
TUGBOAT

Volume 34, Number 3 / 2013

TUG 2013 Conference Proceedings

TUG 2013 246 Conference sponsors, participants, and program

252 Norbert Preining / TUG 2013 in Tokyo

Publishing 259 Didier Verna / The incredible tale of the author who didn’t want

to do the publisher’s job, . . .

LATEX 263 Jason Lewis / How to make a product catalogue that doesn’t look like a dissertation

Multilingual

Document Processing

268 Clerk Ma and Jie Su / Project Fandol: GPL fonts for Chinese typesetting

269 Matthew Skala / Tsukurimashou: A Japanese-language font meta-family

279 Clerk Ma / Braille fonts in Project Fandol

281 Ken Nakano and Hajime Kobayashi / Case study: Typesetting old documents

of Japan

285 Takuji Tanaka / upTEX—Unicode version of pTEX with CJK extensions

289 John Plaice / Typesetting and layout in multiple directions—Proposed solution

Software & Tools 293 Norbert Preining / TEX Live Manager’s rare gems: User mode and

multiple repository support

297 Norbert Preining / Redistributing TEX and friends

302 Andrew Mertz and William Slough / A gentle introduction to PythonTEX

313 Lu Wang and Wanmin Liu / Online publishing via pdf2htmlEX

325 Shinsaku Fujita / The XΥMTEX system for publishing interdisciplinary

chemistry/mathematics books

329 Pavneet Arora / TANSU—A workflow for cabinet layout

Bibliographies 332 Nathan Hagen / Bibulous—A drop-in BIBTEX replacement based on style templates

340 Michael Cohen, Yannis Haralambous and Boris Veytsman /

The multibibliography package

Graphics 344 Aleksandra Hankus and Zofia Walczak / LATEX and graphics: Basics and packages

349 Boris Veytsman and Leyla Akhmadeeva / Plots in LATEX: Gnuplot, Octave, make

357 Mari Voipio / Entry-level MetaPost 3: Color

Abstracts 360 TUG 2013 abstracts (Cho, Hagen, Hakuta, Maeda & Kaneko, Minoda, Mittelbach,

Moore, Shikano, Takata, Terada, Verna, Wetmore, Yabe)

363 ConTEXt Group: Proceedings, 6th meeting (2012)

364 MAPS: Contents of issue 44 (2013)

365 Die TEXnische Komödie: Contents of issues 3–4/2013

Hints & Tricks 366 Karl Berry / The treasure chest

General Delivery 367 Denis Bitouzé / In memoriam: Jean-Pierre Drucbert (1947–2009)

Book Reviews 368 Dave Walden / Book review: Essential Knuth

369 Clerk Ma / Book review: Introduction to LATEX

TUG Business 370 TUG institutional members

Advertisements 370 TEX consulting and production services

News 372 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2014 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount:

Regular members (early bird): $85.
Special rate (early bird): $55.
Membership in the TEX Users Group is for the

calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $105 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: December 2013]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Arthur Reutenauer
Philip Taylor
Boris Veytsman
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Copyright c© 2013 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

2013 Conference Proceedings

TEX Users Group

Thirty-fourth Annual Meeting

Tokyo, Japan

October 23–26, 2013

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 34, NUMBER 3 • 2013

PORTLAND • OREGON • U.S.A.

TUG 2013 • Tokyo, Japan • October 23–26, 2013

Sponsors

• Graduate School of Mathematical Sciences, The University of Tokyo（東京大学大学院数理科学研究科）

• SANBI Printing Co., Ltd.（三美印刷株式会社） • Gijutsu-Hyohron Co., Ltd.（株式会社技術評論社）

• Tokyo Educational Institute Co., Ltd. (Tetsuryokukai)（株式会社東京教育研（鉄緑会））

• Green Cherry Ltd.（株式会社 Green Cherry） • PLAIN corporation（株式会社プレイン）

• Livretech Co., Ltd.（株式会社リーブルテック） • Top Studio Co., Ltd.（株式会社トップスタジオ）

• ULS & Company（株式会社ウルス） • Tatsu-zine Publishing Inc.（株式会社達人出版会）

• Ohmsha, Ltd.（株式会社オーム社） • Kato Bunmeisha Co., Ltd.（株式会社加藤文明社印刷所）

• Fujiwara Printing Co., Ltd.（藤原印刷株式会社） • Saiensu-sha Co., Ltd.（株式会社サイエンス社）

• Suurikougaku-sha Co., Ltd.（株式会社数理工学社） • Enishi Tech Inc.（株式会社えにしテック）

• Maruzen Publishing Co., Ltd.（丸善出版株式会社）

• Dainippon Hourei Printing inc.（大日本法令印刷株式会社）

• Gravel Road Inc.（株式会社グラベルロード）

• TEX Users Group • Korean TEX Society • DANTE e.V.

• Thomas Bietenhader • Kosakai Eiichiro（小酒井 英一郎） • Kieda Yuwsuke（木枝 祐介）

• Shibata Mitsuya（柴田 充也） • Fujimura Yukitoshi（藤村 行俊） • Nariai Kyoji（成相 恭二）

• Kanou Hiroki（狩野 宏樹） • Aoki Yoshihiro（青木 義弘） • Shikano Keiichiro（鹿野 桂一郎）

• and many anonymous sponsors.

Thanks to all!

ご協力頂いた全ての方へ感謝いたします。

Conference committee

• Abe Noriyuki (Hokkaido Univ.) • Karl Berry (TUG) • Honda Tomoaki (SANBI Printing)

• Ichii Shingo (The Univ. of Tokyo) • Kuroki Yusuke • Okumura Haruhiko (Mie Univ.)

• Steve Peter (TUG) • Norbert Preining (JAIST)

• Takahashi Masayoshi (Tatsu-zine Publishing) • Yamamoto Munehiro (Green Cherry)

Bursary committee

• Steve Peter, chair • Jana Chlebikova • Bogus law Jackowski • Alan Wetmore

Participants

(anonymous)

Abe Hirosuke
阿部 央輔
Graduate School of Arts and
Sciences, The University of Tokyo
Japan

Abe Noriyuki
阿部 紀行
Creative Research Institution,
Hokkaido University

Aikawa Hiroaki
相川 弘明

Leila Akhmadeeva

レイラ アフマディーヴァ
Bashkir State Medical University
Bashkortostan, Russia

Akimoto Yoshitomo
秋元 良友
Student, Faculty of Science and
Engineering, Chuo University
Yokosuka, Japan

Maissa Alameddine

メイッサ アラメッヂン
Sydney, NSW, Australia

TUGboat, Volume 34 (2013), No. 3 247

Aoki Yasuhiro
青木 康博
Department of Forensic Medicine,
Nagoya City University
Nagoya Japan

Aoki Yoshihiro
青木 義弘
freelance, TDON KK

Tokyo, Japan

Pavneet Arora

パヴァニート アーロラ
Bolton, ON, Canada

Ase Harumi
阿瀬 はる美
ARS System Corporation

Nelson H F Beebe

ネルソン ビービ
University of Utah
Salt Lake City, UT, USA

Barbara Beeton

バーバラ ビートン
American Mathematical Society
Providence, RI, USA

Thomas Bietenhader

トーマス ビーテンハーダ
Bassersdorf, Switzerland

Jin-Hwan Cho

趙 珍煥 / 조 진환 / チョウ ジンワン
Korean TEX Society
Seoul, Republic of Korea

Jennifer Claudio

ジェニファー クラディーオ
Synopsys Outreach Foundation
San Jose, CA, USA

Michael Cohen

公園 マイケル
Spatial Media Group,
University of Aizu
Aizu-Wakamatsu, Fukushima,
Japan

Fujino Seiji
藤野 清次
RIIT, Kyushu University
Hakozaki, Fukuoka, Japan

Fujita Shinsaku
藤田 眞作
Shonan Institute of
Chemoinformatics and
Mathematical Chemistry
Kanagawa, Japan

Fujiwara Makoto
藤原 誠
KINU Corporation
Chiba, Japan

Fukayama Osamu
深山 理
IST, The University of Tokyo
Tokyo, Japan

Funaki Naoto
舩木 直人
Tokyo, Japan

Hans Hagen

ハンス ハーゲン
Pragma ADE

Hasselt, Netherlands

Hakuta Shizuya
白田 靜哉
Japan

Hamada Tatsuyoshi
濱田 龍義
Faculty of Science,
Fukuoka University
Fukuoka, Japan

Hamamo Hisato
濱野 尚人

Aleksandra Hankus

オラ ハンクス
University of Silesia
Katowice, Poland

Hashimoto Ryuta
橋本 竜太
Kagawa National College
of Technology
Mitoyo, Kagawa, Japan

Hashimoto Takafumi
橋本 孝文
College of Arts and Sciences,
Tokyo University
Tokyo, Japan

Hayasaka Miwako
早坂 美和子

Hayashi Tsunetoshi
林 恒俊
Takatsuki, Osaka, Japan

Hayashida Hiroki
林田 裕樹

Malte Helmhold

マルテ ヘルムホルド
System Development,
TU Dresden,
Dresden, Saxony, Germany

Himei Akira
姫井 晃
Morisawa Inc.
Tokyo, Japan

Honda Tomoaki
本田 知亮
SANBI Printing Co., Ltd.
Tokyo, Japan

Ichii Shingo
一井 信吾
Graduate School of Mathematical
Sciences, The University of Tokyo
Tokyo, Japan

Itoh Hiroyuki
伊藤 裕之
Gravel Road Inc.
Nagoya, Japan

Iwasaki Shinichi
岩崎 慎一
SANBI Printing Co., Ltd.
Tokyo, Japan

Kaio Naoto
海生 直人
Faculty of Economic Sciences,
Hiroshima Shudo University
Hiroshima, Japan

Kanada Naoki
金田 直樹
Tokyo, Japan

Kanazawa Katsuhiko
金沢 克彦

Kaneko Masataka
金子 真隆
Faculty of Pharmaceutical
Sciences, Toho University
Kisarazu, Japan

Kanou Hiroki
狩野 宏樹
IWATA Corporation
Tokyo, Japan

Kashima Junko
鹿島 順子
Tokyo, Japan

Kato Maiko
加藤 麻衣子

Kawabata Taichi
川幡 太一
NTT Network Innovation
Laboratory
Tokyo, Japan

Kawakubo Toru
川久保 亮

Kieda Yuwsuke
木枝 祐介
Tokyo, Japan

Young Rock Kim

金 永錄 / 김 영록 / キム ヨンロック
Mathematics Education, Hankuk
University of Foreign Studies
Seoul, Korea

Kitagawa Hironori
北川 弘典
Tokyo, Japan

248 TUGboat, Volume 34 (2013), No. 3

Kitamura Naru
北村 成
LSI Japan Co., Ltd.
Tokyo, Japan

Kitta Yoriyuki
橘田 頼之
University of
Electro-Communications
Tokyo, Japan

Kizaki Saki
木崎 早樹
Kawasaki, Japan

Kobayashi Hajime
小林 肇
Livretech Co., Ltd.
Tokyo, Japan

Kobayashi Ken
小林 健

Daniel Kobayashi-Better

ダニエル 小林ベター
Faculty of Letters,
Kobe University
Hyogo, Japan

Kojima Tadashi
小嶋 忠詞
Japan

Kosakai Eiichiro
小酒井 英一郎
Kenkyusha Printing Co., Ltd.

Kume Ayaka
久米 絢佳

Kuroki Yusuke
黒木 裕介
Yokohama, Japan

Jason Lewis

ジェイソン ルイス
Organic Trader Pty Ltd
Sydney, NSW, Australia

Wanmin Liu

柳 万民 / リィゥ ワンミン
The Hong Kong University of
Science & Technology
Hong Kong

Maeda Kazuki
前田 一貴
Japan

Maeda Yoshifumi
前田 善文

Masuko Moe
増子 萌

Matsuura Tomoyuki
松浦 智之
Rich Laboratoy
Machida, Tokyo, Japan

Matsuzaki Shuji
松崎 修二
SANBI Printing Co. Ltd.
Nishinippori, Tokyo, Japan

Andrew Mertz

アンドルー メルツ
Eastern Illinois University
Charleston, IL, USA

Jessica Mertz

ジェシカ メルツ
Charleston, IL, USA

Lothar Meyer-Lerbs

ローター マイヤ＝レルプス
Bremen, Germany

Minoda Yasuhide
蓑田 恭秀
Tokyo Educational Institute
(Tetsuryokukai)
Tokyo, Japan

Frank Mittelbach

フランク ミッテルバッハ
LATEX3 Project
Mainz, Germany

Miyakawa Noriyoshi
宮川 憲欣
KEIBUNDO Co., Ltd.
Suidocho, Shinjuku, Tokyo, Japan

Miyoshi Akihiro
美吉 明浩
PLAIN corporation
Tokyo, Japan

Robyn Moore

ロビン ムーア
Mount Colah, NSW, Australia

Ross Moore

ロス ムーア
Mathematics Department,
Macquarie University
Sydney, NSW, Australia

Muto Kenshi
武藤 健志
Top Studio Corporation &

Debian Project
Tokyo, Japan

Nagata Yoshihisa
永田 善久
Faculty of Humanities,
Fukuoka University
Fukuoka, Japan

Naito Takashi
内藤 郁之

Nakai Wataru
中井 渉
Shiga, Japan

Nakajima Junji
中島 淳二

Nakamura Masaya
中村 真也
School of Engineering,
The University of Tokyo
Tokyo, Japan

Nakano Ken
中野 賢
Livretech Co., Ltd.
Tokyo, Japan

Nariai Kyoji
成相 恭二
National Astronomical
Observatory of Japan
Suginami, Tokyo, Japan

Okada Ryo
岡田 亮
Kato Bunmeisha Printing Co.,
Ltd.
Chiyoda-ku Tokyo, Japan

Okudono Takamasa
奥殿 貴仁
Faculty of Liberal Arts,
The University of Tokyo
Saitama, Japan

Okumura Haruhiko
奥村 晴彦
Faculty of Education,
Mie University
Tsu, Japan

Osborne Masako
オズボーン 昌子
ULS & Company
Tokyo, Japan

Oshima Toshio
大島 利雄
Faculty of Science,
Josai University
Tokyo, Japan

Otobe Yoshiki
乙部 厳己
Department of Mathematical
Sciences, Shinshu University
Matsumoto, Japan

John Plaice

ヂョン プレイス
Montreal, Canada
UNSW in Sydney, Australia

Norbert Preining
ノルベルト プライニング
Japan Advanced Institute
of Science and Technology
Kanazawa, Ishikawa, Japan

Chris Rowley

クリス ローリー
LATEX3 and FutureLearn, UK

London, UK

TUGboat, Volume 34 (2013), No. 3 249

Saikawa Takafumi
才川 隆文
Graduate School of Mathematics,
Nagoya University
Nagoya, Japan

Saito Shingo
斎藤 新悟
Faculty of Arts and Science,
Kyushu University
Fukuoka, Japan

Saito Taiichi
齋藤 泰一
SANBI Printing Co., Ltd.
Tokyo, Japan

Sakamoto Noriaki
酒本 典明
Tokyo, Japan

Sato Chiyoko
佐藤 智代子
ULS & Company
Tokyo, Japan

Sato Kiyoshi

Sato Motoaki
佐藤 基昭
ULS & Company

Volker RW Schaa

フォルカー シャー
DANTE e.V.
Darmstadt, Germany

Senoo Ken
妹尾 賢
Department of Environmental
Engineering, Graduate School
of Engineering, Kyoto University
Osaka-fu, Japan

Shiina Takehito
椎名 建仁
PLAIN Corporation
Tokyo, Japan

Shikano Keiichiro
鹿野 桂一郎
Nishi-Nippori, Tokyo, Japan

Shimizu Mikiko
清水 美貴子

Shiro M.

Shishikura Mitsuhiro
宍倉 光広

Maria Shmilevich

マリア シュミレヴィッチ
Sterling, VA, USA

Matthew Skala

マッシュ スカラ
University of Manitoba
Winnipeg, MB, Canada

Marlene Slough

マリーン スラウ
Charleston, IL, USA

William Slough

ビル スラウ
Eastern Illinois University
Charleston, IL, USA

Sudo Masaki
須藤 真己
Gijutsu-Hyohron Co., Ltd.
Tokyo, Japan

Sugimura Mika
杉村 美佳

Suwa Takashi
諏訪 敬之
College of Arts and Sciences,
The University of Tokyo
Nishinomiya, Japan

Suzuki Hayao
鈴木 駿
The University of
Electro-Communications, Tokyo

Suzuki Kentaro
鈴木 健太郎
Tokyo, Japan

Suzuki Shigeya
鈴木 茂哉
Graduate School of Media and
Governance, Keio University
Tokyo, Japan

Takagi Kazuhito
高木 和人

Takahashi Masayoshi
高橋 征義
Tatsu-Zine Publishing Inc.
Tokyo, Japan

Takata Yumi
高田 裕美
Typebank Co., Ltd.
Tokyo, Japan

Takato Setsuo
高遠 節夫
Faculty of Science,
Toho University
Kisarazu, Japan

Takenaka Yoshiro
竹中 義朗
SANBI Printing Co., Ltd
Nishinippori, Tokyo, Japan

Tamori Hideaki
田森 秀明
The Asahi Shimbun Company
Tokyo, Japan

Tanaka Takuji
田中 琢爾
the upTEX project
Tokyo, Japan

Tatsuzawa Masahiro
立澤 正博
Maruzen Publishing Co., Ltd.
Tokyo, Japan

Terada Yusuke
寺田 侑祐
Tokyo Educational Institute
(Tetsuryokukai)
Tokyo, Japan

Togashi Hideaki
富樫 秀昭
Japan

Tsuchimura Nobuyuki
土村 展之
Kwansei Gakuin University
Sanda, Japan

Ujimori Akira
氏森 瑛
SANBI Printing Co., Ltd.
Tokyo, Japan

Didier Verna

ジジエ ベルナ / 侍侍榮 舞瑠那
LRDE, EPITA

Le Kremlin-Bicêtre, France

Boris Veytsman

バリス ヴェイツマン
George Mason University
Fairfax, VA, USA

Zofia Walczak

ゾフィア ワルチャク
Polish TEX Users Group (GUST)
& University of Lodz
 Lódź, Poland

Alan Wetmore

アラン ウェットモア
Army Research Laboratory
Adelphi, MD, USA

Yabe Masafumi
家辺 勝文
Tokyo, Japan

Yada Tsutomu
矢田 勉
Graduate School of Letters,
Osaka University
Osaka, Japan

Yamakawa Kazuki
山川 和樹
SANBI Printing Co., Ltd.
Tokyo Japan

Yamamoto Munehiro
山本 宗宏
Green Cherry Ltd.
Chiba, Japan

Yato Takayuki
八登 崇之

Yatsui Tomoaki

Yazawa Yuko
矢澤 祐子

Yoshinaga Tetsumi
吉永 徹美
Tokyo, Japan

TUG2013—program and information

Tuesday,

22 October
18:00 registration and reception

Wednesday,

23 October
08:30 registration

09:00 Steve Peter

& Haruhiko Okumura

Opening message

09:15 Didier Verna TiCL: The prototype

09:50 Shizuya Hakuta LISP on TEX: A LISP interpreter written using

TEX macros

10:05 Andrew Mertz

& William Slough

A gentle introduction to PythonTEX

10:40 break

11:00 Yusuke Kuroki Tutorial: Introduction to tutorials

11:10 Tsutomu Yada Tutorial: An introduction to the structure of the

Japanese writing system

12:40 lunch

13:40 Didier Verna The incredible tale of the author who didn’t want to

do the publisher’s job

14:15 Hans Hagen How we try to make working with TEX comfortable

14:50 Keiichiro Shikano Tutorial: Indexing makes your book perfect

15:35 break

15:55 Jason Lewis How I use LATEX to make a product catalogue that

doesn’t look like a dissertation

16:30 Yasuhide Minoda TEX in educational institutes

17:05 Lu Wang & Wanmin Liu Online publishing via pdf2htmlEX

17:40 Frank Mittelbach The stony route to complex page layout

After a short break, an extra session

was held for those interested:

18:35 Hans Hagen What is ConTEXt? A short introduction.

Thursday,

24 October
08:30 registration

09:00 Yoshifumi Maeda

& Masataka Kaneko

Making math textbooks and materials

with TEX+KETpic+hyperlinks

09:30 Alan Wetmore Wind roses for TEX documents

10:05 Boris Veytsman

& Leila Akhmadeyeva

Plots in LATEX: Gnuplot, Octave, make

10:40 break

11:00 Yumi Takata Tutorial: Japanese typeface design—similarities and

differences from Western typeface design

12:30 lunch

13:30 Aleksandra Hankus

& Zofia Walczak

LATEX and graphics

14:05 Frank Mittelbach LATEX3: Using the layers

14:50 break

15:10 Masafumi Yabe Tutorial: Japanese text layout—basic issues

16:40 Yusuke Kuroki Tutorial: Notes on Japanese TEXt processing

16:55 break

17:15 Yusuke Terada Development of TeXShop—the past and the future

18:25 Norbert Preining TEX Live Manager’s rare gems: User mode and

multiple repository support

18:50 (Organizing Committee) Guidance for the excursion

Friday,

25 October
Full day excursion: letterpress printing and calligraphy workshops.

Saturday,

26 October
08:30 registration

09:00 Matthew Skala Tsukurimashou: A Japanese-language font meta-family

09:35 Takuji Tanaka upTEX—Unicode version of pTEX with CJK

extensions

10:10 Hiroki Kanou Tutorial: On the possibility of automatic balancing

of ideographic character design

10:25 Haruhiko Okumura Tutorial: Japanese typesetting for the

mathematically oriented

10:45 group photo

10:50 break

11:10 Ken Nakano

& Hajime Kobayashi

A case study: Typesetting old documents of Japan

11:45 Jin-Hwan Cho A case study on TEX’s superior power: Giving different

colors to building blocks of Korean syllables

12:20 lunch

13:20 Michael Cohen,

Yannis Haralambous,

Boris Veytsman

The multibibliography package

13:55 Pavneet Arora TANSU: A workflow for cabinet layout

14:30 John Plaice Typesetting and layout in multiple directions

15:05 break

15:25 Ross Moore Making mathematical content accessible using

Tagged PDF and LATEX

16:00 Hans Hagen How we move(d) on with math

16:35 Shinsaku Fujita The XΥMTEX system for publishing interdisciplinary

chemistry/mathematics books

17:10 Norbert Preining Distributing TEX and friends: Methods, pitfalls, advice

17:45 Norbert Preining Closing message

18:00 banquet

252 TUGboat, Volume 34 (2013), No. 3

TUG 2013 in Tokyo∗

Norbert Preining

In 2013, the TUG conference was held for the first
time in Japan, at the University of Tokyo. The
following was originally published on my blog [1] and
edited for publication. So you want to know what
you missed if you weren’t able to be there? Here are
my very personal recollections!

1 Pre-conference reception

The day before the actual conference started we had
a nice reception in the university building of the
conference. All kinds of snacks and drinks and warm-
up chat made the hours fly by. Although I came
straight from my home in Kanazawa and arrived a
bit late, I had a wonderful time. Especially for me,
meeting all the old friends I haven’t seen for long
time was a great pleasure.

2 First day

2.1 Morning

The first day started with an opening address of
Haruhiko Okumura1 and, via Skype, from the pres-
ident of TUG, Steve Peter. Steve brought his Ja-

∗ Thanks to Haruhiko Okumura and Pavneet Arora for

providing photos
1 For consistency we will use First Last for all names

here, with apologies to Japanese tradition to write the

surname first.

panese to a quasi-near-native level and was honored
with big applause for that (and probably also for
what he said, but I can’t remember that as well).

The first session brought presentations on ex-
tensions and reimplementations of TEX:

• Didier Verna — TiCL: The prototype
• Shizuya Hakuta — LISP on TEX: A LISP

interpreter written using TEX macros
• Andrew Mertz — A gentle introduction

to PythonTEX
While I am myself a great lover of Lisp, I somehow
couldn’t crank my brain to think about implement-
ing a typesetting engine in Lisp. Still, fun to hear
and see the development over the years. Shizuya
Hakuta’s talk was another proof that we can do
everything in TEX — which leaves the question of
whether we should do everything. Programming
Lisp in TEX doesn’t sound like something I will ever
want to do. But the technical accomplishment was
impressive! Finally, Andrew Mertz’s introduction
to PythonTEX helped a lot and gave a nice and acces-
sible starting point for using Python as an extension
in TEX.

The second session was dedicated to tutorials:
• Yusuke Kuroki — Introduction to tutorials
• Tsutomu Yada and Daniel Kobayashi-Better

— An introduction to the structure of the Japa-
nese writing system

A short introduction to the tutorials by Yusuke
Kuroki was followed by an excellent tutorial by
Tsutomu Yada and Daniel Kobayashi-Better on
the history, structure, and peculiarities of the Ja-
panese writing system. Filled with examples, old
and new, a very enjoyable time. Paired with the
insight into Japanese culture given by the combined
presentation of a professor and his assistant, it was a
memorable experience in all senses. I only hope they
can get permission to publish all their presentation
slides, since I would very much like to read over them
once more.

