
TUGboat, Volume 35 (2014), No. 2 219

TUG 2014 abstracts

Editor’s note: Slides and other related information
for many of the talks are posted at http://tug.org/
tug2014/program.html.

−− ∗ −−
Kaveh Bazargan
Creating a LATEX class file using a graphical interface
Writing LATEX class files is a very specialized job,
needing intimate knowledge of TEX. This job can be
simplified by separating parameters from the TEX
commands themselves. Using such parameterization,
a user can simply change the parameters and obtain
the change required. The technique becomes much
more useful if a graphical user interface is used to
modify the parameters interactively, and if the user
gets instant feedback by seeing the result in the type-
set document. I will demonstrate one such system,
namely Batch Commander, created using LiveCode.
I will show that many uncomplicated class files can
be created by a user with minimal knowledge of TEX.

Kaveh Bazargan
PDF files both to print and to read on screen
PDF started life as a reliable format for distribut-
ing a document for printing. In the electronic age
when most documents are never printed, many peo-
ple have predicted the demise of PDF, in favour of
other formats such as EPUB. But PDF has remained
resilient and is likely to remain so for the foresee-
able future. However, in general, a print PDF is not
ideal for reading on screen, and vice versa. So pub-
lishers either compromise, by putting minimal links
and enhancements, or by producing two completely
separate PDFs.

I will present methods by which we can use TEX
to create PDF files that print perfectly, but that are
enhanced for online reading too.

Karl Berry
Building TEX Live
An overview of how TEX Live is constructed and up-
dated, both so-called packages and programs. Here,
packages contain only material which is interpreted,
such as LATEX add-ons, fonts, and scripts; these are
updated throughout the year, as updates are re-
leased to CTAN. In contrast, programs are compiled
binaries and are, almost always, updated only for
the annual release. A document with details on all
these topics (and much more) is available at http:
//tug.org/texlive/doc/tlbuild.html (or .pdf).

Dave Crossland
Metapolator: Why Metafont is finally catching on
This presentation follows up on my paper, “Why

didn’t METAFONT catch on?” presented at TUG 2008
and in TUGboat 29:3. In March 2013, Dave con-
tacted the developers of the Metaflop web appli-
cation, and met with designer Simon Egli in New
York. Simon proposed a radical idea to enable type-
face designers to harness the power of METAFONT’s
parametric capabilities without requiring them to
write any METAFONT code. After a year of proto-
typing, Dave and Simon secured financial support
from the Google Fonts project to fully develop such
a tool with a team of collaborators from around the
world. They call it Metapolator.

Ward Cunningham
Another wiki? OMG why?
We will reflect on the first wiki, what problem it
solved, and what problems it sidestepped. We’ll ac-
knowledge the most famous wiki, Wikipedia, and
especially recognize what they found the need to
change. We will then describe the technological and
social opportunity for another wiki, again a service
nobody asked for, but now built with technology
twenty years further along in the evolution of the web.
For this conference: http://tug.fed.wiki.org.

We’ve made wiki servers simpler by moving ren-
dering and sharing into the browser. We’ve used
federation to solve some problems that plague other
implementations, and to open an innovation space
unserved by web technology until now.

Finally we’ll declare our love for those who write,
even a little, for thoughtful writing inoculates us from
the ravages of consumerism.

Paulo Ney de Souza
A call for standards on the way
to internationalization of TEX
Even though TEX is able to write and process doc-
uments in hundreds of languages, its own internal
organization regarding use of language is next to nil.
On this talk we will show how the introduction of
standards like ISO-639, ISO-15924, ISO-3166-1 and
RFC-5646 are producing real cross-pollination among
projects like Babel, Polyglossia, BibLATEX and CSL
and driving the internationalization of TEX further.

Michael Doob
Using animations within LATEX documents
TEX has always been in its heart a program for creat-
ing beautiful books. As TEX matured, markup was
simplified using LATEX, packages for creating beau-
tiful tables of contents and indexes appeared, and
colour was added. Graphics packages were also added
allowed beautiful illustrations, but the resulting out-
put was in essence a book. This era of progress is
disappearing.

http://tug.org/tug2014/program.html
http://tug.org/tug2014/program.html
http://tug.org/texlive/doc/tlbuild.html
http://tug.org/texlive/doc/tlbuild.html
http://tug.fed.wiki.org


220 TUGboat, Volume 35 (2014), No. 2

We now read novels on our smart phones and
mathematical papers on our tablets. The objects
being viewed are less like traditional books and have
potential to be much more exciting. Fortunately,
TEX is flexible enough to adapt to the changing envi-
ronment. As a step supporting this change, we survey
the varied techniques available to create animations
within LATEX documents.

