TUGDboat, Volume 35 (2014), No. 1

ModernDvi: A high quality rendering
and modern DVI viewer

Antoine Bossard and Takeyuki Nagao
Abstract

TEX users have long relied on the device independent
file format (DVI) to preview their documents while
editing. However, innovation has been scarce in this
area, and users have to rely on years-old, or even
decades-old software, facing increasing compatibil-
ity issues with modern systems. In this paper, we
describe ModernDvi, a new DVI viewer Windows
Store application, offering high quality and fast ren-
dering, wait-free, outperforming existing solutions in
these areas. Additionally, ModernDvi has been built
around today’s usability standards and expectations:
tablets, touch-friendly, high-resolution output are
examples of addressed issues.

1 Introduction: The DVI file format

DVTI is a file format, namely the “DeVice Independent”
file format. DVI documents are typically produced
by the TEX and ETEX typesetting programmes. TEX
and its high-level abstraction IXTEX, which is written
in the TEX macro language, were introduced by Don-
ald E. Knuth [7] and Leslie Lamport [10], respectively,
as solutions for producing high-quality documents
dealing with mathematics and science in general,
and especially their complex formulae and notations.
Han Thé Thanh later created an extension of TEX
called pdfTEX [5] enabling direct output of portable
document format (PDF) in addition to the traditional
DVI format. There are thus two different kinds of out-
put by TEX and XTEX, viz. DVI and PDF. Although
the PDF format has become more popular, some peo-
ple still need and depend on the classical DVI format.
In fact, an experiment with the total 5814 ITEX
documents collected from the preprints of arXiv [6]
in the single month of January 2012, shows that 4168
items (approx. 72%) can be compiled by both XTEX
and pdfIXTEX, and that 540 items (approx. 9%) work
with BTEX but not with pdfIATEX [13].

The DVI format is minimalistic. Roughly speak-
ing, it is a binary format consisting of commands to
(i) define or select a font to utilize, (ii) draw a single
character or a filled rectangle at the current reference
point, (iii) manipulate internal integer registers (in-
cluding the current reference point and the identifier
of the current font), (iv) include binary data (called
DVI specials) for various purposes, and (v) mark the
beginning and ending of pages/documents.

The simplicity of the DVI format facilitates cre-
ation of tools and applications to help authors pre-

61

pare manuscripts and post-process existing articles.
Such tools include DVI viewers which render and
display the contents of a DVI file on screen, and also
converters to various formats including PostScript
(dvips), PDF (dvipdfm), bitmap images (dvipng), etc.
It is much harder to create such tools for the PDF
format, since that format is more complicated and
thus difficult to parse and analyse the encoded data.

A major drawback of the DVI format is that
it requires external files and/or tools to completely
render its contents in some use cases. For example,
if an author includes a figure in his paper (e.g. using
Encapsulated PostScript format), then the generated
DVI file contains a DVI special that consists of a code
fragment in the PostScript language to include the
specified image file. This means that the DVI file
is not self-contained, and one needs a rasterizer of
PostScript, e.g. Ghostscript, to render its contents.
Another common issue is the lack of the feature to
embed fonts. A DVI file actually contains only the
name (such as emrl0) and the size of the utilized
fonts. There is no standardized way to embed raster
or vector fonts to a DVI file. This difficulty can be
overcome by using pdf(I4)TEX which provides the fea-
tures of including external PDF files and embedding
TrueType and Type 1 fonts.

2 Previous works

A handful of DVI viewers exist; however, many are
not updated any more: mdvi [2] and windvi [15] are
examples. Well-known viewers for Unix-based plat-
forms include xdvi [17]. Still usable alternatives are
even harder to find on the MS Windows operating
system. YAP [16] is the DVI viewer of choice on Win-
dows as it is bundled with the MiKTEX distribution
[16]. One can also cite dviout [14] as another DVI
viewer on Windows.

