrections the copyeditor
makes and offer hooks to produce a global inventory
of various changes while at the same time making it
feasible to make switches on a global scale.

5 Latin abbreviations

Latin abbreviations such as:
cf. compare et al. and others
etc. and so forth e.g. for example
i.e. that is NB note

are straightforward to handle with a macro, as in
\lat{et al.}, where the stylistic aspect is taken
care of by global switches:

\usepackage[lat=0,abbr=italic]{copyediting}

The default lat=0 leaves the text as is, and italic

defines the font used. Using option lat=1 removes all
the dots, and lat=2 changes the text to its English
equivalent shown above.

6 Acronyms and abbreviations

If the initial letter abbreviations are spoken together
as a word, as in Acquired Immune Deficiency Syn-
drome (AIDS), the term “acronym” is used—but we
will not make this distinction here and treat them as
one and the same. A simple macro, \ac{AIDS}, is
good enough and the default global switch ensures
that it is expanded correctly the first time within
parenthesis. The mapping between acronym and
expansion is declared using:

\newacro{AIDS}

{Acquired Immune Deficiency Syndrome}

Many standard acronyms are available by default
from the package, and only new acronyms need to
be added this way. This can be checked during com-
pilation. To avoid expansion of trite acronyms the
first time, one can use the starred form, \ac*{UK}.

7 Itemizations, nonlocal lists, labels

A list with only a few items may be written like this:

• Firstly, this is an endangered species;

TEX and copyediting

200 TUGboat, Volume 35 (2014), No. 2

• Secondly, humans find them delicious;
• Thirdly, they are only found on this island.

In this example we could have as well have used
‘first’, ‘second’, ‘third’, instead of ‘. . . ly’, making that
a global option. It is also possible that the items
may be changed to use standard arabic numeral: 1,
2, 3, . . . In order to make such changes possible with
a simple switch, one can use macros:

\begin{eitem}

\item this is a endangered species;

\item humans find them delicious;

\item they are only found on this island.

\end{eitem}

Given that we run LATEX at least three times, we can
have an option to change the last item in the list to
lastly, as a global switch:

\usepackage[eitem=0,last]{copyediting}

where eitem=0 is the (default) option that causes
firstly, secondly . . . and last indicates that the last
item should be lastly. With eitem=1 set, ly drops
out, and with eitem=2,3,.., a standard list (enu-
merated, bulleted, etc.) list is output.

8 Parenthetical and serial commas

Many long sentences are difficult to read and can be
communicated better with parenthetical constructs
or footnotes rather than commas. It would be nice
to have switches that can make this change, as in:

The enthusiastic young ducks flying in front of
the group\pc{led by the sagacious older

ones at the back, make a lot of noise and

turbulence} which are used by older ones at
the back to warm their heart and the wings.

which outputs to some variation of:

The enthusiastic young ducks flying in front
of the group, led by the sagacious older ones at
the back, make a lot of noise and turbulence,
which are used by older ones at the back to
warm their heart and the wings.

Depending on the global switch pc=0,1,2,3,4 we
can choose a parenthetical comma, parenthesis, em-
dash, footnote or sidenote.

9 Elist (Oxford comma)

For a list of items as in this sentence:

Suddenly warblers, tits and wrens started
singing in chorus . . .

we change the source to:

Suddenly \elist{warblers,tits,wrens}

started singing in chorus...

which can then be transformed into:

Suddenly warblers, tits, and wrens, started
singing in chorus . . .

This macro helps bring consistency across the docu-
ment regarding the placement of comma before and
in the last item and in ensuring proper white-space af-
ter the comma for each item. The comma before and
is known as the Oxford comma and can be triggered
by a global switch, oxfordcomma.

10 Non-local tokenization

In a sequence of minimization operation, in a typical
newspaper article the copyeditor encounters:

His Holiness, the Prince of Mangoistan, ad-
dressed a gathering of ordinary mangoes in
the capital New Mango. The Prince of Mango-
istan pointed out the serious threat of foreign
insects in the country. He further pointed out
. . .

His Holiness the Prince of Mangoistan shrinks to The
Prince of Mangoistan and then finally to He. This
copyediting operation can be denoted using:

\definetoken{mango}

{His Holiness, the Prince of Mangoistan}

{The Prince of Mangoistan}

{He}

at the first instance and then \Token{mango} at the
later instances. The \Token{mango} macro can thus
be useful simply to indicate to which nouns the im-
portant pronouns link in a paragraph. (However, not
all pronouns in English language have corresponding
original objects as in the case of ‘It’ in ‘It is raining!’.)

11 Genus-species identification

The Genus species formatting is similar to Latin ab-
breviations in many ways but has its own conventions
as well. The macro:

\gensp{E. coli}

italicizes all instances and expands the abbreviations
at the first instance. Like the Latin abbreviation
macro \lat, this macro also allows the embedding
of new undefined genus species entities, as in:

\definegensp{E. coli}{Escherichia coli}

12 Juxtaposing

Consider the sentence:

It is another politician that we can’t trust in
the White House.

This can be changed to:

It is another politician \pull that we can’t
trust\push{ in the White House}.

SK Venkatesan and CV Rajagopal

TUGboat, Volume 35 (2014), No. 2 201

The output of this being:

It is another politician in the White House
that we can’t trust.

If this is the original and we want it the other way
around, we can similarly write:

It is another politician \push{in the White

House} that we can’t trust \pop.

Juxtaposing has wide application, especially for copy-
editing misplaced modifiers. We use three macros
\pull, \push and \pop to achieve juxtaposing.

13 Synonyms

Sometimes we also need to use the appropriate syn-
onyms (e.g., due to redundancy in the original), as
in:

The temperature of the water was raised to
80◦C to see if some bacteria . . .

This could be changed to:

The temperature of the water was
\syn{raised}{increased} to 80◦C to see if
some bacteria . . .

producing the output:

The temperature of the water was increased
to 80◦C to see if some bacteria . . .

The \syn macro can thus be used for fixing inappro-
priate usage with an appropriate equivalent.

14 Interactive proofing

The above set of macros bring a certain level of trans-
parency and consistency to the copyediting process.
Using additional macros, this also has the potential
to convey further the key aspects of copyediting to
the author using menus and dashboards, bringing an
interactive aspect to the proofing process.

15 Conclusion

We have made an attempt at bringing together many
copyediting aspects as LATEX macros. This involves
some amount of drastic simplification and abstraction
that cannot suffice in all cases. The starred macros
can be used in those exceptional cases where one
needs to escape the global switch. The non-local
linkages work just as in the case of bibliography
links by multiple compilation of LATEX that passes
information through auxiliary files.

All this is only a small step towards the Hi-
malayan task of climbing the semantic hill through
LATEX macros as envisaged by SenseTEX [5].

16 Related work

There are some CTAN packages which we would like
mention in relationship to our copyediting macros.
The abbrevs package [4] has an interesting set of
macros but the spirit of the macros here is quite
different, in that we would like to keep the original
text of the author in some form or another, so that
changes made can be shown in a transparent manner.
The acronym package [3] is very close in concept
to our acronym macros and has some additional
interesting features that needs to be considered in
our copyediting macros.

Acknowledgements

We would like to thank Lorna O’Brien for important
inputs on English language and its varied usages
across countries and publishers. Of course, this work
would not have been possible without the constant
encouragement of Mariam Ram, TNQ and C.V. Rad-
hakrishnan, River Valley Technologies.

References

[1] P. Flynn (1993). TEX and SGML: A Recipe
for Disaster? TUGboat 14(3), 227–230. http:
//tug.org/TUGboat/tb14-3/tb40flynn.pdf

[2] E. Gregorio (2005). Horrors in LATEX: How to
misuse LATEX and make a copy editor unhappy,
TUGboat 26(3), 273–279. http://tug.org/
TUGboat/tb26-3/tb84gregorio.pdf

[3] Tobias Oetiker (2012). An Acronym
Environment for LATEX2ε.
http://ctan.org/pkg/acronym

[4] Matt Swift (2001). The abbrevs LATEX package.
http://ctan.org/pkg/abbrevs

[5] S.K. Venkatesan (2005). Moving from bytes to
words to semantics. TUGboat 26(2), 165–168.
http://tug.org/TUGboat/tb26-2/venkat.

pdf

⋄ SK Venkatesan

TNQ Books and Journals Pvt Ltd,

Dr Vikram Sarabhai Instronic

Estate, Kottivakkam,

Chennai 600041, India

skvenkat (at) tnq dot co dot in

⋄ CV Rajagopal

River Valley Technologies,

JWRA 34, Jagathy,

Trivandrum 695014, India

cvr3 (at) river-valley dot org

TEX and copyediting

202 TUGboat, Volume 35 (2014), No. 2

An output routine for an illustrated book:

Making the FAO Statistical Yearbook

Boris Veytsman

Abstract

Output routines involving illustrations (“floating
bodies” in the LATEX lingo) are the most complex
part of TEX. For most algorithms used in TEX, LATEX
and ConTEXt the basic concept is a flow of text, oc-
casionally interrupted by illustrations which can be
placed anywhere close to the point they are men-
tioned. The story is told mainly by the text, and
illustrations have a secondary role.

Here we discuss the different case of an illus-

trated book, where the main story is told by the illus-
trations and their interaction. The simplest examples
of such books are art albums. Another (surprising)
example is the FAO Statistical Yearbook, where the
story is told primarily by maps, charts and tables,
while the text has a secondary role.

We describe a concept of a relatively simple
output routine for such books and its implementation
in LATEX.

1 Introduction

A recent report by the LATEX3 team [4] contained the
exhortation to engage in “collecting and classifying
design tasks”. In this paper we describe a design
task and propose a way to solve it. While the code
here is LATEX2ε-specific, we hope the algorithm and
concepts may be useful for other formats as well.

Probably one of the most difficult concepts in
TEX is illustrations (“floats” in LATEX nomenclature).
They interrupt the galley, and TEX should put them
on the page outside of the normal flow, using an
asynchronous output routine (OTR). Various OTRs
for plain TEX are described in the series of papers by
Salomon [5, 6, 7]; the last part deals specifically with
insertions, the usual way to typeset illustrations in
plain. LATEX2ε algorithms are described in [1], prob-
ably the most complex part of LATEX code. These
algorithms deal with one- or two-column typesetting
with illustrations of arbitrary height occupying one or
two columns. ConTEXt can deal with a more general
situation of n-columns with illustrations occupying
m columns of text [3].

It should be noted that all these cases assume
that the main story is told by the text. Illustrations
are put on the pages almost as an afterthought. They
do not interact with each other. The only task of the
algorithm is to put them somewhere not too far from
the point they are mentioned, and without creating
too much empty space on the pages.

Figure 1: An example of an art album spread
(from [2])

1 .

Environment 1D

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut

purus elit, vestibulum ut, placerat ac, adipiscing vitae, fe-

lis. Curabitur dictum gravida mauris. Nam arcu libero, non-

ummy eget, consectetuer id, vulputate a, magna. Donec ve-

hicula augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis eges-

tas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla

et lectus vestibulum urna fringilla ultrices. Phasellus eu tel-

lus sit amet tortor gravida placerat. Integer sapien est, iac-

ulis in, pretium quis, viverra ac, nunc. Praesent eget sem vel

leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auc-

tor semper nulla. Donec varius orci eget risus. Duis nibh mi,

congue eu, accumsan eleifend, sagittis quis, diam. Duis eget

orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel,

wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium

at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed

accumsan bibendum, erat ligula aliquet magna, vitae ornare

odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum

sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-

corper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue

non, volutpat at, tincidunt tristique, libero. Vivamus

CHART 15: Incarceration ratest across

countries

Source: Wikipedia

viverra fermentum felis. Donec nonummy pellentesque ante.

Phasellus adipiscing semper elit. Proin fermentum massa ac

quam. Sed diam turpis, molestie vitae, placerat a, molestie

nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at,

accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat

magna. Nunc eleifend consequat lorem. Sed lacinia nulla vi-

tae enim. Pellentesque tincidunt purus vel magna. Integer

non enim. Praesent euismod nunc eu purus. Donec biben-

dum quam in tellus. Nullam cursus pulvinar lectus. Donec et

mi. Nam vulputate metus eu enim. Vestibulum pellentesque

felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel

justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit

amet, consectetuer adipiscing elit. In hac habitasse platea

dictumst. Integer tempus convallis augue. Etiam facilisis.

Nunc elementum fermentum wisi. Aenean placerat. Ut im-

perdiet, enim sed gravida sollicitudin, felis odio placerat

quam, ac pulvinar elit purus eget enim. Nunc vitae tortor.

Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae

risus porta vehicula.

CHART 16: Incarceration ratest across

countries

Source: Wikipedia

26

. .
FAO Statistical Yearbook 2014

. .The Setting

CHART 17: Incarceration ratest across countries

Source: Wikipedia

MAP 3: Incarceration ratest across countries

Source: Wikipedia

Environment 1D
. .

27

Figure 2: Mock-up spread of FAO Statistical

Yearbook 2014

One can imagine the opposite situation: the
story is told primarily by the illustrations and their
interaction, while the text plays an auxiliary rôle. In
this case the author spends much effort in putting
the illustrations exactly where she wants them to
be, and the task of the compositor is to put the text
in the remaining empty space in a pleasing manner.
We will call books created in this manner illustrated
books, for lack of a better term.

