TUGBoAT
Volume 35, Number 1 / 2014

General Delivery 2 Ab epistulis / Steve Peter
Editorial comments / Barbara Beeton
Updike prize for student type design; Talk by Matthew Carter;
R.I.P. Mike Parker (1929-2014); Turing Award for Leslie Lamport;
TAOCP volume 1 issued as an ebook; Other items worth a look
5 The TEX tuneup of 2014 / Donald Knuth
9 Making lists: A journey into unknown grammar / James Hunt
16 In memoriam Jean-Pierre Drucbert / Jean-Michel Hufflen
Letters 16 Does not suffice to run latex a finite number of times to get cross-references right /
Jaime Gaspar
Fonts 17 Fetamont: An extended logo typeface / Linus Romer
IATEX 22 TATEXS3 news, issue 9 / IATEX Project Team
27 Introduction to presentations with beamer / Thomas Thurnherr
31 The beamer class: Controlling overlays / Joseph Wright
34 Boxes and more boxes / Ivan Pagnossin
36 Glisterings: Glyphs, long labels / Peter Wilson
39 The pkgloader and 1t3graph packages: Toward simple and powerful package
management for INXTEX / Michiel Helvensteijn
Software & Tools 44 An overview of Pandoc / Massimiliano Dominici
51 Numerical methods with Lual&TEX / Juan Montijano, Mario Pérez,
Luis Randez and Juan Luis Varona
61 ModernDvi: A high quality rendering and modern DVI viewer /
Antoine Bossard and Takeyuki Nagao
57 Parsing PDF content streams with LuaTEX / Taco Hoekwater
69 Selection in PDF viewers and a LuaTgX bug / Hans Hagen
71 Parsers in TEX and using CWEB for general pretty-printing / Alexander Shibakov
Graphics 79 Entry-level MetaPost 4: Artful lines / Mari Voipio
82 drawdot in MetaPost: A bug, a fix / Hans Hagen
Electronic Documents 83 HTML to IMTEX transformation / Frederik Schlupkothen
Survey 99 Macro memories, 1964-2013 / David Walden
Publishing 91 Scientific documents written by novice researchers: A personal experience
in Latin America / Ludger Suarez—Burgoa
Abstracts 111 Eutypon: Contents of issue 30-31 (October 2013)
111 Die TgXnische Komdédie: Contents of issue 1/2014
Hints & Tricks 112 The treasure chest / Karl Berry
Book Reviews 113 Book reviews: IATEX for Complete Novices and Using IATEX to Write a PhD Thesis,
by Nicola Talbot / Boris Veytsman
115 Book review: Dynamic Documents with R and knitr, by Yihui Xie / Boris Veytsman
TUG Business 2 TUGboat editorial information
120 TUG financial statements for 2013 / Karl Berry
121 TUG institutional members
Advertisements 121 TgX consulting and production services
News 123 Calendar
124 TUG 2014 announcement

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions
2014 dues for individual members are as follows:

= Regular members: $105.

m Special rate: $75.
The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 received a $20 discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $105 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat
should not be considered complete.

TEX is a trademark of American Mathematical Society.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: April 2014]
Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Steve Peter, President*

Jim Hefferon*, Vice President

Karl Berry*, Treasurer

Susan DeMeritt*, Secretary

Barbara Beeton

Kaja Christiansen

Michael Doob

Steve Grathwohl

Taco Hoekwater

Klaus Hoppner

Ross Moore

Cheryl Ponchin

Arthur Reutenauer

Philip Taylor

Boris Veytsman

David Walden

Raymond Goucher, Founding Ezecutive Director?
Hermann Zapf, Wizard of Fonts?

*member of executive committee

thonorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses Electronic Mail

TEX Users Group (Internet)

P.O. Box 2311 General correspondence,
Portland, OR 97208-2311 membership, subscriptions:
U.S.A. office@tug.org
Telephone Submissions to TUGboat,

letters to the Editor:
TUGboat@tug.org

+1 503 223-9994

Fax Technical support for
+1 815 301-3568 TEX users:
support@tug.org

‘Web
http://tug.org/
http://tug.org/TUGboat/

Contact the Board
of Directors:
board@tug.org

Copyright (© 2014 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included.

Trying to do everything inside TeX may be
a good sport and educational activity but
very often far from being the best solution
for real needs. :-)

Michal Jaegermann
comp.text.tex, 26 October 1996

UGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
Epitor BARBARA BEETON

VoLuME 35, NUMBER 1 . 2014
PORTLAND . OREGON . U.S.A.

TUGboat editorial information
This regular issue (Vol. 35, No. 1) is the first issue of the
2014 volume year.

TUGDboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(http://tug.org/store), and online at the TUGboat
web site, http://tug.org/TUGboat. Online publication
to non-members is delayed up to one year after print
publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are still assumed to be the experts.
Questions regarding content or accuracy should there-
fore be directed to the authors, with an information copy
to the Editor.

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully accepted. Please submit contributions by electronic
mail to TUGboat@tug. org.

The second issue for this year is expected to be
the TUG 2014 proceedings (http://tug.org/tug2014).
The deadline for receipt of final papers for that issue is
August 11. The third issue deadline is October 3.

The TUGboat style files, for use with plain TEX

Ab Epistulis
Steve Peter

Not long ago, I saw a post on one of the discussion
lists asking how to convert a TEX document into
Word, “because that’s what publishers want.” I've
recently been working with a group at work to revise
our production guidelines for TEX manuscripts, and
I began to ponder the question in more depth. Why
do publishers want Word (if indeed they do), and
what can we do as a community to change that?

For math-heavy books, whether math, physics,
or economics, we not infrequently work with TEX
files throughout the production process, whether the
book is ultimately provided in camera-ready copy
by the author, or is produced by a TgX-enabled
compositor. Without a doubt, the biggest pain point
in the process is with copyediting (for all books) and
indexing (for books where the author does not supply
camera-ready copy). As the publishing industry
moved to outsource these two processes, a vast army
of freelance and independent contractors arose, but
very few saw fit to gain expertise in TEX. In fact,
expertise per se isn’t even required, just enough
knowledge to be able to work directly in the files
without breaking too much.

In essence, it isn’t necessarily that publishers
are demanding Word, it’s the freelance community
that is requiring it, and the publishers lack a pool of
TEX-savvy talent to draw from to be able to break
that dependency. It seems to me that this represents
an opportunity to expand our community.

TUGDboat, Volume 35 (2014), No. 1

and IATEX, are available from CTAN and the TUGboat
web site. We also accept submissions using ConTEXt.
Deadlines, tips for authors, and other information:
http://tug.org/TUGboat/location.html

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make special arrangements.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,

Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGDboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html

For years, we’ve been growing by word of mouth
among colleagues in the academic disciplines. One
mathematician tells another about TEX’s abilities in
handling all sorts of complex equations; a historian
tells another how BIBTEX or JabRef can handle the
complexities of managing a bibliographic database
(no math here, just academic writing); and so on.

Now, we need to engage another sub-community
of the (academic) publishing world: the freelancers.
Copyeditors and indexers need to know that they
can gain a competitive advantage by learning at least
enough TEX to be able to work directly in source files.
(Speaking from personal experience, more and more
of my own freelance work has gone over to TEX-based
copyediting, away from TEX programming.)

How will this engagement happen? The key is
going to be education, especially in a casual way. If
you do encounter a freelancer curious about TEX,
show them the simple stuff to dispel the fear and
uncertainty. We don’t need to turn freelance copy-
editors or indexers into hardcore TEX experts who
shun any trace of commercial software. We do need
to show them just enough to be able to do their
specialized jobs as part of a TEX-based workflow.

If we can enable a painless workflow, the pub-
lishers will come.

o Steve Peter
Princeton University Press
president (at) tug dot org
http://tug.org/TUGboat/Pres

TUGboat, Volume 35 (2014), No. 1

Editorial comments

Barbara Beeton

Updike prize for student type design

An annual prize for student type designers has been
announced by the Daniel Berkeley Updike Collection
at the Providence Public Library. The basis of the
Collection is the archives of the eponymous 20th
century printer and proprietor of the Merrymount
Press in Boston.

The prize requires that the student make at
least one visit to the Updike Collection within 18
months of their application, and must be enrolled in
an undergraduate or graduate program during the
time of their visit.

The first prize includes $250 and complimentary
admission to the 2015 TypeCon, organized by SOTA,
the Society of Typographic Aficionados.

Additional information, and the application
form, can be obtained from this web site:
http://www.provlib.org/updikeprize

Talk by Matthew Carter

An exhibition celebrating the 200th anniversary of
the death of typographer Giambattista Bodoni, and
the launch of the Updike Prize was held on Febru-
ary 27. The speaker was Matthew Carter; his subject
was “Genuine Imitations: A Type Designer’s View
of Revivals”.

Carter took three of his typeface designs as the
material for his talk: Snell Roundhand, Mantinia,
and the design he created for Yale University.

The first two designs were based on non-typo-
graphic sources; the first was inspired by the work
of an English writing master, Charles Snell, and the
second, by stone carving in a more-or-less traditional
Roman style.

In 1965, when Linotype was converting its fonts
from metal to images on film, Carter was invited to
design a new script font. It’s possible to do many
things with film that can’t be done with metal. For
example, character widths aren’t limited to what
can fit in a rather narrow rectangle cast as part of a
unitary “line of type”. (That process doesn’t even
permit the kerns that can be carved into the corners
of hand-set type.)

Charles Snell, a 17th century English writing
master, published manuals that included detailed
diagrams and instructions for writing script with
a quill pen. The flowing fs and the tails on the
g and y are representative of the style. An image
of Snell’s lowercase script can be seen at http://www.
paulshawletterdesign.com/wp-content/uploads/

2011/05/Charles-Snell-1714. jpg,

and Carter’s re-imagined version at
http://luc.devroye.org/MatthewCarter-
RoundhandBT-afterCharlesSnell.gif.

Andrea Mantegna, a 15th century Italian artist
and student of Roman archaeology, was the inspi-
ration for the Mantinia font. The foundation post
of Mantegna’s house in Mantua (shown in one of
Carter’s slides) prominently displays the carved name
“Mantinia” (the Latin form of Mantegna) as well as
other inscriptions in the style typical of Roman monu-
ments and gravestones. All the letters are uppercase.
Whether to save space, balance the shape of the in-
scriptional lines, or for some other reason, two or
three adjacent letters are sometimes combined in
unusual ways. Some smaller letters occur as well —
inscriptional “small caps” — but, rather than being
aligned at the baseline with the larger letters, they
are aligned at the top.

A more recent use of this style of carving can
be found on the panels above the windows of the
Boston Public Library (see Fig. 1). These variations
gave Carter a model on which to base the many
unusual and playful ligatures and top-aligned “low-
ercase” found in the finished Mantinia font.

The third font was the one designed for Yale
University. Inspired by Bembo, this font serves all

Figure 1: A panel from the Boston Public Library
showing the names of noted astronomers.

Photo by Jascin L. Finger, curator of the Maria Mitchell
House on Nantucket; used with permission. Maria Mitchell
was an American astronomer, only the second woman to be
recognized as the discoverer of a comet; the first was Caroline
Herschel, sister of William Herschel (discoverer of Uranus).

typographic functions of the University, from let-
terhead to cast bronze letters on building facades
to signage on recycling and rubbish baskets on the
campus. Images of the Yale font and notes on its

history and development can be seen at http://www.

yale.edu/printer/typeface/typeface.html.

R.I.P. Mike Parker (1929-2014)

Just a few days before Matthew Carter’s talk, Mike
Parker died. Parker, as director of type development
at Linotype, invited Carter to design the script font
that became Snell Roundhand, persuaded Carter to
join Linotype as chief designer, and later, in 1981,
left Linotype with Carter to found Bitstream.

Parker was largely responsible for bringing font
production from the world of metal to film, and
from film to digital formats. He was an enthusiastic
and influential proponent of Helvetica, and put forth
the proposition that Times New Roman had in fact
been designed by Starling Burgess, not by Stanley
Morison.

A sympathetic obituary appeared in the March
8th edition of The Economist, and can be accessed
on the web.

Turing Award for Leslie Lamport

The Association for Computing Machinery will pre-
sent the 2013 A.M. Turing Award to Leslie Lamport
for “advances in reliability and consistency of com-
puting systems”. The Turing Award is given for
major contributions of lasting importance to com-
puting. The citation can be read here:
http://techpolicy.acm.org/blog/7p=3641.

Not a single word recognizes his creation of
TEX, the accomplishment for which this community
knows him best. With this award, Leslie joins Don
Knuth, who received the 1974 Turing Award. And
all for achievements not related to TEX.

TAOCP volume 1 issued as an ebook

The InformIT arm of Pearson Education (parent of
the group that includes Addison-Wesley) has an-
nounced that The Art of Computer Programming
Volume 1 ebook is now available for sale. Their news
release further states that

Only InformIT provides this eBook in three
formats —EPUB, MOBI, & PDF —together
for one price. So you can buy it once and get
it on any device including your PC or eReader
of choice.

We will be releasing the other volume
eBooks throughout the year and currently
hope to have Vol. 2 for you in just a couple
of months.

TUGDboat, Volume 35 (2014), No. 1

Although Don’s web page (http://www-cs-faculty.
stanford.edu/~uno/abcde.html) explains that the
“spiffy new versions” of the C&T volumes were “pro-
duced entirely with technology that can be expected
to last for many generations”, there is no hint that
they might sometime be available in electronic form.

Other items worth a look

As a follow-up to last year’s interview of Chuck
Bigelow, here is an essay in which he shares some ear-
lier history, written for the centennial of Reed College:
“Rescued from a Life of Crime” (http://wuw.reed.
edu/reed_magazine/september2011/articles/
features/bigelow/bigelow.html). Who knew?

The Hamilton Wood Type Museum has been
mentioned before in this column. Evicted from its
original site, it is now open in a new location in
Two Rivers, Wisconsin: http://woodtype.org. A
documentary, “Typeface”, telling the story of this
museum, was presented on the Sundance channel in
the U.S.; information about the video can be found
at http://typeface.kartemquin.com/about.

The debate about whether or not there should be
a wider space after a period goes on: “Space Invaders,
Why you should never, ever use two spaces after a pe-
riod.” in Slate (slate.com/articles/technology/
technology/2011/01/space_invaders.html). Ac-
tually, this isn’t new, but it’s just been called to my
attention. As a TEX user, I'm spoiled: I can type
two spaces after the periods that end sentences in
my (monospace) emacs window, and TEX will do
my bidding, whether using the default U.S. style or
\frenchspacing to treat all spaces alike. Using a
monospace font while editing makes sense, since it
makes a file easier to read (at least for these old
eyes), and permits an author to align or indent to
illuminate structure. As I see it, there are times
when the wider spaces are valuable typographically.
Maybe not after every sentence, but if your text says
“...etc. W. H. Auden says ...”, where is the end of
that sentence? The real culprit (which the author
of this screed doesn’t even mention) is software that
sets multiple spaces in text as multiple spaces, not
singles. Software is supposed to make life easier for
the user, not harder, but some things seem to be
going backwards these days.

To end this installment, here’s an oldie, but
a real goodie: setting 24pt type in an ogee curve
(flickr.com/photos/s08222/12391791743/). The
old guys really did know what they were doing.

¢ Barbara Beeton
http://tug.org/TUGboat
tugboat (at) tug dot org

TUGDboat, Volume 35 (2014), No. 1

The TEX tuneup of 2014
Donald Knuth

If you ask the Wayback Machine to take you back
to the home page

http://www-cs-faculty.
stanford.edu/ knuth/abcde.html

of The TEXbook and my other books on Computers
& Typesetting, as that page existed on 16 January
1999, you'll find the following remarks:

I still take full responsibility for the master
sources of TEX, METAFONT, and Computer
Modern. Therefore I periodically take a few
days off from my current projects and look at
all of the accumulated bug reports. This hap-
pened most recently in 1992, 1993, 1995, and
1998; following this pattern, I intend to check
on purported bugs again in the years 2002,
2007, 2013, 2020, etc. The intervals between
such maintenance periods are increasing, be-
cause the systems have been converging to an
error-free state.

And if you fast-forward nine more years, you can
find a TUGboat article called “The TEX tuneup of
2008” [4], which describes the changes that were
made to TEX and its companion systems based on
the comments from users that were received during
the years 2003, 2004, 2005, 2006, and 2007. That
article ended as follows:

So now I send best wishes to the whole TEX
community, as I leave for vacation to the land
of TAOCP—until 31 December 2013. Au
revoir!

Hello again, dear friends, allé! Here is the sequel.

On 31 December 2013, Barbara Beeton duly
forwarded to me a well-organized collection of ma-
terials covering more than two dozen potentially
troublesome topics that had been submitted for con-
sideration during the years 2008, 2009, 2010, 2011,
2012, and 2013. This was the residue of hundreds
of items that had been carefully filtered by a team
of expert volunteers, who had worked hard to mini-
mize the effort that I would need to devote to this
project. (I can’t possibly thank all the volunteers in-
dividually; but Donald Arseneau, Karl Berry, Peter
Breitenlohner, and Bogustaw Jackowski deserve par-
ticular commendation.)

As in 2008, both TEX and METAFONT have
changed slightly and gained new digits in their ver-
sion numbers. But again, the changes are essentially
invisible. I can’t resist quoting another paragraph

from [4], because it reflects my unwavering philoso-

phy (see [3]):
The index to Digital Typography lists eleven
pages where the importance of stability is
stressed, and I urge all maintainers of TEX
and METAFONT to read them again every few
years. Any object of nontrivial complexity
is non-optimum, in the sense that it can be
improved in some way (while still remaining
non-optimum); therefore there’s always a rea-
son to change anything that isn’t trivial. But
one of TEX’s principal advantages is the fact
that it does not change — except for serious
flaws whose correction is unlikely to affect
more than a very tiny number of archival doc-
uments.

Users can rest assured that I haven’t “broken” any-
thing in this round of improvements. Everyone can
upgrade at their convenience.

TEX Version 3.14159265

Let’s get down to specifics. The new version of TEX
differs from the old only with respect to the “null con-
trol sequence” \csname\endcsname, which has been
a legal construct since version 0.8 (November 1982) al-
though almost nobody uses it. Oleg Bulatov noticed
in September 2008 that TEX’s \message operation
has curiously inconsistent behavior: Suppose you say
\def\\#1{\message{#1bar}}
\def\surprise{wunder}

\let\foo=!
(for example). Then
\\\surprise gives wunderbar
\\\over gives \over bar
\\\foo gives \foo bar

\\{\csname 6\endcsname} gives \6bar
\\{\csname fu\endcsname} gives \fu bar

as messages on your terminal and in your log file.
But ‘\\{\csname\endcsname}’ unfortunately gives

\csname\endcsnamebar

because I forgot to insert a space when I coded this
part of the print_cs routine (see [B], §262). So Oleg
has won a check for $327.68 [1]. Of course I hope
that this turns out to be the “historic” final bug
in TEX. (It’s the 947th; see [3], page 662.)
Henceforth ‘\\{\csname\endcsname}’ will give
\csname\endcsname bar

and everybody will be happy. This corrected behav-
ior does not simply affect TEX’s messages; the name
of a control sequence can also get into documents, for
example via \write or \meaning. But the change
surely won’t ruin your archived works.

The TEX tuneup of 2014

METAFONT Version 2.7182818

The historic final (I hope) bug in METAFONT was
discovered during June 2008 by the longstanding
TEX contributor Eberhard Mattes. The error that
he brought to light is easier to describe than the TEX
error discussed above, but it was much more subtle to
detect: Whenever previous versions of METAFONT
have transformed pencircle into an axially symmet-
ric pen whose polygon has no point on the z-axis,
the algorithm in §536 of [D] has “leaked memory,”
by forgetting to reclaim seven words that had been
allocated for the omitted point. This happened, for
instance, with one of the pens in exercise 16.2 of [C],
and in my original TRAP test [2] for METAFONT; so I
should have discovered the problem long ago. Eber-
hard noticed that the METAFONT program

pen p;
forever: showstats;
p := pencircle scaled 1.4; endfor

would abort with METAFONT’s capacity exceeded —
although it did take quite awhile to overflow 3 million
words of memory on my current home system — and
he also figured out how to cure the problem. For
this he amply deserves his new reward in [1].

Computer Modern

No changes have been made to the Computer Modern
fonts of 2008, although I did delete a few bytes of
redundant source code and alter two names.

John Bowman noticed a tiny bump that appears
near the top right serif when an italic ‘K’ is greatly
magnified, and Jacko discovered the underlying rea-
son: Part of the stroke of this slanted letter is drawn
with a circular pen, but it joins up with outlines
that are slanted (hence not true circles). The same
tiny bumps can therefore by observed also in various
other italic and slanted letters, such as A, V, W, X,
Y, when enlarged.

But those bumps are even less visible than the
mispositioned bulbs that I discussed in [4]. And in
fact I've even become somewhat fond of such little
glitches, now that I've been learning to appreciate
the Japanese concept of wabi-sabi.

Thus I've decided that the Computer Modern
fonts are to be forever frozen in their present form,
especially now that the definitive description in the
latest printing of [E] has become available.

TEXware and METAFONTware

I made minor updates to the master web files for five
other programs, namely gftopk, pltotf, tftopl,
vitovp, and vptovf, in order to make them more
robust in the presence of weird input files. (These
changes had in fact already been made in recent

Donald Knuth

TUGDboat, Volume 35 (2014), No. 1

editions of TEX Live; now they are in some sense
“official.”) Here is a current list of all the web files for
which I have traditionally been responsible:

current version date

December 1995
October 1989
January 2014
March 1991
January 2014
October 1989
January 2014
September 1989
December 2002
January 2014
January 2014
January 2014
January 2014
January 1992

name

dvitype.web 3.6
gftodvi.web 3.0
gftopk.web 2.4
gftype.web 3.1

nf . web 2.7182818
mft.web 2.0
pltotf.web 3.6
pooltype.web 3.0
tangle.web 4.5
tex.web 3.14159265
tftopl.web 3.3
vitovp.web 14
vptovf.web 1.6
weave.web 4.4

Typographic errors and other blunders

So far I've only been discussing potential anomalies in
the software. But of course people have also reported
problematic aspects of the documentation — which
may actually be the hardest thing to get right. Even
The TgXbook [A], which has been under intense
scrutiny for more than thirty years, was not free of
hitherto-unperceived defects.

Altogether I made corrections to each of [A],
[B], [C], [D], and [E], enough to represent $23.68 in
eleven new reward checks. The most significant of
these changes can be seen from the home page cited
above, if you click to get the PDF errata file and scan
for corrections dated in 2014.

The master sources

The backbone of the TEX system, for the past 25
years or so, has been a collection of 178 files, mostly
with names of the forms *.web, *.tex, and *.mf.
These files contain almost exactly 7 megabytes al-
together; and the new changes have altered about
3500 of those bytes. Thus it appears that the TEX
system was 99.95% correct in 2008, if it is 100%
correct today.

The master files, together with a bunch of errata
files that document past history, can be downloaded
from the ftp server cs.stanford.edu, which accepts
‘anonymous’ as a login name. They’re collected to-
gether in a single compressed file

pub/tex/texl4.tar.gz,

which you can compare if you like to the older files
pub/tex/tex08.tar.gz, pub/tex/tex03.tar.gz.
The latest versions of individual files can of course
also be found in the CTAN archive.

TUGDboat, Volume 35 (2014), No. 1

As T did in [4], I'll mention here the names of
all files that have changed in some way during the
latest go-round:

tex/texbook.tex Y source file for [A]
tex/tex.web % master file for TEX in Pascal
tex/trip.fot % torture test terminal output
tex/tripin.log % torture test first log file
tex/trip.log % torture test second log file
tex/trip.typ % torture test output of DVItype
texware/pltotf.web ¥ master file for PLTOTF
texware/tftopl.web 7% master file for TFTOPL
mf/mfbook.tex % source file for [C]

mf/mf .web % master file for METAFONT in Pascal
mf/trap.fot % torture test terminal output
mf/trapin.log % torture test first log file
mf/trap.log % torture test second log file
mf/trap.typ % torture test output of DVItype
mfware/gftopk.web % master file for GFTOPK
cm/romanu.mf % master file for Computer Modern

Roman uppercase

cm/symbol.mf % master file for Computer Modern
Roman symbols

etc/vitovp.web % master file for VFTOVP

etc/vptovf.web % master file for VPTOVF

lib/manmac.tex % macros for [A] and [C]

errata/errata.nine % changes to [A] between

1992 and 1996

errata/errata.tex Y% changes to [A]-[E] since
2001

errata/tex82.bug % changes to tex.web

errata/errorlog.tex % one-per-line annotated
summaries of those changes

errata/mf84.bug % changes to mf.web

(Notice that the basic macro files for plain vanilla
TEX and plain vanilla METAFONT, 1ib/plain.tex
and lib/plain.mf, remain unchanged.)

Questions and answers

Barbara also asked me to answer three questions,
which she said “keep coming up in various forums,”
so that she could point people to the answers if those
questions come up again.

(1) How long did it take to typeset The TEXbook
in the 80s, and how long does it take today?

This question is a bit strange, because anybody
who tries to apply TEX to the file texbook.tex im-
mediately gets the message ¢ “\.{This manual is
copyrighted and should not be TeXed’, repeated
endlessly. Therefore the running time to typeset The
TEXbook has always been infinite.

On the other hand, I myself have to generate
new printings every now and then; and I have a
favorite way to get around the booby trap by first
typing ‘19’ and then typing some other special codes.
(T also realize that unscrupulous people might even
try to change texbook.tex, although that is strictly
forbidden. The source code is intended to be exam-
ined, if desired, but not ezecuted or modified except
by its author.)

Unfortunately I don’t think I ever noted down
the running time in the 80s, so I can’t give a definitive
answer to the question. My recollection is that the
entire book took maybe 20 minutes on Stanford’s
PDP10 mainframe (shared with other users). There
was a noticeable slowdown on certain pages—such
as page 218, when prime numbers are computed the
hard way.

My colleague David Fuchs used The TEXbook
as a benchmark in 1986, when he was developing
MicroTEX (the first version of TEX to run on an
IBM PC). A few days ago I asked him if he could
remember its speed. He replied that, like me, he had
no firm memory of those days, except that MicroTEX
could do several pages per minute; and he guessed
that it had taken roughly an hour to complete the
whole TEXbook. His estimate seems right, because
The TEXbook has nearly 500 pages.

Today, on my home computer (a 3.6 GHz Xeon
with 10 MB cache), TEX transforms texbook.tex to
texbook.dvi in 0.3 seconds.

(2) If you were designing TEX today, would you still
use \over and friends, rather than something like
\frac{...}{...}, when the latter would avoid the
necessity of \mathchoice and \mathpalette?

This question, from tex.stackexchange.com,

also quoted from page 151 of [A]:

\mathchoice is somewhat expensive in terms
of time and space, and you should use it only
when you're willing to pay the price.

And well, I guess that quote implies my answer. For
I was clearly willing to pay the price in 1982, so I'm
certainly willing to pay zero today!

I suppose there are some people in the world
who prefer expressions like ‘sum(2,3)’ to ‘2 + 3’; but
I’'m certainly not among them. Ever since TEX was
born, I’ve been enormously pleased by the ability
to write ‘2\over3’ or ‘n\choose k’ or ‘p\atop q’
or ---, instead of being forced to write something
like ‘frac{2}{3} that would have distracted my
attention from the task at hand.

The questioner seems to want to place burdens
on all users, rather than on the backs of a few macro-
developers.

The TEX tuneup of 2014

(3) Why is the default rule thickness 0.4 points?

One of the very first things I did when designing
TEX was to choose several publications that repre-
sented the highest standards of excellence in mathe-
matical typesetting, and to “reverse engineer” them
by making careful measurements of those fine works.
(See [3], page 620.) The thickness of rules in The
Art of Computer Programming was definitive for me.
I also knew that Belfast Universities Press was using
that value in its typesetting of mathematical journals
in 1977.

This question, however, is related to the one sore
point with respect to which I wish that I could turn
back the clock and redesign TEX from scratch: The
actual default rule thickness in TEX is not exactly
0.4 printer’s points; it is exactly 26214 scaled points,
where there are 65536 scaled points to every printer’s
point. Thus the default rule thickness is actually
0.399993896484375 points.

I made the foolish mistake of using binary frac-
tions internally, while providing approximate decimal
equivalents in the user interface. I should have de-
fined a scaled point to be 1/100000 of a printer’s
point, thereby making internal and external repre-
sentations coincide. This anomaly, which is discussed
further in [5], is the only real regret that I have today
about TEX’s original design.

Conclusion

The TEX family of programs seems to be healthy
as it continues to approach perfection. Volunteers
have been stalwart contributors to this success in
optimum ways. Stay tuned for The TEX Tuneup
of 2021!

References

[1] The Bank of San Serriffe, account balances.
See http://www-cs-faculty.stanford.edu/
“knuth/boss.html (accessed January 2014).

[2] Donald E. Knuth, A torture test for
METAFONT. Stanford Computer Science
Report 1095 (Stanford, California: Stanford
University Computer Science Department,
January 1986), 78 pages.

Donald Knuth

TUGDboat, Volume 35 (2014), No. 1

[3] Donald E. Knuth, Digital Typography

(Stanford, California: Center for the Study

of Language and Information, 1999),

xvi + 685 pages. CSLI Lecture Notes, no. 78.
The second printing (2012) contains numerous
corrections.

Donald Knuth, “The TEX tuneup of
2008,” TUGboat 29 (2008), 233-238. http:
//tug.org/TUGboat/tb29-2/tb92knut . pdf.

Donald E. Knuth, “An earthshaking
announcement.” TUGboat 31 (2010),
121-124. http://tug.org/TUGboat/tb33-3/
tb105knut . pdf.

Donald E. Knuth, The TEXbook (Reading,
Mass.: Addison—Wesley, 1984), x + 483 pages.
Also published as Computers & Typesetting,
Volume A. Currently in its 34th printing
(paperback) and 19th printing (hardcover).

Donald E. Knuth, Computers & Typesetting,
Volume B, TEX: The Program (Reading,
Mass.: Addison—Wesley, 1986), xvi + 594 pages.
Currently in its 9th printing (hardcover).

Donald E. Knuth, The METAFONTbook
(Reading, Mass.: Addison—Wesley, 1986),

xii + 361 pages. Also published as Computers
& Typesetting, Volume C. Currently in its
12th printing (paperback) and 8th printing
(hardcover).

Donald E. Knuth, Computers & Typesetting,
Volume D, METAFONT: The Program
(Reading, Mass.: Addison—Wesley, 1986),

xvi + 560 pages. Currently in its 6th printing
(hardcover).

Donald E. Knuth, Computers & Typesetting,
Volume E, Computer Modern Typefaces
(Reading, Mass.: Addison—Wesley, 1986),

xvi + 588 pages. Currently in its 7th printing
(hardcover).

¢ Donald Knuth
http://www-cs-faculty.stanford.
edu/~knuth

TUGDboat, Volume 35 (2014), No. 1

Making Lists: A Journey into
Unknown Grammar

James R. Hunt

Abstract

Textbooks on technical writing, and academic, cor-
porate and other style guides, often prescribe rules
for lists that result in basic grammatical errors. Item-
ised and enumerated lists are grammatically different,
and errors arise when the rules for one type of list
are used in constructing the other type. Examples
of correct and incorrect usage are given, and ways of
avoiding errors are described. The strict application
of grammatical rules to list construction reveals some
interesting limitations of the list form.

1 Introduction

We are all familiar with numbered and bulleted lists,
and use them often. After ordinary paragraphs, lists
are perhaps the commonest devices used by tech-
nical and scientific writers for arranging text on a
page. It is an unfortunate fact that textbooks on
technical writing, corporate style guides, and even
style guides promulgated by learned societies, often
prescribe rules for lists that result in grammatical
errors. Some of the errors produced by these rules,
such as prescribing sentences without correct termin-
ating punctuation, are basic indeed. The purpose of
this article is to examine some of these errors, and
try to find ways to avoid them.

The approach adopted here is an axiomatic one:
a number of assumptions about the desirable prop-
erties of a technical text are made, and the con-
sequences of those assumptions are examined.

1.1 Preliminaries and Basic Assumptions

First, some preliminaries and plausible basic rules or
axioms.

1.1.1 Writing in a Formal Register

Technical works are usually written in a formal re-
gister. It will be assumed here that a formal docu-
ment is one that is written in grammatically correct,
complete sentences, and is correctly punctuated. The
actual quality and style of the language used is not
under consideration.

1.1.2 Improving Comprehension

A technical work must be written in complete, gram-
matically correct sentences. These sentences can be
typographically arranged on a page or screen in any
way that helps the reader to understand the material.
We can, in the interests of clarity and comprehension,

decorate the text of the work in any way that we con-
sider necessary: bold, italic, indenting, white space,
bullets, numbers, table rules, illustrations, and so on.

Navigational devices, such as headings and sub-
headings, page numbers, captions for figures and
tables, tables of contents, lists of figures and tables,
and headers and footers may be applied to the text
as the writer considers necessary. These navigational
devices may be, but are not necessarily, made from
text elements, and may be, but are not necessarily,
complete sentences. No matter what they are, text
decorations are designed to assist comprehension of
the text, and navigational devices are designed to
assist in finding specific material in the text. Neither
text decorations nor navigational devices are part of
the text itself.

1.1.3 Ellipsis

Ellipsis is the omission of elements recoverable from
the context, and can involve punctuation as well
as words. Restoring the punctuation and missing
words (usually conjunctions like and) will produce a
complete, grammatically correct sentence.

Elliptical sentences should be constructed care-
fully, in such a way that the reader of the material
can without effort reconstruct the full version, and
not gain any conscious impression that the material
18 grammatically incorrect.

Elliptical sentences are often used to reduce the
apparent complexity of sentences in technical works.
In particular, elliptical sentences are commonly used
in list constructions.

1.1.4 There is No Such Thing as a
Sentence Fragment

Some writers refer to incomplete or otherwise un-
grammatical sentences as sentence fragments. Now
sentence fragment is not really a useful concept: in-
complete or ungrammatical sentences are not accept-
able in the body of a technical work, which must be
written in complete sentences or easily-reconstructed
elliptical sentences.

There is no requirement for the words in chapter
and section headings and captions to constitute com-
plete sentences, and they usually don’t. Such head-
ings are only navigation devices, designed to help
readers to find their way around a complicated doc-
ument. Such navigational devices could be called
sentence fragments, but since sentence fragments are
limited to navigation devices, there seems to be no
real need for a separate name: we could simply refer
to headings and captions.

Making Lists: A Journey into Unknown Grammar

10

1.1.5 Sentences Cannot be Nested

In the English language, sentences cannot be nested,
that is, a complete sentence cannot be placed inside
another sentence as a standalone entity. (It is of
course possible to construct elaborate sentences that
contain parts that would be complete sentences if
they were written out separately, but that is not the
same as a nested sentence.)

1.1.6 A Basic Rule for Writing

Any writing rule that results in grammatical error
is useless, and must be discarded. The application
of this rule to the construction of numbered and
bulleted lists leads to some surprising conclusions.

2 How Do You Know It’s a List?

Bullets or numbers do not make a list. Word pro-
cessors and text formatters can generate tagging
symbols or sequential numbering for any type of text
item that you can specify, and you can place those
symbols anywhere in a text. However, these symbols
and numbers may not serve the purpose of assisting
in comprehending the ideas being presented.

2.1 False Lists

There are lists, and there are false lists. A false
list is a collection of items that do not really belong
together, but have bullets or numbers at the left on
their first lines. In the Age of PowerPoint, false lists
are very common, because it is so easy to add symbols
to text. However, the bullet symbols, pointing hands,
marching ants, or numbers quite often add nothing
to the presentation: plain, undecorated text would
have been more informative.

Bad Example 1 shows a false list, of a kind
commonly found in PowerPoint presentations.

Bad Example 1: VERTICAL FALSE LisT

Topics for today
e What is the Automatic Manual Writer?
o Five easy steps to success

o How it works

False lists are not always set out in a neat ver-
tical alignment, as Bad Example 2 shows.

Bad Example 2: HORIZONTAL FALSE LisT

There are three options available, namely, (a) running
away; (b) staying and hiding; and (c) staying and being
brave.

James R. Hunt

TUGDboat, Volume 35 (2014), No. 1

If the brackets and letters are left out, the sentence
is grammatically correct, and a little easier to read.
The bracketed letters add nothing to our understand-
ing, and are merely extraneous decoration.

2.2 Identifying a List

The items of a list must have some common property:
for example, they must all relate to a single idea or
task; and the bullets or numbers must in some way
improve the clarity of the material being presented.
This idea will be progressively refined here.

3 Terminology

IXTEX recognises three types of lists: enumerated
lists, described in Section 3.2, itemised lists, de-
scribed in Section 4, and definition lists.

The definition list is something of an oddity,
because it appears to be nothing more than a table
in disguise. The definition list is considered further
in Section 8.

3.1 Other Names for Itemised Lists

Itemised lists are sometimes referred to as bulleted
lists or unordered lists. The term bulleted list is
common but not all that useful, because bulleted
lists do not necessarily have text bullets to mark their
items: items may be marked by dashes, graphics, or
not marked at all but merely set out on separate
lines. The term unordered list is often used as a more
general term than bulleted list.

The term unordered list is not particularly use-
ful either, since the items of the list are arranged on
the page in some order that the author considered
useful. The important point is that the order does
not matter, in the sense that the items can be re-
arranged without changing the meaning of the text,
even if the clarity of the presentation is reduced as a
consequence.

3.2 Enumerated Lists

An enumerated list is used to set out sequential
instructions, or to list components or cases, or to
indicate the order of importance of cases. The items
in enumerated lists are marked by numbers or letters,
or other obviously sequential symbols.

Setting out sequential instructions is fundament-
ally different from the other two uses: if the enumer-
ated list comprises components or cases, then the
order of the items in the list does not matter, because
the items can be rearranged without changing the
meaning of the presentation. Sometimes the items in
an enumerated list, such as a list of component parts
of an assembly, can be changed at random without
reducing the clarity of the presentation.

TUGDboat, Volume 35 (2014), No. 1

4 Itemised Lists

Itemised and enumerated lists appear to be similar,
but there is a fundamental difference between the
two types, and each has its own rules of construction.
Itemised and enumerated lists are often confused by
technical writers, in the sense that the rules for one
type are often applied to the other.

An idtemised list is simply a visual device for
displaying a single, usually complex, sentence on a
page. The bullets and other typographical devices,
such as indents and line spacing, are not part of the
syntactical structure of the sentence itself: they serve
only to assist comprehension. It follows from the
basic premise stated in Section 1.1.2 that a sentence
written as an itemised list should still be grammat-
ically correct when the visual devices are removed.
Consider the itemised list shown in Example 1.

Example 1: SIMPLE ITEMISED LIST

Three colours are available:
e red,

e green, and

e blue.

This itemised list is only a typographical re-
arrangement of the following sentence.
Three colours are available: red, green, and blue.

4.1 Commas and Semicolons

In order to avoid ambiguities arising from the re-
peated use of the word and in more complicated ex-
amples, we could adopt a convention that sentences
are to be subdivided by semicolons, not commas, and
thus write out itemised lists in the form shown in
the Example 2.

Example 2: ITEMISED LIST WITH SEMICOLONS

Three colour combinations are available:
e red, white, and blue;
e blue, green, and yellow; and

e green, orange, and white.

This is an example of the classic, fully punctu-
ated version of the itemised list.

Since an itemised list comprises only one sen-
tence, the word immediately following an item deco-
ration must not be capitalised unless it is a proper
noun of some form. Bad Example 3 illustrates a
common but incorrect usage.

11

Bad Example 3: INCORRECT USE OF INITIAL
CAPITALS

This section gives guidelines for:
e Creating lists;
e Punctuating lists; and
e Creating embedded lists.

4.2 Omitting Punctuation

Itemised lists are often written in unpunctuated, or
elliptical, form. Consider the itemised list shown in
Example 3. (Some textbook writers insist that an
elliptical list like this should have a final full stop.
But why would you bother?)

Example 3: ITEMISED LIST,
UNPUNCTUATED (ELLIPTICAL)

Three colours are available:
o red
e green

o blue

4.2.1 Ellipsis

The unpunctuated list in Example 3 is derived from
the fully punctuated version by the process of ellipsis.

Some textbooks on technical writing refer to
an itemised list formed by ellipsis as a list of sen-
tence fragments, but, as was pointed out in Subsec-
tion 1.1.4, the concept of a sentence fragment is not
useful.

If a grammatically correct version cannot be
constructed, then we are dealing with a false list.

Many corporate style guides actually specify
that the elliptic form of an itemised list must be
used in place of the fully punctuated original version.
There is of course nothing wrong with this specifica-
tion, as long as we are aware that the elliptical form
is a derivative and not the full version.

4.2.2 Ellipsis and Parallel Construction

Many style guides specify that the items in an item-
ised list should show parallel construction, that is,
the items should be syntactically similar. Parallel
construction is useful because it makes it easier to
understand the material presented, and easier to
recover the full form of a list from the elliptical form.

5 Enumerated Lists

An itemised list is a visual device for displaying a
single sentence. In contrast, an enumerated list, in

Making Lists: A Journey into Unknown Grammar

12

numbered or lettered form, is a visual device for
displaying a passage of text comprising a number of
sentences. The sentences in the text may, but do
not necessarily, collectively describe a sequence of
events in time or space. Sometimes the form of a
enumerated list is used to indicate the number of
components in a collection, or cases under considera-
tion. This is usually clear from the context.

If you intend to construct cross-references to
individual list items, then those items should be part
of an enumerated list.

The commonest example of an enumerated list
is a set of instructions that must be performed in a
fixed time order. Consider the set of instructions in
Example 4.

Example 4: INSTRUCTIONS IN NARRATIVE FORM

The instructions for servicing the device are as follows.
Open the top panel of the veeblefetzer. Insert the screw-
driver into the slot at the left. Turn the screw clockwise
until the pressure is released. Close the top panel.

We usually present a set of instructions like this
as a numbered or lettered list with an introductory
sentence, or heading, or both. The heading is only
text decoration, and as such need not be either gram-
matically correct or punctuated. The introductory
sentence must of course be a complete sentence, end-
ing with a full stop (or question mark, or exclamation
mark, if appropriate). An example of an enumerated
list with a heading and an introductory sentence is
shown in Example 5.

Example 5: ENUMERATED LIST WITH HEADING
AND INTRODUCTION

Servicing the Device

To perform a routine service, carry out the following
steps.

1. Open the top panel of the veeblefetzer.
2. Insert the screwdriver into the slot at the left.

3. Turn the screw clockwise until the pressure is re-
leased.

4. Close the top panel.

5.1 No Colon Introducing an
Enumerated List

Many writers end the introductory sentence before an
enumerated list with a colon. This is a grammatical
error: every sentence in a technical work must be
complete, and every sentence must end with either a
full stop, a question mark, or an exclamation mark,

James R. Hunt

TUGDboat, Volume 35 (2014), No. 1

but never with a colon. This remarkably common
error arises from a confusion of the layout rules for
an enumerated list with those for an itemised list.

5.2 Decorating the Numbers

The numbers beside the items in an enumerated
list are decorations— visual devices that assist the
reader in understanding the material —and have no
syntactical meaning at all. Any full stops, brackets,
bolding, animation or other devices added to the
numbers are, from a syntactical point of view, also
decorative. The order of the actions is determined
by the order of the sentences, not by the numbers
on the page: the numbers serve only to reinforce the
sequence in the reader’s mind.

The use of full stops or brackets after the num-
bers or letters could suggest to a reader a syntactical
structure that does not actually exist, and this is one
reason why such decorations of the basic numbers
or letters should perhaps be avoided. This is more
easily said than done: most writing software will
insert these decorations (for example, full stops after
item numbers) automatically.

Sometimes, you may need to make the numbers
quite prominent: for example, lists of instructions in
a user guide may be embedded in masses of explan-
atory material.

6 Complications and Restrictions

Strict application of the rules produces some inter-
esting results. These results are described in more
detail in following sections.

An individual item in an itemised list may have
another, subsidiary itemised list attached to it. (See
Subsection 6.1.)

Putting an explanatory paragraph after an item
in an itemised list is a grammatical error. (See Sub-
section 6.2.)

An individual item in an enumerated list may
have an itemised list attached to it. (See Subsec-
tion 6.3.)

An individual item in an itemised list cannot
have a subsidiary, enumerated list attached to it.
(See Subsection 6.4.)

6.1 Itemised Lists within an Itemised List

It is possible, and quite common, to insert secondary
itemised lists under the individual items in another
higher level list. There are even widely accepted
rules about the selection of bullet points: round
bullets at the first level, dashes at the second level,
and so on. Recall that an itemised list comprises
only one sentence: it follows that all of the items in
the list, considered together, must constitute only

TUGDboat, Volume 35 (2014), No. 1

one sentence. Attempting to follow this rule could
easily result in complicated constructions that lack
clarity. Example 6 shows a two-level itemised list
that follows the rule and is still clear. (A sentence
that can be displayed as a three-level itemised list
would be rather complicated, at best.)

Example 6: ITEMISED LISTS WITHIN AN ITEMISED
List

The colour of the body of the device may be:

e a primary colour, which may be one of:
— red;
— yellow; or
— blue; or

e a pastel colour, which may be one of:
— pink;
— pale yellow; or
— azure; or

e a neutral colour, which may be one of:
— beige;
— bone; or

— €ECTru.

6.2 Explanatory Paragraphs in Itemised
Lists Not Possible

It is common practice to insert explanatory para-
graphs after items in itemised lists. This is a gram-
matical error: an itemised list comprises only one
sentence, and it is not possible to nest other sentences
within that sentence.

6.3 Itemised List After Numbered Item

In an enumerated list, it is possible to have two or
more sentences after each number, if the writer thinks
this necessary — and of course any of those sentences
may be displayed as an itemised list if appropri-
ate (that is, bullet points may follow a numbered
list item).

Some of those following sentences may be dis-
played with their own ordering symbols (that is, a
subsidiary enumerated list may follow a numbered
list item). This is common, and presents no concep-
tual problems.

6.4 No Numbered Lists After
a Bullet Item

We can place an itemised list after a numbered item
in an enumerated list. Can we, conversely, place an
enumerated list after a bulleted item in an itemised
list? As was the case with the legendary ski resort full
of girls looking for husbands and husbands looking

13

for girls, the situation is not as symmetrical as it
may at first appear.

Recall that the bulleted items form a single
sentence, and each enumerated item contains one
or more complete sentences. Sentences cannot rea-
sonably be nested within other sentences, and so an
enumerated list cannot be placed after a bulleted
item without violating grammatical rules.

It is common in technical works to use bulleted
items as a variety of unnumbered heading, with a
bulleted item, often in bold type, followed by explan-
atory paragraphs. On reflection, it is hard to think
of any reason why you would want to do this— why
would you lay out sets of instructions on one or more
pages, and imply that the order in which those sets
are presented to the reader does not matter? The
best solution to this problem is to avoid it: possibly
by rewriting the bulleted items as headings followed
by text, with any enumerated lists in the text left to
stand alone.

7 Pathologies

Technical works often contain strange list construc-
tions: enumerated lists disguised as itemised lists,
itemised lists disguised as enumerated lists, and hy-
brid constructions and monsters. These errors often
proceed from a failure to understand the basic dif-
ference between enumerated and itemised lists.

7.1 Enumerated List Disguised as an
Itemised List

The most common error appears to be displaying an
enumerated list in the guise of an itemised list.

Bad Example 4, taken from a corporate style
guide, appears to be an itemised list, but it actually
contains four sentences, one of which is not correctly
terminated.

Bad Example 4: ENUMERATED LIST DISGUISED AS
AN ITEMISED LIST

Use the following guidelines for creating appendices:
e List the appendices in the table of contents.
e Refer to the appendices in the preface.

e For each appendiz, provide an introductory
paragraph.

The list shown in Bad Example 4 should be
presented as an enumerated list with an introductory
paragraph, as shown in Example 7.

The numbers in Example 7 do not necessarily
specify a sequence of actions: they may merely clarify
the number of rules to be followed.

Making Lists: A Journey into Unknown Grammar

14

Example 7: IMPROVED VERSION
OF BAD EXAMPLE 4

Use the following guidelines for creating appendices.
1. List the appendices in the table of contents.
2. Refer to the appendices in the preface.

3. For each appendiz, provide an introductory
paragraph.

7.2 Itemised List Disguised as an
Enumerated List

Bad Example 5 appears to be an enumerated list, but
the numbers serve no purpose: they do not indicate
steps to be taken, or a sequence in which items may
be used, or a number of items (how many items are
included in “its usual accoutrements”?), or an order
of importance.

Bad Example 5: ITEMISED LIST DISGUISED AS AN
ENUMERATED LIST

The items enclosed in the Vampire Protection Kit are as
follows.

1. An efficient pistol with its usual accoutrements.
Silver bullets.

An ory crucifix.

Powdered flowers of garlic.

A wooden stake.

S v o

Professor Blomberg’s new serum.

The information in Bad Example 5 is better

presented in an itemised list, as shown in Example 8.

Example 8: IMPROVED VERSION
OF BAD EXAMPLE 5

The items enclosed in the Vampire Protection Kit
are as follows:

e an efficient pistol with its usual accoutrements;

o silver bullets;

e an iwory crucifiz;

e powdered flowers of garlic;

e a wooden stake; and

e Professor Blomberg’s new serum.

7.3 Sometimes, a Table is a Better Idea

It is possible to put too much material into a list, and
sometimes the material would be clearer if it were set
out in a table. Bad Example 6, which displays a list
with too much material, was taken from a popular
work on linguistics [2].

James R. Hunt

TUGDboat, Volume 35 (2014), No. 1

Bad Example 6: AN OVERLOADED LIST

[The] eight main varieties of speech in China |...]

e Cantonese (Yte) Spoken in the south, mainly
Guangdong, southern Guangxi, Macau, Hong Kong.
(46 million)

e (Gan Spoken in Shanxi and south-west Hebei.
(21 million)

o Hakka Widespread, especially between Fujian and
Guangxi. (26 million)

e Mandarin A wide range of dialects in the northern,
central, and western regions. North Mandarin, as
found in Beijing, is the basis of the modern standard
language. (720 million)

e Northern Min Spoken in north-west Fujian. (10 mil-
lion)

e Southern Min Spoken in the south-east, mainly
in parts of Zhejiang, Fujian, Hainan Island, and
Taiwan. (26 million)

e Wu Spoken in parts of Anhui, Zhejiang, and Jiangsu.
(77 million)

e Xian (Hunan) Spoken in the south-central region,
in Hunan. (36 million)

The material in Bad Example 6 would be better
displayed in a three-column table — possibly with
itemised lists in some of the table cells.

8 Definition Lists

The definition list, mentioned in Section 3, is a differ-
ent kind of list, because the elements of the list are
neither itemised nor enumerated. Instead, an item
in a definition list comprises two parts: a term and
an explanation of the term. These two parts of the
item are usually distinguished typographically, and
may, but do not necessarily, appear on the same line.

Most word processors do not offer the definition
list as an option on their drop-down menus, because a
two-column table without a caption, rules, or headers
(that is, an informal table) does much the same job.

The definition list may be used for setting out
glossary items, as shown in Example 9. (This mater-
ial was derived from [1].)

8.1 Uses of the Definition List

Definition lists may be used to set out definitions and
construct glossaries. Other possible uses of definition
lists are not so obvious: for example, a definition
list could be used as a way of setting out otherwise
awkward one-bullet lists, which are banned by some
style guides.

TUGDboat, Volume 35 (2014), No. 1

Example 9: A DEFINITION LIST

Klingon This is perhaps the most fully realised science
fiction language. Klingon has a complete grammar
and vocabulary, and countless nerds have learned it
like high-school French or German.

Qwghlmian From Neal Stephenson’s Cryptonomicon
novel and Baroque Cycle trilogy, this fictional lan-
guage is allegedly spoken on obscure British islands.
The language has sixteen consonants and no vowels,
and is thus ideal for representing binary informa-
tion — and nearly impossible to pronounce.

R’lyehian This other-worldly, barely speakable lan-
guage is part of the Cthulhu mythos (introduced
in the classic Lovecraft short story The Call of
Cthulhu).

Sindarin While Tolkien created several languages for
his various Lord of the Rings books, Sindarin, the
language of the elves, is not only his most beautiful
but also his most fully realised invented language.

8.2 No Definition List in Common
‘Word Processors

Constructing a definition list with the wraparound
layout shown in Example 9 is simple enough in BTEX,
but common word processors do not offer menu items
relating to definition lists. Two-column informal
tables will usually be a good approximation.

8.3 History of the Definition List

The definition list is defined in HTML, in the DITA
(Darwin Information Typing Architecture: an XML
data model for authoring) specification of 2005, in
the DocBook specification of 1990, and in the BTEX
specification of 1986; it appears to have originated
in the now almost-forgotten Scribe text formatter,
ca. 1978. The aim of the author of Scribe was to
provide a simple way of coding command descriptions
in programming manuals.

15

Scribe could not handle tables, but EXTEX could,
to a limited extent. The only tables that KXTEX could
handle at first were less than one page in length, and
those tables had to be floats, where the position of
the table in the final print version of the document
was determined by an algorithm that positioned the
table so that it did not extend over a page break.
While that one-page limitation existed, the definition
list was still useful, because it could be used to lay out
tabular material that occupied more than one page.

9 Conclusions

Applying a few simple rules to itemised and enumer-
ated lists leads to some unexpected conclusions. In
particular, itemised lists are much more limited in
scope than they at first appear. In many instances,
enumerated lists are much more useful.

Definition lists are not used by technical writers
as much as they could be.

References

[1] John Baichtel. Top ten geekiest constructed
languages. 2009. http://www.wired.com/
geekdad/2009/08/top-ten-geekiest—
constructe-languages/.

[2] David Crystal. How Language Works. Avery,
New York, 2007.

[3] Microsoft Corporation. Microsoft Manual of
Style for Technical Publications, Third Edition.
Microsoft Press, Sebastopol, Calif., 2004.

o James R. Hunt
P.O. Box 580
Mt Gravatt
Queensland 4122
Australia
writerlyjames (at) gmail dot com

Making Lists: A Journey into Unknown Grammar

16

In memoriam Jean-Pierre Drucbert
Jean-Michel Hufflen

Jean-Pierre Drucbert passed away in March 2009
... quietly... as he lived ... He was discreet yet ef-
ficient. .. in his own way... I personally worked in
the same building! as him, for two years, from 1989
to 1991. At that time, I got by using IATEX, but had
only a little experience, compared with my present
ability. So several times I hesitated to start in im-
plementing some functions and asked him for some
advice. At the time, he told me: ‘That’s not obvi-
ous.” Or: ‘That’s difficult.” But a little while after
that, he waved discreetly to me to join him... and
he implemented the commands.

I had met him after hearing about his transla-
tion of Leslie Lamport’s original IXTEX book, incor-
porating much additional information. As far as I
know, this work? was one of the first complete I TEX
manuals in French, if not THE first. It has only been
distributed privately; I personally thought that was
a pity. Several times I suggested to Jean-Pierre that
he should submit it to a publisher. But he was not
interested in the limelight, it was not in his char-
acter. He was solitary, as if he bore some secret
and deep-rooted pain, some dead-end despair. But
he was always ready to help other people within his
activities’ scope. He left many packages® as a re-
markable testimony of that.

o Jean-Michel Hufflen
FEMTO-ST & University of
Franche-Comté,
16 route de Gray,
25030 Besangon Cedex,
France

L At CERT (‘Centre d’Etudes et de Recherches de Tou-
louse’, that is, ‘Toulouse study and research centre’).

2 Jean-Pierre DRUCBERT : Utilisation de IATEX et BisTEX
sur Multics au CERT. August 1988. CERT, IT-service group.

3 See http://ctan.org/author/drucbert for a complete
list including ‘original’ implementations and adaptations to
French of existing ones.