A user looking for a viable solution to work
with DVI files will face several issues. First, all exist-
ing viewers are now considered legacy software: they
have been designed for decades-old operating systems
and do not meet modern requirements regarding soft-
ware, hardware, interface, and usability in general.
The first problem a user may encountered is software
compatibility: for example, as of the Mountain Lion
release of Mac OSX, X11 is not included any more,
which will thus hamper the installation and usage of
the usual viewer on Unix, xdvi. Even more radical
changes to an OS (e.g. at the device driver layer) may
completely break compatibility and make a legacy
viewer unusable. Additionally, classic workstations
are now on their way out, and mobile devices, touch
screens or other advanced interface mechanisms are
in full swing. An unadapted user interface such

ModernDvi: A high quality rendering and modern DVI viewer

62

TUGboat, Volume 35 (2014), No. 1

FileMonitor DviFile

App

+ Start() : void
+ Cancel() : void

L - dvifile : StorageFile

OnLaunched() : void [>

!

'
'

' .

1 «navigate»
'

'

A\

DviFileView MainPage
- zoom_factor : float - controls : Control[]
- status : int[] — [>

JJoMmawely sWiuNy SMOPUIA

+ RenderAsync() : Task

+ LoadFileAsync(): Task

Figure 1: Simplified UML class diagram.

as that of a legacy viewer will thus severely harm
usability, or even make it completely unusable.

Hardware evolution affects more than user inter-
faces. Processors have also seen important changes in
their architectures. Now, every device uses a multi-
core CPU, thus allowing faster or more calculations
at the same time: this is parallel processing. Legacy
DVI software has usually not been designed to utilise
such increased computing power and will thus per-
form poorly compared to modern applications in
general, such ad word processors.

Finally, rendering quality of DVI viewers is usu-
ally not on par with modern displays and their high
resolutions. Again, when they were introduced, these
systems had to cope with much more restrictive hard-
ware and software environments that we have now.
Nowadays, users’ expectations regarding display qual-
ity are very high, and legacy viewers are lacking in
this area.

We could continue enumerating shortcomings
in legacy DVI viewers (e.g. font generation before
rendering, slow page scrolling, etc.), but the point
is clear. By proposing our new DVI viewer, named
ModernDvi, we are first aiming at filling the gaps of
legacy DVI viewers, gaps which have been increas-
ing over time due to constant technology evolution.
The introduction of original features as detailed in
Section 4 is also an important part of our work.

3 ModernDvi: System overview

In this section, we give some insight into ModernDvi’s
structure by first addressing software engineering
considerations, then rendering techniques, and finally
parallel processing.

3.1 Software engineering

ModernDvi is a Windows Store application [11]. It
makes use of the Windows Runtime API and is thus
compatible with x86 and ARM processor architec-

Antoine Bossard and Takeyuki Nagao

tures. Windows Store applications can be deployed
to any Windows 8 device, including PCs and tablets.
Porting ModernDvi to the Windows Phone platform
is also possible, but this remains work in progress.

This app has been developed using the C# pro-
gramming language, and thus features an object-
oriented architecture. Let us give an overview of
the main objects defined in ModernDvi. Common
to every Windows Store app, the entry point of the
application is located inside the App class. The app
itself is built around the MainPage class which de-
fines the application view port, displaying controls
and visual elements in general. Each DVI docu-
ment is associated with an instance of the DviFile
class which, amongst others, importantly stores the
system handle to the DVI file, a critical app issue
detailed further in Section 5. The DviFile class also
holds a reference to a FileMonitor object which is
in charge of monitoring file changes made to the DVI
document. Then, in order to display the content of
a DVI document (i.e. an instance of DviFile), the
class DviFileView is instantiated. Such an object
is in charge of rendering each page of the DVI docu-
ment, and thus contains several view settings such as
page dimension and zooming information. Changing
parameters like the zoom factor will automatically
create a new DviFileView object. Figure 1 shows a
simplified UML class diagram of ModernDvi.

An important point is that DviFileView ob-
jects are completely isolated, especially from the
view port objects of MainPage so as to facilitate the
multi-thread approach detailed in Section 3.3 below.
The sole relation between these two classes is a ref-
erence to a DviFileView instance inside MainPage;
this reference is used to add (i.e. display) the view in-
side the view port. The DVI document is loaded
with the LoadFileAsync() method of MainPage,
and rendered with the RenderAsync() method of
DviFileView.