An immediate example of an illustrated book is
an art album (Figure 1). The importance of inter-
action between the pictures is well known to artists;
this is why good exhibitions usually have “Hanging
Committees” that carefully discuss the order and po-
sitions of the pieces. It is evident from Figure 1 that
the author first put the illustrations on the pages,
and then filled the rest with the text.

A more surprising example is the FAO Statistical

Yearbook (Figure 2). The Yearbook uses tables,
charts and maps to illustrate the statistical trends.
Their positions on the pages is determined by the
graphic designer; the text must fill the gaps.

In the rest of the paper we discuss how the design
shown in Figure 2 was implemented in LATEX. The

Boris Veytsman

TUGboat, Volume 35 (2014), No. 2 203

ul ur

ll lr

Verso page

UL UR

LL LR

Recto page

Figure 3: FAO Yearbook spread

code is available in the repository at http://github.
com/filippogheri/FAOSYBLaTeXpackage, and a for-
matted version is available online with this article.

2 User interface

The main unit of the FAO Yearbook is the spread.
As shown in Figure 3, it is split into eight quadrants,
four per page. The quadrants are denoted by two-
letter combinations like ul for upper left and lr for
lower right. Lowercase is used for verso (even) pages,
and uppercase for recto (odd) pages.

The illustrations have fixed sizes: they can oc-
cupy one, two, or four quadrants. Accordingly there
are four kinds of illustrations: ‘Single’ ones take one
quadrant, ‘Tall’ ones take two quadrants stacked
vertically, ‘Wide’ ones take two quadrants stacked
horizontally, and ‘Big’ ones take all four quadrants
on a page.

The user specifies the illustration type (e. g.
chart or map), its size (S, T, W or B), and the upper
left quadrant occupied by the illustration. We used
LATEX environments for this. The name of the envi-
ronment corresponds to the illustration type, while
its mandatory arguments specify its size and position.
For example, the code

\begin{chart}{S}{LR} ... \end{chart}

specifies a chart occupying a single lower right quad-
rant on a recto page, while the code

\begin{map}{W}{ul} ... \end{map}

specifies a map occupying two top quadrants on a
verso page.

The user writes down the code for the illustra-
tions and the text, and TEX typesets them according
to the chosen pattern. The command \clearpage

typesets all illustrations and text obtained so far.

3 Algorithms

In this section we describe the algorithms used to
typeset the book.

The main problem is when to start output. If
we had just illustrations, then the answer would be
simple: as soon as we have enough illustrations for
the full page. This is the approach used by Dave
Walden in his photo album macros [8]. However,
since we have illustrations and text, we are in a more

complex situation. We need to check whether we
have enough text to fill the gaps. This is done by page
builder. There are ways to inform the page builder
about the space needed by illustrations [5]. However
they assume that all illustrations should be put on
the page being built. In our case we may have both
illustrations for the current page and illustrations
for following pages. Only the OTR knows which
illustrations belong to the current page, but the
OTR is started asynchronously by the page builder.
Thus our algorithms must include communication
between the page builder and the OTR.

Each of the environments described in Section 2
adds its contents to the bottom of an illustration

box. There are 18 such boxes corresponding to all
valid combinations of illustration size and position
(an attempt to insert, e. g. a Tall illustration starting
at the lower left quadrant produces an error since
this combination is not valid). We use \vsplit to
extract the top (oldest) illustration from the box.

We follow the basic idea of [1] for two-column
typesetting. The page builder starts the OTR when-
ever a column of text is formed. It is the job of
the OTR to determine whether we are at the first or
second column, and proceed accordingly. One can
imagine the OTR having two stages: the first deals
with a first column from the page builder, and the
second has two columns to work with.

So at the first stage we have a column of text.
We also know whether this column is the first or the
second, and whether we are on a recto or a verso
page. Thus we can check whether we already have
illustrations in the quadrants for this page.

First, it can happen that the current page is
completely covered by Wide or Big illustrations. In
this case we do not need to put any text on the
page, and simply output the illustrations. Note that
this should happen only when we typeset the first
column—otherwise we have a full column of text
which belongs to a wrong page: recto or verso.

If after this test we are still inside the OTR, then
we are free to form a column. Again, it may happen
that this column is completely taken by illustrations;
in this case we return the text to the page builder
and send illustrations to the second stage.

Now we are at the most interesting part of the
algorithm. We have text and possibly illustrations
to mix in the column. However, is the height of
the text box right? Possibly not: the page builder
might think that there were no illustrations and
not correct for them. Fortunately, TEX provides a
global parameter \vsize, which reflects the page
builder’s idea about the required text height. So we
can calculate the required height in the OTR and

An output routine for an illustrated book: Making the FAO Statistical Yearbook

204 TUGboat, Volume 35 (2014), No. 2

Algorithm 1: OTR, first stage
if have Big or both top & bottom Wide

illustrations then

if second column then
Error

Send the illustrations to the special OTR;
Send text back to page builder

if have Tall or both top & bottom Single

illustrations then

Form a column from the illustrations;
Send the column to the second stage;
Send the text back to page builder

Calculate column height;
if column height equals \vsize then

Add illustrations to the column;
Send the column to the second stage

else

Change \vsize;
Send text back to page builder;
Leave OTR

Algorithm 2: OTR, second stage

if first column then
Save column

else
Add first column and wide illustrations,
add decorations and ship the page out

Reset \vsize; Leave OTR

compare it with \vsize. If they coincide, we are
good. If not, we change \vsize and return the text
to the page builder. It is easy to see that this code
produces at most two passes of OTR.

This finishes the first stage of the OTR (Algo-
rithm 1). The second stage of OTR is relatively
simple (Algorithm 2): we either save the column for
the next pass or form the page for shipout.

The special OTR deals with pages completely
covered by Wide or Big illustrations (Algorithm 3):
we put them on the page and add decorations.

Our implementation of \clearpage is simpler
than the one in LATEX2ε. The latter needs to tell
the OTR that this is a special case, and illustrations,
if any, must be put on the page. In our case we are
guaranteed that if there are illustrations for the given
page number “parity” (i. e. for even or odd pages),
they will in fact be put on the page. Thus we just
repeatedly call OTR (Algorithm 4).

As usual, we need to add \clearpage to the
\AtEndDocument hook to avoid loss of illustrations.

4 Conclusions

We see that TEX can be coaxed to provide a relatively
unusual layout. This document model might be of
interest for the designers of new TEX-based formats.

Algorithm 3: OTR, special case

Put illustrations on the page;
Add decorations and ship the page out;
Reset \vsize;
Leave OTR

Algorithm 4: \clearpage

while some illustration boxes are not empty do
Call OTR

Acknowledgments

This work would have been impossible without great
and patient people at FAO UN: Filippo Gheri, Amy
Heyman, Shira Fano, and many others.

I am grateful to Hans Hagen and Frank Mittel-
bach for the discussion of ConTEXt and LATEX float
routines and to Dave Walden for letting me know
about his paper.

As always, the participants of the TUG meeting
gave me many interesting comments and suggestions.

References

[1] Johannes Braams, David Carlisle, Alan Jeffrey,
Leslie Lamport, Frank Mittelbach, Chris
Rowley, and Rainer Schöpf. ltfloat.dtx, 2014.

[2] Rick Cusick. What Our Lettering Needs: The

Contribution of Hermann Zapf to Calligraphy

& Type Design at Hallmark Cards. RIT Cary
Graphics Art Press, 2011.

[3] Hans Hagen. Columns, 2003. http:

//www.pragma-ade.nl/general/manuals/

columns.pdf.

[4] LATEX Project Team. LATEX3 news, issue 9.
TUGboat, 34(1):22–26, 2014.

[5] David Salomon. Output routines: Examples
and techniques. Part I: Introduction and
examples. TUGboat, 11(1):69–85, 1990.

[6] David Salomon. Output routines: Examples
and techniques. Part II: OTR techniques.
TUGboat, 11(2):212–236, 1990.

[7] David Salomon. Output routines: Examples
and techniques. Part III: Insertions.
TUGboat, 11(4):588–605, 1990.

[8] David Walden. Every LATEX document
brings new (to me) programming issues.
http://walden-family.com/texland/

tex-programming.pdf, 2014.

⋄ Boris Veytsman
George Mason University
borisv (at) lk (dot) net

http://borisv.lk.net

Boris Veytsman

TUGboat, Volume 35 (2014), No. 2 205

xml2tex: An easy way to define

XML-to-LATEX converters

Keiichiro Shikano

Abstract

xml2tex is a framework to give XML a presentation
layer using LATEX. In other words, xml2tex lets you
use an XML-based format as a source of LATEX. It
may sound awful at first, but an XML-based format
has some advantages, especially for creating books.
This paper describes why XML does matter, and
introduces xml2tex’s intuitive way of relating XML

to LATEX, based on a Scheme dialect and SXML.

1 LATEX as presentation for XML

Creating documents can be seen from two opposite
aspects: structure versus presentation. In some doc-
ument systems, they are divided into completely
separate layers. For example, XSL [10] is the way to
define a presentation of XML, which corresponds to
the tree structure of a document. Håkon Wium Lie,
the father of CSS [11], explains this separation in
terms of a ladder of abstraction [6]. The structural
tree of the document is at the highest abstraction
level. Moving downwards on the ladder, the doc-
ument becomes less and less abstract towards the
rendered data. It’s hard to climb the ladder without
any manual aid. That means that reusing the docu-
ment in other media requires much manual work.

Oddly enough, this separation is rather loose
in LATEX, despite the fact that LATEX originally is
the structured layer over the lower-level typesetting
mechanism provided by the TEX engine. This weak
separation can sometimes make reusability of LATEX
documents problematic. E.g., if you want to dis-
tribute a LATEX document through the Web, chances
are that it will be as a PDF.

Figure 1 shows the abstraction ladder for pur-
poses of creating books, our main concern. Arrows
in Figure 1 indicate that the translation or map-
ping between the formats is achieved by following
some restrictions. In other words, the expressiveness
of your document would be limited in accordance
with the formats in higher abstraction levels. The
left-down arrow from XML to LATEX, for example,
refers to a system that can transform XML files writ-
ten in some given DTDs or XML Schemas, such as
DB2LATEX [2] (a converter from DocBook to LATEX)
or TEXML [7] (a feasible XML syntax for TEX). In
those systems, you can hardly create a book requir-
ing more structural elements than the specifications
offer. Similarly, the easy-to-read-and-write input
formats like markdown and Wiki syntaxes narrow

XML(HTML)

markdowns, Wiki markups

reStructuredText, ...

XSL-FO

LaTeX

Books
(PDF, EPUB)

rendered pages

presentation

structure

input

？？

XSLTXSLT

CSSCSS
TeX

macromacro

Figure 1: Ladder of abstraction in creating books

the possible expression of documents down to their
intended use. This can be very good for writing and
editing the texts, but not for supporting a variety of
page layouts.

On the other hand, the plumbing pipes connect-
ing different formats indicate that there’s practically
no restriction to a downward direction. Needless to
say, LATEX is able to produce almost any possible
page designs; as we’ll see, this is one of the most
important reasons we’d like to use LATEX in creating
books. The same is true for XSL (including XSLT

and XSL-FO), regarded as the best path to render a
variety of page layouts from a tree structure of XML.
XML also has CSS as the mechanism to apply an
arbitrary style to the tree.

What is missing here is a feasible mechanism
for producing LATEX from non-restrictive XML. The
most common approach for now is to use XSLT. How-
ever, XSLT is meant to convert an XML into another
XML, so it lacks support for writing XML-to-LATEX
converters. Another approach to providing a mech-
anism suitable for LATEX is XMLTEX [1]: an XML

parser written in TEX. This is a great accomplish-
ment in terms of TEX macro programming, but we
did not find it easy to write our required converter
using XMLTEX. A more practical approach is to use
ConTEXt’s XML support [3]; this supports a declara-
tive interface to select an XML element and define
the corresponding ConTEXt syntax. When we are
able to use ConTEXt in typesetting Japanese books,
it will be a good alternative to our own attempt,
called xml2tex [9], described in the following.

2 Defining maps from XML element tags

to LATEX syntax, the xml2tex way

Let’s start with a silly HTML example.

<html>

Lorem % ipsum \ ... $10,000

</html>

xml2tex: An easy way to define XML-to-LATEX converters

206 TUGboat, Volume 35 (2014), No. 2

Leaving aside the escaping of special characters
(‘%’, ‘\’ and ‘$’), we have to decide how to express
this HTML in LATEX. One feasible representation is
achieved by mapping its only element (<html>) to
\begin{document} ... \end{document}. Here is
the xml2tex way to do this:

(define-tag html (make-latex-env ’document))

That’s it!1 Put this line down and save it as the
file silly.rule, then run xml2tex like this:

$ xml2tex --rule="silly.rule" sample.html

\documentclass{book}

\usepackage[T1]{fontenc}

\begin{document}

Lorem {\symbol{37}} ipsum {\symbol{92}} ...