TUGDboat, Volume 35 (2014), No. 1

Letters

Does not suffice to run latex a finite number
of times to get cross-references right

Jaime Gaspar

Abstract. We present a IATEX file such that a
cross-reference is wrong no matter how many times

we run latex. N

It is well-known that we need to run latex several
times to get cross-references right. This raises a
natural question for mathematicians: for any INTEX
file, does it suffice to run latex a finite number of
times? We show that the answer is negative, by a
counterexample. The KTEX file

\documentclass{article}
\usepackage{forloop}
\begin{document}
\newcounter{n}
\forloop{n}{0}
{\value{n} < \pageref{1}}{"\newpage}
Last-page label here\label{l}.
Label value: \pageref{l}.
\end{document}

is such that the cross-reference \pageref{1} is wrong
no matter how many times we run latex. This
file uses a little diabolical trick: a label 1 is cre-
ated in the last page (line 7) and there are cre-
ated (resorting to a for loop) \pageref{l} many
new pages (lines 5 and 6), causing the document to
have \pageref{1} + 1 pages, so the cross-reference
\pageref{1} to the last page is wrong. (An even
more diabolical counterexample that avoids a for
loop is shown at http://tex.stackexchange.com/
questions/30674.)

Acknowledgement. At the time of writing:
INRIA Paris-Rocquencourt, 772, Univ Paris Diderot,
Sorbonne Paris Cité, F-78153 Le Chesnay, France;
financially supported by the French Fondation
Sciences Mathématiques de Paris.

o Jaime Gaspar

Universitat Rovira i Virgili

Department of Computer
Engineering and Mathematics

Av. Paisos Catalans 26

E-43007 Tarragona, Catalonia

jaime.gaspar (at) urv dot cat;

Centro de Matemética e Aplicagoes
(CMA), FCT, UNL

TUGDboat, Volume 35 (2014), No. 1

Fetamont: An extended logo typeface

Linus Romer

Abstract

The logo font, known from logos like METAFONT or
METAPOST, has been very limited in its collection
of glyphs. The new typeface Fetamont extends the
logo typeface in two ways:

e Fetamont consists of 256 glyphs, such that the
T1 (a.k.a. EC, ak.a. Cork) encoding table is
complete now.

e Fetamont has additional faces like “light ultra-
condensed” or “script”.

The fetamont package provides KTEX support for
the Fetamont typeface. Both the package and the
typeface are distributed on CTAN under the terms
of the IATEX Project Public License (LPPL).

The following article presents some facets of the
Fetamont typeface, explains important techniques
and shows the history of the logo typeface.

1 Comparison with existing logos

The following picture shows the METAPOST and the
METAFONT logos written in Fetamont (gray) and
Taco Hoekwater’s Type 1 version of the logo font
(outlined).

METAEONT
METAPOST

There are hardly any differences; only the “S” is
significantly different, because its shape was changed
by D. E. Knuth in 1997 (see section 6). The other
faces of Hoekwater’s Logo are also very similar to
their corresponding Fetamont faces. Widths and
kernings may rarely differ by one unit (except for
the “A” in Logo 9, which has a strange width).

A comparison with the METATYPEL logo from
Jackowski, Nowacki, and Strzelczyk (2001) shows
virtually no differences as well.!

METATYPE1

2 Comparison with the mflogo package

The control sequences defined in the fetamont pack-
age are analogous to those from the mflogo pack-
age (Vieth, 1999). \MF, \MP and \MT produce the

1 T have never seen the original sources of the “Y” and the
“1” but I think that my imitated “Y” and “1” are extremely
close to the original.

17

well-known logos of METAFONT, METAPOST and
METATYPEL.

3 The many faces of fetamont

It is clear that thanks to the power of METAFONT
the number of possible faces is endless. However,
Fetamont comes in a mere 36 predefined faces. The
suffixes of every face are schematically listed in the
following table:

Upright Oblique
r8 b8 h8 08 bo8 ho8
r9 b9 ho 09 bo9 ho9

110 r10 b10 hi1l0
Condensed Upright

1010 010 bol0 hol0
Condensed Oblique

1c10 c10 lcol0 col0
bc40 bco40
Ultracond. Upright Ultracond. Oblique
1q10 1qo10

Script Upright Script Oblique
1wl0 w10 bwl0 hwilO|lwol0 wolO bwolO hwolO

Anyone wishing to design a new face for Fetamont can
do so by just redefining the parameters of £fmr10.mf
and saving the file under a new name.

3.1 Script faces

The Fetamont script faces make use of randomized
paths that are drawn by a rotated ellipse pen to
make it look more handwritten. They may be used
for comics or children’s texts:

TIME MACHINE

- 1

Since version 1.3, the OpenType versions of the script
faces even support the “Randomize” feature.

3.2 Condensed faces

The titles in Knuth’s books show a variant of the
logo font that blends with Computer Modern Sans
Serif Demibold Condensed 40. So I decided to add
this variant as Fetamont Bold Condensed 40 and
let also a light and medium variant benefit from the
condensation because it looked so good.

LIGHT CONDENSED 10
MeDIUM CONDENSED 10
BoLbp ConpeNseD 40

3.3 Ultracondensed Face

I went even a step further and created an ultracon-
densed face for Fetamont. The credits written on

Fetamont: An extended logo typeface

18

movie posters are often typeset in such ultracon-
densed faces:

THE NOST INPORTANT THING 1 o PROGRAMMING LANGURGE 15 Toe NAME. o
LANGUAGE WILL or SUCCEED WITHOUT GOOD NAME. 1 HAVE RECENTLY I\
VENTED VERY GOOD NAME avo NOW 1 aw LOOKING FOR o SUITABLE LANGUAGE.

(This is said to be a quotation from D. E. Knuth.)

4 Spacing problems with the “S”

The original spacing of the letter “S” fits perfectly for
the combination “OST” as in METAPOST. However,
in combination with normal letters like “N”, the “S”
is positioned too much to the right (see the left part
of the following picture).

NSN NSN

Thus, I shifted the “S” a bit to the left (see the right
part of the upper picture) and added corresponding
kerning instructions for “OS” and “ST” to keep the
spacing of the original logo intact.

5 Special techniques
5.1 Anchor pairing with METAFONT

In order to draw accented and other combined char-
acters, it is helpful to use anchors. The concept
of anchors is common in type design outside of the
METAFONT world. However, anchors rarely have
been seen in METAFONT up to now.

The idea is easy: Put an anchor at a given
point in a base glyph and in the accent glyph; then
overlay the two glyphs such that the anchors coincide,
producing the pre-composed accented character.

anchor top (base)

anchpr top (acgent)

Normally several kinds of anchors are needed. E.g.
“C” and “C” need two different anchors. Fetamont

Linus Romer

TUGDboat, Volume 35 (2014), No. 1

stores anchors as ordinary points in arrays. Fur-
thermore, the character picture is stored in another
array at the end of each character. For combined
characters, METAFONT looks at the different arrays
and then overlays the base and the accent character
using the macro addto currentpicture.

5.2 Kerning classes with METAFONT

Like anchor pairing, the concept of kerning classes
is widely known but not frequently used in META-
FONT. The reason for this is that METAFONT cannot
natively write kernings for multiple characters at
once. Hence, multiple kerning information has to be
cached in arrays.

Let me illustrate the general idea of this caching
with a fictional example:

5.2.1 Define kerning classes

It is clear that “OV” needs the same kerning as “DV”.
But beware, “VO” needs a different kerning than
“VD”! So generally there are two kinds of kerning
classes:

e The first kerning class groups glyphs together
that share the same shape to the right, like “D”
and LLO77

e The second kerning class groups glyphs together
that share the same shape to the left, like “C”
and “O”

The first kerning class is stored in an array as follows:

row 0O 2
rowl | 3| 68) | 79 o) | 214 (o)
rowz | 2 | 86 vy | 87 w)

The 0*" column is reserved for the number of columns
(0*" row) and the number of items in the correspond-
ing row, because there is no straightforward way to
determine the length of arrays or subarrays in META-
FONT. Each row forms a first kerning class. The
characters are stored as codes (for the sake of clarity,
they are shown here as letters also).

The storage of the second kerning classes works
analogously, in another array:

row 0

67 ©
86 (v)

79 o)
87 «w)

80 (Q) 214 ()

row 1

l\Dﬂkl\Dl

row 2

5.2.2 Kern the kerning classes

The classes are then kerned with the following com-
mands:

addclasskern("D","C",2u#)
addclasskern("D","V",-ui#)
addclasskern("V","C",-u#)

TUGDboat, Volume 35 (2014), No. 1

This kerning information is stored in a large three-
dimensional array, which has as many columns as

characters:

oo 0] [0 o) @D [o[()
- AN A (G [() [
[AN A [

o sr|4) (o) | () | ()| Co)

e 0] i) 1) 1) [o) [[

5.2.3 Write the kerning information

At the very end, the macro writeligtable writes all
kerning information from the large three-dimensional
array, row-wise, in a METAFONT-friendly way.

5.3 Producing outlines

The METAFONT sources have been converted to out-
line font formats like Type 1 or OpenType with a
Python script. The script calls METAPOST to pro-
duce PostScript files for each glyph. These glyphs are
imported by the fontforge module. Hosny (2011)
previously used this technique to produce the out-
lines of Punk Nova. Because the glyph widths are
lost in the import, the tfm module from the mftrace
project is also needed (Nienhuys, 2006).

* . mf
METAPOST
*.eps *.tfm
fontforge|module tfm|module
*.sfd

fontforge|module

*.0tf *.pfb *.afm

6 History of the logo typeface

e 1979/07/12: Knuth (1979a) shows the first ver-
sions of the “Computer Modern” typeface and
the METAFONT logo. The graphic below is the

result of a conversion from the original “manfnt”

19

sources (Knuth, 1979b), which were written in
the obsolete METAFONTT78.

METAFONT

Knuth used quite a thick circular pen. This

“manfnt” also contains 8 pt, 9 pt and title ver-

sions of the logo typeface. However, the title
font is just a magnified version of the 10 pt font.
1984/05/27: The sources of the logo font are
rewritten for the new METAFONT84 (Knuth,
1984a). The pen has become elliptic and thinner.
1984/09/09: Second try for the new META-
FONT84 (Knuth, 1984b). The characters “E”
and “F” have rounded vertices.

METAFONT

1985/09/03: Knuth (1985¢) defines some “crazy
shapes”. He then (Knuth, 1986) uses them to
demonstrate randomized typefaces.

METAFONT METHRFONT

1985/09/22: The logo typeface gets a slanted
variant (Knuth, 1985b), a backslanted skinny
bold variant (Knuth, 1985f) and an ultrawide
light variant (Knuth, 1985d).

W C O ™

The shapes of the letters A, E, F, M, N, O, T
have reached their final state (Knuth, 1985¢ and
Knuth, 1985a).

METAFONT

1985/10/06: Knuth (1985g) uses a logo variant
for titles along with Computer Modern Sans
Serif Demibold Condensed 40 for the title pages
in Knuth (1986).

METAFONT

1986,/01/07: Knuth (1986) specifies a boldface
variant of the METAFONT logo. This variant
goes well with Computer Modern Sans Serif
Bold:

SansMETA

1989/04/22: Knuth (1989) shows a new special
weight to go with Pandora (see Billawala, 1989).

Pandora METAFONT

1989/06/24: Cugley (1989) extends the logo font
to cover the whole uppercase alphabet and a
couple of punctuation characters in the so-called
mf” font.

DAMIAN CUGLEY

Fetamont: An extended logo typeface

20

e 1992/01/16: Knuth (1992a) adds a demibold
variant. This variant is needed for the title “Ex-
cerpts from the Programs for TEX and META-
FONT” (Knuth, 1992b), which combines Com-
puter Modern Bold Extended with the logo font.

TEX and METAFONT

e 1993/03/23: Knuth (1993a) adds the characters
“P” and “S” to the logo font such that one can
typeset “METAPOST” with it. Hobby (2009)
states that both of the following logos are okay:

METAPOST MetaPost

e 1997/04/20: Knuth (1993b) changes the shape
of the “S”. “It now sort of assumes that a ‘T’
will follow” (Beeton, 1998).

e 1997/09/30: The American Mathematical So-
ciety provides Type 1 versions of the logo font
in the following styles: logo8, logo9, logo10,
logobf10, logosl10 (AMS, 2009). The “P”
and the “S” are not included and the widths of
the supplied glyphs are often wrongly rounded.

e 1999/6/03: Taco Hoekwater releases new Type 1
versions of the logo font (Hoekwater, 1999). The
conversion has been done in MetaFog, which is
only available with TRUETEX. The “S” still has
its old shape. The round endings are sometimes
suboptimal (e.g. the “F” from Logo 10) but all
in all, the conversion is very clean.

e 2001/03/04: Taco Hoekwater presents Elogo, an
extended version of the logo font, which covers
the 7-bit TEX text encoding (Hoekwater, 2001).
The font has been used in some of Hoekwater’s
presentation slides (e.g. the following image is
extracted from Hoekwater, 2007). The “S” still
has the old shape.

DYNAMIC

e 2001/09/26: At EuroTEX 2001 the METATYPE1
logo is shown in the presentation of Jackowski,

Linus Romer

TUGDboat, Volume 35 (2014), No. 1

Nowacki, and Strzelczyk (2001). The newly
designed characters “Y” and “1” are different
to the “Y” and “1” in Elogo.

METATYPE1

Funnily, the EuroTEX 2001 conference logo also
embeds an extended logo font (Pepping, 2001).

cURC X 200

2011/06/02: For the documentation of another
typeface, I wanted to write “mf2pt1” in the logo
font, because I was heavily relying on this pro-
gram back then. Having realised that there were
other tools related to METAFONT that could not
be written in the logo font, I started extending

the logo font.

MF2PT1

References

AMS. “Computer Modern PostScript Fonts”.
www.ams.org/amsfonts, 2009.

MFLuA MEeTAFOG

Beeton, Barbara. “Editorial comments”.
TUGboat 19(4), 1998. tug.org/TUGboat/
tb19-4/tb61beet.pdf.

Billawala, Nazneen N. “Metamarks: Preliminary
Studies for a Pandora’s Box of Shapes”.
Technical Report STAN-CS 1256, Stanford
University, 1989.

Cugley, Damian. “A character font more than a
little reminiscient of the METAFONT logo font
by D. E. Knuth”. mirror.ctan.org/fonts/
utilities/mff-29/mf .mf, 1989.

Hobby, John. “The METAPOST page”. ect.
bell-labs.com/who/hobby/MetaPost.html,
2009.

Hoekwater, Taco. mirror.ctan.org/fonts/
mflogo/ps-typel/hoekwater, 1999.

Hoekwater, Taco. “A new metafont (beta test)”.
comments.gmane.org/gmane . comp.tex.
context/4259, 2001.

Hoekwater, Taco. “METAPOST Developments”.
www.luatex.org/talks/
tug2007-taco-metapost.pdf, 2007.

Hosny, Khaled. https://github.com/
khaledhosny/punk-otf/blob/master/
tools/build.py, 2011.

Jackowski, Bogustaw, J. M. Nowacki,
and P. Strzelczyk. “METATYPEL: A
METAPOST-based engine for generating Type 1
fonts”. www.ntg.nl/eurotex/JackowskiMT.
pdf, 2001.

TUGDboat, Volume 35 (2014), No. 1

Knuth, Donald E. TEX and METAFONT:
New directions in typesetting. American
Mathematical Society, 1979a.

Knuth, Donald E. “Special font for the
METAFONT manual”. www.saildart.
org/MANFNT . MF [MF,DEK] 1, 1979b.

Knuth, Donald E. “Letters for the METAFONT
logo; first try with the new MF”. www.
saildart.org/L0GO.MF [FNT,DEK] 1, 1984a.

Knuth, Donald E. “Letters for the METAFONT
logo; second try with the new MF”. wuw.
saildart.org/L0GO.MF[FNT,DEK], 1984b.

Knuth, Donald E. www.saildart.org/METAFO.
MF [MF, SYS], 1985a

Knuth, Donald E. “10-point slanted METAFONT
logo”. www.saildart.org/LOGL10.MF [MF, SYS]
1, 1985b.

Knuth, Donald E. “Driver file for the METAFONT
logo”. www.saildart.org/NLOGO.MF [MF, SYS],
1985¢.

Knuth, Donald E. “Fat version of METAFONT
logo”. www.saildart.org/FLOGO.MF [MF, SYS],
1985d.

Knuth, Donald E. “Font for examples in
Chapter 21 of The METAFONTbook”.
www.saildart.org/RANDOM.MF [FNT,DEK] 1,
1985e.

Knuth, Donald E. “Skinny variant of METAFONT
logo”. www.saildart.org/SKLOGO.MF [MF, SYS],
1985f.

Knuth, Donald E. “Special font for the TEX and
METAFONT manuals”. www.saildart.org/
LOGO . MF [MF, SYS]1, 1985g

21

Knuth, Donald E. The METAFONTbook.
Addison-Wesley, 1986.

Knuth, Donald E. “10-point METAFONT logo,
special weight to go with Pandora text”.
www.saildart.org/LOGN10.MF [NB, DEK], 1989.

Knuth, Donald E. “10-point demibold METAFONT
logo”. mirror.ctan.org/systems/knuth/
local/lib/logod10.mf, 1992a.

Knuth, Donald E. Literate Programming. CSLI,
1992b.

Knuth, Donald E. “Routines for the METAFONT
logo, as found in The METAFONTbook”.
ftp://cs.stanford.edu/pub/concretemath.
errata/fonts/logo.mf, 1993a.

Knuth, Donald E. “Routines for the METAFONT
logo, as found in The METAFONTbook”.
ftp://cs.stanford.edu/pub/tex/dist/1lib/
logo.mf, 1993b.

Nienhuys, Han-Wen. https://github.com/
hanwen/mftrace/blob/master/tfm.py, 2006.
Pepping, Simon, editor. FuroTEX 2001 proceedings.

NTG, 2001.

Vieth, Ulrik. “The mflogo package”. mirror.ctan.
org/macros/latex/contrib/mflogo/mflogo.
pdf, 1999.

¢ Linus Romer
Oberseestrasse 7
Schmerikon, 8716
Switzerland
linus.romer (at) gmx dot ch

Fetamont: An extended logo typeface

22

IXTEX3 News

Issue 9, March 2014

Contents
Hiatus? 1
expl3 in the community 1

Logo for the M TEX3 Programming Language 2

Recent activity 2
Work in progress 2
Uppercasing and lowercasing 2
Space-skipping in xparse 3
...and for 2014 onwards 3
What can you do for the BTEX3 project? 4
Programming Layer 4
Design Layer 4
Document Interface Layer 5
In Summary 5
And somethingelse 5

Hiatus?

Well, it’s been a busy couple of years. Work has slowed
on the ETEX3 codebase as all active members of the
team have been —shall we say — busily occupied with
more pressing concerns in their day-to-day activities.

Nonetheless, Joseph and Bruno have continued
to fine-tune the TEX3 kernel and add-on packages.
Browsing through the commit history shows bug fixes
and improvements to documentation, test files, and
internal code across the entire breadth of the codebase.

Members of the team have presented at two TUG
conferences since the last N TEX3 news. (Has it really
been so long?) In July 2012, Frank and Will travelled
to Boston; Frank discussed the challenges faced in the
past and continuing to the present day due to the limits
of the various TEX engines; and, Frank and Will to-
gether covered a brief history and recent developments
of the expl3 code.

In 2013, Joseph and Frank wrote a talk on complex
layouts, and the “layers” ideas discussed in IATEX3;
Frank went to Tokyo in October to present the work.
Slides of and recordings from these talks are available
on the ETREX3 website.

These conferences are good opportunities to intro-
duce the expl3 language to a wider group of people;
in many cases, explaining the rationale behind why
expl3 looks a little strange at first helps to convince

TUGDboat, Volume 35 (2014), No. 1

the audience that it’s not so weird after all. In our ex-
perience, anyone that’s been exposed to some of the
more awkward expansion aspects of TEX programming
appreciates how expl3 makes life much easier for us.

expl3 in the community

While things have been slightly quieter for the team,
more and more people are adopting expl3 for their own
use. A search on the TEX Stack Exchange website for
either “expl3” or “latex3” at time of writing yield
around one thousand results each.

In order to help standardise the prefixes used in expl3
modules, we have developed a registration procedure
for package authors (which amounts to little more than
notifying us that their package uses a specific prefix,
which will often be the name of the package itself).
Please contact us via the latex-1 mailing list to reg-
ister your module prefixes and package names; we ask
that you avoid using package names that begin with
13... since expl3 packages use this internally. Some
authors have started using the package prefix 1t3. ..
as a way of indicating their package builds on expl3 in
some way but is not maintained by the IXTEX3 team.

In the prefix database at present, some thirty pack-
age prefixes are registered by fifteen separate individ-
uals (unrelated to the WTEX3 project — the number
of course grows if you include packages by members
of the team). These packages cover a broad range of
functionality:

acro Interface for creating (classes of) acronyms

hobby Hobby’s algorithm in PGF/TiKZ for drawing
optimally smooth curves.

chemmacros Typesetting in the field of chemistry.
classics Traditional-style citations for the classics.
conteq Continued (in)equalities in mathematics.

ctex A collection of macro packages and document
classes for Chinese typesetting.

endiagram Draw potential energy curve diagrams.
enotez Support for end-notes.

exsheets Question sheets and exams with metadata.
It3graph A graph data structure.

newlfm The venerable class for memos and letters.

fnpct Interaction between footnotes and punctuation.

IATEX3 News, and the IATEX software, are brought to you by the INTEX3 Project Team; Copyright 2014, all rights reserved.

ITEX3 News #9

TUGboat, Volume 35 (2014), No. 1

GS1 Barcodes and so forth.
hobete Beamer theme for the Univ. of Hohenheim.
kantlipsum Generate sentences in Kant’s style.

lualatex-math Extended support for mathematics in
LualdTRX.
media9 Multimedia inclusion for Adobe Reader.

pkgloader Managing the options and loading order of
other packages.

substances Lists of chemicals, etc., in a document.

withargs Ephemeral macro use.

xecjk Support for CJK documents in XqETEX.

xpatch, regexpatch Patch command definitions.

xpeek Commands that peek ahead in the input stream.

xpinjin Automatically add pinyin to Chinese characters

zhnumber Typeset Chinese representations of numbers

zxjatype Standards-conforming typesetting of Japanese
for XqIATEX.

Some of these packages are marked by their authors as
experimental, but it is clear that these packages have
been developed to solve specific needs for typesetting
and document production.

The expl3 language has well and truly gained traction
after many years of waiting patiently.

A logo for the IATEX3 Programming Language

To show that expl3 is ready for general use Paulo
Cereda drew up a nice logo for us, showing a
hummingbird (agile and fast — but needs huge amounts
of energy) picking at “13”. Big thanks to Paulo!

Recent activity

IATEX3 work has only slowed, not ground to a halt.
While changes have tended to be minor in recent times,
there are a number of improvements worth discussing
explicitly.

1. Bruno has extended the floating point code to
cover additional functions such as inverse trigono-
metric functions. These additions round out the
functionality well and make it viable for use in
most cases needing floating point mathematics.

23

2. Joseph’s refinement of the experimental galley code
now allows separation of paragraph shapes from
margins/cutouts. This still needs some testing!

3. For some time now expl3 has provided “native”
drivers although they have not been selected by
default in most cases. These have been revised to
improve robustness, which makes them probably
ready to enable by default. The improvements
made to the drivers have also fed back to more
“general” IATEX code.

Work in progress

We're still actively discussing a variety of areas to
tackle next. We are aware of various “odds and ends”
in expl3 that still need sorting out. In particular, some
experimental functions have been working quite well
and it’s time to assess moving them into the “stable”
modules, in particular the 13str module for dealing with
catcode-twelve token lists more commonly known in
expl3 as strings.

Areas of active discussion including issues around
uppercasing and lowercasing (and the esoteric ways
that this can be achieved in TEX) and space skipping
(or not) in commands and environments with optional
arguments. These two issues are discussed next.

Uppercasing and lowercasing

The commands \tl_to_lowercase:n and
\t1l_to_uppercase:n have long been overdue for a
good hard look. From a traditional TEX viewpoint,
these commands are simply the primitive \lowercase
and \uppercase, and in practice it’s well known that
there are various limitations and peculiarities associ-
ated with them. We know these commands are good, to
one extent or another, for three things:

1. Uppercasing text for typesetting purposes such as
all-uppercase titles.

2. Lowercasing text for normalisation in sorting and
other applications such as filename comparisons.

3. Achieving special effects, in concert with manip-
ulating \uccode and the like, such as defining
commands that contain characters with different
catcodes than usual.

We are working on providing a set of commands to
achieve all three of these functions in a more direct and
easy-to-use fashion, including support for Unicode in

LualATEX and XgIATEX.

ITEX3 News #9

24

Space-skipping in xparse
We have also re-considered the behaviour of space-
skipping in xparse. Consider the following examples:

\begin{dmath} \begin{dmath}[label=foo]
[xyz]l] =1[123] X"2 +y"2 =272
\end{dmath} \end{dmath}

In the first case, we are typesetting some mathematics
that contains square brackets. In the second, we are
assigning a label to the equation using an optional ar-
gument, which also uses brackets. The fact that both
work correctly is due to behaviour that is specifically
programmed into the workings of the dmath environ-
ment of bregn: spaces before an optional argument are
explicitly forbidden. At present, this is also how com-
mands and environments defined using xparse behave.
But consider a pgfplots environment:

\begin{pgfplot}
L
% plot options
]
\begin{axis}
[
% axis options

]

\end{axis}
\end{pgfplot}
This would seem like quite a natural way to write such
environments, but with the current state of xparse this
syntax would be incorrect. One would have to write
either of these instead:

\begin{pgfplot}% \begin{pgfplot}[
[% plot options
% plot options]

]

Is this an acceptable compromise? We're not entirely
sure here—we’re in a corner because the humble [has
ended up being part of both the syntax and semantics
of a INTEX document.

Despite the current design covering most regular use-
cases, we have considered adding a further option to
xparse to define the space-skipping behaviour as desired
by a package author. But at this very moment we’ve
rejected adding this additional complexity, because en-
vironments that change their parsing behaviour based
on their intended use make a IANTEX-based language
more difficult to predict; one could imagine such be-
haviour causing difficulties down the road for automatic
syntax checkers and so forth. However, we don’t make
such decisions in a vacuum and we’re always happy to
continue to discuss such matters.

IXTEX3 News #9

TUGboat, Volume 35 (2014), No. 1

...and for 2014 onwards

There is one (understandable) misconception that
shows up once in a while with people claiming that

expl3 = IATEXS.
However, the correct relation would be a subset,
expl3 C IATEXS,

with expl3 forming the Core Language Layer on which
there will eventually be several other layers on top that
provide

e higher-level concepts for typesetting (Typesetting
Foundation Layer),

e a designer interface for specifying document struc-
tures and layouts (Designer Layer),

e and finally a Document Representation Layer that
implements document level syntax.

Of those four layers, the lowest one —expl3—is avail-
able for use and with xparse we have an instance of
the Document Representation Layer modeled largely
after INTEX 2¢ syntax (there could be others). Both
can be successfully used within the current IATEX 2¢
framework and as mentioned above this is increasingly
happening.

The middle layers, however, where the rubber meets
the road, are still at the level of prototypes and ideas
(templates, Idb, galley, xor and all the good stuff) that
need to be revised and further developed to arrive at a
IATEX3 environment that can stand on its own and that
is to where we want to return in 2014.

An overview on this can be found in the answer to
“What can *I* do to help the IATEX3 project?” on
Stack Exchange,! which is reproduced below in slightly
abridged form. This is of course not the first time that
we have discussed such matters, and you can find sim-
ilar material in other publications such as those at
http://latex-project.org; e.g., the architecture talk
given at the TUG 2011 conference.

Ihttp://tex.stackexchange.com/questions/45838

TUGDboat, Volume 35 (2014), No. 1

What can you do for the IATEX3 project?

By Frank Mittelbach
My vision of IATEX3 is really a system with multiple

layers that provide interfaces for different kinds of roles.

These layers are
e the underlying engine (some TEX variant)

e the programming layer (the core language, i.e.,
expl3)

e the typesetting foundation layer (providing higher-
level concepts for typesetting)

e the typesetting element layer (templates for all
types of document elements)

e the designer interface foundation layer

e the class designer layer (where instances of docu-
ment elements with specific settings are defined)

e document representation layer (that provides the
input syntax, i.e., how the author uses elements)

If you look at it from the perspective of user roles
then there are at least three or four roles that you can
clearly distinguish:

e The Programmer (template and functionality
provider)

e The Document Type Designer (defines which
elements are available; abstract syntax and seman-
tics)

e The Designer (typography and layout)
e The Author (content)

As a consequence the IATEX3 Project needs different
kinds of help depending on what layer or role we are
looking at.

The “Author” is using, say, list structures by spec-
ifying something like \begin{itemize} \item in his
documents. Or perhaps by writing ... or
whatever the Ul representation offers to him.

The “Document Type Designer” defines what kind
of abstract document elements are available, and what
attributes or arguments those elements provide at the
author level. E.g., he may specify that a certain class
of documents provides the display lists “enumerate”,
“itemize” and “description”.

The “Programmer” on the other hand implements
templates (that offer customizations) for such docu-
ment elements, e.g., for display lists. What kind of
customization possibilities should be provided by the
“Programmer” is the domain of the “Document De-
signer”; he drives what kind of flexibility he needs for
the design. In most cases the “Document Designer”
should be able to simply select templates (already writ-
ten) from a template library and only focus on the

25

design, i.e., instantiating the templates with values
so that the desired layout for “itemize” lists, etc., is
created.

In real life a single person may end up playing more
than one role, but it is important to recognise that all
of them come with different requirements with respect
to interfaces and functionality.

Programming Layer

The programming layer consists of a core language
layer (called expl3 (EXP erimental L aTeX 3) for his-
torical reasons and now we are stuck with it :-))
and two more components: the “Typesetting Founda-
tion Layer” that we are currently working on and the
“Typesetting Element Layer” that is going to provide
customizable objects for the design layer. While expl3
is in many parts already fairly complete and usable the
other two are under construction.

Help is needed for the programming layer in

e helping by extending and completing the regression
test suite for expl3

e helping with providing good or better documenta-
tion, including tutorials

e possibly helping in coding additional core function-
ality — but that requires, in contrast to the first
two points, a good amount of commitment and
experience with the core language as otherwise the
danger is too high that the final results will end up
being inconsistent

Once we are a bit further along with the “Typeset-
ting Foundation Layer” we would need help in pro-
viding higher-level functionality, perhaps rewriting
existing packages/code for elements making use of ex-
tended possibilities. Two steps down the road (once the
“Designer Layer” is closer to being finalized) we would
need help with developing templates for all kinds of
elements.

In summary for this part, we need help from people
interested in programming in TEX and expl3 and/or
interested in providing documentation (but for this a
thorough understanding of the programming concepts
is necessary t00).

Design Layer

The intention of the design layer is to provide interfaces
that allow specifying layout and typography styles in

a declarative way. On the implementation side there
are a number of prototypes (most notably xtemplate
and the recent reimplementation of Idb). These need to
be unified into a common model which requires some
more experimentation and probably also some further
thoughts.

ITEX3 News #9

26

But the real importance of this layer is not the im-
plementation of its interfaces but the conceptual view
of it: provisioning a rich declarative method (or meth-
ods) to describe design and layout. Le., enabling a
designer to think not in programs but in visual repre-
sentations and relationships.

So here is the big area where people who do not feel
they can or want to program TEX’s bowels can help.
What would be extremely helpful (and in fact not just
for INTEX3) would be

e collecting and classifying a huge set of layouts and
designs
— designs for individual document elements
(such as headings, TOCs, etc)
— document designs that include relationships
between document elements

e thinking about good, declarative ways to specify
such designs

— what needs to be specified
— to what extent and with what flexibility

I believe that this is a huge task (but rewarding in it-
self) and already the first part of collecting existing
design specifications will be a major undertaking and
will need coordination and probably a lot of work. But
it will be a huge asset towards testing any implementa-
tions and interfaces for this layer later on.

Document Interface Layer

If we get the separation done correctly, then this layer
should effectively offer nothing more than a front end
for parsing the document syntax and transforming it
into an internal standardised form. This means that on
this layer one should not see any (or not much) coding
or computation.

It is envisioned that alternative document syntax
models can be provided. At the moment we have a
draft solution in xparse. This package offers a document
syntax in the style of INTEX 2¢, that is with *-forms,
optional arguments in brackets, etc., but with a few
more bells and whistles such as a more generalized con-
cept of default values, support for additional delimiters
for arguments, verbatim-style arguments, and so on.

It is fairly conventional though. In addition when it
was written the clear separation of layers wasn’t well-
defined and so the package also contains components
for conditional programming that I no longer think
should be there.

Bottom line on what is needed for this layer is to

e think about good syntax for providing document
content from “the author” perspective

e think about good syntax for providing document
content from an “application to typesetting” per-

ITEX3 News #9

TUGboat, Volume 35 (2014), No. 1

spective, i.e., the syntax and structure for auto-
mated typesetting where the content is prepared
by a system/application rather than by a human

The two most likely need strict structure (as automa-
tion works much better with structures that do not
have a lot of alternative possibilities and shortcuts,
etc.) and even when just looking at the human author
a lot of open questions need answering. And these
answers may or may not be to painfully stick with
existing INTEX 2¢ conventions in all cases (or perhaps
with any?).

None of this requires coding or expl3 experience.
What it requires is familiarity with existing input con-
cepts, a feel for where the pain points currently are and
the willingness to think and discuss what alternatives
and extensions could look like.

In Summary

Basically help is possible on any level and it doesn’t
need to involve programming. Thoughts are sprin-
kled throughout this article, but here are a few more
highlights:

e help with developing/improving the core program-
ming layer by

— joining the effort to improve the test suite

— help improving the existing (or not existing)
documentation

— joining the effort to produce core or auxiliary
code modules

e help on the design layer by

— collecting and classifying design tasks
— thinking and suggesting ways to describe
layout requirements in a declarative manner

e help on shaping the document interface layer

These concepts, as well as their implementation, are
under discussion on the list 1atex-1.2 The list has
only a fairly low level of traffic right now as actual
implementation and development tasks are typically
discussed directly among the few active implementors.
But this might change if more people join.

And something else . ..

The people on the KTEX3 team are also committed

to keeping IXTEX 2¢ stable and even while there isn’t
that much to do these days there remains the need to
resolve bug reports (if they concern the 2e core), pro-
vide new distributions once in a while, etc. All this is
work that takes effort or remains undone or incomplete.
Thus here too, it helps the IXTEX3 efforts if we get help
to free up resources.

2Instructions for joining and browsing archives at:
http://latex-project.org/code.html

TUGDboat, Volume 35 (2014), No. 1

Introduction to presentations with beamer

Thomas Thurnherr

Abstract

The document class beamer provides flexible com-
mands to prepare presentations with an appealing
look. Here I introduce the basics of the beamer class
intended for new users with a basic knowledge of
IATEX. I cover a range of topics from how to create
a first slide to dynamic content and citations.

1 Introduction

The BXTEX document class beamer [1] was written to
help with the creation of presentations held using a
projector. In German, the English word Beamer de-
scribes a projector, which is likely the reason for Till
Tantau, the package author, to choose this particular
name. Many macros available in the standard BTEX
document classes are used in beamer, although some-
times the result might look different. The beamer
package comes with extensive documentation, which
is included in most TEX distributions (such as TEX
Live) and available online on CTAN. As with other
document classes, the output document is likely in
portable document format (PDF). This imposes
certain limitations on animations well-known from
commercial software. However, it has always been
a strength of (IA)TEX to let the author focus on the
content, and beamer extends this concept to slide
presentations.

2 The very basics

To create a presentation, we set the document class
to beamer:

\documentclass{beamer}

The main difference between standard KTEX
document classes and beamer is that content does
not continuously “flow” across multiple pages, but
is limited to a single slide. The environment name
frame is used for slides, usually to produce a single
slide (sometimes several, but we will get to that later).
A frame contains a title and a body. Furthermore,
at the bottom of every frame, beamer automatically
adds a navigation menu.

\begin{frame}
\frametitle{Slide title}
%Slide body

\end{frame}

3 In the preamble

As with the standard ITEX document classes, the
preamble serves to load packages, define the content

27

of the title slide, and alter the appearance of the
presentation.

3.1 Presentation title

Beamer reuses the standard ITEX macros to create
the title page: \title, \author, and \date.

\title{Beamer presentation title}
\author{Presenter’s name}
\date{\today}

We use these further below to create a title page
frame.

3.2 Presentation appearance

In beamer, “themes” change the appearance of a
presentation. Themes define the style and the color
of a presentation. By default, beamer loads the
rather bland default theme. To change the theme to
something more appealing, we can use the following
command in the preamble with a theme name we
like:

\usetheme{default} % default theme

There are a great number of themes distributed
with ITEX. They are often named after cities. Try
for example: Berkeley, Madrid, or Singapore, to
name a few (figure 1). Also, look for beamer theme
galleries online.

4 Presentation slides
4.1 Creating a basic frame

A frame may contain a number of different things,
including simple text, formulas, figures, tables, etc.
Most often, however, a frame contains numbered or
bulleted lists. To create lists, we use the standard list
environments: enumerate and itemize. An example
of a bulleted list is shown below:

\begin{frame}
\frametitle{List types in \LaTeX}
\begin{itemize}
\item Bulleted list: itemize
\item Numbered list: enumerate
\item Labeled list: description
\end{itemize}
\end{frame}

Although the result looks different, lists work in
the same way as in other document classes; they can
be nested and customized to your needs.

4.2 Title page frame

We have already seen how to define a title in the
preamble. Now we want to use this title to create a
title page frame.

Introduction to presentations with beamer

28 TUGhboat, Volume 35 (2014), No. 1
A basic beamer example A basic beamer example

Thomas Thurnherr Thomas Thurnherr
Thomas Thurnherr

February 19, 2014 February 19, 2014
February 19, 2014

Figure 1: Title page frames for beamer themes: default, Singapore, and Berkeley.
{some-figure-file}
\begin{frame} \end{frame}
\titlepage

% alternatively \maketitle can be used
\end{frame}

4.3 Table of contents

To add structure to a presentation and create an
outline, we can use \section and \subsection, to-
gether with \tableofcontents. These commands
are used outside of frames. To create an outline at
the beginning of a presentation, we use:

\section{Presentation Outline}

\begin{frame}
\frametitle{Outline}
\tableofcontents

\end{frame}

For long presentations, it may make sense to
show the outline again at the beginning of a new
\section. We use the option currentsection to
\tableofcontents to highlight the current section.

\section{New Section Title}
\begin{frame}
\frametitle{Outline}
\tableofcontents[currentsection]
\end{frame}

4.4 Adding figures

Frames are single entities and therefore figures and
tables do not need to be wrapped in their respective
floating environments. Also, we probably do not
wish to add a caption. Therefore, to show a figure,
\includegraphics with appropriate alignment and
scaling (see the graphicx package [3]) is sufficient:

\begin{frame}
\frametitle{Adding a figure to a frame}
\centering
\includegraphics [width=0.8\1linewidth]

Thomas Thurnherr

Similarly with tables, we omit the table envi-
ronment and directly use tabular.

4.5 Defining multiple columns

By default, content is stacked vertically. Therefore,
if you have a list, then a figure, then a text para-
graph, first the list is produced, with the figure below
and lastly the text. Often, it’s desirable to position
content next to each other. There are two (identi-
cal) methods to split a slide horizontally into two or
more columns: the minipage environment and the
beamer-specific columns environment.

\begin{frame}
\frametitle{Two column example: minipage}
\begin{minipage}{0.48\1linewidth}
% content column 1
\end{minipage}
\quad 7 adds some whitespace
\begin{minipage}{0.48\1linewidth}
% content column 2
\end{minipage}
\end{frame}

\begin{frame}
\frametitle{Two column example: columns}
\begin{columns}
\begin{column}{0.48\1linewidth}
% content column 1
\end{column}
\quad
\begin{column}{0.48\1linewidth}
% content column 2
\end{column}
\end{columns}
\end{frame}

5 Simple animations

It may be an exaggeration to use the word “ani-
mations”. What I will show is merely how to add,

TUGDboat, Volume 35 (2014), No. 1

remove and replace parts of the content, primar-
ily text. However, I believe this is good enough to
keep the audience interested, everything else is just
a distraction.

5.1 Add items dynamically

The beamer command \pause adds content gradu-
ally, by pausing and waiting for the presenter to press
a button. For example, we can use \pause in a list
to reveal one item after another. You might wonder
how this is possibly translated into a PDF. There
is really no magic to it; IMTEX just produces three
slides with the same page number, adding an extra
item one each subsequent slide. Try for yourself:

\begin{frame}
\frametitle{Usage of pause}
\begin{itemize}
\item First item, shown with the slide
\pause
\item Next item, revealed after pressing
a button
\pause
\item Last item, revealed after pressing
a button again
\end{itemize}
\end{frame}

5.2 Hide and show content

“Overlays” is a slightly more sophisticated concept.
Overlays use pointed brackets to hide, reveal and
overwrite content. For example, the specification
\item<1-> means: “from slide 1 on” (see figure 2).

\begin{frame}
\frametitle{Hide and show list items}
\begin{itemize}
\item<1-> First item, shown with the slide
\item<2-> Next item, revealed after
pressing some button
\item<3-> Last item, revealed again after
pressing some button
\item<1-> Show this item with the first
\end{itemize}
\end{frame}

We can also combine ranges of numbers. As-
suming more than 7 overlays, to show an item on
all but slides 3 and 6, we use: \item<-2,4-5,7->.
Ttems always occupy their space, even if they are
not shown. Joseph Wright’s article elsewhere in this
issue provides more examples [5].

This syntax works with other content too, as
implemented in the commands \uncover and \only.
The difference between them is that \uncover occu-
pies space when hidden, whereas \only does not, and
can therefore be used to overwrite previous content.

29

Hide and show list items

» First item, shown with the slide

» Next item, revealed after pressing some button

> Show this item with the first

Figure 2: Hide and show list items.

\begin{frame}
\frametitle{Hide and show content}
\uncover<1> { % adds content }
\uncover<2> { J add additional content }
\end{frame}

\begin{frame}
\frametitle{Hide and overwrite content}
\only<1> { % adds content }
\only<2> { J, replaces previous content }
\end{frame}

Similar to the itemize example above, much
more sophisticated overlays can be created using
\uncover and \only.

5.3 Highlighting items

Besides hiding and revealing, we can also highlight
text upon a button press. In beamer, this is called
an alert (see figure 3):

\begin{frame}
\frametitle{Highlight items of a list}
\begin{itemize}
\item<alert@1> Highlight first item
\item<alert@2> Highlight second item
\item<alert@3> Highlight third item
\item<4- | alert@4> Combine reveal and
highlight
\end{itemize}
\end{frame}

6 Citations and bibliography

You can generate a bibliography the same way as with
a standard IXTEX document class. Personally, I prefer
to show the bibliography entries on the same slide
where they are cited. I use the biblatex package [2]

Introduction to presentations with beamer

30

TUGDboat, Volume 35 (2014), No. 1

Highlight items of a list

> Highlight first item
» Highlight second item
» Highlight third item

Figure 3: Highlight list items.

for this, which provides a variety of methods. The
commands \footcite and\footfullcite produce
references according to the style (e.g. authoryear),
and full references respectively. I use an external
BIBTEX file to store references. Here is an example.

% Preamble

\usepackage [backend=biber, maxnames=2,
firstinits=true,style=authoryear]{biblatex}

\bibliography{path/to/references.bib}

% Citations
\begin{frame}
\frametitle{Citing other people’s work}
\begin{itemize}
\item Full citation
\footfullcite{knuth86}
\item Author-year citation
\footcite{knuth86}
\end{itemize}

If your preferred style is not available, you can
define your own citation style using the biblatex
command \DeclareCiteCommand. The invocation
below prints references as footnotes, showing the
author, year, and journal title.

% Preamble
\usepackage [backend=biber, maxnames=2,
firstinits=true]{biblatex}

\bibliography{path/to/references.bib}

\DeclareNameAlias{sortname}{first-last}

\DeclareCiteCommand{\footcustomcite}{}{%

\footnote{\printnames[author]{author},

\printfield{year},
\printfield{journaltitle}
\printfield{booktitle}}}{;}{}

Thomas Thurnherr

!D. E. Knuth and D. Bibby (1986). The TgXbook. Vol. A.
Addison-Wesley, Reading, MA, USA.

2Knuth and Bibby 1986.

3D. E. Knuth and D. Bibby, 1986,

Figure 4: Full, authoryear-style, and custom citation
of The TEXbook.

% Citations
\footcustomcite{knuth86}

Figure 4 shows a citation (for The TEXbook) in the
full, authoryear, and above custom styles.

7 Creating handouts

If you teach a class or give a talk it might be appro-
priate to provide handouts. The beamer document
class option handout reduces overlays to a single slide
and removes the navigation bar at the bottom. In
addition, we can combine multiple slides to a single
physical page, using the pgfpages package [4]:

\documentclass [handout] {beamer}

\usepackage{pgfpages}

\pgfpagesuselayout{4 on 1}[adpaper,
border shrink=5mm, landscape]

References

[1] beamer — A ITEX class for producing
presentations and slides. http://www.ctan.
org/pkg/beamer. Accessed: 2014-02-19.

[2] biblatex— Bibliographies in IWTEX using
BIBTEX for sorting only. http://www.ctan.
org/pkg/biblatex. Accessed: 2014-02-19.

[3] graphicx — Enhanced support for graphics.
http://www.ctan.org/pkg/graphicx.
Accessed: 2014-02-19.

[4] pgf— Create PostScript and PDF graphics
in TEX. http://www.ctan.org/pkg/pgf.
Accessed: 2014-02-19.

[5] Joseph Wright. The beamer class: Controlling
overlays. TUGboat, 35(1):31-33, 2014.

¢ Thomas Thurnherr
texblog (at) gmail dot com
http://texblog.org

TUGDboat, Volume 35 (2014), No. 1

The beamer class: Controlling overlays
Joseph Wright

There was a question recently on the TEX StackEx-
change site (Gil, 2014) about the details of how slide
overlays work in the beamer class (Tantau, Wright,
and Mileti¢, 2013). The question itself was about
a particular input syntax, but it prompted me to
think that a slightly more general examination of
how overlays would be helpful to beamer users.

A word of warning before I start: don’t overdo
overlays! Having text or graphics appear or disappear
on a slide can be useful but is easy to over-use. I'm
going to focus on the mechanics here, but that doesn’t
mean that they should be used in every beamer frame
you create.

1 Overlay basics

Before we get into the detail of how beamer deals
with overlays, I'll first give a bit of background to
what they are. The beamer class is built around the
idea of frames:

\begin{frame}
\frametitle{A title}
% Frame content

\end{frame}

which can produce one or more slides: individual
pages of output that will appear on the screen. These
separate slides within a frame are created using over-
lays, which is the way the beamer manual describes
the idea of having the content of individual slides
varying. Overlays are “contained” within a single
frame: when we start a new frame, any overlays
from the previous one stop applying.

The most basic way to create overlays is to
explicitly set up individual items to appear on a par-
ticular slide within the frame. That’s done using the
(optional) overlay argument that beamer enables for
many document components; this overlay specifica-
tion is given in angle brackets. The classic example
is a list, where the items can be made to appear one
at a time.

\begin{frame}
\begin{itemize}
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide
\item<3-> Visible from the 3rd slide

\end{itemize}
\end{frame}
As you can see, the overlay specification here is
simply the first slide number we want the item to be
on followed by a - to indicate “and following slides”.

31

We can make things more specific by giving only a
single slide number, giving an ending slide number
and so on.

\begin{frame}
\begin{itemize}
\item<1> Visible on the 1st only
\item<-3> Visible on the
1st to 3rd slides
\item<2-4,6> Visible on the
2nd to 4th slides, and the 6th slide
\end{itemize}
\end{frame}

The syntax is quite powerful, but there are at
least a couple of issues. First, the slide numbers
are hard-coded. That means that if I want to add
something else in before the first item I've got to
renumber everything. Secondly, I'm having to repeat
myself. Luckily, beamer offers a way to address both
of these concerns.

2 Auto-incrementing the overlay

The first tool beamer offers is the special symbol +
in overlay specifications. This is used as a place
holder for the “current overlay”, and is automatically
incremented by the class. To see it in action, I'll
rewrite the first overlay example without any fixed
numbers.

\begin{frame}
\begin{itemize}
\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\item<+-> Visible from the 3rd slide

\end{itemize}
\end{frame}

What’s happening here? Each time beamer finds
an overlay specification, it automatically replaces all
of the + symbols with the current overlay number.
It then advances the overlay number by 1. So in the
above example, the first + is replaced by a 1, the
second by a 2 and the third by a 3. So we get the
same behaviour as in the hard-coded case, but this
time if I add another item at the start of the list I
don’t have to renumber everything.

There are of course a few things to notice. The
first overlay in a frame is number 1, and that’s what
beamer sets the counter to at the start of each frame.
To get the second item in the list to appear on slide 2,
we still require an overlay specification for the first
item: I could have skipped the <1-> in the hard-
coded example and nothing would have changed. The
second point is that every + in an overlay specification
gets replaced by a given value. We'll see later there

The beamer class: Controlling overlays

32

are places you might accidentally add a + to mean
“advance by 1”: don’t do that!

3 Reducing redundancy

Using the + approach has made our overlays flexible,
but I’'ve still had to be repetitive. Handily, beamer
helps out there too by adding an optional argument
to the list which inserts an overlay specification for
each line:

\begin{frame}
\begin{itemize} [<+->]
\item Visible from the 1st slide
\item Visible from the 2nd slide
\item Visible from the 3rd slide

\end{itemize}
\end{frame}

Notice that this is needs to be inside the “nor-
mal” [...] set up for an optional argument. Ap-
plying an overlay to every item might not be exactly
what you want: you can still override individual lines
in the standard way.

\begin{frame}
\begin{itemize} [<+->]
\item Visible from the 1st slide
\item Visible from the 2nd slide
\item Visible from the 3rd slide
\item<1-> Visible from the 1st slide

\end{itemize}
\end{frame}
Remember not to overdo this effect: just because
it’s easy to reveal every list line by line doesn’t mean
you should!

4 Repeating the overlay number

The + syntax is powerful, but as it always increments
the overlay number it doesn’t allow us to remove the
hard-coded numbers from a case such as

\begin{frame}
\begin{itemize}
\item<1-> Visible from the 1st slide
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide
\item<2-> Visible from the 2nd slide

\end{itemize}
\end{frame}

For this case, beamer offers another special symbol,
a single period ‘.’; as in:

\begin{frame}
\begin{itemize}

Joseph Wright

TUGboat, Volume 35 (2014), No. 1

\item<+-> Visible from the 1st slide
\item<.-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\item<.-> Visible from the 2nd slide

\end{itemize}
\end{frame}

What happens here is that . can be read as
“repeat the overlay number of the last +”. So the
two + overlay specifications create one slide each,
while the two lines using . in the specification 'pick
up’ the overlay number of the preceding +. (The
beamer manual describes the way this is actually
done, but I suspect that’s less clear than thinking of
this as a repetition!)

Depending on the exact use case, you might
want to combine this with the “reducing repeated
code” optional argument, with <.-> as an override.

\begin{frame}
\begin{itemizel} [<+->]
\item Visible from the 1st slide
\item<.-> Visible from the 1st slide
\item Visible from the 2nd slide
\item<.-> Visible from the 2nd slide

\en<‘i:{1:.temize}
\end{frame}

5 Offsets

A combination of + and . can be used to convert
many “hard-coded” overlay set ups into “relative’
ones, where the slide numbers are generated by
beamer without you having to work them out in
advance. However, there are still cases it does not
cover. To allow even more flexibility, beamer has
the concept of an “offset”: an adjustment to the
number that is automatically inserted. Offset values
are given in parentheses after the + or . symbol they
apply to, for example:

)

\begin{frame}
\begin{itemize}
\item<+(1)-> Visible from the 2nd slide
\item<+(1)-> Visible from the 3rd slide
\item<+—> Visible from the 3rd slide
\end{itemize}
\end{frame}

Notice that this adjustment only applies to the
substitution, so both the second and third lines above
end up as <3-> after the automatic replacement. If
you try the demo, you’ll also notice that none of the
items appear on the first slide!

Perhaps a more realistic example for where an
offset is useful is the case of revealing items “out of

TUGDboat, Volume 35 (2014), No. 1

order”, where the full list makes sense in some other
way. With hard-coded numbers this might read

\begin{frame}
\begin{itemize}
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide

\end{itemize}
\end{frame}
which can be made “flexible” with a set up such as

\begin{frame}
\begin{itemize}
\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\item<. (-1)-> Visible from the
1st slide
\item<.-> Visible from the 2nd slide

\end{itemize}
\end{frame}
or the equivalent
\begin{frame}
\begin{itemize}
\item<+-> Visible from the 1st slide
\item<. (1)-> Visible from the 2nd slide
\item<.-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide

\end{itemize}
\end{frame}

As shown, we can use both positive and negative
offsets, and these work equally well for + and . auto-
generated values. You have to be slightly careful with
negative offsets; while beamer will add additional
slides for positive offsets, if you offset to below a
final value of 0 then errors will crop up. With this
rather advanced setup, which version is easiest for
you to follow will be down to personal preference.

Notice that positive offsets do not include a +
sign, but are just given as an unsigned integer: re-
member what I said earlier about all + symbols being
replaced. If you try something like <+(+1)>, your
presentation will compile but you’ll have a lot of
slides!

6 Pausing general text

The beamer class offers a very simple \pause com-
mand to split general material into overlays. A classic
problem that people run into is combining that idea
with the + approach to making overlays. For example,
the following creates four slides:

33

\begin{frame}
\begin{itemize}
\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\end{itemize}
\pause
Text after the list
\end{frame}

If you read the beamer manual carefully, this is what
is supposed to happen here, but the more important
question is how to get what you (probably) want:
three slides.

The answer is to use \onslide: the \pause
command is by far the most basic way of making
overlays, and simply doesn’t “know” how to work
with +-. In contrast, \onslide uses exactly the same
syntax we’ve already seen for overlays:

\begin{frame}
\begin{itemize}
\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\end{itemize}
\onslide<+->
Text after the list
\end{frame}

As we are then using the special + syntax for all of
the overlays, everything is properly tied together and
gives the expected result: three slides.

7 Summary

The beamer overlay feature can help you set up
complex and flexible overlays to generate slides with
dynamic content. By using the tools carefully, you
can make your input easier to read and maintain.

References

Gil, Yossi. “Relative overlay specification in
beamer?” http://tex.stackexchange.com/q/
154521, 2014.

Tantau, Till, J. Wright, and V. Mileti¢. “The
beamer class”. Available from CTAN,
macros/latex/contrib/beamer, 2013.

¢ Joseph Wright
2, Dowthorpe End
Earls Barton
Northampton
NN6 ONH
United Kingdom
joseph.wright (at) morningstar2
dot co dot uk

The beamer class: Controlling overlays

34

Bexes and mere peves

Ivan R. Pagnossin

Abstract

Boxes are a key concept in (M) TEX as well as an useful
tool, though not a very well known one. I believe this
is due to the success of ' TEX in providing a high level
interface to TEX, which allows the user to produce
beautiful documents without getting acquainted with
the concept of boxes. But it is useful to know the
box concept because it enhances our understanding
of TEX, helps us to avoid and solve problems and can
even propose solutions for unusual circumstances.

In this paper we reproduce, step by step, the
reflection effect in the title of this article in order to
gain some knowledge of the box concept.

1 Box basics

Among the fundamental ingredients of a I¥TEX doc-
ument, there are bozres: imaginary rectangles which
enclose letters, lines, pages, paragraphs, figures, ta-
bles etc. Indeed, TEX does not typeset letters or
characters, lines ... but boxes!