TUGDboat, Volume 35 (2014), No. 1

3.2 Rendering

The rendering of a DVI file is performed in two stages.
In the first stage, the content of the DVI file is parsed
and the result stored in an object, which contains a
font table (i.e. a mapping from font numbers to font
names) and the DVI commands for each page. All
the required TEX font metrics and other files (such as
PK fonts and virtual fonts) are loaded into memory
for later reference. The bounding box of every page
is computed at this point, in parallel using multiple
threads.

In the second stage, the contents of each page
is rendered lazily. More precisely, it is only at the
moment when a page is about to appear in the view
that the rendering of the page is undertaken. The
engine prepares an off-screen buffer for the page, and
rasterizes the glyphs onto this buffer according to
the DVI commands corresponding to the page. The
off-screen buffer is then converted to an image file
(using Portable Network Graphics format) and stored
in memory. Compression is utilized here in order to
save memory space.

3.3 Parallel processing

As recalled in Section 2, parallel processing is now
a common feature of our modern devices, from PCs
to smartphones via tablets. Modern applications are
thus expected to make use of this increased computa-
tional power available, and this is what we achieved
with ModernDvi.

ModernDvi uses parallelisation for two distinct
tasks. First, DVI rendering, as briefly detailed in
Section 3.2, needs to compute the bounding box
of each page of the DVI document. This is a time
consuming task. So, by executing these calculations
in parallel, we were able to significantly speed up this
process. In practice, we relied on the Task.Run()
function of the System.Threading.Tasks class of
the API which queues its parameter to run on the
thread pool managed by the framework.

Then, once pages have been prepared in memory,
comes the display phase: bringing inside the view
port each of the (visible) pages. This task is also time
consuming since it involves I/0 stream operations,
UI elements’ instantiation and display, and of course
placement routines for correct positioning of the
pages and their corresponding visual elements in the
view port. So again, instead of performing these tasks
sequentially, one after the other, we have devised a
parallel solution for this lengthy process and observed
significant time gains.

Because of the strongly asynchronous nature of
C# for apps, user actions in the UI are often partly
postponed after their start via the keyword combina-

63

tion async/await, and the program returns to the
UI thread. The merit of this approach is that the UI
is always responsive, that is non-blocking, lock-free
and wait-free. However, this can also be problematic
as it means, in our case, that a user can request a
document load (i.e. view refresh) several times, with
most of these requests being still processed, that
is not completed yet. To address this issue, Mod-
ernDvi tracks the rendering state of each page of the
DVI document through a status[] array indexed
on document pages, whose values are as follows:
0: page not displayed (and not pending); this is
the default status of each page.
1: page pending; the program is preparing the doc-
ument page.
2: page ready to be displayed; the program has
finished preparing the page.
3: page displayed; the program has finished adding
the page into the view.

Each view refresh task is thus accessing this array,
which is a class member of DviFileView. So, we have
to regulate the accesses of these asynchronous tasks
to this array to avoid race conditions and concurrent
access problems. This problem is solved by using the
compare-and-swap (CAS) mechanism which is imple-
mented in C# by the CompareExchange method of
the System.Threading.Interlocked class. Using
this, we are able to automatically check and up-
date the rendering status of a document page. The
practical result is that the Interlocked functionality
allows us to (1) avoid performing the rendering of
one page several times, and (2) avoid displaying the
same rendered page several times.

So, thanks to this approach, our DVI document
rendering process is (1) performed asynchronously,
thus always retaining the Ul responsiveness with, for
example, very smooth scrolling, and (2) handling
multiple page preparations and displays in parallel,
thanks to multiple threads. The number of threads
is managed by the framework thread pool and is thus
transparent to the developer. Obviously, the more
cores in your device, the more threads can be running
concurrently. An excerpt of the corresponding source
code is given in Figure 2.

4 Notable features

We present in this section several notable features of
ModernDvi.