{\symbol{36}}10,000

\end{document}

Special characters are automatically escaped
using the \symbol command under the T1 encoding.
The argument to \documentclass defaults to book;
of course this can be easily modified. Before that,
however, let’s give a slightly more practical example:

<html>

<head>

<title>a quite nice document</title>

</head>

<body>

<p>Lorem % ipsum \ ... $10,000</p>

<p>dolor % sit \ amet ... $42</p>

</body>

</html>

In this HTML data, the main part of the doc-
ument is wrapped with a <body> tag. That is,
this time the <body> is the appropriate source for
the LATEX’s document environment, instead of the
<html> as in the previous example. So we change
the previous rule like this:

(define-tag body (make-latex-env ’document))

We also need to handle the other tags in the
<body>, namely <p> and . Each <p> should
be a paragraph in LATEX. On the other hand, the
LATEX counterpart of is \emph{}. These two
types of mappings seem to be quite different. Never-
theless, when viewed as a recursive tree conversion,
both mappings, and what is more almost all such
mappings, can be regarded as a common routine:

1. Start a LATEX piece with \begin{foo}, \foo{,
or other strings.

2. Recursively process the node’s children. If the
only child is a simple string, then output the
string with any necessary conversions.

1 The single quotation mark in ’document is not a typo. It
tells xml2tex that this is not a variable name, but a data item;
specifically, a symbol in the Scheme programming language.

3. End the LATEX with the required \end{foo}, },
etc.

In fact, the second argument to define-tag is a
rule which encodes this routine, and make-latex-env

is the function that yields a common rule for gen-
erating a LATEX environment. The rule is: “Put
\begin{...} at the head; convert the children re-
cursively with necessary escaping; put \end{...} at
the tail.”

To explicitly define such a rule, we can use the
define-rule declarative. define-rule takes three
arguments, each corresponding to the above actions,
in order: what to do at the beginning, what to do
with the text nodes of the content, and what to do
at the end.

For example, here is a possible rule for <p>:

(define-tag p ; if the node is this name ...

(define-rule

"\n" ; put this at the beginning ...

trim ; its text nodes should be ...

"\\par\n")) ; put this at the ending.

where trim is a utility for trimming a string for use
in LATEX. Although we put the rule line by line in
the above example, line breaks and other white space
are generally immaterial. Text after a semicolon (;)
is a comment.

A rule for could be defined like

(define-tag em (define-rule "\\emph{" trim "}"))

or, equivalently,

(define-tag em (make-latex-cmd ’emph))

where make-latex-cmd is a utility to define a rule
outputting the given LATEX command.

The last rules we have to define are for <head>
and <title>. Although we could use this meta-
information to generate LATEX content, here we will
just ignore them. To make the converter discard an
XML element, we can use a predefined rule ignore.

(define-tag head (ignore))

Consequently, we don’t need to define a rule
for the <title> tag, because the converter already
knows that its parent tag is going to be discarded.

In short, to get a decent result from the above
HTML data all we need are these four lines:

(define-tag head (ignore))

(define-tag body (make-latex-env ’document))

(define-tag p (define-rule "\n" trim "\\par\n")

(define-tag em (make-latex-cmd ’emph))

If we run xml2tex with those rules, we get
valid LATEX source for a book, because the default
\documentclass is book. This is defined in a file
default.rule in a way similar to the other rules be-
low, and can be overridden with your own definition.

Keiichiro Shikano

TUGboat, Volume 35 (2014), No. 2 207

3 Details and tricks

As we have seen through the examples, xml2tex
works as a domain-specific language (DSL) for defin-
ing maps between each XML tag and corresponding
LATEX syntax. When it comes to DSL, a program-
ming language in the Lisp family fits well. xml2tex
is written in Gauche [4], a dialect of the Scheme pro-
gramming language. In addition to being a member
of the Lisp family, Gauche has many text process-
ing features and libraries, useful in defining more
complex conversion rules.

To take advantage of a profound feature of the
general programming language: the first and third
arguments of define-rule need not be literal strings
but can be Lisp functions without arguments. For
example, a rule for the <title> tag could be defined
like this:

(define-tag title (define-rule

(lambda ()

(cond

((eq? ($parent) ’chapter) "\\chapter{")

((eq? ($parent) ’sect1) "\\section{")

((eq? ($parent) ’sect2) "\\subsection{")

(else (error "title" $parent)))))

trim

"}"))

In this definition, the first argument to define-rule

is a function to select the appropriate LATEX repre-
sentation for the <title> tag based on its parent
node. If the <title> tag belongs to <chapter>, the
function returns the Scheme string "\\chapter{".
If <sect2>, then "\\subsection{".

The other new feature used here is the keyword
$parent. It expands to the name of the direct par-
ent of that node. This is one of many “shortcuts”
provided by xml2tex that can be used to retrieve the
information from the XML tree. Table 1 lists these
predefined convenience keywords.

Below is a naive example of using $@, which
works as a function to retrieve the value of the spec-
ified attribute. We will also use the Gauche syn-
tax #‘"..." for string interpolation. For example,
we want #‘"[width=,($@ ’width)]" to expand to
[width=100mm] if the tag has the attribute
width="100mm".

(define-tag img (define-rule

(list "\\begin{figure}\n"

"\\includegraphics"

#‘"[width=,($@ ’width)]"

#‘"{,($@ ’src)}")))

trim

"\\end{figure}"))

Using these $ keywords, we are able to define
most rules declaratively and intuitively. In this re-

Table 1: List of keywords defined by xml2tex

keyword description

$body Body of the element.

$root Whole document tree.

$parent Direct parent of the element.

$parent? [name] If the element has parent

with [name].

$childs List of all children of the

element.

$child [name] List of children with [name].

$following-siblings List of following-siblings.

$siblings List of both following- and

preceding-siblings.

$@ [name] String value of the attribute

[name].

$under? [list] If the element is a descendant

of one of [list].

$ancestor-of? [list] If the element has any

descendant in [list]?

gard, we can think of xml2tex more like a DOM

(tree model) rather than SAX (event model). Indeed,
xml2tex parses the entire XML tree in advance. This
parsed tree has a form of SXML [5], a representa-
tion of the XML Infoset in the form of S-expressions.
Even this bare SXML tree is available when defining
a rule. It is sometimes necessary for elements which
require transforming the original structure to define
a reasonable mapping to LATEX syntax. Tables are
one such formidable challenge, as we’ll see next.

4 Tables

To convert XML’s logical structure of tables into
LATEX is a substantial problem. We think the root
cause is probably the lack of a general model for
tables in LATEX.2

Let us consider the conversion rule for typical
HTML tables. If we use tabular environment as the
basic LATEX construct for HTML tables, then the first
attempt might be:

;; this doesn’t work!

(define-tag table (define-rule

"\\begin{tabular}\n"

trim

"\\end{tabular}"))

; put "\\" after each lines of table.

(define-tag tr (define-rule "" trim " \\\\"))

; put "&" after each cells in line.

(define-tag td (define-rule "" trim " &"))

2 In contrast, ConTEXt has a standard model for tables
and thus it’s easier to define mappings from XML tables [8].

xml2tex: An easy way to define XML-to-LATEX converters

208 TUGboat, Volume 35 (2014), No. 2

Unfortunately, this does not work. First, the
tabular environment requires an argument explic-
itly specifying the appearance of each column. To
determine this information from the given HTML ta-
ble, we have to look through the entire table contents
in advance. Second, we don’t want the following ‘&’
for the last cell of each line. Third, we should be
able to change the width and color of each cell, as
well as to span columns or rows. This information
could be found in the attributes of <td>.

What we need is a way to transform the raw
SXML tree before applying the corresponding con-
version rules. To do that, we pass a procedure to
define-rule using the :pre keyword. Below is a
(relatively) simple example to decide the column
specs for the tabular without any additional infor-
mation except the table itself.

(use xmltex.latextable)

(define-tag table (define-rule

#‘"\\begin{tabular}{|,($@ ’colspec)|}\n"

trim

"\\end{tabular}\n"

:pre calc-colspec))

(define (calc-colspec body root)

(sxml:set-attr

body

(list

’colspec

(make-colspec

(map

(node-closure

(ntype-names?? ’(td th)))

((node-closure

(ntype-names?? ’(tr)))

body))))))

The make-colspec function used in calc-colspec

is one of the helper functions provided through an
xml2tex package called xmltex.latextable, loaded
at the beginning. With these helper functions and
some understanding of Scheme and SXML, we have
defined a conversion rule for a reasonable subset of
HTML tables with colspan and rowspan. You can
find the complete code in xml2tex’s repository [9].

5 Conclusion

Like it or not, more and more documents are created
and stored in XML. Books which one can buy are no
exception. Considering the changing circumstances
regarding e-books and the Web, nearly any book may
well be created in one of the XML-based formats. If
you were to use a desktop publishing applications,
you could go with some very nice WYSIWYG envi-
ronments and not be bothered with the ill-reputed
syntax of XML. However, of course, we must prefer

using TEX to such GUI software. This means, ulti-
mately, writing a converter from XML-based formats
to a TEX-flavored document.

We hope that xml2tex can help in this scenario.
It works as a framework for using XML as a source
for LATEX. All that’s required is giving xml2tex a
set of declarative mappings from each XML tag to
an appropriate LATEX style. Aided by Scheme and
SXML, you can even write a converter for a fairly
complex XML document as needed.

To date, we have created dozens of commercial
books using xml2tex while maintaining the manu-
scripts in a variety of XML-based formats.

References

[1] David Carlisle, “xmltex: A non-validating
(and not 100% conforming) namespace aware
XML parser implemented in TEX”. http:
//tug.org/TUGboat/tb21-3/tb68carl.pdf

[2] Ramon Casellas and James Devenish,
“Welcome to the DB2LATEX XSL Stylesheets”.
http://db2latex.sourceforge.net/

[3] ConTEXt Garden, “XML —ConTEXt wiki”.
http://wiki.contextgarden.net/XML

[4] Shiro Kawai, “Gauche—A Scheme
Implementation”.
http://practical-scheme.net/gauche/

[5] Oleg Kiselyov, “SXML”.
http://okmij.org/ftp/Scheme/SXML.html

[6] Håkon Wium Lie, “PhD Thesis: Cascading
Style Sheets”. http://people.opera.com/
howcome/2006/phd/

[7] Douglas Lovell, “TEXML: Typesetting XML

with TEX”. http://tug.org/TUGboat/
tb20-3/tb64love.pdf

[8] Thomas A. Schmitz, “Getting Web
Content and pdf-Output from One Source”,
http://dl.contextgarden.net/myway/tas/

xhtml.pdf

[9] Keiichiro Shikano, “k16shikano/xml2tex”.
https://github.com/k16shikano/xml2tex

[10] World Wide Web Consortium, “Extensible
Stylesheet Language (XSL) Version 1.1”.
http://www.w3.org/TR/xsl11/

[11] World Wide Web Consortium, “Cascading
Style Sheets (CSS) Snapshot 2010”.
http://www.w3.org/TR/css-2010/

⋄ Keiichiro Shikano

Tokyo, Japan

k16.shikano (at) gmail dot com

https://github.com/k16shikano/

xml2tex

Keiichiro Shikano

TUGboat, Volume 35 (2014), No. 2 209

MathBook XML

Robert A. Beezer

Abstract

MathBook XML is an XML application to describe
the structure of a technical document, such as a
mathematics research article or textbook. This appli-
cation is designed so an author can easily and clearly
separate presentation from content. This then allows
for direct XSL conversion to many formats, such as
print, PDF, HTML, and EPUB.

LATEX syntax is used to represent mathematics
and clean LATEX source is the result of one of the
conversions, which is the precursor to print and PDF

outputs. HTML output allows for variable granularity
of the resulting pages and provides presentation and
navigation interfaces appropriate for both small and
large screens.

1 Introduction

There is a need for a source format that explicitly ex-
presses the structure of a technical document, while
making no assumptions whatsoever about presenta-
tion. This format should enhance an author’s ability
to specify this structure and free the author from
eventual decisions about presentation. With such
a format it is possible to then create versions for
readers in a variety of formats, such as print, PDF,
HTML, and EPUB, in addition to new formats not
yet imagined.

2 The case for XML

eXtensible Markup Language (XML) is an extremely
simple specification, with few reserved characters
and a handful of rules about syntax. It suffers from
a reputation of being verbose and overly-complicated.
But this is primarily an artifact of its employment
as a data-interchange language written by programs,
not people. It is possible to design an XML appli-
cation (the set of elements and attributes) which is
natural for authoring and editing. MathBook XML

is a case in point.
Technical documents such as mathematics re-

search papers and mathematics textbooks are very
structured. Chapters break into sections and sections
may break into subsections, all with a hierarchical
numbering scheme. There are numbered definitions,
theorems, lemmas and corollaries. Figures, tables
and references are all numbered. Then there are
extensive cross-references to these items. XML natu-
rally allows for an easy specification of the tree-like
structure of such a document and cross-referencing
is well-supported.

The eXtensible Stylesheet Language (XSL) pro-
vides a powerful declarative language for transform-
ing XML into text, HTML or XML formats. In our
case, it is possible to write out LATEX source (re-
sulting in PDF or print) and to write out HTML

(resulting in web pages or as the basis of other for-
mats such as EPUB). So the ease of authoring in
XML with a carefully designed set of elements, along
with the transformational power of XSL, make an
XML application a natural choice.

3 MathBook XML source format

The elements in MathBook XML will feel natural
to an author. To begin with, <chapter>, <section>,
<title>, <definition>, <theorem>, and <example>
are all exactly what you would expect them to be.
At the paragraph level, frequently-used items have
short abbreviations, familiar to anyone who knows
HTML: <p>, , <q>.

LATEX includes at least four systems for cross-
references: theorems (and similar environments),
references, figures and tables, and equations. In
MathBook XML, there is only one system, since a
cross-reference is able to inspect the type of object
it is pointing to and format the pointer in the way
a reader expects (bare number, in brackets, or in
parentheses). Optionally, you can choose to have
prefixes on cross-references, such as “Theorem” or
“Corollary” added automatically, with support for
different languages, similar to what the cleveref

package does.