You may have already used boxes to avoid break-
ing some word or maybe to frame an equation. But
they are far more useful than this. A simple but
instructive example is the reflection effect in the title
of this paper, which requires one customized box.
Let’s learn something about it.

Figure 1 shows the box associated with the let-
ter g. It has three dimensions: height, width and
depth. It is these dimensions that KTEX actually
cares about, not the content of the box. In other
words, IXTEX does not “see” the letter g, only its
box. This is the important fact to understand.

We can ask WTEX to show us this box: just write
\framebox{g}. Well, first we must set \fboxsep to
zero, in order to remove the extra space around g:
\setlength{\fboxsep}{Oin}.

Much more important than just showing the
box, \framebox builds a box with whatever you
want inside it. For instance, \framebox{Boxes}.
Now, Boxes is a single box, as unbreakable as the
letter g itself. By the way, this is another property
to keep in mind: boxes cannot be broken.

Another interesting property is this: the con-
tents of a box need not lie inside it. You may have
noticed that, given the contents as an argument, the
\framebox command sets the dimensions of the box
to those of the contents (in reality, to the “sub-boxes”
that compose the contents). But you can define the
dimensions explicitly as well. For example,

\framebox[.67in] {Boxes}

Ivan R. Pagnossin

TUGDboat, Volume 35 (2014), No. 1

width
—

height

—— «— baseline

depth I

reference point

Figure 1: The dimensions of a box. Everything that
is visible in a document produced by KTEX is in one or
more boxes, which is why they are so fundamental.

produces [Boxes 1| a box % in wide. That is, a box
which occupies more space than its contents. You
can also define the alignment of the content with the
box, to the left, center or right, as shown below:

o \framebox[.67in] [1]{Boxes}
o \framebox[.67in] [c]{Boxes}
o \framebox[.67in] [r]{Boxes}

In a similar fashion, we may create a box which
occupies less space than its contents; a zero-width
box, for instance:

\framebox [0in] [1]{Boxes}

Try it yourself and see that Boxes overlaps the
text at its right. This happens because, as we have
seen, INTEX uses the dimensions of the letters (boxes)
to place them side by side in a row. However, the box
we have just created occupies no (horizontal) space.
It looks like it is not there, though its contents are
(try also changing the alignment parameter).

2 Reflecting, scaling, coloring

Another command we will need to produce the re-
flection effect is \scalebox, defined in the package
graphicx. Its syntax is \scalebox{f,}[f,1{a boz}.
It changes the dimensions of the box and its contents
according to the horizontal and vertical scaling fac-
tors f, and f, (respectively) and creates a new box
that encloses this new content. Thus, as a first step

toward our goal, to get B OXE;eBoxes we write

\scalebox{1}[-1]{Boxes}Boxes

This means we instruct ITEX to multiply the
width by f, = 1 (hence, nothing changes on the
horizontal) and the height (> 0 in our case) and the
depth (= 0) by f, = —1. As a result, we have a
vertical reflection of Boxes. A hint: the commands
defined by graphicx receive boxes as arguments, not
just figures (which are boxes too). Since the package
was designed to handle figures, it is common to think

Boxes]
[Boxes]
[Boxed

Boxee

Boxes

Reyes

Beoses

baseline —

TUGDboat, Volume 35 (2014), No. 1

that its commands apply only to figures, but this is
not true.

Let’s proceed. How can we place below

Boxe62
Boxes? Answer: by constructing it in a way that

occupies no horizontal space, that is, by putting it in
a zero-width box (new code in black, previous code
in gray):

\makebox [0in] [1]{\scalebox{1}[-1]{Boxes}}Boxes

We have also swapped \framebox for \makebox.

These two commands are equivalent, except that
the former draws a frame around the box, while the
latter does not.

Finally, we choose the reflection color (use the
package xcolor):

\makebox[0in] [1]{\scalebox}{1}[-11{%
\textcolor{red!80}{Boxes}}Boxes

The sequence below illustrates the changing of
the box width, from its natural width (defined by the
content) down to zero. Notice that the non-inverted
Boxes always starts immediately after the frame
(the box), not after the content (B0%62),

M};ioxes nggces

3 Boxes upon boxes

Boxes

BO7H Beses

There are boxes far more complex than these. As I
mentioned, everything that is visible in a document
produced by KTEX is in one or more boxes. There
are even invisible elements in your document that are
boxes too. An example is the paragraph indentation,
which is nothing more than an empty box of width
\parindent. In all cases, all of the concepts we have
just seen remain valid.

Let’s see an example. The line below contains
three boxes plus some filling lines (which are boxes
t00): the first is an entire paragraph, the second is a
figure and the third a mathematical table (or matrix,
if you prefer). All of them have height, width and
depth, are unbreakable, and are placed side by side
with their reference points aligned (fig. 1) over an
imaginary line called the baseline, represented by the
horizontal filling lines.

G |fcose — sinp 0
Tostshorr eampld_Ladial || sing cose 0 |
paragraph. A line or two| O O 1

The paragraph box is aligned on the baseline
of its first line. The figure, on the other hand, in-
serted with the \includegraphics command (pack-
age graphicx), has depth zero (but since we’ve en-
closed it in an \fbox for the example, it is not quite

35

zero here). Finally, the matrix has unequal height
and depth (it’s centered on the math axis; the WTEX
code that produces this line is at the end of this
paper). The important thing here is to notice that
the placement of all these boxes follow
exactly the same rules as those followed
by letters, since they are all in boxes.

So, whenever you insert a figure or table in your
document, see them as “big g letters”. In other
words, see the boxes!

4 Further reading

To learn more about this subject, you can study
the environment minipage, the commands \parbox,
\raisebox and \rule in section 4.7 of [1] and/or
appendix A.2 of [2]. Chapter 11 of [3] is mandatory.
Moreover, have a look at the commands defined by
the package graphicx.

Appendix: Our unusual line of text

The code used to produce the unusual text line dis-
cussed above in this paper is shown below. You will
need the packages graphicx and amsmath to run it.
\setlength\fboxsep{Opt}\noindent\hrulefill
\fbox{\begin{minipage} [t]1{0.16\textwidth}

\setlength{\parindent}{lem}

\tiny Just a short example paragraph.

A line or two or three. That is all.

\end{minipage}}%
\hrulefill
\fbox{/

\includegraphics [width=0.05\textwidth] {img}}’
\hrulefill
\fbox{$\left (\begin{matrix}

\cos\varphi & -\sin\varphi & O \\

\sin\varphi & \cos\varphi & 0 \\

0 & O & 1
\end{matrix}\right) $}%
\hrulefill

Acknowledgments

The author thanks Karl Berry and Barbara Beeton
for invaluable help and improvements to this article.

References

[1] H. Kopka and P. W. Daly. A Guide to ITgX.
Addison-Wesley, 3'4 edition, 2004.

[2] F. Mittelbach and M. Goossens. The IMTEX
Companion. Addison-Wesley, 2°¢ edition, 2004.

[3] D. E. Knuth. The TEXbook. Addison-Wesley,
1984.

¢ Ivan R. Pagnossin
ivan dot pagnossin (at) gmail
dot com

Boxes and more boxes

36

Glisterings: Glyphs, long labels
Peter Wilson

Ek gret effect men write in place lite;
Th’ entente is al, and nat the lettres space.

Troilus and Criseyde, GEOFFREY CHAUCER

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine. This installment
presents some items about glyphs.

1 Asterism

A symbol called an asterism is a simple kind of or-
nament consisting of three asterisks, and is supplied
as a glyph in some fonts. It is typically used as an
anonymous division, looking like this:

#%

Stephen Moye [8] posted a macro to make one
if it was not available otherwise. This was based on
some earlier code from Peter Flynn [4]. The code
below is my version.

\newcommand*{\asterism}{%

\raisebox{-.3em}[1em] [Oem]{/% OK for 10-12pt
\setlength{\tabcolsep}{0.05em}/,
\begin{tabular}{@{}cc@{}}%

\multicolumn{2}{c}*\\[-.75eml%
*E*Y,

\end{tabular}y,

1}

The asterism above was printed by:

\par{\centering \asterism\par}

2 Raising a character

‘Maximus_ Rumpas’ wrote to ctt along the following
lines:

I am writing some Latin text within a document:
GALL : REG : IACO : MAG : BRITA : REG
I need to raise the colon between the abbreviated
text to the centre of the text line rather than, as
normal, aligned at the bottom of the text. I use
\textperiodcentered for a single period but I can’t
find anything similar for colons.

Heiko Oberdiek [9] responded with:

The following solution centers the colon using an
uppercase letter for comparison. Also it makes the
colon active inside an environment for easier writing.
\documentclass{article}

\begingroup
\lccode‘\~=‘\:%
\lowercase{\endgroup
\newenvironment{vccolon}{%

Peter Wilson

TUGboat, Volume 35 (2014), No. 1

\catcode‘\:=\active
\let~\textcoloncentered
\ignorespaces
}{\ifhmode\unskip\fi}}
\newcommand{\textcoloncentered}{}
\DeclareRobustCommand*{\textcoloncentered}{%
\begingroup
\sbox0{T}/
\sbox2{:}%
\dimen0=\htO0 %
\advance\dimen0 by -\ht2 %
\dimenO=.5\dimen0 %
\raisebox{\dimenO}{:}%
\endgroup}

\begin{document}
\begin{vccolon}

GALL : REG : IACO : MAG :
\end{vccolon}
\end{document}

BRITA : REG

Following on from this Dan Luecking suggested
using a \valign:

\def\textcoloncentered{/
\valign{&##\cr\vphantom{T}\cr\vfil\hbox{: 1}/,
\vfil\cr}}

also remarking that perhaps a simple box raised by

some multiple of ex would do as well.

I tried all three suggestions and decided that

\DeclareRobustCommand*{\textcoloncentered}{’
\raisebox{.2ex}{:}}

gave a satisfying result, also enabling the height to
be adjusted to optically center the colon if necessary..
Heiko’s result:

GALL : REG : TACO : MAG : BRITA : REG
Dan’s result:

GALL : REG : TIACO : MAG : BRITA : REG
My result:

GALL : REG : TACO : MAG : BRITA : REG

3 Boxing a glyph

Paul Kaletta wanted to be able to draw a box around
a glyph similar to the example in chapter 11 of The
TEXbook. Herbert Vof§ responded with [11] (slightly
edited):
\documentclass{article}
\usepackage [T1] {fontenc}
\usepackage{lmodern}
\newsavebox\CBox
\makeatletter
\def\Gbox#1{\begingroup

\unitlength=1pt

\fboxsep=0pt\sbox\CBox{#11}/

TUGDboat, Volume 35 (2014), No. 1

\leavevmode
\put (0,0){\1line(1,0) {\strip@pt\wd\CBox1}1}/
\fbox{#1}/,
\put (-\strip@pt\wd\CBox,0) {\circlex{4}}
\endgroup}
\makeatother
\begin{document}
\begingroup
\fontsize{2cm}{2.2cm}\selectfont
\Gbox{g}\Gbox{r}\Gbox{f}/
\Gbox{’}\Gbox{, }\Gbox{T}
\endgroup
\end{document}

Herbert’s demonstration code results in:

o

4 Glyph widths

‘PmI’ wrote to ctt:

I'm trying to put some text in a box, so that I
can calculate the boxr dimensions, but neither hbox
nor mbox seem to want to perform linebreaks, and
parbor needs a width argument, which is actually
what I want to compute so it’s useless ... example
follows:

\filltestbox{I need \\ the width \\
of this text}
\begin{minipage}{\testboxwidth}

Several respondents mentioned that the varwidth
package [1] does this, but two other solutions were
provided for when the text was simple [3].

Ulrike Fischer proposed using a tabular and
measuring its width.

\newsavebox\testbox
\newcommand{\filltestbox} [1]{%
\savebox\testbox{/,

\begin{tabular}{@{}1@{}}#1\end{tabular}}}

\newcommand*{\testboxwidth}{\the\wd\testbox}

Alternatively, as an exercise Donald Arseneau,
the author of the varwidth package, proposed this:
\newcommand{\filltestbox}[1]{%

\setbox\testbox\vbox{%
\def\\{\unskip\egroup\hbox\bgroup
\ignorespaces}¥%
\hbox\bgroup\ignorespaces #1\unskip\egroupl}}
which makes a vbox (called \testbox) containing a
list of hboxes whose contents are the pieces of text
between \\.

In my limited testing, the two approaches yield

the same final result. For instance:

\filltestbox{Some \\

37
text of which I want to know \\
the width. \\

There can be \\
only one paragraph.}
\fbox{%
\begin{minipage}{\testboxwidth}
\usebox\testbox
\end{minipage}?}
results in:
Some
text of which I want to know
the width.
There can be
only one paragraph.
5 Font size
Gonzalo Medina Arellano asked on ctt:
Let’s say I use 12pt as a class option. How

can I find the exact values of the size obtained with
the standard commands \tiny, \scriptsize, ...,
\huge, and \Huge ?

Several respondents, Bob Tennent [10] among
them, suggested looking at the appropriate .clo file,
such as sizel2.clo for the article or report classes’
12pt option or bk12.clo for the book class, which
lists the font and baseline sizes for the several size
commands.

Dan Luecking [6] added to this, saying (edited
a bit):

You can determine the current font size within
a document without knowing what size command was
last issued. The macro \f@size holds the font size
[as a number (10, 12, 14. 4, ...)] and is updated
with each size change. For convenience we can define
another macro without an @ sign to access it, as in:
\makeatletter

\newcommand*{\currentfontsize}{\f@size}
\makeatother
Then \currentfontsize would print it and
\typeout{\currentfontsize}
would display it on the terminal screen and in the
log file.

It turns out that the font sizes are the same in
size*.clo and book*clo (the differences are in var-
ious margin settings). The unofficial IWTEX reference
manual provides a table of the font sizes at [5].

I don’t believe in labels. I want to do the best I
can, all the time. I want to be progressive without
getting both feet off the ground at the same time.

Television and radio interview, March
15, 1964, LyNDON B. JOHNSON

Glisterings: Glyphs, long labels

38

6 Long labels

Ernest posted to comp.text.tex saying [2]:

I'm trying to change the description environ-
ment, so that when labels exceed a certain length, the
text following the label starts in the next line instead
of starting in the same line. The INTEX Companion
book explains how to do this, however, when I’ve tried
I've found that the lines that contain a long label are
typeset a little bit too close to the previous line, not
with the usual baselineskip . ..

The standard description environment uses
\descriptionlabel for setting the contents of the
\item macro. The Companion [7, §3.3] describes
various methods of modifying the standard layout by
using a different definition for \descriptionlabel
and/or creating a new kind of description list.
Ernest’s requirement can be met by a modified ver-
sion of \descriptionlabel, the default definition
of which is:

\newcommand*{\descriptionlabel} [1]{%
\hspace{\labelsep}’
\normalfont\bfseries #1}

The following is an example of the default ap-

pearance of a description list:

Short A short label.

Longer label A longer label.

A very long label exceeding the available width
A long label with the text also longer than a
single line.

Medium label The more typical length of a label
and some text.

As you can easily see, it does not handle long
\item labels in a graceful manner.

This version of the \descriptionlabel meets
Ernest’s requirements:

\usepackage{calc} 7 or xparse
\newlength{\dlabwidth}
\newcommand*{\widedesclabell}[11{}
\settowidth{\dlabwidth}{\textbf{#1}}/
\hspace{\labelsepl}/
\ifdim\dlabwidth>\columnwidth
\parbox{\columnwidth-\labelsepl}’%
{\textbf{#1}\strut}y,
\else
\textbf{#1}
\fi}
\let\descriptionlabel\widedesclabel

which, when applied to the previous example yields:

Peter Wilson

TUGboat, Volume 35 (2014), No. 1

Short A short label.

Longer label A longer label.

A very long label exceeding the available

width
A long label with the text also longer than a
single line.

Medium label The more typical length of a label
and some text.

References

[1] Donald Arseneau. The varwidth package,
March 2009. http://mirror.ctan.org/
macros/latex/contrib/varwidth.

[2] Ernest. Description environment. Post to
comp.text.tex newsgroup, 17 June 2010.

[3] Ulrike Fischer and Donald Arseneau.
Re: line breaks in boxes (or ‘how do i get
paragraph parsing in hbox/mbox?’).
Post to comp.text.tex newsgroup,
26-27 November 2009.

[4] Peter Flynn. Re: Uncommon typography. Post
to comp.text.tex newsgroup, 4 June 2007.

[5] George Greenwade et al. BWTEX: An unofficial
reference manual. http://svn.gna.org/
viewcvs/*checkout*/latexrefman/trunk/
latex2e.html#Font-styles. Package home
page: http://home.gna.org/latexrefman.

[6] Dan Luecking. Re: How to find the fontsize?
Post to comp.text.tex newsgroup,

24 August 2010.

[7] Frank Mittelbach and Michel Goossens.

The IATEX Companion. Addison Wesley,
second edition, 2004. ISBN 0-201-36299-6.

[8] Stephen Moye. Re: asterism. Post to xetex
mailing list, 11 January 2010.

[9] Heiko Oberdiek. Re: Raising a colon to
center. Post to comp.text.tex newsgroup,
23 November 2009.

[10] Bob Tennent. Re: How to find the fontsize?
Post to comp.text.tex newsgroup,
24 August 2010.

[11] Herbert Vofi. Re: How to draw a box
around the boundaries of a glyph? Post to
comp. text.tex newsgroup, 27 March 2009.

o Peter Wilson
12 Sovereign Close
Kenilworth, CV8 15Q
UK
herries dot press (at)
earthlink dot net

TUGDboat, Volume 35 (2014), No. 1

The pkgloader and 1lt3graph packages:
Toward simple and powerful package
management for BTEX

Michiel Helvensteijn

Abstract

This article introduces the pkgloader package. I re-
cently wrote this package to address one of the
major frustrations of ITEX: package conflicts. It
also introduces 1t3graph, a WTEX3 library used by
pkgloader to do most of the heavy lifting.

1 Introduction

KTEX package conflicts are a common source of frus-
tration. If you are reading this article, you're proba-
bly experienced enough with I TEX to have encoun-
tered them more than once. I cannot improve upon
the words of Freek Dijkstra [3] on the subject:

“Package conflicts are a hell.”

Package conflicts can exist because of the sheer power
of TgX [4], the language on which IATEX is based.
Not only is it Turing complete [8], but most of the
language can be redefined from within the language
itself. This was famously demonstrated with the TEX
script xii.tex, written by David Carlisle [1] (if you
haven’t seen it yet, download and compile it now;
it’s awesome). I¥TEX packages can not only add new
definitions, but also remove and modify existing ones.
They can offer domain specific languages [6], monkey-
patch the core language to hook into existing com-
mands [7], and even change the meaning of individual
symbols by altering their category code [5]. Put sim-
ply, IMTEX packages have free rein. This power can be
quite useful, but makes it too easy for independent
package authors to step on each others’ toes.

A different type of conflict concerns package op-
tions. If a package is requested more than once with
different options, IXTEX bails out with an error mes-
sage. This is an understandable precaution. Because
of the way package loading works, I¥TEX has no way
to apply the second set of options. The package will
have already been loaded with the first set.

Most package authors are well aware of these
problems. Document authors are told to avoid cer-
tain package combinations, or to load packages in
some specific order. Some of the larger packages are
designed to test for the presence of other packages in
order to circumvent known conflicts. Unfortunately,
this is all done in an ad hoc fashion.

Solving these problems on a case-by-case basis
takes time and effort for both document and package
authors. It pollutes the code, makes maintenance
more difficult, and confuses new users. We need

39

a systematic approach to resolve package conflicts.
This is where the power of TEX comes in handy. A
package can be written to oversee the package loading
process: a INTEX package manager. It should be easy
enough to use for the casual document author, yet
powerful enough to allow package authors to hook
into it to simplify their development process.

Section 2 introduces pkgloader, which I wrote
to fulfill this role. Reading this section should be
enough to give you a general idea of how to use it.
Section 3 describes 1t 3graph, a utility library using
the MTEX3 programming layer which does most of
the heavy lifting for pkgloader. Finally, Section 4
goes through some of the more advanced and planned
features of pkgloader.

Here is a quick glimpse of pkgloader in use:

\RequirePackage{pkgloader}
\documentclass{article}
\usepackage{algorithm}

\usepackage{hyperref} any order
\usepackage{float}

\begin{document}

\end{document}

Warning: This package is still under development.
Some of the features described in this article may not
yet be fully implemented, and the presented syntax
may still change in the coming months. However, its
main purpose and the fundamental ideas underlying
its implementation are here to stay.

Community collaboration: I intend for the de-
velopment and maintenance of this package to be as
open as possible to community collaboration. This
package has a very wide scope, and is rather invasive.
If done right, it has the potential to become widely
used and improve the INTEX experience for document
authors and package authors alike. If done wrong, it
will break things and annoy many people.

I hope to bring some useful domain knowledge
to the development effort, but there are many KTEX
gurus out there who have more experience and insight
than I do. If you like the idea of pkgloader and
would like to contribute in any way, I encourage you
to contact me personally, or to file issues or pull
requests through the pkgloader Github page:
github.com/mhelvens/latex-pkgloader

2 The pkgloader package (Part 1)

This package was inspired by my PhD research [2],
which happens to be all about conflicts between inde-
pendently developed modules. T also took cues from

The pkgloader and 1t3graph packages: Toward simple and powerful package management for BTEX

40

similar libraries and standards for other languages,
such as JavaScript, which is surprisingly similar to
ETEX in many ways.

2.1 How to use the package manager

IMTEX packages are generally loaded with one of
the commands \usepackage, \RequirePackage, or
\RequirePackageWithOptions. In a similar way.
document classes are loaded with \documentclass,
\LoadClass or \LoadClassWithOptions. Normally,
when such a command is reached, the relevant class
or package is loaded on the spot. The idea behind
pkgloader is to make it the very first file you load:
before the document class, and before any other pack-
age. Thus, the main file for a WTEX document using
pkgloader would be structured like this:

\RequirePackage{pkgloader}
(document class and packages in any order)

\LoadPackagesNow)
} optional

\begin{document}

\end{document}

The area between \RequirePackage{pkgloader}
and \LoadPackagesNow is called the pkgloader area.
Inside this area, the loading of all classes and pack-
ages is postponed. It also ends automatically upon
reaching the end of the preamble. The package man-
ager analyzes the intercepted loading requests and
executes them in the proper order and with the
proper options, lifting this burden from the user.

2.2 A conflict resolution database

The pkgloader package does not analyze the actual
code of each package in order to detect conflicts. In
fact, because TEX is Turing complete, this would be
mathematically impossible. The package manager
is backed by a database of rules for recognizing and
resolving known conflicts, as well as performing other
neat tricks. The following shows some examples:

\Load {float} before {hyperref}
\Load {algorithm} after {hyperref}
\Load {fixltx2e} always early
because {it fixes some imperfections
in LaTeX2e}
\Load error if {algorithms && pseudocode}
because {they provide the same
functionality and conflict
on many command names}

The first two rules encode some workarounds for the
hyperref package, which is notorious for causing
conflicts. The first one says that float must be
loaded before hyperref. Similarly, the second rule

Michiel Helvensteijn

TUGDboat, Volume 35 (2014), No. 1

ensures that hyperref is loaded before algorithm.
These are the rules that would allow the code on
page 39 to compile without problems. Note that
neither rule actually loads any packages. They simply
tell the package manager how to treat certain pairs
of packages, should they ever be requested together
in a single document.

The third rule states that fixltx2e must al-
ways be loaded, and must be loaded early. The fourth
rule states that the algorithms and pseudocode
packages should never be loaded together. They both
also include a textual reason, which documents the
rule, and is included in certain error messages.

To better understand how these rules work, let’s
dive into their underlying model: a directed graph.

3 The 1t3graph Package

The pkgloader package is written in the experimen-
tal K'TEX3 programming layer expl3, which gives us
something akin to a traditional imperative program-
ming language, with data structures, while loops,
and so on. Let’s face it, TEX is no one’s first choice
for a programming language. But expl3 makes it
bearable. So kudos to the ITEX3 team!

To represent graphs, I wrote a data-structure
package called 1t 3graph.! This library was born as
a means to an end, but has grown into a full-fledged
general-purpose data structure for representing and
analyzing directed graphs.

A directed graph contains vertices (nodes) and
edges (arrows). Using 1t3graph, an example graph
may be defined as follows:

\ExplSyntaxOn

\graph_new:N \1_my_graph
\graph_put_vertex:Nn \1_my_ graph {v}
\graph_put_vertex:Nn \1l_my_graph {w}
\graph_put_vertex:Nn \1_my_ graph {x}
\graph_put_vertex:Nn \1_my_ graph {y}
\graph_put_vertex:Nn \1_my_graph {z}
\graph_put_edge:Nnn \1_my_ graph {v} {w}
\graph_put_edge:Nnn \1_my graph {w} {x}
\graph_put_edge:Nnn \1_my_graph {w} {v}
\graph_put_edge:Nnn \1_my_ graph {w} {z}
\graph_put_edge:Nnn \1_my_graph {y} {z}
\ExplSyntaxOff

Each vertex is identified by a key, which, to this
library, is a string: a list of characters with category
code 12 and spaces with category code 10. An edge
is then declared between two vertices by referring to
their keys. By supplying an additional argument to
the functions above, you can store arbitrary data in

I Bearing the prefix 1t3 rather than the more common
prefix 13 indicates that the package is not officially supported
by the IATEX3 team.

TUGDboat, Volume 35 (2014), No. 1

a vertex or edge for later retrieval. Let’s use TikZ to
visualize this graph:

\newcommand{\vrt}[1]
{\node (#1) {\ttfamily\vphantom{Iy}#1};}
\begin{tikzpicture}[every path/.style=
{line width=1pt, ->}]
\matrix[nodes={circle,draw},
row sep=lcm, column sep=lcm,
execute at begin cell=\vrt]
{v & w & x \\
&y & z \\ };
\ExplSyntaxOn
\graph_map_edges_inline:Nn
\1l_my_graph
{ \draw (#1) to (#2); }
\ExplSyntaxOff
\end{tikzpicture}

Just to be clear, this library does not, inherently,
understand any TikZ. What it does is help you to
analyze the structure of your graph. For example,
does it contain a cycle?

\ExplSyntaxOn
\graph_if cyclic:NTF
\1l_my_graph {Yep} {Nope}
\ExplSyntaxOff

Nope
Indeed, there are no cycles in this graph. While we’re
at it, is vertex w reachable from vertex y?

\ExplSyntaxOn
\graph_acyclic_if_path_exist :NnnTF
\1_my_graph {v} {w} {Yep} {Nope}

\ExplSyntaxOff

Nope
Quite true. Finally, and most importantly, you can

interpret the graph as a dependency graph and list
its vertices in topological order:

\ExplSyntaxOn
\clist_new:N \LinearClist
\graph_map_topological_order_inline:Nn
\1l_my_graph
{ \clist_put_right:Nn
\LinearClist {\texttt{#1}} }
\ExplSyntaxOff
$ \LinearClist $§

V’ w) X7 Y’ Z

41

A topological order is not uniquely determined. The
important thing is that the constraints imposed by
the graph are respected.

4 The pkgloader package (Part 2)

The pkgloader package uses graph vertices to rep-
resent KTEX packages and arrows to encode package
ordering rules. At the end, selected packages are
loaded in topological order.

Let’s take a more detailed look at some of the
features of pkgloader.

4.1 Rules

Each \Load rule can contain a number of different
clauses. We look at them one by one.

It usually contains a package description, con-
sisting of a name, a set of options and a minimal
version, just like the \usepackage command:

\Load [options] {package-name} [version]

It can contain a condition clause, indicating
when the rule should be applied. This takes the form
of a Boolean formula in expl3 style, in which the
atomic propositions are package names:

\Load {pkgl} if {pkg2 || pkg3 && !pkg4d}

This rule would load pkgl if either pkg2 will be
loaded too, or if pkg3 will be loaded but pkg4
will not. Alternatively, the condition clause can
be always, indicating that the rule should be ap-
plied under any conditions. Finally, the keywords
if loaded can be used to apply the rule only if
the package named in the package description is re-
quested anyway. This is the default behavior, but
the keywords can be included to make it explicit.
There is one exception to the structure described
above. Instead of a package description, a rule can
contain the error keyword, followed by a condition
clause, to describe conditions that should never oc-
cur — usually invalid package combinations:

\Load error if {pkgX && pkgY}

When multiple condition clauses are present in a
single rule, their disjunction is used. In other words,
the rule is applied if any of its conditions is satisfied.

A non-error rule may contain an order clause,
to ensure that the package described by the rule
is loaded in a specific order with regard to other
packages:

\Load {2} after {B,C} before {D}

This rule ensures that if package A is ever loaded, it
is never loaded before B or C, and never after . This

The pkgloader and 1t3graph packages: Toward simple and powerful package management for BTEX

42

is where the graph representation comes in. The
above rule would yield a graph like this:

O—(D>—0O

This can take care of specific known package
ordering conflicts. But some packages should, as a
rule of thumb, be loaded before all other packages, or
after all others, unless specified otherwise. A typical
example is the hyperref package, which should
almost always be loaded late in the run. For this,
the early and late clauses may be used:

\Load {hyperref} late

The early and late clauses work by ordering the
package relative to one of two placeholder nodes:

normal late

These two nodes are always present in the graph.
Ordering a package early is intuitively the same as
ordering it ‘before {1}’. And ordering it late is
the same as ordering it ‘after {2}. All packages
that are, after considering all rules, not (indirectly)
ordered ‘before {1} or ‘after {2} are automati-
cally ordered ‘after {1} before {2}’. A rule can
have any number of order clauses, and all are taken
into account when one of the conditions of the rule
is satisfied.

Finally, a rule can be annotated with a reason,
explaining why it was created:

\Load {comicsans} always
because {that font is awesome!}

This text does not have any effect on the behavior of
the rule. It is meant for human consumption, though
should not be formatted in any way. It should be
semantically and grammatically correct when follow-
ing the words “This rule was created because ...”.
It can also be used for citing relevant sources. It is
used in certain pkgloader error messages and may
eventually be used to generate documentation.

4.2 Rulesets

You may be wondering: who makes up these rules?

Short answer: Anyone. Rules can be placed di-
rectly inside the pkgloader area, but they can also
be bundled in a . sty file. By default, pkgloader

Michiel Helvensteijn

TUGDboat, Volume 35 (2014), No. 1

loads a recommended set of rules, allowing the aver-
age user to get started without any hassle. But this
behavior can be overwritten using package options:

\RequirePackage [recommended=false,
my-better-rules]
{pkgloader}

\LoadPackagesNow

This means: the pkgloader—-recommended.sty
file, which is usually preloaded by default, should
not be loaded for this document. Instead, load the
pkgloader-my-better—-rules. sty file.

Take note of the following: every ruleset should
be bundled in a pkgloader—{something).sty file,
and can then be loaded by specifying (something) as
a package option.

So basically, any user can create rules for their
own documents, or distribute custom rulesets, e.g.,
through CTAN. But primarily, I expect two groups
of people to author pkgloader rules:

The BTEX community: The recommended rule-
set would, ideally, be populated further through
the efforts of anyone who diagnoses and solves
package conflicts. Perhaps through websites like
tex.stackexchange. com, or by filing issues
or pull-requests to the pkgloader Github page.

Package authors: pkgloader will eventually be
directly usable for package authors just as for
document authors, to include their own rules
from right inside their packages. Rather than
manually scanning for and fixing potential con-
flicts, they could leverage pkgloader, as in:

\RequirePackage{pkgloader}
\Load me before {some-pkg}
\Load me after {some-other-pkg}
\ProcessRulesNow

It may be possible to apply such rules in the same
ETEX run in which they are encountered. But if
not, the package manager will know what to do in
the next run through the use of auxiliary files. This
functionality has not yet been implemented.

4.3 Error messages

There are two types of error messages that may be
generated by pkgloader.

The first type of error message happens when
an error rule is triggered. It looks like this:

A combination of packages fitting

the following condition was requested:
(condition)

This is an error because (reason).

TUGDboat, Volume 35 (2014), No. 1

The second type of error message is a bit more
interesting. Since rules can effectively come from any
source, it is possible to apply rules that contradict
each other. To give an (unrealistic) example:

\Load {pkgX} always before {pkgY}
because {pkgX is better}
\Load {pkgY} always before {pkgX}
because {pkgY is better}

A potential circular ordering is not necessarily a
problem, so long as both rules are never applied
in the same run. But in this exact example, the
following error message will be generated:

There is a cycle in the requested
package loading order:

pkgX
--1--> pkg¥
-—2--> pkgX
The circular reasoning is as follows:
(1) 'pkgX’ is to be loaded before
"pkg¥’ because pkgX is better.
(2) 'pkg¥’ is to be loaded before

"pkgX’ because pkgY is better.

Whenever this happens, the user may want to re-
consider one of their included rulesets, or file a bug-
report to the responsible party — especially if the
circularity comes from the recommended ruleset.

4.4 Options and versions

The package manager need not be confined to playing
with the package loading order. While intercepting
package loading requests, it will be able to accu-
mulate package options and versions as well, and
then combine them in a multitude of flexible ways.
Possible ways of combining option-lists include:

e Concatenate all option-lists for the same package
into a single list, in any arbitrary order.

e Interpret key=value options, and generate an
error message when two different instances call
for two different values for the same key.

e Provide a tailor-made function for combining
option lists for a specific package.

As for package versions, it would make sense to
take the ‘maximum’ version-string that is encoun-
tered, and use that to load the actual package.

As of this writing, neither of these features has
been implemented.

43

5 Conclusion

I hope this article and the packages described therein
have been useful and/or inspiring. And I hope to
have convinced you that the idea of a IXTEX package
manager is worth pursuing.

Both packages are available on CTAN:
www.ctan.org/pkg/pkgloader
www.ctan.org/pkg/lt3graph

I love feedback, and I love questions. I can
be reached through the e-mail address and website
specified in the signature block below the references.
Any kind of feedback or patches regarding one of the
packages should go through their Github pages:
github.com/mhelvens/latex—pkgloader
github.com/mhelvens/latex—1t3graph

Happy TEXing!
References

[1] David Carlisle. xii.tex, December 1998.
http://www.ctan.org/pkg/xii.

[2] Dave Clarke, Michiel Helvensteijn, and
Ina Schaefer. Abstract delta modeling.
SIGPLAN Notices, 46(2):13-22, February
2011. Proceedings of GPCE’10, October 10-13,
2010, Eindhoven, The Netherlands. http:
//doi.acm.org/10.1145/1942788.1868298.

[3] Freek Dijkstra. LaTeX package conflicts,
June 2012. http://www.macfreek.nl/
memory/LaTeX_package_conflicts.

[4] Donald E. Knuth. The TEXbook.
Addison-Wesley, Reading, MA, USA,
1986.

[5] Seamus. What are category codes?,
April 2011. http://tex.stackexchange.com/
questions/16410/what—-are-category—-codes.

[6] Wikipedia. Domain-specific language, 2014.
http://en.wikipedia.org/wiki/
Domain-specific_language.

[7] Wikipedia. Monkey patch, January 2014.
http://en.wikipedia.org/w/index.php?
title=Monkey_patch&oldid=586056263.

[8] Wikipedia. Turing completeness, 2014.
http://en.wikipedia.org/wiki/Turing_
completeness.

¢ Michiel Helvensteijn
Leiden University,
Niels Bohrweg 1,
2333 CA, Leiden,
the Netherlands
mhelvens+latex (at) gmail dot com
http://mhelvens.net

The pkgloader and 1t3graph packages: Toward simple and powerful package management for BTEX

44

An overview of Pandoc

Massimiliano Dominici

Abstract

This paper is a short overview of Pandoc, a utility
for the conversion of Markdown-formatted texts to
many output formats, including KTEX and HTML.

1 Introduction

Pandoc is software, written in Haskell, whose aim
is to facilitate conversion between some lightweight
markup languages and the most widespread ‘final’
document formats.® On the program’s website [3],
Pandoc is described as a sort of ‘swiss army knife’ for
converting between different formats, and in fact it
is able to read simple files written in BTEX or HTML;
but it is of lesser use when trying to translate ITEX
documents with non-trivial constructs such as com-
mands defined by the user or by a dedicated package.

Pandoc shows its real utility, in my opinion,
when what is needed is to obtain several output
formats from a single source, as in the case of a docu-
ment distributed online (HTML), in print form (PDF
via INTEX) and for viewing on tablets or ebook read-
ers (EPUB). In such cases one may find that writing
the document in a rich format (e.g. BTEX) and con-
verting later to other markup languages often poses
significant problems because of the different ‘philoso-
phies’ that underlie each language. It is advisable, in-
stead, to choose as a starting point a language that is
‘neutral’ by design. A good candidate for this role is a
lightweight markup language, and in particular Mark-
down, of which Pandoc is an excellent interpreter.

In this article we will briefly discuss the concept
of a ‘lightweight markup language’ with particular
reference to Markdown (§2), and then we will re-
view Pandoc in more details (§3) before drawing our
conclusions (§5).

2 Lightweight markup languages:
Markdown

Before getting to the heart of the matter, it is advis-
able to say a few words about lightweight markup
languages (LML) in general. They are designed with
the explicit goal of minimizing the impact of the
markup instructions within the document, with a
particular emphasis on the readability of the text by
a human being, even when the latter does not know

Translation by the author from his original in ArsTgXnica
#15, April 2013, “Una panoramica su Pandoc”, pp. 31-38.

1 Strictly speaking, IATEX isn’t a ‘final’ document format
in the same way PDF, ODF, DOC, EPUB, etc. are. But, from
the point of view of a Pandoc user, INTEX is a ‘final’—or
intermediate, at least — product.

Massimiliano Dominici

TUGDboat, Volume 35 (2014), No. 1

the (few) conventions that the program follows in
order to format the document.

These languages are mainly used in two fields:
documentation of code (reStructuredText, AsciiDoc,
etc.) and management of contents for the web (Mark-
down, Textile, etc.). In the case of code documenta-
tion, the use of an LML is a good choice, because the
documentation is interspersed in the code itself, so it
should be easy to read by a developer perusing the
code; but at the same time it should be able to be
converted to presentation formats (PDF and HTML,
traditionally, but today many IDEs include some
form of visualization for the internal documentation).
In the case of web content, the emphasis is placed
on the ease of writing for the user. Many content
management systems already provide plugins for one
or more of those languages and the same is true for
static site generators? that are usually built around
one of them and often provide support for others.
The various wiki dialects can be considered another
instance of LML.

The actual ‘lightness’ of an LML depends greatly
on its ultimate purpose. In general, an LML con-
ceived for code documentation will be more complex
and less readable than one conceived for web content
management, which in turn will often not be capable
of general semantic markup. A paradigmatic exam-
ple of this second category is Markdown that, in its
original version, stays rigorously close to the mini-
malistic approach of the first LMLs. The following
citation from its author, John Gruber, explains his
intentions in designing Markdown:

Markdown is intended to be as easy-to-read
and easy-to-write as is feasible. Readabil-
ity, however, is emphasized above all else.
A Markdown-formatted document should be
publishable as-is, as plain text, without look-
ing like it’s been marked up with tags or for-
matting instructions.?

The only output format targeted by the refer-
ence implementation of Markdown is HTML; indeed,
Markdown also allows raw HTML code. Gruber has

2 Static site generators are a category of programs that
build a website in HTML starting from source files written in
a different format. The HTML pages are produced beforehand,
usually on a local computer, and then loaded on the server.
Websites built this way share a great resemblance with old
websites written directly in HTML, but unlike those, in the
building process it is possible to use templates, share metadata
across pages, and create structure and content programmati-
cally. Static site generators constitute an alternative to the
more popular dynamic server applications.

3 [1], http://daringfireball.net/projects/markdown/
syntax#philosophy. A significant contribution to the
design of Markdown was made by Aaron Swartz.

TUGDboat, Volume 35 (2014), No. 1

45

Table 1: Markdown syntax: inline elements.

Element Markdown BTEX HTML
Links [1ink] (http://example.net) \href{link}{’
http://example.net} link
Emphasis _emphasis_ \emph{emphasis} emphasis
xemphasis \emph{emphasis} emphasis
Strong emphasis __strong__ \textbf{strong} strong
**kStrongH* \textbf{strong} strong
Verbatim ‘printf () ¢ \verb|printf () | <code>printf ()</code>
Images 1 [A1t] (/path/to/img. jpg) \includegraphics{img} <img src="/path/to/img.jpg"
alt="Alt" />
Table 2: Markdown syntax: block elements.
Element Markdown BTEX HTML
Sections # Title # \section{Title} <h1>Title</h1>
Title ## \subsection{Title} <h2>Title</h2>
Quotation > This paragraph \begin{quote} <blockquote><p>
> will show This paragraph This paragraph
> as quote. will show will show
as quote. as quote.
\end{quote} </p></blockquote>
Itemize * First item \begin{itemize}

*

Second item

\item First item

<1i>First item</1i>

* Third item \item Second item Second item</1li>
\item Third item <1i>Third item</1i>
\end{itemize}
Enumeration 1. First item \begin{enumerate}

<1i>First item</1i>
<1li>Second item</1li>
<1i>Third item</1i>

2. Second item \item First item
3. Third item \item Second item
\item Third item
\end{enumerate}
Verbatim Text paragraph. Text paragraph.
grep -i ’\$’ <file \begin{verbatim}
grep -i ’\$’ <file
\end{verbatim}

<p>Text paragraph.</p>

<pre><code>
grep -i ’\$’ <file
</code></pre>

always adhered to these initial premises and has
consistently refused to extend the language beyond
the original specifications. This stance has caused a
proliferation of variants, so that every single imple-
mentation constitutes an ‘enhanced’ version. Famous
websites like GitHub, reddit and Stack Overflow, all
support their own Markdown flavour; and the same
is true for conversion programs like MultiMarkdown
or Pandoc itself, which also introduce new output
formats. It’s not necessary, here, to examine the
details of the different flavours; the reader can get an
idea of the basic formatting rules from tables 1 and 2.

Of course, in the reference implementation there is
no IXTEX output, so I have provided the most logical
translation. In the following sections we will see how
Pandoc works in practice.

3 An overview of Pandoc

As mentioned in the introduction, Pandoc is pri-
marily a Markdown interpreter with several output
formats: HTML, IATEX, ConTEXt, DocBook, ODF,
OOXML, other LMLSs such as AsciiDoc, reStructured-
Text and Textile (a complete list can be found in [3]).
Pandoc can also convert, with severe restrictions,

An overview of Pandoc

46

a source file in BTEX, HTML, DocBook, Textile
or reStructuredText to one of the aforementioned
output formats. Moreover it extends the syntax of
Markdown, introducing new elements and providing
customization for the elements already available in
the reference implementation.

3.1 Markdown syntax extensions

Markdown provides, by design, a very limited set
of elements. Tables, footnotes, formulas, and biblio-
graphic references have no specific markup in Mark-
down. The author’s intent is that all markup exceed-
ing the limits of the language should be expressed
in HTML. Pandoc maintains this approach (and, for
ITEX or ConTEXt output, allows the use of raw TEX
code) but makes it unnecessary, since it introduces
many extensions, giving the user proper markup for
each of the elements mentioned above. In the follow-
ing paragraphs we’ll take a look at these extensions.

Metadata Metadata for title, author and date can
be included at the beginning of the file, in a text
block, each preceded by the character %, as in the
following example.

% Title

% First Author; Second Author

% 17/02/2013

The content for any of these elements can be
omitted, but then the respective line must be left
blank (unless it is the last element, i.e. the date).

% Title
%
% 17/02/2013

yA
% First Author; Second Author
% 17/02/2013

% Title
% First Author; Second Author

Since version 1.12 metadata support has been
substantially extended. Now Pandoc accepts multi-
ple metadata blocks in YAML format, delimited by
a line of three hyphens (---) at the top and a line
of three hyphens (---) or three dots (...) at the
bottom.? This gives the user a high level of flexibil-
ity in setting and using variables for templates (see
section 3.1).

YAML structures metadata in arrays, thus al-
lowing for a finer granularity. The user may specify
in his source file the following code:

author:

4 YAML Ain’t Markup Language, http://www.yaml.org/.

Massimiliano Dominici

TUGDboat, Volume 35 (2014), No. 1

- name: First Author

- affiliation: First Affiliation
- name: Second Author

- affiliation: Second Affiliation

and then, in the template

$for (author)$

$if (author.name)$

$author.name$

$if (author.affiliation)$ ($author.affiliation$)
$endif$

$else$

$author$

$endif$

$endfor$

to get a list of authors with (if present) affiliations.
As we will see in section 3.1, a YAML block can
also be used to build a bibliographic database.

Footnotes Since the main purpose of Markdown
and its derivatives is readability, the mark and the
text of a footnote should usually be split. It is
recommended to write the footnote text just below
the paragraph containing the mark, but this is not
strictly required: the footnotes could be collected
at the beginning or at the end of the document, for
instance. The mark is an arbitrary label enclosed in
the following characters: [~...]. The same label,
followed by ‘:” must precede the footnote text.
When the footnote text is short, it is possible
to write it directly inside the text, without the label.
The output from all the footnotes is collected at the
end of the document, numbered sequentially. Here
is an example of the input:
Paragraph containing[~longnote] a
footnote too long to be written directly
inside the text.

["longnote]: A footnote too long to be
written inside the text without causing
confusion.

New paragraph.”[A short note.]

Tables Again, syntax for tables is based on consid-
erations of readability of the source. The alignment
of the cells composing the table is immediately visi-
ble in the alignment of the text with respect to the
dashed line that divides the header from the rest
of the table; this line must always be present, even
when the header is void.® When the table includes
cells with more than one line of text, it is mandatory

5 In fact, it is the header, if present, or the first line of the
table that sets the alignment of the columns. Aligning the
remaining cells is not needed, but it is recommended as an
aid for the reader.

TUGDboat, Volume 35 (2014), No. 1

to enclose it between two dashed lines. In this case
the width of each column in the source file is used to
compute the width of the equivalent column in the
output table. Multicolumn or multirow cells are not
supported. The caption can precede or follow the ta-
ble; it is introduced by the markup ‘:’ (alternatively:
Table:) and must be divided from the table itself

by a blank line:

Right Centered Left
Text Text Text
aligned aligned aligned
right center left
New cell New cell New cell

Table: Alignment

There’s an alternative syntax to specify the
alignment of the individual columns: divide columns
with the character ‘|’ and use the character ‘:’ in
the dashed line below the header to specify, through
its placement, the column’s alignment, as shown in
the following example:

Right | Centered | Left
_________ I —
Text | Text | Text
aligned | aligned | aligned
right | center | left

| |
New cell | New cell | New cell

[N

: Alignment by

In the examples above, the cells cannot contain
‘vertical’ material (multiple paragraphs, verbatim
blocks, lists). ‘Grid’ tables (see the example below)
allow this, at the cost of not being to specify the
column alignments.

+——= + B e +
| Text | Lists | Code I

| Paragraph. | * Item 1 | =~~~

| | * Item 2 | \def\PD{% |

| Paragraph. | | \emph{Pandoc} |

| | * Item 3 |~~~ |

+ et St omm o +

| New cell | New cell | New cell |
+——= + e +
Figures As shown in table 1, Markdown allows for

the use of inline images with the following syntax:

! [Alternative text] (/path/image)

where ‘Alternative text’ is the description that
HTML uses when the image cannot be viewed. Pan-
doc adds to that one more feature: if the image is

47

divided by blank lines from the remaining text, it
will be interpreted as a floating object with its own
caption taken from the ‘Alternative text’.

Listings In standard Markdown, verbatim text is
marked by being indented by four spaces or one tab.
To that, Pandoc adds the ability to specify identifiers,
classes and attributes for a given block of ‘verbatim’
material. Pandoc will treat them in different ways,
depending on the output format and the command
line options; in some circumstances, they will sim-
ply be ignored. To achieve this, Pandoc introduces
an alternative syntax for listings of code: instead
of indented blocks, they are represented by blocks
delimited by sequences of three or more tildes (~~~)
or backticks (¢ ¢); identifiers, classes and attributes
must follow that initial ‘rule’; enclosed in braces. In
the following example® we can see a listing of Python
code with, in this order: an identifier, the class that
marks it as Python code, another class that speci-
fies line numbering and an attribute that marks the
starting point of the numbering.

“~~ {#bank .python .numberLines startFrom="5"}
class BankAccount (object):
def __init__(self, initial_balance=0):
self.balance = initial_balance
def deposit(self, amount):
self.balance += amount
def withdraw(self, amount):
self.balance -= amount
def overdrawn(self):
return self.balance < 0
my_account = BankAccount(15)
my_account.withdraw(5)
print my_account.balance

It is possible to use identifiers, class and at-
tributes for inline code, too:

The return value of the ‘printf‘{.C} function
is of type ‘int°‘.

By default, Pandoc uses a simple verbatim en-
vironment for code that doesn’t need highlighting
and the Highlighting environment, defined in the
template’s preamble (see 3.1) and based on Verbatim
from fancyvrb, when highlighting is needed. If the
option --listings is given on the command line,
Pandoc uses the 1stlistings environment from list-
ings every time a code block is encountered.

Formulas Pandoc supports mathematical formu-
las quite well, using the usual TEX syntax. Expres-
sions enclosed in dollar signs will be interpreted as
inline formulas; expressions in double dollar signs

6 From http://wiki.python.org/moin/SimplePrograms.

An overview of Pandoc

48

will be interpreted as displayed formulas. This is all
comfortably familiar to a TEX user.

The way these expressions will be treated de-
pends on the output format. For TEX (KTEX/Con-
TEXt) output, the expressions are passed without
modifications, except for the substitution of the
delimiters for display math: \[...\] instead of
$$...$$. When HTML (or similar) output is re-
quired, the behavior is controlled by command line
options. Without options, Pandoc will try to render
the formulas by means of Unicode characters. Other
options allow for the use of some of the most com-
mon JavaScript libraries for visualizing math on the
web: MathJax, LaTeXMathML and jsMath. It is
also possible, always by means of a command line
switch, to render formulas as images or to encode
them as MathML.”

Pandoc is also able to parse simple macros and
expand them in output formats different from the
supported TEX dialects. This feature, though, is only
available in the context of math rendering.

Citations Pandoc can build a bibliography (and
manage citations inside the text) using a database in
any of several common formats (BIBTEX, EndNote,
ISI, etc.). The database file must always be speci-
fied as the argument of the option --bibliography.
Without other options on the command line, Pan-
doc will include citations and bibliographic entries
as plain text, formatted following the bibliographic
style ‘Chicago author—date’. The user may specify a
different style by means of the option --csl, whose
argument is the name of a CSL style file® and may
also specify that the bibliographic apparatus will
be managed by natbib or biblatex. In this case Pan-
doc will not include in the KTEX output citations
and entries in extended form, but only the required
commands. The options to get this behavior are,
respectively, —-natbib and --biblatex.

The user must type citations in the form [@key1;
@key2;...] or @keyl if the citation should not be
enclosed in round brackets. A dash preceding the
label suppresses the author’s name (when supported
by the citation format). Bibliographic references are
always placed at the end of the document.

7 The web pages for these different rendering engines for

math on the web are http://www.mathjax.org, http://math.

etsu.edu/LaTeXMathML, http://www.math.union.edu/~dpvc/
jsmath and http://www.w3.org/Math.

8 CSL (http://citationstyles.org), Citation Style Lan-
guage, is an open format, XML-based, language to describe
the formatting of citations and bibliographies. It is used in
several citation managers, such as Zotero, Mendeley, and Pa-
pers. A detailed list of the available styles can be found in
http://zotero.org/styles.

Massimiliano Dominici

TUGDboat, Volume 35 (2014), No. 1

references:
- author:
family: Gruber
given:
- John
id: gruber13:_markd
issued:
year: 2013
title: Markdown
type: no-type
publisher: <http://daringfireball.net/
projects/markdown/>
- volume: 32
page: 272-277
container-title: TUGboat
author:
family: Kielhorn
given:
- Axel
id: kielhornll: _multi
issued:
year: 2011
title: Multi-target publishing
type: article-journal
issue: 3

Figure 1: A YAML bibliographic database (line break
in the url is editorial).

Since version 1.12 native support for citations
has been split from the core functions of Pandoc. In
order to activate this feature, one must now use an
external filter (-—filter pandoc-citeproc, to be
installed separately).?

A new feature is that bibliographic databases
can now be built using the references field in-
side a YAML block. Finding the correct encoding
for a YAML bibliographic database can be a little
tricky, so it is recommended, if possible, to convert
from an existing database in one of the formats rec-
ognized by Pandoc (among them BIBTEX), using
the biblio2yaml utility, provided together with the
pandoc-citeproc filter. The YAML code for the
first two items in this article’s bibliography, created
by converting the .bib file, is shown in figure 1.

A YAML field can be used also for specifying the
CSL style for citations (csl field), or the external
bibliography file, if required (bibliography field).

Raw code (HTML or TEX) All implementations
of Markdown, of whichever flavour, allow for the use
of raw HTML code, written without modifications in
the output, as we mentioned in section 2. Pandoc
extends this feature, allowing for the use of TEX raw
code, too. Of course, this works only for TEX/
ConTEXt output.

9 The filter is not needed when using natbib or biblatex
directly instead of the native support.

© 00 O U W

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

TUGDboat, Volume 35 (2014), No. 1

\documentclass$if (fontsize)$[$fontsize$] $endif$
{article}

\usepackage{amssymb,amsmath}

\usepackage{ifxetex}

\ifxetex
\usepackage{fontspec,xltxtra,xunicode}
\defaultfontfeatures{Mapping=tex-text,

Scale=MatchLowercase}

\else

\usepackage [utf8] {inputenc}

\fi

$if (natbib)$

\usepackage{natbib}

\bibliographystyle{plainnat}

$endif$

$if (biblatex)$

\usepackage{biblatex}

$if (biblio-files)$

\bibliography{$biblio-files$}

$endif$

$endif$

$body$

$if (natbib)$
$if (biblio-files)$
$if (biblio-title)$
$if (book-class)$
\renewcommand\bibname{$biblio-title$}
$else$
\renewcommand\refname{$biblio-title$}
$endif$
$endif$
\bibliography{$biblio-files$}
$endif$
$endif$
$if (biblatex)$
\printbibliography
$if (biblio-title)$[title=%$biblio-title$]$endif$
$endif$
$for (include-after)$
$include-after$
$endfor$
\end{document}

Figure 2: Fragments of the default Pandoc v1.11
template for KTEX.

Templates One of the most interesting features
of Pandoc is the use of customized templates for
the different output formats. For HTML-derived and
TEX-derived output formats this can be achieved in
two ways. First of all, the user may generate only
the document ‘body’ and then include it inside a
‘master’ (for TEX output, with \input or \include).
In this way, an ad hoc preamble can be built be-
forehand. This is in fact the default behaviour for

49

Pandoc; to obtain a complete document, including a
preamble, the command line option --standalone
(or its equivalent -s) is used.

It is also possible to build more flexible tem-
plates, useful for different projects with different
features, providing for a moderate level of customiza-
tion. As the reader can see in figure 2, a template is
substantially a file in the desired output format (in
this case NTEX) interspersed with variables and con-
trol flow statements introduced by a dollar sign. The
expressions will be evaluated during the compilation
and replaced by the resulting text. For instance, at
line 113 of the listing in figure 2 we find the expres-
sion $body$, which will be replaced by the document
body. Above, at lines 12-21, we can find the se-
quence of commands that will include in the final
output all the resources needed to generate a bibli-
ography by means of natbib or biblatex. This code
will be activated only if the user has specified either
--natbib or --biblatex on the command line. The
code to print the bibliography can be found at the
end of the listing, at lines 124-130.

In this way it is possible to define all the desired
variables and the respective compiler options. The
user can thus change the default template to specify,
e.g., among the options that may be passed to the
class, not only the body font, but a generic string
containing more options.'® We would replace the
first line in the listing of figure 2 with the following:
\documentclass$if (clsopts)$[$clsopts$]$endif$
Then we can compile with the following options:
pandoc -s -t latex --template=mydefault \

-V clsopts=adpaper,12pt -o test.tex test.md
given that we saved the modified template in the
current directory by the name mydefault.latex.