4.1 No font generation needed

Existing DVI viewers generate on-demand PK font
files from, for instance, METAFONT source files [8, 9]
or PostScript font files [1]. The main problem with

ModernDvi: A high quality rendering and modern DVI viewer

64

IEnumerable<Task> tasks = Enumerable.Range (O,
visible_pages) .Select(i => {
return Task.Run(() => {
int current_page = first_page + i;
int original_status = System.Threading.Interlocked
.CompareExchange (ref status[current_pagel, 1, 0);

if (original_status == 0) {
pages [current_page] = DviFile.ctx
.CreateRenderablePage(dvifile.Document
.GetPage (current_page)) ;
status [current_page] = 2;
}
B
b
await Task.WhenAll(tasks);

Figure 2: Parallel execution with Task.Run().

this approach is the rendering time delay faced by
the user upon the DVI document loading.

ModernDvi has adopted a different approach:
PK font files are generated in advance and bundled
inside the application so that no font generation
phase is required at any time. Thus, we can achieve
a significant speed-up of the initial loading phase
compared to legacy DVI viewers.

Of course, to maximise usability we need to in-
clude with ModernDvi the fonts needed by users.
Many hundreds of fonts are available for TEX us-
age; looking at the CTAN font area [4] gives a good
overview of the situation. So, we conducted an exper-
iment to measure the popularity of these fonts, and
thus obtained a list of the most-used fonts. Specifi-
cally, we collected preprints published on arXiv [6]
for the year of 2012 and analysed the resulting 48 772
samples of ITEX source files to see which fonts they
used, i.e. which font files are needed for their render-
ing. Table 1 shows the results with, not surprisingly,
Computer Modern leading the list.

We observed that about 1,000 fonts sufficed
to render all gathered DVI files, which we took as
representative of most documents, given the broad
area covered by arXiv. We thus gathered the cor-
responding METAFONT source files and generated
PK files for each font using the mktexpk utility [3].
Particular care has been taken to avoid any licensing
violations for the fonts bundled in ModernDvi, with
problematic fonts replaced by freely available ones;
for instance, Linotype Palatino has been replaced by
URW Palladio. Out of the ~ 1,000 fonts identified,
769 have been included in ModernDvi. Excluded
fonts are either rarely used or for exotic languages.

4.2 File change monitoring

ModernDvi includes a file monitoring system which
triggers a new document rendering (refresh) upon

Antoine Bossard and Takeyuki Nagao

TUGDboat, Volume 35 (2014), No. 1

Table 1: Most-used fonts in 2012 arXiv.org preprints.

Rank Font Freq. % Cumul. %
1 cmsy10 64 830 4.69 4.69
2 cmrl0 60321 4.36 9.05
3 cmmilO 52705 3.81 12.87
4 cmbx12 48 774 3.53 16.39
5 ptmr8r 44209 3.20 19.59
6 cmex10 41872 3.03 22.62
7 cmr8 39221 2.84 25.46
8 cmbx10 36725 2.66 28.12
9 cmr6 33900 2.45 30.57
10 cmmi8 30895 2.23 32.80
11 (others) 928916 67.20 100.00

Total 1382368

any file change. Concretely, if this feature is en-
abled, ModernDvi will check at a specific time in-
terval whether changes have occurred to the loaded
document. Such changes are detected as follows.

1. Initialise a LastModified object of type Date
TimeOffset with the DateModified value of
the BasicProperties instance returned by a
first call to GetBasicPropertiesAsync on the
current document.

2. Start the timer (DispatchTimer object).

3. On timer tick, retrieve a new instance of Basic
Properties via a call to GetBasicProperties
Async on the current document. Then com-
pare the stored LastModified value with the
DateModified value of the BasicProperties
instance just retrieved. If LastModified is
smaller (i.e. older) than DateModified, request
a new rendering of the DVI document. Finally,
set LastModified to DateModified.

Additional care needed to be taken regarding
GetBasicPropertiesAsync. Even though it is not
mentioned in the documentation [12], multiple calls
to GetBasicPropertiesAsync on the same file will
throw an exception. Only one call to GetBasic
PropertiesAsync is allowed at a time: one has to
wait for the previous call to return before making an-
other call. And because this method is asynchronous
(i.e. awaited, see Section 3.3), we have to enforce a
guard to avoid doing so. This is again achieved by
using the CAS mechanism CompareExchange method
of the System.Interlocked class.