2.2 Afternoon

The first session in the afternoon brought two talks
and a tutorial:

• Didier Verna — The incredible tale of the au-
thor who didn’t want to do the publisher’s job

• Hans Hagen — How we try to make working
with TEX comfortable

• Keiichiro Shikano — Indexing makes your book
perfect

Didier’s second talk gave us funny stories about his
life as author-editor-fighter for human rights in the
publishing business. Filled with anecdotes on how
bad it can get when you are working with an in-

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 253

competent publisher, he reminded many of us of our
own hard times. Hans Hagen’s talk tried to make
us more comfortable with TEX — well, most of us
may already be comfortable with it, but I guess his
work is very much appreciated since levels of comfort
vary. Mine, for example, is very low. The moment
I see an \expandafter I run away screaming. The
indexing tutorial of Keiichiro Shikano gave a good
overview of problems with indexes in various lan-
guages, filled with nice examples of Manga usage for
teaching math/statistics.

After another break followed one of the high-
lights in my opinion (but then, there were so many
highlights!), a mixture of talks, each a pearl of
its own:

• Jason Lewis — How I use LATEX to make a
product catalogue that doesn’t look like a
dissertation

• Yasuhide Minoda — TEX in educational
institutions

• Wanmin Liu — Online publishing via
pdf2htmlEX

• Frank Mittelbach — The stony route to
complex page layout

Jason Lewis started off with how he managed to
generate a catalog for his wholesale business in down-
under, which used a lot of different techniques merged
together. I liked how he didn’t get religious and
presented TEX, Perl, MS Access and more, mixed
together to get his company working. The following
talk then blew me away: Yasuhide Minoda pre-
sented the installation of TEX as the main document
processor in a preparation school for the University
of Tokyo entrance exam. About 200 teachers there
were trained in LATEX, and now all the products,
from homework to internal notes, are done in LATEX.
That was completely beyond my imagination — a
history teacher, or classical Chinese teacher — using
LATEX. Same for the next talk by Wanmin Liu, who
presented a program to convert PDF to HTML. The
conversion is not done from the source code, but
from the PDF, and the output looks very much — of-
ten nearly indistinguishable — from the original PDF.
Great work. Finally, one of Frank Mittelbach’s
great talks on how complicated things can be, es-
pecially when in comes to multi-column typesetting
and the wishlist of users. I didn’t know till now that
this is so complicated, but now I do.

2.3 Evening

After the successful first day a few people spent the
rest of the evening in a nice izakaya (casual pub)
with food from the southern parts of Japan (Kyushu
and Okinawa), accompanied with lots of Orion beer,

fun talk, and much laughter.

3 Second day

The second day brought a big section on graphics,
two excellent tutorials on Japanese typefaces and
text layout, a hands-on tutorial on typing Japanese
on computers, and plenty of other talks.

3.1 Morning

The morning session started with a series of talks on
how to use various graphics packages:

• Masataka Kaneko — Making math textbooks
and materials with TEX+KETpic+hyperlinks

• Alan Wetmore — Wind roses for TEX
documents

• Boris Veytsman & Leila Akhmadeyeva —
Plots in LATEX: Gnuplot, Octave, make

Myself being a hard-core TikZ-user, I still enjoy see-
ing other graphics system. In the case of TEX+
KETpic+hyperlinks, I was surprised what can be
done. It would have been even more interesting
to me to see more actual code, as I want to know
whether it is easy to write such code. Alan Wet-

more’s talk presented us some beautifully designed
wind roses. I really appreciate these kinds of talks,
since we always have lots of technical talks; some
artistic design reminds us that we should go forth
and create beautiful works of printing. Last in the
first session was Boris Veytsman (who gets the prize
for the most questions — as far as I can remember he
had questions or comments after each talk) and Leila
Akhmadeyeva on how to automate plot generation
using make and Gnuplot and Octave.

Before lunch we had one tutorial, one I was
eagerly awaiting:

• Yumi Takata — Japanese typeface design:
Similarities and differences from Western
typeface design

This tutorial started with an excellent introduction to
Japanese writing styles and its history, only slightly
overlapping with the tutorial of the first day. After
that Yumi Takata got into the specifics of type
design and how to create the huge amount of glyphs
necessary. In the last part she gave a glance at the
difficulties of encodings in use. Although I personally
would have liked to hear more about the actual design
process and technical procedure, this tutorial was
one of the highlights for me. All the pieces were very
well presented and explained. Thanks!

3.2 Afternoon

The first session in the afternoon brought two talks:
• Aleksandra Hankus & Zofia Walczak — LATEX

and graphics

TUG 2013 in Tokyo

254 TUGboat, Volume 34 (2013), No. 3

• Frank Mittelbach — LATEX3: Using the layers
Our guests from Poland were very enthusiastic in
presenting the history and different options of using
graphics in LATEX. While there were a few omissions,
they did a very good job in reminding us of what
else there is besides TikZ. But maybe it was only
me who was reminded. Frank Mittelbach spoke
about LATEX3 and how it is structured — or how it
will be structured. While the future of LATEX3 is not
clear to me, even after that talk, I see the ‘use-now’
packages in ever-growing use in LATEX 2ε, so I am
confident that we will see further developments.

After a short break (Let me mention here that
the coffee breaks were excellent, too. The variety of
snacks, cakes, crackers, strange tube-shaped sweets,
fruit gelees, and much else I’ve forgotten, really drew
the attention of at least all the foreign attendees!
Thanks to the team!) another set of two tutorials:

• Masafumi Yabe — Japanese text layout:
Basic issues

• Yusuke Kuroki — Some notes on Japanese
TEXt processing

Masafumi Yabe is a long-term contributor to sev-
eral standards of Japanese text layout, and thus the
perfect source of detailed information. Layout of
the page in a typical Japanese book, details about
spacing between Japanese and non-Japanese glyphs,
vertical versus horizontal typesetting — you name it.
All the important information without losing oneself
into the details. After that, Yusuke Kuroki gave a
hands-on tutorial on how to actually input Japanese
text. Supported by fast-fingered Moe Masuko, they
explained how to input text on smart-phones as well
as computers in a variety of ways. He also gave some
warnings concerning implementations and spacing,
as well as the current state of TEX engines.

The last session brought two talks, on TeXShop
and TEX Live Manager:

• Yusuke Terada — Development of
TEXShop — the past and the future

• Norbert Preining — TEX Live Manager’s
rare gems: User mode and multiple repository
support

First, Yusuke Terada gave a good overview of the
current state of TEXShop, one of the very user-
friendly TEX editors on Mac, and how over the years,
thanks to him and other Japanese developers, the ca-
pabilities with respect to Japanese typesetting have
been improved. His experiments with his own name,
containing a special kanji, were very amusing, since
it often gets garbled up during operations. I guess for
many in the audience seeing these examples finally
made them understand how nasty beasts are lying
down there in the implementations, and often not

even companies like Apple manage them properly.
Unfortunately one talk had to be cancelled, namely
“TEX Live for Android”, since the presenter could
not attend the conference. A pity, as many had been
looking forward to that talk. The last one for the
day was my own talk on TEX Live Manager’s rare
gems, user mode and multiple repository support.
While I have talked already last year about multiple
repositories, a few more features have been added
over the year to tlmgr. And user mode, although
not often used, needed some explanation, too.

3.3 Evening

After the successful second day, not surprisingly, a
few people spent the rest of the evening in a nice
okonomiyaki place — a bit upmarket and posh, but
with excellent food. And Didier finally got his most-
beloved Japanese food, a nice Kyoto-style okonomi-
yaki (a savory Japanese pancake) . . . not to forget
the beer.

4 Third day — Excursion

The third day of the conference was dedicated to an
excursion to the Tokyo Printing Museum [2] housed
in the Toppan Printing Company’s building. Divided
into three groups, we took turns in three activities:
a guided tour through the museum, a letterpress
printing workshop, and a calligraphy workshop.

4.1 Printing museum

After arriving in the museum with the bus and first
introduction the three groups started off into their
courses. My group started with the guided tour, and
I was responsible for translating the guide’s explana-
tions from Japanese to English for our foreign guests.
I must apologize here for the poor and incomplete
translations.

Before entering the main exhibition space we
were guided along a wall filled with replicas of fa-
mous objects related to writing. From a copy of
the stele of the Code of Hammurabi (the original
is in the Louvre), over ancient Chinese and Japa-
nese prints, to a Gutenberg Bible, from French cave
drawing over Japanese Hanga art to modern books
and ads, all in replicas, all to be touched, all to be
experienced. It was the second time that I visited
the museum, and I believe this is an interesting and
funny idea. Of course it is impossible to have all
the originals, but the collection along the timeline
creates an interesting effect.

The guided tour was followed by some free time
to explore the exhibition space and a lunch at the
restaurant in the same building.

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 255

4.2 Calligraphy workshop

Satisfied with the morning and with stomachs filled
we were off to the calligraphy workshop. An initial
introduction and welcome message followed by two
teachers showing us the variety of calligraphy by
writing the Japanese letter for wind 風, and let us
compare their two writings. One I could recognize
without any problems, the other on the contrary
looked so stylistic that I had no chance of recognizing
it — even Japanese colleagues nearby slightly twisted
their heads while trying to decipher it.

After that we were shown how to make ink,
how to use the brush, some techniques on drawing
lines, etc. And then we dived into practice. All of
us had a bunch of exercise papers which we filled
more or less eagerly with our own inspiration. I for
myself was a complete newcomer to calligraphy. I
remember the only time I had to write with a brush
was during my wedding in a Japanese shrine, and I
was so nervous that I did not even manage to write
the most simple things, not remotely thinking of
calligraphy and style. So I considered this my first
trial, and consequently filled page after page with
simple kanjis — or kanjis I thought to be simple: 山
(mountain), 岳 (peak), 水 (water), 道 (path), and
words like 山岳 (mountains) etc. (I realized that I
have an inclination to mountains, not so strangely
for those who know of my non-TEX activities!)

After having practiced for some time — and me
actually running out of exercise paper due to my
frantic writing — we were told that now is the time
to create our masterpieces. Meaning that we got a
nice (and bigger) piece of paper, and a bigger brush,
and should decide on something to write, meditate
on the meaning of this particular word or sign, and
then draw it full of our own feelings. After everyone
has finished this and some signing and stamping a
seal onto the masterpieces, everyone stood up and
explained what he wrote and why.

I choose the path 道, with a quite wild look and
the character somehow running out of the frame. For
me it was a bit like my future, unclear on how and
where. Others wrote words related to printing, to
feelings, to their families. All very interesting and
nice pieces of personality, if not to say of art.

After packing up all our exercise sheets and mas-
terpieces we were sent off with more presents — a

calligraphy written by one of the masters, candies,
and origami — and returned to the printing museum.

4.3 Letterpress printing workshop

Returning to the printing museum, we had more free
time. Some explored the exhibition space as well
as the temporary exhibition on the first floor, some
retreated to the coffee house for relaxation. But
soon we all gathered together for the last activity
of the day, the letterpress printing workshop. We
were about to set our names in katakana and print
bookmarks with it. We started with putting the
metal types into the composing stick. This wasn’t
so difficult except for the small metal types and my
clumsy fingers.

Having managed to compose our names and cen-
tering it (and getting my name’s spelling corrected —
after four years I still have problems), the names
were transferred into a bigger frame by the instruc-
tor, put into the letterpress printing machine, and
after some trial runs we were ready to print our book-
marks. Splitting them carefully and packaging them
up, we had to wait for a day or so, but now all of us
have three beautifully printed bookmarks with our
names — self-made!

TUG 2013 in Tokyo

256 TUGboat, Volume 34 (2013), No. 3

Having finished the printing workshop, we still
had time to explore the surroundings of the workshop
room, where many strange and disturbing things
could be found: Metal type of Japanese kana at
3.5 pt — that is so small that I couldn’t even see
the letters on it, never mind trying to move them.
Also real type, I mean not electronic fonts that have
been downloaded, but real metal types of hundreds
of fonts. How beautiful. I could have spent hours
digging through old fonts, and trying to print all
kind of things by myself.

But soon we had to leave for the last part, a
movie of typesetting math — in the old style. The
printing museum personally set a page of mathemat-
ics in old style for us, made a movie and — incredi-
ble — a 3D animation how the setting was done — in
which order, which pieces come in when. We were
all deeply impressed, both by the difficulty of setting
math by that method, and the love of detail with
which they have produced the movies. Here you see
the final metal frame used to print the mathematics.

Filled with lots of new experiences we left the
museum at around 6 pm for the conference and hotel

area. From the feedback we got already on the bus,
everyone really enjoyed the time.

4.4 Evening

After this once again fully packed day, I ventured
out with other organizers and spent the evening over
excellent fish, delicious sake, long discussions about
typography, the conference, and much more.

5 Last day

The last day brought a wild mixture of math, fonts,
touching various aspects and exhibiting the power of
TEX & friends far from its original target.

5.1 Morning

The morning session started with two talks and two
short tutorials related to Japanese typesetting and
typography:

• Matthew Skala — Tsukurimashou: A
Japanese-language font meta-family

• Takuji Tanaka — upTEX: Unicode version
of pTEX with CJK extensions

• Hiroki Kanou — On the possibility
of automatic balancing of ideographic
character design

• Haruhiko Okumura — Japanese typesetting
for the mathematically oriented

In the first talk Matthew Skala introduced the au-
dience in a very humorous style to the components
of kanji, and how he is using them in building up
a Metafont family for Japanese (and more). En-
riched with lots of Manga-like cartoons and episodes
he not only presented the essentials of his Tsukuri-
mashou project, but also additional tools for search-
ing in large kanji-corpora for constituents. For a
practical one-man-project, a very impressive achieve-
ment. The next talk also featured a one-man project:
Takuji Tanaka’s upTEX, a Unicode-enabled version
of pTEX, the main typesetting engine in Japan. I
myself am deeply in gratitude to Tanaka-san, as I
use upTEX almost exclusively. Many of my files are
UTF-8, and in addition contain not only ASCII, but
also German umlauts and other Latin-1 characters.
A breeze with upTEX — big thanks!

After the two regular talks a scheduled presen-
tation on the history of TEX in China unfortunately
had to be canceled due to visa problems. Two Japa-
nese colleagues graciously stepped forward to give
short tutorials. The first was by Hiroki Kanou on
automatic balancing in character design. I think
the few participants included in the audience very
much enjoyed the presentation, as it gave interesting
points on how to balance stroke width in ideographic
characters to achieve a balanced output. What type

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 257

designers for Latin characters normally do on a one-
by-one basis requires some approach of automation
to achieve in the context of thousands of ideographs.
The second tutorial by Haruhiko Okumura recapit-
ulated the spacing aspect of the tutorial on Japa-
nese text layout from the second day, but targeting
mathematicians, by providing a representation of the
spacing rules compressed into a simple table.

After the obligatory group photo we had another
session before lunch with two excellent presentations
on the power of TEX:

• Ken Nakano & Hajime Kobayashi — A case
study: Typesetting old documents of Japan

• Jin-Hwan Cho — A case study on TEX’s
superior power: Giving different colors to
building blocks of Korean syllables

Ken Nakano told us about the great pains their
company has to go through to typeset old documents,
with all the scientific necessity of corrections, cor-
rections of corrections, corrections of corrections of
corrections . . . and so on. Packaging all of these
peculiarities into macros and producing an actual
well-printed book was very impressive. During my
studies of Latin and Greek I was often confronted
with ‘critical apparatus’ as it is called, pages of ref-
erences and citations and quotations. But what was
shown there surpassed the worst critical apparatus I
have ever seen.

The last talk before lunch was by our honored
guest from Korea, Jin-Hwan Cho, well known for
his contributions to various Korean TEX packages
as well as the main author of dvipdfmx, widely used
not only in Korea but also in Japan. His talk gave
a short introduction to the Hangul characters and
their formation, followed by an excursion into auto-
composition of all the Hangul characters from rela-
tively few components. And as a consequence the
ability to display the parts of Hangul ideographs in
different colors, something completely unthinkable
with any other software. It was particularly interest-
ing for me to see the relation between the first talk
and this one, both touching the problem of how to
compose glyphs from simpler components.

5.2 Afternoon

The first session in the afternoon brought three talks:
• Michael Cohen & Boris Veytsman — The

multibibliography package
• Pavneet Arora — TANSU: A workflow for

cabinet layout
• John Plaice — Typesetting and layout in

multiple directions
Michel Cohen and Boris Veytsman presented a
new approach to bibliographies, based on the idea

that having references sorted in only one way might
not be sufficient, and differently sorted views onto
the references should be provided. I think it an
excellent idea, particularly for online publications
where page limits are not so strict, especially for all
those bibliographies with hundreds of entries. I see
a great potential for this idea, but would like to see
it integrated into the biblatex package.

Pavneet Arora gave us a view into a different
world, the world of interior design, especially quick
sketch-ups of cabinets using TEX and friends. Inte-
grating many different tools (YAML, TEX, Asymp-
tote, etc.) into a professional workflow.

Before the break, John Plaice, renowned as a
co-creator of Ω, guided us through the intricacies of
typesetting directions and mixing them. With his
long years of experience in dealing with these prob-
lems, John described a concise and clear blueprint
for complete support of all necessary text directions,
as well as guidance in the problems of mixing direc-
tions. His examples were very elaborate — but most
impressive was how fast and without any failure he
could pronounce the word ‘pneumonoultramicroscop-
icsilicovolcanoconiosis’.

After another short break, we had the last ses-
sion of this conference:

• Ross Moore — Making mathematical content
accessible using Tagged PDF and LATEX

• Hans Hagen — How we move(d) on
with math

• Shinsaku Fujita — The XΥMTEX
system for publishing interdisciplinary
chemistry/mathematics books

• Norbert Preining — Distributing TEX and
friends: Methods, pitfalls, advice

Accessibility is more and more often a requirement for
many publications. Ross Moore gave us a view of
what is possible with tagging PDFs for proper audio
reproduction. The demonstrations were quite funny,
because the Adobe Acrobat program seems to ran-
domly decide which document to read out loud, and
then stick to it for a long time. Still, it was impressive
to see what difference can be achieved in the audio
output of the PDF content by adding some features.

After this multimedia experience we returned
to the original virtues of TEX in Hans Hagen’s talk
on math typesetting. Recapitulating the history and
presenting the current status, Hans came to the sad
conclusion that TEX is no longer paving the way, but
running behind other players. But he didn’t leave us
completely without hope. As the cards are remixed
several times, TEX might jump forward again with
new techniques mixing OpenType features with the
layout excellence of TEX.

TUG 2013 in Tokyo

258 TUGboat, Volume 34 (2013), No. 3

The following talk by Shinsaku Fujita on the
XΥMTEX system gave insights into the development
and usage of his drawing package for chemical struc-
tural formulas. Enriched with many examples from
his books, it was a great pleasure to see XΥMTEX
in action.

I myself had the honor to give the last talk of
the conference on distributing TEX Live. I tried to
give a quick overview of what distributors (such as
Debian, Red Hat, SuSE, . . .) have to take care for
when re-packaging TEX Live for the respective distri-
butions. Since I am involved in both the upstream
development of TEX Live as well as the Debian re-
packaging of TEX Live, I thought it would be good
to sum up common mistakes and errors which we
encounter.

Another very full day was finished, and I also
had the honor to give the closing remarks.

6 Closing

As it was my honor to close the conference I want to
convey the same thoughts I tried to express during
the closing address. Let us start with the hard facts:
141 active participants (at least), 35 interesting and
funny talks, an excursion full of experiences, and not
to forget the long chats during breaks, dinner, at
any free time. It might be one of the best-attended
TUG conferences ever. I have only been at TUG 2012
in Boston, and only checked a few of the former
conferences, but thanks to the huge interest in the
Japanese TEX community the number of participants
exceeded all our expectations.

And not only the number of participants, but
also the number of presentations — 35, some of them
1.5 hr tutorials — made for long and dense days. And
in spite of this challenging schedule, most partici-
pants attended virtually all the talks, even when we
finished around 8pm. The variety of talks was not
less than at any other TEX conference, something I
really appreciate — one never gets bored.

6.1 Conference dinner

After all the formal talks and greetings we changed
over to another event, the conference dinner. Our
excellent guide during the evening, Harumi Ase, led
us through a program of speeches by Nelson Beebe,
various toasts by Shinsaku Fujita, greetings from
Haruhiko Okumura as the chair of the organizing
committee, as well as a closing message by Barbara
Beeton. All accompanied by excellent food and lots
of drinks. Even after the Sambon-jime led by Yusuke
Kuroki the drinking and partying continued until
we had to leave the dinner location. A memorable
conference dinner for a memorable conference!

6.2 At the end

It was the first time that the TUG conference came to
Japan, and I remember well the first reaction of my
Japanese colleagues to this proposal: ‘The Japanese
side is not ready for this.’ I think the conference
showed all of us, the guests as well as the hosts,
that the Japanese TEX users were in fact very well
prepared. And for this my gratitude goes to all the
Japanese TEX users, the organizing committee, the
excellent lecturers and tutorial speakers, and all the
participants.

My hope — and my feeling tells me I am not
completely wrong — is that every participant could
take home some great idea, some new knowledge,
something that will improve, extend, diversify our
TEX experience in the long run. For me personally,
this was definitely the case.

The organizing committee sent the original poster
for the conference to DEK, with this inscription.

References

[1] Blog — there and back again.
http://www.preining.info/blog/.

[2] Tokyo printing museum.
http://www.printing-museum.org/en/.

⋄ Norbert Preining
Japan Advanced Institute of

Science and Technology
Nomi, Ishikawa, Japan
norbert (at) preining dot info

http://www.preining.info

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 259

The incredible tale of the author who
didn’t want to do the publisher’s job, but
eventually had to because the publisher
didn’t have a clue about typesetting,
although to be honest, the author did
some stupid things as well, but fortunately,
everything is all right now, however this
is an experience the author wouldn’t wish
upon anyone, but is still going to narrate it
for your greatest enjoyment, and will do so
both crying and laughing (yes, that was the
title)

Didier Verna

Abstract

In this article, I relate a recent experience of mine:
writing a book chapter for a publisher who doesn’t
have a clue about typesetting. I confess my futile
attempt at using TEX for writing the chapter in
question. I describe the hell that descended upon me
for daring to do that. I however admit that the hell
in question would have been even greater, had I not
done so. This article is both a nervous breakdown
and a peal of laughter, and I am seeking for the
reader’s comfort.

1 Prologue

The story began on May 07, 2011, when I received
an invitation to author a chapter for a particular
Computer Science book. Here is an excerpt from the
email I received:

The objective of the book is to provide origi-
nal academic work about current research . . .
a comprehensive overview . . . comprehensive
material . . . provide new results and answers
to some open problems . . . indispensable for
researchers, professionals and practitioners as
well as for educators who would like to have
a comprehensive . . . , useful resource for grad-
uate and undergraduate level courses.

Well, a book containing practically everything,
and targeted at practically everyone. That sounded
like quite a challenge, and I decided to accept it. I
sent a proposal on June 14.

On July 20, I received an email informing me
of the acceptance of my proposal. The message
contained a URL pointing to a chapter template, and
two attachments with some “chapter organization
and formatting guidelines” and some “details to keep
in mind”. All of this sounded fine, but my ears were
already starting to tickle me: why a chapter template,
why guidelines, why in two different attachments?
Don’t they provide a style or a class file?

I looked more closely, and that is when I discov-
ered that the provided chapter template was in fact
a Word document, and that the two attachments
were in docx format.

�
Then, I started to worry.

On top of that, I had several questions that were
not answered in the documents I received, so I asked
them by email to the editor (my only contact then)
on July 21. What about copyright assignment? Do I
get a contract of some sort? How is the book going to
be published: online, on paper? Will it be available
for sale or for free? With an open source license? Do
I get royalties on the sales . . . etc. The next day, I
got the following response.

My responsibility is out of scope of publishing.
At this point I don’t have the answers to your
questions. I need to contact the publisher.

Well, thank you very much, because you see, these
are important issues nevertheless . . .

2 Submission

After thinking about it for some (very short) time, I
decided to be clever. I sent my initial submission on
October 4, in PDF format. I explained to the editor
that I had written the chapter in LATEX because there
was no way I could work with Word. I also promised
that I would convert it to Word for the final version,
in order to comply with the publisher’s requirements.

The editor had no problem with that, and then
followed a reviewing period (contents only!) until the
final acceptance of the chapter (contents only!) on
March 10, 2012.

Let’s be clever? Not so much . . . In terms of
PDF to Word conversion, I had spotted at least a
dozen websites offering this service for free before,
so I thought it was going to be easy. That’s why, in
all my self-sufficiency, I waited until the last minute
before taking care of that. First, I had some minor
adjustments to do.