Since version 1.12, ‘variables’ can be replaced by
YAML ‘metadata’, specified either inside the source
file or on the command line using the -M option.

4 Problems and limitations

We’ve seen many nice features of Pandoc. Not sur-
prisingly, Pandoc also has some limitations and short-
comings. Some of these shortcomings are tied to the
particular LML used by Pandoc. For instance, Mark-
down doesn’t allow semantic markup.'’ This kind of
limitation can be addressed using an additional level

10 This can be also be achieved via the variable $fontsize.
(Since Pandoc 1.12, the default IATEX template includes sepa-
rate variables for body font size, paper size and language, and
a generic $classoption variable for other parameters.)

11 This is not an issue necessarily pertinent to all LMLs
since some of them provide methods to define objects that be-
have like IATEX macros, either through pre- or post-processing
(txt2tags) or by taking advantage of conceptually close struc-
tures (the ‘class’ of a span in HTML, in Textile). In any case,

An overview of Pandoc

50

of abstraction, using preprocessors like gpp or m4, as
illustrated by Aditya Mahajan in [4]. Of course, this
clashes with the initial purpose of readability and
introduces further complexity, though the use of m4
need not significantly increase the amount of extra
markup.

Other problems, though, unexpectedly arise in
the process of conversion to KTEX output. For in-
stance, the cross reference mechanism is calibrated
to HTML and shows all its shortcomings with regard
to the ITEX output. The cross reference is in fact
generated by means of a hypertext anchor and not
by the normal use of \1label and \ref. As a typical
example, let’s consider a labelled section referenced
later in the text, as in the following:

Basic elements ## {#basic}
[...]

As we have explained in
[Basic elements] (#basic)

we get this result:

\hyperdef{}{basic}{/
\subsection{Basic elements}\label{basic}
}
[...]
As we have explained in
\hyperref [basic]{Basic elements}

which is not exactly what a IXTEX user would expect

Of course one could directly use \label and
\ref, but they will be ignored in all non-TEX output
formats. Or, we could use a preprocessor to get
two different intermediate source files, one for HTML
and for ITEX (and maybe a third for ODF/OOXML,
etc.), but by now the original point of using Pandoc
is being lost.

Formulas, too, may cause some problems. Pan-
doc recognizes only inline and display expressions.
The latter are always translated as displaymath en-
vironments. It is not possible to specify a different
kind of environment (equation, gather, etc.) unless
one of the workarounds discussed above is employed,
with all the consequent drawbacks also noted.

It should be stressed, however, that Pandoc is a
program in active development and that several fea-
tures present in the current version were not available
a short time ago. So it is certainly possible that all or
some of the shortcomings that a IMTEX user finds in
the current version of Pandoc will be addressed in the
near or mid-term. It is also possible, to some extent,
to extend or modify Pandoc’s behaviour by means of
scripts, as noted at http://johnmacfarlane.net/
pandoc/scripting.html. One major drawback, un-
til recently, was the mandatory use of Haskell for such

though, the philosophy behind LMLs doesn’t support such
markup methods.

Massimiliano Dominici

TUGDboat, Volume 35 (2014), No. 1

scripts (a drawback for me, at least ...). The current
version also allows Python, thus making easier the
task of creating such scripts.!?

5 Conclusion

To conclude this overview, I consider Pandoc to be
the best choice for a project requiring multiple out-
put formats. The use of a ‘neutral’ language in
the source file makes it easier to avoid the quirks
of a specific language and the related problems of
translation to other languages. For a KXTEX user in
particular, being able to type mathematical expres-
sions ‘as in KTEX’ and to use a BIBTEX database for
bibliographic references are also two strong points.
One should not expect to find in Pandoc an easy
solution for every difficulty. Limitations of LMLs
in general, and some flaws specific to the program,
entail the need for workarounds, making the process
less immediate. This doesn’t change the fact that, if
the user is aware of such limitations and the project
can bear them, Pandoc makes obtaining multiple
output formats from a single source extremely easy.

References

[1] John Gruber. Markdown.
http://daringfireball.net/projects/
markdown/, 2013.

[2] Axel Kielhorn. Multi-target publishing.
TUGboat, 32(3):272-277, 2011. http://tug.
org/TUGboat/tb32-3/tb102kielhorn.pdf.

[3] John MacFarlane. Pandoc: a universal
document converter. http://johnmacfarlane.
net/pandoc/, 2013.

[4] Aditya Mahajan. How I stopped worrying and
started using Markdown like TEX. http://
randomdeterminism.wordpress.com/2012/06/
01/how-i-stopped-worring-and-started-
using-markdown-like-tex/, 2012.

[5] Wikipedia. Lightweight markup language.
http://en.wikipedia.org/wiki/
Lightweight_markup_language, 2013.

¢ Massimiliano Dominici
Pisa, Italy
mlgdominici (at) gmail dot com

12 Another option is writing one’s own custom ‘writer’ in
Lua. A writer is essentially a program that translates the data
structure, collected by the ‘reader’, in the format specified by
the user. Having Lua installed on the system is not required,
since a Lua interpreter is embedded in Pandoc. See http://
johnmacfarlane.net/pandoc/README.html#custom-writers.

TUGboat, Volume 35 (2014), No. 1

Numerical methods with LualATEX

Juan I. Montijano, Mario Pérez, Luis Randez
and Juan Luis Varona

Abstract

An extension of TEX known as LuaTEX has been in
development for the past few years. Its purpose is to
allow TEX to execute scripts written in the general
purpose programming language Lua. There is also
Lual#TEX, which is the corresponding extension for
TEX.

In this paper, we show how LualATEX can be
used to perform tasks that require a large amount
of mathematical computation. With Lual#TEX in-
stead of INTEX, we achieve important improvements:
since Lua is a general purpose language, rendering
documents that include evaluation of mathematical
algorithms is much easier, and generating the PDF
file becomes much faster.

Introduction

TEX (and BTEX) is a document markup language
used to typeset beautiful papers and books. Al-
though it can also do programming commands such
as conditional execution, it is not a general purpose
programming language. Thus there are many tasks
that are easily done with other programming lan-
guages, but are very complicated or very slow when
done with TEX. Due to this limitation, auxiliary
programs have been developed to assist TEX with
common tasks related to document preparation. For
instance, bibtex or biber to build bibliographies, and
makeindex or xindy to generate indexes. In both
cases, sorting a list alphabetically is a relatively sim-
ple task for most programming languages, but it is
very complicated to do with TEX, hence the desire
for auxiliary applications.

Another shortcoming of TEX is the computa-
tion of mathematical expressions. One of the most
common uses of TEX is to compose mathematical
formulas, and it does this extremely well. However
TEX is not good at computing mathematics. For
instance, TEX itself does not have built-in functions
to compute a square root or a sine. Although it is
possible to compute mathematical functions with the
help of auxiliary packages written in TEX, internally
these packages must compute functions using only
addition, subtraction, multiplication and division op-
erations— and a very large number of them. This
is difficult to program (for package developers) and
slow in execution.

To address the need to do more complex func-
tions within TEX, an extension of TEX called LuaTEX

51

was undertaken a few years ago. (The leaders of the
project and main developers are Taco Hoekwater,
Hartmut Henkel and Hans Hagen.) The idea was
to enhance TEX with a previously existing general
purpose programming language. After careful eval-
uation of possible candidates, the language chosen
was Lua (see http://www.lua.org), a powerful, fast,
lightweight, embeddable scripting language that has,
of course, a free software license suitable to be used
with TEX. Moreover, Lua is easy to learn and use,
and anyone with basic programming skills can use it
without difficulty. (Many examples of Lua code can
be found later in this article, and also, for example,
at http://rosettacode.org/wiki/Category:Lua,
and http://lua-users.org/.)

LuaTgX is not TEX, but an extension of TEX, in
the same way that pdfTEX or X{TEX are extensions.
In fact, LuaTEX includes pdfTEX (it is an extension
of pdfTEX, and offers backward compatibility), and
also has many of the features of XH{ITEX.

LuaTgX is still in a beta stage, but the current
versions are usable (the first public beta was launched
in 2007, and when this paper was written in January
2013, the release used was version 0.74).

It has many new features useful for typographic
composition; and examples can be seen at the project
web site http://www.luatex.org, and some papers
using development versions have been published in
TUGboat, among them [3, 2, 4, 5, 7, 11]. Most
of those articles are devoted to the internals and
are very technical, only for true TEX wizards; we
do not deal with this in this paper. Instead, our
goal is to show how the mathematical power of the
embedded language Lua can be used in LuaTgX. Of
course, when we build BTEX over LuaTgX, we get
so-called Lual&TEX, which will be familiar to regular
IMTEX users.

All the examples in this paper are done with
Lual®TEX. It is important to note that the current
version of LuaTEX is not meant for production and
beta users are warned of possible future changes in
the syntax. However, the examples in this article
use only a few general Lua-specific commands, so it
is likely these examples will continue to work with
future versions.

To process a LualATEX document we perform
the following steps: First, we must compile with
LualfTEX, not with IMTEX; how to do this depends on
the editor being used. Second, we must load the pack-
age luacode with \usepackage{luacode}. Then, in-
side LualATEX, we can jump into Lua mode with the
command \directlua; moreover, we can define Lua
routines in a \begin{luacode}...\end{luacode}
environment (also {1luacodex} instead of {luacode}

Numerical methods with LualATEX

52

can be used); the precise syntax can be found in the
manual “The luacode package” (by Manuel Pégourié-
Gonnard) [10]. In the examples, we do not explain
all the details of the code; they are left to the reader’s
intuition.

In this paper we present four examples. The
first is very simple: the computation of a trigonomet-
ric table. In the other examples we use the IXTEX
packages tikz and pgfplots to show Lua’s ability to
produce graphical output. Some mathematical skill
may be necessary to fully understand the examples,
but the reader can nevertheless see how Lua is able
to manage the computation-intensive job. In any
case, we do not explore the more complex possibili-
ties, which involve writing Lua programs that load
existing Lua modules or libraries to perform a wide
range of functions and specialized tasks.

1 First example: a trigonometric table

To show how to use Lua, let us begin with a simple
but complete example. Observe the following docu-
ment, which embeds some Lua source code. Type-
setting it with LualdTEX, we get the trigonometric
table shown in Figure 1.

\documentclass{article}
\usepackage{luacode}

\begin{luacodex}
function trigtable ()
for t=0, 45, 3 do
x=math.rad(t)
tex.print(string.format(
'%2d$"{\\circ}$ & %1.5f & %1.5f & %1.5f '
'& %1.5f \\\\',
t, x, math.sin(x), math.cos(x),
math.tan(x)))
end
end
\end{luacodex}
\newcommand{\trigtable}
{\luadirect{trigtable()}}

\begin{document}
\begin{tabular}{rcccc}
\hline
& x & $\sin(x)$ & $\cos(x)$ & $\tan(x)$ \\
\hline
\trigtable
\hline
\end{tabular}
\end{document}

The luacode* environment contains a small Lua
program with a function named trigtable (with no
arguments). This function consists of a loop with a
variable t representing degrees. Lua converts t to
radians with x=math.rad(t); then, Lua computes

TUGDboat, Volume 35 (2014), No. 1

x sin(x) cos(x) tan(x)
0° 0.00000 0.00000 1.00000 0.00000
3% 0.05236 0.05234 0.99863 0.05241
6° 0.10472 0.10453 0.99452 0.10510
9° 0.15708 0.15643 0.98769 0.15838
12° 0.20944 0.20791 0.97815 0.21256
15° 0.26180 0.25882 0.96593 0.26795
18° 0.31416 0.30902 0.95106 0.32492
21° 0.36652 0.35837 0.93358 0.38386
24° 0.41888 0.40674 0.91355 0.44523
27° 0.47124 0.45399 0.89101 0.50953
30° 0.52360 0.50000 0.86603 0.57735
33° 0.57596 0.54464 0.83867 0.64941
36° 0.62832 0.58779 0.80902 0.72654
39° 0.68068 0.62932 0.77715 0.80978
42° 0.73304 0.66913 0.74314 0.90040
45° 0.78540 0.70711 0.70711 1.00000

Figure 1: A trigonometric table.

the sine, the cosine and the tangent. Inside Lua mode,
it “exports” to ITEX with tex.print; note that we
escape any backslash by doubling it. Moreover, we
have taken into account the following notation to
give format to numbers:

e 72d indicates that a integer number must be
displayed with 2 digits.

e 71.5f indicates that a floating point number
must be displayed with 1 digit before the decimal
point and 5 digits after it.

The KTEX part has the skeleton of a tabular
built with the data exported by Lua.

2 Second example: Gibbs phenomenon

Now and in what follows, we will use graphics to
show the output of some mathematical routines. A
very convenient way to do it is by means of the
PGF/TikZ package (TikZ is a high-level interface to
PGF) by Till Tantau (the huge manual [12] of the
current version 2.10 has more than 700 pages of doc-
umentation and examples); two short introductory
papers are [8, 9]. Based on PGF/TikZ, the package
pgfplots (by Christian Feuersanger [1]) has additional
facilities to plot mathematical functions like y = f(x)
(or a parametric function z = f(t), y = g(t)) or visu-
alize data in two or three dimensions. For instance,
pgfplots can draw the axis automatically, as usual in
any graphic software.

For completeness, let us start showing the syntax
of pgfplots by means of a data plot; this is an example
extracted from its very complete manual (more than
400 pages in the present version 1.7). After loading
\usepackage{pgfplots}, the code
\begin{tikzpicture}

\begin{axis}[xlabel=Cost, ylabel=Error]

Juan I. Montijano, Mario Pérez, Luis Rdndez and Juan Luis Varona

TUGboat, Volume 35 (2014), No. 1

Error

2 3 4 5 6 7 8
Cost

Figure 2: Plotting of a data table with pgfplots.

\addplot [color=red,mark=x] coordinates {
(2,-2.8559703) (3,-3.5301677) (4,-4.3050655)
(5,-5.1413136) (6,-6.0322865) (7,-6.9675052)
(8,-7.9377747)

};

\end{axis}

\end{tikzpicture}

generates the plot in Figure 2. Before going on, note
that in future versions the packages PGF/TikZ and
pgfplots could, internally, use Lual&ATEX themselves
in a way transparent to the user. This would allow
extra power, calculating speed, and simplicity, but
this is not yet available and we will not worry about
it in this paper.

In the next example we consider the Gibbs phe-
nomenon. Using LualfTEX, the idea is to compute a
data table with Lua (easy to program, powerful and
fast in the execution), and plot it with pgfplots.

The Gibbs phenomenon is the peculiar way in
which the Fourier series of a piecewise continuously
differentiable periodic function behaves at a jump dis-
continuity, where the n-th partial sum of the Fourier
series has large oscillations near the jump. It is ex-
plained in many harmonic analysis texts, but for the
purpose of this paper the reader can refer to [13].

In our case we consider the function f(z) = (71—
x)/2 in the interval (0, 27) extended by periodicity
to the whole real line (it has discontinuity jumps at
2j7 for every integer j). Its Fourier series is

oo

sin(kx)
k=1
To show the Gibbsiphenomenon, we evaluate the
partial sum), _, % (for n = 30) with Lua to
generate a table of data, and we plot it with pgfplots.
In the .tex file, we include the following Lua
to compute the partial sum (function partial_sum)

53

and to export the data with the syntax required by
pgfplots (function print_partial_sum):

\begin{luacodex*}
-- Fourier series
function partial_sum(n,x)
partial = 0;
for k =1, n, 1 do
partial = partial + math.sin(k*x)/k
end;
return partial
end

-- Code to write PGFplots data as coordinates
function print_partial_sum(n,xMin,xMax,npoints,
option)
local delta = (xMax-xMin)/(npoints-1)
local x = xMin
if option~=[[]] then
tex.sprint ("\\addplot[" .. option
. "] coordinates{")
else
tex.sprint ("\\addplot coordinates{")
end
for i=1, npoints do
y = partial_sum(n,x)
tex.sprint("("..x..",".
x = x+delta
end
tex.sprint("}")

y 'n)u)

end
\end{luacodex}

Then, we also define the command

\newcommand\addLUADEDplot [56] [1{%
\directlua{print_partial_sum(#2,#3,#4,#5,
[#111)}%
}
which will be used to call the data from pgfplots.
Here, the parameters have the following meaning: #2
indicates the number of terms to be added (n = 30
in our case); the plot will be done in the interval [#3,
#4] (from x = 0 to 107) sampled with #5 points (to
get a very smooth graphic and to show the power of
the method we use 1000 points); finally, the optional
argument #1 is used to manage optional arguments
in the \addplot environment (for instance color
[grayscaled for TUGboat], width of the line, ...).
Now, the plot is generated by

\pgfplotsset{width=.9\hsize}
\begin{tikzpicture}\small
\begin{axis}[
xmin=-0.2, xmax=31.6,
ymin=-1.85, ymax=1.85,
xtick={0,5,10,15,20,25,30},
ytick={-1.5,-1.0,-0.5,0.5,1.0,1.5},
minor x tick num=4,
minor y tick num=4,

Numerical methods with LualATEX

54

1.5

0.5

—0.5
14

—1.5+

Figure 3: The partial sum 220:1 Si“gm) of the Fourier

series of f(xz) = (7 — x)/2 illustrating the Gibbs
phenomenon.

axis lines=middle,
axis line style={-}
]
% SYNTAX: Partial sum 30, from x = O to 10*pi,
% sampled in 1000 points.
\addLUADEDplot [color=blue, smooth] {30}
{0}{10*math.pi}{1000};
\end{axis}
\end{tikzpicture}

See the output in Figure 3.

3 Third example: Runge-Kutta method

A differential equation is an equation that links an
unknown function and its derivatives, and these equa-
tions play a prominent role in engineering, physics,
economics, and other disciplines. When the value of
the function at an initial point is fixed, a differential
equation is known as an initial value problem. The
mathematical theory of differential equations shows
that, under very general conditions, an initial value
problem has a unique solution. Usually, it is not
possible to find the exact solution in an explicit form,
and it is necessary to approximate it by means of
numerical methods.

One of the most popular methods to integrate
numerically an initial value problem

{ y'(t) = f(t,y(t)),
y(to) = yo

is the classical Runge-Kutta method of order 4. With
it, we compute in an approximate way the values
y; = y(t;) at a set of points {¢;} starting from i =0
and with ¢;11 = t; + h for every ¢ by the algorithm

1
Yi+1 = Yi T 6(k1 + 2ko + 2ks + k4),

TUGDboat, Volume 35 (2014), No. 1

where
ki = hf(ti, yi)a
ko = hf(t; + 2h,y; + 2k1),
ks = hf(t; + 5h,y; + 5k2),
ks = hf(t; + h,y; + ks3).

See, for instance, [15].
Here, we consider the initial value problem

{ Y (1) = y(t) cos(t + /T + y(t)),
y(0) = 1.

In the Lua part of our .tex file, we compute
the values {(¢;,v;)} and export them with pgfplots
syntax by means of

\begin{luacodex*}
-- Differential equation y'(t) = f(t,y)
-- with £(t,y) = y * cos(t+sqrt(l+y)).
-- Initial condition: y(0) = 1
function f(t,y)

return y * math.cos(t+math.sqrt(1+y))
end

-- Code to write PGFplots data as coordinates
function print_RKfour (tMax,npoints,option)
local t0 = 0.0
local yO = 1.0

local h = (tMax-t0)/(npoints-1)
local t = t0
local y = yO

if option~=[[]] then

tex.sprint ("\\addplot[" .. option

. "1 coordinates{")

else

tex.sprint ("\\addplot coordinates{")
end
tex.sprint("("..t0..",".
for i=1, npoints do

ki =h * £(t,y)

k2 = h * f(t+h/2,y+k1/2)

k3 = h * f(t+h/2,y+k2/2)

k4 = h * f(t+h,y+k3)

y =y + (k1+2*%k2+2xk3+k4)/6

t=t+h

tex.sprint("("..t..",".
end
tex.sprint ("}")

yo 'n)u)

y ‘Il)ll)

end
\end{luacodex}

Also, we define the command

\newcommand\addLUADEDplot [3] [1{%
\directlua{print_RKfour (#2,#3, [[#1]11)1}%
}

to call the Lua routine from the TEX part (the
parameter #2 indicates the final value of ¢, and #3 is
the number of sampled points).

Juan I. Montijano, Mario Pérez, Luis Rdndez and Juan Luis Varona

TUGboat, Volume 35 (2014), No. 1
14

0.8 1

0.6 1

0.4 1

0.2 1

) 10 15 20 25 30

Figure 4: Solution of the differential equation
y'(t) = y(t) cos (t +4/1+ y(t)) with initial condition
y(0) =1.

Then, the graphic of Figure 4, which shows the
solution of our initial value problem, is created by
means of

\pgfplotsset{width=0.9\hsize}
\begin{tikzpicture}

\begin{axis}[xmin=-0.5, xmax=30.5,

ymin=-0.02, ymax=1.03,

xtick={0,5,...,30}, ytick={0,0.2,...,1.0%},
enlarge x limits=true,

minor x tick num=4, minor y tick num=4,

axis lines=middle, axis line style={-}

]

SYNTAX: Solution of the initial value problem
% in the interval [0,30] sampled at 200 points
\addLUADEDplot [color=blue, smooth]{30}{200%};
\end{axis}

\end{tikzpicture}

=

4 Fourth example: Lorenz attractor

The Lorenz attractor is a strange attractor that arises
in a system of equations describing the 2-dimensional
flow of a fluid of uniform depth, with an imposed
vertical temperature difference. In the early 1960s,
Lorenz [6] discovered the chaotic behavior of a sim-
plified 3-dimensional system of this problem, now
known as the Lorenz equations:

2'(t) = o(y(t) — z(t)),

y'(t) = —a(t)z(t) + pa(t) — y(1),

2 (t) = z(t)y(t) — Bz(1).
The parameters o, p, and § are usually assumed to
be positive. Lorenz used the values o = 10, p = 28
and 8 = 8/3. The system exhibits a chaotic behavior
for these values; in fact, it became the first example
of a chaotic system. A more complete description
can be found in [14].

Figure 5 shows the numerical solution of the

Lorenz equations calculated with ¢ = 3, p = 26.5

55

Figure 5: The Lorentz attractor (six orbits starting at
several initial points).

and § = 1. Six orbits starting at several initial points
close to (0,1,0) are plotted in different colors; all of
them converge to the 3-dimensional chaotic attractor
known as the Lorenz attractor.

The Lua part of the program uses a discretiza-
tion of the Lorenz equations (technically, this is the
explicit Euler method y;4+1 = y; + hf(t;,y;), which
is less precise than the Runge-Kutta method of the
previous section, but enough to find the attractor):

\begin{luacodex*}
-- Differential equation of Lorenz attractor
function f(x,y,z)
local sigma = 3
local rho = 26.5
local beta =1
return {sigma*(y-x),
-x*z + rhoxx -y,
x*y - betaxz}
end

-- Code to write PGFplots data as coordinates
function print_LorAttrWithEulerMethod(h,npoints,
option)

-- The initial point (x0,y0,z0)

local x0 = 0.0

local yO 1.0

local z0 = 0.0

-- add random number between -0.25 and 0.25

local x = x0 + (math.random()-0.5)/2

local y = yO + (math.random()-0.5)/2

local z = z0 + (math.random()-0.5)/2

if option “= [[]] then

tex.sprint ("\\addplot3[" .. option
. "] coordinates{")

else
tex.sprint ("\\addplot3 coordinates{")
end
-- dismiss the first 100 points
-- to go into the attractor
for i=1, 100 do

Numerical methods with LualATEX

56
m = f(x,y,2)
x =x + h *xm[1]
y =y +h *mn[2]
z =2z + h * m[3]
end
for i=1, npoints do
m = f(x,y,2)
x =x + h *x m[1]
y =y +h *mn[2]
z =2z + h * m[3]
tex.sprint("("..x..","..y..","..z.."")
end
tex.sprint("}")
end
\end{luacodex}

The function which calls the Lua part from the
IATEX part is
\newcommand\addLUADEDplot [3] [1{%

\directlua{print_LorAttrWithEulerMethod
(#2,#3, [[(#111D 3%
}
Here, the parameter #2 gives the step of the dis-
cretization, and #3 is the number of points.

The KTEX part is the following. In it, we call
the Lua function six times with different colors:
\pgfplotsset{width=.9\hsize}

\begin{tikzpicture}

\begin{axis}

% SYNTAX: Solution of the Lorenz system

% with step h=0.02 sampled at 1000 points.
\addLUADEDplot [color=red, smooth] {0.02}{1000%};
\addLUADEDplot [color=green, smooth] {0.02}{1000};
\addLUADEDplot [color=blue, smooth]{0.02}{1000};
\addLUADEDplot [color=cyan, smooth]{0.02}{1000};
\addLUADEDplot [color=magenta,smooth] {0.02}{1000};
\addLUADEDplot [color=yellow, smooth] {0.02}{1000};
\end{axis}

\end{tikzpicture}

References

[1] C. Feuersanger, Manual for Package
PGFPLOTS. http://mirror.ctan.org/
graphics/pgf/contrib/pgfplots/doc/
pgfplots.pdf

[2] H. Hagen, LuaTgX: Halfway to version 1,
TUGboat, Volume 30 (2009), No. 2,
183-186. http://tug.org/TUGboat/tb30-2/
tb95hagen-luatex.pdf

[3] T. Hoekwater and H. Henkel, LuaTEX 0.60:
An overview of changes, TUGboat, Volume
31 (2010), No. 2, 174-177. http://tug.org/
TUGboat/tb31-2/tb98hoekwater . pdf

TUGDboat, Volume 35 (2014), No. 1

[4] P. Isambert, Three things you can do
with LuaTEX that would be extremely
painful otherwise, TUGboat, Volume 31
(2010), No. 3, 184-190. http://tug.org/
TUGboat/tb31-3/tb99isambert . pdf
[5] P. Isambert, OpenType fonts in LuaTEX,
TUGboat, Volume 33 (2012), No. 1,
59-85. http://tug.org/TUGboat/tb33-1/
tbl03isambert.pdf
[6] E. N. Lorenz, Deterministic Nonperiodic Flow,
J. Atmospheric Sci., Volume 20 (1963), No. 2,
130-141. http://dx.doi.org/10.1175/
1520-0469(1963)020<0130:DNF>2.0.C0;2
[7] A. Mahajan, LuaTgX: A user’s perspective,
TUGboat, Volume 30 (2009), No. 2,
247-251. http://tug.org/TUGboat/tb30-2/
tb95mahajan-luatex.pdf
[8] A. Mertz and W. Slough, Graphics with
PGF and TikZ, TUGboat, Volume 28 (2007),
No. 1, 91-99. http://tug.org/TUGboat/
tb28-1/tb88mertz. pdf
[9] A. Mertz and W. Slough, A TikZ tutorial:
Generating graphics in the spirit of TEX,
TUGboat, Volume 30 (2009), No. 2,
214-226. http://tug.org/TUGboat/tb30-2/
tb95mertz.pdf
M. Pégourié-Gonnard, The luacode package.
http://mirror.ctan.org/macros/luatex/
latex/luacode/luacode.pdf
A. Reutenauer, LuaTgX for the IATEX user:
An introduction, TUGboat, Volume 30
(2009), No. 2, 169. http://tug.org/TUGboat/
tb30-2/tb95reutenauer. pdf
T. Tantau, TikZ & PGF. http://mirror.
ctan.org/graphics/pgf/base/doc/generic/
pgf/pgfmanual . pdf
Wikipedia, Gibbs phenomenon. http://en.
wikipedia.org/wiki/Gibbs_phenomenon
Wikipedia, Lorenz system. http://en.
wikipedia.org/wiki/Lorenz_system
Wikipedia, Runge-Kutta methods. http://en.
wikipedia.org/wiki/Runge-Kutta_methods

¢ Juan I. Montijano, Mario Pérez,
Luis Réandez and
Juan Luis Varona
Universidad de Zaragoza
(Zaragoza, Spain) and
Universidad de La Rioja
(Logrofio, Spain)
{monti,mperez,randez} (at)
unizar dot es and
jvarona (at) unirioja dot es

Juan I. Montijano, Mario Pérez, Luis Rdndez and Juan Luis Varona

TUGDboat, Volume 35 (2014), No. 1

Parsing PDF content streams with LuaTEX

Taco Hoekwater

Abstract

The new pdfparser library in LuaTEX allows parsing
of external PDF content streams directly from within
a LuaTEX document. This paper explains its origin
and usage.

1 Background

Docwolves’ main product is an infrastructure to fa-
cilitate paperless meetings. One part of the func-
tionality is handling meeting documents, and to do
so it offers the meeting participants a method to
distribute, share, and comment on such documents
by means of an intranet application, as well as an
iPad app.

Meeting documents typically consist of a meet-
ing agenda, followed by included appendices, com-
bined into a single PDF file. Such documents can
have various revisions, for example if a change has
been made to the agenda or if an appendix has to
be added or removed. After such a change, a newly
combined PDF document is re-distributed.

Annotations can be made on these documents
and these can then be shared with other meeting
participants, or just communicated to the server for
safekeeping. Like documents, annotations can be
updated as well.

All annotations are made on the iPad, with an
(implied) author and an intended audience. Anno-
tations apply to a specific part of the source text,
and come in a few types (highlight, sticky note, free-
hand drawing). The iPad app communicates with
a network server to synchronize shared annotations
between meeting participants.

2 The annotation update problem

The server—client protocol aims to be as efficient as
possible, especially in the case of communication
with the iPad app, since bandwidth and connection
costs can be an issue.

This means that for any annotation on a refer-
enced document, only the document’s internal identi-
fication, the (PDF) page number, and the beginning
and end word indices on the page are communicated
back and forth. This is quite efficient, but gives rise
to the following problem:

When a document changes, e.g. if an extra
meeting item is added, all annotations follow-

Editor’s mote: Originally published in ConTEXt Group:
Proceedings, 6th meeting, pp.19-23. Reprinted with
permission.

57

ing that new item have to be updated because

their placement is off.

The full update process is quite complicated; the
issue this paper deals with is that the server software
needs to know what words are on any PDF page, as
well as their location on that page, and therefore its
text extraction process has to agree with the same
process on the iPad.

3 PDF text extraction

Text extraction is a two-step process. The actual
drawing of a PDF page is handled by PostScript-style
postfix operators. These are contained in objects
that are called page content streams.

After decompression of the PDF, the beginning
of a content stream might look like this:
59 0 obj
<< /Length 4013 >>
stream

0
1
q
0 0 597.7584 448.3188 re f
Q
0
1

g0G
0 01 54.7979 44.8344 cm

Here g, G, q, re, £, Q, and cm are all (postfix)
operators, and the numeric values are all arguments.
As you see, not all operators take the same number
of arguments (g takes one, q zero, and re four).
Other operators may take, for instance, string-valued
arguments instead of numeric ones. There are a bit
more than half a dozen different types.

To process such a stream easily, it is best to
separate the task (at least conceptually) into two
separate tasks. First there is a lexing stage, which
entails converting the raw bytes into combinations
of values and types (tokens) that can be acted upon.

Separate from that, there is the interpretation
stage, where the operators are actually executed with
the tokenized arguments that have preceded it.

3.1 PDF text extraction on the iPad

It is very easy on an iPad to display a representation
of a PDF page, and Apple also provides a convenient
interface to do the lexing of PDF content streams
that is the first step in getting the text from the page.
But to find out where the PDF objects are, one has to
interpret the PDF document stream oneself, and that
is the harder part of the text extraction operation.

3.2 PDF text extraction on the server

On the server side, there is a similar problem at a dif-
ferent stage: displaying a PDF is easy, and even literal

Parsing PDF content streams with LuaTgX

58

text extraction is easy (with tools like pdftotext).
However, that does not give you the location of the
text on the page. On the server, Apple’s lexing inter-
face is not available, and the available PDF library
(1ibpoppler) does not offer similar functionality.

4 Our solution

We needed to write text extraction software that can
be used on both platforms, to ensure that the same
releases of server and iPad software always agreed
perfectly on the what and where of the text on the
PDF page.

Both platforms use a stream interpreter written
by ourselves in C, with the iPad software starting
from the Apple lexer, and the server software starting
from a new lexer written from scratch.

The prototype and first version of the newly
created stream interpreter as well as the server-side
lexer were written in Lua. LuaTEX’s epdf library —
libpoppler bindings for Lua, see below —were a
very handy tool at that stage. The code was later
converted back to C for compilation into a server-
side helper application as well as the iPad App, but
originally it was written as a texlua script.

A side effect of this development process is that
the lexer could be offered as a new LuaTgEX extension,
and so that is exactly what we have done.

5 About the ‘epdf’ library

This library is written by Hartmut Henkel, and it
provides Lua access to the poppler library included
in LuaTgX. For instance, it is used by ConTEXt to
preserve links in external PDF figures.

The library is fairly extensive, but a bit low-level,
because it closely mimics the libpoppler interface.
It is fully documented in the LuaTEX reference man-
ual, but here is a small example that extracts the
page cropbox information from a PDF document:

local function run (filename)
local doc = epdf.open(filename)
local cat = doc:getCatalog()
local numpages = doc:getNumPages ()
local pagenum = 1
print (’Pages: ’ .. numpages)
while pagenum <= numpages do
local page = cat:getPage(pagenum)
local cbox = page:getCropBox()
print (string.format(
*Page %d: [%g %g %eg %gl’,
pagenum, cbox.xl, cbox.yl,
cbox.x2, cbox.y2))
pagenum = pagenum + 1
end
end
run(arg[1])

Taco Hoekwater

TUGDboat, Volume 35 (2014), No. 1

6 Lexing via poppler

As said above, a lexer converts bytes in the input
text stream into tokens, and these tokens have types
and values. libpoppler provides a way to get one
byte from a stream using the getChar() method,
and it also applies any stream filters beforehand, but
it does not create such tokens.

6.1 Poppler limitations

There is no way to get the full text of a stream as a
whole; it has to be read byte by byte.

Also, if the page content consists of an array of
content streams instead of a single entry, the separate
content streams have to be manually concatenated.

And content streams have to be ‘reset’ before
the first use.

Here is some example code for reading a stream,
using the epdf library:

function parsestream(stream)
local self = { streams = {} }
local thetype = type(stream)

if thetype == ’userdata’ then
self.stream = stream:getStream()
elseif thetype == ’table’ then

for i,v in ipairs(stream) do
self.streams[i] = v:getStream()
end
self.stream = table.remove(
self.streams,1)
end
self.stream:reset()
local byte = getChar(self)
while byte >= 0 do

byte = getChar(self)
end
if self.stream then
self.stream:close()
end
end

In the code above, any interesting things you
want to do are inserted at the ... spot. The example
makes use of one helper function, getChar, which
looks like this:

local function getChar(self)
local i = self.stream:getChar()
if (i<0) and (#self.streams>0) then
self.stream:close()
self.stream = table.remove(
self.streams, 1)
self.stream:reset ()
i = getChar(self)
end
return i
end

TUGDboat, Volume 35 (2014), No. 1

7 Our own lexer: ‘pdfscanner’

The new lexer we wrote does create tokens. Its Lua
interface accepts either a poppler stream, or an array
of such streams. It puts PDF operands on an internal
stack and then executes user-selected operators.

The library pdfscanner has only one function,
scan(). Usage looks like this:

require ’pdfscanner’
function scanPage(page)
local stream = page:getContents()
local ops = createlperatorTable()
local info = createParserState()
if stream then
if stream:isStream()
or stream:isArray() then
pdfscanner.scan(stream, ops, info)
end
end
end

The above functions createOperatorTable ()
and createParserState () are helper functions that
create arguments of the proper types.

7.1 The scan() function

As you can see, the scan() function takes three
arguments, which we describe here.

The first argument should be either a PDF
stream object or a PDF array of PDF stream objects
(those options comprise the possible return values of
<Page>:getContents () and <Object>:getStream()
in the epdf library).

The second argument should be a Lua table
where the keys are PDF operator name strings and
the values are Lua functions (defined by you) that
are used to process those operators. The functions
are called whenever the scanner finds one of these
PDF operators in the content stream(s).

Here is a possible definition of the helper func-
tion createOperatorTable():

function createOperatorTable()
local ops = {}
-- handlecm is defined below
ops[’cm’] = handlecm
return ops

end

The third argument is a Lua variable that is
passed on to provide context for the processing func-
tions. This is needed to keep track of the state of
the PDF page since PDF operators, and especially
those that change the graphics state, can be nested.!

1 In Lua this could have been handled by upvalues or
global variables. This third argument was a concession made
to the planned conversion to C.

59

In its simplest form, the creation of this page
state looks like this:
function createParserState()

local stack = {}
stack[1] = {}
stack[1].ctm =

AffineTransformIdentity()

return stack
end

Internally, pdfscanner.scan() loops over the
input stream content bytes, creating tokens and col-
lecting operands on an internal stack until it finds
a PDF operator. If that operator’s name exists in
the given operator table, then the associated Lua
function is executed. After that function has run (or
when there is no function to execute) the internal
operand stack is cleared in preparation for the next
operator, and processing continues.

The processing functions are called with two
arguments: the scanner object itself, and the info
table that was passed as the third argument to
pdfscanner.scan.

The scanner argument to the processing func-
tions is needed because it offers various methods to
get the actual operands from the internal operand
stack.

7.2 Extracting tokens from the scanner

The lowest-level function available in scanner is
scanner :pop() which pops the top operand of the
internal stack, and returns a Lua table where the
object at index one is a string representing the type
of the operand, and object two is its value.

The list of possible operand types and associated
Lua value types is:

integer (number)
real (number)
boolean {boolean)
name (string)
operator (string)
string (string)
array (table)
dict (table)

In the cases of integer or real, the value is
always a Lua (floating point) number.

In the case of name, the leading slash is always
stripped.

In the case of string, please bear in mind that
PDF supports different types of strings (with different
encodings) in different parts of the PDF document,
so you may need to reencode some of the results;
pdfscanner always outputs the byte stream without
reencoding anything. pdfscanner does not differen-
tiate between literal strings and hexadecimal strings

Parsing PDF content streams with LuaTgX

60

(the hexadecimal values are decoded), and it treats
the stream data for inline images as a string that is
the single operand for EI.

In the case of array, the table content is a list
of pop return values.

In the case of dict, the table keys are PDF
name strings and the values are pop return values.

While parsing a PDF document that is known
to be valid, one usually knows beforehand what the
types of the arguments will be. For that reason,
there are a few more scanner methods defined:

e popNumber () takes a number object off of the
operand stack.

e popString() takes a string object off ...

e popName () takes a name object off ...

e popArray() takes an array object off ...

e popDict() takes a dictionary object off ...
e popBool() takes a boolean object off ...

A simple operator function could therefore look
like this. handlecm was used in an example above;
the PDF cm operator “concatenates” onto the current
transformation matrix. (The Affine... functions
used here are left as an exercise to the reader).

function handlecm (scanner, info)
local ty = scanner:popNumber ()
local tx = scanner:popNumber ()
local d = scanner:popNumber ()
local ¢ = scanner:popNumber ()
local b = scanner:popNumber ()
local a = scanner:popNumber ()
local t = AffineTransformMake(a,b,c,d,tx,ty)
local stack = info.stack
local state = stack[#stack]
state.ctm =
AffineTransformConcat (state.ctm,t)
end

Taco Hoekwater

TUGDboat, Volume 35 (2014), No. 1

Finally, there is also the scanner:done () func-
tion which allows you to quit the processing of a
stream once you have learned everything you want
to learn. Specifically, this comes in handy while
parsing /ToUnicode, because there usually is trail-
ing garbage that you are not interested in. Without
done, processing only ends at the end of the stream,
wasting CPU cycles.

8 Summary

The new pdfparser library in LuaTEX allows parsing
of external PDF content streams directly from within
a LuaTEX document. While this paper explained its
usage, the formal documentation of the new library is
the LuaTEX reference manual. Happy LuaTEX-ing!

o Taco Hoekwater
Docwolves B.V.
http://luatex.org

TUGDboat, Volume 35 (2014), No. 1

ModernDvi: A high quality rendering
and modern DVI viewer

Antoine Bossard and Takeyuki Nagao
Abstract

TEX users have long relied on the device independent
file format (DVI) to preview their documents while
editing. However, innovation has been scarce in this
area, and users have to rely on years-old, or even
decades-old software, facing increasing compatibil-
ity issues with modern systems. In this paper, we
describe ModernDvi, a new DVI viewer Windows
Store application, offering high quality and fast ren-
dering, wait-free, outperforming existing solutions in
these areas. Additionally, ModernDvi has been built
around today’s usability standards and expectations:
tablets, touch-friendly, high-resolution output are
examples of addressed issues.

1 Introduction: The DVI file format

DVTI is a file format, namely the “DeVice Independent”
file format. DVI documents are typically produced
by the TEX and KTEX typesetting programmes. TEX
and its high-level abstraction IXTEX, which is written
in the TEX macro language, were introduced by Don-
ald E. Knuth [7] and Leslie Lamport [10], respectively,
as solutions for producing high-quality documents
dealing with mathematics and science in general,
and especially their complex formulae and notations.
Han Thé Thanh later created an extension of TEX
called pdfTEX [5] enabling direct output of portable
document format (PDF) in addition to the traditional
DVI format. There are thus two different kinds of out-
put by TEX and IXTEX, viz. DVI and PDF. Although
the PDF format has become more popular, some peo-
ple still need and depend on the classical DVI format.
In fact, an experiment with the total 5814 ITEX
documents collected from the preprints of arXiv [6]
in the single month of January 2012, shows that 4168
items (approx. 72%) can be compiled by both XTEX
and pdfIXTEX, and that 540 items (approx. 9%) work
with BTEX but not with pdfIATEX [13].

The DVI format is minimalistic. Roughly speak-
ing, it is a binary format consisting of commands to
(i) define or select a font to utilize, (ii) draw a single
character or a filled rectangle at the current reference
point, (iii) manipulate internal integer registers (in-
cluding the current reference point and the identifier
of the current font), (iv) include binary data (called
DVI specials) for various purposes, and (v) mark the
beginning and ending of pages/documents.

The simplicity of the DVI format facilitates cre-
ation of tools and applications to help authors pre-

61

pare manuscripts and post-process existing articles.
Such tools include DVI viewers which render and
display the contents of a DVI file on screen, and also
converters to various formats including PostScript
(dvips), PDF (dvipdfm), bitmap images (dvipng), etc.
It is much harder to create such tools for the PDF
format, since that format is more complicated and
thus difficult to parse and analyse the encoded data.

A major drawback of the DVI format is that
it requires external files and/or tools to completely
render its contents in some use cases. For example,
if an author includes a figure in his paper (e.g. using
Encapsulated PostScript format), then the generated
DVI file contains a DVI special that consists of a code
fragment in the PostScript language to include the
specified image file. This means that the DVI file
is not self-contained, and one needs a rasterizer of
PostScript, e.g. Ghostscript, to render its contents.
Another common issue is the lack of the feature to
embed fonts. A DVI file actually contains only the
name (such as emrl0) and the size of the utilized
fonts. There is no standardized way to embed raster
or vector fonts to a DVI file. This difficulty can be
overcome by using pdf(I4)TEX which provides the fea-
tures of including external PDF files and embedding
TrueType and Type 1 fonts.

2 Previous works

A handful of DVI viewers exist; however, many are
not updated any more: mdvi [2] and windvi [15] are
examples. Well-known viewers for Unix-based plat-
forms include xdvi [17]. Still usable alternatives are
even harder to find on the MS Windows operating
system. YAP [16] is the DVI viewer of choice on Win-
dows as it is bundled with the MiKTEX distribution
[16]. One can also cite dviout [14] as another DVI
viewer on Windows.

A user looking for a viable solution to work
with DVI files will face several issues. First, all exist-
ing viewers are now considered legacy software: they
have been designed for decades-old operating systems
and do not meet modern requirements regarding soft-
ware, hardware, interface, and usability in general.
The first problem a user may encountered is software
compatibility: for example, as of the Mountain Lion
release of Mac OSX, X11 is not included any more,
which will thus hamper the installation and usage of
the usual viewer on Unix, xdvi. Even more radical
changes to an OS (e.g. at the device driver layer) may
completely break compatibility and make a legacy
viewer unusable. Additionally, classic workstations
are now on their way out, and mobile devices, touch
screens or other advanced interface mechanisms are
in full swing. An unadapted user interface such

ModernDvi: A high quality rendering and modern DVI viewer

62

TUGDboat, Volume 35 (2014), No. 1

FileMonitor

DviFile

App

+ Start() : void 1
+ Cancel() : void

- dvifile : StorageFile

OnLaunched() : void |f‘>

'
'

' .

1 «navigate»
'

'

\V2

DviFileView

MainPage

- status : int[]

- zoom_factor : float

- controls : Control[]

yJomawely swiuny SMOpUIp

+ RenderAsync() : Task

+ LoadFileAsync(): Task

Figure 1: Simplified UML class diagram.

as that of a legacy viewer will thus severely harm
usability, or even make it completely unusable.

Hardware evolution affects more than user inter-
faces. Processors have also seen important changes in
their architectures. Now, every device uses a multi-
core CPU, thus allowing faster or more calculations
at the same time: this is parallel processing. Legacy
DVI software has usually not been designed to utilise
such increased computing power and will thus per-
form poorly compared to modern applications in
general, such ad word processors.

Finally, rendering quality of DVI viewers is usu-
ally not on par with modern displays and their high
resolutions. Again, when they were introduced, these
systems had to cope with much more restrictive hard-
ware and software environments that we have now.
Nowadays, users’ expectations regarding display qual-
ity are very high, and legacy viewers are lacking in
this area.

We could continue enumerating shortcomings
in legacy DVI viewers (e.g. font generation before
rendering, slow page scrolling, etc.), but the point
is clear. By proposing our new DVI viewer, named
ModernDvi, we are first aiming at filling the gaps of
legacy DVI viewers, gaps which have been increas-
ing over time due to constant technology evolution.
The introduction of original features as detailed in
Section 4 is also an important part of our work.

3 ModernDvi: System overview

In this section, we give some insight into ModernDvi’s
structure by first addressing software engineering
considerations, then rendering techniques, and finally
parallel processing.

3.1 Software engineering

ModernDvi is a Windows Store application [11]. It
makes use of the Windows Runtime API and is thus
compatible with x86 and ARM processor architec-

Antoine Bossard and Takeyuki Nagao

tures. Windows Store applications can be deployed
to any Windows 8 device, including PCs and tablets.
Porting ModernDvi to the Windows Phone platform
is also possible, but this remains work in progress.

This app has been developed using the C# pro-
gramming language, and thus features an object-
oriented architecture. Let us give an overview of
the main objects defined in ModernDvi. Common
to every Windows Store app, the entry point of the
application is located inside the App class. The app
itself is built around the MainPage class which de-
fines the application view port, displaying controls
and visual elements in general. Each DVI docu-
ment is associated with an instance of the DviFile
class which, amongst others, importantly stores the
system handle to the DVI file, a critical app issue
detailed further in Section 5. The DviFile class also
holds a reference to a FileMonitor object which is
in charge of monitoring file changes made to the DVI
document. Then, in order to display the content of
a DVI document (i.e. an instance of DviFile), the
class DviFileView is instantiated. Such an object
is in charge of rendering each page of the DVI docu-
ment, and thus contains several view settings such as
page dimension and zooming information. Changing
parameters like the zoom factor will automatically
create a new DviFileView object. Figure 1 shows a
simplified UML class diagram of ModernDvi.

An important point is that DviFileView ob-
jects are completely isolated, especially from the
view port objects of MainPage so as to facilitate the
multi-thread approach detailed in Section 3.3 below.
The sole relation between these two classes is a ref-
erence to a DviFileView instance inside MainPage;
this reference is used to add (i.e. display) the view in-
side the view port. The DVI document is loaded
with the LoadFileAsync() method of MainPage,
and rendered with the RenderAsync() method of
DviFileView.

TUGDboat, Volume 35 (2014), No. 1

3.2 Rendering

The rendering of a DVI file is performed in two stages.
In the first stage, the content of the DVI file is parsed
and the result stored in an object, which contains a
font table (i.e. a mapping from font numbers to font
names) and the DVI commands for each page. All
the required TEX font metrics and other files (such as
PK fonts and virtual fonts) are loaded into memory
for later reference. The bounding box of every page
is computed at this point, in parallel using multiple
threads.

In the second stage, the contents of each page
is rendered lazily. More precisely, it is only at the
moment when a page is about to appear in the view
that the rendering of the page is undertaken. The
engine prepares an off-screen buffer for the page, and
rasterizes the glyphs onto this buffer according to
the DVI commands corresponding to the page. The
off-screen buffer is then converted to an image file
(using Portable Network Graphics format) and stored
in memory. Compression is utilized here in order to
save memory space.

3.3 Parallel processing

As recalled in Section 2, parallel processing is now
a common feature of our modern devices, from PCs
to smartphones via tablets. Modern applications are
thus expected to make use of this increased computa-
tional power available, and this is what we achieved
with ModernDvi.

ModernDvi uses parallelisation for two distinct
tasks. First, DVI rendering, as briefly detailed in
Section 3.2, needs to compute the bounding box
of each page of the DVI document. This is a time
consuming task. So, by executing these calculations
in parallel, we were able to significantly speed up this
process. In practice, we relied on the Task.Run()
function of the System.Threading.Tasks class of
the API which queues its parameter to run on the
thread pool managed by the framework.

Then, once pages have been prepared in memory,
comes the display phase: bringing inside the view
port each of the (visible) pages. This task is also time
consuming since it involves I/0 stream operations,
UI elements’ instantiation and display, and of course
placement routines for correct positioning of the
pages and their corresponding visual elements in the
view port. So again, instead of performing these tasks
sequentially, one after the other, we have devised a
parallel solution for this lengthy process and observed
significant time gains.

Because of the strongly asynchronous nature of
C# for apps, user actions in the UI are often partly
postponed after their start via the keyword combina-

63

tion async/await, and the program returns to the
UI thread. The merit of this approach is that the UI
is always responsive, that is non-blocking, lock-free
and wait-free. However, this can also be problematic
as it means, in our case, that a user can request a
document load (i.e. view refresh) several times, with
most of these requests being still processed, that
is not completed yet. To address this issue, Mod-
ernDvi tracks the rendering state of each page of the
DVI document through a status[] array indexed
on document pages, whose values are as follows:
0: page not displayed (and not pending); this is
the default status of each page.
1: page pending; the program is preparing the doc-
ument page.
2: page ready to be displayed; the program has
finished preparing the page.
3: page displayed; the program has finished adding
the page into the view.

Each view refresh task is thus accessing this array,
which is a class member of DviFileView. So, we have
to regulate the accesses of these asynchronous tasks
to this array to avoid race conditions and concurrent
access problems. This problem is solved by using the
compare-and-swap (CAS) mechanism which is imple-
mented in C# by the CompareExchange method of
the System.Threading.Interlocked class. Using
this, we are able to automatically check and up-
date the rendering status of a document page. The
practical result is that the Interlocked functionality
allows us to (1) avoid performing the rendering of
one page several times, and (2) avoid displaying the
same rendered page several times.

So, thanks to this approach, our DVI document
rendering process is (1) performed asynchronously,
thus always retaining the Ul responsiveness with, for
example, very smooth scrolling, and (2) handling
multiple page preparations and displays in parallel,
thanks to multiple threads. The number of threads
is managed by the framework thread pool and is thus
transparent to the developer. Obviously, the more
cores in your device, the more threads can be running
concurrently. An excerpt of the corresponding source
code is given in Figure 2.

4 Notable features

We present in this section several notable features of
ModernDvi.

4.1 No font generation needed

Existing DVI viewers generate on-demand PK font
files from, for instance, METAFONT source files [8, 9]
or PostScript font files [1]. The main problem with

ModernDvi: A high quality rendering and modern DVI viewer

64

IEnumerable<Task> tasks = Enumerable.Range (O,
visible_pages) .Select(i => {
return Task.Run(() => {
int current_page = first_page + i;
int original_status = System.Threading.Interlocked
.CompareExchange (ref status[current_pagel, 1, 0);

if (original_status == 0) {
pages [current_page] = DviFile.ctx
.CreateRenderablePage(dvifile.Document
.GetPage (current_page)) ;
status [current_page] = 2;
}
B
b
await Task.WhenAll(tasks);

Figure 2: Parallel execution with Task.Run().

this approach is the rendering time delay faced by
the user upon the DVI document loading.

ModernDvi has adopted a different approach:
PK font files are generated in advance and bundled
inside the application so that no font generation
phase is required at any time. Thus, we can achieve
a significant speed-up of the initial loading phase
compared to legacy DVI viewers.

Of course, to maximise usability we need to in-
clude with ModernDvi the fonts needed by users.
Many hundreds of fonts are available for TEX us-
age; looking at the CTAN font area [4] gives a good
overview of the situation. So, we conducted an exper-
iment to measure the popularity of these fonts, and
thus obtained a list of the most-used fonts. Specifi-
cally, we collected preprints published on arXiv [6]
for the year of 2012 and analysed the resulting 48 772
samples of KTEX source files to see which fonts they
used, i.e. which font files are needed for their render-
ing. Table 1 shows the results with, not surprisingly,
Computer Modern leading the list.

We observed that about 1,000 fonts sufficed
to render all gathered DVI files, which we took as
representative of most documents, given the broad
area covered by arXiv. We thus gathered the cor-
responding METAFONT source files and generated
PK files for each font using the mktexpk utility [3].
Particular care has been taken to avoid any licensing
violations for the fonts bundled in ModernDvi, with
problematic fonts replaced by freely available ones;
for instance, Linotype Palatino has been replaced by
URW Palladio. Out of the ~ 1,000 fonts identified,
769 have been included in ModernDvi. Excluded
fonts are either rarely used or for exotic languages.

4.2 File change monitoring

ModernDvi includes a file monitoring system which
triggers a new document rendering (refresh) upon

Antoine Bossard and Takeyuki Nagao

TUGDboat, Volume 35 (2014), No. 1

Table 1: Most-used fonts in 2012 arXiv.org preprints.

Rank Font Freq. % Cumul. %
1 cmsy10 64 830 4.69 4.69
2 cmrl0 60321 4.36 9.05
3 cmmilO 52705 3.81 12.87
4 cmbx12 48774 3.53 16.39
5 ptmr8r 44209 3.20 19.59
6 cmex10 41872 3.03 22.62
7 cmr8 39221 2.84 25.46
8 cmbx10 36725 2.66 28.12
9 cmr6 33900 2.45 30.57
10 cmmi8 30895 2.23 32.80
11 (others) 928916 67.20 100.00

Total 1382368

any file change. Concretely, if this feature is en-
abled, ModernDvi will check at a specific time in-
terval whether changes have occurred to the loaded
document. Such changes are detected as follows.

1. Initialise a LastModified object of type Date
TimeOffset with the DateModified value of
the BasicProperties instance returned by a
first call to GetBasicPropertiesAsync on the
current document.

2. Start the timer (DispatchTimer object).

3. On timer tick, retrieve a new instance of Basic
Properties via a call to GetBasicProperties
Async on the current document. Then com-
pare the stored LastModified value with the
DateModified value of the BasicProperties
instance just retrieved. If LastModified is
smaller (i.e. older) than DateModified, request
a new rendering of the DVI document. Finally,
set LastModified to DateModified.

Additional care needed to be taken regarding
GetBasicPropertiesAsync. Even though it is not
mentioned in the documentation [12], multiple calls
to GetBasicPropertiesAsync on the same file will
throw an exception. Only one call to GetBasic
PropertiesAsync is allowed at a time: one has to
wait for the previous call to return before making an-
other call. And because this method is asynchronous
(i.e. awaited, see Section 3.3), we have to enforce a
guard to avoid doing so. This is again achieved by
using the CAS mechanism CompareExchange method
of the System. Interlocked class.

Lastly, we must note that this monitoring sys-
tem does not work for DVI files that are contained
inside an archive (see Section 4.5). This is due to
the limitations imposed by the Windows Runtime
API, limitations induced by security concerns. See
Section 5 for additional details.