Lastly, we must note that this monitoring sys-
tem does not work for DVI files that are contained
inside an archive (see Section 4.5). This is due to
the limitations imposed by the Windows Runtime
API, limitations induced by security concerns. See
Section 5 for additional details.

TUGDboat, Volume 35 (2014), No. 1

Figure 3: Horizontal display mode.

4.3 Vertical and horizontal display modes

It is a steady trend: screens are getting wider and
wider. In order to take full advantage of such hard-
ware configurations, we have implemented two differ-
ent page flows in ModernDvi: vertical and horizontal
display modes.

The vertical display mode is the classic top-
down document flow that can be found in almost all
viewers or WYSIWYG editors. The horizontal display
mode is an original left-right document flow that
proves comfortable when working on wide displays.
Effectively, multiple pages can be displayed side-by-
side on a wide screen at the same time, enabling a
seamless reading experience. An illustration is given
in Figure 3.

In addition to a global setting defining the de-
fault display mode of ModernDvi, the user interface
contains an easily accessible “Switch flow” button
that enables the user to quickly (instantly) switch the
document display mode, without having to reload or
render anything.

4.4 Automatic zooming

In the current iteration of ModernDvi, we have im-
plemented three zoom levels: window fit, page fit
and thumbnails. The user can choose between these
modes to render the DVI document by automatically
adapting to the screen resolution. Because the docu-
ment rendering process is repeated when changing
the zoom level, the rendering quality remains crisp at
any time. An illustration of these three zoom levels
is given in Figure 4.

To adapt to the user’s screen, our DviFileView
class (see Figure 1) registers the Loaded event of
the view port. When fired, this event signals the
availability of the ActualWidth and ActualHeight
properties of the view port, giving the user screen res-
olution in pixels (precisely the screen area allocated
to the view port). Because of the asynchronous na-

65

(b)

Figure 4: Vertical modes of (a) window fit,
(b) page fit and (¢) thumbnails zoom levels.

()

ture of applications and especially their user interface,
failing to use the event model will most likely result
in null values for these two properties. In practice,
the UI thread may not have completed the interface
setup work when reading these two properties.

4.5 Archive formats and file types

DVI documents are often distributed as archives. For
instance, most documents in the arXiv preprint repos-
itory are stored as tarballs. To facilitate display of
such documents, we implemented routines in charge
of uncompressing and extracting archives. Files are
stored in the temporary folder of the app. Table 2
summarises the file formats ModernDvi supports.

Additionally, so as to correctly handle these
different file formats, we implemented an accurate
file type detection routine that can recognise each of
the supported file formats given a file, regardless of
its extension. In practice, one cannot be sure that
a file will have an extension, or that it is accurate.
And this is without mentioning that there often exist
many different extensions for a single file format.
Thus, we analyse a file’s header data to determine
its type.

Table 2: Supported file formats.
Format (MIME type)

‘ Usual extension

application/x-dvi .dvi
application/x-tar tar
application/gzip .87

application/x-gzip-compressed

application/zip .Zip
application/x-zip-compressed

application/x-compressed tar.gz, .tgz

ModernDvi: A high quality rendering and modern DVI viewer

66

Figure 5: Running ModernDvi on a tablet: full touch
and rotation support.

4.6 Modernity

One of the key aspects of ModernDvi is its recog-
nition of new technologies, devices and interfaces.
In recent years, touch screens have heavily changed
our habits, and software design had to be signifi-
cantly overhauled to adapt to such new interfaces.
ModernDvi embraces this evolution by providing an
innovative, touch-friendly user interface such that
it can be similarly used with either a classic mouse-
keyboard setup or a touch-enabled device such as a
tablet. It is also worth mentioning that ModernDvi
is by design compatible with multiple CPU architec-
tures: x86, x64 and ARM. So, computers equipped
with (at least) Windows 8 and devices running Win-
dows RT, such as the Microsoft Surface, are all capa-
ble of natively running the application. Smartphones
running the Windows Phone 8+ operating system
can be expected to follow soon due to the common
architecture with Windows 8 (NT kernel).