Unnumbered sections No, the publisher doesn’t
want section numbers. Don’t ask. Easy enough to
do in LATEX, though. One just needs to use starred
sectioning commands. Oh, but on second thought,
what happens to all those nicely varioref-formatted
section references? Gone is the answer, I think. So I
had to get rid of those, and find a textual workaround
to point the reader to other parts of the chapter,
without numbers. Very convenient indeed. Dammit.

No figures (go figure) Yes, the publisher wants
the figures in a separate zip file, not in the chapter
itself. Don’t ask. Surely, they have implemented

The incredible tale of the author who didn’t want to do the publisher’s job, etc.

260 TUGboat, Volume 34 (2013), No. 3

Calcagno, C., Taha, W., Huang, L., and Leroy, X. (2003).
Calcagno, C., Taha, W., Huang, L., & Leroy, X. (2003).

Manipulation (PEPM), pages 95-99. ACM SGPLAN.
Manipulation (PEPM) (pp. 95-99). ACM SGPLAN.

Symbolic Computation, 13(1-2):51-55.
Symbolic Computation, 13(1-2), 51-55.

Figure 1: Bibliographic format divergences

unzip and TEX’s float placement algorithm with
Word macros. Anyway, easy to do in my LATEX
source file, but then again, I had to rewrite all the
figure references manually.

So I eventually recompiled my PDF with those
adjustments, and started using a PDF to Word con-
version service. At the last minute (did I say so,
already?).

��
At that moment, all hell descended upon me.

Big mistake #1 The conversion didn’t work very
well, and that is a euphemism. Basically, the font size
was ok, and everything else was lost: font families,
shapes, verbatim and code formatting. Everything.
And because I did that at the last minute (did I say
so, already?), I decided that it would be safer for me
to spend the last night restoring all that was lost by
hand directly in Word, rather than trying to look
for yet another half-baked service in the naïve hope
that it would work better. So I took my little mouse
with me and went through all 30 pages, clicking like
crazy. Welcome to the world of WYSIWYG.

Here, I must confess that in the heat of the mo-
ment, another simpler and totally obvious alternative
didn’t even occur to me. Months later (in fact, when
I was preparing the slides for TUG 2013), I realized
that I could have opened the PDF file resulting from
the LATEX compilation, selected the whole contents,
and just cut and pasted it into Word. I tried that
and it actually went better than any of the online
conversion services I tried. Shame on me . . .

Big mistake #2 The second big mistake I made
was to not use the exact bibliographic style the pub-
lisher wanted. More precisely, the author instructions
mentioned “strict APA” conformance, and I simply
used apalike. In the end, there were subtle differ-
ences in the formatted bibliographic output, some of
them illustrated in figure 1. I also had some errors
in the .bib files which led to incorrect sorting and
other oddities.

Here, the obvious choice would have been to go
fix the .bst file in order to produce the desired out-

put, and regenerate the PDF. But do you remember
that I had already spent hours fixing Big mistake
#1 in Word? I simply couldn’t bear the very idea
of having done so for nothing, so I decided to go fix
all those details by hand, in the Word document.

3 Interlude

I am a Boduka. I practice martial techniques in order
to reach ultimate self-control, peace and harmony
with the Universe. Let’s breathe. Deeply. Okay.

In the meantime, I had my first contact with
people from the publishing company (remember that
until now, my only contact was with the book editor).
On August 28, I received an email from the publisher,
part of which is transcribed below.

From: marketeer #1
Greetings! . . . personally thank you for your
excellent contribution! [lots of marketing crap]
Your development editor, marketeer #2, very
much enjoyed working with you, and now as
your marketing representative, I look forward
to assisting you with your promotional efforts.

First of all, I am delighted to learn that marketeer
#2 “very much enjoyed working with me”, although
I feel the urge to mention that I had never heard of
this person before. Next, let me see if I understand
this correctly: I am writing a book chapter for which
I am most likely not going to be paid, and in their
infinite generosity, the publisher is kindly offering to
assist me in promoting the book that they are going
to sell?

But wait. There’s more.

I have also created an Exclusive Discount Of-
fer form. This form allows you to order one
or more copies with our exclusive author dis-
count.

So, I am writing a book chapter for free. I have to do
the promotion of the book myself, and in their infinite
generosity, the publisher is kindly offering a discount
for me to actually buy the book I’m contributing to
write??

But wait. There’s more.

You will hear from us again regarding how
to access a complimentary PDF copy of your
individual chapter in the book.

Wow wow wow. Hold it right there. I am writing a
book chapter for free. I have to do the promotion
of the book myself. I will have to buy the book I’m
contributing to write, and in their infinite generosity,

Didier Verna

TUGboat, Volume 34 (2013), No. 3 261

the publisher is kindly offering me a “complimentary”
PDF of my own chapter, which I wrote myself, and for
which, obviously, I already have a PDF, and what’s
more, of a much better quality since it has been
generated with pdflatex???

In fact, the situation was not so bad as it seemed
in the first place. 3 clauses in the copyright assign-
ment form I eventually received contained implicit
answers to some of my original questions.

2. Author(s) understand that no royalties or
remuneration will be paid by the Publisher to
the author for the above named submitted man-
uscript. Further, Author(s) acknowledge the
manuscript is being provided on a volunteer
basis for the professional recognition obtained
by the publication.

Read: I work for the glory.

5. The Publisher will have the right to edit
the work for the original edition and for any
revision, provided that the meaning of the text
is not materially altered.

We will see later on how a publisher who doesn’t
have a clue about typesetting can actually alter the
meaning of the text without even realizing it . . .

6. The Publisher will furnish 1 copy of the
book to the lead Author of each chapter without
charge. The coauthor(s) of the manuscript will
receive a copy of the manuscript along with a
copy of the title page of the book. Copies of
the book for the author’s/co-author’s use may
be purchased at a 40% discount from the list
price.

So after all, I will get a free copy of the book. And
thank God I wrote my chapter alone, because I would
have hated to have to explain to my co-authors that
they had earned the right to buy the book . . .

4 Proofreading

After all this agitation, I honestly thought that the
worst was finally behind me. Little did I know . . .

On September 11 (notice the date?) I got a new
message from yet another person at the publisher’s,
inviting me to proofread the book (or at least, my
own chapter):

From: yet@another.guy
I am very pleased to send you the proof of the
book. Please copy and paste this link into your
browser: http://. . . /EditorProof.pdf

I haven’t mentioned yet the apparent publisher’s con-
cern for security, requesting digitally signed copyright
assignments as well as paper copies and so on. All of
this for putting the editor-proof version of the book

Before:

(defclass face ()

((name :initarg :name)

(bold :initarg :bold)))

After:

(defclass face ()

((name:initarg:name)

(bold:initarg:bold)))

Figure 2: Removing spaces between identifiers

online and sending the url in the clear by email . . .
Anyway. The deadline for proofreading was 6 days
later only, there was a list of items to specifically
check for, and there was also the following comment
in the message.

Please do not be concerned with house style
layout application, such as font type / size;
title and subtitle styles; spacing and formatting

For some reason, this smelled very bad to me, and
I decided to pay a very special attention to those
points. I was quite right (but that, you guessed)!

On September 17, I finished proofreading my
chapter, and sent the following message.

To: yet@another.guy
There are many things that have gone wrong
in my chapter. Some of them may belong to
your “do not be concerned with house style”
category, but they are so worrying that I need
to mention them anyway.

Then, I started enumerating, by decreasing DEF-

CON level, all the things that had gone wrong in my
chapter, between my Word version and their PDF.

Figures swapped My chapter contained exactly
two figures. They managed to swap them. Figure 1
was referencing figure 2 and vice-versa. That’s what
you get when you don’t let your typesetting software
automate the referencing (let alone the placement).

Code excerpts Originally, I had a nice layout
for my code examples, automated with lstlisting.
They completely messed up all of them. Worse:
probably by editing the code manually.

First, they “conveniently” removed all spaces
appearing before colons, as shown in figure 2, hereby
concatenating all consecutive tokens of code. Re-
member clause #5 in the copyright assignment?

The Publisher will have the right to edit the
work [. . .] provided that the meaning of the
text is not materially altered.

Well, there you go!

The incredible tale of the author who didn’t want to do the publisher’s job, etc.

262 TUGboat, Volume 34 (2013), No. 3

INTRODUCTION

Domain-specific language (DSL) design and

implementation is inherently a transverse activity

(Ghosh, 2010; Fowler, 2010). It usually requires

from the product team knowledge and expertise in

Figure 3: Fancy spacing

Next, they “prettified” the double quote string
delimiter character: (show-keys :key2 "test") be-
came (show-keys:key2 “test”). Cute, but not a
string anymore.

Pretty much all code excerpts also had their
indentation completely messed up, and I’m not even
mentioning hyphenation (hint: what happens when
you hyphenate a variable name, in a language which
allows dashes in identifiers?).

Again, all of this is what happens when someone
clueless about what a programming language actually
is, starts editing code excerpts by hand.

Inline quotes The formatting of inline quotes,
originally achieved with the quote or quotation

environments was gone. Basically, all quotations
were turned into mere paragraphs, and therefore
indistinguishable from the surrounding text.

Float positions and references Along with the
two figures I mentioned earlier, my code excerpts
were all floats, placed automatically and referenced
with varioref. All placements and references were
destroyed, again, probably by manual editing. Here
are just two examples of what I got:

Blah blah blah . . . is given below in Box 10.

Hint: the box below is Box 9.

Which we can use like this as shown in Box 4:

That sentence, which is not even a correct one (note
the trailing colon), was standing alone as a whole
paragraph in the middle of a page. The box was not
even there.

Spacing Finally, there were spacing problems in
almost every page of the chapter. Figure 3 illustrates
this. I particularly enjoy the “readability” of the
4th line, and I guess this is what you get from a
typesetting system which is clueless about aesthetics.

5 Epilogue

Facing all this mess, and without the ability to fix
things myself, I ended up wasting countless hours
carefully reviewing every single page, locating all the
problems and noting them down for email reporting,
which I eventually did. On September 21, I received
the following message (note the sender).

From: no-reply
I would like to take this opportunity to express
our many thanks for your excellent contribu-
tion . . .

At the following link you will be able to
access a printable copy of your final typeset
chapter in PDF format . . .

Unsurprisingly, many of the problems I had re-
ported before were still unfixed, and new problems
had appeared. I performed yet another careful re-
view of the chapter, and boldly worked around the
no-reply individual, sending my new report to all of
my previous contacts at the publisher’s. I didn’t get
any response, but by the looks of the actual book I
received, most of the remaining problems were indeed
fixed.

Several months later, when the book was printed,
I received this final message (note the sender again).

From: no-reply
Again, thank you for your outstanding contri-
bution, and we look forward to working with
you on another project.

Well, maybe not! ,

6 Acknowledgment

As far as I could see in the editor-proof version of the
book, most problems I encountered with my chapter
(in code formatting notably) also affected the other
ones, which, I guess, is not really surprising.

In all this marvelous adventure, I wish to express
my gratitude to the editor of the book, who invited
me to write a chapter for it in the first place, and
who contributed greatly to the holly hunt for typos
and formatting mistakes, not in one chapter, but in
the whole book.

⋄ Didier Verna
EPITA / LRDE
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre Cedex
France
didier (at) lrde dot epita dot fr

http://www.lrde.epita.fr/~didier

Didier Verna

TUGboat, Volume 34 (2013), No. 3 263

How to make a product catalogue that

doesn’t look like a dissertation

Jason Lewis

Abstract

Needing a robust way to produce a catalogue from
a product database, Adobe InDesign, DocBook and
LATEX were evaluated. LATEX was favoured due to its
layout flexibility and non-proprietary nature. The
challenge was to query the database and produce
suitable LATEX for the catalogue

Native LATEX was unable to query the database,
so templating tools were investigated. Template
Toolkit (TT) was chosen over PHP, favouring its Perl
roots and broader applicability. Using TT and DBI for
querying the database a dynamically generated LATEX
document can be quickly constructed. TT filters are
developed to check and correct user supplied content
for constructs that would cause the LATEX compiler
to fail. Filters are also used to sanitise Windows file
paths for use in LATEX.

Styling the document to look like a product cat-
alogue was achieved using sans serif fonts, flowfram
thumb tabs, colourful chapter and section headings
developed using tikz, long tables that allow page
breaks, alternating row colours, wrapping of para-
graph text around images and the highlighting of
new products. Full page PDFs are included in the
document for the covers, front matter and adverts.

The result is system to generate a product cata-
logue, quickly and easily directly from our database
using free and open source tools. This has reduced
the workload in producing a catalogue and increased
staff productivity and efficiency.

1 Introduction

I produce an 80 page full colour product catalogue
in LATEX. This paper outlines the tools I used to
implement the system, link it to our database and
style the catalogue for printing.

We print a new catalogue every six months and
it has approximately 1000 products, 16 full page
colour adverts and takes less than two minutes to
build from the command line.

2 Why did I write this?

I am part owner of a small wholesale distribution
business in Australia. When we established the busi-
ness in 2001, we had approximately 40 products in
our catalogue, for which a one page price list and
order form in Microsoft Excel sufficed.

As we grew the business and added more prod-
ucts to our portfolio, the catalogue became unwieldy

to produce in this way. So in 2004 I set out to create
a more robust system to produce it.

My goals were to create a system that would
produce a product catalogue automatically from our
database, wouldn’t require long and detailed proof
reading to ensure pricing was correct, be something I
could delegate to staff for catalogue production, and
that the staff need not have any special technical
knowledge to use the system.

2.1 Tools I looked at

First, InDesign:

• InDesign at the time had limited scripting ability.
This has improved now and you can write scripts
in Microsoft Visual Basic or JavaScript.

• no proper database connectivity at the time.
There are now numerous commercial tools that
allow you to link InDesign to a database.

• proprietary software (I prefer to use free tools if
possible).

Second, DocBook [1]:

• limited formatting and layout capabilities
• recommends using LATEX for advanced layouts
• no database connectivity
• plain text, easy to script using a template tool

Third, LATEX:

• flexible layout capabilities
• free and open source
• no database connectivity
• plain text, easy to script using a template tool

3 The challenge

3.1 How to script LATEX?

I could have written the system in native LATEX but
LATEX has no way to retrieve data from a database.
The other option was to choose a tool like PHP or
Template Toolkit (TT).

3.2 PHP

Pros: PHP is widely used.

Cons: geared towards HTML/web; it’s PHP; it’s
not Perl.

3.3 Template Toolkit

Pros:

• Generalised to templating anything
• not PHP

• written in Perl
• Template::Plugin::Latex can output PDF

directly; can build manually for demonstration.

Astute readers might notice a slight bias towards
Perl. This was mainly due to having prior knowl-

How to make a product catalogue that doesn’t look like a dissertation

264 TUGboat, Volume 34 (2013), No. 3

edge of Perl and meant I didn’t have to learn a new
programming language.

3.4 Database driven documents

Template Toolkit uses Perl’s DBI for database access,
which means it can retrieve data from just about
anything. Our data is stored in Microsoft SQL and
Microsoft Access. I use DBI Proxy [2] to connect to
the MS Access database.

3.5 Compiling reliably

Building the catalogue from source is a two step pro-
cess: running Template Toolkit, and then passing its
output through pdflatex. I created a Makefile to do
this, but often the document would require multiple
runs to ensure all the cross-references were correct. A
tool such as latexmk [3] or rubber [4] helps with this
by providing a single command that will repeatedly
run pdflatex until all cross-references are stable.

3.6 User interface for entering data

to the catalogue

I needed a user interface for data entry. I chose MS

Access as being easy to script, it was a familiar user
interface for the staff, and I already owned it. The
downside is that of course it is a proprietary tool.

4 Template Toolkit Primer

Here’s how I scripted LATEX using Template Toolkit.

4.1 Install Template Toolkit

Cpanminus [5] is a great tool to retrieve, unpack,
build and install Perl modules from CPAN:

cpanm Template

cpanm DBD::CSV

cpanm DBI

cpanm Template::Plugin::DBI

Now we have Template Toolkit, DBI, and some ancil-
lary modules installed, and can try writing a simple
Hello World.

4.2 Hello World

tpage is a simple script supplied by TT that parses
a template file supplied on the command line and
outputs it to standard output. Given this two-line
template file:

[% str = ’Hello TUG2013’ -%]

[% str %]

We can parse and output it like this:

$ tpage helloworld.tt

Hello TUG2013

Anything within [% %] will be treated as TT code
and executed. The minus sign before the closing

delimiter above strips the final newline from that line
upon output; similarly, a minus sign after an opening
delimiter (as below) removes a leading (preceding)
newline.

4.3 Read a CSV file

Let’s suppose we have this table of data:

Table 1: simple-example.csv

FirstName LastName FavouriteNumber

Jason Lewis 34
Joe Blogs 2
Frank Sinatra 88

Here is TT code to parse it, using DBI to access
the file as a database in the current directory:

[%- USE db = DBI(

database => "DBI:CSV:f_dir=.") -%]

[%- FOREACH item = db.query(

"SELECT * from simple-example.csv") -%]

FirstName: [% item.firstname %] \

LastName: [% item.lastname %] \

Favourite: [% item.favouritenumber %]

[% END %]

Note that the column headings of table 1 were sani-
tised to lower case by DBI::CSV.

4.4 Write your own parser

Well not quite, but Template Toolkit makes it easy
to implement a TT parser:

#!/usr/bin/env perl

use Template;

die "no TT filename given" if (@ARGV != 1);

my $tt = Template->new({

INCLUDE_PATH => ’.’,

INTERPOLATE => 1,

}) || die "$Template::ERROR\n";

my $input = $ARGV[0];

process input template, substituting variables:

$tt->process($input, $vars)

|| die $template->error();

This creates a TT object and parses the file whose
name is supplied on the command line. So far, this
just provides the same functionality as tpage.

4.5 Build your LATEX document

Here we write our LATEX document, including the
TT lines to read from the database.

[%- USE db = DBI(database =>

"DBI:CSV:f_dir=.") -%]

\documentclass{article}

Jason Lewis

TUGboat, Volume 34 (2013), No. 3 265

\usepackage[utf8]{inputenc}

\title{build-document example}

\author{Jason Lewis}

\date{October 2013}

\begin{document}

[%- FOREACH item = db.query(

"SELECT * from simple-example.csv") -%]

First Name: [% item.firstname %]

\\ Last Name: [% item.lastname %]

\\ Favourite Number: [% item.favouritenumber %]

\\ \newline

[% END #FOREACH -%]

\end{document}

Output (where mytpage is the script we just saw):

$./mytpage build-document.tt

\documentclass{article}

\usepackage[utf8]{inputenc}

\title{build-document example}

\author{Jason Lewis}

\date{October 2013}

\begin{document}

First Name: Jason \\ Last Name: Lewis

\\ Favourite Number: 34 \\ \newline

First Name: Joe \\ Last Name: Blogs

\\ Favourite Number: 2 \\ \newline

First Name: Frank \\ Last Name: Sinatra

\\ Favourite Number: 88 \\ \newline

\end{document}

5 Technical problems

5.1 Escaping special LATEX characters

The text in our database is generated by users, and of-
ten cut and pasted from Microsoft Word. It typically
contains characters that won’t be natively typeset
by LATEX and worse still, cause the LATEX build to
hang or fail.

Therefore all text from the database needs to be
sanitised before being passed to LATEX. My solution
was to write a TT filter. Below is a sample function
that takes a string as its input, and ensures any dollar
signs within the string are escaped by prepending a
backslash.

5.2 Sanitise for LATEX

sub latex_filter {

my $return = $_[0];

escape $ with a backslash for LaTeX

$return =~ s/(\$)/\\$1/g;

return $return;

}

my $tt = Template->new({

FILTERS => {latex_filter => \&latex_filter},

INCLUDE_PATH => ’.’,

INTERPOLATE => 1,

}) || die "$Template::ERROR\n";

5.2.1 More things that need to be filtered

Then adding more filters is simply a matter of adding
a regular expression to search for it and replace it
with whatever is appropriate. Some examples.

Degree symbol:

$return =~ s/°/\\degree /g;

Accented characters: Transform é into \’{e}:

$return =~ s/é/\\’{e}/g;

Incorrect quotes: Convert beginning-of-line right
or double quotes to left quotes, and use ASCII apos-
trophes.

$return =~ s/(^|\s)’(.*?)/$1‘$2/g;

$return =~ s/(^|\s)"(.*?)/$1‘‘$2/g;

replace Windows quote (octal 0222) with ASCII ’

$return =~ s/\222/’/g;

En dash between numbers: Convert minus sign
to an en-dash by searching for single minus sign
between numbers and replacing it with two minus
signs: 1-10 vs. 1--10.

$return =~ s/(\d+)-(\d+)/$1--$2/g;

5.3 Pass through LATEX commands

From time to time I needed a way to pass LATEX
commands through the filter. I chose an escape of
<latex> which in hindsight may not have been the
best choice, as it looks too much like XML. We just
replace it with a backslash:

$return =~ s/<latex>/\\/g;

For example, <latex>latex becomes \latex.

5.4 Calling a filter from within a template

Once a filter has been defined, you can call it with
the pipe ‘|’ character.

[% str = "$100 is 50% of $200" -%]

Raw string is [% str %]

Filtered string is:

[% "$100 is 50% of $200" | latex_filter %]

Which results in:

Raw string is "$100 is 50% of $200"

Filtered string is:

"\$100 is 50\% of \$200"

5.4.1 LATEX does not like Windows paths

On our network, product images are stored on a
server drive accessed via a Windows share w:\. In
MS Access, users select an image to go with a product

How to make a product catalogue that doesn’t look like a dissertation

266 TUGboat, Volume 34 (2013), No. 3

range and the path to the image is stored in the
database as a Windows path:

w:\some\path to\an image.jpg

Users often use spaces, commas, apostrophes and
other abominable characters in the image paths,
and \includegraphics does not handle paths with
spaces in them.

The solution was to create a LATEX-friendly sym-
bolic link to the file and include that instead. This
was easy to achieve by making another TT filter.

5.4.2 Convert Windows path to Unix

The goal is to convert a Windows path such as

w:\Alive & Radiant\2013-July-product.jpg

to:

_mnt_Alive_&_Radiant_2013-July-product.jpg

5.4.3 Build a filter

Here is my Perl code:

convert all \ to / e.g. c:\ to c:/

$return =~ s/([\\])/\//g;

strip drive letter c:/path/file to path/file

$return =~ s/^\w:\///g;

strip extension: /filename.jpg to /filename

#$return =~ s/\.\w\w\w$//g;

clean up the path

$return = File::Spec::Unix->canonpath($return);

5.4.4 Make the symbolic link

Find spaces, / or % in filenames and replace with
underscores. Then use the resulting string as the
name for a symbolic link to the original file. Use the
symbolic link name in the LATEX document.

replace spaces, slashes, percents with _

$safe_filename =~ s/[\s\/%]/_/g;

make a symbolic link to the file

symlink($return, $safe_filename) || die;

5.4.5 Use new filter on image paths

Use the new filter on image paths as they are re-
trieved from the database:

[% ImagePath

= item.CategoryImagePath | path_filter %]

[% IF ImagePath != "" %]

\includegraphics[width=12cm,

height=\imageheight,

keepaspectratio=true]

{[%ImagePath%]}

[% END # if image exists %]

5.5 User interface

I needed to develop a user interface for staff to man-
age data in the catalogues. I chose MS Access as it
was easy to create and modify. I wanted to create

something that would shield the users from having
to know LATEX in order to create and edit content
for the catalogue.

6 Make LATEX output look like a

product catalogue

Clearly I had to style the document so it would
look more like a product catalogue and less like a
dissertation.

6.1 Sans serif fonts

The first thing I did was use a sans serif font. I chose
Helvetica.

\usepackage{helvet}

% set the font to helvetica for body text

\renewcommand{\familydefault}{\sfdefault}

This provides URW Nimbus Sans which is a free
clone [6] of Helvetica.

6.2 Thumb tabs

Thumb-tabs are a nice feature for any catalogue.
I created them using Nicola Talbot’s flowfram [7]
package, like this:

\setthumbtab{1}{backcolor=[rgb]{0.15,0.15,1}}

\setthumbtab{2}{backcolor=[rgb]{0.2,0.2,1}}

\makethumbtabs[50mm]{30mm}

\begin{document}

\tableofcontents

\thumbtabindex

\enablethumbtabs

\chapter{1ABC}

\Blindtext

\chapter{2ABC}

\Blindtext

\end{document}

6.3 Colourful chapter and section headings

Colourful chapter and section headings were made
using the tikz package.