3.1 Mathematics

While one of the principal intents of MathBook XML

is semantic markup, we have not chosen to go into
this rathole for mathematics. LATEX syntax works
very well between the dollar signs and is under-
stood by many authors. Indeed, it is the MathJax
JavaScript library that makes this project possible.
MathJax is able to do a very good job of express-
ing a wide range of LATEX syntax (e.g. the amsmath
package) in a web browser. So we can have quality
output of displayed equations in both print/PDF and
in HTML. MathBook XML is configured so an au-
thor need only specify macros once, and they can be
employed in both the LATEX and HTML output. Fur-
thermore, they can be employed in the source code
for diagrams described by the TikZ and Asymptote
languages.

Inline math, single displayed equations (num-
bered or not) and multiline displays (numbered lines
or not) are all supported. As an example of how
authoring in XML is different, it is worth noting
that in a multiline display, each line needs to be

MathBook XML

210 TUGboat, Volume 35 (2014), No. 2

delimited by an XML element. This then supports
switching numbering on and off on a per-line basis,
in addition to marking individual lines as targets
of cross-references, all in a manner consistent with
the syntax used for cross-references elsewhere in the
document.

3.2 Graphics

For documents tracked by version control, or pub-
lished with open licenses, or where the consistency
of notation is controlled by simple macros, it is
desirable to specify diagrams with a graphics lan-
guage, rather than employing opaque raster formats.
MathBook XML supports diagrams specified in TikZ,
Asymptote or Sage, with full support for macros
in the first two (and may be supported soon within
Sage graphics). Diagrams are specified directly in the
source, and then it is easy with XSL to isolate each
one, in order to wrap it in the appropriate syntax
so that it can be transformed to a standalone image.
This step, and the subsequent processing, are all
controlled by a single Python script, mbx. Whenever
possible, the result is in Scalable Vector Graphics
(SVG) format, so for example, the image scales fluidly
on a web page when the reader zooms in or out.

3.3 Widgets on the web

There is a wide variety of JavaScript and Java ap-
plets which may be embedded on a web page. For
example, GeoGebra is a sort of playground for explor-
ing concepts and results from Euclidean geometry.
It can provide a prepared interactive demonstration
or a blank canvas with tools. One of our primary
motivations has been to support the inclusion of the
Sage Cell Server to allow readers the use of this ex-
tensive open source system for mathematics directly
in a textbook. The Sage Cell is a text area, typically
pre-loaded with Sage code from the author, which
can be evaluated by pressing a button that sends the
code to a publicly available server that then returns
the results back into the reader’s page. The reader
is then generally free to edit the code to examine
new situations, learning new mathematics or new
Sage commands in the process. WeBWorK home-
work exercises are another conceivable addition for
textbooks.

But a question remains: what to do with a dy-
namic element (such as a GeoGebra demonstration)
in an output format that is inherently static, such
as print. PDF readers can generally accommodate
hyperlinks, but typically it is only Adobe’s own Acro-
bat Reader that can display more complicated items
such as animations.

4 LATEX output

A principal feature of the LATEX output from Math-
Book XML is the isolation of style parameters in the
preamble, and a body that is generic enough that it
can be styled differently through style files or adjust-
ments to the preamble. Parameters affecting style,
such as margins, font size, and numbering depth can
be controlled by parameters to the XSL processor
and are not part of the MathBook XML specification
of the source. With limited exceptions, the number-
ing of items is accomplished in the usual way, by
letting the LATEX processing do that work. In other
words, numbers of theorems, sections, figures, are
not hard-coded into the LATEX created by the XSL

transformation.

5 HTML output

HTML output from MathBook XML source allows
for the creation of web pages at variable granularity
(“chunks”). So a book can be broken up into one
web page per subsection, if desired. Then CSS and
JavaScript are employed to provide natural naviga-
tion interface elements, such as a clickable Table of
Contents, plus “Previous”, “Up” and “Next” buttons.
On smaller screens (such as phones) the interface
elements adjust to the limited space. The HTML out-
put is also meant to be divorced from presentation,
though the limited capabilities of CSS mean more
information must be hard-coded, such as hierarchical
numbering. But there is a good separation between
the HTML and the CSS, which allows for different
presentations.

The various numbering schemes that result from
LATEX processing are identical to the numbering hard-
coded into the HTML. For example, equation num-
bers in multi-line mathematics displays are identical
in a PDF created via LATEX to the numbers that
appear in a web page version rendered by MathJax.
References to equations look and behave the same
for both types of output.

6 Other output formats

Sage worksheets, iPython notebooks and Sage Math
Cloud worksheets are all formats for web applica-
tions that allow a user to execute commands relevant
to scientific computing, while maintaining a written
record of input and output, with rich tools for anno-
tating the results. Underneath, these documents are
primarily HTML, adorned with CSS or JSON. We
have experience with conversions of MathBook XML

source to each of these formats, and have a usable con-
version to Sage worksheets publicly available. With
a new MathJax tool for rendering mathematics as

Robert A. Beezer

TUGboat, Volume 35 (2014), No. 2 211

embedded SVG images, it appears that it is now pos-
sible to manufacture EPUB output that is as capable
as PDF.

7 Philosophy

The primary purpose of MathBook XML is to make
it easy for authors to capture their writing in a struc-
tured format. Then processing tools can be applied
to create various output formats, while also insulat-
ing the author from a variety of technical details.
While the supplied XSL conversions are meant to
be usable and of high-quality, they are primarily
a demonstration of the utility of the XML specifi-
cation of the source. The conversions are modular
enough that others can create new conversions by
making small additions or changes, or by starting at
a lower level and converting to some entirely different
format.

8 Development

Code for MathBook XML is open-source (GPL li-
cense) and lives in a GitHub repository [1]. The
latest changes are on the dev branch. There is a
sample article in the examples directory of the dis-
tribution, which is heavily annotated and tries to
contain at least one example of every feature possible,
and so serves as accurate documentation. Support

questions and feature requests take place on a Google
Groups forum. Pointers to these resources, and oth-
ers, can be found at the website [2]. The Gallery
at the website contains links to large examples of
MathBook XML in production use.

9 Acknowledgements

This is joint work with David Farmer, Steve Blood,
and Michael DuBois. Financial support has come
from the UTMOST project (National Science Foun-
dation DUE-1022574), a Shuttleworth Foundation
Flash Grant, and the University of Puget Sound.

References

[1] Robert A. Beezer. GitHub repository:
rbeezer/mathbook. Available at
https://github.com/rbeezer/mathbook.

[2] Robert A. Beezer. MathBook XML. Available at
http://mathbook.pugetsound.edu.

⋄ Robert A. Beezer

Dept. of Mathematics and

Computer Science

University of Puget Sound

Tacoma, Washington, USA

beezer (at) pugetsound dot edu

http://buzzard.pugetsound.edu

MathBook XML

212 TUGboat, Volume 35 (2014), No. 2

Can LATEX profiles be rendered adequately

with static CSS?

William F. Hammond

Abstract

MathJax demonstrates that heavy customization of
CSS with JavaScript and webfonts provides good
platform-dependent rendering. The issue with Math-
Jax is speed, not quality. There has been and contin-
ues to be intense development with CSS. One may
speculate that, as CSS continues to evolve, static CSS

may entirely suffice not only for HTML documents
with mathematics but also for the direct online ren-
dering of profiled LATEX documents when presented
using XML syntax.

My purpose is to report on some of what can
now be done, to indicate how I would like to see
things develop, and to stir interest in the LATEX
community for incorporating the ideas of CSS into
print typesetting.

1 Background

This article is an elaboration of what I said in my
talk at TUG 2014 (slides are available at http://www.
albany.edu/~hammond/presentations/tug2014) .
About half the time in the talk was devoted to show-
ing LATEX profiles styled with CSS in a web browser.
In fact, the slides themselves were such. Figure 1
is a screenshot of static CSS styling for math in a
LATEX profile. At this point satisfactory results are
being obtained with three of the major browsers
using three different wide-coverage Unicode fonts.
(Corresponding to the fonts there are three different
stylings that differ from each other, aside from font
invocations, only in handling a few things.)

For those who have less than satisfactory in-
teraction with the XML slides, there is an HTML

version provided at the previous url. Aside from
the slideshow poster, which was written directly in
HTML, the slides and all of the materials linked there-
from originated as source prepared for the LATEX
profile of the GELLMU Didactic Production Sys-
tem, http://www.albany.edu/~hammond/gellmu/,
which may be regarded as a base for spawning other
profiles and which will be used as the profile of dis-
course here.

CSS [1] stands for Cascading Style Sheets. It
is the standard design language used in presenting
HTML (Hypertext Markup Language), as well as
XML (eXtensible Markup Language) [2] applications,
in web browsers.

A LATEX profile [8] is a dialect of LATEX [4] with
a fixed command vocabulary, where all macro expan-

sions must be effective in that vocabulary, having a
well-defined XML shadow. LATEX profiles are suitable
domains for defining reliable translations to other pro-
files and, where sensible, to other markup languages.

The author recalls a conversation at a meet-
ing in 2002 on the question of whether CSS might
someday suffice for rendering segments of MathML

(Mathematical Markup Language) in web pages. The
participants agreed that it might be possible, but a
sufficiently wide deployment of sufficiently capable
CSS engines would then be the issue.

By early 2006 I had begun writing a CSS style-
sheet for the XML guise of the LATEX profile of the
GELLMU didactic production system [5, 6, 7]. Espe-
cially where mathematics is concerned, the richness
of the vocabulary of profiled LATEX compared to
the vocabulary of MathML makes it easier to think
about1 rendering math with CSS. The CSS render-
ing of profiled LATEX in 2006 was quite limited, not
remotely close in quality to the rendering of MathML

in a browser like Firefox, but still of some use.
By 2010 Davide Cervone’s MathJax, http://

www.mathjax.org, if not Cervone’s earlier project js-
math, had demonstrated that with heavy (and slow)
JavaScript-based customization for available fonts,
web browser, and computing platform, MathML

could be rendered with CSS.
During the time that MathJax was being devel-

oped George Chavchanidze of Opera Software had
been pursuing the idea of basing native browser sup-
port for MathML solely on static CSS.2 Following
that work the W3C Math Working Group in 2011 pro-
duced a W3C recommendation entitled “A MathML

for CSS Profile” [9] that suggested restricted use of
MathML by content generators interested in having
their content rendered with CSS.

In early 2014 I learned about Frédéric Wang’s
idea, following the earlier work of Chavchanidze and
quite apart from MathJax, of providing “fallback”
rendering of MathML in web browsers lacking native
support for MathML, taking advantage of relatively
new ideas in CSS, particularly CSS flexible boxes [10],
without heavy customization for particular circum-
stances.

I have spent the last few months seeing how
these new ideas in CSS could be used to improve the
static CSS presentation of GELLMU’s LATEX profile.
It is work in progress. My purpose is to report on
some of what can now be done, to indicate how I

1 (but probably not actually easier)
2 Followers of LATEX3 might think of this as an effort, unlike

that in LATEX3, to leverage the design layer without much
in the way of apparent new support from the programming

layer.

William F. Hammond

TUGboat, Volume 35 (2014), No. 2 213

Figure 1: Static CSS styling of profiled LATEX

would like to see things develop, and to try to stir
the interest of the LATEX community in incorporating
CSS ideas into print typesetting.

2 Processing

In another talk at TUG 2014, by S. K. Venkatesan
and C. V. Rajagopal, one of the slides had this poetic
line:

TEX is poured into the XML mould, and DTD

is used as the sieve.

“DTD” refers to the document type definition. Doc-
ument type definitions are in one-to-one correspon-
dence with LATEX profiles. There are at least two
reasons for sifting:

1. To know that a correctly written processor will
reliably produce correct results.

2. To put the LATEX under a framework that facil-
itates processing by any of the many software
libraries, written in various programming lan-
guages, that operate on XML.

Those interested will be able to find more information
about this in many places including, for example,
The LATEX Web Companion [3].

For rendering a LATEX profile with CSS a small
amount of “server-side” processing (independent of
fonts, browser, and platform) may be used to dress
the regular XML guise of the LATEX so that it may be
more easily addressed with CSS. In this report the
main concern is with mathematics, but I should note
that the whole of a profiled LATEX document must be
styled with CSS for presentation in a web browser.

2.1 Source

I will illustrate briefly with a tiny example under
GELLMU’s LATEX profile. This is the source tg.glm:

\documenttype{article}

\title{test}

\begin{document}

One has

\[\Gamma(3) = 2! \]

\end{document}

2.2 Author-level XML

Under main track GELLMU processing, based only on
syntax, not vocabulary, this resolves to the following
XML instance tg.xml:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css"

href="gellmuart.css"?>

<!DOCTYPE article SYSTEM "axgellmu.dtd">

<article stem="tg">

<preamble><title>test</title></preamble>

<body>

<parb>One has

<displaymath>

<Gamma/>(3)<eqs/>2<exc/>

</displaymath>

</parb>

</body>

</article>

The XML tags should be self-explanatory except
for <parb>, which indicates the paragraph begun
with a blank line, the empty element <eqs/> coming
from the “=” (that makes it possible for downstream
decisions to be made on the “=”), and the <exc/>

coming from the “!”.