TUGDboat, Volume 35 (2014), No. 1

65

Figure 3: Horizontal display mode.

4.3 Vertical and horizontal display modes

It is a steady trend: screens are getting wider and
wider. In order to take full advantage of such hard-
ware configurations, we have implemented two differ-
ent page flows in ModernDvi: vertical and horizontal
display modes.

The vertical display mode is the classic top-
down document flow that can be found in almost all
viewers or WYSIWYG editors. The horizontal display
mode is an original left-right document flow that
proves comfortable when working on wide displays.
Effectively, multiple pages can be displayed side-by-
side on a wide screen at the same time, enabling a
seamless reading experience. An illustration is given
in Figure 3.

In addition to a global setting defining the de-
fault display mode of ModernDvi, the user interface
contains an easily accessible “Switch flow” button
that enables the user to quickly (instantly) switch the
document display mode, without having to reload or
render anything.

4.4 Automatic zooming

In the current iteration of ModernDvi, we have im-
plemented three zoom levels: window fit, page fit
and thumbnails. The user can choose between these
modes to render the DVI document by automatically
adapting to the screen resolution. Because the docu-
ment rendering process is repeated when changing
the zoom level, the rendering quality remains crisp at
any time. An illustration of these three zoom levels
is given in Figure 4.

To adapt to the user’s screen, our DviFileView
class (see Figure 1) registers the Loaded event of
the view port. When fired, this event signals the
availability of the ActualWidth and ActualHeight
properties of the view port, giving the user screen res-
olution in pixels (precisely the screen area allocated
to the view port). Because of the asynchronous na-

()

Figure 4: Vertical modes of (a) window fit,
(b) page fit and (c) thumbnails zoom levels.

ture of applications and especially their user interface,
failing to use the event model will most likely result
in null values for these two properties. In practice,
the UI thread may not have completed the interface
setup work when reading these two properties.

4.5 Archive formats and file types

DVI documents are often distributed as archives. For
instance, most documents in the arXiv preprint repos-
itory are stored as tarballs. To facilitate display of
such documents, we implemented routines in charge
of uncompressing and extracting archives. Files are
stored in the temporary folder of the app. Table 2
summarises the file formats ModernDvi supports.

Additionally, so as to correctly handle these
different file formats, we implemented an accurate
file type detection routine that can recognise each of
the supported file formats given a file, regardless of
its extension. In practice, one cannot be sure that
a file will have an extension, or that it is accurate.
And this is without mentioning that there often exist
many different extensions for a single file format.
Thus, we analyse a file’s header data to determine
its type.

Table 2: Supported file formats.
Format (MIME type)

‘ Usual extension

application/x-dvi .dvi
application/x-tar tar
application/gzip .87

application/x-gzip-compressed

application/zip .Zip
application/x-zip-compressed

application/x-compressed tar.gz, .tgz

ModernDvi: A high quality rendering and modern DVI viewer

Figure 5: Running ModernDvi on a tablet: full touch
and rotation support.

4.6 Modernity

One of the key aspects of ModernDvi is its recog-
nition of new technologies, devices and interfaces.
In recent years, touch screens have heavily changed
our habits, and software design had to be signifi-
cantly overhauled to adapt to such new interfaces.
ModernDvi embraces this evolution by providing an
innovative, touch-friendly user interface such that
it can be similarly used with either a classic mouse-
keyboard setup or a touch-enabled device such as a
tablet. It is also worth mentioning that ModernDvi
is by design compatible with multiple CPU architec-
tures: x86, x64 and ARM. So, computers equipped
with (at least) Windows 8 and devices running Win-
dows RT, such as the Microsoft Surface, are all capa-
ble of natively running the application. Smartphones
running the Windows Phone 8+ operating system
can be expected to follow soon due to the common
architecture with Windows 8 (NT kernel).

In addition to touch support, ModernDvi has
full rotation support: no matter how the user holds
the device, the application will update its layout so
as to present correctly-oriented content. Figure 5
shows ModernDvi running on a tablet (emulation
of an x86 tablet environment). By combining these
two features (touch and rotation), the user can con-
veniently and naturally go through the document as
if turning pages of a book by selecting the horizontal
display mode and holding his tablet vertically; then,
a simple finger sweep will then display the next page.

Finally, ModernDvi has docking support: the
user can move ModernDvi onto the side of the screen
to interact with another application. This is highly
useful for the “Edit-and-preview” use case as detailed
in Section 6.1.

Antoine Bossard and Takeyuki Nagao

TUGDboat, Volume 35 (2014), No. 1

This PC -

Local Disk €)

Storage (09

DVD RW Drive (€]

Figure 6: A file selection dialog: the only way to
access a user’s files.

5 “App” considerations

Developing a Windows Store application has many
advantages compared to a classic, legacy program.
First, its distribution, deployment and promotion
are greatly facilitated since everything is handled by
the operating system through the official Windows
Store application (installation, removal, etc.). Also,
installing software via the Windows Store is a security
guarantee for the user: applications are reviewed
before they are added to the Store, and importantly,
they run inside a protected environment, ensuring
a minimum footprint on the operating system as
detailed below.

By design, Windows Store applications (the
same is true for Apple Store applications) run in
a restricted (sandboxed) environment for security
reasons. Thanks to this feature, the user need not
worry about system modifications by the app: they
are simply not allowed. The application footprint on
the system is thus minimal, unlike legacy programs.

One of the main implications of this design
is that applications have no direct access to the
file system, except for the application’s own data
folder. To be precise, for an application to perform
I/O operations on a file outside the application’s
data folder, the user must first manually select the
file through a file selection dialog control such as a
FileOpenPicker instance (see Figure 6).

This limitation has a major impact on an ap-
plication such as ModernDvi. For example, there
is no possibility of accessing external files, such as
images, which may be referred to in the DVI doc-
ument. And there is no possibility of running an
external program, such as Ghostscript, to delegate
PostScript work. A Store application is required to
be completely independent. It has thus been a sig-
nificant challenge to produce a fully functional DVI
viewer application.

TUGboat, Volume 35 (2014), No. 1

Figure 7: Editing (left) and preview (right) of XTEX
source via the Windows 8 screen splitting feature.

As an example, let us consider the file moni-
toring feature of ModernDvi (see Section 4.2). The
Windows runtime does have a folder monitoring ca-
pability, namely the ContentsChanged event of the
StorageFolderQueryResult class, but because ac-
cessing a file object (StorageFile), say via a file
picker, does not grant permission to access the con-
taining folder (StorageFolder), this is unusable
for us. So, we implemented a file monitor by us-
ing a timer object (DispatcherTimer) to check the
value of the DateModified property of the Basic
Properties class instance returned by a call to the
GetBasicPropertiesAsync method on the file on
each clock tick. Because of the high timer resolution,
this file monitoring solution is fully satisfactory.

6 Use cases

This section presents two different use case examples
for ModernDvi: edit-and-preview, and reading mode.

6.1 Edit-and-preview mode

The user is preparing an article to be submitted to
a symposium, using the BTEX typesetting system.
The user opens his I'TEX source file in his favourite
editor, say, TEXworks. A first compilation by latex
is triggered by the user, generating a DVI file. The
user double clicks this DVI file to start ModernDvi
and load the DVI file into view. As the user wants
to continue editing, s/he docks ModernDvi onto the
side of the screen, and puts TEXworks on the other
side. The screen is thus split into two areas as shown
in Figure 7. The user continues to make changes in
the TEX source file and recompiles the document,
still using latex. The DVI file generated by the pre-
vious run is overwritten by the new one. ModernDvi
automatically detects that changes have been made
to the DVI file and refreshes its view. The user thus
has an instant preview of the changed version.

67

We gratefully acknowledge support from [N
the Simons Foundation
‘and member institutions

Searchor Aried (telp| Advanced search)

Ailpapers v Jcol

arXiv.org

Format selector for arXiv:1309.1 =
Set cookles: If your browser supports cookies you can configure your default format.

PDF

Now includes fonts, see our PDF help. | Download PDF D‘ YI d OWHI oa d
PostScript using Bitmapped Fonts

Select resolution:

Use 500 | dpi Bitmapped Fonts: | Download PosiScipt

(Note other than the default 600cpiwill occasionaly requie new fots to be created. This can take a while)
PostScript using Type | Fonts

Now includes fonts, see our Type | help. [Download PostScript
ovi

Delivered as a gzipped DVI (dvigz) fle or as a gzipped tar (1ar.g2) file if there are figures to include. | Download DVI

Source
Delivered as a gzipped tar (tar g2) file i there are mutiple files, otherwise as a PDF file or a gzipped TeX, DVI, PostScript or HTML (gz,
avi.gz, .ps.gz of ntml.gz) fiie depending on submission format. { Download source

Figure 8: Reading a preprint downloaded from
arXiv.org.

6.2 Reading mode

The user finds a preprint on the online repository
arXiv.org, and presses the link to request the file,
which is a .dvi.gz compressed DVI document. The
browser silently decompresses this gzip compressed
content and serves the DVI file to the user. The
user’s device system asks what should be done with
the file: open, save, etc.; the user presses the “Open’
button, which automatically loads the document
into ModernDvi. See Figure 8. The user selects the
“window fit” zoom mode for improved readability and
can start going through the document.

)

7 Comparing rendering quality

In this section, we compare ModernDvi with other
DVI viewers regarding rendering quality. It is dif-
ficult to compare usability, including speed, since
ModernDvi is targeting a different platform and in-
terface. For each of the comparisons, default settings
were used.

7.1 vs. YAP

First, let us compare the rendering quality with that
of YAP [16]. In both cases, the zoom level is set to
match the screen width. We can see in Figure 9 that
the rendering quality of ModernDvi is better than
that of YAP.

7.2 vs. dviout

Then, we compare the rendering quality with that
of dviout [14]. In both cases, the zoom level is set
to match the screen width. Again, we can see in
Figure 9 that the rendering quality of ModernDvi is
better than that of dviout.

7.3 vs. Microsoft Reader

Lastly, let us compare the rendering quality of Mod-
ernDvi with that of the PDF viewer included with

ModernDvi: A high quality rendering and modern DVI viewer

68

This docur

creation in

believe tha
(a)

creation 1n
believe tha
(b)

()

TUGboat, Volume 35 (2014), No. 1

This docur This docun This docun This docun
creation in
believe thaf

creation in
helieve that

()

creation in
believe that

(d)

Figure 9: Rendering by (a) ModernDvi, (b) YAP (PostScript mode),
(c) YAP (PK mode), (d) dviout and (e) Microsoft Reader (PDF).

Windows 8.1 (Microsoft Reader 6.3.9431.0), after con-
verting the DVI to PDF format with the DVIPDFMx
utility. In both cases, the zoom level is set to match
the screen width. As illustrated by Figure 9, the ren-
dering quality of ModernDvi is significantly better.

8 Conclusions

We have presented in this paper ModernDvi, a new
DVI document viewer targeting modern platforms
and interfaces, such as tablets. After describing
the software architecture, design and features, we
compared the rendering quality of other viewers;
ModernDvi is leading on that point too. Windows
Store applications are sandboxed, and thus severely
restricted regarding file system access. We have
circumvented these challenges to produce a fully
functional DVI viewer application.

Future work includes refining our rendering tech-
nique by going down to sub-pixels, as well as improv-
ing the rendering speed by continuing the work on
glyph caching. Lastly, user interface improvements,
such as being able to handle multiple documents at
once, are also planned.

A ModernDvi in the Windows Store

ModernDvi can be found in the Windows Store, or
directly at http://apps.microsoft.com/windows/
app/moderndvi/bfa836ff-4eb0-454b-ad9e-
a2405197£23b.

References

[1] Adobe Systems Incorporated. Adobe Type 1 Font
Format. Reading, Massachusetts: Addison-Wesley,
1990.

Matias Atria. MDVI—A DVI previewer.
http://mdvi.sourceforge.net/. Accessed
August 2013.

Edward Barrett. Porting TEX Live to OpenBSD.
TUGboat, 29(2):303-304, 2008.

CTAN: The Comprehensive TEX Archive Network.
Available fonts. http://www.ctan.org/
tex-archive/fonts. Accessed August 2013.

Han Thé Thanh. Micro-typographic eztensions to
the TEX typesetting system. PhD thesis, Masaryk
University Brno, October 2000.

2l

3]

(4]

(5]

Antoine Bossard and Takeyuki Nagao

(6]

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Allyn Jackson. From preprints to e-prints:

The rise of electronic preprint servers in
mathematics. Notices of the American
Mathematical Society, 49(1):23-32, 2002.

Donald E. Knuth. The TgXbook. Reading,
Massachusetts: Addison-Wesley, 1984.

Donald E. Knuth. Metafont: The Program.
Reading, Massachusetts: Addison-Wesley, 1986.
Donald E. Knuth. The Metafontbook. Reading,
Massachusetts: Addison-Wesley, 1986.

Leslie Lamport. BTEX: A document preparation
system: User’s guide and reference. Reading,
Massachusetts: Addison-Wesley Professional,
1994.

Microsoft. Windows Store. http://windows.
microsoft.com/en-us/windows-8/apps.
Accessed October 2013.

MSDN. StorageFile.GetBasicPropertiesAsync.
http://msdn.microsoft.com/en-us/library/
windows/apps/windows.storage.storagefile.
getbasicpropertiesasync.aspx.

Accessed August 2013.

Take-Yuki Nagao. Automatic recognition of
theorem environments of mathematical papers in
IATEX format. Bulletin of Advanced Institute of
Industrial Technology, 7:81-87, 2013.

Toshio Oshima, Yoshiki Otobe, and Kazunori
Asayama. dviout—a DVI previewer for Windows.
http://www.ctan.org/pkg/dviout. Accessed
October 2013.

Fabrice Popineau. windvi— MS-Windows DVI
viewer. http://www.ctan.org/pkg/windvi.
Accessed August 2013.

Christian Schenk. Yet Another Previewer.
http://www.miktex.org. Accessed October 2013.
Paul Vojta. xdvi— A DVI previewer for the X
Window System. http://math.berkeley.edu/
~vojta/xdvi.html. Accessed October 2013.

¢ Antoine Bossard and Takeyuki Nagao
Big Data Laboratory
Advanced Institute of Industrial Technology
1-10-40 Higashiooi
Shinagawa-ku, 140-0011
Japan
abossard (at) aiit dot ac dot jp
nagao-takeyuki (at) aiit dot ac dot jp

TUGDboat, Volume 35 (2014), No. 1

Selection in PDF viewers and
a LuaTgX bug
Hans Hagen

In January 2014 a message was posted to the Con-
TEXt mailing list asking for clarification about the
way PDF viewers select text. Let me give an example
of that (inside a convenient ConTEXt wrapper):
\startTEXpage [offset=2cm]
\hbox{$ x+y $}

\stopTEXpage

In figure 1 you can see how for instance Ac-
robat (which I use for proofing) and SumatraPDF
(which T use in my edit—preview cycle) select this
text. As reported in the mail, other viewers behave
like SumatraPDF does, with excessive vertical space
included in the selection.

R

r+y

Acrobat SumatraPDF

Figure 1: Some math selected in PDF viewers.

Part of the question was why wrapping a dis-
play formula in an \hbox doesn’t have this effect on
viewers. Think of:

\startTEXpage [offset=2cm]
\hbox{\startformula x+y \stopformula}
\stopTEXpage

This can be reduced to the following primitive
construct (which is rendered in figure 2):
\startTEXpage [offset=2cm]

\hbox{$$ x+y $$}
\stopTEXpage

Acrobat SumatraPDF

Figure 2: Some text selected in PDF viewers.

If you look closely you will see that we have text
and not math. This is because in restricted horizontal

69

mode (inside \hbox) TEX sees the $$ as a begin and
immediate end of math mode, so in fact we have
here some text surrounded by empty math. When I
realized that using ConTEXt’s \startformula could
have this side effect in some situations I decided to
catch this, but sometimes TEX can give surprises.
Already a while ago Taco and I decided that it
would be handy to have primitives in LuaTgX for
special characters (or more precisely: characters with
certain catcodes) as used in math and alignments.

Table 1: Some of the extra LuaTEX primitives.

token primitive(s)
\alignmark
& \aligntab
$ \Ustartmath \Ustopmath
$$ \Ustartdisplaymath \Ustopdisplaymath
- \Usuperscript
\Usubscript

As you can see in table 1, the dollars are some-
what special as in fact we don’t alias characters
(tokens) but have introduced primitives that change
the mode from text to inline or display math and
back. So, we can say:

\startTEXpage [offset=2cm]
\hbox{\Ustartdisplaymath x+y \Ustopdisplaymath}
\stopTEXpage

This renders okay in LuaTgEX 0.78.1, but when
we tinker a bit like this (with an invalid \par inside
the \hbox):

\startTEXpage [offset=2cm]
\hbox{\Ustartdisplaymath x+y \Ustopdisplaymath
\par}
\stopTEXpage
we get this:

Assertion failed!

Program: c:\tex\texmf-win64\bin\luatex.exe
File: web2c/luatexdir/tex/texnodes.w, Line 830

Expression: p> my_prealloc

Oops. Furthermore, if we add some text after
the invalid \par:

\startTEXpage [offset=2cm]
\hbox{\Ustartdisplaymath x+y \Ustopdisplaymath
\par x}
\stopTEXpage

we get:
! This can’t happen (vpack).

As an excursion from working on the Critical
Editions project Luigi Scarso and I immediately

Selection in PDF viewers and a LuaTEX bug

70

started debugging this at the engine level and after
some tracing we saw that it had to do with packag-
ing. Taco joined in, and we decided that it made
no sense at all to try to deal with this at that level
simply because we ourselves had bypassed a natural
boundary of TEX: caching the start of display math
by seeing two successive $ as an inline formula. So
the solution is either to make \Ustartdisplaymath
more clever, but better is to simply issue an error
message when this state is entered. That way we
stick to the original TEX point of view, an approach
that has never failed us so far. The chosen solution
is to issue error messages (broken onto two lines for
TUGDboat):

! You can’t use ‘\Ustartdisplaymath’
in restricted horizontal mode

! You can’t use ‘\Ustopdisplaymath’
in restricted horizontal mode
If you really want this you can redefine the
primitive:
\let\normalUstartmath\Ustartmath
\let\normalUstopmath \Ustopmath

\let\normalUstartdisplaymath\Ustartdisplaymath
\let\normalUstopdisplaymath \Ustopdisplaymath

\unexpanded\def\Ustartdisplaymath % context way
{\ifinner
\ifhmode
\normalUstartmath
\let\Ustopdisplaymath
\normalUstopmath
\else
\normalUstartdisplaymath
\let\Ustopdisplaymath
\normalUstopdisplaymath
\fi
\else
\normalUstartdisplaymath
\let\Ustopdisplaymath
\normalUstopdisplaymath
\fi}

As with many things in TEX there is often a
way out, as long as things are open and accessible
enough. Currently in ConTEXt we do something like
the above for cases where confusion can happen.

With that fixed, it was time to return to the
original question. Why do math selections have such
large bounding boxes in some viewers? The answer
to that is in the PDF file. Let’s look at the font
properties of a math font, Latin Modern Math here:

Hans Hagen

TUGDboat, Volume 35 (2014), No. 1

24 0 obj
<<
/Type /FontDescriptor
/FontName /CXDZIF+LatinModernMath-Regular
/Flags 4
/FontBBox [-1042 -3060 4082 3560]
/Ascent 3560
/CapHeight 683
/Descent -3060
/ItalicAngle O
/StemV 93
/XHeight 431
/FontFile3 23 O R
/CIDSet 22 0 R
>>
endobj

Compare these rather large values for FontBBox,
Ascent, etc., with a text font (Latin Modern Ro-
man):

24 0 obj
<<
/Type /FontDescriptor
/FontName /TEKCPF+LMRoman12-Regular
/Flags 4
/FontBBox [-422 -280 1394 1127]
/Ascent 1127
/CapHeight 683
/Descent -280
/ItalicAngle O
/StemV 91
/XHeight 431
/FontFile3 23 O R
/CIDSet 22 O R
>>
endobj

So, it looks like Acrobat is using the actual
heights and depths of glyphs (probably with some
slack) while other viewers use the font’s ascender
and descender values. So in the end the answer is:
there is nothing the user, ConTEXt or LuaTEX can do
about it, apart from messing with the values above,
which is probably not a good idea.

But trying to answer the question (by stripping
down, etc.) had the side effect of identifying a bug in
LuaTgX. A lesson learned is thus that even adding
simple primitives like the ones above needs some
studying of the source code in order to identify side
effects. We should have known!

¢ Hans Hagen
Pragma ADE
http://pragma-ade.com

TUGDboat, Volume 35 (2014), No. 1

Parsers in TEX and using CWEB for general
pretty-printing

Alexander Shibakov

In this article I describe a collection of TEX macros
and a few simple C programs called SPLinT that
enable the use of the standard parser and scanner
generator tools, bison and flex, to produce very
general parsers and scanners coded as TEX macros.
SPLinT is freely available from http://ctan.org/
pkg/splint and http://math.tntech.edu/alex.

Introduction

The need to process formally structured languages
inside TEX documents is neither new nor uncom-
mon. Several graphics extensions for TEX (and
IATEX) have introduced a variety of small special-
ized languages for their purposes that depend on
simple (and not so simple) interpreters coded as
TEX macros. A number of pretty-printing macros
take advantage of different parsing techniques to
achieve their goals (see [Gol, [Do], and [Wo).

Efforts to create general and robust parsing
frameworks inside TEX go back to the origins of
TEX itself. A well-known BASIC subset interpreter,
BASIX (see [Gr]) was written as a demonstration
of the flexibility of TEX as a programming language
and a showcase of TEX’s ability to handle a variety
of abstract data structures. On the other hand,
a relatively recent addition to the IATEX toolbox,
13regex (see [Lal), provides a powerful and very
general way to perform regular expression matching
in IMTEX, which can be used (among other things)
to design parsers and scanners.

Paper [Go] contains a very good overview of
several approaches to parsing and tokenizing in
TEX and outlines a universal framework for parser
design using TEX macros. In an earlier article
(see [Wo]), Marcin Woliriski describes a parser
creation suite paralleling the technique used by
CWEB (CWEB’s ‘grammar’ is hard-coded into CWEAVE,
whereas Woliniski’s approach is more general). One
commonality between these two methods is a highly
customized tokenizer (or scanner) used as the input
to the parser proper. Wolinski’s design uses a finite
automaton as the scanner engine with a ‘manually’
designed set of states. No backing up mechanism
was provided, so matching, say, the longest input
would require some custom coding (it is, perhaps,
worth mentioning here that a backup mechanism is
all one needs to turn any regular language scanner
into a general CWEB-type parser). The scanner in
[Go] was designed mainly with efficiency in mind

71

and thus relies on a number of very clever techniques
that are highly language-specific (out of necessity).

Since TEX is a system well-suited for typeset-
ting technical documents, pretty-printing texts writ-
ten in formal languages is a common task and is also
one of the primary reasons to consider a parser writ-
ten in TEX.

The author’s initial motivation for writing the
software described in this article grew out of the
desire to fully document a few embedded micro-
controller projects that contain a mix of C code,
Makefiles, linker scripts, etc. While the majority
of code for such projects is written in C, superbly
processed by CWEB itself, some crucial information
resides in the kinds of files mentioned above and can
only be handled by CWEB’s verbatim output (with
some minimal postprocessing, mainly to remove the
#line directives left by CTANGLE).

Parsing with TEX vs. others

Naturally, using TEX in isolation is not the only way
to produce pretty-printed output. The CWEB sys-
tem for writing structured documentation uses TEX
merely as a typesetting engine, while handing over
the job of parsing and preprocessing the user’s in-
put to a program built specifically for that purpose.
Sometimes, however, a paper or a book written in
TEX contains a few short examples of programs writ-
ten in another programming language. Using a sys-
tem such as CWEB to process these fragments is cer-
tainly possible (although it may become somewhat
involved) but a more natural approach would be to
create a parser that can process such texts (with
some minimal help from the user) entirely inside
TEX itself. As an example, pascal (see [Go]) was
created to pretty-print Pascal programs using TEX.
It used a custom scanner for a subset of standard
Pascal and a parser, generated from an LL(1) Pas-
cal grammar by a parser generator, called parTEX.

Even if CWEB or a similar tool is used, there may
still be a need to parse a formal language inside TEX.
One example would be the use of CWEB to handle a
language other than C.

Before I proceed with the description of the tool
that is the main subject of this paper, allow me to
pause for just a few moments to discuss the wisdom
(or lack thereof) of laying the task of parsing for-
mal texts entirely on TEX’s shoulders. In addition
to using an external program to preprocess a TEX
document, some recent developments allow one to
implement a parser in a language ‘meant for such
tasks’ inside an extension of TEX. We are speaking
of course about LuaTEX (see [Ha|) that essentially

Parsers in TEX and using CWEB for general pretty-printing

72

implements an entirely separate interface to TEX’s
typesetting mechanisms and data structures in Lua
(see [Lu]), ‘grafted’ onto a TEX extension.

Although I feel nothing but admiration for the
LuaTEX developers, and completely share their de-
sire to empower TEX by providing a general purpose
programming language on top of its internal mecha-
nisms, I would like to present three reasons to avoid
taking advantage of LuaTgX’s impressive capabili-
ties for this particular task.

First, I am unaware of any standard tools for
generating parsers and scanners in Lua (of course, it
would be just as easy to use the approach described
here to create such tools). At this point in time,
it is just as easy to coax standard parser generators
into outputting parsers in TEX as it is to make them
output Lua.

Second, I am a great believer in generating
‘archival quality’ documents: standard TEX has
been around for almost three decades in a practi-
cally unchanged form, an eternity in the software
world. The parser produced using the methods
outlined in this paper uses standard (plain) TEX ex-
clusively. Moreover, if the grammar is unchanged,
the parser code itself (i.e. its semantic actions) is
very readable, and can be easily modified without
going through the whole pipeline (bison, flex, etc.)
again. A full record of the grammar is left with the
generated parser and scanner so even if the more
‘volatile’ tools, such as bison and flex, become
incompatible with the package, the parser can still
be utilized with TEX alone. Perhaps the following
quote by D. Knuth (see [DEK2]) would help to re-
inforce this point of view: “Of course I do not claim
to have found the best solution to every problem. I
simply claim that it is a great advantage to have a
fixed point as a building block.”

Finally, the idea that TEX is somehow un-
suitable for such tasks may have been overstated.
While it is true that TEX’s macro language lacks
some of the expressive ability of its ‘general purpose’
brethren, it does possess a few qualities that make
it quite adept at processing text (it is a typeset-
ting language after all!). Among these features are:
a built-in hashing mechanism (accessible through
\csname. ..\endcsname and \string primitives)
for storing and accessing control sequence names
and creating associative arrays, a number of tools
and data structures for comparing and manipu-
lating strings (token registers, the \ifx primitive,
various expansion primitives: \edef, \expandafter
and the like), and even string matching and replace-
ment (using delimited parameters in macros). TEX
notoriously lacks a good (i.e. efficient and easy to

Alexander Shibakov

TUGDboat, Volume 35 (2014), No. 1

use) framework for storing and manipulating ar-
rays and lists (see the discussion of list macros in
Appendix D of The TEXbook and in [Gr]) but this
limitation is readily overcome by putting some extra
care into one’s macros.

Languages, grammars, parsers, and TEX

Or...
Tokens and tables keep macros in check.
Make ’em with bison, use WEAVE as a tool.
Add TgEX and CTANGLE, and C to the pool.
Reduce ’em with actions, look forward, not back.
Macros, productions, recursion and stack!
Computer generated (most likely)

The goal of the software described in this article,
SPLinT (Simple Parsing and Lexing in TEX, or, in
the tradition of GNU, SPLinT Parses Languages in
TEX) is to give a macro writer the ability to use
standard parser/scanner generator tools to produce
TEX macros capable of parsing formal languages.

Let me begin by presenting a ‘bird’s eye view’
of the setup and the workflow one would follow to
create a new parser with this package. To take full
advantage of this software, two external programs
(three if one counts a C compiler) are required:
bison and flex (see [Bi] and [Pal), the parser and
scanner generators, respectively. Both are freely
available under the terms of the General Public
License version 3 or higher and are standard tools
included in practically every modern GNU/Linux
distribution. Versions that run under a number of
other operating systems exist as well.

While the software allows the creation of both
parsers and scanners in TEX, the steps involved in
making a scanner are very similar to those required
to generate a parser, so only the parser generation
will be described below.

Setting the semantic actions aside for the mo-
ment, one begins by preparing a generic bison input
file, following some simple guidelines. Not all bison
options are supported (the most glaring omission
is the ability to generate a general LR (glr) parser
but this may be added in the future) but in every
other respect it is an ordinary bison grammar. In
some cases, a bison grammar may already exist and
can be turned into a TEX parser with just a few (or
none!) modifications and a new set of semantic ac-
tions (written in TEX of course). As a matter of
example, the grammar used to pretty-print bison
grammars in CWEB that comes with this package was
adopted (with very minor modifications, mainly to
create a more logical presentation in CWEB) from the
original grammar used by bison itself.

TUGDboat, Volume 35 (2014), No. 1

Once the grammar has been debugged (using
a combination of bison’s own impressive debugging
facilities and the debugging features supported by
the macros in the package), it is time to write the
semantic actions for the syntaz-directed translation
(see [Ah]). These are ordinary TEX macros written
using a few simple conventions listed below. First,
the actions themselves will be executed inside a large
\ifcase statement (this is not always the case, see
the discussion of ‘optimization’ below, but it would
be better to assume that it is); thus, care must
be taken to write the macros so that they can be
‘skipped’ by TEX’s scanning mechanism. Second, in-
stead of using bison’s $n syntax to access the value
stack, a variety of \yyp macros are provided. Fi-
nally, the ‘driver’ (a small C program, see below)
provided with the package merely cycles through the
actions to output TEX macros, so one has to use one
of the C macros provided with the package to out-
put TEX in a proper form. One such macro is TeX_,
used as TeX_ ("{TEX tokens}") ;.

The next step is the most technical, and the one
most in need of automation. A Makefile provided
with the package shows how such automation can be
achieved. The newly generated parser (the ‘. c-file’
produced by bison) is #include’d in (yes, included,
not merely linked to) a special ‘driver’ file. No mod-
ifications to the driver file or the bison produced
parser are necessary; all one has to do is call a C
compiler with an appropriately defined macro (see
the Makefile for details). The resulting executable
is then run which produces a .tex file that con-
tains the macros necessary to use the freshly-minted
parser in TEX. This short brush with a C compiler
is the only time one ventures outside of the world of
pure TEX to build a parser with this software (not
counting the one needed to create the accompany-
ing scanner if one is desired). It is possible to add
a ‘plugin’ to bison to create a ‘TEX output mode’
but at the moment the ‘lazy’ version seems to be
sufficient.

Now \input this file into your TEX document
along with the macros that come with the package
and voila! You have a brand new parser in TEX!
A full-featured parser for the bison input file format
is included, and can be used as a template. For
smaller projects, it might help to take a look at the
examples portion of the package.

The discussion above glosses over a few impor-
tant details that anybody who has experience writ-
ing ‘ordinary’ (i.e. non-TEX) parsers in bison would
be eager to find out. Let us now discuss some of
these details.

73

Data structures for parsing

A surprisingly modest amount of machinery is re-
quired to make a bison-generated parser ‘tick’. In
addition to the standard arithmetic ‘bag of tricks’
(integer addition, multiplication and conditionals),
some basic integer and string array (or closely re-
lated list and stack) manipulation is all that is
needed.

Parser tables and stack access ‘in the raw’ are
normally hidden from the parser designer but cre-
ating lists and arrays is standard fare for most se-
mantic actions. The bison parser supplied with the
package does not use any techniques that are more
sophisticated than simple token register operations.
Representing and accessing arrays this way (see Ap-
pendix D of The TEXbook or the \concat macro in
the package) is simple and intuitive but computa-
tionally expensive. The computational costs are not
prohibitive though, as long as the arrays are kept
short. In the case of large arrays that are read often,
it pays to use a different mechanism. One such tech-
nique (used also in [Go], [Gr], and [Wo]) is to ‘split’
the array into a number of control sequences (cre-
ating an associative array of token sequences called,
for example \array [n], where n is an index value).
This approach is used with the parser and scanner
tables (which tend to be quite large) when the parser
is ‘optimized’ (more about this later). Once again,
it is possible to write the parser semantic actions
without this (slightly unintuitive and cumbersome
to implement) machinery.

This covers most of the routine computations
inside semantic actions; all that is left is a way to
‘tap’ into the stack automaton built by bison using
an interface similar to the special $n variables uti-
lized by the ‘genuine’ bison parsers (i.e. written in
C or any other target language supported by bison).

This role is played by the several varieties of
\yy p command sequences (for the sake of complete-
ness, p stands for one of (n), [name], Jname[or
n; here n is a string of digits; and a ‘name’ is any
name acceptable as a symbolic name for the term
in bison). Instead of going into the minutiae of
various flavors of \yy-macros, let me just mention
that one can get by with only two ‘idioms’ and still
be able to write parsers of arbitrary sophistication:
\yy(n) can be treated as a token register containing
the value of the n-th term of the rule’s right hand
side, n > 0. The left hand side of a production is
accessed through \yyval. A convenient shortcut is
\yy0{(TEX material)} which will expand the (TpX
material) inside the braces. Thus, a simple way

Parsers in TEX and using CWEB for general pretty-printing

74

to concatenate the values of the first two produc-
tion terms is \yyO{\the\yy(1)\the\yy(2)}. The
included bison parser can also be used to provide
support for ‘symbolic names’, analogous to bison’s
$[name] syntax but this requires a bit more effort
on the user’s part in order to initialize such sup-
port. It could make the parser more readable and
maintainable, however.

Naturally, a parser writer may need a number of
other data abstractions to complete the task. Since
these are highly dependent on the nature of the pro-
cessing the parser is supposed to provide, we refer
the interested reader to the parsers included in the
package as a source of examples of such specialized
data structures.

Pretty-printing support with
formatting hints

The scanner ‘engine’ is propelled by the same set of
data structures and operations that drive the parser
automaton: stacks, lists and the like. Table manip-
ulation happens ‘behind the scenes’ just as in the
case of the parser. There is also a stack of ‘states’
(more properly called subautomata) that is manip-
ulated by the user directly, where the access to the
stack is coded as a set of macros very similar to the
corresponding C functions in the ‘real’ flex scan-
ners. The ‘handoff’ from the scanner to the parser
is implemented through a pair of registers: \yylval,
a token register containing the value of the returned
token and \yychar, a \count register that contains
the numerical value of the token to be returned.

Upon matching a token, the scanner passes one
crucial piece of information to its user: the char-
acter sequence representing the token just matched
(\yytext). This is not the whole story, though:
three more token sequences are made available to
the parser writer whenever a token is matched.

The first of these is simply a ‘normalized’ ver-
sion of \yytext (called \yytextpure). In most cases
it is a sequence of TEX tokens with the same char-
acter codes as the one in \yytext but with their
category codes set to 11. In cases when the tokens
in \yytext are not (character code, category code)
pairs, a few simple conventions are followed, ex-
plained elsewhere. This sequence is provided merely
for convenience and its typical use is to generate a
key for an associative array.

The other two sequences are special ‘stream
pointers’ that provide access to the extended scan-
ner mechanism in order to implement passing of ‘for-
matting hints’ to the parser without introducing any

Alexander Shibakov

TUGDboat, Volume 35 (2014), No. 1

changes to the original grammar, as explained be-
low.

Unlike strict parsers employed by most com-
pilers, a parser designed for pretty-printing cannot
afford being too picky about the structure of its
input ([Go] calls such parsers ‘loose’). As a way
of simple illustration, an isolated identifier, such as
‘lg_integer’ can be a type name, a variable name,
or a structure tag (in a language like C for exam-
ple). If one expects the pretty-printer to typeset
this identifier in a correct style, some context must
be supplied, as well. There are several strategies a
pretty-printer can employ to get hold of the neces-
sary context. Perhaps the simplest way to handle
this, and to reduce the complexity of the pretty-
printing algorithm, is to insist on the user providing
enough context for the parser to do its job. For short
examples like the one above, this is an acceptable
strategy. Unfortunately, it is easy to come up with
longer snippets of grammatically deficient text that
a pretty-printer should be expected to handle. Some
pretty-printers, such as the one employed by CWEB
and its ilk (WEB, FWEB), use a very flexible bottom-
up technique that tries to make sense of as large a
portion of the text as it can before outputting the
result (see also [Wol, which implements a similar al-
gorithm in TATEX).

The expectation is that this algorithm will han-
dle the majority of the cases with the remaining few
left for the author to correct. The question is, how
can such a correction be applied?

CWEB itself provides two rather different mech-
anisms for handling these exceptions. The first uses
direct typesetting commands (for example, @+ and
@+ for cancelling and introducing a line break, resp.)
to change the typographic output.

The second (preferred) way is to supply hidden
context to the pretty-printer. Two commands, @;
and @[...@] are used for this purpose. The former
introduces a ‘virtual semicolon’ that acts in every
way like a real one except it is not typeset (it is
not output in the source file generated by CTANGLE,
either but this has nothing to do with pretty-print-
ing, so I will not mention CTANGLE anymore). For
instance, from the parser’s point of view, if the pre-
ceding text was parsed as a ‘scrap’ of type exp, the
addition of @; will make it into a ‘scrap’ of type stmt
in CWEB’s parlance. The latter construct (@[...@]),
is used to create an exp scrap out of whatever hap-
pens to be inside the brackets.

This is a powerful tool at one’s disposal. Stylis-
tically, this is the right way to handle exceptions as
it forces the writer to emphasize the logical struc-
ture of the formal text. If the pretty-printing style

TUGDboat, Volume 35 (2014), No. 1

is changed extensively later, the texts with such hid-
den contexts should be able to survive intact in the
final document (as an example, using a break after
every statement in C may no longer be considered
appropriate, so any forced break introduced to sup-
port this convention would now have to be removed,
whereas @;’s would simply quietly disappear into the
background).

The same hidden context idea has another im-
portant advantage: with careful grammar fragment-
ing (facilitated by CWEB’s or any other literate pro-
gramming tool’s ‘hypertext’ structure) and a more
diverse hidden context (or even arbitrary hidden
text) mechanism, it is possible to use a strict parser
to parse incomplete language fragments. For exam-
ple, the productions that are needed to parse C’s
expressions form a complete subset of the parser.
If the grammar’s ‘start’ symbol is changed to ez-
pression (instead of the translation-unit as it is in
the full C grammar), a variety of incomplete C frag-
ments can now be parsed and pretty-printed. When-
ever such granularity is still too ‘coarse’, carefully
supplied hidden context will give the pretty-printer
enough information to adequately process each frag-
ment. A number of such sub-parsers can be tried on
each fragment (this may sound computationally ex-
pensive, however, in practice, a carefully chosen hi-
erarchy of parsers will finish the job rather quickly)
until a correct parser produced the desired output.

This somewhat lengthy discussion brings us to
the question directly related to the tools described
in this article: how does one provide typographical
hints or hidden context to the parser?

One obvious solution is to build such hints
directly into the grammar. The parser designer
can, for instance, add new tokens (terminals, say,
BREAK_LINE) to the grammar and extend the pro-
duction set to incorporate the new additions. The
risk of introducing new conflicts into the grammar is
low (although not entirely non-existent, due to the
lookahead limitations of LR(1) grammars) and the
changes required are easy, although very tedious, to
incorporate.

In addition to being labor intensive, this solu-
tion has two other significant shortcomings: it alters
the original grammar and hides its logical struc-
ture, and it ‘bakes in’ the pretty-printing conven-
tions into the language structure (making ‘hidden’
context much less ‘stealthy’).

A much better approach involves inserting the
hints at the lexing stage and passing this informa-
tion to the parser as part of the token ‘values’. The
hints themselves can masquerade as characters ig-
nored by the scanner (white space, for example) and

75

preprocessed by a specially designed input routine.
The scanner then simply passes on the values to the
parser.

The difficulty lies in synchronizing the token
production with the parser. This subtle complica-
tion is very familiar to anyone who has designed
TEX’s output routines: the parser and the lexer are
not synchronous, in the sense that the scanner might
be reading several (in the case of the general LR(n)
parsers) tokens ahead of the parser before deciding
on how to proceed (the same way TEX can consume
a whole paragraph’s worth of text before exercising
its page builder).

If we simple-mindedly let the scanner return ev-
ery hint it has encountered so far, we may end up
feeding the parser the hints meant for the token that
appears after the fragment the parser is currently
working on. In other words, when the scanner ‘backs
up’ it must correctly back up the hints as well.

This is exactly what the scanner produced by
the tools in this package does: along with the main
stream of tokens meant for the parser, it produces
two hidden streams (called the \format stream and
the \stash stream) and provides the parser with
two strings (currently only strings of digits are used
although arbitrary sequences of TEX tokens can
be used as pointers) with the promise that all the
‘hints’ between the beginning of the corresponding
stream and the point labelled by the current stream
pointer appeared among the characters up to and,
possibly, including the ones matched as the current
token. The macros to extract the relevant parts
of the streams (\yyreadfifo and its cousins) are
provided for the convenience of the parser designer.
The interested reader can consult the input routine
macros for the details of the internal representation
of the streams.

In the interest of full disclosure, let me point
out that this simple technique introduces a signifi-
cant strain on TEX’s computational resources: the
lowest level macros, the ones that handle charac-
ter input and are thus executed (sometimes multi-
ple times), for every character in the input stream
are rather complicated and therefore, slow. When-
ever the use of such streams is not desired a simpler
input routine can be written to speed up the pro-
cess (see \yyinputtrivial for a working example
of such macro).

The parser function

To achieve such a tight integration with bison, its
parser template, yyparse() was simply translated
into TEX using the following well known method.

Parsers in TEX and using CWEB for general pretty-printing

76

Given the code (where goto’s are the only
means of branching but can appear inside condi-
tionals):

label A:

[more code . . .]

goto C;

[more code . ..]

label B:

[more code . ..]

goto A;

[more code . ..]

label C:

[more code . . .]

one way to translate it into TEX is to define a set
of macros (call them \labelA, \labelAtail and
so forth for clarity) that end in \next (a common
name for this purpose). Now, \labelA will imple-
ment the code that comes between label A: and
goto C;, whereas \labelAtail is responsible for
the code after goto C; and before label B: (pro-
vided no other goto’s intervene which can always be
arranged). The conditional preceding goto C; can
now be written in TEX as

\if (condition)
\let\next=\1labelC

\else
\let\next=\labelAtail

where (condition) is an appropriate translation of
the corresponding condition in the code being trans-
lated (usually, one of ‘=" or ‘#’). Further details can
be extracted from the TEX code that implements
these functions where the corresponding C code is
presented alongside the macros that mimic its func-
tionality.

Debugging

If the tools in the package are used to create medium
to high complexity parsers, the question of debug-
ging will come up sooner or later. The grammar de-
sign stage of this process can utilize all the excellent
debugging facilities provided by bison and flex (re-
porting of conflicts, output of the automaton, etc.).
The Makefiles supplied with the package will auto-
matically output all the debugging information the
corresponding tool can provide. Eventually, when
all the conflicts are ironed out and the parser begins
to process input without performing any actions, it
becomes important to have a way to see ‘inside’ the
parsing process. Since the processing performed by

Alexander Shibakov

TUGDboat, Volume 35 (2014), No. 1

the generated parser is done in several stages, the
debugging may become rather involved.

All the debugging features are activated by
using various \iftrace... conditionals, as well as
\ifyyinputdebug and \ifyyflexdebug (for ex-
ample, to look at the parser stack, one would set
\tracestackstrue). When all of the conditionals
are activated, a lot of output is produced. At this
point it is important to narrow down the prob-
lem area and only activate the debugging features
relevant to any errant behaviour exhibited by the
parser. Most of the debugging features built into
ordinary bison parsers (and flex scanners) are
available.

In general, debugging parsers and scanners (and
debugging in general) is a very deep topic that may
require a separate paper (or maybe a book!) all by
itself, so I will simply leave it here and encourage
the reader to experiment with the included parsers
to learn the general operational principles behind
the parsing automaton. One needs to be aware that,
unlike the ‘real’ C parsers, the TEX parser has to deal
with more than simply straight text. So if it looks
like the parser (or the scanner) absolutely has to
accept the (rejected) input displayed on the screen,
just remember that an ‘a’ with a category code 11
and an ‘a’ with a category code 12 look the same
on the terminal while TEX and the parser/scanner
may treat them as completely different characters
(this behavior itself can be fine tuned by changing
\yyinput).

Speeding up the parser

By default, the generated parser and scanner keep
all of their tables in separate token registers. Each
stack is kept in a single macro. Thus, every time a
table is accessed, it has to be expanded making the
table access latency linear in the size of the table.
The same holds for stacks and the action ‘switches’,
of course. While keeping the parser tables (that are
constant) in token registers does not have any better
rationale than saving control sequence memory (the
most abundant memory in TEX), this way of storing
stacks does have an advantage when multiple parsers
come into play simultaneously. All one has to do to
switch from one parser to another is to save the state
by renaming the stack control sequences accordingly.

When the parser and scanner are ‘optimized’
(by saying \def\optimization{5}, for example),
all these control sequences are ‘spread over’ the ap-
propriate associative arrays (by creating a number
of control sequences that look like \array [n], where

TUGDboat, Volume 35 (2014), No. 1

n is the index, as explained above). While it is cer-
tainly possible to optimize only some of the parsers
(if your document uses multiple) or even only some
parts of a given parser (or scanner), the details of
how to do this are rather technical and are left for
the reader to discover by reading the examples sup-
plied with the package. At least at the beginning it
is easier to simply set the highest optimization level
and use it consistently throughout the document.

Use with CWEB

Since the macros in the package were designed to
support pretty-printing of languages other than C in
CWEB it makes sense to spend a few paragraphs on
this particular application. The CWEB system con-
sists of two weakly related programs: CWEAVE and
CTANGLE. The latter extracts the C portion of the
users input, and outputs a C file after an appro-
priate rearrangement of the various sections of the
code. The task of CWEAVE is very different and ar-
guably more complex: not only does it have to be
aware of the general ‘hierarchy’ of various subsec-
tions of the program to create cross references, an
index, etc., it also has to understand enough of the C
code in order to pretty-print it. Whereas CTANGLE
simply separates the program code from the pro-
grammer’s documentation, rearranges it and out-
puts the original program text (with added #line
directives and simple C comments that can be eas-
ily removed in postprocessing if necessary), the out-
put of CWEAVE bears very little resemblance to the
original program. It might sound a bit exaggerated
but CWEAVE’s processing is ‘one-way’: it would be
difficult or even impossible to write software that
‘undoes’ the pretty-printing performed by CWEAVE.

There is, however, a loophole that allows one to
use CWEB with practically any language, and pretty-
print the results, if an appropriate ‘filter’ is available.
The saving grace comes in the form of CWEB’s ver-
batim output: any text inside @= and @> undergoes
some minimal processing (mainly to ‘escape’ dan-
gerous TEX characters such as ‘$’) and is put inside
\vb{...} by CWEAVE.

The macros in the package take advantage of
this feature by collecting all the text inside \vb
groups and trying to parse it. If the parsing pass
is successful, pretty-printed output is produced, if
not, the text is output in ‘typewriter’ style.

With languages such as bison’s input script, an
additional complication has to be dealt with: most
of the time the actions are written in C so it makes
sense to use CWEAVE'’s C pretty-printer to typeset the
action code. Most material outside of \vb groups

77

is therefore assumed to be C code and is carefully
collected and ‘cleaned up’ by the macros included in
the package.

For the purposes of documenting the TEX
parser, one additional feature of CWEAVE is taken
advantage of: the text inside double quotes, "..."
is treated similarly to the verbatim portion of the
input (this can be viewed as a ‘local’ version of the
verbatim sections). Moreover, CWEAVE allows one
to treat a function name (or nearly any identifier)
as a TEX macro. These two features are enough
to implement pretty-printing of semantic actions in
TEX. The macros will turn an input string such
as, e.g. ‘TeX_("\\relax");’ into ‘o’ (for the sake
of convenience, the string above would actually be
written as ‘TeX_("/relax");’ as explained in
the manual for the package). See the documenta-
tion that comes with the package and the bison
language pretty-printer implementation for any ad-
ditional details.

An example

As an example, let us walk through the development
process of a simple parser. Since the language itself
is not of any particular importance, a simple gram-
mar for additive expressions was chosen. The exam-
ple, with a detailed description, and all the neces-
sary files, is included in the examples directory. The
Makefile there allows one to type, say, make stepl
to produce all the files needed in the first step of this
short walk-through. Finally, make docs will pro-
duce a pretty-printed version of the grammar, the
regular expressions, and the test TEX file along with
detailed explanations of every stage.

As the first step, one creates a bison input file
(expp.y) and a similar input for flex (expl.1l). A
typical fragment of expp.y looks like the following;:

value:
expression {TeX_("/yyO0{/the/yy(1)}");}
The scanner’s regular expression section, in its en-
tirety is:

[\f\n\t\v] {TeX_("/yylexnext");}

{id?} {
TeX_("/yylexreturnval{IDENTIFIER}");}

{int} {
TeX_("/yylexreturnval{INTEGER}");}

[+x()] {TeX_("/yylexreturnchar");}

. {

TeX_("/iftracebadchars");

TeX_(" /yycomplain{%%") ;

TeX_(" invalid character(s): %%");

Parsers in TEX and using CWEB for general pretty-printing

78

TeX_("
TeX_("/£i");
TeX_("/yylexreturn{$undefined}");
}

Once the files have been prepared and debugged, the
next step is to generate the ‘driver’ files, ptabout
and ltabout. For the parser ‘driver’; this is done
with

/the/yytext}");

bison expp.y -0 expp.c

gcc -DPARSER_FILE=\
\"examples/expression/expp.c\" \
-0 ptabout ../../mkeparser.c

The first line generates the parser from the bison
input file that was prepared in the first step and the
next line uses this file to produce a ‘driver’. If the
included Makefile is used, the file mkeparser.c is
generated automatically, otherwise one has to make
sure that it exists and resides in the appropriate
directory first. It has no external dependencies and
can be freely moved to any place that is convenient.

Next, run ptabout and ltabout to produce the
automata tables:

ptabout --optimize-actions ptab.tex
ltabout —--optimize-actions ltab.tex

Now, look inside expression.sty for a way to
include the parser in your own documents, or sim-
ply \input it in your own TEX file. Executing
make test.tex will produce a test file for the new
parser. This is it!

Acknowledgment

The author would like to thank the editors, Barbara
Beeton and Karl Berry, for a number of valuable
suggestions and improvements to this article.

References

[Ah] Alfred V. Aho et al., Compilers: Principles,
Techniques, and Tools, Pearson Education,
2006.
[Bi] Charles Donnelly and Richard Stallman,
Bison, The Yacc-compatible Parser Generator,
The Free Software Foundation, 2013.
http://www.gnu.org/software/bison/
[DEK1] Donald E. Knuth, The TgXbook,
Addison-Wesley Reading, Massachusetts,
1984.
[DEK2] Donald E. Knuth The future of TEX and
METAFONT, TUGhboat 11 (4), p. 489,
1990. http://tug.org/TUGboat/tb11-4/
tb30futuretex.pdf

Alexander Shibakov

[Do]

[Fi]

TUGDboat, Volume 35 (2014), No. 1

Jean-luc Doumont, Pascal pretty-printing:
An example of “preprocessing with TEX”,
TUGboat 15 (3), 1994 — Proceedings

of the 1994 TUG Annual Meeting.
http://tug.org/TUGboat/tb15-3/
tb44doumont . pdf

Sebastian Thore Erdweg and Klaus
Ostermann, Featherweight TEX and Parser
Correctness, Proceedings of the Third
International Conference on Software
Language Engineering, pp. 397-416,
Springer-Verlag Berlin, Heidelberg, 2011.

Jonathan Fine, The \CASE and \FIND
macros, TUGboat 14 (1), pp. 35-39,
1993. http://tug.org/TUGboat/tb14-1/
tb38fine.pdf

Pedro Palao Gostanza, Fast scanners and
self-parsing in TEX, TUGboat 21 (3),

2000 — Proceedings of the 2000 Annual
Meeting. http://tug.org/TUGboat/tb21-3/
tb68gost .pdf

Andrew Marc Greene, BASTX — An interpreter
written in TEX, TUGboat 11 (3), 1990 —
Proceedings of the 1990 TUG Annual
Meeting. http://tug.org/TUGboat/tb11-3/
tb29greene.pdf

Hans Hagen, LuaTgX: Halfway to version 1,
TUGboat 30 (2), pp. 183-186, 2009.
http://tug.org/TUGboat/tb30-2/
tb95hagen-luatex.pdf

R. Ierusalimschy et al., Lua 5.1
Reference Manual, Lua.org, August
2006. http://www.lua.org/manual/5.1/

The 13regex package: Regular
expressions in TEX, The IATEX3 Project.
http://www.ctan.org/pkg/l3regex

Vern Paxson et al., Lexical Analysis

With Flex, for Flex 2.5.87, July 2012.
http://flex.sourceforge.net/manual/
Marcin Wolinski, Pretprin— A ATEX 2=
package for pretty-printing texts in formal
languages, TUGDboat 19 (3), 1998 —
Proceedings of the 1998 TUG Annual
Meeting. http://tug.org/TUGboat/tb19-3/
tb60wolin.pdf

¢ Alexander Shibakov
Dept. of Mathematics
Tennessee Tech. University
Cookeville, TN
http://math.tntech.edu/alex

TUGDboat, Volume 35 (2014), No. 1

Entry-level MetaPost 4: Artful lines
Mari Voipio

For basic information on running MetaPost, either
standalone or within a ConTEXt document, see http:
//tug.org/metapost/runningmp.html. For previ-
ous installments of this tutorial series, see http:
//tug.org/TUGboat/intromp.

Thus far, we’ve done very little with lines except
change their color. Other than that, we have used
the built-in default settings for things like line width
and line joins. In this tutorial we learn to tweak lines
and use some special effects to put lines to work.

1 Line width

Lines are drawn with a pen. The default pen is
pencircle with a line similar to what e.g. a ball-
point pen produces. When we want to change line
width, we always need to specify both the pen “nib”
and the width desired:

numeric u; u := 4mm; ’% measurement unit

path heart;

heart := (4u,Ou) (Ou,5u) .. (Ou,6u)
. (2u,8u) .. (4u,6u) -- (4u,6u) (6u,8u)
. (8u,6u) .. (8u,5u) .. (4u,0u) -- cycle;

draw heart withpen pencircle scaled .8u
withcolor red;

draw heart shifted (10u,0)
withpen pensquare scaled .8u withcolor blue;

(Grayscaled for printed TUGboat output.)

For more information about pens, e.g. calli-
graphic pens, see the MetaFun manual [3, p. 36-38].

2 Line joins and line caps

Where lines are joined together, the corner can be
turned in several different ways: “sharp” (mitered),
rounded (rounded) or “cut off” (beveled). When a
line is not cycled into a closed object, it also has two
ends that can be “capped” in different ways: butt
means straight end without any line cap, rounded
adds a rounded line cap and squared adds a square
cap to the end. If you look carefully at the example

79

below, you can see that the butted line is shorter
than the one with squared caps.

mitered

mitered
rounded squared

lon
::,’ : E.::”
&+
-+ @
@
@
o

>
>

rounded rounded rounded
butt rounded squared
beveled beveled beveled
butt rounded squared

Linejoins and linecaps

How a linejoin looks depends also on the angle
of the corner:

pickup pencircle scaled .2cm; % pen width

path rectangle; rectangle := (0,0) -- (2cm,0)
-- (2cm,2cm) -- (0,2cm) -- cycle;

path diamond; diamond := (1cm,0) -- (2cm,1.5cm)
-- (1cm,3cm) -- (0,1.5cm) -- cycle;

linejoin := mitered;
draw rectangle shifted (0,3.5cm);
draw diamond;

linejoin := rounded;
draw rectangle shifted (2.5cm,3.5cm);
draw diamond shifted (2.5cm,0);

linejoin := beveled;
draw rectangle shifted (5cm,3.5cm);
draw diamond shifted (5cm,0);

3 Dashed lines

In addition to a solid line, we can create dotted and
dashed lines. The distance between the dots/dashes
is adjusted with the setting scaled; the bigger the

Entry-level MetaPost 4: Artful lines

80

number, the more space there is between the dots or
dashes.

pickup pencircle scaled .5mm; % pen width

% dotted lines

draw (0,20mm) -- (70mm,20mm) dashed withdots;

draw (0,15mm) -- (70mm,15mm) dashed withdots
scaled 2;

% dashed lines
draw (0,5mm) -- (70mm,5mm) dashed evenly;
draw (0,0) -- (70mm,0) dashed evenly scaled 2;

It is not possible to fill paths that have a dashed
(out)line. It is also advisable to use only pencircle
in combination with dashed lines.