\newcommand\colorchapter[1]

{\def\chapterbg{#1}\chapter}

% begin CHAPTER format

\newcommand\boxedchapter[1]{{%

\begin{tikzpicture}[inner sep=0pt,

inner ysep=1.3ex]

% left position of text

% right hand edge chapter title text

\node[anchor=base west]

at (3,0) (counter) {};

\path let \p1 = (counter.base east)

in node[anchor=base west,

text width={\textwidth-\x1+26.33em}] (content)

at ($(counter.base east)+(0.33em,0)$)

{\textcolor{white}

{\Huge\sffamily\textsc{\thechapter \ \ #1}}};

Jason Lewis

TUGboat, Volume 34 (2013), No. 3 267

\begin{pgfonlayer}{background}

\shade[left color=\chapterbg,

right color=\chapterbg]

let \p1=(counter.north),\p2=(content.north)

in (0,100 + \maxof{\y1}{\y2})

rectangle (content.south east);

\end{pgfonlayer}

\end{tikzpicture}%

}}

\titleformat{@@html:\@@chapter}%

{}%

{}%

{0pt}%

{\boxedchapter}%

\titlespacing*{\chapter}{-100pt}{*-20}{*-1}

% end CHAPTER format

6.4 Long tables

I needed a way to create tables that could break
across page boundaries, but also be able to span
more than one page, and possibly have a PDF (for an
advert) embedded at a split. The xtab [8] package
produced the best results for me; however, there
are very many packages for tables. I found a good
summary of table package features at http://tex.

stackexchange.com/a/12673.

6.5 Alternating row colours in xtab

This was easy to do in TT: while looping through
query results, simply change the row colour every
two lines.

\begin{xtabular}[l]

[% i = 1 -%]

[% FOREACH item = db.query(

"select * from $CatInfo.query") %]

[%- IF (i mod 4 == 3)

|| (i mod 4 == 0) -%]

\rowcolor{[%-

item.SectionRow2BGColour -%]}

[% ELSE -%]

\rowcolor{[%-

item.SectionRow1BGColour -%]}

[%- END #iF -%]

[%- i = i+1 -%]

[% item.col1 %] &

[% item.col2 %] &

[% item.col3 %] \\ %row data

[% END; #FOREACH %]

\end{xtabular}

6.6 Wrap description around an image

I used wrapfig [9] to put text around an image.

[% IF ImagePath != "" %]

\begin{wrapfigure}{r}{0pt}

\includegraphics[width=12cm,\

height=\imageheight,\

keepaspectratio=true]\

{[%ImagePath%]}

\end{wrapfigure}

[% END # if image exists %]

6.7 Highlight new products

New products are highlighted by yellow text with a
red background.

[%- IF item.NewProduct -%]

\scriptsize\colorbox{red}

{\textcolor{yellow}{NEW}}

\sffamily\footnotesize{~ \

[%-item.description | latex_filter -%]} &

\footnotesize{[%-item.description |

latex_filter -%]} &

[%- END -%]

6.8 Including full page PDFs

We include full page PDFs in the catalogue for the
front matter, rear matter and adverts. All are sup-
plied as PDFs and we just have to include them.
The trick is to turn off scaling so the bleed and trim
marks appear in the correct place.

[% IF String.length > 0 %]

\includepdf[noautoscale=true]{[%CoverPage%]}

[% ELSE # warn that file cannot be found %]

Cover file [% CatInfo.CatalogueFrontPage %]

appears to be missing : [% error.info %]

[% END %]

7 Conclusion

I set out to create a tool for generating a catalogue
from our database. I was able to use free tools such
as LATEX and Template Toolkit to achieve this. The
overall goal was achieved, saving time and money
and allowing staff to be more productive.

References

[1] http://www.docbook.org/docbook
[2] http://search.cpan.org/dist/DBI/

dbiproxy.PL

[3] http://ctan.org/pkg/latexmk
[4] http://launchpad.net/rubber
[5] http://search.cpan.org/dist/App-cpanminus/

bin/cpanm

[6] http://www.tug.dk/FontCatalogue/helvetica
[7] http://ctan.org/pkg/flowfram
[8] http://ctan.org/pkg/xtab
[9] http://ctan.org/pkg/wrapfig

⋄ Jason Lewis

http://organictrader.com.au

How to make a product catalogue that doesn’t look like a dissertation

268 TUGboat, Volume 34 (2013), No. 3

Project Fandol: GPL fonts for

Chinese typesetting

Clerk Ma and Jie Su

1 Fonts in Chinese typography

The most important issue of typography is about
fonts. Fonts in alphabetic languages only need hun-
dreds of glyphs. But in CJK languages, we need
many thousands of glyphs.

In written Chinese, 6,762 Hanzi (汉字) are re-
quired. Furthermore, traditional typography requires
four basic styles: Song (宋), Kai (楷), Fang (仿), and
Hei (黑). The Song style is used in text, and acts like
the roman style in western language. The Kai style’s
role in Chinese typography is more like italics in west-
ern typography. The Fang style is used in section
titles or authors’ names in contemporary Chinese
magazines. The Hei style is used for emphasis.

2 Project Fandol and Chinese fonts

There are quite a few free Chinese fonts in the open
source community. In most GNU/Linux systems,
people use WenQuanYi (文泉驿) [1] fonts to display
CJK glyphs. The Android platform uses Droid Sans
Fallback [2] for this. These fonts are designed for
screen display, and not for high quality typesetting.
Arphic Technology has released two TrueType fonts
(in Kai and Song styles) to the open source commu-
nity in 2010 [3]. But these two fonts are not sufficient
for the tradition of Chinese typography.

In the Chinese TEX community, many people
need a set of free and open source Chinese font to
typeset theses, reports, etc. To fill this need, Project
Fandol [4] was established in 2012, with the goal of
designing a set of high quality Chinese fonts which
is released under the GNU General Public License
with the font exception [6]. The current members of
the project are Clerk Ma and Jie Su.

So far, we have developed six CID-keyed Open-
Type fonts in four styles. A CID-keyed font is only
suitable to a particular language; we use Adobe-
GB1-5 [5] to organise our fonts. We released ver-
sion 0.2 to CTAN in August 2013. Here is a list of
the fonts:

• FandolSong-Regular: 我能吞下玻璃而不伤身体

• FandolSong-Bold: 我能吞下玻璃而不伤身体

• FandolHei-Regular: 我能吞下玻璃而不伤身体

• FandolHei-Bold: 我能吞下玻璃而不伤身体

• FandolFang-Regular: 我能吞下玻璃而不伤身体

• FandolKai-Regular: 我能吞下玻璃而不伤身体

The glyphs in the current version of Fandol fonts
cover four main categories:

• Kana (169): あいうえ
• Bopomofo (38): ʼʽʾʿ
• Hanzi (6,762): 天地玄黄
• Yi (1,132): ꀀ ꀐ ꀒ ꀣ

The alphabetic part of Fandol fonts are merged
from Computer Modern Unicode [7]. In general,
matching a western font with a Chinese font is a
difficult task. Our current matching is shown below:

FandolSong-Regular: CMU Serif Roman
FandolSong-Bold: CMU Serif Roman Bold

Nonextended
FandolHei-Regular: CMU Sans Serif
FandolHei-Bold: CMU Sans Serif Demi Condensed
FandolFang-Regular: CMU Concrete Roman
FandolKai-Regular: CMU Serif Upright Italic

3 Acknowledgements

We are grateful to these people for their help and sug-
gestions: Mengdi Cao, Fuzhou Chen, Jinze Huang,
Hu Gao, Cheng Wang, Yi Lu, Xincheng Luo, Xiao-
hao Xia, Cheng Yang, Yousong Zhou, Weiwen Zhang,
Xiabing Wang, Liye Ding, Nan Ding, Zhaoli Wang,
Haiyang Liu, Qing Li, Wei Sun, Rui Xie, Xuan Leng,
Xiang Yu, Liming Qin.

References

[1] WenQuanYi Project, 文泉驿 –开源中文计划
http://wenq.org/wqy2/index.cgi

[2] Ascender Corporation, The Droid font family,
2010
http://www.droidfonts.com/droidfonts/

[3] Arphic Technology, 文鼎科技发布新的公众授权
字型
http://www.arphic.com/cn/news/2010/

20100420.html

[4] Clerk Ma and Jie Su, Fandol — Four basic
fonts for Chinese typesetting, 2013
http://ctan.org/pkg/fandol

[5] Ken Lunde, The Adobe-GB1-5 Character
Collection, 2012
http://wwwimages.adobe.com/www.adobe.

com/content/dam/Adobe/en/devnet/font/

pdfs/5079.Adobe-GB1-5.pdf

[6] GNU, How does the GPL apply to fonts?
http://www.gnu.org/licenses/gpl-faq.

html#FontException

[7] Andrey V. Panov, Computer Modern Unicode
fonts, 2013
http://canopus.iacp.dvo.ru/~panov/

cm-unicode/

⋄ Clerk Ma and Jie Su

clerkma (at) gmail dot com

Clerk Ma and Jie Su

TUGboat, Volume 34 (2013), No. 3 269

Tsukurimashou:

A Japanese-language font meta-family

Matthew Skala

Abstract

METAFONT-based font projects for the Chinese, Ja-
panese, and Korean (CJK) languages have been an-
nounced every few years since the early 1980s, even
predating the current form of the METAFONT lan-
guage. Except for a few non-parameterized conver-
sions of fonts that originated in other formats, in
30 years every METAFONT CJK font has been aban-
doned at or before the 8-bit barrier of 256 kanji,
nowhere near the thousands required for practical
typesetting. In this presentation I describe the first
project to break that barrier: Tsukurimashou (http:
//tsukurimashou.sourceforge.jp/), currently at
over 1500 kanji (as well as kana, Latin, and Korean
hangul) and steadily growing. I discuss technical and
human challenges facing this kind of project, how
to solve them, and spin-off technologies such as the
IDSgrep kanji structural query system.

1 Introduction

The Han script, used by the Chinese, Japanese, and
Korean (CJK) languages among others, includes very
many characters. Just counting them is tricky, but
a human being might typically need to know a few
thousand for basic literacy in a Han-script language.
The list of 2136 characters taught in the Japanese
school system (the jouyou kanji) is one benchmark,
near the low end. Chinese requires more, and a type-
setting system may require more still, because of rare
characters found in names, historical contexts, and
so on. A human being can get away with failing to
read the occasional character; typesetting systems
need to be able to print nearly all of them. Computer
fonts considered usable for Japanese typically cover
between six and twelve thousand characters. Data-
bases of rare characters used in linguistic research
cover tens or hundreds of thousands.

The sheer number of characters that go into a
CJK font, and the amount of work implied by that
number, is daunting. Considering the difficulty of
building even a simple Latin font with METAFONT, it
may be no surprise that there are no complete META-
FONT-native CJK typefaces. But on the other hand,
examination of Han-script text (even, or especially,
by someone who cannot read it) quickly reveals that
characters can be decomposed into smaller parts, as
shown in Figure 1. Computer scientists who examine
Figure 1 are likely to believe they understand it. “Of
course,” one supposes, “the tens of thousands of Han

..語.

ʞ

.
U+8A9E

go
ũlanguageŪ

.

言

.

U+8A00
i

ũspeakŪ

.

吾

.

ʟ

.

U+543E
ware

ũmyselfŪ

.

五

.

U+4E94
go
ũfiveŪ

.

口

.

U+53E3
kuchi
ũmouthŪ

Figure 1: Breaking a character into its parts.

characters are just a small vocabulary of primitive
shapes, perhaps only a few dozen, which combine in
straightforward ways according to a spatial grammar
to form tree structures!”

Computer scientists know how to deal with such
things. It should be only the work of a week or two
for a good programmer to lash together a prototype
CJK font generator. Each primitive shape can be a
subroutine; there can be other subroutines expressing
the combining operations such as “place this one
above that one”; a few parameters applied to the
low-level shapes can allow for creating a wide range
of styles; and the only real challenge is looking in the
dictionary that lists the tree decompositions of all the
characters. That book must exist in China, so we’ll
get it by interlibrary loan. This project might even
be easier than building a Latin font meta-family.

The earliest METAFONT CJK project I know
of was LCCD, the Language for Chinese Character
Design, described in a 1980 Stanford technical report
by Tung Yun Mei [11]. Mei collaborated with Knuth
and based LCCD on the METAFONT79 language de-
veloped to that point. Even in 1980, many of the
ideas were already in place that a present-day com-
puter scientist would naturally think of on viewing
Figure 1. Mei’s report includes images of 346 “basic
strokes and radicals”, and 112 completed characters.

Subsequent work on METAFONT-native CJK

fonts includes that of Hobby and Guoan in 1984, who
created 128 characters [5]; Hosek in 1989, character
count unknown but two are displayed in the TUG-

boat article [6]; Yiu and Wong in 2003, in a project
that targeted on-demand creation of rare characters
rather than a font as such [16]; and Laguna circa
2005, with 130 characters in the last available ver-
sion [10]. All these used a relatively small number of
basic components, combining according to a spatial
grammar to form more complicated characters.

Tsukurimashou: A Japanese-language font meta-family

270 TUGboat, Volume 34 (2013), No. 3

I listed published METAFONT-related projects.
Similar ideas have also been used behind closed doors
in commercial font foundries (CDL from Wenlin In-
stitute seems to be an example [15]), and non-META-
FONT research projects like the LISP-based Wadalab
toolkit [13]. The Wadalab font project ran during the
1990s; much of the work was lost or withdrawn, but
some of its fonts survived to become widely used in
the free software world. These kinds of projects use
grammars of character parts, but lack the full param-
eterization that METAFONT users expect. There has
also been work on using CJK fonts from other sources
in TEX documents, sometimes including METAFONT

incidentally in the workflow, but again without pa-
rameterization. For instance, the Poor Man’s Chi-
nese and Japanese package [12] converts bitmap fonts
into METAFONT code that renders scaled versions
(without smoothing!) at arbitrary resolution.

It may be difficult to create fonts in METAFONT

in general, regardless of the script; but human beings
have done it. Several, though not many, METAFONT-
native Latin fonts exist, and we can typeset a wide
range of documents in Latin-script languages with
parameterized METAFONT-native fonts. So after
more than three decades of work, why are there no
usable, parameterized, METAFONT-native CJK fonts
at all?

2 Scaling issues

It is no coincidence that the past attempts to build
CJK fonts in METAFONT have been abandoned at
the same stage in development, around 120 charac-
ters. That is the roughly the size of a Latin font.

METAFONT was designed to build fonts with sizes
on that order, and thus METAFONT users have built
expertise and developed tools for building fonts the
size of Latin fonts. When fonts get larger, unforeseen
difficulties show up like nurikabe — the plaster wall
monsters of Japanese folklore blamed for delaying
travellers by night.

2.1 Technical limitations

Many font file formats are limited to 256 glyphs
by their use of 8-bit character codes. People who
attempt to typeset CJK documents in classical TEX
use elaborate workarounds involving slicing their
fonts into 256-glyph sub-fonts. Handling the input
encoding for documents written in large character
sets with these slicing schemes is a tough problem
too, but fortunately not one we as font designers
must solve. There are extended versions of the TEX
interpreter designed to use longer character codes
directly (X ETEX is one), and those may also be able to
work with font formats that store tens of thousands

of glyphs per file and don’t need to be sliced; but
there is no similarly extended METAFONT to produce
fonts in such formats.

Thousands of glyphs in a font does not just
mean a bigger file. It also means more time spent
compiling, and more memory consumption. One
run of METAFONT may run out of memory or other
resources trying to process an entire multi-thousand-
glyph CJK font, and the user may run out of patience
recompiling the whole thing after changing one glyph.
To succeed at the thousand-glyph level, a project
must have build tools allowing separate compilation
of parts of the project. There should be tracking
of dependencies among the different parts. Just
being able to find pieces of code in a project this
size — answering questions like “what was the name
of the subroutine for such and such a shape?” — is
an issue. These are elementary problems in software
engineering, but there is little or no previous work
on them in the METAFONT context because nobody
has built systems this size in METAFONT before.

Classical METAFONT is designed to produce bit-
map fonts, but bitmap fonts are no longer such a
desired commodity. A present-day CJK font project
will presumably target a vector format, but making
METAFONT or some variation of it produce vector
fonts requires additional layers of software, all of
which are to some extent experimental. Bugs in the
beyond-METAFONT software, previously undetected
because previous fonts were smaller, will show up
and need to be fixed. Keeping a handle on the bugs
requires a test suite. The need for multiple steps in
font compilation underscores the need for a capable
build system. Human designers cannot be expected
to issue five or six different commands in the right
order to recompile every font, every time.

Earlier work on METAFONT CJK fonts has con-
centrated on writing code in METAFONT to draw the
shapes of Han characters, as if that were the only
problem to solve. Infrastructure that can scale to the
size of the finished product is at least as significant.

2.2 Human factors

It is easy to underestimate how much work is involved
in building a CJK font. We know how much work it
is to design a Latin font. We know a CJK font has
about 30 times as many glyphs. But it is easy to
think, looking at Figure 1, that the CJK font should
only be something like two or three times as much
work as the Latin font (perhaps less), because so
much code can be reused. In fact, less work is saved
by code reuse than one might hope: every glyph
requires some human attention. In computer science
terms, font design is not much less than Ω(n).

Matthew Skala

TUGboat, Volume 34 (2013), No. 3 271

Once it becomes clear that a human must spend
time on every single glyph — it gets easier as more
code exists to reuse, but there is no break point after
which hundreds of characters will suddenly come for
free — it is natural to hope that that human not be
oneself. If we can just build a sufficiently good, easy
to use set of tools, we can put them on the Web,
maybe use a Wiki, and have many people in the
community build a few glyphs each. Many hands
make light work, once the infrastructure exists.

But to hope for someone else to build the ac-
tual glyphs after the tools are designed is to ignore
a principal reason why people participate in free
software projects in the first place. Designing tools
for glyph construction is fun. Going through a list
of 6000 glyphs one by one, doing simple repetitive
tasks on each of them, is work. It is not easy to get
volunteers for that sort of thing at the best of times,
let alone when the volunteers must also have profi-
ciency in an obscure programming language. The
most successful large-scale collaboration is probably
GlyphWiki [9], which sacrifices parameterization for
a more purely graphical approach that demands less
from the participants.

Finally, many of the potential rewards of a
METAFONT CJK project, such as academic publi-
cations, can be had at the start, before the boring
part; and then there are no more rewards until the
end, and few then. You can publish one paper about
your innovative techniques for building fonts; and
you can publish one paper saying you have finished,
years later. There is little in between. Knowing that
this is the reward structure makes it tempting to
write only the first paper and then start work on
something else.

2.3 The script itself

The Han script itself may be the most ferocious
nurikabe. Figure 1 with its clean decomposition
of “language” into “speak”, “five”, and “mouth”,
is deceptive. Many characters can be described as
simply as that, but many others cannot. Consider
Figures 2, 3, 4, and I could draw many more.

In Figure 2, “forest” is two copies of “tree”
placed side by side. But the “tree” on the left is
different from the “tree” on the right. If you make
the two sides of “forest” look identical, readers will
still know that you meant to write “forest”, but it
will not look right. For a high-quality font, it has got
to look right. This entails either creating two differ-
ent primitives for the two trees, or having a smarter
tree that knows how to change itself when it is on
the left. Many character components change when
they appear on the left. The modifications made

..林.

⿰

.
U+6797
hayashi
ũforestŪ

.

木

.

U+6728
ki

ũtreeŪ

.

木

.

U+6728
ki

ũtreeŪ

.

林

.

林

.

林
Figure 2: A forest is not two identical trees.

..観.

⿰

.
U+893B
kan

ũoutlookŪ

.

観

.

⿻

.

[unknown]

.

矢

.

U+77E2
ya

ũarrowŪ

.

隹

.

U+96B9
furutori
ũold birdŪ

.

見

.

U+898B
mi
ũseeŪ

Figure 3: Combining operations can be complex.

when a component appears on the left are partially
systematic, so we might hope to write code that
can derive the left side shape automatically from
the other shape, but it will not be simple, it will
require manual supervision, and some projects have
not gotten as far as noticing that it was an issue in
the first place.

In Figure 3, the left side of “outlook”, in addition
to not being a character in its own right, is some
kind of hard to describe combination of “arrow” and
“old bird”. It is not good enough to just print a scaled
copy of “arrow” on top of “old bird” and hope for the
best; getting it right requires modifying and deleting
strokes in both parts. A generic overlap operation is
unlikely to be flexible enough to do the right thing
here. Every character that contains this sort of thing
requires specific human attention to adjust it beyond

Tsukurimashou: A Japanese-language font meta-family

272 TUGboat, Volume 34 (2013), No. 3

..及 .

Kaku

.及.
Mincho

Figure 4: Two styles of U+53CA (oyo, “reach”).

just saying “overlap”. If the components change
parametrically, then making sure they look right for
all parameter values becomes even more complicated.

In Figure 4, two different styles of the same char-
acter are topologically different: the one on the left
contains a single zigzag stroke that in the right-hand
version is made up of two separate pieces. It is not
easy to parameterize that in a way that will look
good at every step in between, and if we make it a
binary choice, giving up on the idea of interpolation,
this difference will require some sort of “if” state-
ment in the character description. A straightforward
implementation of the grammar of shapes and com-
bining operations suggested by Figure 1 would not
provide for “if” statements.

These issues in the Han writing system point
to an important conclusion: a simple grammar of
parts and combining operations is not enough for
building parametric fonts, even though it may be
a useful starting point. Many characters can be
decomposed into parts in the clean way implied by
Figure 1, and such decompositions may be enough
to support dictionary searches. It is easy to find
enough well-behaved characters to put together a
slide show or grant application, and to fool others
or even oneself into thinking the whole character set
will be easy.

But in order to produce high-quality fonts with
full parameterization, with all the characters needed
to typeset real documents, we must be able to over-
ride the simple descriptions and combinations of
parts in arbitrarily complicated ways — per charac-
ter and depending non-linearly on the parameters.
To work at full scale, the font description language
must have the power of a general-purpose program-
ming language.

3 Tsukurimashou

My own attempt at building a METAFONT CJK font
family is called the Tsukurimashou Project. The
name means “Let’s make something!”; it is an anime

reference. As of version 0.8, released 26 August
2013, Tsukurimashou covers 1502 Japanese kanji

(Han script) characters including all those taught
in Japanese schools through Grade Four, as well
as essentially complete coverage of kana (Japanese
phonetic script), Latin, hangul (Korean alphabetic
script), punctuation, and some miscellaneous orna-
ments and graphical characters. This is the work
of one person, on a hobby basis while doing other
things full-time for pay, since late 2010. It remains
far from being a complete font family usable for
typesetting general documents in Japanese, but it is
already far past the point reached by any previous
parameterized METAFONT-native CJK font project,
and I believe my project is the first with a credible
prospect of eventually reaching complete coverage.

Here are some points of reference distinguish-
ing Tsukurimashou from other projects already dis-
cussed:

• Tsukurimashou is a parameterized meta-family,
not a single font or a collection of independent
fonts.

• Tsukurimashou is a font project, not primarily
a dictionary of characters.

• Tsukurimashou is code, not data.
• Tsukurimashou is intended to achieve full cover-

age, at least of the characters needed for basic
literacy in Japanese; it is not a proof of concept.

• Tsukurimashou is one person’s non-commercial
project; not a for-profit corporate or large-scale
collaborative effort.

Tsukurimashou is hosted as a free software project on
SourceForge Japan, with the bilingual project home
page at http://tsukurimashou.sourceforge.jp/

featuring downloadable packages, a Subversion repos-
itory for the source code, a bug tracker, mailing list,
and so on. The package as a whole is distributed un-
der the GNU General Public License, version 3, with
a clarifying paragraph added to explicitly permit
embedding the fonts in documents.

3.1 Motivation

The issues of human labour described in the previ-
ous section make it difficult for a CJK METAFONT

project to reach complete coverage. Tsukurimashou’s
solution to the amount of work involved in font design
is to redefine that large amount of work as the main

goal of the project instead of an unfortunate cost of
the project. This point alone seems to be largely
responsible for Tsukurimashou’s success to date.

I want to learn to read Japanese. Learning to
read entails spending some time practicing and study-
ing every character. But just studying a book and
tracing copies on paper, as well as being boring, is

Matthew Skala

TUGboat, Volume 34 (2013), No. 3 273

not a particularly effective way to learn. I would
also like to become skilled at using METAFONT and
related font technologies. I believe I acquire skills
best by completing tasks that require the skills. De-
signing a font family for Japanese, as a project that
requires knowledge of the kanji and of METAFONT,
including concentration on every character in turn,
is a good way to acquire that knowledge. And from
that point of view, the actual finished fonts are not
even important. The fonts are my excuse for spend-
ing time thinking about every character, which is the
real goal. With that goal in mind, avoiding human
attention to every character stops being necessary or
even desirable.

Of course, the project may have desirable side
effects. Work on Tsukurimashou has required me to
invent new technology that may be useful in other
projects. Some of it is publishable research in com-
puter science, certainly welcome for someone hoping
to establish an academic career. And because it
places heavy (in some cases unprecedented) demands
on other free software systems, Tsukurimashou has
proven useful in the development of those systems.
Given that I am already committing to spend some
time per character on learning the language, the
hope is to make that time pay off in as many ways
as possible.