2.3 Elaborated XML

In main track processing under the GELLMU Di-
dactic Production System this “author-level” XML

that closely shadows the original source is processed,
preparatory to translation toward either regular LATEX
or HTML, to the following elaborated XML instance
tg.exml:

<?xml version="1.0" encoding="UTF-8">

<?xml-stylesheet type="text/css"

href="gellmuart.css"?>

<?centralStyled?>

<!DOCTYPE article SYSTEM "uxgellmu.dtd">

<article stem="tg">

<preamble><title>test</title></preamble>

<body>

<parb>One has

<displaymath>

Can LATEX profiles be rendered adequately with static CSS?

214 TUGboat, Volume 35 (2014), No. 2

<Gamma/>(3)<equals/>2<exc/>

</displaymath>

</parb>

</body>

</article>

The only change noticeable in this very simple ex-
ample is that the “=” has now become <equals/>

because it is within a mathematical container. (Other
changes that would happen with a more complicated
document would be resolution of cross-references and
assignment of section numbers.)

2.4 Dressed XML

To prepare for CSS it is necessary that every nugget
of character data inside math zones be wrapped in a
tag indicating whether the nugget is numeric, word-
like, or operator-like, so that the questions of whether
to use an upright or italic font and how to space may
be addressed.

Such “dressing for CSS” leads to tg-lm.xml:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css"

href="gellmualm.css"?>

<!DOCTYPE article SYSTEM "vxgellmu.dtd">

<article stem="tg">

<preamble><title>test</title></preamble>

<body>

<parb>One has

<displaymath mlvl="1"

mchld="me|bal|me|mx|me">

<me name="Gamma" mlvl="2" mchld="Gamma"

><Gamma/></me>

<bal mlvl="2" mchld="mx"

><mx type="number">3</mx></bal>

<me name="equals" mlvl="2" mchld="equals"

><equals/></me>

<mx type="number">2</mx>

<me name="exc" mlvl="2" mchld="mx"

><mx type="character">!</mx></me>

</displaymath>

</parb></body>

</article>

One will see that the mathematics has been greatly
elaborated. The elaboration creates hooks for possi-
ble use in CSS selectors. Note, in particular, the val-
ues of the attribute type on the element <mx>. The
attribute mlvl on almost every element inside a math
zone indicates how deep that element is in the math
zone (a selection issue not foreseeably addressable by
CSS). The attribute mchld on math containers lists
the names of the child elements (another selection
issue not currently addressable in CSS).

2.4.1 Balancing parentheses

Another thing to notice is that

<Gamma/>(3)

has become (with some simplification for human
clarity):

<Gamma/><bal><mx type="number">3</mx></bal>

That is, at this stage of processing the parentheses
have been replaced with the element <bal>...</bal>,
“bal” for “balanced”, which at the source level is
\bal{...}, corresponding to \left(...\right) in
regular LATEX.

2.4.2 A bit of CSS for <mx>

By way of example, relevant code from the linked CSS,
available from http://www.albany.edu/~hammond/

webstyle/gellmualm.css, includes:

mx[type="letter"] {

font-style: italic;

}

mbox mx[type="letter"] {

font-style: normal;

}

mx[type="number"] {

font-style: normal;

font-size: 0.92em;

}

[mlvl="1"]>mx[type="number"] {

font-style: normal;

font-size: 1em;

}

Many things in the style sheet are debatable, even
questionable. In particular, the font-size adjustment
for mx[type="number"] is based on a personal judge-
ment that numbers at levels greater than 1 were too
large compared to letters.

As mentioned above, the name of the dressed
XML instance is tg-lm.xml. The pre-suffix “-lm” is
a mnemonic reference to the “Latin Modern” font,
matching the “lm” in the name gellmualm.css of
the linked style sheet. Because at this time there
is a certain lack of standardization in fonts used on
the web, I am providing a different style sheet for
each font. This must mean, of course, that the style
sheet is being used to control the font, which, in turn,
means that I must be serving web fonts.

3 Fonts

For most of the history of the World Wide Web
the fonts used in web browsers have been the fonts
found on the user’s computer. Relatively recently
what are called “web fonts” have appeared and have
gained support in major web browsers. Web fonts are

William F. Hammond

TUGboat, Volume 35 (2014), No. 2 215

fonts served through the web, usually from the site
where an HTML document is posted. The MathJax
project has made a great deal of use of web fonts.
My understanding is that web fonts may be made
from either OpenType fonts or TrueType fonts.

I know relatively little about fonts, whether in
the world of the web or in the LATEX world. A few
of the things that I have learned include:

• Unicode fonts, i.e., fonts whose glyphs are refer-
enced by the Unicode value for the correspond-
ing character, are becoming the standard both
on the web and for LATEX with the new TEX
engines (xetex and luatex).

• OpenType fonts seem to be becoming the stan-
dard.

• A free program by Jonathan Kew of Mozilla
(the originator of xetex) called sfnt2woff 3 will
convert an open type font file, say foofont.otf,
or a true type font file, say foofont.ttf, to a
web font (foofont.woff).

• A CSS @font-face directive is used to tie a web
font on your server to a font-family name, pos-
sibly also with a font-weight and font-style

specification.

4 Casting for glyphs

There comes the question in styling a LATEX profile
with CSS of what one is to do with the four “cast-
ing” commands: \mathbb, \mathcal, \mathfrak,
and \mathscr. In LATEX, as one knows, each of them
takes as argument a Latin letter and produces, re-
spectively, a double-struck, calligraphic, Fraktur, or
script version. Apart from Fraktur, it can be argued
that these are mere stylistic variations. But most
mathematicians are inclined to regard the original
Latin letter and these four casts as five semantically
distinct symbols. While in a translation to MathML,
it might be reasonable to generate appropriate Uni-
code points for the casts,4 that would be a bit out of
scale for styling the XML guise of a profiled LATEX
document with CSS where the author has used one
of these commands.

Of course, the author could just put the ap-
propriate Unicode points in the source. Aside from
that, an off-track approach is to specify a sequence of
matching old fonts such as msbm10, cmsy10, eufm10,
and rsfs10 for the four casts.

3 C source available from http://people.mozilla.org/

~jkew/woff/woff-code-latest.zip—I found it quite easy
to build with gcc.

4 This ignores that the Unicode standard seems to have
merged calligraphic and script, and the standard provides only
three incomplete “alphabets”.

If the Unicode standard were amended to fill the
gaps left in the three alphabets that correspond to
previously assigned glyphs (not characters in the ab-
stract sense), then in the “dressing process” one could
use offsets to those alphabets for bb, frak, and scr.

Finally, by way of trying to nudge the guardians
of Unicode, I would like to note that in the document
“The STIX Package” (stix.pdf) accompanying the
2014 release of the STIX fonts and found in TEX Live
2014, the table in section 3 indicates support for
a number of \mathxx commands beyond what is
provided in Unicode. The author has been shown
browser-private CSS properties that may be used to
access alternate glyphs for Unicode points in Open-
Type fonts. This gives hope that eventually there will
be better ways to use CSS to access such alternate
glyphs.

5 Fractions

Fractions may be rendered reasonably well using CSS

tables. There are, however, two important things to
note. First, each of the numerator and denomina-
tor must be the sole table-cell in a table-row. The
bar that separates numerator and denominator may
be provided as the “collapsed” border-bottom of
the numerator with the border-top of the denomina-
tor. This arrangement for the bar works with table-
rows. However, table-rows cannot contain essen-
tially arbitrary content, while table-cells can. Thus,
the dressing of the profile must re-arrange things
to be as if \frac{a}{b} had been marked up as
\frac{{a}}{{b}}. This much is a slight inconve-
nience but not a problem.

The second thing to note is a problem. There
does not seem to be any reasonable way at present
to have horizontally adjacent fraction bars align with
each other. It is not an obstruction to comprehensi-
bility, but it leaves an appearance one does not want.
It is part of a much larger concern with vertical
alignment for the math in LATEX profiles.

The author understands that vertical alignment
is a subject of continuing work within the CSS com-
munity.

6 Borders as balancers

Previously (in section 2.4.1) I mentioned \bal{...}

as the profile’s version of \left(...\right). At the
stage of dressing when all character data in math
zones is being wrapped in tags the character “(” is
replaced with <bal> and the character “)” is re-
placed with </bal>. Aside from the fact that this
is important for trapping the author error of having
unbalanced parentheses because the output will not

Can LATEX profiles be rendered adequately with static CSS?

216 TUGboat, Volume 35 (2014), No. 2

parse correctly without balance, it is important be-
cause CSS (not unlike LATEX) is largely about boxes.
Every XML element gives rise to a box. CSS proper-
ties control that box.

One might eventually hope that perfectly sized
parentheses for a given box might be provided using
CSS as a border segment object. What works now is
the following:

bal {

align-self: center;

display: inline-block;

margin-left: 0.15em;

margin-right: 0.15em;

padding: 0.2ex 0.2em 0.2ex 0.2em;

border-left: 0.2ex solid;

border-right: 0.2ex solid;

border-radius: 0.5em;

}

Here is a screenshot that illustrates this handling of
\bal{}:

Notice how each pair of parentheses, allowing for
CSS-specified padding of boxes, fits its box precisely.
There is no limit to the number of sizes. How easy it
could be for an author to omit one of the parentheses
at the end if they were all of the same size as here:

π

2

(

1 +

(

lim
n→∞

(

log(n+ 1)−

(

n
∑

k=1

1

k

))))

Among my wishes for the future of CSS are new
border-decoration properties for the four sides of a
box that would enable one to have precisely fitting
parentheses, braces, and brackets. Further one might
wish eventually to be able to attach to a point on
the border of a box a small piece of drawing, similar
to a picture environment drawing in LATEX.

Thus, for example, radicals (from \sqrt[]{}),
which are presently rather fragile with the CSS styling
now available (except for the top line that presents
well when styled as the border-top of the radicand),
would be handled better using the border-top of the
radicand and a segment of the border-left of the
radicand with a radical hook drawn from the bottom
of the segment on the left. Failing that one can even
now make Orwellian “victory radicals” consisting
simply of the top and left borders of the radicand.

7 Flexible boxes

7.1 underset

The LATEX profile in use here does not, though it cer-
tainly could, provide \lim as a command. The limit
in the previous display is generated as an underset.
Explicitly, the corresponding source is:

\underset{n \rightarrow \infty}{\mbox{lim}}

In the XML everything needs a name. The first
argument of underset, the “decoration”, has the name
deco, while the second argument, the “base”, has the
name expr.5

It would be rather heavy-handed to style an
underset as a table. Instead it uses a new concept in
CSS [10]: the flexible column.6

The command underset is treated in this seg-
ment of the CSS stylesheet:

underset {

display: inline-flex;

flex-direction: column;

align-items: center;

vertical-align: text-top;

justify-content: flex-start;

}

underset > expr {

order: +1;

padding: 0;

margin-top: -0.2ex;

margin-bottom: -0.3ex;

}

underset > deco {

font-size: 0.8em;

padding: 0;

order: +2;

}

The order property for the children indicates
the order from top to bottom in which the children
should be displayed. In this case the first child is to
be displayed second and the second child first.7 The
ability to arrange the order of children is useful. (Its
usefulness is made less important, however, if the
XML is processed for “dress”.)

This segment of CSS above is not very robust.
The vertical-align specification may or may not
be what one will ultimately want. If it is used,
the idea is to align the underset box within the
parent. It is not supposed to be effective if the
parent is a flexible box (row or column), in which

5 The argument order for MathML’s correspondingmunder

is reversed.
6 As an exercise, the reader might ponder why it would

not work to style a fraction as a flexible column.
7 With MathML’s munder it would be first first and second

second.

William F. Hammond

TUGboat, Volume 35 (2014), No. 2 217

case a property called align-self with different
permitted values can be used. It’s not fully clear
which display types of the parent are appropriate
if vertical-align is to be effective. Moreover, it’s
not clear what point on a flexible column is being
aligned, say, in a parent of type inline-block. I can
report that for one browser the display changed for
underset and overset with a version upgrade during
July, 2014. The top and bottom margin settings for
expr are a font-dependent attempt to adjust for the
inadequacies of vertical-align.

7.2 sum-like operators

The sum in the previous display also involves flexible
boxes, in this case two of them, one a row and one a
column. In the LATEX profile at hand, sums, integrals,
and products are handled together for most purposes,
and I call them the “sip” (the first letters of sum,
integral, and product) elements. (There could be
more of these: unions, intersections, coproducts, . . . ,
but no others are presently in the profile.) Where in
regular LATEX the corresponding commands reference
the operator symbols, in the profile they reference
the whole structure. Nonetheless, the markup is
almost the same as with regular LATEX except that an
explicit termination of the object of the operation is
required. For the example in the display of section 6,
the markup is

\sum_{k=1}^n\frac{1}{k}\sum:

This could be marked up in a manner close to
its XML guise:

\sum{\siphead{\lower{k=1}\upper{n}}

\sipbody{\frac{1}{k}}}

The CSS scheme used is that sum is a flexible row,
while its first child siphead is a flexible column given
that its parent is a displaystyle sum. At the stage
of dressing an mx containing the summation symbol
is inserted between the upper and the lower. The
sipbody, which is the second child of the sum, con-
tains the object of the summation— in this case the
fraction 1/k. A listing of the relevant CSS code fol-
lows. Note that the property align-self should
govern vertical alignment of the sum in its parent in
the case that the sum is itself inside a flexible row,
while the property vertical-align should govern
the case that the sum is inside an inline block (which
I have taken to be the default display style for any
expression more complicated than a single symbol).

sum, int, prod {

align-self: center;

vertical-align: middle;

margin-left: 0.2em;

margin-right: 0.2em;

display: inline-flex;

flex-direction: row;

justify-content: flex-start;

align-items: center;

}

siphead {

vertical-align: middle;

align-self: center;

display: inline-flex;

flex-direction: column;

justify-content: flex-start;

align-items: center;

}

siphead > upper {

font-size: 0.6em;

order: -1;

line-height: 2.5ex;

min-height: 1.5ex;

margin-bottom: 0.15ex;

}

siphead > mx {

order: 0;

}

siphead > lower {

order: 1;

font-size: 0.6em;

line-height: 2.5ex;

min-height: 2.5ex;

margin-top: 0.15ex;

}

sipbody {

display: inline-block;

align-self: center;

padding-left: 0.05em;

}

8 Why?

It is important to explore all avenues for making
mathematical content fully available online in proper
online formats. This includes the world of small
screens as found on “smart phones” and the world
of “e-books”.