In addition to touch support, ModernDvi has
full rotation support: no matter how the user holds
the device, the application will update its layout so
as to present correctly-oriented content. Figure 5
shows ModernDvi running on a tablet (emulation
of an x86 tablet environment). By combining these
two features (touch and rotation), the user can con-
veniently and naturally go through the document as
if turning pages of a book by selecting the horizontal
display mode and holding his tablet vertically; then,
a simple finger sweep will then display the next page.

Finally, ModernDvi has docking support: the
user can move ModernDvi onto the side of the screen
to interact with another application. This is highly
useful for the “Edit-and-preview” use case as detailed
in Section 6.1.

Antoine Bossard and Takeyuki Nagao

TUGboat, Volume 35 (2014), No. 1

This PC ~

Videos
Local Disk (€)
Storage (0:)

DVD RW Drve ()

Figure 6: A file selection dialog: the only way to
access a user’s files.

5 “App” considerations

Developing a Windows Store application has many
advantages compared to a classic, legacy program.
First, its distribution, deployment and promotion
are greatly facilitated since everything is handled by
the operating system through the official Windows
Store application (installation, removal, etc.). Also,
installing software via the Windows Store is a security
guarantee for the user: applications are reviewed
before they are added to the Store, and importantly,
they run inside a protected environment, ensuring
a minimum footprint on the operating system as
detailed below.

By design, Windows Store applications (the
same is true for Apple Store applications) run in
a restricted (sandboxed) environment for security
reasons. Thanks to this feature, the user need not
worry about system modifications by the app: they
are simply not allowed. The application footprint on
the system is thus minimal, unlike legacy programs.

One of the main implications of this design
is that applications have no direct access to the
file system, except for the application’s own data
folder. To be precise, for an application to perform
I/O operations on a file outside the application’s
data folder, the user must first manually select the
file through a file selection dialog control such as a
FileOpenPicker instance (see Figure 6).

This limitation has a major impact on an ap-
plication such as ModernDvi. For example, there
is no possibility of accessing external files, such as
images, which may be referred to in the DVI doc-
ument. And there is no possibility of running an
external program, such as Ghostscript, to delegate
PostScript work. A Store application is required to
be completely independent. It has thus been a sig-
nificant challenge to produce a fully functional DVI
viewer application.

TUGboat, Volume 35 (2014), No. 1

Figure 7: Editing (left) and preview (right) of IXTEX
source via the Windows 8 screen splitting feature.

As an example, let us consider the file moni-
toring feature of ModernDvi (see Section 4.2). The
Windows runtime does have a folder monitoring ca-
pability, namely the ContentsChanged event of the
StorageFolderQueryResult class, but because ac-
cessing a file object (StorageFile), say via a file
picker, does not grant permission to access the con-
taining folder (StorageFolder), this is unusable
for us. So, we implemented a file monitor by us-
ing a timer object (DispatcherTimer) to check the
value of the DateModified property of the Basic
Properties class instance returned by a call to the
GetBasicPropertiesAsync method on the file on
each clock tick. Because of the high timer resolution,
this file monitoring solution is fully satisfactory.

6 Use cases

This section presents two different use case examples
for ModernDvi: edit-and-preview, and reading mode.

6.1 Edit-and-preview mode

The user is preparing an article to be submitted to
a symposium, using the KTEX typesetting system.
The user opens his I'TEX source file in his favourite
editor, say, TEXworks. A first compilation by latex
is triggered by the user, generating a DVI file. The
user double clicks this DVI file to start ModernDvi
and load the DVI file into view. As the user wants
to continue editing, s/he docks ModernDvi onto the
side of the screen, and puts TEXworks on the other
side. The screen is thus split into two areas as shown
in Figure 7. The user continues to make changes in
the TEX source file and recompiles the document,
still using latex. The DVI file generated by the pre-
vious run is overwritten by the new one. ModernDvi
automatically detects that changes have been made
to the DVI file and refreshes its view. The user thus
has an instant preview of the changed version.