3.2 A brief tour of the fonts

Tsukurimashou as a software package generates Open-
Type font files as its main output. Those are intended
for use in general typesetting and word processing,
not only within the TEX world. I most often use them
with X ETEX. The OpenType fonts are divided up
into families, of which the main supported ones are
named Tsukurimashou, TsuIta, and Jieubsida; then
there is parameterization within each family for over-
all style, boldness, and monospace or proportional
spacing. The main supported styles for the Tsukuri-
mashou family are “Kaku” (a traditional sans-serif
style), “Maru” (sans-serif with rounded stroke ends),
“Mincho” (a less traditional version of the common
Mincho serif style), and “Bokukko” (which somewhat
resembles handwriting with a felt-tipped pen). Finer-
grained parameters are used internally and could be
made visible by modifying the code, much in the way
that Computer Modern has internal parameters like
“stem_corr” as well as preset styles like “Roman”.
Figure 5 shows a sample of the font styles; Figure 6
shows more of the Japanese characters in the Mincho
style. Version 0.8 with all options enabled will build
a total of 120 OpenType files, including some that
are experimental and not intended for actual use.

These are outline fonts intended for printing at

Tsukurimashou Font Meta-Family

さてさて、何ˎ出来るˍな？

Kaku 角 Extra Light 白字

Mincho 明朝 Light 軽字

Maru 丸 Normal 本

Bokukko 僕女 Demibold 半太字

Monospace Bold 太字

Proportional Extra Bold 黒字

TsuIta Atama PS ツイタ頭 ＰＳ

TsuIta Soku PS ツイタ足 ＰＳ

Jieubsida 지읍시다 Dodum 돋움

Batang 바탕 Sun-Moon 선문

Figure 5: A sample of the Tsukurimashou
meta-family of fonts.

̑̋や̀˱ˬたさˍあ ͯͩヤ͞͏͊タサ̫ア

̒̌ ́ひ˭ちしきい Ͱͪ ͟ヒ͋チシキイ

　̍ゆ̂ふˮつすくう̕ ͫユ͠フ͌ツスクウͳ

̓̎ ̃へ˯てせけえ ͱͬ ͡ヘ͍テセケエ

̔̏̊̄ほ˰とそこˌ Ͳͭͨ͢ホ͎トソコ̪

　一七ФХЦ中九二五人休先入八六円出力十千

　口右名四土夕大天女子字学小山川左年手文日

　早月木本村林ۿ森正気水火犬玉王生田男町ޫ

　ެ目石空立竹糸耳花草虫見貝赤足車金雨青音

Figure 6: Kana and Grade One kanji in
Tsukurimashou Mincho.

high resolution. They contain hinting for bitmap con-
version, but it is done automatically and not expected
to be extremely high quality. Japanese-language
typesetting has traditionally used monospace met-
rics, simple scaling (i.e., no corrections for optical
weight), and no slanting or italicization; Tsukuri-
mashou currently offers a choice between monospace
or proportional, no optical weight features, and ital-
ics for the Latin script only.

Although the largest use of Tsukurimashou fonts
to date has been for typesetting the project’s own
documentation in English, the design of the Tsukuri-
mashou Latin glyphs, especially in the Mincho style,
is intended primarily for setting the short fragments
of English that sometimes occur in Japanese text.
Tsukurimashou Mincho used for pure English text
ends up looking like a display face and might not

Tsukurimashou: A Japanese-language font meta-family

274 TUGboat, Volume 34 (2013), No. 3

be appropriate for entire sentences and paragraphs.
Tsukurimashou Kaku is more suitable for extended
settings in English.

The Jieubsida1 family is intended to support
the Korean hangul (alphabetic) script. Hanja (the
Korean equivalent of kanji) are not included. This
character set is relatively orthogonal: the main se-
quence of 11172 glyphs is algorithmically generated
from a few tens of basic parts, though many less
common letters had to be defined with more human
intervention. Work on these fonts has proven useful
in debugging the infrastructure at full scale, given
that the Tsukurimashou series of fonts will eventu-
ally grow to a significant fraction of the size already
reached by the Jieubsida series.

Beyond the main Tsukurimashou package, there
are several smaller software packages called “para-
sites”, which appear in subdirectories of the distri-
bution or may be detached. Some of these are font
packages that share some of the Tsukurimashou infra-
structure without really being part of the same meta-
family; others are related software of other kinds.
The only one discussed here will be the IDSgrep
structural query system.

3.3 The infrastructure

Tsukurimashou’s infrastructure is designed like a
typical free software project. It has source code
that compiles into binary files, it has build scripts to
accomplish that, and a would-be user can download a
tarball, unpack it, and type ./configure and make.

The build system is based on GNU Autotools.
Choosing which source code files are needed for which
font styles involves doing some logical inference that
would not be convenient to do in a Makefile, so the
Makefiles invoke additional code written in a subset
of Prolog to evaluate the style selections, then run
Perl scripts that scan the METAFONT sources to look
for dependencies. The results of that computation
are written into additional Makefiles, which guide
the actual compilation process.

Knuth’s METAFONT creates bitmap fonts, while
Tsukurimashou’s target is OpenType outline fonts.
There are several METAFONT variants that can pro-
duce outline output from METAFONT source. I chose
MetaType 1 [7] for Tsukurimashou. This package
originates with the Polish TEX users group GUST

and may be most famous for its use in the Latin
Modern project [8]. It consists primarily of a macro
package for MetaPost and a postprocessing script for
GNU awk. One run of MetaPost generates the glyphs

1 Intended as a translation to Korean of the name “Tsukuri-

mashou”, but I am informed that “Mandeubsida” would be a

better translation, and am considering changing it.

of a font as EPS files; another generates metrics; then
the gawk script merges those and does some rewrit-
ing of the PostScript code to turn them into a single
PostScript Type 1 font.

In recent versions, Tsukurimashou’s version of
MetaType 1 has diverged somewhat from the one
distributed by GUST. I started with the (very old)
mtype13 distribution, tried to upgrade it to use the
latest MetaType 1 scripts, and ended up rewriting
large sections of code. Many features of MetaType 1
are not used in Tsukurimashou (for instance, hint-
ing; the “metrics” pass; and the entire processing
chain in the reverse direction from PostScript back to
METAFONT), and it proved useful to remove them,
streamlining the code considerably. The core flow
of information through Tsukurimashou’s version of
MetaType 1 remains similar to that of the original,
however: the MetaPost interpreter executes code in
the METAFONT language, writing one EPS file for
each glyph, and then those are postprocessed into
PostScript Type 1 fonts.

Each PostScript font contains up to 256 glyphs
(but usually far fewer than that), corresponding to a
256-character block of the Unicode character space.
Many of these PostScript fonts are needed for each
full-coverage OpenType font. The build system runs
each individually through a FontForge script that
removes overlapping sections of splines, this being
an easier operation in FontForge than METAFONT.
Once all PostScript fonts for an OpenType font have
had their overlaps removed, it runs another Font-
Forge script to combine them into the final Open-
Type font. Doing the overlap removal as a separate
step is an optimization for the common case during
development where only some of the PostScript fonts
have changed: it reduces the amount of work needed
to reassemble the updated OpenType font.

There are additional stages of processing in Font-
Forge after the PostScript fonts are merged. The raw
outlines generated by METAFONT may contain exces-
sive or poorly-located spline control points; scripts
in FontForge attempt to remove those. Similarly,
some technical rules of the font formats (such as
having points at the x and y extrema of each curve)
need to be enforced. There is another processing
chain for automated horizontal spacing and kerning
of the proportionally-spaced styles. In that chain,
the build system generates bitmap fonts in BDF for-
mat and a C program calculates spacing corrections,
which are then applied back to the merged OpenType
fonts. Other scripts are run on the side to do things
like constructing OpenType glyph-substitution ta-
bles for Korean hangul support, and collecting data
for proof generation. According to recent statistics

Matthew Skala

TUGboat, Volume 34 (2013), No. 3 275

..

語
.五.

Kaku Extra Light

.

語
. 五.

Mincho

.

語
. 五.

Bokukko Bold

Figure 7: Three styles of “language” and “five”.

from Ohloh [2], 63% of the project’s code is written
in MetaPost (the font descriptions proper), 8% is in
LATEX (documentation), and the remaining 29% is
spread among 11 other programming languages: the
infrastructure and some small spin-off packages.

3.4 The METAFONT code

Below is Tsukurimashou’s code defining the “lan-
guage” glyph of Figure 1; three styles of it are shown
at the top of Figure 7. This glyph is of about average
complexity; some are even simpler, and a few involve
much more complicated operations, such as calculat-
ing positions of strokes based on the intersections of
other strokes, or doing interpolation and conditional
processing on style parameters.

vardef kanji.grtwo.language =

push_pbox_toexpand(

"kanji.grtwo.language");

build_kanji.level(build_kanji.lr(450,0)

(kanji.grtwo.word)

(tsu_xform(identity yscaled 0.95)

(kanji.grnine.my)));

expand_pbox;

enddef;

This code is in a file named tsuku-8a.mp, which
covers the Unicode code points U+8A00 to U+8AFF.
A character like this one, which happens not to be
used as part of any other character, is defined right
there in the Unicode-range MetaPost file. Parts that
are shared among more than one such file are moved
to other files that can be included in multiple places;
for instance, kanji.grtwo.word is in gradetwo.mp.
Splitting macro definitions across many files like
this makes it easier to avoid recompiling the whole
system when something changes, but it also requires
the build system to keep track of all the inter-file
dependencies.

Tsukurimashou frequently uses a sort of func-
tional programming via METAFONT’s concept of text
arguments to macros. A global stack data structure
contains several kinds of objects to eventually be ren-
dered into the glyph. A macro receives one or more

arguments that are themselves fragments of code; it
runs them, then examines the objects they added to
the stack and possibly makes modifications. Macros
that create kanji or parts of kanji normally put them
into a square of arbitrary two-dimensional space de-
fined by the coordinates from (50,−50) to (950, 850);
the outer-level macros can then shift and scale that
square into its final location in the finished glyph.

The macro build_kanji.lr, which combines
things left-to-right, allows its two arguments to run,
then scales and shifts their results to cover two
smaller rectangles. The numeric arguments (450, 0)
specify that in this case, the dividing line is at x

coordinate 450, and the two rectangles overlap by
an amount of 0. So the left side runs from (50,−50)
to (450, 850) and the right side is from (450,−50) to
(950, 850).

Many of the visual adjustments needed when
parts are combined, can be had just by choosing
the right values for the dividing line and overlap
amount. But other macros seen in this sample in-
clude build_kanji.level, which adjusts the stroke
widths in its argument to all be the same (which
often, but not always, looks better) and tsu_xform,
which applies an additional METAFONT transfor-
mation matrix to make kanji.grnine.my a little
smaller. Even in this relatively simple glyph, some
tweaking was necessary beyond just putting together
existing pieces in a standardized way.

Now, let’s look at the code for the kanji numeral
“five”, which is invoked indirectly by kanji.grtwo.

language when it calls kanji.grnine.my. This
glyph is shown at the bottom of Figure 7. It is
a typical example of the basic shapes that are not
made up of smaller components.

vardef kanji.grone.five =

push_pbox_toexpand("kanji.grone.five");

push_stroke((170,740)--(830,740),

(1.6,1.6)--(1.6,1.6));

set_boserif(0,1,9);

push_stroke((500,740)--(350,20),

(1.6,1.6)--(1.6,1.6));

push_stroke(

(220,410)--(730,410)--(720,20),

(1.5,1.5)--(1.5,1.5)--(1.4,1.4));

set_boserif(0,1,4);

set_botip(0,1,1);

push_stroke((120,20)--(880,20),

(1.6,1.6)--(1.6,1.6));

set_boserif(0,1,9);

expand_pbox;

enddef;

The push_stroke macros save paths on the
stack, with each stroke defined by one path for the
spine of the stroke, and a second path describing how

Tsukurimashou: A Japanese-language font meta-family

276 TUGboat, Volume 34 (2013), No. 3

the stroke weight (eventually translated to “width”
through a style-dependent matrix) changes along
the length of the stroke. Other macros, such as
set_boserif, push other objects on the stack to in-
dicate where serifs (uroko) should be added in styles
that use them.

The whole thing, like kanji.grtwo.language

before it, is bracketed by push_pbox_toexpand and
expand_pbox, which respectively save, and adjust
the size of, an object called a “proof box”.

After all the macros that specify a glyph have
run, rendering code unwinds the stack and generates
outlines for all the objects, writing them to the Post-
Script output. This code is where most aspects of
the font style are applied. Styles define the pens used
for stroking, transformations for calculating pen size,
the shape of serifs and whether to use them, and can
potentially override parts of the rendering code by
defining hook macros to apply further effects.

I have never fully understood METAFONT’s tra-
ditional proof system based on greyscale fonts and
“literate” programming, and in any case its reliance on
the standard coordinate array z[] would not mix well
with Tsukurimashou’s object stack concept. Tsukuri-
mashou generates proofs in a completely different
way. When unwinding the stack the rendering code
writes a “proof file”, essentially a machine-readable
log of all the things it is rendering. The build sys-
tem collects the proof files and runs them through
Perl scripts which generate TikZ/LATEX files for an
illustrated and cross-referenced edition of the source
code. The proof boxes from push_pbox_toexpand

result in annotations on the pictures, showing which
part of each glyph came from which macro. Some
information from the proof files also feeds into the
kerning program, and is used for purposes like ad-
vising FontForge of white-on-black reversed glyphs,
which represent exceptions to the overlap-removal
rules otherwise applied.

4 Character databases and IDSgrep

Adding characters to Tsukurimashou requires know-
ing what is already in the system and what is in the
language. For example, when looking at something
like the left side of “outlook”, I need to know whether
such a thing already exists as a macro somewhere in
the code base; whether many other characters in the
language also include it (which would support the
decision to create a new macro for future use); and
which of its parts may be related to common shapes
that could be used as guides for the new code. There
are also simple coding questions to be answered, like
“What was the name of that macro?” and “Which
source code file is it in?”

More generally, anyone working with Han char-
acters who does not read them fluently may wish to
search a dictionary on partial descriptions: “What
is this character I don’t recognize that has ‘speak’
on the left and ‘five’ at the upper right?” Existing
dictionaries sometimes offer what is called “multi-
radical” search, whereby the user can specify one
or more components and then see a list of all kanji
that contain all those components. But multi-radical
search features seldom if ever capture structural in-
formation like “on the left”; such a system would
just show all the characters that contain “speak” in
one pile for the user to dig through. In the initial
stages of laying out Tsukurimashou’s kanji support,
I frequently found myself wishing I could use the
power of Unix regular expressions, or something like
them, to make more precise queries: why not run
grep on the writing system itself?

The IDSgrep package attempts to serve that
need. With some irony intended, IDSgrep’s stated
goal is to bring the user-friendliness of grep to Han
character dictionaries. IDSgrep is one of the Tsukuri-
mashou parasites: it comes included with the full
distribution in a separate directory, or can be dis-
tributed on its own.

Recall the tree decomposition of Figure 1. That
tree might be rendered into a simple ASCII-based pre-
fix notation as “[lr](speak)[tb](five)(mouth)”:
it is a left-right combination of two things, the first
of which is “speak” and the second is a top-bottom
combination of “five” and “mouth”. As argued ear-
lier in this paper, such descriptions are not enough
to render high-quality glyphs; but maybe if we in-
clude a few general catch-all categories like “overlap”,
and accept that not all descriptions will be detailed
enough for rendering graphics, we can come up with
a description for every character sufficient to offer
useful dictionary searches.

The Unicode standard specifies syntax for Ideo-
graphic Description Sequences (IDSes), intended to
support exactly this kind of pursuit [14]. There are
special characters defined in the range U+2FF0 to
U+2FFB to represent the prefix operators. Figure 8
shows some examples of the notation. Note the way
the IDS notation conceals some details: for instance,
the two sides of “forest” are both denoted by the
same character, even though they look different when
rendered. This looks promising: maybe we could get
away with “just running grep” on a database of such
decompositions.

In practice there are some additional challenges.
For theoretical reasons, namely the difference be-
tween regular and context-free languages, a true
regular expression search on these descriptions may

Matthew Skala

TUGboat, Volume 34 (2013), No. 3 277

ʶ林ʷʞ木木

ʶ語ʷʞ言ʟ五口

ʶ観ʷʞ⿻矢隹ʟ目儿

ʶ涼ʷʞ水ʟ亠ʟ口小

ʶ葉ʷʟ艹ʟ世木
Figure 8: Unicode Ideographic Description Sequences.

be less than satisfactory. IDSgrep implements a
tree-matching query language in which the user can
specify character components to search for explic-
itly, or use matching operators like wildcard, match-
anywhere, Boolean operations, and so on. The IDS

syntax is not quite sufficiently flexible and well-
defined to encompass all the tasks IDSgrep demands
of it, and the special Unicode combining operation
characters are difficult to type (and to typeset in
Computer Modern!); so IDSgrep defines extensions to
the syntax and ASCII synonyms for the special char-
acters, forming a language of Extended Ideographic
Description Sequences (EIDSes) that subsumes the
Unicode IDS syntax.

IDSgrep’s user interface is a Unix command-line
utility similar to grep. It reads a database of trees in
EIDS syntax, from files or standard input, and writes
out any that match the matching pattern specified
on the command line: just like grep. The syntax
for matching patterns is complicated because it is
powerful, but no worse for skilled users than standard
regular expressions. After learning the syntax, a user
can easily and quickly compose queries like “What
characters have this component in that location, but
not that other component anywhere?”

The latest version, IDSgrep 0.4, uses Bloom
filters and binary decision diagrams to speed up
searches. Although the full tree-matching algorithm
is not slow, a complete search of hundreds of thou-
sands of kanji dictionary entries may take a few sec-
onds. So during installation, IDSgrep precomputes
bit vector indices for the databases being installed;
when searching those databases, it can do quick tests
on the bit vectors to reject the large majority of
possible matches, running the more expensive tree
match on the candidates that make it past the bit
vector check. The amount of speed-up is variable,

but typically around a factor of 15.
But a critical question remains: where does the

data come from? Databases of kanji marked up with
structural data are not easy to find, let alone in
IDSgrep’s native format. The Tsukurimashou fonts
generate (using information extracted from the proof
files) a dictionary of character decompositions as

the characters appear in the fonts. Querying how
Tsukurimashou decomposes a character is often use-
ful, but Tsukurimashou by definition does not cover
the characters I have yet to add, and its decomposi-
tions may not reflect traditional etymology and other
concerns. IDSgrep also ships with code to extract
EIDS character decompositions from the KanjiVG
Project’s XML files [1] and from the CHISE IDS data-
base [4]. It can do a “join” of any of the kanji

databases with EDICT2 [3] to create an experimental
dictionary of words and meanings with character
decompositions. None of these databases is perfect;
but especially by searching several at once, users can
usually succeed in finding what they are looking for.

5 Conclusions and future work

There has been much past CJK METAFONT work,
with few results and no finished fonts. I have de-
scribed my own project, the Tsukurimashou paramet-
ric font meta-family, which is unfinished too. How-
ever, Tsukurimashou has made more progress than
any similar system to date. I have described issues
facing this kind of project, Tsukurimashou’s solu-
tions for some of them, and associated technology
including the IDSgrep kanji structural query system.

The obvious direction for future work is to com-
plete Tsukurimashou’s kanji coverage. My hope,
however, is that some of the code and ideas from this
project will also be applicable in other languages and
other projects.

References

[1] Ulrich Apel. KanjiVG. http://kanjivg.

tagaini.net/.

[2] Black Duck Software. The Tsukurimashou
open source project on Ohloh: Languages
page. https://www.ohloh.net/p/

tsukurimashou/analyses/latest/

languages_summary.

[3] Jim Breen. The EDICT dictionary file.
http://www.csse.monash.edu.au/~jwb/

edict.html.

[4] CHISE Project. http://www.chise.org/.

[5] John D. Hobby and Gu Guoan. A Chinese
meta-font. TUGboat, 5(2):119–136, November

Tsukurimashou: A Japanese-language font meta-family

278 TUGboat, Volume 34 (2013), No. 3

1984. http://tug.org/TUGboat/05-2/

tb10hobby.pdf.

[6] Don Hosek. Design of Oriental characters
with METAFONT. TUGboat, 10(4):499–502,
December 1989. http://tug.org/TUGboat/

10-4/tb26hosek.pdf.

[7] Bogus law Jackowski, Janusz Nowacki, and
Piotr Strzelczyk. Programming PostScript
Type 1 fonts using MetaType1: Auditing,
enhancing, creating. TUGboat, 24(3):575–581,
2003. http://tug.org/TUGboat/24-3/

jackowski.pdf.

[8] Bogus law Jackowski and Janusz M.
Nowacki. Latin Modern: Enhancing
Computer Modern with accents, accents,
accents. TUGboat, 24(1):64–74, 2003. http:

//tug.org/TUGboat/24-1/jackowski.pdf.

[9] Koichi Kamichi. GlyphWiki. http://en.

glyphwiki.org/wiki/GlyphWiki:MainPage.

[10] Javier Rodŕıguez Laguna. Hóng-Zı̀: A Chinese
METAFONT. TUGboat, 26(2):125–128, 2005.
http://tug.org/TUGboat/26-2/laguna.pdf.

[11] Tung Yun Mei. LCCD, a language
for Chinese character design. Report
STAN-CS-80-824, Stanford University,
Department of Computer Science, 1980.
ftp://reports.stanford.edu/pub/cstr/

reports/cs/tr/80/824/CS-TR-80-824.pdf.

[12] Tom Ridgeway. Poor Man’s Chinese and
Japanese, 1990. http://www.ctan.org/

tex-archive/fonts/poorman.

[13] Tetsuro Tanaka. Wadalab-Toolkit. Web
page in Japanese. http://gps.tanaka.ecc.
u-tokyo.ac.jp/wadalabfont/.

[14] Unicode Consortium. Ideographic description
characters. In The Unicode Standard,

Version 6.2.0, section 12.2. The Unicode
Consortium, Mountain View, USA, 2012.
http://www.unicode.org/versions/

Unicode6.2.0/ch12.pdf.

[15] Wenlin Institute. Character description
language. http://www.wenlin.com/cdl/.

[16] Candy L. K. Yiu and Wai Wong.
Chinese character synthesis using
MetaPost. TUGboat, 24(1):85–93, 2003.
http://tug.org/TUGboat/24-1/yiu.pdf.

⋄ Matthew Skala
Department of Computer Science
E2–445 EITC
University of Manitoba
Winnipeg MB R3T 2N2
Canada
mskala (at) ansuz dot sooke dot

bc dot ca

http://ansuz.sooke.bc.ca/

Matthew Skala

TUGboat, Volume 34 (2013), No. 3 279

Braille fonts in Project Fandol

Clerk Ma

1 A short history

In China, Braille symbols were first introduced in
1874 by William Hill Murray, a preacher of the Na-
tional Bible Society of Scotland. Collaborating with
J. Crossette, Murray developed a system which can
encode Braille with 408 different syllables in Man-
darin Chinese. The shortcoming of Murray’s system
is that all the syllables are based on the Peking dialect
of the Chinese language. This system cannot work
properly for other dialects in North China. David
Hill, a preacher of Wesleyan Methodist Missionary
Society, developed another encoding system during
1888–1889. Hill’s system influenced various Chinese
Braille encoding systems in the 20th century. The
current Braille encoding scheme used in mainland
China was designed by Huang Nai (黄乃) in 1952.

After the First Opium War, many preachers
landed in China to do missionary work. The teach-
ing of Braille was mainly in missionary schools. In
1928, the Braille Literature Association (BLA) was
established in China, whose mission was to publish
books in Braille. In 1933, a Braille version of John
Bunyan’s The Pilgrim’s Progress by BLA became a
best-seller among blind people. During the second
half of the 20th century, after the foundation of the
People’s Republic of China, a national press named
China Braille Press was established for publishing
Braille books in Huang’s Braille encoding scheme.

2 Standards for Braille

There are several GB (国家标准, National Standard)
standards for Braille usage in China.

GB/T 15720-2008: Chinese Braille.

First published in 1995, revised in 2008. This stan-
dard has specified: (1) the form and size of Braille
font, (2) the encoding of Braille, (3) hyphenation in
Braille. According to this standard, a Braille sen-
tence (meaning It’s getting late) can be written as:

⠱⠂⠛⠩⠁
︸ ︷︷ ︸

时间

⠀⠃⠥⠆
︸︷︷︸

不

⠀⠵⠖⠄
︸︷︷︸

早

⠀⠇⠢⠰⠂
︸ ︷︷ ︸

了

GB/T 18028-2010: Mathematical, physical

and chemical symbols of Chinese Braille.

First published in 1995, revised in 2000 and 2010.
This standard has specified the form and usage
of mathematical, physical and chemical symbols.
Adopting the Marburg and Nemeth systems, people
can use Braille to express formulae, as in:

x′ = f(x, t) ↔ ⠰⠭⠨⠔⠀⠶⠰⠋⠣⠭⠐⠀⠞⠜

3 Fandol’s Braille fonts

More and more public facilities are marked with
Braille in China. For example, the photo here shows
Braille on a handrail:

Figure 1: Braille on handrail

Project Fandol has provided two Braille fonts
which are inspired by Braille dots used in Chinese
public facilities, and modified with rules from GB/T

15720-2008. All the Braille symbols are encoded in
Unicode. The first is FandolBraille-Display.otf

(fig. 2). Each glyph in this font has eight dots (empty
or filled), and is designed for display screen.