For more information on adjusting dashed lines,
see the MetaPost manual [2, pp. 37-40] and the Meta-
Fun manual [3, pp. 40-41].

4 Arrows

There are separate commands for drawing arrows,
but they have the same settings as the plain draw
command: pen, dashing and color. Arrows go from
left to right by default; an arrow with the arrow-
head on the left can be created either by giving the
coordinates right-to-left or by using the drawarrow
reverse() command.

pickup pencircle scaled .1cm;

drawarrow (0,3.5cm) -- (7cm,3.5cm);

drawarrow (7cm,3cm) -- (0,3cm) withcolor blue;

drawarrow reverse((0,1.5cm) (3.5cm,2.5cm)
(7cm,1.5cm));

drawdblarrow (0,1cm) -- (7cm,icm);

drawarrow (0,0.5cm) -- (7cm,0.5cm)
withpen pencircle scaled .05cm
dashed evenly scaled 2
withcolor red;

N

Mari Voipio

TUGDboat, Volume 35 (2014), No. 1

5 Applying settings for multiple paths

In the examples above we have already used pickup
to set the pen width for multiple paths. I think of this
as having a bunch of pens on the table and picking
up one after another to draw with; the drawn lines
have the same width until I switch to a different pen —
except that we can override the pickup settings for an
individual path by using the withpen command, as
in the arrow example above. The following example
picks up two pens in turn:

numeric u; u := 1.5mm;

heart := (4u,0u) (Ou,5u) (Ou,6u)
(2u,8u) (4u,6u) -- (4u,6u) (6u,8u)
(8u,6u) (8u,5u) (4u,0u) -- cycle;

pickup pencircle scaled u;
draw heart withcolor red;
draw heart shifted (10u,0) withcolor blue;

pickup pencircle scaled .b5u;
draw heart shifted (20u,0) withcolor red;
draw heart shifted (30u,0) withcolor blue;

VIVIVIV,

A more versatile command is drawoptions (pen,
color, withcolor) which allows us to set default line
properties: pen withpen), color (withcolor) and
dashing (dashed). This command can be used to set
defaults for the whole drawing or just part of it, and is
valid until the next drawoptions() command. You
can also reset everything by giving the drawoptions
command with nothing within the parentheses.

The drawoptions are overridden by setting pen
and/or color and/or dashing individually for a path,
as usual:

numeric u; u := 1.5mm;

heart := (4u,0u) (Ou,5u) (Ou,6u)
(2u,8u) (4u,6u) -- (4u,6u) (6u,8u)
(8u,6u) (8u,5u) (4u,0u) -- cycle;

drawoptions (withpen pensquare scaled .8u
withcolor red);

draw heart; J, default settings from drawoptions
draw heart shifted (10u,0)

withpen pencircle scaled .8u; % pen override
draw heart shifted (20u,0)

withcolor blue; % color override
draw heart shifted (30u,0)

dashed withdots

withpen pencircle scaled .5u

withcolor black; % dash, pen, color override

TUGDboat, Volume 35 (2014), No. 1

6 MetaFun bonus: Grids

With the MetaFun package we can easily create
evenly spaced and logarithmic grids. The syntax
is:

% horizontal/vertical linear:

hlingrid (Min, Max, Step, Length, Width)
vlingrid (Min, Max, Step, Length, Height)

% horizontal/vertical logarithmic:
hloggrid (Min, Max, Step, Length, Width)
vloggrid (Min, Max, Step, Length, Height)

The grid settings are used in combination with
the draw command:

pickup pencircle scaled .2mm;

draw hlingrid (0, 10, 1, 3cm, 3cm);
draw vloggrid (0, 10, 1, 3cm, 3cm)
withcolor red;

We can create gridded paper with the right grid
settings:

width := 5cm; height := 5cm; unit := cm;
drawoptions(withpen pencircle scaled .2pt
withcolor .8white);

draw vlingrid(0, width /unit, 1/10, width,

81

We haven’t seen the unit assignment (in the
first line) before: in MetaFun, it applies to numbers
without any other unit.

See the MetaFun manual [3, pp.213-215] for
further examples.

7 References

[1] Running MetaPost and Metafun.
http://tug.org/metapost/runningmp.html

[2] MetaPost manual.
http://tug.org/docs/metapost/mpman.pdf

[3] MetaFun manual.
http://www.pragma-ade.com/general/
manuals/metafun-p.pdf

o Mari Voipio
mari dot voipio (at) lucet dot fi
http://www.lucet.fi

height);

draw hlingrid(0, height/unit, 1/10, height, width);

drawoptions(withpen pencircle scaled .5pt
withcolor red);

draw vlingrid(0, width /unit, 1,

draw hlingrid(0, height/unit, 1,

width,

height);
height, width);

Entry-level MetaPost 4: Artful lines

82

drawdot in MetaPost: A bug, a fix
Hans Hagen

It is no secret that Don Knuth uses MetaPost for
graphics in his books nowadays. This has the nice
side effect of large-scale testing of MetaPost stabil-
ity. Recently he uncovered a bug in the drawdot
macro, which plain MetaPost has always defined
like this:

def drawdot expr z =
addto currentpicture
contour makepath currentpen shifted z _op_
enddef;

The submitted test was this:

for j = 1 upto 9 :
pickup pencircle scaled .4;
drawdot (10j,0) withpen pencircle scaled .5j;
pickup pencircle scaled .5j;
drawdot (10j,10);
endfor;

% original definition

which visualizes as:
°) [.

o 6 0 O
©o 6 6 O ©O

Let’s simplify and exaggerate this a bit:

3 ° (o} (0]

drawdot origin withpen pencircle scaled 2cm;
pickup pencircle scaled 2cm;
drawdot origin shifted (3cm,0);

The left-hand variant demonstrates that the old
definition of the macro uses the current pen (which
by default is one base unit, ﬁ of a pixel) to cal-
culate a contour (a.k.a. outline) that then is drawn
with a larger pen. The opened up dot is a side ef-
fect of the exported PostScript code. The right-hand
version shows that picking up the larger pen first and
then drawing has a different (and correct) effect.

The two formulations should be equivalent. So
the version of MetaPost that will ship with TEX
Live 2014 has a new definition of drawdot. While
the original definitions followed a METAFONT ap-
proach, the new definition relies on PostScript doing
the work:

Hans Hagen

TUGDboat, Volume 35 (2014), No. 1

def drawdot expr p = % new definition
if pair p :
addto currentpicture
doublepath p withpen currentpen _op_
else :
errmessage ("drawdot needs a pair ...")
fi
enddef;

drawdot origin withpen pencircle scaled 2cm;
pickup pencircle scaled 2cm;
drawdot origin shifted (3cm,0);

Now our simplified example comes out the same:

This definition is more or less the same as:
let drawdot = draw;

But our more extensive variant has the advantage
that it behaves a bit like a primitive operation: a
dot is supposed to be a pair and if not, we get an
error.

We believe that most users will not notice this
change. First of all we have never received a com-
plaint before, which might be an indication that
users already used draw instead of drawdot. Sec-
ond, dots are normally drawn small, so users might
never have noticed such artifacts.

Of course the MetaPost team is curious about
what bug Don will come up with next, especially
when he needs very large graphics that rely on the
new double (floating-point) mode of MetaPost.

In the original message, available at tug.org/
pipermail/tex-k/2014-January.txt, a few more
observations were made and testing revealed that
there is room for improvement for paths that consist
of a point cycling to itself. We will look into these
some time in the future.

¢ Hans Hagen
Pragma ADE
http://metapost.org

Editor’s note: The figures here are bitmaps, extracted
from screenshots, because the conversion of EPS to PDF
for production also filled in the open dots! Clearly the
effects are dependent on the particular software involved.

TUGDboat, Volume 35 (2014), No. 1

HTML to BTEX transformation
Frederik R.N. Schlupkothen

Abstract

(IMTEX was created as an authoring language that
enables authors to keep typesetting quality standards
while preparing their printed matter, assuming that
the output context is known from the very begin-
ning of the writing process. As a counter-concept,
XML is focused on keeping output flexible, providing
mechanisms to manage and control the logical struc-
ture of documents. Combining the strengths of both
ecosystems has been discussed frequently in the past.
This article aims to contribute to this discussion by
introducing a mapping from HTML to I TEX, the two
most widespread document description languages in
their respective fields of application.

1 Introduction

The Extensible Markup Language (XML) has be-
come the native markup language for structured
information in (distributed) document processing ar-
chitectures. It provides a core syntax that has been
adopted by many document description languages.
A broad software ecosystem and further standards
have emerged to realize and facilitate the processing
of XML-based documents. Among them, the Exten-
sible Stylesheet Language Transformations (XSLT)
described in [8] offers a standardized mechanism to
translate different XML-based languages into one an-
other. This has made XML the language of choice
for cross-media publishing workflows.

However, while the XML processing is fully cov-
ered by viable tools, the final document production of
printed matter from XML may still be a problem. A
potential solution is to integrate the TEX typesetting
engine (described in [10]) in XML-based processing
chains. For this task, TEXML, an XML representa-
tion of TEX commands, was introduced in [12] and
its “production proof” implementation discussed in
[14]. As any other XML language, TEXML documents
can be produced via XSLT. So the last gap to fill in
TEXML-based workflows is to define XSL stylesheets
that realize the transformation between specific XML
and TEX document description languages (see [14]).

Here we introduce a mapping between two doc-
ument description languages that are well known in
their respective fields of application: The HyperText
Markup Language (HTML), as the transformation’s
source language, is the core language of the World
Wide Web and has a history that is closely tied to
XML. It offers layout-oriented markup semantics pri-
marily for textual content and is used amongst others

83

HTML XSLT > TEXML =1 (IB)TEX PDF

Figure 1: HTML to PDF processing

to describe web pages (see [7]), electronic books (see
[4]), and printed matter (see e.g. [9, 13]). IATEX, as
the transformation’s output, is the abstraction of
TEX’s typesetting commands to logical markup.

Figure 1 shows the XML-based production work-
flow that produces the Portable Document Format
(PDF) from HTML by the use of the TEX typesetting
engine. The particular processing steps are described
via an example of emphasized text:

1. The HTML source document describes the em-
phasized text “dolor” as: dolor
2. The XSLT processor queries the stylesheet “html
2texml” for a matching transformation tem-
plate. The matching template defines the trans-
formation of the HTML’s “em” element to the
corresponding IATEX command in its TEXML
representation:
<xsl:template match="html:em">
<tex:cmd name="emph">
<tex:parm>
<xsl:apply-templates />
</tex:parm>
</tex:cmd>
</xsl:template>
3. The result of the XSLT transformation is the
following TEXML element:
<cmd name="emph">
<parm>dolor</parm>
</cmd>
4. The TEXML processor converts the TEXML ele-
ment to a BWTEX command: \emph{dolor}

5. The KWTEX processor typesets: dolor

The prior example shows that defining the trans-
formation between two languages needs insight into
the differences in conceptual syntax and semantic
coverage of source and destination language. While
HTML is native to the XML syntax, TEXML is re-
producing the syntax logic inherited from (I#)TEX.
While IXTEX is native to printed matter, HTML was
initially designed for electronic resources. Section 2
introduces the underlying concepts of the HTML and
KTEX markup syntax. Section 3 introduces the map-
ping between HTML and ATEX markup semantics.
Finally, section 4 shows a complete document with its
corresponding representations in HTML and IXTEX.

HTML to ITEX transformation

84

2 Markup syntax

The following two subsections give an overview of
the very basic HTML and I#TEX syntax. They do not
introduce the full syntax but focus on the aspects
needed within this article. Full descriptions can
be found in [3] for XML, the underlying markup
language of HTML as described in [6], and in [10, 11]

for BTEX.

2.1 Basic syntax of HTML

An HTML document consists of elements that are
either empty or non-empty. The boundaries of a
non-empty element is marked by a start-tag and
a end-tag. Tag delimiters are the < and > charac-
ters. The element type is defined in the start-tag
by its name. The end-tag repeats the element name
preceded by a / character. The element’s content
is enclosed between the start- and end-tag. The
content consists of character data (i.e. text), subor-
dinated child elements, or both. An element without
content is called empty and is either described by
a start-tag that is directly followed by its end-tag
or by an empty-element-tag. An empty-element-tag
has the same form as a start-tag but ends with a /
character. The following example shows a non-empty
‘p’-element with mixed content:

child element

—_——
<p> Lorem ipsum dolor sit amet.</p>
~—~ N——
start-tag content end-tag

An element can possess attributes. Attributes
are noted in the start-tag or empty-element-tag be-
hind the element name. Attributes consist of a name-
value-pair. The attribute-value is given between two
' or " characters and is assigned to its name by a
preceding = character. The following example shows
an empty ‘img’ element with a ‘src’ attribute of the

value ‘uri’:
attribute

—_—~

~ ——
name value
There is exactly one root element that includes

all the document’s content. The tag placement with-
in the document follows the rules of mathematical
brackets. The examples below show possible tag
placements by means of ‘a’ and ‘b’ elements:

sequence <a>
subordination <a>
syntax error <a>

Frederik R.N. Schlupkothen

TUGDboat, Volume 35 (2014), No. 1

2.2 Basic syntax of BTEX

A IETEX document consists of commands that de-
scribe either output characters (i.e. characters to
typeset), special characters (e.g. the ~ character for
a non-breaking space), or control sequences. There
are two types of control sequences: control words
and control symbols. A control word starts with a \
character followed by its name that consists of one or
more letters (i.e. lower- or uppercase letters ‘a’ to ‘z’)
and is terminated by either a space or another non-
letter. A control symbol starts with a \ character
followed by one non-letter. A command can possess
optional and required parameters that are set by
arguments. Optional parameter arguments are noted
after the command name between square brackets,
and required parameter arguments between curly
braces. The following example shows a ‘usepackage’-
command with an optional parameter set to ‘utf8’
and a required parameter set to ‘inputenc’:

parameters

\usepackage [utf8] {inputenc}

~—_—————
optional required

Furthermore there are two special types of com-
mands: environments and declarations. Environ-
ments are pairs of ‘begin’- and ‘end’-commands that
enclose the environment’s content. The environment
name is provided as the first required argument of
the corresponding ‘begin’- and ‘end’-commands. The
arguments of the environment are noted as further
arguments of the ‘begin’-command. Declarations
influence the behavior of following commands. The
scope (i.e. range of effect) of most declarations is
limited to its enclosing environment or group. The
group delimiters are the { and } characters. The
placement of group delimiters and environment com-
mands follows the rules of mathematical brackets.
The examples below show possible placements by
example of a group and an ‘x’-environment:

sequence
subordination
syntax error

{ } \begin{x} \end{x}
{ \begin{x} \end{x} }
{ \begin{x} } \end{x}

3 Markup correspondence

The following sections introduce a possible mapping
between HTML elements and ITEX commands in
the order of the HTML module descriptions in [1].
For an XSLT implementation transforming HTML
to TEXML, the following mapping tables show the
resulting IXTEX commands for expository purposes.

TUGDboat, Volume 35 (2014), No. 1

3.1 Core Modules

The HTML Core Modules assemble the markup that
is common to all HTML dialects that are derived
from module-based HTML. This core markup for
high level structures, basic text, hyperlinks, and lists
of HTML documents and its corresponding KTEX
commands are described in the following subsections.

3.1.1 Structure Module

The HTML Structure Module defines the high level
markup of a document. The html-element is the
document’s root containing the meta-information
(head) and the actual content (body) of a document.
ITEX follows a similar separation with its preamble
and document-environment. Table 1 below shows
the corresponding commands.

Table 1: HTML to KBTEX structure mapping

HTML A TEX

<html>(...) \documentclass{report}(...)
<head>(...) (-..)

<title>(...) \title{(...)}

<body>(...) \begin{document}(...)

3.1.2 Text Module

The HTML Text Module defines the basic text mark-
up to describe heading, block, and inline elements.
Most of these elements have equivalent commands
in ATEX, but not all. In these cases the ‘' sym-
bol indicates the default formatting in HTML where
the Presentation Module described in section 3.2.1
might be used for an alternative, not corresponding
semantically, mapping.

Headings The HTML Text Module defines six lev-
els of headings (h1 to h6). IATEX offers a specific
heading hierarchy that depends on the given docu-
ment class. Table 2 below shows the corresponding
heading commands for the report document class.

Table 2: HTML to KTEX heading mapping

HTML ATEX

<h1>(...) \chapter{(...)}

<h2>(...) \section{(...)}

<h3>(...) \subsection{(...)}

<h4>(...) \subsubsection{(...)}

<h5>(...) \paragraph{(...)}

<h6>(...) \subparagraph{{(...)}

Blocks The HTML Text Module defines elements

to mark text groups as paragraphs (p), contact infor-
mation (address), quotations (blockquote), generic

85

groups (div), and preformatted text (pre). Table 3
shows the corresponding WTEX commands (using the
KTEX core package alltt for preformatted text).

Table 3: HTML to KTEX block mapping

HTML ATEX
<p>{...) (...) \par
<address>(...) — italic

<blockquote>(...) \begin{quotel}(...)
<div>(...) (..)
<pre>(...) \begin{alltt}(...)

Inlines The HTML Text Module defines markup
for text fragments. This includes abbreviations (abbr)
and acronyms (acronym), citations (cite), quota-
tions (q), and definitions (dfn), program code (code),
sample output (samp), arguments (var), and input
(kbd), regular (em) and strong (strong) emphases,
generic fragments (span), and forced line breaks (br).
Table 4 below shows the corresponding KTEX com-
mands (using the glossaries package for abbreviations
and acronyms, the csquotes package for quotations,
and the listings package for code).

Table 4: HTML to KTEX inline mapping

HTML ATEX
<abbr>(...) \acrshort{(...)}
<acronym>(...) \ac{(...)}
<cite>(...) \cite{(gen-id)}
\bibitem{(gen-id)}(...)
<g>(...) \enquote{(...)}
<dfn>(...) — italic
<code>(...) \1lstinline|(...)|
<samp>(...) — teletype
<var>(...) — italic
<kbd>(...) — teletype
(...) \emph{(...)}
(...) — bold
(...) (-.)

 \newline

3.1.3 Hypertext Module

The HTML Hypertext Module defines markup to
describe hyperlinks. They are described by source
anchors (a) that reference to contents inside or out-
side of the document via Unified Resource Identi-
fiers (URIs). Referenceable document fragments are
marked by common ‘id’ attributes that can be ap-
plied to all elements. The use of traversable hy-
perlinks is an adequate solution in the context of
electronic documents; its mapping to corresponding

HTML to IBTEX transformation

86

ITEX commands by means of the hyperref package is
shown in Table 5. However, in the context of printed
matter a solution with references by e.g. visual key
or page numbers might be more appropriate.

Table 5: HTML to IWTEX hypertext mapping

ETEX
\href{(uri)}{(...)}
\hyperref [{id)]1{(...)}
\label{(id)}

HTML

(...)
(...)
id="(id)"

3.1.4 List Module

The HTML List Module defines markup to describe
ordered (0l) and unordered (ul) lists as sequences of
list items (1i) and furthermore markup to describe
definition lists (d1) that are composed of sequences
of term (dt) and description (dd) pairs. Table 6
below shows corresponding IATEX commands.

Table 6: HTML to INTEX list mapping

HTML BTEX

(...) \begin{enumerate}(...)
(...) \begin{itemize}(...)
<1i>(...) \item (...)

<d1>(...) \begin{description}(...)
<dt>(...) \item[(...)]

<dd>(...) (- M\

3.2 Text Extension Modules

The HTML Text Extension Modules assemble addi-
tional text markup to control text rendering, main-
tenance, and direction for HTML documents. These
and the corresponding ITEX commands are described
in the following subsections.

3.2.1 Presentation Module

The HTML Presentation Module defines markup to
control the text rendering. It provides elements
to render text in/as bold (b) and italic (i) style,
typewriter (tt), super- (sup) or subscripted (sub),
larger (big) or smaller font (small). Additionally
the module provides an element to render horizontal
rules (hr). IATEX offers corresponding commands
with the exception of ‘textsubscript’ that relies on
the subscript package. The relsize package offers
commands to realize relative font sizes (as intended
by the ‘big’ and ‘small’ elements in HTML). Table 7
shows a possible mapping.

3.2.2 Edit Module

The HTML Edit Module defines editing-related mark-
up. It provides elements to mark content as deleted

Frederik R.N. Schlupkothen

TUGDboat, Volume 35 (2014), No. 1

Table 7: HTML to WTEX presentation mapping

HTML ATEX

(...) \textbf{(...)}

<i>(...) \textit{(...)}

<tt>(...) \texttt{(...)}
<sup>(...) (...)
<sub>(...) \textsubscript{(...)}
<big>(...) {\larger (...)}
<small>(...) {\smaller (...)}

<hr /> \hrulefill

(del) or inserted (ins). The changes package of-
fers semantically corresponding IXTEX commands as
shown in Table 8 below. However, if ITEX is used
as final output format only, a more stable solution
might be to simply output contents of ‘ins’-elements,
but not those of ‘del’-elements.

Table 8: HTML to WTEX edit mapping

HTML BTREX
(...) \deleted{(...)}
<ins>(...) \added{(...)}

3.2.3 Bi-directional Text Module

The HTML Bi-directional Text Module defines mark-
up to declare text direction changes. It provides
an attribute to control the direction of text (dir)
that can be applied to all elements including a spe-
cial element (bdo) to override the current text direc-
tion. The bidi package offers corresponding KTEX
commands. Table 9 below shows the corresponding
commands for inline text. However, the bidi pack-
age defines a set of new environments which replace
common KTEX commands (e.g. lists and footnotes)
which makes the general mapping between elements
and commands more complex. Furthermore the com-
bination with other common packages (e.g. hyperref
or longtable) remains problematic. So a more stable
solution might be to omit bi-directional text controls
during the transformation process and to apply such
changes manually in the ETEX document.

Table 9: HTML to IBTEX bidi mapping

HTML BTEX
<bdo dir="1tr">(...) \LR{(...)}
<bdo dir="rtl1">(...) \RL{(...)}

3.3 Forms Modules

The HTML Forms Modules define markup to describe
interactive forms that can define, organize, and re-
ceive (textual) input and selections. The hyperref

TUGDboat, Volume 35 (2014), No. 1

package implements most HTML form elements for
IMTEX. As with hyperlinks, the use of interactive
forms is adequate for electronic documents; their
mapping by means of the hyperref package is shown
in Table 10 below. However, in the context of printed
matter, an alternative solution as given e.g. by the
formular package might be more suitable.

Table 10: HTML to ITEX forms mapping

HTML ATEX

<form>(...) \begin{Form}(...)

<input /> \TextField{(label)}
type="password" \TextField[password]{(label)}
type="checkbox" \CheckBox{(label)}
type="button" \PushButton{(label)}
type="radio" \ChoiceMenu[radiol {(label)}{=}
type="submit" \Submit{(label)}
type="reset" \Reset{(label)}

\TextField[fileselect]{(label)}
\TextField[hidden]{(label)}

type="file"
type="hidden"
type="image"
<select>(...) \ChoiceMenu{(label)}(options)}
<option>(...) ()

<textarea>(...) \TextField[multilinel{(label)}
<button>(...) \Submit{(...)}

type="button" \PushButton{(...)}
type="reset" \Reset{(...)}

<fieldset>(...) (...)

<label>(...) (..

<legend>(...) (..

<optgroup>(...) (...)

3.4 Table Modules

The HTML Table Modules define markup to describe
tables (table) by organizing their data (td) and
header (th) cells in rows (tr). These rows can be
grouped into table headers (thead), footers (tfoot),
and bodies (tbody). Column-based markup is real-
ized by standoff elements (col and colgroup). A
table caption (caption) can provide a short descrip-
tion of the table contents.

IXTEX table definitions differ in two essential
aspects from HTML: (i) The total number of table
columns has to be given explicitly to a XTEX table
environment. This is not necessary in HTML but
calculated continuously by the rendering engine at
processing time. (%) IWTEX table cells that span sev-
eral rows (by means of the multirow package) cover
the adjacent cells in the following rows; therefore
empty cells need to be inserted in the following rows.
This is not necessary in HTML but the rendering

\Submit [submitcoordinates]{(img)}

87

table = {row; | row; = {cell;;}}
grid = {slot; | slot; = (z,y)}
procedure TABLE(table)

grid + {0}

for all row; |[i=1..n do
Y1
<+ 1

for all cell;; | j=1..m do
while grid 5> (z,y) do
EMPTY CELL(z, y)
z—z+1
end while

for yeen « 0.. rowspan(cell;;) —1 do
for Zcen < 0.. colspan(cell;;) —1 do
grid < grid U (+ Teell ; Y + Yeell)
end for
end for

Z < x + colspan(cell;;)
end for
end for
end procedure

Figure 2: HTML table cell positioning algorithm

engine automatically shifts the cells of the following
rows according to the reading direction.

Hence for the transformation of HTML tables
to WTEX this information (total number of table col-
umns and position of additional empty cells) need
to be precalculated. Therefore the transformation
process has to include parts of the HTML table pro-
cessing model described in [2]. This model describes
an HTML table as a set of cells that are positioned on
a two-dimensional grid of slots. The algorithm shown
in Figure 2 calculates the cell positioning and illus-
trates how the additional empty cells are inserted;
hence the total number of table columns is given
by the maximum z-coordinate within the final grid.
Table 11 shows the mapping of HTML table elements
to corresponding KTEX commands by means of the
longtable package.

3.5 Image Module

The HTML Image Module defines markup to em-
bed external images. The graphicx package offers a
corresponding WTEX command as shown in Table 12.

3.6 Further Modules

The HTML specification describes further modules
that define markup to realize dynamic and interactive
document content, mechanisms to control layout, and
deprecated markup for backwards compatibility with
legacy HTML. Due to the focus of this article on the
transfer of the logical structure of HTML documents

HTML to IBTEX transformation

88

Table 11: HTML to ETEX table mapping
HTML A TEX
<caption>(...) \caption{(...)}
<table>(...) \begin{longtable}{{col)}(...)
<td>(...) (...)&
<th>(...) \bf{}(...)&

\multicolumn{(span)}{1}{(...)}
\multirow{(span)}{*}{(...)}

colspan="{(span)"

rowspan="(span)"

<tr>(...) (o N\
<col/>

<colgroup>(...)
<tbody>(...) (-.)

<thead>(...)
<tfoot>(...)

(...)\endhead
(...)\endfoot

Table 12: HTML to BTEX image mapping

ETEX
\includegraphics{{uri)}

HTML

to IMTEX, the mapping of these specialized modules
is not described in detail. However, in specific use
cases the support of these modules might be desired.
The following hints might serve as a starting point
to implement a transformation of these modules’
features to ITEX.

The HTML Applet, Object, Scripting, and In-
trinsic Events modules define markup that intro-
duces scripting facilities to manipulate dynamically
the document content. At present this is notably
realized through the JavaScript programming lan-
guage, which is partially integrated with BETEX by
means of the insdljs package.

The HTML Client- and Server-side Image Map
modules define markup for interactive and hyper-
linked images. This functionality can be potentially
realized in ATEX by means of the TikZ package.

The HTML Frames and Iframe modules define
markup to insert one document into another. This
can be realized in IWTEX with the \input and/or
\include commands.

The HTML Style Sheet and Style Attribute mod-
ules define markup to integrate layout definitions
realized through Cascading Style Sheets (CSS). CSS
has its own syntax and description logic —its trans-
formation to WTEX is a topic all its own, which has
been outlined e.g. in [15].

4 An example

Figure 3 shows an example page taken from a bird
guide. On the next page, Figure 4 shows a possible

Frederik R.N. Schlupkothen

TUGboat, Volume 35 (2014), No. 1

coding of this page using HTML, and Figure 5 its
corresponding representation in TEX.

Gannet

Birds of the open ocean, Gannets breed on small islands off the NW coast
of Europe. They move away from land after nesting to winter at sea. The
young migrate south as far as W Africa. Gannets feed on fish by plunge-
diving from 25m. They nest in large, noisy colonies. The nest is a pile of
seaweed. A single egg is incubated for 44 days. The young bird is fed by
both parents and flies after 90 days.

Size Larger than any gull

Adult White, black wing-tips, yellow nape

Juvenile Grey, gradually becoming white over 5 years

Bill Dagger-like

In flight Cigar-shaped with long, narrow, black-tipped wings
Voice Usually silent, growling “urr” when nesting

Lookalikes Skuas, Gulls and Terns

Figure 3: An example document, derived from [5]

5 Conclusion

While HTML is increasingly becoming the common
document description language for different output
media (web, print, e-books, ...), the problem of
creating well-typeset documents from HTML is not
yet fully solved within the XML ecosystem. The
article at hand has introduced a mapping from HTML
elements to corresponding KTEX commands, in order
to use the TEX typesetting engine for this task.

With the multitude of existing INTEX extensions
released as packages, almost any HTML description
can be ported to KTEX and typeset according to its
original logic. Unfortunately, the use of XTEX pack-
ages often comes with a catch: while many HTML
structures can be used recursively (e.g. nested lists
or tables), BTEX packages tend to override existing
commands giving them a new meaning (e.g. the new-
line command is redefined in table environments to
end a row). These context-dependent syntax-changes
can make a mapping potentially error-prone for deep
document structures.

TUGDboat, Volume 35 (2014), No. 1 89

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml111/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>Gannet</title></head>
<body>
<h1>Gannet</h1>
<p>Birds of the open ocean, Gannets breed on small islands off the <abbr title="northwest"
>NW</abbr> coast of Europe. They move away from land after nesting to winter at sea. The
young migrate south as far as <abbr title="west">W</abbr> Africa. Gannets feed on fish by
plunge-diving from 25<abbr title="meters">m</abbr>. They nest in large, noisy colonies. The
nest is a pile of seaweed. A single egg is incubated for 44 days. The young bird is fed by
both parents and flies after 90 days.</p>
<div></div>
<table>
<tr><th>Size</th><td>Larger than any gull</td></tr>
<tr><th>Adult</th><td>White, black wing-tips, yellow nape</td></tr>
<tr><th>Juvenile</th><td>Grey, gradually becoming white over 5 years</td></tr>
<tr><th>Bill</th><td>Dagger-like</td></tr>
<tr><th>In flight</th><td>Cigar-shaped with long, narrow, black-tipped wings</td></tr>
<tr><th>Voice</th><td>Usually silent, growling <q>urr</q> when nesting</td></tr>
<tr><th>Lookalikes</th><td>Skuas, Gulls and Terns</td></tr>
</table>
</body>
</html>

Figure 4: HTML source, describing the document shown in Figure 3

\documentclass{report}
% preamble ...

\begin{document}
\chapter{Gannet}

Birds of the open ocean, Gannets breed on small islands off the \acrshort{NW}coast of Europe. They
move away from land after nesting to winter at sea. The young migrate south as far as \acrshort{W}
Africa. Gannets feed on fish by plunge-diving from 25\acrshort{m}. They nest in large, noisy
colonies. The nest is a pile of seaweed. A single egg is incubated for 44 days. The young bird is
fed by both parents and flies after 90 days.\par

\includegraphics{gannet. jpg}

\begin{longtable}{11}

\toprule

\bf{}Size & Larger than any gull \\

\bf{}Adult & White, black wing-tips, yellow nape \\

\bf{}Juvenile & Grey, gradually becoming white over 5 years \\
\bf{}Bill & Dagger-like \\

\bf{}In flight & Cigar-shaped with long, narrow, black-tipped wings \\
\bf{}Voice & Usually silent, growling \enquote{urr} when nesting \\
\bf{}Lookalikes & Skuas, Gulls and Terns \\

\bottomrule

\end{longtable}

\end{document}

Figure 5: INTEX output, exported from HTML shown in Figure 4

HTML to ITEX transformation

90

The mappings introduced in this article have
been developed in the context of an XSLT implemen-
tation within a TEXML-based workflow, but do not
rely on it and can be implemented through other
approaches as well. However, the principle of TEXML,
to provide a processor that transforms specific TEX
commands from a generic XML representation to the
TEX format, realizes a separation between the task
of format transformation and the task of defining
appropriate mappings. This facilitates the definition
and adaption of markup correspondences as has e.g.
been done by extending the HTML mapping with a
third party stylesheet that defines the transformation
from MathML to KTEX.

Acknowledgment

The author would like to thank Prof. Dr. Karl-Heinrich
Schmidt for giving valuable advice and Gilles Biilow
for integrating this document processing workflow
into our daily tasks for testing purposes.

References

[1] Daniel Austin, Shane McCarron, Subramanian
Peruvemba, Masayasu Ishikawa, and Mark
Birbeck. XHTML modularization 1.1 —
second edition. W3C recommendation, W3C,
July 2010. http://www.w3.org/TR/2010/
REC-xhtml-modularization-20100729/.

[2] Robin Berjon, Steve Faulkner, Travis
Leithead, Erika Doyle Navara, Edward
O’Connor, Silvia Pfeiffer, and Tan Hickson.
HTML 5. W3C candidate recommendation,
W3C, August 2013. http://www.w3.org/TR/
2013/CR-html15-20130806/.

[3] Tim Bray, Francois Yergeau, C. M.
Sperberg-McQueen, Jean Paoli, and Eve
Maler. Extensible markup language (XML) 1.0
(fourth edition). W3C recommendation, W3C,
August 2006. http://www.w3.org/TR/2006/
REC-xm1-20060816/.

Markus Gylling, William McCoy, Elika J.
Etemad, and Matt Garrish. EPUB content
documents 3.0. IDPF recommended
specification, IDPF, October 2011.
http://www.idpf.org/epub/30/spec/
epub30-contentdocs-20111011.html.

=

[5] Renate Henschel, John Bateman, and Judy
Delin. Automatic genre-driven layout
generation. In Proceedings of the 6"
“Konferenz zur Verarbeitung natirlicher
Sprache” (KONVENS) Conference,
Saarbriicken, September 2002.

Frederik R.N. Schlupkothen

TUGDboat, Volume 35 (2014), No. 1

[6] Masayasu Ishikawa and Shane McCarron.
XHTML 1.1 — module-based XHTML —
second edition. W3C recommendation, W3C,
November 2010. http://www.w3.org/TR/
2010/REC-xhtm111-20101123/.

[7] Tan Jacobs, David Raggett, and Arnaud
Le Hors. HTML 4.01 specification.
W3C recommendation, W3C, December
1999. http://www.w3.org/TR/1999/
REC-htm1401-19991224/.

[8] Michael Kay. XSL transformations (XSLT)
version 2.0. W3C recommendation, W3C,
January 2007. http://wuw.w3.0rg/TR/2007/
REC-xs1t20-20070123/.

[9] Sanders Kleinfeld. The case for authoring and
producing books in (X)HTML5. In Proceedings
of Balisage: The Markup Conference 20183,
volume 10 of Balisage Series on Markup
Technologies, Montréal, August 2013.

[10] Donald Ervin Knuth. The TgXbook, volume A
of Computers € Typesetting. Addison-Wesley,
March 1986.

[11] Leslie Lamport. ATEX: A Document
Preparation System. Addison-Wesley,
27d edition, November 1994.

[12] Douglas Lovell. TEXML: Typesetting XML
with TEX. TUGboat, 20(3):176-183, September
1999. http://tug.org/TUGboat/tb20-3/
tb64love.pdf.

[13] Shane McCarron. XHTML-print — second
edition. W3C recommendation, W3C,
November 2010. http://www.w3.org/TR/
2010/REC-xhtml-print-20101123/.

[14] Oleg Parashchenko. TEXML: Resurrecting
TEX in the XML world. TUGboat, 28(1):5-10,
March 2007. http://tug.org/TUGboat/
tb28-1/tb88parashchenko.pdf.

[15] S. Sankar, S. Mahalakshmi, and
L. Ganesh. An XML model of CSS3 as
an XETEX-TEXML-HTMLS5 stylesheet
language. TUGboat, 32(3):281-284, December
2011. http://tug.org/TUGboat/tb32-3/
tbl02sankar.pdf.

¢ Frederik R. N. Schlupkothen
University of Wuppertal
Rainer-Gruenter-Str. 21
D-42119 Wuppertal
Germany
schlupko (at) uni-wuppertal dot de

TUGDboat, Volume 35 (2014), No. 1

Scientific documents written by novice
researchers: A personal experience
in Latin America

Ludger O. Suarez—Burgoa
Abstract

This article presents 20 years of the author’s personal
experience — described as a particular Latin Ameri-
can experience — about the elaboration of scientific
documents created by novice researchers, from the
use of the typewriter to prepare a school scientific
report up to the conception of a TEX-family class
file (i.e. the unbDscThesisEng class of the Universi-
dade de Brasilia Doctoral Thesis, English Version)
to prepare his theses. He also gives opinions about
a possible Universal Editable Format for scientific
documents made by novice researchers, to allow such
documents to persist over time without losing infor-
mation due to changing encoding formats of propri-
etary software.

1 Introduction

Processing scientific documentation is an essential
part of publishing results. It is a concern in scien-
tific institutions and academia, because it requires
text, tables, equations, figures, and references in a
relational structured and compact manner; and all
these in conjunction reflect the quality of the message
desired to be presented.

Nowadays, researchers individually or in small
groups (called in this article novice researchers, NRs)
have also become actors in this important process,
because they can disseminate their results in various
effective media now available: indexed journals, both
printed and electronic, conference articles, Internet
links, and blogs, for example.

With the general availability of free and open
source software (FOS) and with increasingly abun-
dant information on the Internet with details and
recommendations for proper use of these FOS tools,
NRs can now present fully-developed, high-quality,
and well-formatted scientific documents. They can
be part of the development of scientific documenta-
tion by creating support for particular institutions
(e.g. TEX-family class files for university theses).

In the following sections the particular experi-
ence of an NR of Latin America will be discussed,
who has prepared scientific documents and technical
reports for around 20 years in Bolivia, Colombia,
Brazil, Argentina, Perd, and Chile; and now feels
comfortable using: TEX for text, tables, and equation
creation, editing and management; SVG to create
and edit graphics and plots; and BIBTEX to store
and manage references of scientific documents.

91

2 Some particular past experiences

Most of the Latin American NRs who nowadays are
writing doctoral theses have suffered in the transition
from the typewriter to computer software, when
dealing with scientific and technical documents.
For example, for a technical note at a school
science fair, it was common to see in the 1980s the
text and some lines of the document prepared with
a mechanical typewriter (e.g. an Olympia AG com-
ing from Wilhelmshaven, Germany, with a two-color
ink tape: black and red), and graphics, sketches
and formulas executed by hand. In special cases,
one might have the privilege of using an electronic
typewriter (e.g. a Brother CE-30, made in Taiwan),
which offered the possibility of correcting some mis-
takes before typing on the paper. In this stage, one
used photocopies for mass reproduction; therefore,
graphics should be conceived only in black and white
(B&W) and should be drawn on good paper with ink.
The artistic part of this was to use different
widths and types for lines, different textures for fills,
and different font sizes. Figure 1 shows a part of the
author’s first scientific document, made in 1992 [6].
Observe that the black color of the letters is not
uniform, being dependent on the force with which
one’s finger triggered the letter key and the ink tape
quality or usage. Also observe the equation with
superscripts, subscripts, and Greek letters done by
hand; and the graphic was also done by hand.

Con un ejemplo en la figurs 2 se podrd explicsr otros enuncia-
dos.
Seglin 1a ecuacidn de Bernouli en un tubo como indics la Fig.2

By +Jéfvtl= B +)é.ﬁ’:

;h donde }’zfes una constante
(ommenle A
are Vg V.
=) Tua- 2
o

Es evidente que en Vg la velocidad deve ser mayor en Vj,luego
pera que se conserve la iguslded,ls presién (Py) debe ‘ser
menor que la (Py).

® En concluciones- Cuando suments la velocidad,disminuye Ils
presién y viceversa.

Figure 1: Part of a document presented at a science
fair, done with typewriter and by hand [6]

A few novice researchers had first contact with
a computer word processor in the late 1980s, e.g.
WordStar 4.0 under the CP/M operating system.
But, in the early 1990s — as the present author was
finishing secondary school age and in the initial stages
of a university bachelor’s course—some NRs had
the opportunity to use friendly word processors on
personal computers (e.g. Word Perfect 5.1 under the
Disk Operating System (DOS) version 4.0).

Scientific documents written by novice researchers: A personal experience in Latin America

92

~Radiacidn alfa: Esta una radiacidn corpuscular compuesta de
la emisidn de dos protones vy de dos neutrones (un ndcleo de
He).Al ser emitida esta radiacidn el ndcleo inestable pierde
dos neutrones y dos protones, para lo cual su ndcleo se ha
convertido en uno nuevo ya que su ndmero atdmico ha variado.
Tiene una carga positiva.

Por ejemplo: -

2V “wTh +el
U o Th He
El ‘U se convierte en Zi) Th(talio) cuando este emite una

particula alfa.

~Radiacidn beta:Esta también es wuna radiacidn corpuscular
determinada por la emisidn de electrones del ntcleo
atdmico.Esta emisidn no es una perdida de electrones de su
drbita, sino que en el ndcleo un neutrdn compuesto de un
electrdn (TB) y un positron (*f) se transmuta dando lugar a la
formacién de un protdn y a la expulsidn de un electrdn.

Tiene una carga negativa.

Figure 2: Part of the document presented to another
science fair, done with Word Perfect 5.1 under DOS 4.0
and by hand [7]

The problems of this system (both hardware
and software) were that in the region only English-
language keyboards were available, and the text pro-
cessor was initially available only for English. There-
fore, in order to use the system in Spanish language,
the @i and vowels with accent (e.g. 4, 6, {) had to be
introduced by a combination of the Alt key plus the
appropriate three numbers taken from the American
Standard Code for Information Interchange (ASCII).
So, it was common to see a laminated cheat sheet
above the function keys on a keyboard.

Formulas and sketches were normally a combina-
tion usage of the word processor application tools —
which were not good for complex sketches and for-
mulas—and handwriting; and graphics could be
prepared with other software (e.g. Harvard Graphics,
which was not the proper tool, but it did manipulate
vector graphics) or by hand. At this point, one began
to use dot matrix printers, but they were very slow.
For example, in order to print a 32-page document
on a Wang Labs PM 016/160 dot matrix printer, one
consumed five hours listening to the particular sound
of those printers and taking care that no paper prob-
lems arose. Later, this printer type became faster in
the region, e.g. the EPSON LQ-300.

Figure 2 shows an example from a document
created in 1992 in the environment described above.
Observe that even though the document was made
with a word processor, the quality remains close
to the document prepared two years ago (Figure
1) because it was hardware-dependent (i.e. on the
printer type, which was a dot matrix printer that
also uses an ink tape).

Also, observe in Figure 2 that some special char-
acters in the Spanish language — for example the 1
letter — are printed with a different quality (e.g. the
last but one word particula of the paragraph after

Ludger O. Suarez—Burgoa

TUGboat, Volume 35 (2014), No. 1

P=2000 kN

B 0 12 14 16 18

Tabla a. Propiedades del suelo

2.00 e+04 kKN/m"2
Relacion de Poisson 035
0.00 kN/m"3

L=10.0m Maodulo eldstico

) Modelo de la viga

Peso unitario del suelo

Tabla b, Propiedades de la viga
2.00 e+08 kN/m2
Relacion de Poisson 0.30
298e102 m'2
6.3%e+04 m™4
2.40e+05 kN/m"2

Médulo eléstico

Area de la seccién

Monmento de Inercia

Youm 0.307m Esfuierzo tlfimo de fluencia

b) Deformada de la viga

El cilculo analitico de este simple modelo demuestra que la forma de modelar la viga es
correcta y cercana. La deformacion maxima producida en la viga simplemente apoyada,
para un sistema cargado con una fuerza puntual al centro, esta dada por la expresion de la

teoria eldstica. [Ec. 253].
Pl

Piner == [Ec. 253]
48-E, -1,

Figure 3: Part of the BSc thesis, this done with

MS Word under Windows 3.1 and Graphics with
CorelDraw 9 exported to a medium or low raster JPG
format [8]

the equations). Also, the equations
5°U =50 Th+«

55°U =50 Th +5 He

(1a)
(1b)

and in-text variable symbols (e.g. ...un positrén
(TB) se transmuta...) still needed human inter-
vention.

At the final stages of the university bachelor
course, at the end of the 1990s, things went better:
the Windows 3.1 (or higher) Operating System (OS)
in Spanish came with the not-well-known — at that
time — MS Word text processor, and now keyboards
were available for Spanish. Also, this text processor
included programs to prepare sketches and formulas,
which were more flexible, allowed more complex cases,
and, best of all: they supported full color. Also,
because color bubble jet printers were accessible to
an NR, one started to conceive of full-color figures
in scientific and technical documents.

Figure 3 shows the full-color graphics (grayscaled
for TUGboat hardcopy, though) made in a vector
program, which decreased in quality when exporting
to a raster format; but this was necessary because
the text processor did not import properly and ex-
actly the given graphic, even when trying to use its
own EPS vector format. The equation editor of the
word processor allowed these simple equations to be
executed well.

For the first decade of this new century, use
of these tools has been accepted by some scientific
researchers and most industrial professionals, with
the difference being that there was more diversity of
fonts, document templates, and printing resources.
This happened more due to hardware improvements

TUGDboat, Volume 35 (2014), No. 1

(rather than improvements in the commercial soft-
ware), which now allowed storing huge amounts of
data in memory during editing; therefore, one could
insert in a What You See Is What You Get (WYSI-
WYG) document file— for example — high resolution
raster figures and be unlikely to suffer a program
crash and consequently suffer a file corruption.

Nowadays, the quality of hardcopy documents
has been improved, because laser color printers are
more accessible for NRs than in the past; therefore,
more color texts have been produced and they can
also be reproduced economically in small quantities.

For example, most Master’s degree dissertations
in civil engineering in Latin American universities
have been prepared with the combination of pro-
prietary WYSIWYG software (i.e. word processor,
spreadsheet, and vector graphics editor), known as
office programs. Figure 4 shows part of an MSc thesis
prepared with these programs: reference citations,
reference lists, and lists of variables, abbreviations,
and acronyms were handled manually; on the other
hand, figure and table referencing, and equation num-
bering, were created automatically.

4 - !
s =
= e = fa ¥ 5
= e =
- = B o F o
a A _‘-’A‘ ; = = o 3]
t 4 Gneissic Texture Rock i
== i #
- 3 St 282, = g
= = : =
. 2 —

= Muterial. Foliation Joint== "¢
il :/

< i
i Joim Sets [and Z: F
- 19160 and 101186
respectively

Im
Ta) Kok Material: Gneissic Texture

1b) Rock Material: Mesomilonite Teamwne 3) & 4) Joint Sets | & 2
al 2) Veins 5) Mislocations

) Faulting |
7) Faulting 1

FIGURE 93. Rock Mass Describing Their Main Six Structures

ajIn a wall
Massivity Parameter (fo) gives the grade of massiveness and continuity of the rock mass. In
order to characterize a rock mass as massive and continuous, the parameter f; should he

greater or equal to (0.5 {Palmstram, 2003},

do= %; oA (70

For PAUHC rock mass, the massivity paremeter was encountered equal to 0,44 {Table 58).
That means, under RMi concept, that the ratio between the uniaxial compressive strength of

rock mass and the uniaxial compressive strength of the rock material for PAUHC is equal to

Figure 4: Part of an MSc thesis, done with MS Office
under Windows XP and graphics with CorelDraw X4
exported in high-resolution raster (JPG) format [9]

But the biggest drawback of using WYSIWYG
programs was that users did not learn about docu-

93

ment structuring. They used a text processor as a
simple electronic typewriter with improved graphical
capabilities. This situation is becoming less com-
mon in recent years; now, users are considering the
importance of hierarchically structuring documents,
with the goals of facilitating exporting to XML and
of disseminating documents via the Internet.

2.1 Digital Dark Age also touches NR

Past documentation stored in an encrypted coding
and unable nowadays to be reopened, because there
is no access to the hardware and software with which
it was created, has suffered a permanent loss—even
when the stored data is well preserved. If this situa-
tion occurs in a period between the time when the
first electronic document was stored without prevent-
ing this situ, to the time when the last electronic
document was stored before this situation is solved,
then that period so determined can be considered
a Digital Dark Age (DDA), because nobody in the
future will be able to know what humans had docu-
mented in that period.

Because humans have not in fact resolved this
situation, we are now inside a DDA. On a small scale
and for particular usage, NR are also suffering the
consequences of DDA. For example, some plots of
the scientific document shown in Figure 2 [7] were
made using proprietary software (Harvard Graphics,
as mentioned above), which stored the files with the
extension CHT. To date, no emulator can visualize
these graphics, even though the file is stored perfectly
safely on a hard disk.

NRs being in a DDA also causes the loss of many
of their old documents, which are frequently more
vulnerable than most others. This is because most
documents developed by NRs are not of global in-
terest; therefore, those documents are not stored in
data centers but instead on a home system. In 20
years of managing personal scientific documentation,
the present author —an NR— has suffered two im-
portant losses of documentation: first in the year
2000, when the entire computer was stolen; the other
in 2007, when the author’s first old PC computer
and the programs’ floppy disks — preserved in order
to minimize personal DDA — were erroneously sold
by the author’s father.

Nowadays the situation is becoming less prob-
lematic for NR, since large external companies offer
well-implemented digital data storage alternatives
(e.g. Dropbox).

2.2 The experience with the TEX family

TEX is a computer typography program, free and
open source in today’s terminology, created in 1978

Scientific documents written by novice researchers: A personal experience in Latin America

94

by Donald E. Knuth of Stanford University, which
has revolutionized digital typesetting for scientific
publishing and transformed the process of putting
mathematical ideas on paper [2, 3].

Since then, many improvements and proposals
have followed from it, creating the so-called TEX
family (also denoted (I#)TEX). In general, this family
has shown in its time that it was designed with two
main goals in mind: to allow anybody to produce
high quality documents; and to provide a system that
would give exactly the same results on all computers,
now and in the future [4].

One advantage of (I#)TEX, among many others,
is that one can use escape sequences for characters be-
yond basic ASCII; therefore, one can cover all possible
special characters with only 128 characters defined in
the OS. Even though this limit was superseded many
years ago with improved OSs, the use of only ASCII
characters can still be very useful when one wants to
put document information in structured databases:
for a word-searching process, it is better to use the
least possible number of different characters, as a
broader range can easily introduce more errors.

The personal experience of the author with TEX
began in 1996 when a friend seriously illuminated the
benefits of the new “free” OS Linux — erroneously
conceived by the author as free of charge — because
the text processor software it offered was KTEX-
based. In those years, another friend that came from
Switzerland to visit his native country (i.e. Bolivia)
gave the author three or five 3% inch floppy disks with
a program that dealt well with scientific documents
(i-e. Scientific Workplace under Windows 3.0 OS).
The present author tried to make use of this, but
because tutorials were lacking, finally he abandoned
the program.

Unfortunately, the author ignored this clever
advice, and 14 years passed before he recognized
that the pair GNU/Linux and TEX had an impor-
tant ideology behind them (see for example [5]) and
improved advantages for NRs.

3 Universal Editable Format

Unfortunately, novice researchers coming from Latin
American countries generally still believe that en-
coded binary files coming from popular office pack-
ages are the correct candidate as a universal format
for document editing. In the lexicon of individuals,
one finds phrases such as “send me a DOC file, please“
when one wants to receive a document.

Also, in many university libraries of Latin Amer-
ica, the format they have adopted as universal is,
erroneously, MS Word DOC format in its 2003 ver-
sion. Strangely, they do not at least adopt the MS

Ludger O. Suarez—Burgoa

TUGDboat, Volume 35 (2014), No. 1

Word DOCX format, which permits exporting DOCX
to XML. A disadvantage of adopting DOCX is that
one must run the proper program to do the trans-
formation to XML, and therefore one also is still
dependent on commercial software.

Other universities adopted Rich Text Format
(RTF), but this does not support graphics, formulas,
tables, etc; therefore, this solution is even worse than
the first, and worse also than PDF.

In general terms, a Universal Editable Format
(UEF) need not necessarily be known by everybody.
Instead, it should meet the following basic requisites:

e persist across time without losing information
(i.e. be 100% identical on all machines and avoid
DDA).

e be freely accessible anytime and anywhere (i.e.
not be proprietary);

e be independent from hardware;

e not be encrypted or represented using binary
codes; therefore, be readable by any text editor,
even the simplest one;

e have commands understandable by any individ-
ual after reading available free! documentation;

e the binary programs that parse the commands
should run under any OS.

Particularly for an NR, the TEX family can be
a serious candidate because:

e it has persisted for many years without impor-
tant weaknesses;

e it is the oldest system that has been a reliable,
free, de facto standard for decades;

e it has a great number of users; and

e it can be used by any individual, including those
without enough money to buy commercial edit-
ing program licenses, but with access to a com-
puter and the Internet (e.g. pre-university, bach-
elor, and postgraduate students, i.e. NRs).

3.1 Document interchange formats

Electronic documentation and dissemination was not
commonly used by NRs in Latin America until the
middle of the 1990s. Before the Portable Document
File (PDF) format was devised, other formats were
available in the world — for example the DeVice In-
dependent format (DVI) developed as part of the
TEX family, and the PostScript format coming from
Adobe—these were not known by the novice re-
searchers in this region.

It was only after the PDF format and the Ac-
robat reader came into prominence that people en-
countered a viable use for and storage of electronic

1 Free in the sense of freedom

TUGDboat, Volume 35 (2014), No. 1

documentation. The interchange of documents nowa-
days in this region is handled well via this format.
And, since 2008 this format has become even more
popular, after it was liberated by Adobe, made an
ISO standard and in general available for any individ-
ual to make, use, sell and distribute PDF-compliant
implementations.? Since then, FOS software has
been developed with considerable added value, for
example, PDF editing and electronic signatures.

The PDF format can be a good option to pre-
serve a document as it was conceived by its author(s)
and for electronic libraries (i.e. static preservation);
but perhaps is not the proper one to be adjustable to
the flexibility of web pages, and for the more volatile
and interactive areas of the web which require dy-
namic document preservation and/or continuing edit-
ing, as for example wiki pages (e.g. Wikipedia) [2].
Also, browsers cannot display PostScript or PDF files
without the aid of extra software (i.e. add-ons, many
of which are proprietary), which in turn causes many
readers to choose to download such files and view
them offline or print them.

In the near future—not to say in the present —
portable devices (e.g. tablets, cell phones, smart
phones) will be more popular, and programs in the
cloud will be used more; therefore, it is possibly
necessary to adopt another format for document
interchange for this new technological tendency.

With various scripts or programs, documents
created by TEX can be transformed to XML which
can be a first choice candidate for an NR to have
a good interchange document format meeting such
Internet-related requirements.

3.2 The case of graphics

In the 1990s, one typically used so-called vector
graphic editor programs (e.g. CorelDraw and Adobe
Tlustrator for Windows, which were and are com-
mercial programs) to execute figures for documents.
Unfortunately, in the early years of the Internet,
information about the existence of FOS programs
was lacking. Therefore, piracy of the most famous
graphic programs was the common “solution” for
NRs in Latin America during those years.