One hopes that the design concepts in CSS8

for online content eventually become adequate for
handling mathematics— they are not far from that
now—and that those concepts come to be supported
in all major web browsers.

With fully robust static CSS for LATEX profiles
the gain for the online presentation of mathematics
could be:

1. Faster browsing of math online.

8 general concepts not particularly tied to mathematics

Can LATEX profiles be rendered adequately with static CSS?

218 TUGboat, Volume 35 (2014), No. 2

2. The potential for greater control in the presen-
tation of math online.

3. Elimination of the need for special handling of
math in the online world.

If this future is realized, there are two other
things to note:

• A LATEX profile can be robustly translated (on
the server side) to HTML with MathML. In that
process the output can be “dressed” so that it
can be styled with static CSS in a way that has
an almost identical presentation in web browsers
to that of the profile itself presented with its
static CSS. There should be no need to observe
the restrictions of “MathML for CSS” [9].

• Web-served HTML with MathML will have the
advantage over web-served LATEX profiles of
having mathematical expressions that can be
“pasted” into a computer algebra system.

References

[1] Bert Bos, Tantek Çelik, Ian Hickson,
& H̊akon Wium Lie, Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1)
Specification World Wide Web Consortium
Recommendation, 7 June 2011, http:
//www.w3.org/TR/2011/REC-CSS2-20110607.

[2] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen,
Eve Maler, & François Yergeau, Extensible
Markup Language (XML) 1.0 (Fifth
Edition, World Wide Web Consortium
Recommendation, 26 November 2008, http:
//www.w3.org/TR/2008/REC-xml-20081126.

[3] Michel Goossens and Sebastian Rahtz et al.,
The LATEX Web Companion, Addison-Wesley,
1999.

[4] Leslie Lamport, LATEX: A Document
Preparation System, 2nd edition,
Addison-Wesley, 1994.

[5] William F. Hammond, The GELLMU
Manual, 2007, http://mirror.ctan.org/
support/gellmu/doc/glman.pdf, or
http://mirror.ctan.org/support/gellmu/

doc/glman.xhtml (XHTML+MathML).

[6] William F. Hammond, “GELLMU: A Bridge
for Authors from LATEX to XML”, TUGboat,
vol. 22 (2001), pp. 204–207; also available
online at http://www.tug.org/TUGboat/
tb22-3/tb72hammond.pdf.

[7] William F. Hammond, “Dual presentation
with math from one source using GELLMU”,
TUGboat, vol. 28 (2007), pp. 306–311;
also available online at http://www.tug.
org/TUGboat/tb28-3/tb90hammond.pdf.
A video recording of the presentation at
TUG 2007, July 2007, in San Diego is
available at http://river-valley.zeeba.
tv/conferences/tug-2007/.

[8] William F. Hammond, “LATEX profiles as
objects in the category of markup languages”,
TUGboat, vol. 31 (2010), pp. 240–247;
also available online at http://www.tug.
org/tugboat/tb31-2/tb98hammond.pdf.
A video recording of the presentation at
TUG 2010, June 2010, in San Francisco is
available at http://river-valley.zeeba.
tv/conferences/tug-2010/.

[9] Bert Bos, David Carlisle, George
Chavchanidze, Patrick D. F. Ion,
& Bruce Miller, “A MathML for CSS
Profile”, World Wide Web Consortium
Recommendation, 7 June 2011, http:
//www.w3.org/TR/mathml-for-css/.

[10] T. Atkins, fantasai, & Rossen Atanassov,
ed., “CSS Flexible Box Layout Module
Level 1”, World Wide Web Consortium,
last call working draft (work in progress),
March 25, 2014, http://www.w3.org/TR/
2014/WD-css-flexbox-1-20140325/, (latest:
http://www.w3.org/TR/css-flexbox-1/).

⋄ William F. Hammond

University at Albany, Albany,

New York

and San Diego, California

hammond (at) albany dot edu

http://www.albany.edu/~hammond/

William F. Hammond

TUGboat, Volume 35 (2014), No. 2 219

TUG 2014 abstracts

Editor’s note: Slides and other related information
for many of the talks are posted at http://tug.org/
tug2014/program.html.

−− ∗ − −

Kaveh Bazargan

Creating a LATEX class file using a graphical interface

Writing LATEX class files is a very specialized job,
needing intimate knowledge of TEX. This job can be
simplified by separating parameters from the TEX
commands themselves. Using such parameterization,
a user can simply change the parameters and obtain
the change required. The technique becomes much
more useful if a graphical user interface is used to
modify the parameters interactively, and if the user
gets instant feedback by seeing the result in the type-
set document. I will demonstrate one such system,
namely Batch Commander, created using LiveCode.
I will show that many uncomplicated class files can
be created by a user with minimal knowledge of TEX.

Kaveh Bazargan

PDF files both to print and to read on screen

PDF started life as a reliable format for distribut-
ing a document for printing. In the electronic age
when most documents are never printed, many peo-
ple have predicted the demise of PDF, in favour of
other formats such as EPUB. But PDF has remained
resilient and is likely to remain so for the foresee-
able future. However, in general, a print PDF is not
ideal for reading on screen, and vice versa. So pub-
lishers either compromise, by putting minimal links
and enhancements, or by producing two completely
separate PDFs.

I will present methods by which we can use TEX
to create PDF files that print perfectly, but that are
enhanced for online reading too.

Karl Berry

Building TEX Live

An overview of how TEX Live is constructed and up-
dated, both so-called packages and programs. Here,
packages contain only material which is interpreted,
such as LATEX add-ons, fonts, and scripts; these are
updated throughout the year, as updates are re-
leased to CTAN. In contrast, programs are compiled
binaries and are, almost always, updated only for
the annual release. A document with details on all
these topics (and much more) is available at http:

//tug.org/texlive/doc/tlbuild.html (or .pdf).

Dave Crossland

Metapolator: Why Metafont is finally catching on

This presentation follows up on my paper, “Why

didn’t METAFONT catch on?” presented at TUG 2008
and in TUGboat 29:3. In March 2013, Dave con-
tacted the developers of the Metaflop web appli-
cation, and met with designer Simon Egli in New
York. Simon proposed a radical idea to enable type-
face designers to harness the power of METAFONT’s
parametric capabilities without requiring them to
write any METAFONT code. After a year of proto-
typing, Dave and Simon secured financial support
from the Google Fonts project to fully develop such
a tool with a team of collaborators from around the
world. They call it Metapolator.

Ward Cunningham

Another wiki? OMG why?

We will reflect on the first wiki, what problem it
solved, and what problems it sidestepped. We’ll ac-
knowledge the most famous wiki, Wikipedia, and
especially recognize what they found the need to
change. We will then describe the technological and
social opportunity for another wiki, again a service
nobody asked for, but now built with technology
twenty years further along in the evolution of the web.
For this conference: http://tug.fed.wiki.org.

We’ve made wiki servers simpler by moving ren-
dering and sharing into the browser. We’ve used
federation to solve some problems that plague other
implementations, and to open an innovation space
unserved by web technology until now.

Finally we’ll declare our love for those who write,
even a little, for thoughtful writing inoculates us from
the ravages of consumerism.

Paulo Ney de Souza

A call for standards on the way

to internationalization of TEX

Even though TEX is able to write and process doc-
uments in hundreds of languages, its own internal
organization regarding use of language is next to nil.
On this talk we will show how the introduction of
standards like ISO-639, ISO-15924, ISO-3166-1 and
RFC-5646 are producing real cross-pollination among
projects like Babel, Polyglossia, BibLATEX and CSL

and driving the internationalization of TEX further.

Michael Doob

Using animations within LATEX documents

TEX has always been in its heart a program for creat-
ing beautiful books. As TEX matured, markup was
simplified using LATEX, packages for creating beau-
tiful tables of contents and indexes appeared, and
colour was added. Graphics packages were also added
allowed beautiful illustrations, but the resulting out-
put was in essence a book. This era of progress is
disappearing.

220 TUGboat, Volume 35 (2014), No. 2

We now read novels on our smart phones and
mathematical papers on our tablets. The objects
being viewed are less like traditional books and have
potential to be much more exciting. Fortunately,
TEX is flexible enough to adapt to the changing envi-
ronment. As a step supporting this change, we survey
the varied techniques available to create animations
within LATEX documents.

David Farmer

Converting structured LATEX to other formats

I will describe a project which converts research
papers and textbooks in mathematics from LATEX
to HTML, providing an alternative to online PDF

documents. This project specifically targets journal
papers and books, as examples of structured docu-
ments. Making use of the underlying structure of the
LATEX document, the output more closely preserves
the reader’s ability to visually scan the document’s
contents and seamlessly incorporates references and
citations.

Doug McKenna

Lib
t
erate

TEX

C
Top part: JSBox

A work in progress, JSBox is a self-contained library —
written in portable C—that instantiates sandbox-
able, TEX-language interpreters within the memory
space of any C, Objective-C, or C++ 32- or 64-bit
client program.

Built and documented anew, JSBox is faithful to
the TEX language’s primitives, syntax, typesetting al-
gorithms, measurements, data structures, and speed.
At the same time, it fixes — in an upwardly compati-
ble manner — a variety of important problems with or
lacunæ in the current TEX engine’s implementation.
These include integral support for 21-bit Unicode,
namespaces, OpenType font tables and metrics, job-
specific 8-bit to 21-bit Unicode mapping, run-time
settable compatibility levels, full 32-bit fixed-point
math, and more. Especially pertinent to interactive
applications — such as an eBook reader — is that all
of a document’s pages can optionally be kept as TEX
data structures in memory after a job is done, with
direct random access of any requested page exported
to the client program’s screen without file I/O or DVI

or PDF conversion if unneeded.
Tracing (notably including recursive expansion,

the re-tracing of interrupted commands, alignments,
math, etc.) and all error messages have been sig-
nificantly improved over what TEX does. (A de-
tailed article on JSBox’s tracing appears in this issue,
pp. 157–167.)

The author will demo what JSBox can do now,
and discuss what it could do in the future.

Doug McKenna

Lib
t
erate

TEX

C
Bottom part: literac

literac is a command-line program that converts
source code written in C, C++, Objective-C, Swift,
Go, or other languages that use C-style comment-
ing syntax (i.e., // and /* ... */) into a LATEX
document.

Computer code is typeset verbatim (with op-
tional line numbers). Comments, on the other hand,
are stripped of their delimiters, presented in different
styles based on context, and merged into paragraphs
if possible. A significant amount of attention is paid
to ensuring that TEX does “the right thing” in numer-
ous edge cases. Within comments, a few special com-
mands support common typesetting tasks, including
verbatim and auto-verbatim code quotes, macros,
moving source material forward for typesetting later
in the document, inserting arbitrary TEX code for
math displays, tables, or footnotes, suppressing both
code and comment lines from being typeset, and vis-
ual cues for dividing a large program in one source
file into chapters, sections, subsections, a README file,
etc. This fosters better documented C code without
imposing an intermediate CWEB (CWEAVE/CTANGLE)
step on the source code’s developer/tester.

The single implementation file, literac.c, is
documented in the literate style it implements. It
typesets itself into a 200+ page document that is
its own user manual, its own implementation, the
explanation of the program’s internal design, and
an excellent test suite for itself. Its author built
literac to typeset the 90,000+ lines of source code —
half of them comments—of the JSBox library, as
commented using literac’s rules and commands.

Frank Mittelbach

Regression testing LATEX packages with Lua

For many years, LATEX2ε has used a custom Perl
script to perform regression testing on a large number
of test files to ensure that any changes to LATEX do
not break anything. This tests have also been useful
in highlighting changes in TEX Live. One of the
first steps in the modern development of the LATEX3
code was to produce a similar system to ensure that
the development process was as smooth as possible.
This build system, which also handled documentation
typesetting and CTAN archiving, was written with
a Makefile system, and eventually a Windows batch
script was written as well.

These days, all TEX distributions ship with
LuaTEX, which includes a standalone Lua interpreter;
for the first time, TEX users can write platform-
independent scripts that run without needing to
install any additional frameworks. (E.g., Perl under

TUGboat, Volume 35 (2014), No. 2 221

Windows.) Joseph Wright, accordingly, has rewrit-
ten the LATEX3 build scripts in Lua (uploaded to
CTAN in June 2014) to avoid maintaining two sepa-
rate systems. As an added bonus, this new system,
named l3build, is flexible and extensible enough
to be used for any TEX package, and we hope the
community will now take advantage of having an
easy-to-use regression test suite available.