The second font is FandolBraille-Regular.otf

(fig. 3). This font is designed for printing.

4 Notes

a. Unicode has a block called Braille Patterns (the
range from U+2800 to U+28FF) assigned for these
Braille glyphs. In fact, Chinese Braille only uses the
range from U+2800 to U+283F, but I have no reason
to abandon other code points which would be useful
to other people in the world.

b. The Braille glyphs in the GNU Project’s Free-
Font package (FreeMono) [4] are designed by Steve
White. Braille glyphs in FreeMono conform to the
proportions of a US Library of Congress standard [5],
which are similar to the proportions in GB standards.

c. William Park’s braille package [6] also can
produce Braille with Python scripts. But his im-
plementation does not provide standalone Braille
fonts. When using the braille package, every dot
in every glyph is drawn via LATEX’s \put command
and picture environment.

d. The picture is taken in a station of the Beijing
subway. Other barrier-free structures, such as side-
walks for the blind, have also existed for a long time.
These convenient facilities improve the safety of blind
people in public.

Braille fonts in Project Fandol

280 TUGboat, Volume 34 (2013), No. 3

’0 ’1 ’2 ’3 ’4 ’5 ’6 ’7

’2400x ⠀ ⠁ ⠂ ⠃ ⠄ ⠅ ⠆ ⠇
”280x

’2401x ⠈ ⠉ ⠊ ⠋ ⠌ ⠍ ⠎ ⠏

’2402x ⠐ ⠑ ⠒ ⠓ ⠔ ⠕ ⠖ ⠗
”281x

’2403x ⠘ ⠙ ⠚ ⠛ ⠜ ⠝ ⠞ ⠟

’2404x ⠠ ⠡ ⠢ ⠣ ⠤ ⠥ ⠦ ⠧
”282x

’2405x ⠨ ⠩ ⠪ ⠫ ⠬ ⠭ ⠮ ⠯

’2406x ⠰ ⠱ ⠲ ⠳ ⠴ ⠵ ⠶ ⠷
”283x

’2407x ⠸ ⠹ ⠺ ⠻ ⠼ ⠽ ⠾ ⠿

’2410x ⡀ ⡁ ⡂ ⡃ ⡄ ⡅ ⡆ ⡇
”284x

’2411x ⡈ ⡉ ⡊ ⡋ ⡌ ⡍ ⡎ ⡏

’2412x ⡐ ⡑ ⡒ ⡓ ⡔ ⡕ ⡖ ⡗
”285x

’2413x ⡘ ⡙ ⡚ ⡛ ⡜ ⡝ ⡞ ⡟

’2414x ⡠ ⡡ ⡢ ⡣ ⡤ ⡥ ⡦ ⡧
”286x

’2415x ⡨ ⡩ ⡪ ⡫ ⡬ ⡭ ⡮ ⡯

’2416x ⡰ ⡱ ⡲ ⡳ ⡴ ⡵ ⡶ ⡷
”287x

’2417x ⡸ ⡹ ⡺ ⡻ ⡼ ⡽ ⡾ ⡿

’2420x ⢀ ⢁ ⢂ ⢃ ⢄ ⢅ ⢆ ⢇
”288x

’2421x ⢈ ⢉ ⢊ ⢋ ⢌ ⢍ ⢎ ⢏

’2422x ⢐ ⢑ ⢒ ⢓ ⢔ ⢕ ⢖ ⢗
”289x

’2423x ⢘ ⢙ ⢚ ⢛ ⢜ ⢝ ⢞ ⢟

’2424x ⢠ ⢡ ⢢ ⢣ ⢤ ⢥ ⢦ ⢧
”28Ax

’2425x ⢨ ⢩ ⢪ ⢫ ⢬ ⢭ ⢮ ⢯

’2426x ⢰ ⢱ ⢲ ⢳ ⢴ ⢵ ⢶ ⢷
”28Bx

’2427x ⢸ ⢹ ⢺ ⢻ ⢼ ⢽ ⢾ ⢿

’2430x ⣀ ⣁ ⣂ ⣃ ⣄ ⣅ ⣆ ⣇
”28Cx

’2431x ⣈ ⣉ ⣊ ⣋ ⣌ ⣍ ⣎ ⣏

’2432x ⣐ ⣑ ⣒ ⣓ ⣔ ⣕ ⣖ ⣗
”28Dx

’2433x ⣘ ⣙ ⣚ ⣛ ⣜ ⣝ ⣞ ⣟

’2434x ⣠ ⣡ ⣢ ⣣ ⣤ ⣥ ⣦ ⣧
”28Ex

’2435x ⣨ ⣩ ⣪ ⣫ ⣬ ⣭ ⣮ ⣯

’2436x ⣰ ⣱ ⣲ ⣳ ⣴ ⣵ ⣶ ⣷
”28Fx

’2437x ⣸ ⣹ ⣺ ⣻ ⣼ ⣽ ⣾ ⣿

”8 ”9 ”A ”B ”C ”D ”E ”F

Figure 2: Font table of FandolBraille-Display.otf

References

[1] 郭卫东, 基督教新教传教士与中国盲文体系的演进,
近代史研究, 2006 (2)
Guo Weidong, The Protestant Missionaries and
the Development of China’s Braille System,
Modern Chinese History Studies, 2006 (2).

[2] 中华人民共和国国家质量监督检验检疫总局, 中国
国家标准化管理委员会, GB/T 15720-2008 中国
盲文, 中国标准出版社, 2013
General Administration of Quality Supervision,
Inspection and Quarantine of the People’s
Republic of China, Standardization
Administration of the People’s Republic
of China, GB/T 15720-2008: Chinese Braille,
Standards Press of China, 2013.

[3] 中华人民共和国国家质量监督检验检疫总局, 中
国国家标准化管理委员会, GB/T 18028-2010
中国盲文数学、物理、化学符号, 中国标准出
版社, 2012 General Administration of Quality
Supervision, Inspection and Quarantine of the

’0 ’1 ’2 ’3 ’4 ’5 ’6 ’7

’2400x ⠀ ⠁ ⠂ ⠃ ⠄ ⠅ ⠆ ⠇
”280x

’2401x ⠈ ⠉ ⠊ ⠋ ⠌ ⠍ ⠎ ⠏

’2402x ⠐ ⠑ ⠒ ⠓ ⠔ ⠕ ⠖ ⠗
”281x

’2403x ⠘ ⠙ ⠚ ⠛ ⠜ ⠝ ⠞ ⠟

’2404x ⠠ ⠡ ⠢ ⠣ ⠤ ⠥ ⠦ ⠧
”282x

’2405x ⠨ ⠩ ⠪ ⠫ ⠬ ⠭ ⠮ ⠯

’2406x ⠰ ⠱ ⠲ ⠳ ⠴ ⠵ ⠶ ⠷
”283x

’2407x ⠸ ⠹ ⠺ ⠻ ⠼ ⠽ ⠾ ⠿

’2410x ⡀ ⡁ ⡂ ⡃ ⡄ ⡅ ⡆ ⡇
”284x

’2411x ⡈ ⡉ ⡊ ⡋ ⡌ ⡍ ⡎ ⡏

’2412x ⡐ ⡑ ⡒ ⡓ ⡔ ⡕ ⡖ ⡗
”285x

’2413x ⡘ ⡙ ⡚ ⡛ ⡜ ⡝ ⡞ ⡟

’2414x ⡠ ⡡ ⡢ ⡣ ⡤ ⡥ ⡦ ⡧
”286x

’2415x ⡨ ⡩ ⡪ ⡫ ⡬ ⡭ ⡮ ⡯

’2416x ⡰ ⡱ ⡲ ⡳ ⡴ ⡵ ⡶ ⡷
”287x

’2417x ⡸ ⡹ ⡺ ⡻ ⡼ ⡽ ⡾ ⡿

’2420x ⢀ ⢁ ⢂ ⢃ ⢄ ⢅ ⢆ ⢇
”288x

’2421x ⢈ ⢉ ⢊ ⢋ ⢌ ⢍ ⢎ ⢏

’2422x ⢐ ⢑ ⢒ ⢓ ⢔ ⢕ ⢖ ⢗
”289x

’2423x ⢘ ⢙ ⢚ ⢛ ⢜ ⢝ ⢞ ⢟

’2424x ⢠ ⢡ ⢢ ⢣ ⢤ ⢥ ⢦ ⢧
”28Ax

’2425x ⢨ ⢩ ⢪ ⢫ ⢬ ⢭ ⢮ ⢯

’2426x ⢰ ⢱ ⢲ ⢳ ⢴ ⢵ ⢶ ⢷
”28Bx

’2427x ⢸ ⢹ ⢺ ⢻ ⢼ ⢽ ⢾ ⢿

’2430x ⣀ ⣁ ⣂ ⣃ ⣄ ⣅ ⣆ ⣇
”28Cx

’2431x ⣈ ⣉ ⣊ ⣋ ⣌ ⣍ ⣎ ⣏

’2432x ⣐ ⣑ ⣒ ⣓ ⣔ ⣕ ⣖ ⣗
”28Dx

’2433x ⣘ ⣙ ⣚ ⣛ ⣜ ⣝ ⣞ ⣟

’2434x ⣠ ⣡ ⣢ ⣣ ⣤ ⣥ ⣦ ⣧
”28Ex

’2435x ⣨ ⣩ ⣪ ⣫ ⣬ ⣭ ⣮ ⣯

’2436x ⣰ ⣱ ⣲ ⣳ ⣴ ⣵ ⣶ ⣷
”28Fx

’2437x ⣸ ⣹ ⣺ ⣻ ⣼ ⣽ ⣾ ⣿

”8 ”9 ”A ”B ”C ”D ”E ”F

Figure 3: Font table of FandolBraille-Regular.otf

People’s Republic of China, Standardization
Administration of the People’s Republic of
China, GB/T 18028-2010: Mathematical,
physical and chemical symbols of Chinese
Braille, Standards Press of China, 2012.

[4] GNU Project, GNU FreeFont: Braille Patterns,
2013. http://www.gnu.org/software/

freefont/ranges/Braille.html

[5] National Library of Congress, National
Library Service for the Blind and Physically
Handicapped, Specification #800, ǳBraille
Books and PamphletsǴ, 2008. http://www.loc.

gov/nls/specs/800_march5_2008.pdf

[6] William Park, braille — Support for braille,
2010. http://ctan.org/pkg/braille

⋄ Clerk Ma
clerkma (at) gmail dot com

http://ctan.org/pkg/fandol

Clerk Ma

TUGboat, Volume 34 (2013), No. 3 281

Case study: Typesetting old documents

of Japan

NAKANO Ken and KOBAYASHI Hajime

This is a report on the typesetting of Komonjo books

(reprint books compiling old documents of Japan)
published by Shiryo Hensan-jo, with pTEX (pLATEX).

We would like to report that typesetting of
Komonjo books, which are classified as difficult to
typeset, can be made efficiently using TEX.

About Shiryo Hensan-jo

From their web site (http://www.hi.u-tokyo.ac.jp):
Shiryo Hensan-jo (the Historiographical Institute,
HI), the University of Tokyo, has as its primary ob-
jective, rather than historiography in general, analy-
sis, compilation, and publication of historical source
materials concerning Japan.

The institute has become a major center of
Japanese historical research, and makes historical
sources available through its library, publications,
and recently, databases.

About us and TEX

Our company, Livretech, is a printing firm mainly
producing textbooks and education-related books.

We’ve been using TEX since 1988, and have
been concerned with some TEX-related topics. We
developed a DVI driver program for the Shaken type-
setter in 1989 (Shaken is a famous manufacturer in
Japan making fonts and typesetting systems). We
also typeset and output Japanese editions of The

TEXbook (1992) and The METAFONTbook (1994).

1 Until TEX was chosen

Before TEX was chosen, Komonjo books were com-
posed with hot metal types or phototypesetting
systems developed for professional users. Several
typesetting systems had been used, but commonly
speaking, Komonjo books were difficult to typeset.

After typesetting was completed, contents of
books were stored in the database named SHIPS

(Shiryo hensanjo Historical Information Processing
System), but another problem occurred.

In those days, Japanese typesetting systems
worked with the creators’ original character codes.
For technical reasons and/or the creators’ policies,
typesetting data could not easily be re-used for an-
other purpose. So, the final typesetting data would
not automatically convert into database texts. To
make the database text, typesetting contractor had
to revise the final data manually, or in the worst
case, input all texts again. And texts made in this
way had to be proofread again.

To solve these problems, the professors of Shiryo
Hensan-jo focused on TEX. This was in about 2001.
They tried to typeset Komonjo books with TEX, and
they found the possibility of typesetting and flexi-
bility of text data.

And then, they contacted us and we started on
this new challenge in 2002.

2 Typesetting problems

2.1 Problems with fonts

2.1.1 Shortage of kanji characters

Massive numbers of kanji are used inKomonjo books.
At that time, the Shaken system that was used to
typeset Komonjo books had about 10,000 kanji char-
acters. However, the fonts which could be used with
pTEX had only about 6,500 kanji characters.

2.1.2 Simplification of kanji shapes

In Japan, shapes of many frequently used kanji have
been simplified to make them easier to read and
write. Kanji of traditional shapes are called Seiji (正
字), and those of simplified shapes are called Ryakuji

(略字). Here are some examples of Ryakuji and Seiji

character shapes:

Ryakuji Seiji meaning

医 醫 medical, doctor

円 圓 circle, yen

塩 鹽 salt

害 害 harm, damage

学 學 study, learn

国 國圀 country

Like the letter “国,” some Ryakuji characters have
two or more Seiji characters.

In essence, Komonjo books are composed with
Seiji characters. On the other hand, we use Ryakuji
kanji in everyday life, and we rarely use Seiji char-
acters. Because of this, Seiji characters have been
put away in the dark recesses of fonts and kanji in-
put methods. So it is difficult for us to input Seiji

characters directly.

2.1.3 Hentai-gana

変体仮名 (Hentai-gana, see ① in the figure on the
next page) are Japanese old syllabary characters.
Hentai-gana were made from kanji characters as well
as modern kana characters. Here we show some
Hentai-gana examples used in Komonjo books, with
related kanji and kana characters.

original kanji 二 爾 而 八 者 者 者 江 三 茂

Hentai-gana ニ 爾 而 八 者 は ハ 江ミ 茂

modern Kana に に て は は は は え み も

Case study: Typesetting old documents of Japan

282 TUGboat, Volume 34 (2013), No. 3

　 Dainihon Ishin Shiryo, Ii-ke #27, p.106

萬
延
元
年
七
月

一
〇
六

（
卷

紙
）

三
八

七
月
二
十
五
日

九
條
家
家
士
島
田
龍
章
左近

書
狀

彥
根
藩
士
長

野
義
言
主膳

宛

○
本
號
史
料
ハ
一
旦
切
斷
セ
ラ
レ
シ
カ
、
切
斷
箇
所
ヲ
▲
ニ
テ
示
ス
、
サ
レ
ド
改
削
ハ
ナ
カ
ラ
ン
、

　
（
斜
封
紙
ウ
ハ
書
）

「

申
七
月
廿
五
日

長
　
義
言
公

龍
　
章

」

　
（
右
裏
）

「

　
（
封
印
※
參
照
ノ
コ
ト
）

□

　
（
同
上
）
□

　
（
同
上
）
□

」
※
印
影
模
寫

（
辰
）

　
（
所
見
ナ
シ
、
本
卷
第
三
九
號
參
看
）

去
十
九
日
附
之
貴
翰
正
二
相
逹
拜
見
仕
候
、
先
以

十
九
日
付
貴
狀

拜
見
ス

　
（
井
伊
直
憲
、
彥
根
藩
主
）

大
守
樣
倍
々
御
機
嫌
克
被
爲
入
御
座
、
御
滿
足

思
召
候
、
二
二

貴
君
彌
御
安
福
不
相
替
御
忠
勤
御
奉
務
之
條
重
疊
奉
恭
欣
候
、
然
ハ
當
御
方
へ
　
（
第
二
十
卷
第
三
三
號
參
看
）

御
宛
行
御
地
所
之
義
二
付
、

貴
君
御
働
ニ
テ

九
條
家
新
知
ニ

付
廣
周
配
慮
ア

リ

度
々
御
無
理
之
義
種
々
被

　
（
第
二
十
六
卷
第
一
一
九
號
參
看
）

仰
入
候
処
、
段
々
御
丹
誠
ヲ
以

　
（
廣
周
、
老
中
）

久
世
侯
へ
御
願
被
仰
上
被
下
候
処
、
御
同
侯
不
一
形

御
配
慮
二
て
出
格
御
心
配
も
被
爲
成
進
、
旣
二
　
（
穆
淸
、
町
奉
行
）

石
谷
君
二
ハ
元
　
（
嘉
永
五
年
五
月
十
九
日
ヨ
リ
安
政
元
年
五
月
二
十
日
迄
大
坂
町
奉
行
）

浪
花
表
町
大
尹
御
承
勤
之
御
事
二
付
、
彼
地

穆
淸
モ
大
坂
町

奉
行
勤
ニ
ヨ
リ

彼
地
ノ
事
情
承

知
決
著
ノ
見
込

案
上
申
シ
近
日

之
事
情
ハ
流
通
二
御
承
知
之
御
事
二
も
有
之
、
且
ハ
夫
是
御
懇
例
之
邊
ヲ
以
御
決
著
之
御
見
込
案
等
御
申
上

　 Dainihon Shiryo, No.7 #32, p.125

應
永
二
十
五
年
雜
載
　
社
寺

一
二
五

ｔ
違
遺
医
井

覺
園
寺
住
持
　
（
悅
岩
）

思
咲
（
花
押
）

　
（
裏
、
銘
）
應
永
廿
五
年
十
一
月
九
日
　
開
眼
供
養

ｔ
違
育佛
所
伯
耆
法
眼
朝
祐
作

　
〔
彩
〕
采
色
宇
多
田

修
　
〔
理
〕
里
助

塗
師
近
藤
家
友

大
願
主
土
佐
法
橋
隨
珍
（
花
押
）

〔
板
碑
〕
○
埼
玉
縣
朝
霞
市
膝

折
町
一
乘
院
所
在

武
藏

板
碑

應
永
廿
五
年

械

（座蓮）

妙
心
禪
尼

正
月
十
五
日

〔
板
碑
〕
○
埼
玉
縣
久
喜
市
中

妻
矢
野
誠
家
所
在

て
（座蓮）

□
□

ぞ

（座蓮）

應
永
廿
五
年

ぐ
（座蓮）

正
月
廿
日

　 Dainihon Kinsei Shiryo, Hirohashi Diary #11, p.194

寶
曆
十
二
年
東
行
之
記

一
九
四

❜一
、
攝
家
已
下
使
近
衞
家
齋
藤
　
（
敍
昌
）

若
狹
守
、
九
條
家
芝
　
（
和
廣
）

內
藏
權
頭
、
鷹
司
家
種
田
　
（
貞
禎
）

信
濃
介
、
一
條
家
難
波
　
（
定
直
）

雅
樂
頭
、

二
條
家
北
小
路（
俊
芳
）

內
匠
頭
、〔
照
〕
昭
門
岩
波（
譽
香
）

兵
部
卿
、
靑
門
武
田（
信
養
）

因
幡
守
、
知
門
松
室（
敬
民
）

大
進
、
圓
門
柊
　
（
淸
昌
）

彈
正
少
忠
、

對
顏
、
高
家
披
露
、

祝
儀
ヲ
傳
逹
ス

攝
家
竝
ニ
門
跡

ノ
使
將
軍
ニ
對

顏
ス

（8オ）

次
　
（
梅
溪
直
子
）

勾
當
內
侍
献
上
物
、
中
奧
持
出
、

高
家
披
露
、

勾
當
內
侍
ノ
獻

上
物
ヲ
披
露
ス

一
、
兩
人
私
之
礼
、
先 予
献
上
物
紗
綾
五
卷
、
臺
中
奧
持
出
置
之
、
次
高
家
置
太
刀
目
錄
、
次

○
予
於
下
段
御
礼
、
高
家
披
露
、

三
疊
目
、

出
庇
、
執
老
中
氣
色
、
　
（
井
上
利
容
）

河
內
守
在

下
段
閾
外
、
更
入
母
屋
、
御
右
之
方
二

兩
傳
奏
自
分
御

禮

着
座
、
迫
簾
、
次
姊
小
路
同
前
着
座
、
河
內
守
取
合
、
姊
小
路
献
　
〔
上
〕
　
物

撤
却〔

之
〕
　
後
、

有
命
、
兩
人
平
伏
、
承
之
、
退
去
、
候
大

武
命
ヲ
承
ル

廣
間
三
間
、

一
、
西
本
願
寺
門
跡
、
次
廣
幡
大
納
言
等
御
代
替
之
御
礼
相
濟
、
各
被
來
大
廣
間
三
間
、
門
跡
と
予
對
坐
、

廣
幡
被
着
姊
小
路
次
、

西
本
願
寺
門
跡

竝
ニ
輔
忠
將
軍

代
替
ノ
御
禮

地
下
攝
家
・
門
跡
之
使
者
、
本
願
寺
家
來
、
廣
幡
家
諸
大
夫
二
人
、

兩
家
雜
掌
四
人
、
樂
人
惣
代
豐（

倫
秋
）

伊
賀
守
、
三
職
人
、

目
見
了
、
吉
田
家
使
者
鈴
鹿
丹
波
守
、
目
見
了
、

地
下
官
人
吉
田

家
使
者
目
見
ス

一
、
老
中
見
送
兩
人
、
謝
御
對
顏
忝
由
、
直
起
座
、
先
向
兩
人
、
第
一
酒
井
予
ト
姊
小
路
ト
ノ
間
程
二

座
ス
、
次
向
門
跡
、
次
向
廣
幡
歟
、

老
中
ヘ
對
顏
ヲ

謝
シ
退
出
ス

一
、
兩
人
退
出
、
下
城
、
出
外
櫻
田
門
、
向
水
野
　
（
忠
見
）

壹
岐
守
・
板
倉
　
（
勝
淸
）

佐
渡
守
・
井
上
河
內
守
・
松
平
　
（
武
元
）

右
近
將
監
・

老
中
及
ビ
若
年

寄
邸
ヲ
回
禮
ス
（8ウ）

小
出
　
（
英
持
）

信
濃
守
等
　
〔
亭
〕

　
、
謝
對
顏
・
家
來
目
見
忝
由
、
御
對
顏
忝
存
マ
す
、
家
來
御
目
見
　
〔
是
〕
　
又
　
〔
忝
〕
　
存
マ
す
、

御
礼
二

伺
候
致
シ
タ
、
宜
ウ
、
姊
小
路
云
、
同
樣
二

宜
ウ
、
還
館
、

一
、
上
使
前
田
　
（
房
長
）

出
羽
守
入
來
、
對
顏
相
濟
二

付
賜
鹽
鶴
一
箱
・
樽
一
荷
、
兩
人
迎
送
、
謝
詞
如
例
、

上
使
ヲ
以
テ
鹽

鶴
等
ヲ
賜
ハ
ル

一
、
兩
人
同
伴
向
松
平
右
京
大
夫
・
松
平
　
（
忠
恆
）

攝
津
守
・
酒
井
　
（
忠
休
）

石
見
守
・
酒
井
　
（
忠
寄
）

左
衞
門
尉
・
秋
元
　
（
凉
朝
）

但
馬
守
・
前
田

老
中
等
ノ
邸
ヲ

回
禮
ス

　
（
長
泰
）

信
濃
守
・
織
田
　
（
信
榮
）

對
馬
守
等
宅
、
謝
詞
如
初
、
於
前
田
・
織
田
兩
家
者
、
於
營
中
取
持
之
儀
を
も
謝
了
、

不
向
　
（
貞
整
）

由
良
・
　
（
國
祐
）

畠
山
等
亭
、
以
使
雜
掌
、
謝
之
、
畠
山
八
行
向
之
事
斷
也
、
任
其
　
〔
意
〕

　
、

　 Dainihon Shiryo, No.7 #32, p.227

應
永
二
十
五
年
雜
載
　
疾
病
・
死
歿

二
二
七

明
德
三
年
、
山
名
修
理
大
夫
義
理
依
有
企
謀
叛
、
從
將
軍
　
（
足
利
）

義
滿
公
討
手
大
內
左
京
大
夫
義
弘
西

國
之
軍
勢
、
以
大
野
城
而
御
向
候
時
、
別
所
和
合
院
瀧
賢
與
弘
信
致
一
味
義
弘
之
味
方
仕
、
義

弘
利
運
、
依
之
和
合
院
瀧
賢
衣
笠
山
之
別
當
職
如
先
規
安
堵
ス
、

和
合
院
瀧
賢
應
永
二
十
五
戊
戌
年
四
月
七
日
寂
、

紀
伊
和
合
院
別

當
瀧
賢

〔
若
狹
守
護
武
田
氏
系
圖
〕
○
若
狹
佛
國
寺
所
藏

小
濱
市
史
社
寺
文
書
編
所
收

信
重
　
（
武
田
）

滿
信
之
長
子
、
武
田
四
郞
、
後
刑
部
少
輔
・
伊
豆
守
タ
リ
、

甲
斐
之
主
、

信
守
滿
信
之
二
男
、
武
田
太
郞
、
後
歷
任
伊
豆
守
・
刑
部
少
輔
ニ

、

甲
斐
之
主
、

武
田
信
守

應
永
二
十
五
年
戊
戌
四
月
十
三
日
卒
ス

、
號
光
明
寺
輝
溪
祐
光
ト

、

信
昌
信
守
之
長
子
、
武
田
太
郞
、
後
歷
任
伊
豆
守
・
刑
部
少
輔
ニ

、

甲
斐
之
主
○
事
蹟

略
ス
、

○
本
系
圖
、
世
系
ニ
錯
誤
ア
リ
ト
雖
モ
、
姑
ク
玆
ニ
揭
グ
、
ナ
ホ
、
安
藝
武
田
信
守
ニ
カ
カ
ル
系

圖
ヲ
左
ニ
揭
グ
、

〔
若
州
武
田
系
圖
〕
○
續
群
書
類
從
卷

百
二
十
三
所
收

總
領
氏
信
甲
斐
・
安
藝
守
護
、
伊
豆
守
、

法
名
光
誠
、
道
號
明
中
、
慈
善
寺
、

③
︷ ︸︸ ︷

③
︷ ︸︸ ︷

④

①

②

⑤

⑥

Examples of Komonjo books (reduced 53%).