Other NRs erroneously used other sorts of propri-
etary programs to make graphics for their documents,
for example presentation programs (e.g. PowerPoint)
and two-dimensional computer aided design (CAD)
programs (e.g. AutoCAD). This was typically be-
cause they had no choice other than to use the soft-
ware they had available, legal or otherwise.

2 But this donation by Adobe did not follow the free (as in
freedom) or open software concepts, because the source code
was not liberated.

95

10
o1 oei = 15.4 MPa
oy = —7.8 MPa

a3 5 AD

0‘?’&((5“*
T =

Shear Stress in MPa

2

3.38 4.35 145
Normal Stress in MPa
Figure 5: A graphic from the PhD thesis, created
with Inkscape 0.47 under i486-PC-Linux-GNU (Debian
Squeeze 4.4.5-8) and exported to PDF format [10]

One principal limitation found by NRs working
this way was that they became dependent on propri-
etary file formats, which were— and still are — diffi-
cult to convert to a hypothetical universal editable
format for 2D and 3D vector graphics. This might be
the reason why some CAD proprietary file formats
became so important for interchange of graphics (e.g.
the AutoCAD DWG format); at the same time, they
are a poor choice for interchange, because the struc-
ture of the DWG format regularly changes with new
releases, and has never been made publicly available.

This situation continues today, but with fewer
devotees. Nowadays, NRs more often use less com-
plicated and costly proprietary software, or have
decided on well-developed FOS alternatives.

With the advent of the new century, a new vec-
tor graphics specification was developed for public
use: Scalable Vector Graphics (SVG), based on XML,
which nowadays may be considered a universal vec-
tor editable format, being widely supported on the
Internet and in applications. Unfortunately, SVG
still supports only 2D graphics, but efforts are being
made to cover 3D as well in the future.

SVG figures can be created and edited with any
text editor, but it is often more convenient to create
and edit them with a natural human interface for
graphics. In the area of FOS software, one interesting
program that deals with this format is the excellent
Inkscape, which is available for all major OSs. Figure
5 shows a scientific figure developed entirely with
this program using the SVG format; observe that
TEX equations are included.

3.3 (B)IEX classes as document managers

Returning to discussion of the TEX family, for many
years the class concept has been used for (I4)TEX-
based documentation, by creating a class file (CLS
extension by default). Although most commonly

Scientific documents written by novice researchers: A personal experience in Latin America

96

known for IXTEX, the concept can be applied any-
where in the TEX family.

This file—if properly designed — permits an NR
to create a document structure and formatting rules
once (i.e. a document template), and then re-use this
many times. This makes it possible to create uniform
documents with respect to format and structuring,
broadly used for book collections, journal articles,
institutional reports, university dissertations and
theses, and by extension any serialized document.

A CLS file is used under the TEX family concepts,
formats and engines. Thus, its use can result in high
quality document creation and a suitable document
manager, since in a class file one can, for example:

e restrict the document formatting and the docu-
ment structure;
define the text and mathematics font styles;
define table formatting;
limit the number of chapters and appendixes;
use a specific format for bibliographic references;

define proper format for the frontmatter, main
text, and backmatter; and

e define the page size, margins, headings and foot-
ers, and numbering.

The elaboration of a CLS file for (I4)TEX is
not terribly difficult, but nor is it an easy task; by
personal experience, it can be done by people who
have used (I#)TEX for at least one year, with the
help of the plethora of information on the Internet
(a situation that was not possible 15 years ago). On
the other hand, the use of an existing CLS file within
(IMTEX is a very easy procedure, which any NR
beginner can do.

Therefore, as this is an excellent tool, the cre-
ation of any CLS file for any commonly used docu-
ment at public institutions can be useful for others.
For this reason, over the last few years (perhaps
five years), the availability of CLS files for univer-
sities” documentation (i.e. dissertations and theses)
has been increasing.

An observation about this last statement: such
dissemination is not usually driven by the libraries or
other university offices; instead, it is usually comes
from the student community, with or without the
aid of a professor (i.e. an NR). Regarding this, it
is the mathematical departments of the universities
that have typically promoted the use of (I4)TEX and
who have created and disseminated CLS files.

Following this last-mentioned tendency, in the
following section it is briefly presented how a CLS
script file can be structured and the minimum envi-
ronments it might provide. This CLS file was devel-
oped by the author for his doctoral thesis, and his

Ludger O. Suarez—Burgoa

TUGDboat, Volume 35 (2014), No. 1

general conclusion —among others mentioned in the
next section —that emerged when working with the
TEX family was that finally, after 20 years, he has
found the proper tool for scientific documentation.

4 The unbDscThesisEng TEX family class

The unbDscThesisEng TEX family class is an unoffi-
cial template (i.e. not approved by the university) for
the English language version thesis of the Geotech-
nical Postgraduate Program of the Universidade de
Brasilia, Brazil.® It is composed of a main CLS
script file which requires other secondary files and a
particular directory structure.

This class was based on the book class with
modifications to accomplish local formatting require-
ments. It could also be properly used for the Por-
tuguese language by doing some modifications not
yet included in this version. The CLS file is free
software that is released under the terms of GNU
General Public License Version 3, as published by
the Free Software Foundation.

The class permits the student to use the follow-
ing eleven environments:

e princover for making the main cover of the
thesis by attaching a background.pdf file;

e maketitle, a redefinition of the original in the
book class, that permits making the title page
according to the university rules and format;

e approbationpage for the page with the jury
members’ names and signatures;

e catalogingpage for the page of the thesis cat-
aloging and copyright information;

e dedicatory for the dedicatory text;

e acknowledgements and agradecimentos for the
acknowledgments in English and Portuguese;

e abstract and resumo for the abstract in En-
glish and Portuguese;

e tableofcontents for the TOC;

e listoffigures and listoftables for the lists
of figures and tables;

e listofabbrevsymbs for the list of abbreviations
and symbols (separated by Latin and Greek
characters);

e listofreferences for the references after the
main matter;

e invitationpage for a page with the date and
time of the thesis presentation;

e reportpage for a page with general report in-
formation of the document.

In order to use any of the environments, the
unbDscThesisEng. cls file should reside in the doc-
ument’s main directory, and 48 variables are available

3 This class is at Version v1.0 as of 2012/15/08

TUGDboat, Volume 35 (2014), No. 1

for the user to fill. These variables are filled by the
user in a separate TEX file (i.e. the initials.tex
file), in order to avoid editing the CLS file.

Also, a main TEX file was designed (aaaThesis.

tex), in which the user can: define the page size and
its margins; define the text size among 10 pt to 12 pt;
define if the document should be printed as two-side
or single-sided; introduce other (I4)TEX packages;
redefine some commands; and insert the document
text. All the figures should be placed in a directory
called FIGURES; and front-, main-, and backmatters
should be inside the directories FRONT_MTR, MAIN_
MTR, and BACK_MTR, respectively. The bibliographic
references should be written in BIBTEX format and be
named bibliography.bib. The bibliographic style
used for this class is chicnarm.bst, recommended
to reside in the same document main directory.

Because this class uses the nomenclature pack-
age to manage the list of variables, a nomencl.cfg
file should also be in the document main directory.

The following listing shows the directory struc-
ture for the unbDscThesisEng class and the mini-
mal required files. The user interface used in this
example listing is the KDE Integrated IATEX Envi-
ronment (KILE) under KDE Platform Version 4.4.5
for GNU/Linux; the unbDscThesisEng.kilepr file
also defines the complete document structure.

drwx BACK_MTR

drwx FIGURES

drwx FRONT_MTR

drwx MAIN_MTR

-rw- aaaThesis.nlo

-rw- aaaThesis.nls

-rw- aaaThesis.pdf

-rw- aaaThesis.tex

-rw- background.pdf

-rw- bibliography.bib

-rw- chicnarm.bst

-rw- initials.tex

-rw- invitationBackground.png
-rw- nomencl.cfg

-rw- nomencl.dtx

-rw- nomencl.ins

-rw- nomencl.ist

-rw- unbDscThesisEng.cls
-rw- unbDscThesisEng.kilepr

Experiences using this class for the doctoral the-
sis brought about improvements in: text formatting;
correct use of SI units according to the proper rules;
good mathematical symbolization of variables; ro-
bust index generation — especially with the variables
index; robust reference structuring and full hyper-
textual citations. All of these in general improved

97

the document in quality and also reduced the time
needed for its elaboration.

Experiences using the SVG format for graph-
ics in the thesis brought about: homogeneous text
formatting in all figures; retaining in the graphics
the same mathematical variables defined in the doc-
uments (by using the ITEX equation rendering ex-
tension of Inkscape); easy editing independent from
the text of the document; and high quality output,
being vector graphics and not bitmaps.

5 Final comments

Comments given here are based on the author’s per-
sonal experience in his region and language, having
had the opportunity to deal with the scientific and
technical document creation for some 20 years, and
knowing the popular text processors and typesetting
programs.

In the historical narration of the author, it ap-
pears that milestones of that theme (i.e. use of com-
puter typesetting, use of DOS, Windows OS, bubble
and laser jet printers, and other issues mentioned in
Section 2) in Latin America came later than in other
regions; but this is not accurate. The true reason is
that the abovementioned milestones came relatively
late to NRs, who are ordinary people: university stu-
dents and teachers. It is likely that these milestones
came sooner to the region in more specialized areas,
for example, high-level research institutions.

The TEX family tries to reduce Digital Dark Age
(DDA) hazards for the NR. Preventing the DDA for
FOS formats could be less costly and time-consuming
than doing the same for proprietary formats. The
latter requires signing agreements with the format
owners, who try to market their work by praising
it as social labor when preventing DDA, while in
fact they are part of the DDA problem; proprietary
formats are by nature against DDA prevention.

What seems to be true is that the correct way
forward in scientific document preparation for NRs
is through the FOS concepts and by typesetting pro-
grams such as the TEX family. When mentioning this
duality, FOS concepts & TEX family, it is inevitable
to hear about the robust ideology they have behind
them; and probably from this duality can emerge
the proper UEF sought by the NR.

Perhaps the tendency of individuals in using
SVG format for graphics, and TEX for text, tables,
equations and references could mark a future ten-
dency in using XML format for scientific documents
(e.g. DocBook). But TEX is evidently easier to learn
than XML, and at any rate, there exist proper ways
to translate TEX to XML.

Also, in the near future, it is possible that the

Scientific documents written by novice researchers: A personal experience in Latin America

98

ePub format —a structured compressed XML based
format broadly used for mobile devices—can be
another possible interchange document format for
the NR, rather than PDF. This can work because the
Internet is a channel for distributing publications and
preprints in many disciplines, as well as becoming
a venue for less formal jottings and conversations
using mobile technology.

At this moment, TEX has become the de facto
standard text processing system in many academic
high-level scientific and research institutions, while —
in parallel —it is increasingly the choice of NRs in
developing countries (e.g. Latin America). The exam-
ple of usage of the unbDscThesisEng class is one of
many found in literature which improved a scientific
document conception, elaboration, and competitive
dissemination, which has a good opportunity to pre-
vail for many years without being caught by DDA.
But TEX family classes should be better promoted
by universities, who should also define more specific
and rigorous document elaboration policies.

Finally, digital storage is easy but digital preser-
vation is not. Preservation means keeping the stored
information cataloged, accessible, and usable on cur-
rent systems, which requires constant effort and ex-
pense. One cannot reverse the digitization of ev-
erything; what one has to do is convert the design
of software from brittle to resilient, from heedlessly
headlong to responsible, and from time-corrupted to
time-embracing [1].

References

[1] S. Brand. Escaping the digital dark age.
Library Journal, 124(2):46—49, February 1999.

[2] H. Brian. Writing math on the web. American
Scientist, 97(2):98-102, March—April 2009.

[3] S. Ditlea. Rewriting the Bible in 0’s
and 1’s. Technology Review, 102(5):66-70,
September—October 1999.

Ludger O. Suarez—Burgoa

(4]

[5]

[10]

TUGDboat, Volume 35 (2014), No. 1

A. Gaudeul. Do open source developers
respond to competition?: The (I2)TEX case
study. Social Science Research Network,
(908946), March 2006.

L.E. Rosen. Open Source Licensing: Software
Freedom and Intellectual Property Law.
Prentice Hall, Upper Saddle River, NJ,

1% edition, 2004.

L.O. Suarez-Burgoa. Estudio aerodindmico,
fuerza de sustentacién y resistencia en un
avién. Technical report, Colegio Alemén
Mariscal Braun, La Paz, Bolivia, October
1990.

L.O. Suarez-Burgoa. Estudio nuclear

de atomos radiactivos y efectos de la
radiactividad. Technical report, Colegio
Aleméan Mariscal Braun, La Paz, Bolivia,
October 1992.

L.O. Suarez-Burgoa. Consideraciones para
estabilizar taludes por medio de un sistema de
tablestacado y enrejado vegetado. BSc. thesis,
Universidad Mayor de San Andrés, La Paz,
Bolivia, June 2001.

L.O. Suarez-Burgoa. Rock mass mechanical
behavior assessment at the Porce 111
underground hydropower central, Colombia,
South America. MSc. thesis, Facultad de
Minas, Universidad Nacional de Colombia,
Medellin, Colombia, February 2008.

L.O. Suarez-Burgoa. A qualitative physical
modeling approach of rock mass strength. Ph.D.
thesis, Departamento de Engenharia Civil e
Ambiental, Universidade de Brasilia, Brasilia
DF, August 2012. Publication G.TD-079/12.

¢ Ludger O. Suarez—Burgoa
Universidad Nacional de Colombia
Fac. Min., Esc. Ing. Civ.
Cl. 65 #7828, Bl. M1 Of. 320
Medellin, Colombia
losuarezb (at) unal dot edu dot co
http://geomecanica.org/

TUGDboat, Volume 35 (2014), No. 1

Macro memories, 1964-2013
David Walden

Contents
1 Mecllroy’s 1960 ACM paper 99
2 Some prior history of macros 100
3 Strachey’s General Purpose Macrogenerator 101
4 Midas macro processor 101
5 More study and use of macro processors
(and language extension capabilities) 102
6 Midas, macros, and the
ARPANET IMP program 103
7 Ratfor and Infomail 104
8 TgX, macros for typesetting 104
9 M4 106
10 Reflections 107
Introduction

In the summer of 2013, I was looking at a 1973 listing
of the ARPANET IMP (Interface Message Processor)
program! which makes extensive use of macros. This
caused me to muse about the various macro proces-
sors I have used over the past 50 years which, in turn,
led to this note.

This note is not a thorough study, extensive
tutorial, or comprehensive bibliography about macro
processors. Such descriptions have already been pro-
vided by, for instance, Peter Brown, Martin Campbell-
Kelly, John Metzner, and Peter Wegner in their
longer presentations of the topic.2:%® Instead, the
macro technology thread I follow herein is guided by
the order in which I used or studied the various macro
processors. I hope this is usefully representative of
the scope of macro processor technology.

I have three reasons for writing this note. (1) I
haven’t seen much new written about macro pro-
cessors in recent years (other than what is on the
web); thus, it is perhaps time for a new paper on
this sometimes under-appreciated topic. (2) Com-
puter professionals and computing historians who
have come to their fields only in the last decade or
two may not know much about macros, and this
is a chance to share my fondness for and perspec-
tive on macros. The citations in the endnotes also
may be a useful starting point for further study of
macros, and maybe these notes will rekindle mem-
ories for other long-time computing people like me
about some of their own experiences. (3) For (I4)TEX
users who may not be computer programmers or fa-
miliar with other macro processor systems and who
accomplish impressive things using TEX macros, this
note sketches the long technical history of which TEX
macros are a part.

99

I assume most readers know what macros are, but
just in case: Typically one gives a name to a string
of text, e.g., “\define\Macroname{Textstring}”;
then each time “\Macroname” is found (“called”) in
the input text stream, it is replaced by “Textstring”.

The macro definition can involve the additional
substitution of text specified when the macro defini-
tion is called. For example,

\define\Name#1{His name is #1}

defines a macro named “Name” where “#1” indicates
a parameter to be substituted for when the macro is
called. The macro might be called with “John” as
the substitution text, as in the following
\Name{John}
which would result in
His name is John

In addition to the “#1” indicating where a substitu-
tion is to take place in the macro definition when
the macro is called, in this example the “#1” imme-
diately after the macro name indicates there is one
such substitutable parameter. If there were more
than one such parameter, a list such as “#1#2#3”
would appear after the macro name in the definition,
specifying three such parameters.

Donald Knuth in the index to Volume 1 of The Art of
Computer Programming gives this succinct definition
relating to macros: “Macro instruction: Specification
of a pattern of instructions and/or pseudo-operators
that may be used repeatedly within a program.”

1 Mecllroy’s 1960 ACM paper

I'm pretty sure that while I was still in college at San
Francisco State (1962-64) and using an IBM 1620
computer, I had no concept of macros. The IBM
7094 at MIT Lincoln Laboratory, my first employer
after college (starting in June 1964), may have had
a macro assembly capability, but I don’t think I ever
used it.

Probably my first contact with the concept of
macros was when an older colleague at Lincoln Lab
gave me his back issues of the Communications of
the ACM (and I joined the ACM myself to get future
issues of the CACM). In one of these back issues,
I read the article by Doug Mcllroy on macros for
compiler languages.®

Mecllroy has the following example of defining a
macro (although I am using an equal sign where he
used an identity symbol):

ADD, A, B, C = FETCH, A

ADD, B

STORE, C
where ADD” is the macro name, and A, B, and C are
the names of macro arguments to be filled in at the

Macro memories, 1964-2013

100

time of the macro call, and the three lines of code
are what is substituted. Thus, Mcllroy shows this
macro being called with the sequence

ADD, X, Y, Z

resulting in the following:

FETCH, X
ADD, Y
STORE, Z

This style of macro definition uses symbolic names
for the substitutable parameters, which can be useful
in remembering what one is doing with long macro
definitions. However, it is also a bit more complicated
to implement such symbolic macro parameter names
compared with using special codes such as “#1”.

Mcllroy’s 1960 paper goes on to show examples
of macros in an ALGOL-like language and to explain
the benefits of various features of macro processors.
For instance,

macro exchange(x,y;z) :=

begin
begin integer x,y,z;
z:=y;
y:i=X;
X:=2;

end exchange x and y
end exchange

defines a macro which, if called with
exchange(r1,ss3)
results in

begin integer rl,ss3,.gen001

.gen001:=r1;
ss3:=r1;
rl:=.gen001;

end exchange rl and ss3

Note that a special temporary register, .gen001, was
created to replace z which was defined following the
semicolon in the parameter list.

Mecllroy’s paper also has a summary list of “sa-
lient features” [the comments below in square brack-
ets are my notes on Mcllroy’s list]:

1. definitions may contain macro calls

2. parenthetical notation for compounding calls
[e.g., so arguments to macro calls can include
multiple items separated by commas]

3. conditional assembly

4. created symbols [e.g., so labels or local variable
names in the body of a macro definition are
unique for each call of the macro]

5. definitions may contain definition schemata

6. repetition over a list [see the example in the
discussion of Midas in section 4]

David Walden

TUGDboat, Volume 35 (2014), No. 1

Apparently Bell Labs was a particular hotbed
of macro activity in those early days. In a memorial
note for Douglas Eastwood,® Doug Mcllroy recounts:

On joining the Bell Labs math department, I
was given an office next to Doug Eastwood’s.
Soon after, George Mealy ... suggested to a
small group of us that a macro-instruction
facility be added to our assembler ... This
idea caught the fancy of us two Dougs, and
set the course of our research for some time
to come. We split the job in half: Eastwood
took care of defining macros; Mcllroy handled
the expansion of macro calls.

The macro system we built enabled truly
astonishing applications. Macros took hold
in the Labs’ most important project, elec-
tronic switching systems, in an elaborated
form that served as their primary program-
ming language for a couple of decades.

Once macros had been incorporated, the
assembler was processing code written whole-
sale by machine (i.e., by the assembler itself)
rather than retail by people. This stressed the
assembler in ways that had never been seen be-
fore. The size of its vocabulary jumped from
about 100 different instructions to that plus
an unlimited number of newly defined ones.
The real size of programs jumped because one
human-written line of code was often short-
hand for many, many machine-written lines.
And the number of symbolic names in a pro-
gram jumped, because macros could invent
new names like crazy.

By the way, Rosen’s book” also had a paper (pp. 535
559) by George Mealy that touched on macros: “A
Generalized Assembly System (Excerpts)”.

2 Some prior history of macros

Mecllroy’s paper also hints at some of the history of
macro processors including half a dozen references®
to prior macro processors; they were becoming fairly
widespread by the early 1960s. Lots of people were
thinking about macros and macro processing by 1960.
In section 6 of his paper, Mcllroy says,

... Conditional macros were devised indepen-
dently by several persons beside the author in
the past year. In particular, A. Perlis pointed
out that algorithms for algebraic translation
could be expressed in terms of conditional
macros. Some uses of nested definitions were
discovered by the author; their first imple-
mentation was by J. Benett also of Bell Tele-
phone Laboratories. Repetition over a list is

TUGDboat, Volume 35 (2014), No. 1

due to V. Vyssotsky. Perlis also noted that
macro compiling may be done by routines to a
large degree independent of ground language.
One existing macro compiler, MICA (Haigh),
though working in only one ground language is
physically separated from its ground-language
compiler. An analyzer of variable-style source
languages exists in the SHADOW routine of
M. Barnett, but lacks an associated mecha-
nism for incorporating extensions. Created
symbols and parenthetical notation are obvi-
ous loans from the well-known art of algebraic
translation.

Donald Knuth and Luis Trabb Pardo also touch
on the history of macros in their paper “The Early
Development of Programming Languages”.!? Early
in the paper,'! they note that Turing’s 1936 paper
on a universal computing machine used a notation
for programs which amounted to being “macroex-
pansions or open subroutines”. Later in the paper,'?
they say that Grace Hopper in 1951 came up with
the “idea that pseudocodes need not be interpreted;
pseudocodes could also be expanded out into direct
machine language instructions.” Later on the page
they note, “M.V. Wilkes came up with a very similar
idea and called it the method of ‘synthetic orders’;
we now call this macroexpansion.” 13

3 Strachey’s General Purpose
Macrogenerator

At the time I joined the ACM to receive the CACM,
I also subscribed to The Computer Journal. In this
I studied Christopher Strachey’s GPM (General Pur-
pose Macrogenerator).!4 The paper presents Stra-
chey’s macro processor and its possible uses. Then
the paper explains how it is implemented. Finally, it
has the code for the CPL language (sort of ALGOL-
like) which can be transliterated to implement GPM
in any other computing language.

GPM was a change in the way macro definitions
and calls were formatted from the series of macro
processors originally developed at Bell Labs in what
I will call the Mcllroy style. These early assemblers
and the macro processors tended to be shown in
columns with keywords (DEFINE, a defined macro
name, IRP, etc.) being recognized by the processor
as a special symbol and the other parts of the defini-
tion or call being detected by their separation with
spaces or commas, or perhaps bracketing parenthe-
ses. In fact, many of the early macro processors were
embedded parts of an assembler or language com-
piler. GPM indicated its macro definitions and calls
and their arguments with unusual characters, and
it was independent of any particular language —a

101

possible preprocessor for any other language or as a
stand-alone string processor.
Here is a simple definition in GPM:
§DEF,REFORMATNAME,<LAST="2, FIRST="1>;
It could be called like this:
SREFORMATNAME,David,Walden;
which would produce the output:
LAST=Walden, FIRST=David

Note that the GPM approach to macro definitions
does not specify how many substitutable parameters
there are. Note also that bracketing macro defini-
tions and macro calls with special symbols (“§”, “;”)
makes it a bit simpler for definitions and calls to
occur anywhere in the input stream.

Strachey’s paper is a wonderful and now clas-
sic article (it’s a shame it resides behind an overly
expensive paywall for the journal). By introducing
the macro processor and its uses, describing its im-
plementation, and then providing the code for its
implementation, Strachey’s paper is a superb model
for presenting a programming language. This was
perhaps possible because Strachey, purportedly a
genius programmer, had managed a very general and
beautiful implementation. The CPL code was only
two double-column journal pages long; and, accord-
ing to the history of the m4 macro processor,'® fit
into 250 words of machine memory.

The just-mentioned m4 history also touches on
the influence of GPM on later macro processors. Also,
GPM was used by later authors as an illustrative
example of a macro processor.?:16

Some readers by this time may be asking, “But
how is a macro processor implemented?” One can
sketch this intuitively. Text in the input stream to
the macro processor that is not a macro definition
or macro call is just passed on to the output stream.
Macro definitions in the input stream are saved in a
software data structure with their names and associ-
ated definitions. When a macro call is spotted in the
input stream, the definition is pulled out of storage
to replace the macro call in the output stream with
the call parameters being substituted at the proper
places in the definition. If all this is done using a
first-in-last-out stack in the proper way, definitions
within definitions, recursive calls, and so forth are
possible. For a detailed description of a macro pro-
cessor implementation, access Strachey’s GPM paper
in its journal archive or find a used or library copy
of Peter Wegner’s book? (pp. 134-144).

4 Midas macro processor

The next macro processor I came across (and the first
I actually used) was the macro processor that was

Macro memories, 1964-2013

102

part of the Midas assembler for the PDP-1. PDP-1
Midas had its origins in MIT’s TX-0 computer, all
the way back to MACRO on the TX-0.

MACRO was an assembler with a macro proces-
sor capability written by Jack Dennis for the TX-0.
I don’t know of a manual for TX-0 macros; however,
MACRO was later released by DEC with its PDP-1
computer, and Jack Dennis states!” that he wrote
the manual for that.'®

When I asked Jack Dennis about predecessor
technology to MACRO, he mentioned Mcllroy’s pa-
per (which was published after MACRO was available
on the TX-0 in 1959, so perhaps Jack saw a draft
or preprint). Of his MACRO, Jack said,!® “Doug’s
macro processor was of the string substitution sort

. Mine was different: it permitted a user to give a
name to a sequence of assembly instructions, with in-
teger parameters that would be added to instructions
to create modified addresses. (Thus the essential
mechanism was one’s complement binary arithmetic
instead of string concatenation.)”

Next on the TX-0 came Midas, which was de-
rived by Robert Saunders from TX-0 MACRO. Then,
TX-0 Midas was moved to the PDP-1.20 The TX-0
Midas memo?! is dated November 1962 which sug-
gests that the PDP-1 Midas was up and running
sometime in 1963, as the Midas manual for the PDP-
1 says it was ported from the TX-0 where it had been
running for about a year.

In any case, the PDP-1 editing, assembling, and
debugging set of programs was probably the best set
of interactive program development and debugging
tools that were available for a mini-computer in the
mid-1960s. Therefore, four of us using a Univac 1219
computer at Lincoln Lab decided to reimplement
these PDP-1 tools for our 1219.%2

Midas for the PDP-1 and our version for the
Univac 1219 had macro processor definition and call
formats that were similar to those in the tutorial part
of Mcllroy’s paper, e.g., “MACRO NAME ARG1, ARG2
(string)” to define a macro and “NAME X,Y” to call
it with X and Y to be substituted for ARG1 and ARG2
in the macro definition. For example,

MACRO MOVE X,Y

(ENTAL X
STRAL Y)

The above when called with
MOVE K,L
resulted in

ENTAL K
STRAL L

Midas also had what I now think of as map
commands, i.e., apply some function over a list of

David Walden

TUGDboat, Volume 35 (2014), No. 1

arguments — the Midas commands IRP (indefinite
repeat over a list of arguments) and IRPC (indefinite
repeat over a string of characters). In our version of
Midas, the IRP command might have been used as
follows:

IRP A, (W1, W2, W3)

(ADD A

)
expanding to

ADD W1

ADD W2

ADD W3

and in another example
IRP X,Y,(4,Q,B,R,C,T)

(CLA X
STO Y
)
expanding to

CLA A
STO Q
CLA B
STO R
CLA C
STO T

The same thing could have been accomplished
using the command to repeat for each character in a
string of characters:

IRPC X,Y, (AQBRCT)
(CLA X

STO Y

)

I'm pretty sure that the following also worked
in our version of Midas:2

MACRO ADDTHEM X,Y,Z
(ENTAL X
IRP W, (Z)
(ADD W
)
STRAL Y
)

when called with ADDTHEM A,B, (C,D,E) resulted in

ENTAL A
ADD C
ADD D
ADD E
STRAL B

All in all, this macro effort was a significant piece of
computing and programming education for me.?*

5 More study and use of macro processors
(and language extension capabilities)

In September 1967, I moved to Bolt Beranek and
Newman Inc. in Cambridge, MA, where I had access

TUGDboat, Volume 35 (2014), No. 1

to the company’s PDP-1d time sharing system. I
immediately began extensive use of the macro facility
built into the editing program TECO.2°

TECO?? was an early, very powerful, text edi-
tor with a macro capability using the same type of
keystrokes one used for editing. One could type a list
of keystrokes to do some complex editing function
but delay evaluation and instead save the sequence
of keystrokes (i.e., defining a macro) and then later
give a few keystrokes to execute the saved string
of keystrokes (i.e., calling or executing the macro).
TECO macros typically looked very cryptic. People
also played games with what complicated things they
could do with TECO macros, e.g., calculating digits
of pi, implementing Lisp, etc.26

Also early on at BBN, as a weekend hack, I
transcribed the Algol-like listing of Strachey’s GPM
system from his 1965 paper into PDP-1 Midas assem-
bly language and made it run. This was easy to do
given Strachey’s complete description of the system.

I also investigated the TRAC language.?”>?® TRAC
was presented by Calvin Mooers as a text processing
language; but to my mind, TRAC was not so different
from a macro processor in the way it defines and
manipulates strings.??

The basic TRAC operation is a call to a built-in
function introduced by a pound sign, e.g.,

#(function-name,argl,arg?2,...)

Two of the built-in functions are define string (ds)
and call (c1), as follows:

#(ds,greeting,Hello World)
and

#(cl,greeting)
resulting in replacement of the call by the string
“Hello World”.

Another built-in TRAC function, ss, specifies
the strings for which a substitution is to be made at
call time. Thus,

#(ds,greeting,Hello, name)

#(ss,greeting,name)
creates a macro with one call-time argument, such
that

#(cl,greeting,Hello Dave)

results in the text string “Hello, Dave”.
There are other built-in functions for string com-
parison, and so on.

By this time, I was pretty fascinated by program-
ming languages and macros, in particular the idea
of extensions to programming languages.

Macros have often been used as a form of lan-
guage extension. For instance, complex add might
be defined, using Mcllroy’s notation, as

103

COMPLEXADD, A, B, C, D, E, F = FETCH, A
ADD, C
STORE, E
FETCH B
ADD D
STORE F

with the obvious substitution when called with
COMPLEXADD, U, V, W, X, Y, Z

From macros as a way of extending languages it
was a short step to the idea of extensible high-level
languages. From 1966-1968 I took computer sci-
ence courses at MIT as a part-time graduate student
and eventually did Master’s thesis work (never com-
pleted) on a capability for extending a high level
language. Unfortunately, I have lost the complete
draft of the thesis report (and I never finished the
accompanying program). However, I am sure that
my thesis literature research and thinking influenced
the next project I had at BBN.

In 1967 to 1968, with the assignment to think
about a programming language for what became
BBN’s PROPHET system (a tool to help medicinal
chemists and research pharmacologists), I looked
deeply into extensible languages. I studied and re-
ported on Mcllroy’s ideas® and the ideas and imple-
mentations of several other researchers.?’ Eventually,
as a proof of concept, I translated James Bell’s Pro-
teus from the Fortran implementation in his thesis
into PDP-10 assembly language. I turned this effort
over to Fred Webb, who eventually replaced what I
had done with a fresh implementation of an extensi-
ble language named PARSEC.?! PARSEC was used
in various versions (and later as the basis for RPL
for the RS/1 system) by a multitude of people for
many years.

This note on macros is not the place to go more
deeply into extensible languages. The references in
note 30 are a decent introduction to the state of the
art circa 1968. For the state of the art a decade
later, John Metzner’s graded bibliography on macro
systems and extensible languages is relevant.®

6 Midas, macros, and the
ARPANET IMP program

At BBN I was part of the small team that in 1969
developed the ARPANET packet switch.!32 We de-
veloped the packet switch software for a modified
Honeywell 516 computer using the PDP-1d Midas
assembler, using lots of macros, etc., to adapt Midas
to know about the 516’s instruction set and paged
memory environment. Bernie Cosell primarily con-
structed this hairy set of conversation macros. Our
three person software team (Cosell, Will Crowther,

Macro memories, 1964-2013

104

and me) also used Midas macros to facilitate devel-
opment of the packet switching algorithms to run
on the 516. All this may be seen in a listing of the
IMP program available on the web.33 We also used
Midas macros to generate a concordance for the IMP
program®® as well as to reduce the probability of
writing time-sharing bugs.?®> A contemporary ver-
sion of this Midas macro assembler written in Perl
by James Markevitch is also available for study.?¢

7 Ratfor and Infomail

The next project on which I saw something like a
macro processor was an effort in the early 1980s to
develop a commercial email system that would run
on a variety of vendor platforms, e.g., DEC VAX,
IBM CICS, IBM 360, and Unix on the BBN C/70. For
portability we decided to implement our email sys-
tem (called InfoMail) in Fortran, for which compilers
already existed for the target platforms. However, to
avoid having to actually write Fortran code, we devel-
oped the system using Ratfor (Rational Fortran).37
Ratfor was not actually a macro processor but rather
a programming language that acted as a preprocessor
to emit a Fortran program that could be compiled
by a standard Fortran compiler. Nonetheless, that
seems to me to be quite a lot like what a macro pro-
cessor does. Also, Chapter 8 of the Software Tools
book (see previous note) describes the implementa-
tion in Ratfor of a macro processor (based on the
macro processor for the programming language C).

Also during my BBN years between 1967 and 1995, 1
briefly used the C language, which includes a macro
processor,>® which optionally can be used indepen-
dently of the rest of C. But from 1982 on I did no real
computer programming and thus didn’t track what
was happening in the world of macro processors.

8 TEX, macros for typesetting

People who use (I4)TEX macros may already know
much of what is in this section. However, some of it
may be new to some readers.

After retirement from BBN in 1995, I had started
using (I4)TEX in place of a word processor such as Mi-
crosoft Word, particularly for documents that were
more than a one-page, one-time letter. This brought
me in contact with the very sophisticated and com-
plex macro processor embedded in the TEX type-
setting system. I have now been using this system
and its macro processor for typesetting for nearly 20
years, the longest in my life I have used any single
mMacro processor.
Here is an example of a TEX macro.

\def\Greeting#1{Hi #1! I hope you’re well.}

David Walden

TUGDboat, Volume 35 (2014), No. 1

If this is called with \Greeting{Dave}, it results in
Hi Dave! I hope you’re well.

The text “#1” tells the macro definition processor
(a) that there is one argument, and (b) where the
call-time argument is to be substituted in the body of
the macro. If the macro definition allowed three ar-
guments, for instance, the sequence “#1#2#3” would
appear after the macro name and before the open
curly bracket of the definition.

The TEX macro processor is enormously pow-
erful and flexible, in its unique way, and a compre-
hensively documented piece of software.39,40,41,42
Massive programs have been (and continue to be)
written in its macro language. For example, IMNTEX is
implemented entirely with TEX macros, as are other
variants or supersets of TEX (called “formats” in
TEX jargon) as well as thousands of BTEX “packages”
which extend or modify the capabilities of IXTEX.
One modest-size example of the use of TEX macros
to extend TEX can be found on pages 6-10 of “The
bibtext Style Option”.%3

Personally, I tend to do my ETEX extensions us-
ing packages that other people have already written,
although sometimes I make minor modifications to
existing packages. More commonly I use TEX macros
(or a WTEX variation) to replicate small snippets of
IXTEX code which are used repeatedly — for consis-
tency, and also to easily allow later changes of such
snippets as I figure out what I actually want them to
do. In 2004 I published an example of one such use
of a TEX macro;** I encourage readers to take a look
at it as it describes (far from completely) various
ways TEX macros are defined and can be called.

Historically, there has been an interesting set of
pressures around TEX’s macro capability. Originally
Donald Knuth included only enough macro capability
to implement his typesetting interface. However, he
was persuaded by early users to expand that macro
capability. That expanded capability allowed users to
construct pretty much any logic they wanted on top
of TEX (although often such add-on logic was awk-
ward to code using macro-type string manipulations).
On the one hand, TEX and its macro-implemented
derivatives have always been very popular and there
have been non-stop macro-based additions for over
30 years. On the other hand, users despair at how
annoying coding using macros is, moan about “why
Knuth couldn’t have included a real programming
language within TEX”, and otherwise cast aspersions
on TEX’s macro capability.

Over the years various attempts have been made
to link TEX to a “real” programming language, typi-
cally invoking the programming language from TEX

TUGDboat, Volume 35 (2014), No. 1

or the reverse; however, none of these efforts have
come into widespread use. Over the past few years,
however, a small group of TEX hackers have accom-
plished an apparently successful merger of the Lua
programming language and TEX, called LuaTEX.4?
LuaTgX maintains TEX’s macro processor (there is
really no way, and no reason, to get rid of it while
keeping TEX). Thus, the full power of the TEX macro
processor is available for the many situations in which
it is the best tool, and the Lua language is available
for things which can be done much more easily in a
procedural language.

The history of the TEX macro processor partially
explains the above. Knuth has made the point that
he was designing a typesetting system that he didn’t
want to make too fancy, i.e., by including a high
level language. He has also noted that when he was
designing TEX he created some primitive typesetting
operations and then created a set of macros for the
more complete typesetting environment he wanted.
He expanded the original macro capability when
fellow Stanford professor Terry Winograd wanted
to do fancier things with macros. Knuth’s idea was
that TEX and its macro capability provided a facility
with which different people could develop their own
typesetting user interfaces, and this has happened
to some extent, e.g., WTEX, ConTEXt, etc.

It is perhaps worth discussing a few of the things
that make the TEX macro capability different from,
for example, the capability of GPM.

GPM has a simple and unchanging definition and
calling syntax, as was described in Section 3. Macro
definitions can include other macro definitions, and
macros can have recursive calls (and without going
back to study the GPM paper carefully, I assume that
the scope of macro definitions happens in the natural
and obvious way). The definition associated with a
macro name can be “looked at” without evaluating
the definition; the definition associated with a macro
name can be assigned to a different macro name; and
there is a capability for converting numbers between
binary and decimal formats and for doing binary
arithmetic. No limit is specified for the number
of arguments a macro definition and call can have.
Finally, GPM is a stand-alone program; it processes
its input, and it is up to the user what happens next
with its output.

The TEX macro capability can do all those
things; but it cannot be used independent of TEX,
and in its straightforward form its macro definitions
and calls are limited to nine arguments. TEX also
has a way of defining a macro call to have a much
more free-form format, and with some programming
(or use of an appropriate TEX macro package) macro

105

call arguments can be specified with attribute-name/
value pairs. There are explicit commands in TEX
creating local or global definitions, as well as various
other definition variations, such as delayed defini-
tion and delayed execution of macro calls. TEX has
a rich rather than minimal set of conditional and
arithmetic capabilities (some related only to position
in typesetting a page). There are also ways to pass
information between macros and, more generally, to
hold things to be used later during long, complicated
sequences of evaluation and computation. These ca-
pabilities allow big programs to be written in the
macro language, and thus TEX also has a capability
to trace the flow of macro definition and execution.

TEX has another unusual capability that is some-
times used with macros, although it is a capability
more closely related to lexical analysis than to macro
definitions and calls; this is the TEX “category code”
feature. TEX turns its input sequence of charac-
ters into a list of tokens. A token is either a single
character with a category code (catcode) or a con-
trol sequence. For instance (using an example from
Knuth’s The TgXbook), the input “{\hskip 36 pt}’
is tokenized into

{ hskip36 , pt}

where the opening brace is given the catcode of 1
(begin group), hskip gets no catcode because it is a
control sequence, 3 and 6 get catcodes of 12 (other),
the space after 36 gets catcode 10 (space), p and t
get catcodes of 11 (letter), and the closing brace gets
catcode 2 (end group). (There are 16 such category
codes in all.)

The next step in the TEX engine decides what to
do with these different tokens, e.g., put the numbers
together into a numeric value and the letters together
into a unit of measurement, execute the primitive
hskip command, and so on. The backslash has a
catcode of zero indicating an escape character, thus
telling TEX that the following letters (five in this
case) form a control sequence; the space after the
command name delimits the end of the name and
doesn’t otherwise count as a space.

TEX also has the capability of changing which
character(s) have which catcode(s). For instance, the
dollar sign (by default having catcode 3, indicating
a shift to math mode) could be given the escape
character catcode, and the backslash could be given
the math shift catcode. This capability is routinely
used in TEX program libraries to define macro names
internal to a program in the library which users
of the library cannot use when (normally) defining
their own macro names. Basically, the entire input
language of TEX can be changed.

Macro memories, 1964-2013

106

The typeface design system, METAFONT, that
Knuth developed in parallel with TEX has a more
powerful macro capability (my memory is that he
says somewhere that this was because he assumed
more sophisticated people would be using META-
FONT than TEX).

When Knuth rewrote TEX and METAFONT us-
ing literate programming techniques and targeting
the Pascal programming language,?® he included a
macro capability in his literate programming WEB
system for two reasons: simple numeric and string
macro definitions were used to simplify coding given
the limitations of Pascal; another kind of macro sup-
ported literate programming by allowing source ma-
terial to be presented in an order suitable for human
readers, which was then reordered by the system into
the order needed for compiler processing.*” (When
literate programming systems targeting C were later
developed, WEB’s numeric and string macros were
no longer strictly needed since C has its own macro
processor, as noted above. The macros supporting
literate programming continued to be an essential
part of the system.)

I got to wondering when and where Donald Knuth
got his own introduction to macro processors. He
said:48

I worked with punched cards until the 70s. My
first “macro processor” was a plugboard for
the keypunch, setting up things like tab stops!
The assembler that I wrote as an undergrad,
SuperSoap for the IBM 650, had a primitive
way for users to define their own “pseudo-
operations”; but it was extremely limited. For
example, the parameters basically had to be
in fixed-format positions.

I learned about more extensible user-de-
finability with the first so-called “compiler-
compilers”, notably D. Val Schorre’s “META 117
(1964)%° and E. T. Irons’s syntax-directed com-
piler written at Yale about the same time.?°
Later I knew about the sort-of macros in other
compilers, e.g., PL/I.

But the first really decent work on what we
now call macro expansion was done I think by
Peter Brown ... it was his book Macro Proces-
sors (Wiley, 1974)? that was my main source
for macros in TEX, as far as I can remember
now.

9 M4

In about 2001, I was looking for a macro processor
to help me format an HTML list of the articles in the
Journal of the Center for Quality of Management

David Walden

TUGDboat, Volume 35 (2014), No. 1

that were relevant to the chapters of a book I co-
authored.?® I found the m4 macro processor.®?
The following first entry in an HTML table:®?

click- |Vol.-1-No.Tom-Lee-and-David:- |What-is-the-Center-for- =
28.2a herez |1,-1992= Walden-« Quality-Management?c

was created with the following m4 macro definition
that outputs HTML markup:
define(‘_te’, ¢
<TR VALIGN="top">
<TD ALIGN="center">$1</TD>
<TD ALIGN="left">$2</TD>
<TD ALIGN="left">$3</TD>
<TD ALIGN="left">$4</TD>
<TD ALIGN="left">$5</TD>
</TR>
”)
which was called as follows (except all on one line):

_te(28.2,_url(00100),_i(1,1,1992),

Tom Lee and David Walden,What...)

4 W

where “_url” and “_i” are other m4 macro calls.
I gave the m4 macros names beginning with under-
scores so the names would be recognizable in the m4
source file which didn’t otherwise use underscores.

Use of m4 brought me full circle, in a sense, as
the m4 macro processor is somewhat derived from
GPM.5* Tt was also used for and with Ratfor.

One incarnation of m4 is a freely available pro-
gram under the GNU GPL, and thus that implemen-
tation is also available for study and other use.®®

My writing and publishing work using a IXTEX engine
involved me in publishing work flows, particularly
the need to have one source file be processable into
multiple publication formats. For example, in the
case of the TEX Users Group Interview Corner,?®
we use m4 macros to define a new markup language
which can, with different sets of definitions, be tar-
geted to output markup language code for either
IMTEX for paper printing or HTML for web posting.
In our interview sources files, we might write the
macro call “_i(Book Name)”. With our HTML set
of m4 definitions, that would convert to “<i>Book
Name</i>”. With our BTEX set of m4 definitions,
that would convert to “\textit{BookName}”’. We
have hundreds of m4 definitions in each of the KTEX
and HTML m4 definition files that implement this ad
hoc markup language that targets the two methods
of output.

A language independent macro process such as GPM
or m4 can be used at any point in a workflow:

e as a preprocessor for a programming language
(as in many of the examples in this note)

e as a post processor (Martin Richards has noted
that a GPM-like macro processor was used to

TUGDboat, Volume 35 (2014), No. 1

convert the O-code output of his BCPL compiler
into machine language)®”

e as an intermediate step in the work flow (for in-
stance, a Perl program processes an input driver
file to generate m4 macro calls, the macro calls
generate IMTEX markup, and the ITEX engine
generates PDF files from the ATEX markup).

10 Reflections

General reflections. A computing historian who
is a potential reader of this note might ask, “Why
should I care about macro processors?” There are
a couple of answers to this. First, macro proces-
sors played an important role in the history of pro-
gramming languages. They were used with early
assemblers, before higher level languages became
widespread. In fact, they allowed assembly language
users to create higher level language constructs by
grouping together useful sequences of assembly lan-
guage instructions under a single name, for exam-
ple, complex-add. As higher level languages came
into use (e.g., Fortran, ALGOL), the usefulness of
macro processors was carried over into higher level
languages (e.g., to create yet higher level linguis-
tic constructs). Soon stand-alone macro processors
were created that could act as a preprocessor for any
programming language rather than being embedded
within a particular programming language. Second,
both embedded and stand-alone macro processors
continue in widespread use today. We also find macro
processors embedded in the user interface of many
computer tools other than programming languages,
for instance, as part of text editors, operating system
shells, makefiles, and other applications and software
packages (one example is Actions in Photoshop —
repeatable sequences of Photoshop commands).
The reader might next ask, “If macro processors
have been important in the history of programming,
why isn’t more written about them?” I think the
answer to that question may have to do with the
relative simplicity of many macro processors, which
substitute one character string for another. That is
not an area that requires much research, and gener-
ally useful implementation methods have been well
known since the 1960s or earlier; also, it is not too
hard to do an ad hoc implementation of a macro
processor as part of some piece of software one is
writing. Being mostly implemented as string manip-
ulators, macro processors don’t have to have all of
the debatable research topics that a full program-
ming language has (side effects, call by name, scope,
etc. —although the sophisticated macro processors
such as m4 and TEX have parallels for these sorts of
programming-language-philosophy topics). Also, as

107

macro processors tend to operate at compile time,
sometimes in ways that increase runtime efficiency,
there probably hasn’t been as much interest in op-
timizing macro processor performance as there has
been with programming languages.

From the point of view of the professional pro-
grammer (versus historian), macro processors are
just another development tool, and they are avail-
able as preprocessors or embedded in whatever pro-
gramming language or other development tools the
programmer is using. Details about how a macro
processor works may annoy but probably won’t de-
ter such working programmers. They just use what
is available as best they can, and don’t write the
theoretical articles. Practical use of macros also
tends to be awkward, and describing their use can
be messy. Thus, it is difficult in a short paper to
describe serious uses of macros.

On the other hand, people who might be reluc-
tant to use a “real” programming language may use
macros (e.g., editor macros) in quite sophisticated
ways. In the multi-chapter interview of Knuth in his
Companion to the Selected Papers of Donald Knuth
(page 161),°® Knuth says of his wife, “I don’t think
she will ever enjoy programming. She is good at
creating macros for a text editor, sometimes impress-
ing me with subtle tricks that I didn’t think of, but
macro writing is quite different from creation of what
we call ‘recursive procedures’ or even ‘while loops.””

Macro processors are also not as tractable a topic
for historical or theoretical writing as high level lan-
guages perhaps are. While many macro processors
may be for relatively straightforwardly extending a
programming language or aiding in a development
task, some macro processors (such as m4 and the
macro capability in TEX) have a big set of capa-
bilities for dealing with sophisticated programming
situations —they are set up to write big complicated
programs, just as regular higher level languages are,
but often in more clumsy-to-use ways. There is a
160-page manual to describe all the capabilities of
the stand-alone m4 macro processor. In addition to
Knuth’s own writings,?>4! Eijkhout’s book*’ has
more than 50 pages on the extensive macro capabil-
ities embedded in TEX, and Stephan von Bechtols-
heim wrote (perhaps excessively) a 650-page book®®
on using TEX macros. (There is probably an interest-
ing paper to be written comparing the issues inherent
in these powerful macro processors with similar issues
in regular procedural programming languages.)

The immediately preceding discussion brings to
mind the question, “Where on the spectrum of pro-
gramming languages do we put macro processors?”

Macro memories, 1964-2013

108

Early on they were used as ways to extend as-
semblers and compilers. Quickly they were used
to implement programming languages (e.g., WISP
and SNOBOL). They were used to simulate different
“computers” (e.g., BCPL’s compiler of O-code, the
assembly language of the Honeywell 516 IMP com-
puter). I personally have used them to define and
process little special purpose markup languages (as
described in the m4 and TEX sections above).

Many macro processors are Turing-complete and
in this sense can compute anything a typical higher
level language can compute. However, they are dis-
tinct from many higher level language compilers (dis-
counting macro capabilities they might have, or other
compile-time evaluation capabilities, as languages
which execute interpretively often have, e.g., Lisp,
Perl) in that much computation in macro processors
inherently goes on at “compile” time. This can make
their syntax and semantics harder to specify.

In Knuth’s paper “The Genesis of Attribute
Grammars”, reprinted in his Selected Papers on Com-
puter Languages,®® Knuth explains (pages 434-435)
that he didn’t use an attribute grammar to specify
the semantics of TEX because he hadn’t been able to
think of any good way to define TEX precisely except
through the implementation using Pascal. He also
couldn’t think of how “to define any other language
for general-purpose typesetting that would have an
easily defined semantics, without making it a lot less
useful than TEX. The same remarks also apply to
METAFONT. ‘Macros’ are the main difficulty. As far
as I know, macros are indispensable but inherently
difficult to define. And when we also add a capabil-
ity to change the interpretation of input characters,
dynamically, we get into a realm for which clean
formalisms seem impossible.”

Personal reflections. Macro overview books, such
as those by Brown and Campbell-Kelly, try to cate-
gorize the uses of macro processors, for example, to
extend a programming language, to allow late bind-
ing of variables to values, to communicate with the
operating system, to implement desirable-but-non-
existent machine instructions, to insert debugging
code into a program, and to simply abbreviate long
strings of text. Below is a short list of the ways I feel
I have made use of the macro processors described
in this note.

e The macro processor described in Mcllroy’s pa-
per, Strachey’s GPM, and Mooers’ TRAC were
for the study of programming languages, under-
standing of how macro processors work, and for
coding practice.

e Midas was about implementing a macro proces-

David Walden

TUGDboat, Volume 35 (2014), No. 1

sor and using one for production work includ-
ing retargeting Midas to a new computer and
putting hints in a real-time program to reduce
the probability of time-sharing bugs.

e TECO and other editor macros were to reduce
editing keystrokes, especially when regular ex-
pression searches and replacements are needed.

e Ratfor and C were for programming efficiency.

e TEX macros are for production typesetting, cre-
ating extensions to ITEX (e.g., the style for a
particular book), and as another sophisticated
macro processor to study.

e m4 use has been to create new markup languages
with which to target document source files to
different output media.

In addition to assembly languages for different com-
puters, Fortran for various mathematical projects,
and the languages mentioned above, I briefly pro-
grammed in Lisp and BCPL years ago. Lisp has
a macro capability and I may have used it, but, if
so, I don’t remember anything about it.®! While
writing these notes, I have learned that a version of
Strachey’s GPM existed for BCPL, known as BGPM.

In recent years I have used Perl for several large
and many small projects. Apparently Perl has a
capability for redefining parts of the Perl language
(the equivalent of macros and more), but it confused
me when I tried to read about it and am not likely
to try it. I suppose I can just use m4, which I already
know, as a preprocessor for Perl; but that doesn’t
stop me from wishing that a conventional macro
capability was built into Perl.

Acknowledgments

Chuck Niessen helped me remember the capabili-
ties of the Univac 1219 macro assembler we wrote.
Ralph Alter and Will Crowther responded to queries
relating to macro capabilities on Lincoln Laboratory
computers. Stan Mazor confirmed my memory about
whether or not we used macros in the early 1960s
on the IBM 1620 at San Francisco State College.
Tom Van Vleck reminded me of what languages with
macro processors were available at MIT in the late
CTSS and early Multics era. Jim Wood reminded
me of some things about PARSEC. Bill Aspray and
Martin Campbell-Kelly provided guidance on how
this paper might be developed into a more traditional
academic computing history paper. Bernie Cosell
pointed out half a dozen subtle issues or possibili-
ties in the paper. Ralph Muha gave me his copy of
Gimpel’s SNOBOL4 algorithms book. Most helpfully,
Karl Berry read drafts of this note, noted typos,
made suggestions for improvement, and provided ad-
ditional insight about and references for a number

TUGDboat, Volume 35 (2014), No. 1

of macro processors, particularly TEX. Karl, along
with Barbara Beeton, also edited the final draft of
the paper to ready it for publication.

Notes
! http://walden-family.com/impcode/imp-code.pdf

2 [Macro overview)] P.J. Brown, Macro Processors and
Techniques For Portable Software, John Wiley & Sons,
1974.

3 [Macro overview] Martin Campbell-Kelly, An Introduc-
tion to Macros (Computer monographs, 21), MacDonald

& Co., London, 1974.

4 [Macro overview] Peter Wegner, Programming Lan-
guages, Information Structures, and Machine Organiza-
tion, McGraw-Hill Book Company, 1968, section 2.6 and
section 3.1-3.4, pp. 130-180.

® [Macro overview] John R. Metzner, A graded bibliog-
raphy on macro systems and extensible languages, ACM
SIGPLAN Notices, Volume 14 Issue 1, January 1979,
pp. 57-64.

5 [Mellroy’s model] M.D. Mcllroy, Macroinstruction Ex-
tensions for Compiler Languages, Commaunications of the
ACM, vol. 3 no. 4, 1960, pp. 214-220.

"In 1967 Mcllroy’s paper was reprinted in the now classic
book Programming Systems and Languages, edited by
Saul Rosen, McGraw-Hill, New York, 1967. For this paper
I was looking at the reprint of Rosen’s book. In the reprint
Mecllroy doesn’t say anything about the macro name in
this example also being used within the definition but
not apparently as a recursive call of the macro, i.e., the 3-
argument call can be distinguished from the 1-argument
instruction.

8 [Macros at Bell Labs] May 4, 2009,
http://deememorial.blogspot.com/2009/05/
doug-mcilroy-recalls-bell-labs.html

9 [Other macro systems] M. Barnett, Macro-directive
Approach to High Speed Computing, Solid State Physics
Research Group, MIT, Cambridge, MA, 1959; D.E. East-
wood and M.D. Mcllroy, Macro Compiler Modifications
of SAP, Bell Telephone Laboratories Computation Cen-
ter, 1959; I.D. Greenwald, Handling of Macro Instruc-
tions, Communications of the ACM, vol. 2 no. 11, 1959,
pp- 21-22; M. Haigh, Users Specification of MICA, SHARE
User’s Organization for IBM 709 Electronic Data Pro-
cessing Machine, SHARE Secretary Distribution SSD-61,
C-1462, 1959, pp. 16-63; A.J. Perlis, Official Notice on
ALGOL Language, Communications of the ACM, vol. 1
no. 12, 1958, pp. 8-33; A.J. Perlis, Quarterly Report of
the Computation Center, Carnegie Institute of Technol-
ogy, October. 1969; Remington-Rand Univac Division,
Univac Generalized Programming, Philadelphia, 1957.
10 [Other macro systems] This article was originally pub-
lished in Volume 7 of the Encyclopedia and Computer
Science and Technology, published by Michel Dekker in
1977. The article is reprinted as chapter 1 of Donald E.
Knuth, Selected Papers on Computer Languages, Center

109

for the Study of Language and Information, Stanford
University, 2003.