£ = & | [Format seector for 13001

arXiv.org

Format selector for arXiv:1309.1" <

Set cookles: if your browser supports cookles you can configure your default format

PDF

Now includes fonts, see our POF heip. [Download PDF
PostScript using Bitmapped Fonts
Select resolution:

Use [600 | api Bitmapped Fonts: [Download PostScript

(Note: a resolution other than the default 600dpi wil occasionally require new fonts to be created. This can take a while)

DVI download

PostScript using Type | Fonts

Now includes fonts, see our Type | help. | Download PostSeript
bvi

Delivered as a gzipped DVI (.dvi.gz) fle or as a gzipped tar (tar.gz) fle if there are figures to include. | Download DVI |
Source

Delivered as a gzipped tar (tar.g2) file if there are mutiple files, otherwise as a PDF fil, or a gzipped TeX, DVI, PostScript or HTML (gz
avigz, .ps.gz or ntmi.gz) file depending on submission format. { Download source]

Figure 8: Reading a preprint downloaded from
arXiv.org.

6.2 Reading mode

The user finds a preprint on the online repository
arXiv.org, and presses the link to request the file,
which is a .dvi.gz compressed DVI document. The
browser silently decompresses this gzip compressed
content and serves the DVI file to the user. The
user’s device system asks what should be done with
the file: open, save, etc.; the user presses the “Open’
button, which automatically loads the document
into ModernDvi. See Figure 8. The user selects the
“window fit” zoom mode for improved readability and
can start going through the document.

)

7 Comparing rendering quality

In this section, we compare ModernDvi with other
DVI viewers regarding rendering quality. It is dif-
ficult to compare usability, including speed, since
ModernDvi is targeting a different platform and in-
terface. For each of the comparisons, default settings
were used.

7.1 vs. YAP

First, let us compare the rendering quality with that
of YAP [16]. In both cases, the zoom level is set to
match the screen width. We can see in Figure 9 that
the rendering quality of ModernDvi is better than
that of YAP.

7.2 vs. dviout

Then, we compare the rendering quality with that
of dviout [14]. In both cases, the zoom level is set
to match the screen width. Again, we can see in
Figure 9 that the rendering quality of ModernDvi is
better than that of dviout.

7.3 vs. Microsoft Reader

Lastly, let us compare the rendering quality of Mod-
ernDvi with that of the PDF viewer included with

ModernDvi: A high quality rendering and modern DVI viewer

68

This docur

creation in

believe thar
(a)

creation 1n
believe tha
(b)

()

TUGboat, Volume 35 (2014), No. 1

This docur This docun This docun This docun
creation in
believe thaf

creation in
helieve that

()

creation in
believe that

(d)

Figure 9: Rendering by (a) ModernDvi, (b) YAP (PostScript mode),
(c) YAP (PK mode), (d) dviout and (e) Microsoft Reader (PDF).

Windows 8.1 (Microsoft Reader 6.3.9431.0), after con-
verting the DVI to PDF format with the DVIPDFMx
utility. In both cases, the zoom level is set to match
the screen width. As illustrated by Figure 9, the ren-
dering quality of ModernDvi is significantly better.

8 Conclusions

We have presented in this paper ModernDvi, a new
DVI document viewer targeting modern platforms
and interfaces, such as tablets. After describing
the software architecture, design and features, we
compared the rendering quality of other viewers;
ModernDvi is leading on that point too. Windows
Store applications are sandboxed, and thus severely
restricted regarding file system access. We have
circumvented these challenges to produce a fully
functional DVI viewer application.

Future work includes refining our rendering tech-
nique by going down to sub-pixels, as well as improv-
ing the rendering speed by continuing the work on
glyph caching. Lastly, user interface improvements,
such as being able to handle multiple documents at
once, are also planned.

A ModernDvi in the Windows Store

ModernDvi can be found in the Windows Store, or
directly at http://apps.microsoft.com/windows/
app/moderndvi/bfa836ff-4eb0-454b-ad9e-
22405197£23b.

References

[1] Adobe Systems Incorporated. Adobe Type 1 Font
Format. Reading, Massachusetts: Addison-Wesley,
1990.