NAKANO Ken and KOBAYASHI Hajime

TUGboat, Volume 34 (2013), No. 3 283

Hentai-gana have different shapes with the same
reading, while modern kana have one shape with
one reading.

2.1.4 Bonji

梵字 (Bonji, see ②) characters are mystical letters
used in Japanese Buddhism. Bonji consist of conso-
nants, vowels and derivative letters, so many char-
acters can be created. The following are some typi-
cal Bonji characters and their meanings:

Bonji sound meaning

乾 a, ア the most basic character

汗 āh. , アーク Dainichi Buddha, 大日如来

活 hr̄ıh. , キリク Amitabha, 阿弥陀如来

2.2 Problems with notes

Komonjo books contain many notes to aid readers’
understanding. Two kinds of notes occur frequently.

One is a “head note” (③), similar to \marginpar
but a long note appearing at the end of a page has
to be split over pages.

The other is an “interline note” (④) which can
occur anywhere in the text. To avoid overlapping of
the interline note and text or other materials, posi-
tion adjustment is needed.

2.3 Problems with picture-like materials

Picture-like materials such as family tree diagrams
(⑤) and handwriting-like lines (⑥) interrupt the
flow of text. Handling them is troublesome in TEX.

3 Solutions to problems

3.1 Solutions for font problems

3.1.1 New kanji fonts are available

The Adobe-Japan1-5 character collection was pub-
lished in 2002. This collection has 20,316 characters
total, including 12,668 kanji characters. The num-
ber of kanji characters approximately doubled from
the font that we used till then. AJ1-5 fonts could
mostly cover the range of Komonjo books.

After that, the UTF package was developed by
SAITO Shuzaburo. With this package, we could now
use all characters of AJ1-5 fonts with pTEX.

In addition, we made an OpenType font named
ut-gaiji to gather the additional characters which
AJ1-5 did not have (“ut” means “u-tokyo” and “gaiji
(外字)” means “external character”).

3.1.2 Input Seiji using Ryakuji

To avoid the difficulty of Seiji input, we decided to
make Seiji texts from Ryakuji texts. Preparation in
advance was as follows:

• Write a style file named jitai.sty (“jitai (字
体)” denotes “character shape”) to describe
pairs of Ryakuji and Seiji, in order to spec-
ify Seiji kanji via Ryakuji kanji.

\def\seiji{\@ifnextchar[{\@seiji}{\@seiji[0]}}

\def\@seiji[#1]#2{\expandafter

\ifx\csname @SJ#1#2 \endcsname\relax

\typeout{!!! Seiji #2(#1) undef.}#2\relax

\else \csname @SJ#1#2 \endcsname \fi }

\let\S\seiji

\def\DefSeiji[#1]#2#3{\expandafter

\gdef\csname @SJ#1#2 \endcsname{#3}}

\DefSeiji[0]{亜}{亞}

\DefSeiji[0]{唖}{\CID{7633}}

\DefSeiji[0]{逢}{\CID{8266}}

\DefSeiji[0]{悪}{惡}

\DefSeiji[0]{医}{醫}

\DefSeiji[0]{学}{學}

\DefSeiji[0]{国}{國}

\DefSeiji[1]{国}{圀}

　　　　:

jitai.sty has about 1,000 such pairs. For ex-
ample, after these definitions, the input \S{学}

produces “學,” and you can input \S[1]{国} to
get optional Seiji character “圀.”

The \CID command in a kanji pair specifies
the internal character code from AJ1-5 (Char-
acter ID) directly.

• Write a Ruby program which converts Ryakuji
texts into Seiji texts, referencing the jitai file.
When the Ruby program finds Ryakuji kanji in
a text file, it inserts the Seiji command.

For example, the kanji string “文学青年”
(“Literary youth”) is converted into “\S{文}

\S{学}\S{青}年,” and typeset as “文學靑年.”

Then, work steps are as follows:

1. Input text file with Ryakuji kanji.
2. Convert Ryakuji texts into Seiji texts.
3. Typeset Komonjo books with Seiji texts.

We revise only Ryakuji text files. We discard
Seiji text files after typesetting has completed, since
Seiji texts are hard to read due to the automatic
insertion of Seiji commands.

3.1.3 Hentai-gana

We made Hentai-gana as external characters and
put them into ut-gaiji.

3.1.4 Bonji

First, we used the free Bonji font, but it had only
typical characters, so we often had to create addi-
tional characters. Therefore, now we use the 今昔
文字鏡 (Konjaku-Mojikyo) font package which has
about 2,000 Bonji characters. And we also use
the mojikyo macro package developed by HONDA

Tomoaki, to specify Bonji characters.

Case study: Typesetting old documents of Japan

284 TUGboat, Volume 34 (2013), No. 3

Shiryo Hensan jo

Ryakuji

text

convert

Seiji

text
pLaTeX DVI

toc

final

text
input,

revise
convert

XML

dvips,

Acrobat

PDF
galley

jitai.sty

fonts

book

printing

SHIPS

proofreading

sty files

manuscripts

The workflow of Komonjo books.

3.2 Solutions for notes

3.2.1 Customize \marginpar for head note

A head note must be split when it “falls off” the end
of a page. To implement this, we customized the
definition of \marginpar. The original maintains a
\@marbox to store a page of marginal notes. We
just \vsplit \@marbox to \textheight, and put
the remaining note text at the top of the \@marbox
of the next page.

3.2.2 Interline note

An interline note is placed at the right or left side
of the text. We defined \rnote and \lnote respec-
tively, and an optional position adjustment, as fol-
lows:

\rnote[v-adjust][h-adjust]{note text}.

3.3 Picture-like materials

We made the complicated family tree diagram as an
integral number of line units, so that it can divide
at the end of page.

For handwriting-like lines, we defined a \Curve

macro, taking three points of a curve. Our \Curve is
essentially the \bezier function with \unitlength

of 1 zw (= width of a kanji). The second curve of ⑥
() was drawn with 3 lines as follows:

\Curve(.4,-.5)(.6,-.5)(.6,.2)

\Curve(.6,.2)(.6,.5)(.6,.5)

\Curve(.6,.5)(.6,1.1)(1.1,1.1)

3.4 Generate database texts

Another purpose of typesetting with TEX was to
generate database texts from final TEX files. We
wrote a Ruby program for this, and it works as fol-
lows: delete unnecessary information except text,

unify Seiji in Ryakuji, convert character code from
Shift-JIS to Unicode, and convert from TEX file to
the XML format of the database.

3.5 Result

We show the whole workflow of Komonjo books in
the figure above. Using our methods, more than half
of the Komonjo books of Shiryo Hensan-jo have been
typeset with TEX now.

As a result, we think that the two purposes to
be expected in TEX (efficiency of typesetting and
re-using of input for the database texts) have been
accomplished.

Acknowledgements

First of all, we’d like to thank the professors of
Shiryo Hensan-jo. They focused on TEX and se-
lected us as a partner, and they were kind enough
to teach everything about Komonjo books. We also
give thanks to SAITO Shuzaburo for the develop-
ment of the AJ1-5 font support packages. And also
thanks to HONDA Tomoaki for the development of
Mojikyo-related packages. Finally, many thanks to
Karl Berry and Barbara Beeton for their kind sup-
port in reviewing this article.

About rights

Products of this activity (style files, programs, etc.)
belong to Shiryo Hensan-jo. They are not publicly
available at this time.

⋄ NAKANO Ken

k-nakano (at) livretech dot co dot jp

⋄ KOBAYASHI Hajime

koba (at) livretech dot co dot jp

NAKANO Ken and KOBAYASHI Hajime

TUGboat, Volume 34 (2013), No. 3 285

upTEX—Unicode version of pTEX

with CJK extensions

Takuji Tanaka

Abstract

upTEX is a Unicode extension of ASCII’s pTEX (a
Japanese-localized TEX). It not only improves Jap-
anese support, but also handles Chinese and Ko-
rean characters, i.e., Kanji (Hanzi, Hanja), Kana,
CJK symbols, and Hangul with Unicode. Moreover,
it can process multilingual typesetting of original
LATEX with inputenc and Babel (Latin, Cyrillic,
Greek, etc.) by switching its \kcatcode tables. This
paper describes the main features of upTEX.

1 Introduction

1.1 Motivation

The objective of upTEX [1] is the “Unicodization” of
ASCII Corp.’s pTEX [2]. p(LA)TEX is the most pop-
ular TEX system in Japan and is widely used as a
typesetter for commercial printing. pTEX achieves
professional quality Japanese typesetting [3] includ-
ing Japanese hyphenation and vertical writing.

However, p(LA)TEX has some limitations due to
the legacy encodings (double byte Japanese encod-
ings, EUC-JP or Shift JIS). up(LA)TEX tries to im-
prove this, while keeping the benefits of pTEX, as
follows.

1.2 Enhancement of Japanese character set

The Japanese government has standardized several
character set versions as JIS (Japanese Industrial
Standard). In pTEX, the Japanese character set
is basically limited to JIS C 6226 and JIS X 0208,
namely JIS level-1 and -2 (6879 characters in 1990).
In 2000, a new standard for character set JIS X 0213
was standardized, with an additional character set
JIS level-3 and -4, 11233 characters in 2004. More-
over, additional characters which are useful in Ja-
panese are defined in the Unicode standard. upTEX
supports both sets, using the UTF-8 encoding.

1.3 Support of Chinese, Korean

pTEX basically supports Japanese and English (7-bit
Latin). upTEX adds support of Chinese and Korean
using procedures similar to Japanese typesetting. So
now upTEX supports CJK (Chinese, Japanese and
Korean).

1.4 Cooperation with Babel

pTEX has some difficulty handling 8-bit Latin due
to the double byte legacy encodings. upTEX more
easily treats 8-bit Latin, compared to pTEX. The

inputenc (option utf8) and Babel (Latin, Cyrillic,
Greek, etc.) packages are available in upLATEX.

1.5 Compatibility with pTEX

Since upTEX keeps the typesetting procedures of
pTEX, most macros for p(LA)TEX are expected to
work in up(LA)TEX with minimal or no modifications.

1.6 Limitation

Current upTEX has several limitations.
In the area of multilingual support, upTEX han-

dle CJK, Latin, Cyrillic and Greek. However, upTEX
cannot directly treat complex characters, e.g., Ara-
bic, Hindi.

upTEX includes the ε-TEX extensions, thanks to
Kitagawa [4]. On the other hand, upTEX does not
have pdfTEX extensions yet.

The (u)pTEX engine remains based on original
TEX and written using WEB. It includes two spe-
cial extensions: (1) (u)pTEX treats Japanese (CJK)
glyph metrics with an extended format of tfm, called
jfm; (2) (u)pTEX defines a special DVI command 255
for vertical writing.

Thus, (u)pTEX requires that related DVIware
support jfm and this DVI command. Advanced fea-
tures of OpenType fonts are hardly touched by pTEX
and upTEX.

2 Implementation

This section describes the implementation of upTEX.

2.1 Unicodization

Table 1 compares the internal structure of original
TEX, pTEX and upTEX. pTEX uses internally a 16-
bit token for Japanese, which is not enough to cover
the wide range of the Unicode character set. upTEX
expands that to an internal 29-bit token for CJK,
where the Ω (Omega) implementation was used for
reference. upTEX internally “unicodizes” only CJK

characters, treating 8-bit Latin characters the same
as in original TEX.

Table 2 summarizes encoding in upTEX. upTEX
I/O accepts UTF-8 with a variable length of one–four
octets. Originally, upTEX was not so refined. The
routine was cleaned up via the ptexenc library writ-
ten by Tsuchimura [5]. upTEX assumes that char-
acters beyond Unicode’s Basic Multilingual Plane
(BMP) have a fixed font metric to support Kanji on
the Supplementary Ideograph Plane (SIP).

2.2 Extension of \kcatcode

Table 3 shows the classifications of the \kcatcode

primitive in upTEX. pTEX defined \kcatcode values
of 16 (Kanji), 17 (Kana), and 18 (Japanese sym-
bol) for Japanese typesetting. upTEX extends the

upTEX—Unicode version of pTEX with CJK extensions

286 TUGboat, Volume 34 (2013), No. 3

\kcatcode of 15 (not CJK), defines 19 (Hangul),
and 18 is redefined as CJK symbol.

When \kcatcode is set to 15 (not CJK), the
character is treated like Latin characters in origi-
nal TEX. This feature provides the improved Babel
support in upTEX compared to pTEX. For example,
users can switch \kcatcode to select whether Cyril-
lic and Greek characters are treated as proportional
glyphs in their language, or treated as full-width
glyphs in conventional Japanese fonts.

When \kcatcode is set to 19 (Hangul), end-of-
line is treated as space.

2.3 Use of the DVI command set3

upTEX uses the DVI command set3 and supports
Kanji of SIP (U+2xxxx), where some Kanji char-
acters used daily in Japanese are included. The
upTEX project prepared patches for some DVI soft-
ware (dvips, dvipdfmx, dviout, xdvi and dvi2tty)
to support SIP. In TEX Live, the patches for all but
xdvi are (or will be) applied.

3 upTEX vs. other Unicode TEX

Table 4 compares features of original TEX, upTEX
and other TEX families with Unicode support (Ω,
X ETEX [6] and LuaTEX-ja [7]).

The recommended practice for using upTEX is
as a “better pTEX” with better Japanese support
and/or better multilingualization with CJK and Ba-
bel support.

4 History and future

A very brief timeline of upTEX-related events:

1995 ASCII pTEX ver.2, pLATEX2ε [2]
2007 upTEX first release, alpha version
2007 upTEX in W32TEX [8]
2008 ε-upTEX by Kitagawa-san [4]
2012 upTEX 1.00
2012 upTEX in TEX Live

Currently, I believe upTEX has the capability
of multilingual (CJK, Latin, Cyrillic, Greek) type-
setting. Possible enhancements for the future:

• Support IVS (Ideographic Variation Sequence).
• Document classes for Chinese/Korean.
• Babel options for Chinese/Korean.
• Add pdfTEX extensions.
• Merge LuaTEX [9] or X ETEX [6].

Acknowledgements

I deeply appreciate the work of ASCII Corporation
(currently ASCII Media Works, Inc.). upTEX could
not exist without the achievement of pTEX.

I thank Tsuchimura-san (土村展之氏), ZR-san
(八登崇之氏) [10], Inoue-san (井上浩一氏), Kakuto-
san (角藤亮氏), Okumura-san (奥村晴彦氏), Yasuda-
san (安田功氏), Kuriyama-san (栗山雅俊氏), Kita-
gawa-san (北川弘典氏), Dora-san, Norbert Preining-
san and the many people who discussed upTEX at
the Japanese website TEX Q&A [11] and other places
for their fruitful observations.

References

[1] Tanaka, Takuji. upTeX, upLaTeX - Unicode
version of pTeX, pLaTeX,
http://homepage3.nifty.com/ttk/comp/

tex/uptex_en.html

[2] ASCII Corporation (currently ASCII Media
Works, Inc.). ASCII Japanese TeX (pTeX)
(in Japanese), http://ascii.asciimw.jp/
pb/ptex/

[3] Okumura, Haruhiko. pTeX and Japanese
typesetting, http://oku.edu.mie-u.ac.jp/

~okumura/texfaq/japanese/ptex.html

[4] Hironori, Kitagawa, e-pTeX Wiki (in
Japanese), http://sourceforge.jp/
projects/eptex/wiki/FrontPage

[5] ptetex Wiki, “UTF-8対応 (4)” (in Japanese),
http://tutimura.ath.cx/ptetex/?UTF-8%

C2%D0%B1%FE%284%29

[6] SIL International. The XeTeX typesetting
system, http://scripts.sil.org/xetex

[7] LuaTeX-ja, http://sourceforge.jp/
projects/luatex-ja/wiki/FrontPage%

28en%29, http://ctan.org/pkg/luatexja

[8] Kakuto, Akira. W32TeX,
http://w32tex.org/index.html

[9] The LuaTEX team. LuaTeX,
http://www.luatex.org/

[10] Yato, Takayuki. En toi Pythmeni tes
TeXnopoleos 電脳世界の奥底にて (in
Japanese), http://zrbabbler.sp.land.to/,
upLaTeX を使おう (in Japanese), http:
//zrbabbler.sp.land.to/uplatex.html

[11] TeX Q&A (in Japanese), http://oku.edu.
mie-u.ac.jp/~okumura/texwiki/

⋄ Takuji Tanaka
Kokubunji
Tokyo
Japan
KXD02663 (at) nifty dot ne dot jp

http://homepage3.nifty.com/ttk/

comp/tex/uptex_en.html

Takuji Tanaka

TUGboat, Volume 34 (2013), No. 3 287

Table 1: Comparison of structure among TEX, pTEX and upTEX.
† denotes that it works with the inputenc package.

TEX pTEX upTEX

Latin I/O 8 bit 7 bit 8 bit
(multi-bytes)† 1 byte (multi-bytes)†

token charcode 8 bit 8 bit 8 bit
catcode 4 bit 4 bit 4 bit

CJK I/O — EUC-JP etc. UTF-8
8 bit 8 bit

2 bytes 2–4 bytes

token charcode — 16 bit 24 bit
kcatcode — — 5 bit

Latin/CJK classification — fixed customizable

inputenc ok n/a ok

Babel full partial full

Table 2: Encoding in upTEX.

Latin CJK

TEX compatible upTEX extended

<256 BMP over BMP comment

.tex / .aux UTF-8
I/O buffer 1 byte 2–3 bytes 4 bytes

token 12 bit 29 bit with (k)catcode

set1 set2 set3
.dvi / .vf T1 etc. UCS-2 UTF-32

8 bit 16 bit 24 bit

.tfm T1 etc. UCS-2 —‡ ‡ treated as Kanji

8 bit 16 bit jfm for CJK

.ps / CMap T1 etc. UCS-2 UTF-16
8 bit 16 bit 2×16 bit

upTEX—Unicode version of pTEX with CJK extensions

288 TUGboat, Volume 34 (2013), No. 3

Table 3: \kcatcode in pTEX and upTEX. * denotes upTEX extension.

\kcatcode \catcode kind e.g.
control
word end of line

· · · · · ·

10 space

15* 11 char azAZ yes as space

12 other char (.!? no as space

· · · · · ·

16 Kanji 汉漢 yes ignore

17 Kana かナ yes ignore

18 CJK symbol 《』 no ignore

19* Hangul 한글 yes as space

Table 4: Comparison of features among upTEX and other TEX families.
Symbols express the following: Better . . . ◎ > ○ > △ > ▽ . . . worse.

TEX pTEX upTEX Ω X ETEX LuaTEX-ja

Compatibility Latin ◎ ○ ◎ ○ △ ◎

Japanese — ◎ ◎ ▽ ▽ △

Multilingual Latin ◎ ○ ◎ ◎ ◎ ◎

Japanese — ○ ◎ △ △ ○

CK — — ◎ △ △ ?

others — — — △ ◎ ○

Integrity (Japanese) ◎ ◎ ◎ △ △ ○

Popularity Japan ◎ ◎ ○ △ △ △

World ◎ △ △ △ ○ △

Takuji Tanaka

TUGboat, Volume 34 (2013), No. 3 289

Typesetting and layout in multiple

directions—Proposed solution

John Plaice

Abstract

I propose a new, general way of looking at typeset-
ting and layout in multiple directions. It subsumes
the left-to-right and right-to-left horizontal writing
used in most of the world, as well as the vertical
writing used in East Asia. The generality allows the
development of layout schemes for situations when
several writing directions appear on the same page.

The key to the approach is that managing multi-
directional text requires a separation of writing style
from box direction. It turns out that there are only
three different kinds of writing style, and eight kinds
of directional box, and that simple rules can be
used to define how these different writing styles may
appear in the different kinds of box.

1 Introduction

If TEX or a successor thereof is to be used naturally
for all of the world’s languages, then the problem of
typesetting in multiple directions must be solved in
all of its generality.

Most of the languages around the world are
printed horizontally, from left-to-right, with the first
line of the page at the top of the page. In the Mid-
dle East, Arabic, Hebrew and several other scripts are
written horizontally, from right-to-left. In East Asia,
traditional writing and printing is done vertically,
with the first line of the page on the right-hand side;
in Japan, this practice is still common for literature.
Uighur and Mongolian writing is also vertical, but
the first line of the page is on the left.

The general problem does not consist in simply
printing a text in each of the different directions.
A typesetting system to be used for multilingual
documents needs to be able to print, on the same
page, multiple languages using different direction
combinations, as needed. This means that headers,
footers, columns, tables, paragraphs, and everything
else appearing on a page can potentially appear in
the different directions.

In this paper, I propose a general solution that
solves not just the above-mentioned cases, but also
even more complicated situations, such as for An-
cient Greek boustrophedon and Rongorongo reverse

boustrophedon, both with alternating line directions.
The solution, which supposes that the natural

writing style of a script is separate from the boxes
in which that writing will be embedded, is the result
of much reflection examining existing approaches.

2 Previous work

TEX– TEX

In the TEX world, the first work [5] in multidirec-
tionality was made by Donald Knuth and Pierre
MacKay, who developed TEX– TEX , which allowed
the mixing of left-to-right and right-to-left horizontal
texts in the same paragraph. This was done by us-
ing nested \beginL–\endL and \beginR–\endR pairs
to, respectively, embed left-to-right and right-to-left
texts. However, their work supposes that all pages
are left-to-right, so it is not suitable for true right-
to-left documents.

pTEX

Mixed horizontal and vertical typesetting was in-
troduced in the TEX world with pTEX [2], a tool
developed at ASCII Corporation in Japan. Still used
in Japan, pTEX allows a vertical or a horizontal list
to be begun with either of the \yoko and \tate

primitives. In \yoko mode, horizontal and vertical
boxes have the same meaning as in standard TEX. In
\tate mode, \hboxes are vertical and \vboxes are
horizontal.

CSS

The work on supporting multiple directions in Cas-
cading Style Sheets (CSS) for HTML [1] has intro-
duced some useful terminology:

Block flow direction: from first to last line;

Inline base direction: from first to last glyph;

Line orientation: direction towards “top” of line.

Omega

Omega was the first successor to TEX to attempt to
solve the multidirectional problem in its generality [3,
4, 8]. It assumes that a box or a font’s direction can
be designated by three characters, where each is one
of Top, Bottom, Left, and Right. These characters
absolutely designate one of the edges of the physical
page. Then a writing direction must designate:

Primary part. The “top” of each page.

Secondary part. The “left” of each line.

Tertiary part. The “top” of each character.

The secondary direction must be orthogonal to the
primary direction. The tertiary direction can take all
four values. Hence there are 32 possible directions.
Here are the most common ones:

TLT —Left-right (LR) scripts, horizontal CJK.

TRT —Right-left (RL) scripts.

RTT —Vertical CJK, upright LR scripts in vertical
CJK.

LTL —Mongolian and Uighur (MU).

Typesetting and layout in multiple directions—Proposed solution

290 TUGboat, Volume 34 (2013), No. 3

Verti
al CJK: CJK s
ripts

u

s

e

R

T

T

, LR s
ripts

u

s

e

R

T

R

, RL s
ripts

u

s

e

R

B

R

(RBR), and MU s
ripts

u

s

e

R

T

L

(RTL).

Horizontal: LR and CJK s
ripts use TLT, and RL and MU s
ripts \ useTRT " (TRT).