In this presentation, we will discuss how we use
the l3build system, how we hope others will use it,
and why regression testing is so important.

Ross Moore

“Fake spaces” with pdfTEX—the best of both worlds

When Donald Knuth wrote TEX he chose to omit
space characters from the output, but instead care-
fully position the start of each word and punctuation
character. This was to be able to better handle the
idea of full-justification, as done by clever typists
on manual typewriters. TEX’s visual output seems
clearly superior because of this.

Nowadays, however, other word-processing and
text-presentation software seems to have largely aban-
doned full justification. Instead, window sizes can
be resized causing the text to reflow on-the-fly. The
presence of a space character as a word delimiter is
important for this to work properly.

With the 2014 version of TEX Live, new prim-
itives such as \pdffakespace are included within
pdfTEX that allow a “fake space” to be inserted into
the PDF content stream, occurring between words
and at the end of lines. This is done only at the
final output, so it does not affect the high-quality
positioning of words. Now when the textual content
is extracted from the PDF, by Copy/Paste or other
means, a space character is indeed included in the
extracted content. This is a requirement to meet
PDF/A archival standards.

The author will demonstrate examples of the
use of this \pdffakespace, and the other new prim-
itives that control when and where it is used (e.g.,
not needed in mathematical content) for producing
PDF/A and “Tagged PDF” for both archivability and
accessibility. Also to be shown is how a fake space
allows extra material, such as the LATEX source of
inline or displayed mathematics, to be included in-
visibly within the PDF. With a Select/Copy/Paste
of the mathematical expression, this included source
coding comes along with the pasted text.

Dan Raies

LATEX in the classroom

The LATEX skill-set required of a student or a re-
searcher is vastly different than that required of a
teacher. As a result, when one writes a test or home-
work assignment it often happens that the LATEX

we know dictates the questions we can ask. In this
talk we examine some LATEX techniques that will
allow us to improve the materials that we use in the
classroom. These techniques include ways to orga-
nize documents, ways to write solutions, and ways to
create diagrams. We will examine some basic LATEX
strategies as well as some particular packages that
are of use for teachers.

Will Robertson and Frank Mittelbach

LATEX3 and expl3 in 2014: Recent developments

The expl3 programming layer for LATEX3 has sta-
bilised and is now being used by many people “in the
wild” and for many different package types. In this
talk we’ll discuss the emerging popularity of expl3
and some thoughts we have for rounding out its
feature set. One area of recent development is case-
changing in the Unicode era; TEX’s \uppercase and
\lowercase don’t fulfil our needs when case changing
is language-dependent and in some cases no longer
a one-to-one mapping. On the other hand, those
primitives are used extensively for various tricks in
TEX programming, and one of expl3’s philosophies
is to avoid ‘tricks’, so we can try to do something
about that too.

Etienne Tétreault-Pinard

Plotly: Collaborative, interactive, and online plotting

with TEX

TEX was designed with the goal of allowing anyone to
produce high-quality documents with minimal effort,
and to provide a system compatible on all computers,
now and in the future (A. Gaudeul, Do Open Source
Developers Respond to Competition?: The (LA)TEX
Case Study, Social Science Research Network, 2006).

Plotly applies the same core principles to graph-
ics. Plotly lets users collaboratively make and share
interactive graphics online using Python, MATLAB,
R, Excel data and TEX (MathJax) for free. Ad-
ditionally, Plotly allows users to easily embed and
export graphics for publication, while backing up
your graphics, data and revisions in the cloud. This
tutorial outlines Plotly’s features and demonstrates
how using Plotly creates unique workflows with em-
phasis on collaboration and reproducibility. More
information is at bit.ly/1vdF6Kp.

Alan Wetmore

A quarter century of naïve use and abuse of LATEX

In this talk I will recount my introduction to and
experiences with LATEX. Throughout this time in-
stalling and maintaining TEX and friends has become
ever so much easier while the capabilities have grown
enormously. Along the way I learned about many
subjects I hadn’t even known existed, and experi-
mented with many facets of TEX.

222 TUGboat, Volume 35 (2014), No. 2

Let’s Learn LATEX: A hack-to-learn ebook

Parthasarathy S

Abstract

Let’s Learn LATEX is an innovative ebook which aims
to speed up your LATEX learning experience using
the “hack-to-learn” approach. It offers many lessons
which you can copy and modify freely, to create your
own LATEX document. Each lesson highlights some
specific aspects of LATEX.

Description

Perhaps you have a basic knowledge of LATEX, or have
heard about it vaguely or seen it at work earlier. You
are in a hurry to try your hand at LATEX. You are
overwhelmed by the complexity of LATEX. Reading
traditional books and tutorial material to understand
LATEX seems to be too cumbersome for you. You
believe in D-I-Y, even for learning. If any or all of
this applies to you, now you have a way out [6]. The
ebook Let’s Learn LATEX gives you a total of 170+
pages in 25+ PDF documents (called lessons), each
highlighting some aspect of LATEX usage.

This book recommends (and encourages) hack-
ing as an effective method of learning LATEX. In
fact, this book starts with two articles devoted to
hacking as a means of learning. It gives 25 such
lessons, each highlighting certain aspects of LATEX.
The LATEX source of all the lessons is also given in
easily locatable files (hyperlinked to the main text),
so that you can hack them and experiment with
them. True to the spirit of FLOSS, this book is dis-
tributed under a liberal license—Creative Commons
Attribution-ShareAlike 4.0 [1]. The book can be
freely downloaded from [6].

This book does not pretend to teach you LATEX
ab initio. Neither does it claim to answer all your
questions about LATEX. This is a D-I-Y approach to
learning LATEX. It aims to jump-start your LATEX
learning experience. The 25 lessons can be read in
any order, and You can see the rendered version (pdf)
as well as the source version (LATEX) of each lesson, by
clicking on the hyperlinks (shown in wine-red). This
book is therefore best read on the computer screen.
A printed version of this book will have all these
texts printed and inserted at the appropriate places.
Those using the printed version will still need the

book in a softcopy form (such as a DVD) to access
the LATEX sources. The softcopy version of this book
makes best use of ebook format created by LATEX.

Availability

Let’s Learn LATEX was prepared and tested under a
GNU/Linux system, and will work best there. In any
case, you will have to ensure that your PDF reader,
your text editor, and your web browser are properly
installed, configured, and are working satisfactorily.
You will need a live connection to the web to browse
the web links in the book. To get the book with all
its lessons, download the provided zip bundle, unzip,
and follow the instructions in the aboutme.txt file.

Finally, this book is not expected to replace any
of the traditional and popular books on LATEX. It
is a LATEX practitioner’s attempt to make LATEX ac-
cessible to all who want to get proficient quickly in
the use of LATEX. You may refer to any of the three
books [2, 3, 4], or use any of the many resources ac-
cessible on the web [5]. Indeed, keep these resources
handy as you work on LATEX using this book.

References

[1] Creative Commons Attribution-ShareAlike 4.0
Unported license, https://creativecommons.
org/licenses/by-sa/4.0/legalcode

[2] H. Kopka, P. Daly. Guide to LATEX2ε, fourth
ed. Addison-Wesley, 2003.

[3] L. Lamport. LATEX: A document preparation

system, 2nd ed. Addison-Wesley, 1994.

[4] F. Mittelbach, M. Goossens, J. Braams,
D. Carlisle, C. Rowley. The LATEX Companion,
2nd ed. Addison-Wesley, 2004.

[5] S. Parthasarathy. Dr. Partha’s LATEX starter,
http://www.freewebs.com/profpartha/

startlatex.htm

[6] S. Parthasarathy. Let’s Learn LATEX.
http://www.freewebs.com/profpartha/

teachlatex.htm

⋄ Parthasarathy S

Secunderabad, India

drpartha (at) gmail dot com

http://profpartha.webs.com/

profpartha.htm

TUGboat, Volume 35 (2014), No. 2 223

Book review: Fifty Typefaces That

Changed The World

Jeffrey A. Barnett, jbb (at) notatt dot com

John L. Walters, Design Museum Fifty Typefaces

That Changed The World, Alison Starling Publisher,
2013. ISBN 978-1-84091-629-4

This book is part of a Design Museum series including
the titles “Fifty x That Changed The World”, where
x is one of Bags, Bicycles, Cars, Chairs, Dresses,
Shoes, Typefaces, or others. The book reviewed
herein was originally published by Design House in
association with Conran Octopus and John L. Wal-
ters, the Editor of Eye magazine, is the presumed
author but is only credited by the phrase “Text writ-

ten by”. N.B. There is no human name, e.g., an
author’s name, on the spine of the book or on its
cover and publishing credits, copyright claims, pub-
lishing dates, etc., are deferred to the last page of the
book; in other words, a rather enigmatic structure
and I may have some of the credits wrong.

The contents are simple to describe: The front
matter consists of two copies of a title page separated
by a page-sized slightly abstract picture of a type
slug for an ampersand, a simple table of contents
(no indentations, everything at the same level), then
a one-page introduction accompanied by a picture
of some characters. The main contents are fifty two-
page articles, each describing a different typeface.
The left-hand pages include descriptions with some
history, inventor(s), motivation for introduction, and
some example characters in the typeface. Right-hand
pages show pictures, usually in color, of applications
of the typeface, e.g., the pictures for Transport, aka
the House Style for Britain, show actual road signs set
in the Transport typeface. The end matter consists
of four parts: a glossary defining some terminology
used in the book, a subject index, picture credits,
and other credits—publication dates, copyrights,

and additional information usually found near the
front of a book.

The fifty typeface descriptions are arranged in
chronological order. The first, circa 1455, is the
Blackletter used to set the 42-line Gutenberg Bible.
This type was based on the lettering used by monks
to copy manuscripts. The accompanying pictures
include a page of Gutenberg and a more modern ver-
sion used for the naming sign on the Chicago Tribune
building. The number of typefaces, by centuries, in
this book are: 2 in 15th century, 3 in 16th, 1 in
17th, 4 1n 18th, 10 in 19th, 27 in 20th, and 3 in
21st. The fiftieth typeface discussed is Ubuntu with
a 2011 date so we are certainly in the computer age.
Ubuntu aims to grow and provide a method to print
languages based on roman as well as other alpha-
bets. The accompanying picture shows a collection
of characters that I do not recognize with markup
comments, e.g., “a bit narrow”, meant to show the
extensibility concept in action through design.

The book itself is printed on thick sheets of a
very white paper and is set in DM Schulbuch, an
invention of Design Museum. It is a rather natty
looking sans serif face that is easy to read. The
pictures are in the best traditions of the commercial
artist showing off and give the book a hypermodern
feel. In my mind this inexpensive book— less than
$16 at Amazon.com—qualifies as coffee table art.
It’s very good looking.

My specific interest in typography is for author-
centric generation of manuscripts for publication.
Thus, I am specifically interested in mechanisms that
individuals can use on computers. The inventions
of eight of the fifty typefaces included in the book
were motivated by considerations of digital usage. I
believe the selector of that material was negligent
by omitting the single most important contribution
to digital typesetting to date. First let’s see which
eight made the book and the reasons given for their
inventions:
1. Zapf Dingbats (1978)—1st for computers to make

figure drawing easier
2. Beowolf (1989)—Exploits PostScript inconsisten-

cies for random results
3. Scala (1991)—Old style serifs for a digital world
4. Meta (1991)—The anti-Helvetica, i.e., not bland
5. Blur (1991)—Desktop software could warp and

twist typefaces into new fonts
6. Comic Sans (1994)— Inspired by Microsoft Bob

inappropriately speaking New Times Roman
7. Georgia (1996)—A Microsoft-commissioned com-

puter screen destination serif typeface
8. Ubuntu (2011)—Extensibility without limit for

the computer age

Book review: Fifty Typefaces That Changed The World

224 TUGboat, Volume 35 (2014), No. 2

I must review my own history1 vis-à-vis type-
setting in order to identify what I believe to be the
glaring omission. I worked at the System Develop-
ment Corporation (SDC) starting in the mid 1960s.
This was the first time I was involved in preparing
papers for external publication. Original text was
handwritten since neither our computer terminals
nor line printers had lower case or math characters.
At some point after editing and hallway reviews, pa-
pers were ready to prepare for submission. I could
now use the best, smartest typesetting engine I have
ever had access to—Ethyl Erich! Lou (as we called
her) had emigrated from Australia where she had
been a court stenographer. And could she type too.
One hand held the math ball for an IBM Selectric
Typewriter, while the other typed. She would change
balls with one hand as necessary and was able to
sustain a rate of several words a minute through
math-laden text.

Once Lou came into my office while preparing a
lengthy document coauthored by several of us and
said “On page 12 you have such and such but look
at page 143.” There was a subtle inconsistency that
took a meeting of the coauthors many hours to haggle
out. As I said, this was the smartest typesetting
system I ever used. Eventually we had terminals
and line printers with lower case that were usable for
initial paper preparation but were quite worthless
for preparing “final” submissions.