David Farmer
Converting structured LATEX to other formats
I will describe a project which converts research
papers and textbooks in mathematics from LATEX
to HTML, providing an alternative to online PDF
documents. This project specifically targets journal
papers and books, as examples of structured docu-
ments. Making use of the underlying structure of the
LATEX document, the output more closely preserves
the reader’s ability to visually scan the document’s
contents and seamlessly incorporates references and
citations.

Doug McKenna
Libt erate

TEX
C

Top part: JSBox
A work in progress, JSBox is a self-contained library—
written in portable C—that instantiates sandbox-
able, TEX-language interpreters within the memory
space of any C, Objective-C, or C++ 32- or 64-bit
client program.

Built and documented anew, JSBox is faithful to
the TEX language’s primitives, syntax, typesetting al-
gorithms, measurements, data structures, and speed.
At the same time, it fixes— in an upwardly compati-
ble manner—a variety of important problems with or
lacunæ in the current TEX engine’s implementation.
These include integral support for 21-bit Unicode,
namespaces, OpenType font tables and metrics, job-
specific 8-bit to 21-bit Unicode mapping, run-time
settable compatibility levels, full 32-bit fixed-point
math, and more. Especially pertinent to interactive
applications— such as an eBook reader— is that all
of a document’s pages can optionally be kept as TEX
data structures in memory after a job is done, with
direct random access of any requested page exported
to the client program’s screen without file I/O or DVI
or PDF conversion if unneeded.

Tracing (notably including recursive expansion,
the re-tracing of interrupted commands, alignments,
math, etc.) and all error messages have been sig-
nificantly improved over what TEX does. (A de-
tailed article on JSBox’s tracing appears in this issue,
pp. 157–167.)

The author will demo what JSBox can do now,
and discuss what it could do in the future.

Doug McKenna
Libt erate

TEX
C

Bottom part: literac
literac is a command-line program that converts
source code written in C, C++, Objective-C, Swift,
Go, or other languages that use C-style comment-
ing syntax (i.e., // and /* ... */) into a LATEX
document.

Computer code is typeset verbatim (with op-
tional line numbers). Comments, on the other hand,
are stripped of their delimiters, presented in different
styles based on context, and merged into paragraphs
if possible. A significant amount of attention is paid
to ensuring that TEX does “the right thing” in numer-
ous edge cases. Within comments, a few special com-
mands support common typesetting tasks, including
verbatim and auto-verbatim code quotes, macros,
moving source material forward for typesetting later
in the document, inserting arbitrary TEX code for
math displays, tables, or footnotes, suppressing both
code and comment lines from being typeset, and vis-
ual cues for dividing a large program in one source
file into chapters, sections, subsections, a README file,
etc. This fosters better documented C code without
imposing an intermediate CWEB (CWEAVE/CTANGLE)
step on the source code’s developer/tester.

The single implementation file, literac.c, is
documented in the literate style it implements. It
typesets itself into a 200+ page document that is
its own user manual, its own implementation, the
explanation of the program’s internal design, and
an excellent test suite for itself. Its author built
literac to typeset the 90,000+ lines of source code—
half of them comments—of the JSBox library, as
commented using literac’s rules and commands.

Frank Mittelbach
Regression testing LATEX packages with Lua
For many years, LATEX2ε has used a custom Perl
script to perform regression testing on a large number
of test files to ensure that any changes to LATEX do
not break anything. This tests have also been useful
in highlighting changes in TEX Live. One of the
first steps in the modern development of the LATEX3
code was to produce a similar system to ensure that
the development process was as smooth as possible.
This build system, which also handled documentation
typesetting and CTAN archiving, was written with
a Makefile system, and eventually a Windows batch
script was written as well.

These days, all TEX distributions ship with
LuaTEX, which includes a standalone Lua interpreter;
for the first time, TEX users can write platform-
independent scripts that run without needing to
install any additional frameworks. (E.g., Perl under



TUGboat, Volume 35 (2014), No. 2 221

Windows.) Joseph Wright, accordingly, has rewrit-
ten the LATEX3 build scripts in Lua (uploaded to
CTAN in June 2014) to avoid maintaining two sepa-
rate systems. As an added bonus, this new system,
named l3build, is flexible and extensible enough
to be used for any TEX package, and we hope the
community will now take advantage of having an
easy-to-use regression test suite available.