1 Page 6 in the volume of Knuth’s selected papers.

12 Page 42 of the selected papers volume.

13 Martin Campbell-Kelly told me [email of 2013-11-23],
“Maurice Wilkes developed a macro-based system called
WISP for list processing (http://ai.eecs.umich.edu/
people / conway / CSE /M.V.Wilkes / M.V.Wilkes-Tech.
Memo.63.5.pdf) ... Peter Brown? was Wilkes’ PhD stu-
dent.”

1 @PM] C. Strachey, A General Purpose Macrogenera-
tor, The Computer Journal, vol. 8 no. 3, 1965, pp. 225—
241.

15 See Section 1.2, Historical References, at http://www.
gnu.org/software/m4/manual/

18 [@PM] Another implementation of GPM can be found
in Section 8.8 of James F. Gimpel’s book Algorithms
in SNOBOL4, John Wiley & Sons, 1976. (SNOBOL4 it-
self was implemented using a collection of macros which
create a virtual machine for the purpose of language
portability: Ralph E. Griswold, The Macro Implemen-
tation of SNOBOL4, W.H. Freeman and Company, San
Francisco, 1972. SNOBOLA4 is sometimes known as “Macro
SNOBOL”.)

7 Email of November 16, 2013.

18 [Midas] MACRO Assembly Program for Programmed
Data Processor-1 (PDP-1), Digital Equipment Corpora-
tion, Maynard, MA, 1963, http://bitsavers.informatik.
uni-stuttgart.de/pdf/dec/pdpl/PDP-1_Macro.pdf

19 Email of October 28, 2013.

20 [Midas) http://ia601609.us.archive.org/9/items/
bitsavers_mitrlepdpl_1535627/PDP-1_MIDAS.pdf

2! [Midas) http://1a601601.us.archive.org/11/items/
bitsavers_mittxOmemo_2363951/
M-5001-39_MIDAS_Nov62.pdf

22 Ralph Alter wrote a version of TECO, Dan Murphy’s
paper Tape Editing and Correcting Program: Dan Mur-
phy, The Beginnings of TECO, IEEE Annals of the History
of Computing, 31(4), October—December 2009, pp. 225—
241. Will Crowther wrote a version of Alan Kotok’s DDT
debugging program. Chuck Niessen and I wrote a version
of Robert Saunder’s macro assembler: Chuck wrote the
basic assembler and I wrote the macro-processor.

231 have the line printer assembly listing and my hand-
written flow chart for this macro processor. It is tempting
to try to make this macro processor run again on a 1219
emulator.

24 This was the first program in which I used stacks
and for which I thought about recursion in a profound
way. I think this was also the first time I wrote code for
managing a symbol table.

251 don’t remember using this capability in TECO at
Lincoln Lab.

261 won’t bother with further mention of macros in other
editors (or macros in various job control languages, shells,
or makefiles) in the rest of this note.

Macro memories, 1964-2013

110

2T [TRAC] Calvin Mooers and Peter Deutsch, TRAC: A
Text Handling Language, Proceedings of the 20th ACM
National Conference, 1965, pp. 229-246.

28 As part of my investigation, I visited TRAC creators
Calvin Mooers at his Cambridge office (of the Rockford
Research Institute) and Peter Deutsch at the Cambridge
home of his parents.

29 Brown’s book? in fact classifies TRAC as a macro
processor.

30 [Extensible languages) Niklaus Wirth, On Certain Basic
Concepts of Programming Languages, Technical Report
No. CS 65, Computer Science Department, Stanford Uni-
versity, May 1, 1967; B.A. Galler and A.J. Perlis, A
Proposal for Definitions in ALGOL, Communications of
the ACM, vol. 10 no. 4, April 1967, pp. 204—219; T.E.
Cheatham, Jr., A. Fischer, and P. Jorrand, On the Basis
for ELF — An extensible language facility, AFIPS Fall
Joint Computer Conference, 1968, pp. 937-948; J.V. Gar-
wick, J.R. Bell, and L.D. Krider, The GPL Language,
Programming Technology Report TER-05, Control Data
Corporation, Palo Alto, CA; Thomas A. Standish, A Data
Definition Facility for Programming Languages, PhD the-
sis, Carnegie Institute of Technology, 1967; James Rich-
ard Bell, The Design of a Minimal Expandable Program-
ming Language, PhD thesis, Stanford University, 1968.

31 [Eaxtensible languages] F. Webb, The PROPHET Sys-
tem: An Overview of the PARSEC Implementation, BBN
Report 2319, September 1, 1972; PARSEC User’s Manual,
Bolt Beranek & Newman, Cambridge, MA, December
1972.

32F E. Heart et al., The Interface Message Processor
for the ARPA Computer Network, AFIPS Conference
Proceedings 36, June 1970, pp. 551-567.

33 http://walden-family.com/impcode/
c-listing-ps.txt

34 http://walden-family.com/impcode/
d-concordance.pdf

35 http://walden-family.com/impcode/
detect-interrupt-bugs.pdf

36 [Midas] http://walden-family.com/impcode/
midas516.txt

37 [Ratfor] Kernighan, B. and Plauger, P., Software Tools,
Addison-Wesley, 1976.

38 [C preprocessor] http: //gcc.gnu.org/onlinedocs/
cpp/

39 [TpX] Donald Knuth, The TgXbook, Addison-Wesley,
1986, particularly chapter 20.

40 [TEX] Victor Eijkhout, TEX by Topic, Addison-Wesley,
1991, particularly chapters 11-14, http://mirror.ctan.
org/info/texbytopic

41 [TgX] Donald Knuth, Computers & Typesetting, Vol-
ume B, TEX: The Program, Addison-Wesley, 1986.

42 [TpX] Donald E. Knuth, Digital Typography, Center
for the Study of Language and Information, Stanford
University, 1999.

David Walden

TUGDboat, Volume 35 (2014), No. 1

43 [TEX] http:/ /mirror.ctan.org/macros/latex209/
contrib/biblist/biblist.pdf

44 [TEX] http://tug.org/TUGboat /tb25-2/
tb81lwalden.pdf

45 [TEX] http://wuw.luatex.org/

46 [TpX] Donald E. Knuth, Literate Programming,
http://literateprogramming.com/knuthweb.pdf

4" Email of December 5, 2013, from Karl Berry.

48 Private communication, January 11, 2014; the foot-
notes in the quotation are from the author of the present
paper, not from Knuth.

49D.V. Schorre, META-II: A Syntax-oriented Compiler
Writing Language, D. V. Schorre, Proceedings of the ACM,
19th ACM National Conference, ACM, New York, 1964,
http://ibm-1401.info/Meta-II-schorre.pdf

50 Edgar T. Irons, A syntax-directed compiler for ALGOL
60, Communications of the ACM, vol. 4, 1961, pp. 51—
55; Edgar T. Irons, The structure and use of a syntax-
directed compiler, Annual Review of Automatic Program-
ming 3, 1962, pp. 207-227.

! http://walden—family.com/4prim/

52 [M4] http://www.gnu.org/software/mé/manual/

53 The full table is at http://walden-family.com/
4prim/archive/issues-1list.htm

54 [M4] http://en.wikipedia.org/wiki/

M4_ (computer_language)

55 While m4 was originally developed by Brian Kernighan
and Dennis Ritchie in 1977 and released as part of AT&T
Unix, the GNU version mentioned here was a complete
rewrite by René Seindal with continuing updates by many
others. The GNU m4 manual’s history section'® has a good
bit of additional history.

56 http://tug.org/interviews/

57 Martin Richards, Christopher Strachey and the Cam-
bridge CPL Compiler, Higher-Order and Symbolic Com-
putation (a special Christopher Strachey memorial issue),
13, 2000, pp. 85-88.

58 Donald E. Knuth, Companion to the Selected Papers
of Donald Knuth, Center for the Study of Language and
Information, Stanford University, 2012.

9 [TEX|] Stephan von Bechtolsheim, TgX in Practice,
Volume II1I: Tokens, Macros, Springer-Verlag, 1993.

50 Donald E. Knuth, Selected Papers on Computer Lan-
guages, Center for the Study of Language and Informa-
tion, Stanford University, 2003.

51 Tim Hart at MIT added a macro capability to Lisp in
1963. Macros in Warren Teitelman’s BBN Lisp, which I
used, were perhaps more well developed. In some sense
the original Lisp interpreter functioned a bit like a macro
processor.

¢ David Walden
http://walden-family.com

TUGDboat, Volume 35 (2014), No. 1

Eutypon 30-31, October 2013

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

YIANNIS MAMATS, Books made with love and pride;
pp.1-9

The author is one of the few former craftsmen print-
ers of Greece who did not quit the book world after
the abrupt introduction of photocomposition in the early
1980s. On the contrary, he continued to work as an editor,
trying to teach typographic sesthetics to younger genera-
tions. He has more than 1,600 books to his credit, most
of which came from the publisher Gutenberg. This arti-
cle is a confessional outpouring by him, with comments
on the past and current situation in Greek typography.
(Article in Greek with English abstract.)

PHILIP TAYLOR, Cataloguing the Greek manuscripts
of the Lambeth Palace Library: An exercise in
transforming Excel into PDF via XML using (Plain)
XATEX; pp. 11-28

Work is in progress to prepare an analytical cat-
alogue of the Greek manuscripts held in the Lambeth
Palace Library. The catalogue will be published online in
downloadable PDF format and (at a later stage) in print,
using a single set of source documents marked up in the
extensible markup language XML. This paper discusses
the various stages through which the documents pass,
starting as Excel spreadsheets and ending up both in
Adobe Portable Document Format (PDF) and as Text
Encoding Initiative (TEI)-compliant XML. (Article in
English.)

APOSTOLOS SYROPOULOS, A short introduction to
MathML; pp. 29-49

MathML is now the de facto standard for the pre-
sentation of mathematical formulas on the Internet. In-
deed, with the introduction of HTML5, which integrates
MathML while replacing HTML4 and XHTML, it becomes
obvious that some knowledge of MathML is almost es-
sential for anyone interested in presenting mathematical
content online. (Article in Greek with English abstract.)

ToaNNIS DIMAKOS, A brief introduction to ShareXTEX;
pp-51-58

A brief introduction to sharelatex.com, a site offer-
ing online editing and compilation of I#TEX files. Share-
IMTEX allows users to access and process their M TEX files
via their browser without the necessity of having a local
IMTEX installation. It also allows the online sharing and
cooperation between users of the same file(s). (Article
in Greek with English abstract.)

DimviTrios FinippoU, TEXniques: Hanging characters;
pp- 59-62

As explained in this short note, character protru-
sion — particularly protrusion of accents in front of Greek
capital letters—can be done via \llap, microtype or
with the use of appropriately designed fonts. (Article in
Greek.)

111

DimiTrios FiLippoU, Book presentations; pp. 63—64

A short appraisal of two books: (i) M.R.C. van
Dongen, ITEX and Friends, Springer, Berlin Heidelberg
2012; and (ii) Victor Eijkhout, The Computer Science of
TEX and ETEX, Lulu (Victor Eijkhout) 2012. (Article in
Greek.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

Die TgXnische Komddie 1/2014

Die TgXnische Komddie is the journal of DANTE e. V.,
the German-language TEX user group (http://www.
dante.de). [Non-technical items are omitted.]

DoMiNIK WASSENHOFEN, Explizite Positionierung in
ETEX [Explicit positioning in BTEX]; pp.17-19

Absolute text positioning with the textpos and
grid-system packages.

UWE ZIEGENHAGEN, Schneller » TEXen« mit
Tastenkiirzeln [Faster “TEXing” using shortcut
expanders|; pp.20-25

“Shortcut Expanders”, sometimes also called “Text
Expanders”, are software tools that allow the user to
define keyboard shortcuts for often-used pieces of text or
source code.

THoMAs HiLARIUS MEYER, Honigetiketten fiir die
Schulimkerei [Creating honey jar labels for a school’s
beekeeping]; pp.26-30

This article shows how ITEX can be used to create
bilingual labels.

HEIKO OBERDIEK, Durchstreichen einer Tabellenzelle
[Striking through table cells]; pp.31-32

This article shows an example that uses the zref
and savepos packages to strike through table cells and
to keep the position of the cell.

HERBERT Voss, Rechenoperationen mit LuaTEX
[Calculations with LuaTgX]; p.33

Usually ITEX is not the tool of choice when it comes
to doing more complex calculations. With LuaTEX this
has fundamentally changed.

HERBERT Voss, LuaTEX und pgfplots [LuaTgEX and
pgfplots|; pp.34-35

¥TEX’s computing functions cannot dramatically
improve with the upcoming 13fp package from KTEX3.
With LuaTgEX the whole computing effort can be “out-
sourced”;, with KTEX only being used to display the
internal or external data.

[Received from Herbert VoR.]

112

%@’ The Treasure Chest

This is a list of selected new packages posted to CTAN
(http://ctan.org) from December 2013 through
March 2014, with descriptions based on the an-
nouncements and edited for extreme brevity.

Entries are listed alphabetically within CTAN
directories. A few entries which the editors subjec-
tively believe to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

o Karl Berry
http://tug.org/ctan.html

fonts
lobster2 in fonts
Family of script fonts.
*zlmtt in fonts
Latin Modern Typewriter with all features.
graphics

aobs-tikz in graphics/pgf/contrib
Overlay picture elements in Beamer.
pgf-pie in graphics/pgf/contrib
Draw pie charts with TikZ.
pgf-umlcd in graphics/pgf/contrib
Draw UML class diagrams with TikZ.
pst-intersection in graphics/pstricks/contrib
Compute intersections between PostScript paths or
Bézier curves using the Bézier clipping algorithm.
pst-ovl in graphics/pstricks/contrib
Overlay macros for PSTricks.
repere in graphics/metapost/contrib/macros
MetaPost macros for drawing grids, vectors,
functions, statistical diagrams, and more.
rulercompass in graphics/pgf/contrib
Draw straight-edge and compass diagrams in TikZ.
tikz-opm in graphics/pgf/contrib
Draw Object—Process Methodology (OPM) diagrams.

indexing

zhmakeindex in macros/latex/contrib

Enhanced makeindex for Unicode and Chinese sorting.

TUGDboat, Volume 35 (2014), No. 1

macros/latex/contrib

cnbwp in macros/latex/contrib
Format working papers of the Czech National Bank.
cv4tw in macros/latex/contrib
CV class supporting assets, social networks, etc.
dccpaper in macros/latex/contrib
Typeset papers for the International Journal of
Digital Curation.
graphicxbox in macros/latex/contrib
Use a graphic as a box background.
koma-script-obsolete in macros/latex/contrib
Obsolete and deprecated packages that are no longer
part of KOMA-Script.
perfectcut in macros/latex/contrib
Brackets with size determined by nesting.

* pkgloader in macros/latex/contrib

Address package conflicts in a general way. (See
article in this issue.)
refenums in macros/latex/contrib
Referenceable enumerated items.
rubik in macros/latex/contrib
Typeset Rubik cube notation via TikZ.
scanpages in macros/latex/contrib
Import and embellish scanned documents.
sr-vorl in macros/latex/contrib
Template for books at Springer Gabler, Vieweg, and
Springer Research.
tabstackengine in macros/latex/contrib
Allowing tabbed stacking with stackengine.
vgrid in macros/latex/contrib
Overlays a vertical grid on the page.

macros/latex/contrib/beamer-contrib

themes/detlev-cm in m/1/c/beamer-contrib
Originally for the University of Leeds.

macros/latex/contrib/biblatex-contrib

biblatex-manuscript-philology in m/1/c/b-c
Manage classical manuscripts with BIBIATEX.

support

convbkmk in support

Correct (u)pIATEX PDF bookmarks.
copac-clean in support

Snobol program to edit Copac/BIBTEX records.
splint in support

Write LALR(1) parsers in TEX using bison and flex.

(See article in this issue.)
texfot in support

Attempt to reduce online output from (I#)TEX to

interesting messages.

info
Practical_LaTeX in info/examples

Example files for the book Practical I'TEX.

fonts/lobster2

systems

yandy in systems/win32
Y&Y TEX, released under the GNU GPL.

TUGboat, Volume 35 (2014), No. 1

Book reviews: IATEX for complete novices
and Using BTEX to Write a PhD Thesis,
by Nicola Talbot

Boris Veytsman

Nicola L. C. Talbot, IMTEX for complete novices.
Dickimaw Books, 2012, x4279 pp. Paperback,
GB£12.99. ISBN 978-1-909440-00-5.

Nicola L. C. Talbot, Using IMTEX to write a
PhD thesis. Dickimaw Books, 2013, x+148 pp.
Paperback, GB£9.99. ISBN 978-1-909440-02-9.

These two books by Nicola Talbot are actually vol-
umes 1 and 2 in her Dickimaw IATEX Series; however,
the other volumes are being revised at the time of
writing, so this review deals only with these two.

Dickimaw Books is an independent publishing
house created and owned by Nicola Talbot herself;
besides this INTEX series it has published crime fiction
and children’s books (including a fairy tale based
on Vladimir Propp’s structural theory). Both IXTEX
books are available as paperbacks (with a discount for
TUG and UK-TUG members), or can be downloaded
for free from the Dickimaw Books web site (http://
www.dickimaw-books. com), licensed under the GNU
FDL. The electronic versions provide helpful internal
and external hyperlinks.

As its title suggests, the first volume is intended
for beginners. There are many books for new TEX
users today. The number of free (as in free speech)
ones is smaller: I can recall only Oetiker’s great
“The not so short introduction to BTEX 2¢”, now
included in the major TEX distributions as the Ishort
package. What distinguishes Talbot’s book is its firm
grasp of modern TEX customs including the modes of
communication between TEX users. The book sends
the reader to the relevant sections of the UK FAQ
for detailed information on the topics discussed, it
explains how to ask questions on Stack Exchange and
TEX community forums. Another sign of modernity
is that the book effectively drops the venerable DVI

113

output format; the author merely mentions it in
a short paragraph basically saying, “people do not
do this anymore” and then discusses only the PDF
output. I think this is the right decision, at least
for “complete novices”. On the other hand, the book
includes some topics traditionally considered out of
scope for beginners, such as the use of fonts other
than Computer Modern. Modern TEX installations
have a large number of high quality fonts with very
good transparent TEX support, so this topic may
now be considered appropriate for novices. On the
other hand, the author wisely does not discuss the
further possibilities in this area provided by XHIEX
or LuaTgX.

The tradition of active use of TEX has resulted in
the fact that almost any book for beginners teaches
how to define and redefine commands and environ-
ments; any TEX user is seen as an (at least budding)
TEX programmer. Talbot’s book is not an exception:
it has two good sections on TEX programming with
the proper warning about the danger of redefining
macros without understanding them.

The author does not try to cover the multitude
of TEX-aware editors and integrated environments.
Instead she introduces TEXworks as the preferred
work environment and latexmk as the compilation
wrapper. Again, this seems to be a very good deci-
sion: too many choices are good for an experienced
user, but can be intimidating for a novice.

Another decision is slightly unusual. While most
books for beginners start with the standard classes
(article, book, report, letter — it seems nobody uses
slides, however), this book is based on the KOMA-
script bundle. I agree that the base classes are now
rather long in the tooth, so it makes sense to teach
novices some newer and arguably typographically
better stuff. Thus the author’s experiment seems to
be a very promising one. On the other hand, unlike
base I‘TEX, KOMA is not frozen, which may require
updates of the book after changes in the package.

The book is well written and has many carefully
chosen exercises. It is a very good candidate for a
first B'TEX book.

Of course, this does not mean the book has no
flaws. I am not comfortable with the fact that the
user’s first TEX document appears only on page 32;
the previous chapters contain definitions of terms
and installation instructions. Unfortunately students
today have become used to instant gratification, so
some of them may just stop reading much earlier
than this if not provided with a hands-on experi-
ence. I would suggest starting with the “Hello, world”
document and put the definitions and installation
instructions later —or in an appendix.

Book reviews: IATEX for complete novices and Using INTEX to Write a PhD Thesis, by Nicola Talbot

114

Also, independent publishing means the absence
of a professional editor, who might question or correct
an author’s (rare) mistakes. For example, TEX glue
is not called such because in the days of manual
typesetting the blocks were glued in place; rather,
it is a metaphor invented by DEK. (I doubt it is
practical to glue reusable type, and anyway, TEX
glue is between the boxes rather than under them.)
The author’s advice to substitute displaymath for
\[...\] is strange: displaymath is defined by the
kernel basically as \[...\]. On the other hand, the
advice not to use the ugly eqnarray is right on the
point. Mistakes are evidently rare and don’t touch
on essential points, so the book can be recommended
for studying ETEX.

The second volume is intended for more ad-
vanced users. It covers advanced formatting (listings,
verbatim environments), splitting the document into
separate files, theorem-like environments, creation
of bibliography, indices and glossaries, etc. Besides
latexmk, described in the first volume, this book in-
troduces arara as an alternative compilation wrapper.
In addition to IMTEX and typographic information, it
contains some general advice for graduate students,
which I find very good and well thought out. For
example, the author notes that a skeleton thesis with
the chapters in place is a great help against writer’s
block, giving one a sense of achievement early in the
process. The book provides sound advice on many
other topics, from the way to format listings of com-
puter code to the proper style of reacting to your
advisor’s comments. Here is the discussion of the
well-known requirement to double space the thesis:

Many universities still require double-spaced,
single-sided documents with wide margins.
Double-spacing is by and large looked down
on in the world of typesetting, but this re-
quirement for a PhD thesis has nothing to
do with aesthetics or readability. In England
the purpose of the PhD viva is to defend your
work (I gather this is not the case in some
other countries, where the viva is more infor-
mal, and the decision to pass or fail you has
already been made before your viva.). Before
your viva, paper copies of your thesis are sent
to your examiners. The double spacing and
wide margins provide the examiners room to
write the comments and criticisms they wish
to raise during the viva, as well as any typo-
graphical corrections. Whilst they could write
these comments on a separate piece of paper,
cross-referencing the page in the thesis, it is
more efficient for the comments to actually be
on the relevant page of the thesis. That way,

Boris Veytsman

TUGDboat, Volume 35 (2014), No. 1

as they go through the manuscript during your
viva, they can easily see the comments, ques-
tions or criticisms they wish to raise alongside
the corresponding text. If you present them
with a single-spaced document with narrow
margins, you are effectively telling them that
you don’t want them to criticise your work!

To tell the truth, I miss the exercises that were
an important part of the first volume. On the other
hand, one may argue that a stressed graduate student
may not find the time to do the exercises.

A rather unfortunate omission in this book is a
guide of the thesis classes available on CTAN. Grad-
uate school administrations are (in)famous for strict
(and often insensible) requirements for the way a
thesis should be typeset, so KOMA classes might not
do the job. The author mentions that some universi-
ties provide IATEX packages and templates for their
students. Such packages, of course, should be used if
available. However, other universities do not publish
“official” IMTEX styles. Nevertheless in many cases
one can find a CTAN package that gives a passable
alternative. Thus an annotated list of such packages
would help a struggling student (cf. “A university
thesis class” by Peter Flynn, TUGboat 33:2.)

Both books are nicely typeset with Antykwa
Toruniska as the main serif font and Libris ADF as
the sans serif one. This is again a pleasant diversion
from the too-uniform look and feel of many KTEX
books. I am not too happy with the way the footnotes
are numbered, with the section number used as a
prefix (e.g.*?). Unlike equations, footnotes are not
usually referenced from other parts of the book, so
this prefix looks a bit mannered. However, this is
just about my only issue with the typesetting. The
books have functional margins with the notes and
signs; the text is pleasant to read. There are detailed
bibliographies and well constructed indices.

These books are a good addition to any TEX
user’s library; I wonder whether the author would be
willing to put them on CTAN and to include them
in the TEX distributions.

It will be interesting to see the next volumes in
the series published. If they are written as well as
these two, the world of TEX textbooks and reference
books will have more welcome additions.

¢ Boris Veytsman

Systems Biology School and
Computational Materials
Science Center, MS 6A2,

George Mason University,

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

TUGDboat, Volume 35 (2014), No. 1

Book review: Dynamic Documents with R
and knitr, by Yihui Xie

Boris Veytsman
Yihui Xie, Dynamic Documents with R and knitr.

Chapman & Hall/CRC Press, 2013, 190+xxvi pp.
Paperback, US$59.95. ISBN 978-1482203530.

The R Series

Dynamic Documents
with R and knitr

Yihui Xie

There are several reasons why this book might be of
interest to a TEX user. First, A TEX has a prominent
place in the book. Second, the book describes a very
interesting offshoot of literate programming, a topic
traditionally popular in the TEX community. Third,
since a number of TEX users work with data analysis
and statistics, R could be a useful tool for them.
Since some TUGDboat readers are likely not fa-
miliar with R, T would like to start this review with
a short description of the software. R [1] is a free
implementation of the S language (sometimes R is
called GNU S). The latter is a language for statis-
tical computations created at Bell Labs during its
“Golden Age” of computing, when C, awk, Unix, et
al. were developed at this famous institution. S is
very convenient for a data exploration. For example,
consider the dataset iris (included in the base R dis-
tribution) containing measurements of 150 flowers of
Iris setosa, Iris versicolor and Iris virginica [2]. We
may inquire whether petal length and petal width of
irises are related. To this end we can plot the data:

plot(Petal.Length ™ Petal.Width,
data = iris, xlab = "Petal Width, cm”,
ylab = "Petal Length, cm")

115
~ 9 o
OOO
o @]
— (o]]
© o 8 908 E
o 80 gogo
g © googef Oe
° 25985
< ofo
2 8 Oé ©
S 7 g8%o
3 0%,
ks 3
S o o
" gogo
O
8f 58
B

Petal Width, cm
This plot shows an almost linear dependence between
the parameters. We can try a linear fit for these data:

model <- lm(Petal.Length ~ Petal.Width,
data = iris)

model$coefficients
(Intercept) Petal.Width
1.084 2.230

summary (model) $r. squared
[1] 0.9271

The large value of R? = 0.9271 indicates the good
quality of the fit. Of course we can replot the data
together with the prediction of the linear model:

plot(Petal.Length = Petal.Width,
data = iris, xlab = "Petal Width, cm”,
ylab = "Petal Length, cm”)
abline(model)

Petal Length, cm

0.5 1.0 1.5 2.0 2.5

Petal Width, cm

Book review: Dynamic Documents with R and knitr, by Yihui Xie

116

We can also study how petal length depends on
the species of iris:

boxplot(Petal.Length ~ Species,
data = iris, xlab = "Species”,
ylab = "Petal Length, cm")

~ o _
©
[t ' :
o : :
5 —
(o))
c < -
[0} H
-
© S
e o - @]
U N
E
- - O
\ \ \
setosa versicolor virginica
Species

This plot shows a significant difference between the
petal lengths of the different species of iris. We could
further investigate this difference using appropriate
statistical tests, but this is out of scope for this very
short introduction. Instead we refer the reader to
the many books on S and R (for example, [3,4]).
While interactive computations and data explo-
ration are indispensable in such research, one often
needs a permanent record that can be stored and
shared with other people. A saved transcript of a
computer session (or output of a batch job) provides
such a record, but in a rather imperfect way. From
the transcript one can see what we asked the com-
puter and what the computer replied, but the most
important parts of the exploration, namely, why did
we ask these questions, which hypotheses were tested,
and what our conclusions were, remain outside this
record. We can add such information in comments to
the R code, but it is awkward to express a complex
discussion, often heavy with mathematics, using only
an equivalent of an old-fashioned typewriter. This
is why many commercial interactive computation
systems offer so-called “notebook” interfaces, where
calculations are interlaced with the more or less well
typeset text and figures. Unfortunately these inter-
faces, being proprietary, cannot be easily integrated
with scientific publishing software, and it takes a con-
siderable effort to translate these “notebooks” into
papers and reports. The power of free software is the
possibility to combine different building blocks into
something new, often not foreseen by their original

Boris Veytsman

TUGDboat, Volume 35 (2014), No. 1

authors. Thus an idea to combine a free statistical
engine and a free typesetting engine is a natural one.

This idea is close to that of literate program-
ming [5]. We have a master document which de-
scribes our investigation and contains blocks of text,
possibly with equations and figures, and blocks of
computational code, that can also generate text,
equations and figures. As in the conventional lit-
erate programming paradigm, this document can
be weaved or tangled. Weaving creates a typeset
document, while tangling extracts the program (al-
most) free of comments. However, there is an im-
portant difference between the conventional literate
programming and the literate programming of data
exploration. In the conventional case we are usually
interested in the program itself, which is supposed to
run many times with different inputs giving different
results. For the data exploration the input is usually
as important as the program. In most cases we want
to run the program just once and show the results.
Therefore weaving becomes a more complex process,
involving running the tangled program and inserting
the results in the appropriate places of the typeset
document. On the other hand, tangling by itself is
used more rarely (but is still useful in some cases, for
example, to typeset this review, as described below).

The first (and a very successful) attempt to
apply the ideas of literate programming to S was the
package Sweave [6]. Uwe Ziegenhagen introduced
the package to the TEX community in his brilliant
talk at TUG 2010 [7]. In Sweave we write a file
source. rnw, which looks like a TEX file, but includes
special fragments between the markers <<...>> and
@ (this notation is borrowed from the Noweb literate
programming system [8]). For example, the box plot
above can be produced by the following fragment of
an .rnw file:

% Boxplot in Sweave syntax
<<iris-boxplot, fig=TRUE>>=
boxplot (Petal.Length = Species,
data=iris,
xlab="Species"”,
ylab="Petal Length, cm")
@

We also can “inline” R code using the command
\Sexpr, for example,

The large value of
$R"2=\Sexpr{summary (model) $r.squared}$
indicates the good quality of the fit.

Note the different usage of $ inside \Sexpr (a part of
R code) and outside it (TEX math mode delimiter).

When we feed the file source.rnw to Sweave, it
runs the R code in the chunks, and replaces these

TUGDboat, Volume 35 (2014), No. 1

~
© setosa i++
© A versicolor L + o+
+ virginica Lt i $i+++
+
e o koofFE
° BpBAR
£ Y
% ¥ ﬁgﬁ N
- A A
g A
£ o - A
"7 8oge
[¢]
8E g8
- %0

Petal Width, cm

Figure 1: Petal widths and petal lengths for irises of
different species

chunks and \Sexpr macros by the properly format-
ted results and/or the code itself. This produces a
“weaved” file source. tex. We can control the process
by the options inside <<...>>. For example, setting
there echo=FALSE, we suppress the “echoing” of the
source code. We can wrap a fragment into a figure
environment and get a result like the one in Figure 1.
Alternatively we can use R functions that output
IMTEX code and, setting the proper options, get a
table like Table 1.

These figures and tables, as well as inline ex-
pressions, can be configured to hide the code, for
example for a formal publication. One can write
a paper as an .rnw file and submit a PDF or TEX
file to a journal without copying and pasting the
results of the calculations, eliminating the risk of
introducing new errors and typos. The versatility
of this approach allows one to create quite varied
publications, from a conference poster to a book. On
the other hand, if the user does not suppress the
code, a nicely formatted and reproducible lab report
is produced.

Since Sweave was written, many packages have
been devised to extend its capabilities and to add
new features to it. At some point the user community
felt the need for a refactoring of Sweave with better
integration of the new features and a more modular
design. The package knitr [9], which lists Yihui
Xie as one of its principal authors, provides such
refactoring. The name “knitr” is a play on “Sweave”.
The knitr functions performing weaving and tangling
are called “knit” and “purl” correspondingly.

117

Table 1: Linear model for iris petal length and width

Parameter Est. o t p-value
Intercept 1.08 0.0730 14.8 4.04 x 1073
Slope 2.23 0.0514 434 4.68 x 10786

An important feature of knitr is the closeness
of its syntax to that of Sweave. Up to version 1.0
knitr supported full compatibility with Sweave, but
even today most Sweave code runs without problems
in knitr (the function Sweave2knitr can help in the
remaining cases). For example, the code producing
the iris boxplot above becomes the following in knitr:

% Boxplot in knitr syntax
<<iris-boxplot>>=
boxplot (Petal.Length ™ Species,
data=iris,
xlab="Species”,
ylab="Petal Length, cm")
@

The only difference between this code and Sweave
code is the absence of fig=TRUE option, which is not
needed for the new package. However, the Sweave
code above still works in knitr. This makes the switch
to the new package rather easy.

It should be noted that some of the features of
knitr discussed below are also available in Sweave
when using add-on packages; knitr offers them “out
of the box” and better integrates them.

For example, knitr has two dozen or so different
graphics formats (or “devices”) to save the graphics.
One very interesting device is tikz, which can be used
to add TEX annotations to the plots.

Another useful feature of knitr is the option of
caching the computation results. R calculations can
often take a significant time. The full recompilation
of all chunks after a mere wording change in the
TEX part may be too slow for a user. This problem
is addressed by the options cache and dependson
in knitr. They instruct R to recalculate only the
modified chunks and the chunks that depend on them
(a clever hashing of the code is used to determine
whether a chunk was modified between the runs).

The typesetting of the input code in knitr is
closer to the requirements of literate programming
than the simple Sweave output: knitr can recognize
R language elements like keywords, comments, vari-
ables, strings etc., and highlight them according to
user’s specifications.

While these features are nice, the real selling
points of knitr are its flexibility and modulariza-
tion. The package has many options for fine-tuning
the output. The modular design of the package

Book review: Dynamic Documents with R and knitr, by Yihui Xie

118

makes adding new options just a matter of writing a
new “hook” (an R function called when processing
a chunk). Since the chunk headers in knitr, unlike
Sweave, are evaluated as R expressions, one can write
quite sophisticated “hooks”.

The modularity of knitr allowed the authors to
introduce new typesetting engines. Besides KTEX,
the package can work with other markup languages,
e.g. HTML, Markdown and reStructured Text.

The flexibility and ease of customization of knitr
are especially useful for book publishing. Yihui Xie
lists several books created with knitr. Barbara Bee-
ton [10] reports a positive experience with AMS pub-
lishing such books.

This review turned out to be a test of the flexibil-
ity of knitr. At this point an astute reader may have
already guessed that it was written as an .rnw file.
However, that is not the full story. TUGboat reviews
are published in the journal, and the HTML versions
are posted on the web at http://www. tug.org/books.
As a matter of policy, the HTML version is automat-
ically generated from the same source as the hard
copy. This created a certain challenge for this review.
First, the hard copy uses plots in PDF format, while
the Web version uses them in PNG format. Sec-
ond, due to the differences in column widths R code
should be formatted differently for the print and the
Web versions. Third, code highlighting of R chunks
was done using font weights for the print version and
using colors for the Web version. The following work
flow was used: (1) The review was written as an
.row file. (2) A .tex file was knit and an .R file was
purled from the .rnw source. (3) The .tex file was
copy-edited by the TUGboat editors. (4) A .pdf
output for the journal was produced from this . tex
file. (5) A special .Rhtml file was produced from
the same .tex file with tex4ht. This file included
commands that read the .R program and inserted
the code chunks in the proper positions. (6) This
.Rhtml file was knit again to produce HTML output
and the images for the Web. All this but the actual
writing and copy-editing was done by scripts without
human intervention.

The package knitr is being actively developed,
and many new features are being added. I would
like to mention a feature that I miss in the package.
The default graphics device, PDF, uses fonts different
from the fonts of the main document, and does not
allow TEX on the plots. While the tikz device is free
of this limitation, it is very slow and strains TEX
memory capacity when producing large plots. I think
the trick used by the Gnuplot pslatex terminal [11]
might be very useful. This terminal creates two files:
a TEX file with the textual material put in the proper

Boris Veytsman

TUGDboat, Volume 35 (2014), No. 1

places using the picture environment, and a graphics
file with the graphical material, included through the
\includegraphics command. This terminal is much
faster than tikz and more flexible than pdf. Moreover,
since the TEX file is evaluated in the context of the
main document, one can include \ref and other
IMTEX commands in the textual part.

To use knitr on the most basic level it is enough
to know two simple rules and one option: (1) put R
code between <<...>> and @; (2) use \Sexpr{code}
for inline R code; (3) use echo=FALSE to suppress
echoing the input if necessary. However, since knitr
has many options and is highly customizable, one
might want to learn more about it to use it efficiently.
This justifies the existence of books like the one by
Yihui Xie. While there are many free sources of
information about knitr, including its manual and
the author’s site (http://yihui.name/knitr), there
are important reasons why a user would consider
investing about $60 in the book.

The book provides a systematic description of
the package, including its concepts, design principles,
and philosophy. It also has many examples, well
thought out advice, and useful tips and tricks.

Here is just one of the techniques I learned from
the book. There are two ways of presenting calcula-
tion results: using the option echo=TRUE (default) we
typeset R code, while using the option echo=FALSE
we suppress it. The inclusion of the code has both
advantages and disadvantages: we tell the reader
more with the code included, but we risk overwhelm-
ing and confusing the audience with too much detail.
One way to solve this problem is to put only the
results in the main text, and show the code itself
in an appendix. Of course we do not want to copy
and paste the same code twice; a computer can take
care of this much better. The book describes how
to make this automatic by putting in the appendix
these lines:

% List the code of all chunks
<<ref.label=all_labels(), eval=F, echo=T>>=

@

There are many other useful tips on the pages of this
book. Some of them can be found at http://yihui.
name/knitr/ and http://tex.stackexchange.com/.
Having all these tips collected in a book saves time,
however, and reading the book helps to learn knitr
and the general interaction of TEX and R.

The book is well written. It has introductory
material useful for novices as well as advice for more
seasoned users, all explained in conversational En-
glish without unnecessary technical jargon. The
book describes several integrated work environments
(RStudio, Ly X, Emacs/ESS) and the interaction of

TUGDboat, Volume 35 (2014), No. 1

knitr with popular ITEX packages such as beamer
and listings. It discusses in depth package options for
formatting input and output, graphics, caching, code
reuse, cross-referencing and other purposes. Besides
“traditional” applications such as publishing books
and reports, the author describes the use of knitr
for writing blog entries, student homework, etc. The
book covers inclusion of fragments of code written
in languages other than R (Python, Perl, C/C++,
etc.), dynamic plots with the animate WTEX package,
macro preprocessing and many other topics.

The book itself is written, of course, in knitr
and IMTEX (with LyX as the integrated environment).
It is well typeset and nicely printed. Regrettably,
I find its index rather inadequate: it has only two
pages and omits many key concepts. A book like
this should at a minimum have an alphabetic list of
all package options. However, other than this, I like
the way the book is written and published.

While I have been using Sweave and then knitr
for several years, I still learned many new useful
things from the book. Thus I think it is worth
investing money and reading time.

I think the book deserves a place on the book-
shelves of both new and experienced R and TEX
users.

References

[1] R Core Team. R: A Language and
Environment for Statistical Computing.
R Foundation for Statistical Computing,
Vienna, Austria, 2013. ISBN 3-900051-07-0.

[2] Edgar Anderson. The irises of the Gaspe
Peninsula. Bulletin of the American Iris
Society, 59:2-5, 1935.

[3] Peter Dalgaard. Introductory Statistics
with R. Statistics and Computing. Springer,
New York, second edition, 2008.

[4] W. N. Venables and B. D. Ripley. Modern
Applied Statistics with S. Statistics and
Computing. Springer, New York, fourth
edition, 2010.

[5] Donald Ervin Knuth. Literate Programming.
Number 27 in CSLI lecture notes. Center

for the Study of Language and Information,
Stanford, CA, 1992.

119

[6] Friedrich Leisch. Sweave: Dynamic generation
of statistical reports using literate data
analysis. In Wolfgang Héardle and Bernd
Ronz, editors, Compstat 2002 — Proceedings
in Computational Statistics, pages 575-580.
Physica Verlag, Heidelberg, 2002. ISBN
3-7908-1517-9.

[7] Uwe Ziegenhagen. Dynamic reporting with
R/Sweave and BIEX. TUGboat, 31(2):189-192,
2010. http://tug.org/TUGboat/tb31-2/
tb98ziegenhagen. pdf.

[8] Norman Ramsey. Literate programming
simplified. IEEE Software, 11(5):97-105, 1994.
http://www.cs.tufts.edu/~nr/noweb/.

[9] Alastair Andrew, Alex Zvoleff, Brian Diggs,
Cassio Pereira, Hadley Wickham, Heewon
Jeon, Jeff Arnold, Jeremy Stephens, Jim
Hester, Joe Cheng, Jonathan Keane, J.J.
Allaire, Johan Toloe, Kohske Takahashi,
Michel Kuhlmann, Nacho Caballero,

Nick Salkowski, Noam Ross, Ramnath
Vaidyanathan, Richard Cotton, Romain
Francois, Sietse Brouwer, Simon de Bernard,
Taiyun Wei, Thibaut Lamadon, Tom
Torsney-Weir, Trevor Davis, Weicheng

Zhu, Wush Wu, and Yihui Xie. knitr: A
general-purpose package for dynamic report
generation in R, 2013. R package version 1.5.

[10] Barbara Beeton. Private communication, 2014.

[11] Philipp K. Janert. Gnuplot in Action.
Understanding Data with Graphs. Manning
Publications Co., 2009.

¢ Boris Veytsman

Systems Biology School and
Computational Materials
Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: Dynamic Documents with R and knitr, by Yihui Xie

120

TUG financial statements for 2013
Karl Berry, TUG treasurer

The financial statements for 2013 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
http://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was down about 4% in
2013 compared to 2012; product sales were also down,
while contributions were substantially up. Services
income is a new category, reflecting TUG’s accept-
ing payments on behalf of font workshops and other
TEX-related projects. Interest and advertising in-
come were slightly down. Overall, 2013 income was
down 3%.

Cost of Goods Sold and Expenses highlights,
and the bottom line

Payroll, TUGboat, DVD production, postage, and
other office overhead continue to be the major ex-
pense items. All were nearly as budgeted; overall,
2013 expenses were up about 6% from 2012.

The “prior year adjustment” compensates for
estimates made in closing the books for the prior
year; in 2013 the total adjustment was positive: $194.

The bottom line for 2013 was positive: ~ $2,000.

Balance sheet highlights

TUG’s end-of-year asset total is down around $3,000
(2%) in 2013 compared to 2012.

The Committed Funds are administered by TUG
specifically for designated projects: IXTEX, CTAN,
the TEX development fund, and so forth. Incoming
donations have been allocated accordingly and are
disbursed as the projects progress (disbursements in
2013 substantially account for the overall lower asset
balance). TUG charges no overhead for administering
these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the cur-
rent year (and beyond). Most of this liability (the
2013 portion) was converted into regular Membership
Dues in January of 2013.

The payroll liabilities are for 2013 state and
federal taxes due January 15, 2013.

Summary

The membership fees remained unchanged in 2013;
the last increase was in 2010. TUG remains finan-
cially solid as we enter another year.

TUGDboat, Volume 35 (2014), No. 1

TUG12/31/2013 (vs 2012) Revenue, Expense

Jan - Dec 13 Jan - Dec 12
Ordinary Income/Expense
Income
Membership Dues 94,800 98,725
Product Sales 7,498 11,351
Contributions Income 9,126 6,821
Annual Conference 1,222
Interest Income 625 832
Advertising Income 410 490
Services Income 3,493
Total Income 115,952 119,441
Cost of Goods Sold
TUGboat Prod/Mailing 24,850 21,674
Software Production/Mailing 3,038 2,685
Postage/Delivery - Members 2,923 2,566
Lucida Sales Accrual B&H 2,875 4,835
Member Renewal 417 444
Total COGS 34,103 32,204
Gross Profit 81,849 87,237
Expense
Contributions made by TUG 3,324 2,000
Office Overhead 12,121 12,804
Payroll Exp 64,486 65,375
Interest Expense 94
Total Expense 80,025 80,179
Net Ordinary Income 1,824 7,058
Other Income
Prior year adjust 194 222
Total Other Income 194 222
Net Income 2,018 7,280

TUG 12/31/2013 (vs 2012) Balance Sheet

Dec 31,13 Dec 31, 12
ASSETS
Current Assets
Total Checking/Savings

186,696 187,506

Accounts Receivable 180 2,496
Total Current Assets 186,876 190,002

TOTAL ASSETS 186,876 190,002

LIABILITIES & EQUITY

Liabilities
Committed Funds 27,7112 31,384
TUG conference -250
Administrative Services 4,879
Deferred contributions 90
Prepaid member income 4,550 11,315
Payroll Liabilities 1,100 1,024
Total Current Liabilities 38,330 43,473
TOTAL LIABILITIES m m
Equity
Unrestricted 146,529 139,249
Net Income 2,017 7,280
Total Equity 148,546 146,529

TOTAL LIABILITIES & EQUITY 186,876 190,002

TUGDboat, Volume 35 (2014), No. 1

121

TUG
Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey
Center for Computing Sciences, Bowie, Maryland
CSTUG, Praha, Czech Republic

IBM Corporation, T'J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses, Center for
Communications Research, Princeton, New Jersey

Marquette University, Department of
Mathematics, Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,
New York, New York

Springer-Verlag Heidelberg, Heidelberg, Germany
StackExchange, New York City, New York

Stanford University, Computer Science Department,
Stanford, California

Stockholm University, Department of Mathematics,
Stockholm, Sweden

University College, Cork, Computer Centre,
Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Ontario, Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,
Blindern, Oslo, Norway

University of Wisconsin, Biostatistics & Medical
Informatics, Madison, Wisconsin

VTEX UAB, Vilnius, Lithuania

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you'd like to
be listed, please see that web page.

Aicart Martinez, Merce

Tarragona 102 4° 2¢

08015 Barcelona, Spain

+34 932267827

Email: m.aicart (at) ono.com

Web: http://www.edilatex.com
We provide, at reasonable low cost, INTEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281

Los Angeles, CA 90053

+1 213-617-8483

Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html
We are your macro specialists for TEX or IATEX fine
typography specs beyond those of the average IATEX
macro package. If you use X{ITEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and IATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a

TEX book.

Latchman, David

4113 Planz Road Apt. C

Bakersfield, CA 93309-5935

+1 518-951-8786

Email: david.latchman (at)

texnical-designs.com

Web: http://wuw.texnical-designs.com
IATEX consultant specializing in: the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs.

Call or email to discuss your project or visit my
website for further details.

122

Peter, Steve

295 N Bridge St.

Somerville, NJ 08876

+1 732 306-6309

Email: speter (at) mac.com
Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Shanmugam, R.

No.38/1 (New No.65), Veerapandian Nagar, Ist St.

Choolaimedu, Chennai-600094, Tamilnadu, India

491 9841061058

Email: rshanmugam92 (at) gmail.com
As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for nearly 20 years, and
handled various projects. I am a software consultant
with Master’s Degree. I have sound knowledge in TEX,
IATEX2e, XMLTEX, Quark, InDesign, XML, MathML,
eBooks, ePub, Mobi, iBooks, DTD, XSLT, XSL-FO,
Schema, ebooks, OeB, etc.

Sievers, Martin

Klaus-Kordel-Str. 8, 54296 Trier, Germany

+49 651 4936567-0

Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com
As a mathematician with ten years of typesetting
experience I offer TEX and IATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BIBTEX, biblatex) to typesetting your
math, tables or graphics — just contact me with
information on your project.

TUGboat, Volume 35 (2014), No. 1

Sofka, Michael

8 Providence St.

Albany, NY 12203

+1 518 331-3457

Email: michael.sofka (at) gmail.com
Skilled, personalized TEX and IATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,
newsletters, and theses in TEX and IATEX: Automated
document conversion; Programming in Perl, C, C++
and other languages; Writing and customizing macro
packages in TEX or IATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or IATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch Pl

Sterling, VA 20164

+1 703 915-2406

Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and IATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom IATEX packages, conversions and
much more. I have about eighteen years of experience
in TEX and three decades of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and

conducted several workshops on TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane

Mills River, NC 28759

+1 828 435-0525

Email: leeayoung (at) morrisbb.net

Web: http://www.thesiseditor.net
Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, IATEX
manuscripts for the Physical Review; career as
professional, published physicist.

TUGDboat, Volume 35 (2014), No. 1

123

Calendar
2014 Aug 4-8 Balisage: The Markup Conference,
Washington, DC. www.balisage.net
Apr 11-14 DANTE Friihjahrstagung Aug 10-14 SIGGRAPH 2014
h .)
(25t atI;lmversary of DANTE e.V.) Vancouver, British Columbia.
and 50" meeting, 52014 .siggraph.org
Universitdt Heidelberg, Germany. Aug 11 TUGboat 35:2, submission deadline
www.dante.de/events/dante2014 .html (TUG 2014 proceedings)
Apr 30— BancjloTEX 2014: . Sep 8—-9 “Forms and formats: Experimenting
May 4 22" BachoTX Conference, “What with print, 1695-1815”, Centre for the
can typography gain from electronic Study of the Book, Bodleian Library,
media?”, Bachotek, Poland. University of Oxford, UK.
www.gust . org.pl/bachotex/2014 www.bodleian.ox.ac.uk/csb/community
Jun 9= Rare Book School, University of Sep 813 8" International ConTEXt Meeting
Aug 1 Virginia, Charlottesville, Virginia. Bassenge, Belgium ’
Many onci-week ,COFlrseS on type, . meeting.contextgarden.net/2014
bookmaking, printing, and related topics.
www . rarebookschool . org/schedule Sep 14—-19 XML Sumrper S.chool7 St Edmund Hall,
. , Oxford University, Oxford, UK.
Jun 23-26 Book history workshop, Ecole de xmlsummerschool . com
I'institut d’histoire du livre, S S . D
Lyon, France. ihl.enssib.fr ep 16-19 ACM ymposium on Aocument
. . . Engineering, Fort Collins, Colorado.
Jul 2-4 International Society for the History and www.doceng2014. org
Theory of Intellectual Property (ISHTIP), Sep 17-91 A intion T b Tt tional
6" Annual Workshop, “The Instability of °p L ssoclation Lybograpiiique tnternationale
. (ATypl) annual conference,
Intellectual Property”. Uppsala, Sweden. o A
waw. ishtip.org/7p=596 Theme: “Point Counter Point”,
.) | ' ’ All . Barcelona, Spain. www.atypi.org
-12 Digital H ities 2014 i
Jul 8 igital Humanities 2014, Alliance o Sep 17-21 SHARP 2014, “Religions of the Book”,
Digital Humanities Organizations, . . .
. Society for the History of Authorship,
Lausanne, Switzerland. Readine & Publishi Ant Belei
dh2014.0rg, adho.org/conference cading UDUSLIng, Antwerp, belgluin,
www.sharpweb.org
Oct 3 TUGboat 35:3, submission deadline.
TUG 2014 Oct 3-5 Oak Knoll Fest XVIII, and
Mark Spencer Hotel, Portland, Oregon. Fine Press Book Association
Jul 27 Evening reception annual meeting, New Castle, Delaware.
Jul 28-30 The 35'® annual meeting of the www.oakknoll.com/fest
TEX Users Group. Nov 8-9 The Twelfth International Conference

Presentations covering the TEX world.

tug.org/tug2014
Jul 28 IATEX workshop (concurrent)

Jul 30— TypeCon 2014: “Capitolized”,

Aug 3 Washington, DC. typecon.com

Status as of 25 March 2014

on Books, Publishing, and Libraries,
“Disruptive Technologies and the
Evolution of Book Publishing

and Library Development”,

Simmons College, Boston, Massachusetts.
booksandpublishing.com/the-conference

For additional information on TUG-sponsored events listed here, contact the TUG office
(4+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.

Other calendars of typographic interest are linked from tug.org/calendar.html.

The 35t Annual Meeting of the TEX Users Group

July 28-30, 2014

Mark Spencer Hotel
Portland, Oregon, USA

http: //tug.org/tug2014 = tug20140@tug.org

April 15 —bursary application deadline

May 16 — presentation proposal deadline

May 23 — early bird registration deadline

June 6 — preprint submission deadline
June 30 — hotel reservation discount deadline
— (but book earlier!)

July 28-30 — conference

July 28 — concurrent IXTEX workshop
August 11 —deadline for final papers for proceedings

Sponsored by the TgX Users Group and DANTE e.V.

TUGBOAT Volume 35 (2014), No. 1

Introductory
3 Barbara Beeton / Editorial comments
* typography and TUGboat news
16 Jaime Gaspar / Does not suffice to run latex a finite number of times to get cross-references right
* simple counterexample
9 James Hunt / Making lists: A journey into unknown grammar
* prescriptions for correct usage of itemized, enumerated, definition lists
34 Ivan Pagnossin / Boxes and more boxes
* introduction to box concepts and usage in IATEX
2 Steve Peter / Ab epistulis
* what publishers want
91 Ludger Suarez—Burgoa / Scientific documents written by novice researchers
* 20 years of writing scientific documents, from the typewriter to a new IATEX class
79 Mari Voipio / Entry-level MetaPost 4: Artful lines
* line widths, joins, caps, dashes, arrows, default options, grids
Intermediate
112 Karl Berry / The treasure chest
e new CTAN packages, December 2013-March 2014
44 Massimiliano Dominici / An overview of Pandoc
* conversion from Markdown to many output formats, including IATEX
22 ITEX Project Team / NTEX3 news, issue 9
 Hiatus?; expl3 in the community; logo; recent activity; what can you do for IATEX3?
17 Linus Romer / Fetamont: An extended logo typeface
e the METAFONT logo in many variants, anchors and kerning classes in METAFONT, history
83 Frederik Schlupkothen / HTML to IATEX transformation
* introduces a mapping from HTML commands to INTEX, using several packages
27 Thomas Thurnherr / Introduction to presentations with beamer
« sequence of examples for making slides for presentations
36 Peter Wilson / Glisterings
* glyphs; long labels
31 Joseph Wright / The beamer class: Controlling overlays
* practical examples for revealing slides step by step
Intermediate Plus
61 Antoine Bossard and Takeyuki Nagao / ModernDvi: A high quality rendering and modern DVI viewer
e a multi-threading application available at the Windows Store
82 Hans Hagen / drawdot in MetaPost: A bug, a fix
* bug report from Knuth: drawdot should not draw an open dot
39 Michiel Helvensteijn / The pkgloader and 1t3graph packages: Toward simple and powerful
package management for INTEX
« addressing IATEX package conflicts in a general way, and general graph representation
5 Donald Knuth / The TEX tuneup of 2014
* the 2014 updates to TEX, METAFONT, etc.
51 Juan Montijano, Mario Pérez, Luis Randez and Juan Luis Varona / Numerical methods with Lual&TEX
» examples of mathematical computations and graphics eased by LuaTEX
Advanced
69 Hans Hagen / Selection in PDF viewers and a LuaTEX bug
« selection of text vs. display math leads to uncovering a bug in new primitives
57 Taco Hoekwater / Parsing PDF content streams with LuaTEX
* overview of the new pdfparser library in LuaTEX
71 Alexander Shibakov / Parsers in TEX and using CWEB for general pretty-printing
* using bison and flex to implement parsers and scanners in TEX
99 David Walden / Macro memories, 1964-2013
¢ informal musings about macros in TEX, M4, the early ARPANET, etc.

Reports and notices
16 Jean-Michel Hufflen / In memoriam Jean-Pierre Drucbert
111 Abstracts: FEutypon 30-31 (October 2013); Die TgXnische Komddie 1/2014
113 Boris Veytsman / Book reviews: IMTEX for Complete Novices and Using KTEX to Write a PhD Thesis,
by Nicola Talbot
115 Boris Veytsman / Book review: Dynamic Documents with R and knitr, by Yihui Xie
¢ including some tutorial material on data exploration and plotting
120 Karl Berry / TUG financial statements for 2013
121 Institutional members
121 TgX consulting and production services
123 Calendar
124 TUG 2014 announcement