The next stop for me was USC ISI during the
late 1970s and early 1980s. ISI had a Xerox XGP

printer with multiple typeface capability. ISI was
also one of the beta test sites for Brian Reid’s Scribe
typesetting system developed at Carnegie Mellon
University as the substance of his PhD dissertation.
Scribe and the XGP together provided a substan-
tial typesetting capability that was quite exciting
for its time. However there were three serious prob-
lems: 1) The XGP would only allow six different
typefaces/fonts per page; 2) The available typefaces/
fonts were wildly inconsistent, e.g., 12pt roman and
italic had different baselines, and other problems of
this sort, because computer science grad students
sans commercial art backgrounds generated fonts du
jour; 3) Scribe proclaimed but did not have decent
mathematics capabilities, e.g., putting both a sub-
script and a superscript on the same character was a
complicated process. I was writing a paper that ran
into all of these problems and decided to fix things:
1) I “fixed” various faces in two sizes to be consistent;

1 I’m aware that reviews are supposed to be about the

object reviewed and not about the reviewer but this one is

based on my opinion and I want to justify it. Or I’m declaring

my interest as British MPs but not US Congress members do.

2) I combined several small special-purpose character
sets into one to mitigate the XGP’s load limit; 3) I
wrote a macro package to simplify typesetting simple
mathematics. I tried to get ISI management to hire
a part-time grad student with relevant typesetting
experience to improve the Scribe/XGP combination
into real usefulness. I failed in that attempt.

My final stop on the path to typesetting en-
lightenment in the digital world was the Northrop
Research and Technology Center in the mid-1980s.
Nothing to note for a while, then progress: first we
worked our way onto the emerging Internet and sec-
ond we received a TEX suite including TEX, LATEX,
and METAFONT! It was everything that Scribe pro-
posed to be and much more. Math was insanely good,
publication quality was almost guaranteed, the en-
gines were fast given the hardware of the day, and
the package dealt head-on with typeface problems.

Computer Modern was available in a plethora of
sizes, boldness, slants, serif choices, etc. and all were
consistent. It wasn’t long before the engine would
generate a character set automatically when needed
and absent. Nowadays many typefaces have been
defined within the TEX suite and these definitions
are distributed via systems such as MiKTEX and
the CTAN repository system. A question came to
mind at the time: has every font in the Computer
Modern typeface that can be auto-generated been
generated at least once somewhere? If the question
is expanded to the totality of typefaces distributed
through METAFONT, the answer is surely no.

I think the book’s omission must now be obvious:
Computer Modern, by leveraging computers, was the
world’s first truly complete typeface in any serious
sense. Its appearance brought the vague promise of
the computer in publishing into sharp focus. Here
was software that could run on desk-sized computers
and produce copy that would satisfy the most finicky
publishing houses. And if the credit is not given
to Computer Modern, consider METAFONT as the
object of praise. If Ubuntu is to be honored for
providing flexibility and growth, why not pin the
gold star on something else which does the job better
and did it earlier?

Though I’m sure the book’s omission is the re-
sult of ignorance, that isn’t an excuse when produc-
ing a title such as Fifty Typefaces That Changed

The World. TEX and its companions have changed
the entire publishing landscape and that should be
acknowledged.

I must end what began as a short review with
my excuse, a paraphrase of Mark Twain and Blaise
Pascal: I am not knowledgeable enough to write you
a short review, so I am providing a long one.

Jeffrey A. Barnett, jbb (at) notatt dot com

TUGboat, Volume 35 (2014), No. 2 225

2015 TEX Users Group election

Kaja Christiansen
for the Elections Committee

The positions of TUG President and nine members
of the Board of Directors will be open as of the 2015
Annual Meeting, which will be held in July 2015 in
Darmstadt, Germany.

The directors whose terms will expire in 2015:
Barbara Beeton, Karl Berry, Susan DeMeritt, Michael
Doob, Taco Hoekwater, Ross Moore, Cheryl Ponchin,
Philip Taylor, and Boris Veytsman.

Continuing directors, with terms ending in 2017:
Kaja Christiansen, Steve Grathwohl, Jim Hefferon,
Klaus Höppner, Arthur Reutenauer, David Walden.

The election to choose the new President and
Board members will be held in Spring of 2015. Nom-
inations for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/
to the Board by submitting a nomination petition
in accordance with the TUG Election Procedures.
Election . . . shall be by written mail ballot of the
entire membership, carried out in accordance with
those same Procedures.” The term of President is
two years.

The name of any member may be placed in
nomination for election to one of the open offices
by submission of a petition, signed by two other
members in good standing, to the TUG office at least
two weeks (14 days) prior to the mailing of ballots.
(A candidate’s membership dues for 2015 will be
expected to be paid by the nomination deadline.)
The term of a member of the TUG Board is four years.

A nomination form follows this announcement;
forms may also be obtained from the TUG office, or
via http://tug.org/election.

Along with a nomination form, each candidate
must supply a passport-size photograph, a short
biography, and a statement of intent to be included
with the ballot; the biography and statement of intent
together may not exceed 400 words. The deadline for
receipt of nomination forms and ballot information
at the TUG office is 1 February 2015. Forms may
be submitted by FAX, or scanned and submitted by
e-mail to office@tug.org.

Ballots will be mailed to all members within 30
days after the close of nominations. Marked ballots must
be returned no more than six (6) weeks following the
mailing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of
the election should be available by early June, and will
be announced in a future issue of TUGboat as well as
through various TEX-related electronic lists.

2015 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2015
will be eligible to participate in the election. The signa-
tures of two (2) members in good standing at the time
they sign the nomination form are required in addition to
that of the nominee. Type or print names clearly, using
the name by which you are known to TUG. Names that
cannot be identified from the TUG membership records
will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2015 Annual Meeting,
July 2015.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office (forms sub-
mitted by FAX or scanned and submitted by e-mail will
be accepted). Nomination forms and all required supple-
mentary material (photograph, biography and personal
statement for inclusion on the ballot) must be received
in the TUG office no later than 1 February 2015.1 It
is the responsibility of the candidate to ensure that this
deadline is met. Under no circumstances will incomplete
applications be accepted.

� nomination form

� photograph

� biography/personal statement

TEX Users Group FAX: +1 815 301-3568
Nominations for 2015 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

1 Supplementary material may be sent separately from the

form, and supporting signatures need not all appear on the

same form.

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey

Center for Computing Sciences, Bowie, Maryland

CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Google, San Francisco, California

IBM Corporation, T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

Marquette University, Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg, Heidelberg, Germany

StackExchange, New York City, New York

Stanford University, Computer Science Department,

Stanford, California

Stockholm University, Department of Mathematics,

Stockholm, Sweden

University College, Cork, Computer Centre,

Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway

University of Wisconsin, Biostatistics &

Medical Informatics, Madison, Wisconsin

VTEX UAB, Vilnius, Lithuania

226 TUGboat, Volume 35 (2014), No. 2

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at)

texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in: the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs.

Call or email to discuss your project or visit my
website for further details.

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge,
and Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens
of languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Sievers, Martin

Klaus-Kordel-Str. 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents. From setting up
entire book projects to last-minute help, from creating
individual templates, packages and citation styles
(BibTEX, biblatex) to typesetting your math, tables or
graphics— just contact me with information on your
project.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,

TUGboat, Volume 35 (2014), No. 2 227

Sofka, Michael (cont’d)

newsletters, and theses in TEX and LATEX: Automated
document conversion; Programming in Perl, C, C++

and other languages; Writing and customizing macro
packages in TEX or LATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about eighteen years of experience
in TEX and three decades of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.thesiseditor.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

TUG2015

Darmstadt,Germany

July20–22,2015

http://tug.org/tug2015

2014

Oct 3 TUGboat 35:3, submission deadline.

Oct 3 – 5 Oak Knoll Fest XVIII, and
Fine Press Book Association
annual meeting, New Castle, Delaware.
www.oakknoll.com/fest

Oct 31 –
Nov 4

ASIS&T 2014, 77th Annual Meeting,
“Connecting Collections, Cultures,
and Communities”, American
Society for Information Science
and Technology, Seattle, Washington.
www.asis.org/asist2014

Nov 8 – 9 The Twelfth International Conference
on Books, Publishing, and Libraries,
“Disruptive Technologies and the
Evolution of Book Publishing
and Library Development”,
Simmons College, Boston, Massachusetts.
booksandpublishing.com/the-conference

Nov 13 – 14 The Printing Historical Society’s

50th Anniversary, “Landmarks in
Printing: from origins to the digital age”,
St Bride Institute, London, UK.
printinghistoricalsociety.org.uk/

forthcoming_phs_events/#144

Nov 14 TYPO Day, “Business Typography
Talks”, München, Germany.
typotalks.com/day/muenchen-2014

Nov 28 – 29 5th Meeting of Typography,
“Ubiquitous”, Escola Superior
de Tecnologia – IPCA, Barcelos,
Portugal. www.atypi.org/events/

5th-meeting-of-typography

2015

Feb 1 TUG election: nominations due.
tug.org/election

Mar 7 – 9 Typography Day 2015,
“Typography, Sensitivity and Fineness”,
Industrial Design Center,
Indian Institute of Technology,
Bombay, India. www.typoday.in

228 TUGboat, Volume 35 (2014), No. 2

Calendar

Mar 9 TUGboat 36:1, submission deadline
(regular issue)

Mar 19 – 21 “Publish or Perish? Scientific
periodicals from 1665 to the present”.
The Royal Society, London, UK.
royalsociety.org/events/

Apr DANTE Frühjahrstagung

and 52nd meeting, Stralsund, Germany.
www.dante.de/events.html

Apr 29 –
May 3

BachoTEX2015:

23rd BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex

Apr 30 –
May 1

TYPO San Francisco,
Yerba Buena Center for the Arts,
San Francisco, California.
typotalks.com/sanfrancisco

May 21 – 23 TYPO Berlin 2015, “Character”,
Berlin, Germany. typotalks.com/berlin

Jun 29 –
Jul 3

Digital Humanities 2015, Alliance of
Digital Humanities Organizations,
“Global Digital Humanities”,
Sydney, Australia. dh2015.org

TUG2015

Darmstadt, Germany.

Jul 20 – 22 The 36th annual meeting of the
TEX Users Group.
tug.org/tug2015

Aug 9 – 13 SIGGRAPH 2015, “Xroads of Discovery”,
Los Angeles, California.
s2015.siggraph.org

Aug 24 – 28 SHARP 2015, Society for the History of
Authorship, Reading & Publishing,
Jinan, Snandong Province, China,
www.sharpweb.org

Oct 19 – 20 The Thirteenth International Conference
on Books, Publishing,
and Libraries, University of British
Columbia, Vancouver, Canada.
booksandpublishing.com/the-conference-2015

Status as of 15 September 2014

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 35 (2014), No. 2

Introductory

135 Michael Sharpe / Recent additions to TEX’s font repertoire
• Garamonds, Baskervilles, typewriter fonts, sans serif, and more

139 Jim Hefferon and Lon Mitchell / Experiences converting from PDF-only to paper
• offering an online textbook in print for the first time

142 Joseph Hogg / Texinfo visits a garden
• producing an annotated, indexed, plant list for the Huntington’s Herb Garden

Intermediate

195 Leyla Akhmadeeva and Boris Veytsman / Typography and readability:
An experiment with post-stroke patients

• serif vs. sans serif for readers with cognitive impairments from stroke

209 Robert A. Beezer / MathBook XML

• writing technical documents with many possible output formats and online integration

168 Julian Gilbey / Creating (mathematical) jigsaw puzzles using TEX and friends
• educational puzzles creating using TEX, Python, YAML, et al.

198 SK Venkatesan and CV Rajagopal / TEX and copyediting
• copyediting markup to improve consistency and communication

Intermediate Plus

192 David Allen / Dynamic documents
• using R’s tikzDevice to generate graphical output in LATEX

173 Pavneet Arora / SUTRA—A workflow for documenting signals
• using YAML and ConTEXt tables for generalized signal documentation

145 Richard Koch / MacTEX design philosophy vs. TeXShop design philosophy
• Global vs. LocalTeX PrefPane for the Mac, and Apple histories

152 Adam Maxwell / TEX Live Utility: A slightly-shiny Mac interface for TEX Live Manager (tlmgr)
• a MacOSX graphical interface for tlmgr

179 Andrew Mertz, William Slough and Nancy Van Cleave / Typesetting figures for computer science
• practical packages for drawing stacks, byte fields, trees, automata, and more

Advanced

212 William Hammond / Can LATEX profiles be rendered adequately with static CSS?
• using pure CSS to handle math from LATEX profiles in, e.g., GELLMU

157 Doug McKenna / On tracing the trip test with JSBox
• accurate and complete tracing as part of developing a new TEX interpreter

205 Keiichiro Shikano / xml2tex: An easy way to define XML-to-LATEX converters
• a Scheme program to use LATEX as an effective XML presentation layer

202 Boris Veytsman / An output routine for an illustrated book: Making the FAO Statistical Yearbook
• when illustrations are primary and text is secondary

Reports and notices

126 TUG 2014 conference information

127 TUG 2014 conference program

128 TUG 2014 photos

130 David Latchman / TUG 2014 in Portland

134 Tracy Kidder / Visiting TUG 2014

219 TUG 2014 abstracts (Bazargan, Berry, Crossland, Cunningham, de Souza, Doob, Farmer, McKenna,
Mittelbach, Moore, Raies, Robertson, Tétreault, Wetmore)

222 S Parthasarathy / Let’s Learn LATEX: A hack-to-learn ebook

223 Jeffrey Barnett / Book review: Fifty Typefaces That Changed The World, by John Walters
• review of this art book, with personal commentary on the omission of Computer Modern

225 Kaja Christiansen / TUG 2015 election

226 Institutional members

226 TEX consulting and production services

228 Calendar