Matias Atria. MDVI—A DVI previewer.
http://mdvi.sourceforge.net/. Accessed
August 2013.

Edward Barrett. Porting TEX Live to OpenBSD.
TUGboat, 29(2):303-304, 2008.

CTAN: The Comprehensive TEX Archive Network.
Available fonts. http://www.ctan.org/
tex—archive/fonts. Accessed August 2013.

Han Thé Thanh. Micro-typographic eztensions to
the TEX typesetting system. PhD thesis, Masaryk
University Brno, October 2000.

2l

3]

(4]

5]

Antoine Bossard and Takeyuki Nagao

(6]

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Allyn Jackson. From preprints to e-prints:

The rise of electronic preprint servers in
mathematics. Notices of the American
Mathematical Society, 49(1):23-32, 2002.

Donald E. Knuth. The TgXbook. Reading,
Massachusetts: Addison-Wesley, 1984.

Donald E. Knuth. Metafont: The Program.
Reading, Massachusetts: Addison-Wesley, 1986.
Donald E. Knuth. The Metafontbook. Reading,
Massachusetts: Addison-Wesley, 1986.

Leslie Lamport. RTEX: A document preparation
system: User’s guide and reference. Reading,
Massachusetts: Addison-Wesley Professional,
1994.

Microsoft. Windows Store. http://windows.
microsoft.com/en-us/windows-8/apps.
Accessed October 2013.

MSDN. StorageFile.GetBasicPropertiesAsync.
http://msdn.microsoft.com/en-us/library/
windows/apps/windows.storage.storagefile.
getbasicpropertiesasync.aspx.

Accessed August 2013.

Take-Yuki Nagao. Automatic recognition of
theorem environments of mathematical papers in
IATEX format. Bulletin of Advanced Institute of
Industrial Technology, 7:81-87, 2013.

Toshio Oshima, Yoshiki Otobe, and Kazunori
Asayama. dviout—a DVI previewer for Windows.
http://www.ctan.org/pkg/dviout. Accessed
October 2013.

Fabrice Popineau. windvi— MS-Windows DVI
viewer. http://www.ctan.org/pkg/windvi.
Accessed August 2013.

Christian Schenk. Yet Another Previewer.
http://www.miktex.org. Accessed October 2013.
Paul Vojta. xdvi— A DVI previewer for the X
Window System. http://math.berkeley.edu/
~vojta/xdvi.html. Accessed October 2013.

¢ Antoine Bossard and Takeyuki Nagao
Big Data Laboratory
Advanced Institute of Industrial Technology
1-10-40 Higashiooi
Shinagawa-ku, 140-0011
Japan
abossard (at) aiit dot ac dot jp
nagao-takeyuki (at) aiit dot ac dot jp

http://apps.microsoft.com/windows/app/moderndvi/bfa836ff-4eb0-454b-ad9e-
http://apps.microsoft.com/windows/app/moderndvi/bfa836ff-4eb0-454b-ad9e-
http://mdvi.sourceforge.net/
http://www.ctan.org/tex-archive/fonts
http://www.ctan.org/tex-archive/fonts
http://windows.microsoft.com/en-us/windows-8/apps
http://windows.microsoft.com/en-us/windows-8/apps
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefile.getbasicpropertiesasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefile.getbasicpropertiesasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefile.getbasicpropertiesasync.aspx
http://www.ctan.org/pkg/dviout
http://www.ctan.org/pkg/windvi
http://www.miktex.org
http://math.berkeley.edu/~vojta/xdvi.html
http://math.berkeley.edu/~vojta/xdvi.html

	Introduction: The DVI file format
	Previous works
	ModernDvi: System overview
	Software engineering
	Rendering
	Parallel processing

	Notable features
	No font generation needed
	File change monitoring
	Vertical and horizontal display modes
	Automatic zooming
	Archive formats and file types
	Modernity

	``App'' considerations
	Use cases
	Edit-and-preview mode
	Reading mode

	Comparing rendering quality
	vs. YAP
	vs. dviout
	vs. Microsoft Reader

	Conclusions
	ModernDvi in the Windows Store