In this presentation, we will discuss how we use
the l3build system, how we hope others will use it,
and why regression testing is so important.

Ross Moore
“Fake spaces” with pdfTEX—the best of both worlds
When Donald Knuth wrote TEX he chose to omit
space characters from the output, but instead care-
fully position the start of each word and punctuation
character. This was to be able to better handle the
idea of full-justification, as done by clever typists
on manual typewriters. TEX’s visual output seems
clearly superior because of this.

Nowadays, however, other word-processing and
text-presentation software seems to have largely aban-
doned full justification. Instead, window sizes can
be resized causing the text to reflow on-the-fly. The
presence of a space character as a word delimiter is
important for this to work properly.

With the 2014 version of TEX Live, new prim-
itives such as \pdffakespace are included within
pdfTEX that allow a “fake space” to be inserted into
the PDF content stream, occurring between words
and at the end of lines. This is done only at the
final output, so it does not affect the high-quality
positioning of words. Now when the textual content
is extracted from the PDF, by Copy/Paste or other
means, a space character is indeed included in the
extracted content. This is a requirement to meet
PDF/A archival standards.

The author will demonstrate examples of the
use of this \pdffakespace, and the other new prim-
itives that control when and where it is used (e.g.,
not needed in mathematical content) for producing
PDF/A and “Tagged PDF” for both archivability and
accessibility. Also to be shown is how a fake space
allows extra material, such as the LATEX source of
inline or displayed mathematics, to be included in-
visibly within the PDF. With a Select/Copy/Paste
of the mathematical expression, this included source
coding comes along with the pasted text.

Dan Raies
LATEX in the classroom
The LATEX skill-set required of a student or a re-
searcher is vastly different than that required of a
teacher. As a result, when one writes a test or home-
work assignment it often happens that the LATEX

we know dictates the questions we can ask. In this
talk we examine some LATEX techniques that will
allow us to improve the materials that we use in the
classroom. These techniques include ways to orga-
nize documents, ways to write solutions, and ways to
create diagrams. We will examine some basic LATEX
strategies as well as some particular packages that
are of use for teachers.

Will Robertson and Frank Mittelbach
LATEX3 and expl3 in 2014: Recent developments
The expl3 programming layer for LATEX3 has sta-
bilised and is now being used by many people “in the
wild” and for many different package types. In this
talk we’ll discuss the emerging popularity of expl3
and some thoughts we have for rounding out its
feature set. One area of recent development is case-
changing in the Unicode era; TEX’s \uppercase and
\lowercase don’t fulfil our needs when case changing
is language-dependent and in some cases no longer
a one-to-one mapping. On the other hand, those
primitives are used extensively for various tricks in
TEX programming, and one of expl3’s philosophies
is to avoid ‘tricks’, so we can try to do something
about that too.

Etienne Tétreault-Pinard
Plotly: Collaborative, interactive, and online plotting
with TEX
TEX was designed with the goal of allowing anyone to
produce high-quality documents with minimal effort,
and to provide a system compatible on all computers,
now and in the future (A. Gaudeul, Do Open Source
Developers Respond to Competition?: The (LA)TEX
Case Study, Social Science Research Network, 2006).

Plotly applies the same core principles to graph-
ics. Plotly lets users collaboratively make and share
interactive graphics online using Python, MATLAB,
R, Excel data and TEX (MathJax) for free. Ad-
ditionally, Plotly allows users to easily embed and
export graphics for publication, while backing up
your graphics, data and revisions in the cloud. This
tutorial outlines Plotly’s features and demonstrates
how using Plotly creates unique workflows with em-
phasis on collaboration and reproducibility. More
information is at bit.ly/1vdF6Kp.

Alan Wetmore
A quarter century of naïve use and abuse of LATEX
In this talk I will recount my introduction to and
experiences with LATEX. Throughout this time in-
stalling and maintaining TEX and friends has become
ever so much easier while the capabilities have grown
enormously. Along the way I learned about many
subjects I hadn’t even known existed, and experi-
mented with many facets of TEX.

bit.ly/1vdF6Kp