Verti
al MU: MU and RL s
ripts

u

s

e

L

T

L

(LTL), LR s
ripts

u

s

e

L

T

R

, and CJK s
ripts

u

s

e

L

T

T

.

1

Figure 1: Example of Omega text in many directions. The main flow of text is from

left to right, but it includes parts that use a number of different directions. Each line

explains the general structure for the most common cases of mixing writing directions.

RTL —MU scripts in vertical CJK.
RTR —Rotated LR scripts in vertical CJK.
LTR —Rotated LR scripts in MU.
LTT —Vertical CJK in MU.

Figure 1 demonstrates the use of several of these
directions. In the text of a paragraph, a change of
\textdir, which respects TEX’s group nesting, will
change the writing direction. In addition, boxes
can have a direction definition, as can the page (for
headers and footers), the body (of the page), the
paragraph, and mathematics.

Notwithstanding the impressive number of possi-
ble writing directions, the proposed solution was not
sufficiently general, as it did not make provisions for
phenomena such as typesetting to a curve. Further-
more, it required different fonts for different writing
directions, despite the fact that many of them simply
involved rotating text.

3 The solution

In this paper, a completely separate approach, both
simpler and more general, is taken: when typesetting,
a particular writing style (there are three) is used,
and the text will be placed in a secondary (text) box,
of which there are eight kinds. Secondary boxes are
lined up in a primary box.

The three writing styles are as follows:

• In baseline left-to-right writing (BL), there is a
baseline which the glyphs are sitting upon or
hanging from, and successive glyphs are placed
to the right of previous ones. Most alphabetic
scripts use this form of writing.

This is baseline left-to-right writing.

• In baseline right-to-left writing (BR), there is also
a baseline, but successive glyphs are placed to

the left of previous ones. This form of writing
is used for Arabic and Hebrew, but one can
also consider the Uighur and Mongolian vertical
scripts to be using the same style.

Thisisbaselineright-to-leftwriting.

• In axial writing (A), there is an axis flowing
through the glyphs, typically in the middle, and
the glyphs are pinned onto the axis, one after the
other. The vertical typesetting used in Japan,
China and Korea is axial writing.

W
R
I
T
I
N
G
◦

T
H
I
S

I
S

A
X
I
A
L

The underlying assumption is that a writing
system should be invariant to rotation, and not be
defined by the box holding it. For example, typeset-
ting along a curve requires no boxes.

TEX’s \vboxes and \hboxes should be, respec-
tively, generalized to primary and secondary boxes.
Here, text will be placed in secondary boxes. Both
primary and secondary boxes have a direction and an
orientation. The direction is designated by one of T,
B, L, or R, and the orientation is either positive (+) or
negative (-), where positive or negative refers to the
angle made between the direction vector of text and
the normal vector pointing towards the part of the

John Plaice

TUGboat, Volume 34 (2013), No. 3 291

line where annotations such as footnotes are made.
Hence, English would normally be placed in a L+

secondary box, Arabic in a R- box, vertical Japanese
in a T+ box, and Mongolian in either a T+ or T- box,
depending on where the annotations are placed with
respect to the line.

Any piece of text should be embeddable into a
text of another style, and into any kind of secondary
box. However, when doing so, the text must “adapt”
to the box in which it will be placed, possibly by
being mirrored or rotated so that it can fit therein.

4 Example embeddings

In this section, we will consider a number of possible
embeddings of a text A in a text B, where the two
texts are using different writing styles. In all cases,
these texts are:

A: pneumonoultramicroscopicsilicovolcano-

coniosis

B: I am glad · · · is not well known.

Text A was chosen because it is long, with many
possible hyphenation points.

Embedding a baseline text in another

baseline text

We consider two main cases. In the first, texts A

and B are of the same style. In this case, depending
on the fonts, vertical adjustment of the baseline of
the embedded text may be necessary.

I am glad pneumonoultramicroscopicsilico-

volcanoconiosis is not well known.

In the second case, texts A and B are of opposite
orientation. There are two subcases. In the first,
text A is mirrored to resemble the style of text B.

Iamgladpneumonoultramicroscopicsilico-

volcanoconiosisisnotwellknown.

In the second subcase, the TEX– TEX bidirec-
tional paragrapher is used to embed text A.

Iamgladpneumonoultramicroscopicsilico-

volcanoconiosisisnotwellknown.

Embedding an axial text in a baseline text

We consider two main cases. In the first, with two
subcases, the axial text is rotated, 90◦ or −90◦.

I am glad P N E U M O N O U L T R A

M I C R O S C O P I C S I L I C O

V O L C A N O C O N I O S I S is not
well known.

I am glad
PNEUMONOULTRA

MICROSCOPICSILICO

VOLCANOCONIOSIS

is not
well known.

In the second case, the axial text is not rotated,
but an inner paragrapher is called upon to create a
set of lines perpendicular to the lines of the outer
paragraph. For this to work, the length of these
inner lines is declared. There are two subcases.

I am glad

P

N

E

U

M

O

N

O

U

L

T

R

A

M

I

C

R

O

S

C

O

P

I

C

S

I

L

I

C

O

V

O

L

C

A

N

O

C

O

N

I

O

S

I

S

is not well known.

I am glad

V

O

L

C

A

I

L

I

C

O

O

P

I

C

S

C

R

O

S

C

T

R

A

M

I

O

N

O

U

L

P

N

E

U

M

I

O

S

I

S

N

O

C

O

N

is not well known.

Embedding a baseline text in an axial text

In the first case, the embedded text is rotated.

K
N
O
W
N
◦

n
io
s
is

I
S

N
O
T

W
E
L
L

u
ltr

a
m
ic
r
o
s
c
o
p
ic
s
ilic

o
v
o
lc
a
n
o
c
o
-

I

A
M

G
L
A
D

p
n
e
u
m
o
n
o
-

K
N
O
W
N
◦

n
io
s
is

I
S

N
O
T

W
E
L
L

u
lt
r
a
m
ic
r
o
s
c
o
p
ic
s
il
ic
o
v
o
lc
a
n
o
c
o
- I

A
M

G
L
A
D

p
n
e
u
m
o
n
o
-

In the second case, the embedded text is not
rotated, and an inner paragrapher is called. Once
again, the length of the lines of the inner paragraph
must be stated.

Typesetting and layout in multiple directions—Proposed solution

292 TUGboat, Volume 34 (2013), No. 3

K
N
O
W
N
◦

volcano-

coniosis

I
S

N
O
T

W
E
L
L

I

A
M

G
L
A
D

pneumo-

noultra-

microscop-

icsilico-

5 The importance of box orientation

The direction of a secondary box is not sufficient
to completely describe it. Consider the following
segment of an example presented by Ken Nakano [7]:

萬
延
元
年
三
月

八

鷹
司
殿
・
近
衞
殿
・
　
（
實
萬
、
前
內
大
臣
）

三
條
殿
等
　

〔
御
落
飾
御
愼
〕

御
愼
御
落
飾
被
遊
候
樣
取
計
、
其
他
諸
大
夫
始
　

〔
メ
〕何
一
ツ
罪
科
無
之
　

〔
者
〕
も
の
を
召

捕
、
關
東
　

〔
へ
〕
江
　

〔
指
〕
差
下
し
、
　

〔
そ
れ
そ
れ
〕

夫
々
非
道
之
　

〔
處
〕
所
置
　

〔
致
し
〕

い
た
し
、
專
　

〔
ら
〕虎
狼
　

〔
の
〕　〔
猛
〕

之
威
　

〔
を
〕
ヲ
以
　

〔
て
〕天
下
を
屛
息
せ
し
め
、
畿
內
之
開
港

幷
邪
敎
寺
取
建
等
　
（
安
政
六
年
九
月
十
三
日
、
幕
府
、
日
米
修
好
通
商
條
約
批
准
ノ
爲
外
國
奉
行
等
ヲ
米
國
ニ
派
遣
ス
）

本
條
約
　

〔
指
〕
差
許
　

〔
し
且
ハ
〕

候
得
は
、
　

（
尊
融
親
王
、
安
政
六
年
十
二
月
七
日
、
退
隱
・
永
蟄
居
）

靑
蓮
院
宮
樣
　

〔
之
〕御
英
邁
を
奉
忌
御
失
德
有
之
樣
申
觸
　

〔
し
〕、
御
寺
務
取
　〔

し
〕

放

幕
府
ハ
無
實
ノ

罪
ニ
テ
鷹
司
以

下
處
罰
ス

本
條
約
ヲ
許
可

シ
尊
融
親
王
ヲ

幽
閉
ス
ル
ハ
北

條
足
利
ノ
暴
橫

ニ
等
シ

奉
幽
閉
候
所
業
、
乍
恐
　
玉
　

〔
體
〕
躰
二
　〔

可
〕

も
奉
迫
候
　

〔
之
機
〕

趣
顯
然
二
而
、
　
（
義
時
、
承
久
三
年
後
鳥
羽
上
皇
ノ
軍
ヲ
破
ル
）

北
條
・
　

（
尊
氏
、
後
醍
醐
天
皇
ニ
叛
ク
）

足
利
之
暴
橫
二
均
　

〔
し
〕く
、
　

〔
共
に
天
を
戴
か
ざ
る
〕

不
共
戴
天
之
國

賊
と
　

〔
い
ふ
〕

云
へ
し
、
嗚
呼
此
儘
二
打
過
な
八
、
赫
々
た
る
神
州
、
一
兩
年
を
不
出
、
內
地
之
奸
民
邪
敎
二
靡
　

〔
き
〕
キ
、
彼

一
兩
年
ノ
內
ニ

ハ
國
內
邪
敎
ニ

ナ
ビ
キ
奸
賊
ハ

彼
ニ
從
屬
ス
ル

ハ
明
ラ
カ
ナ
リ

　
〔
か
〕
＠
勢
焰
を
助
け

皇
國
之
奸
賊
平
身
低
頭
し
て
彼
か
正
朔
を
奉
す
る
事
、
掌
の
上
二
視
る
か
如
し
、
苟
　

〔
も
〕
モ
人
心
有
之
　

〔
者
〕
も
の
、
實

二
痛
哭
長
大
息
に
不
堪
事
な
ら
ず
や
、
雖
然
、

東
照
宮
之
　

〔
御
〕德
澤
未
　

〔
だ
〕地
に
　

〔
不
墜
〕

墜
ず
、
御
三
家
御
一
門
二
は
尾
張
殿
・
水
戶
殿
・
一
橋
殿
・
　
（
松
平
慶
永
、
前
福
井
藩
主
）

越
前
　

〔
殿
〕
家
・
　

（
蜂
須
賀
齊
裕
、
德
島

阿
波
家
・
　
（
池因

　田
慶
德
、
鳥
取
藩
主
）

　藩主
）

州
家
之
如
き
　
德
川
家
輔
佐
之
良
將
も
有
之
、
外
諸
侯
二
も
薩
州
・
仙
臺
・
福
岡
・
佐
賀
・
長
州
・
土
　

〔
佐
〕
州
・

宇
和
島
・
柳
川
等
天
下
之
爲
忠
憤
之
念
日
夜
　

〔
怠
ら
ざ
る
〕

不
怠
、
有
名
之
諸
侯
も
不
少
候
　

〔
へ
〕
得
ハ
、
內
は
則
　

〔
ち
〕御
　

〔
家
〕
加
門
方
　
將

內
ハ
家
門
方
將

軍
家
ヲ
補
佐
シ

內
政
ヲ
修
メ
外

ハ
諸
侯
武
備
ヲ

整
へ
神
州
ノ
恥

辱
一
洗
シ
叡
慮

ヲ
安
ゼ
ン

軍
家
を
奉
補
佐
專
　

〔
ら
〕內
政
を
　

〔
修
〕
脩
め
、
外
は
則
有
名
之
諸
侯
一
意
　

〔
「
二
」
ナ
シ
〕

二
忠
力
を
盡
し
武
備
を
　〔

へ
〕

整
な
八
　
神
州
之
恥
辱

を
一
洗
し
て
、
　
叡
慮
を
奉
　

〔
安
〕
要
候
事
天
地
神
明
に
誓
　

〔
て
〕
ひ
疑
　

〔
あ
る
へ
か
ら
ず
〕

有
ま
し
、
依
之
當
今
事
態
　

〔
之
〕
々
槪
略
を
記
し
て
天
下

之
公
論
折
衷
を
待
　

〔
ち
〕、
左
袒
し
て
天
下
を
興
起
せ
ん
と
欲
す
る
所
　

〔
な
り
〕

也
、
周
　

〔
の
〕
之
衰
る
婦
人
す
ら
不
恤
諱
し
て
周
家

萬
延
元
年
三
月

九

之
亡
　

〔
る
〕　

〔
「
事
」
ナ
シ
〕

事
を
　

〔
憂
ひ
し
に
〕

憂
し
に
、
ま
し
て
三
千
年
余
之
　

〔
天
〕
君
恩
を
戴
き
、
　

〔
二
〕
貳
百
年
來

東
照
宮
之
恩
澤
に
沐
浴
す
る
　

〔
者
〕
も
の
誰
歟
報
效
　

〔
の
〕
之
念
な
　

〔
か
〕ら
ん
　

〔
や
〕、
草
仗
之
小
臣

痛
憤
切
齒
之
　

〔
餘
〕
余
　
〔
「
り
」
ナ
シ
〕

り
寢
⻝
を
　

〔
不
安
〕

安
ん
せ

す
日
夜
遺
憾
　

〔
を
吞
て
〕
て
時
勢
を
憂
　

〔
ひ
〕し
か
、
彼
　

〔
の
〕
か
罪
惡
追
日
增
長
　

〔
「
す
」
ナ
シ
〕

す
、
豈
唯
　
德
川
家
之
罪
人
　

〔
の
み
〕

而
已
な
ら
ん
や
、
實

彼
ハ
德
川
家
ノ

罪
人
神
州
ノ
逆

賊
ナ
リ

　
〔
「
二
」
ナ
シ
〕

二
神
州
　

〔
の
〕
之
逆
賊
　

〔
也
〕
な
り
、
　

〔
「
然
則
」
ナ
シ
〕

然
則
天
地
神
人
同
憤
之
時
二
乘
し
、
天
下
諸
藩
之
同
志
と
　

〔
合
力
〕同
心
し
て
天
下
之
　

〔
奸
〕
姦
賊
を

天
下
諸
藩
同
志

ト
共
ニ
天
下
ノ

姦
賊
ニ
神
罰
ヲ

加
フ
ル
者
也

誅
伐
し
、
神
罰
を
蒙
ら
　

〔
し
む
る
者
〕

す
る
も
の
也
、

§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§

（
卷

紙
）

二

三
月
三
日

大
老
井
伊
直
弼
掃
部

頭

屆
書
（
案
）

○
史
料
編
纂
所
所
藏
「
幕
府
沙
汰
書
」
ハ
、
一
、
狼
藉
應
戰
屆
書
、
二
、
同
屆
書
別
紙
（
彥
根
藩
士
死
傷
者
書
上
）
、
三
、
水
戶
藩
士
死
骸

引
取
屆
ノ
三
通
ヲ
收
載
ス
、
一
ト
本
案
ト
文
言
ノ
異
ナ
ル
箇
所
ヲ
注
記
セ
リ
、
又
懸
紙
添
付
位
置
ハ
元
來
ノ
モ
ノ
カ
後
考
ヲ
要
ス
、

今
朝
登

今
朝
登
城
中
外

櫻
田
門
外
ニ
テ

狼
藉
者
駕
ヲ
襲

擊
ス

城
　
〔
掛
〕

懸
ケ
、
外
櫻
田
　
〔
「
御
門
外
」
ナ
シ
〕

御
門
外
松
平
　
（
親
良
、
杵
築
藩
主
）

大
隅
守
門
前
＠
上
杉
　
（
齊
憲
、
米
澤
藩
主
）

彈
正
大
弼
辻
番
所
迄
之
間
二
而
、
狼
藉
者
鐵
炮
打
　
〔
懸
ケ
〕

掛
、
凡

　
〔
二
十
〕

貳
拾
人
餘
り
拔
連
、
駕
　
〔
籠
〕を
目
懸
ケ
切
込
候
二
付
、
供
方
之
者
共
防
戰
致
し
、
狼
藉
者
壹
人
討
留
、
其
餘
手
疵
深

一
人
討
取
ル
モ

其
外
逃
亡
ス

手
等
爲
負
候
二
付
、
悉
く
逃
去
申
候
、
　

〔
拙
者
儀
捕
押
方
等
指
揮
致
候
處
怪
我
致
し
候
二
付
一
ト
先
歸
宅
致
し
候
〕

尤
供
　
〔
方
始
〕

頭
初
卽
死
手
負
之
者
　

〔
別
紙
之
通
二
〕

何
人
御
座
候
、
此
段
御
屆
　

〔
被
〕申

逹
候
、
以
上
、

供
頭
等
手
負
ア

リ
右
御
屆
申
逹

There are two annotation lines, one to the right, one
to the left. The box orientation is positive, so the
annotation line to the right (resp. to the left) would
be considered to be the major (resp. minor) one.

Note that here, there are three parallel streams,
each with its own rules for line breaking. This is in
fact a special case of multiple interacting streams.
See [6] for a more general discussion.

6 Implementation

Adapting existing TEX engines to implement this
proposal should be relatively straightforward. There
would be a limited number of primitives (text mir-
roring, clockwise and counterclockwise rotation, ver-
tical and horizontal displacement), using a limited

set of parameters: numeric (baseline shift), Boolean
(to mirror or not, to rotate or not, clockwise or
counterclockwise), and direction (text, mathematics,
paragraph, page body, page).

I think that pTEX, X ETEX and LuaTEX can
all be extended in these ways, and that much of
the relevant code from the Omega project is still
useful. The approach is also extendable to new writ-
ing styles, e.g., axial bottom-up writing, or to new
kinds of text embeddings. The new algorithms to be
added include a paragrapher within the paragrapher
(straightforward), and a line-breaking algorithm for
multiple simultaneous streams (non-trivial).

References

[1] fantasai and Koji Ishii. CSS Writing
Modes Level 3. http://www.w3.org/TR/

css3-writing-modes, W3C Working Draft,
24 October 2013.

[2] Hisato Hamano. Vertical typesetting with TEX.
TUGboat, 11(3):346–352, September 1990.

[3] Yannis Haralambous and John Plaice. The
Omega Typesetting and Document Processing
System. BIT, 4:137–152, 2001. In Japanese.

[4] Yannis Haralambous and John Plaice.
Traitement automatique des langues et
composition sous Omega. Cahiers GUTenberg,
39–40:139–166, May 2001.

[5] Donald Knuth and Pierre MacKay. Mixing
right-to-left texts with left-to-right texts.
TUGboat, 8(1):14–25, April 1987.

[6] Blanca Mancilla, Jarryd P. Beck, and John
Plaice. Typesetting multiple interacting streams.
In Cyril Concolato and Patrick Schmitz,
editors, ACM Symposium on Document

Engineering, pages 149–152. ACM, 2012.

[7] Ken Nakano and Hajime Kobayashi. Case
study: Typesetting old documents of Japan.
TUGboat, 34(3):281–284, 2013.

[8] John Plaice and Yannis Haralambous. Writing
in multiple directions in Omega. In Fourth

International Symposium on Multilingual

Computing, Tokyo, Japan. 1–3 March 2001.

⋄ John Plaice

Montreal, Canada

UNSW, Sydney, Australia

johnplaice (at) gmail dot com

http://plaice.web.cse.unsw.edu.au

John Plaice

TUGboat, Volume 34 (2013), No. 3 293

TEX Live Manager’s rare gems: User mode

and multiple repository support

Norbert Preining

Abstract

This article describes two features of TEX Live Man-
ager: user mode, where the TEX Live Manager man-
ages an arbitrary directory instead of the system dis-
tribution, and multi-repository support, where multi-
ple sources can be used to fetch TEX Live packages.

1 Introduction

The TEX Live Manager (tlmgr) is responsible for
managing a TEX Live installation. It can be used to
search for packages as well as doing usual package
management tasks (install, update, remove, backup,
configure). In the last couple of releases, two more
features are available that have been requested for a
long time: user mode and multiple repository support.

In user mode, rather than managing the system
tree and installation, tlmgr is used to manage an ar-
bitrary texmf tree, for example the user’s TEXMFHOME

(this is in fact the default user mode tree). Although
not all functionality is possible in user mode, the
basic operations of package installation, removal,
and updates can be handled by any user without
requiring write permission to any system trees.

Multiple repository support was introduced to
allow for easy handling of additional repositories of
TEX Live packages. A few of them have come into ex-
istence (tlcontrib, tlcritical, tlptexlive, Ko-
rean support, . . .), but until now one had to update
packages one by one from these repositories. With
multiple repositories this has been made a bit more
convenient.

We will describe the background and operation
of both of these features — why it was implemented,
how it works, example runs, and warnings on usage.

2 User mode

This feature was probably one of the most requested
in recent times: the ability to use tlmgr to manage an
arbitrary texmf tree. Although many points remain
to be improved, the current implementation allows
users to install most packages, without needing write
access to the main TEX installation.

The TEX Live Manager tlmgr has for many
years been the main tool for configuration and man-
agement of a TEX Live installation. Most impor-
tantly, it is the main tool for updating existing pack-
ages and installing new ones.

In contrast to the original distribution of TEX
Live from TUG, repackaged versions of TEX Live for

full operating systems (Debian, SuSE, Fedora, . . .)
normally do not ship tlmgr (see article on pages 297–
301), as it would interfere with the system package
manager. But since distributions cannot feasibly
keep up with the constant flow of TEX package up-
dates, users have often asked for an option to use
tlmgr to handle packages within their TEXMFHOME.

2.1 Background and description

Although I assume that the TEX Live Manager is by
now sufficiently well known, here is a short reminder
of some of the responsibilities of tlmgr in managing
the full installation:

• options: paper size, installation source, creation
of formats, etc.

• platform: adds/removes support for different
platforms.

• recreates core configuration files: updmap.cfg,
fmtutil.cnf, hyphenation definitions.

• packages: installs, removes, backups, restores.
• information: search and browse through the

TEX Live database.
Most of these operations need full write access to
the installation, which, particularly in the cases of
distribution-repackaged or shared installations, may
well be unavailable.

In contrast to this, tlmgr in user mode allows
only a restricted set of functionality, and makes
changes only below the home directory of the current
users. Almost all actions are supported, with one
important general restriction:

Only relocatable packages can be installed in
user mode. A relocatable package resides com-
pletely within one texmf tree. This excludes
all packages with binaries or scripts.

Otherwise, operations work similarly to normal mode,
but changing the respective local files. For example,
the generate action creates various configuration
files in the user’s TEXMFVAR instead of in the system-
wide directory TEXMFSYSVAR.

In the following we will go through the necessary
steps and give a few examples.

2.2 Setup and operation

By default, user mode is not selected, so the com-
mand line argument --usermode has to be given on
all operations.

2.2.1 Initializing the user tree

Before starting to use user mode, a target tree has to
be initialized. By default this is the user’s TEXMFHOME,
but any other tree can be specified with the command
line option --usertree. This initialization is done
by running tlmgr --init-usertree, which sets up

TEX Live Manager’s rare gems: User mode and multiple repository support

294 TUGboat, Volume 34 (2013), No. 3

the initial empty TEX Live database and creates nec-
essary files. If the file TEXMFHOME/tlpkg/texlive.

tlpdb already exists, the command will bail out.
Other directories generated are TEXMFHOME/web2c

and TEXMFHOME/tlpkg/tlpobj.
The initial texlive.tlpdb contains the very

same options as the main installation concerning
installation source, installation of documentation
and source files, etc. After the initial setup, these
options can be changed within the user tree in the
normal way.

2.2.2 Installation of packages

As already mentioned, not all packages can be in-
stalled in user-managed trees; all the packages that
contain files outside the texmf-dist hierarchy are
not installable in user mode. Technically, only those
packages tagged as relocatable are installable in
user mode — which is most of them. Looking at the
current TEX Live database, at the moment there are
2454 packages that can be installed in user mode.

Having set up the initial tree, installation is
straightforward (some line breaks are editorial):

$ tlmgr --usermode install 12many

tlmgr: package repository /home/norbert/tlnet

[1/1, ??:??/??:??] install: 12many [376k]

tlmgr: package log updated: /home/tl/texmf/

web2c/tlmgr.log

running mktexlsr ...

Dependencies of collections and of packages are
installed automatically, which allows installation of
a full collection (more precisely, all of the installable
packages from a collection):

$ tlmgr --usermode install collection-xetex

tlmgr: package repositories: /home/norbert/

tlnet

[1/28, ??:??/??:??] install: arabxetex [618k]

[2/28, 00:00/00:00] install: euenc [153k]

[3/28, 00:00/00:00] install: fixlatvian [123k]

...

Package xecyr is not relocatable, cannot

install it in user mode!

...

[27/28, 00:07/00:08] install: collection-xetex

[1k]

tlmgr: package log updated at /home/tl/texmf/

web2c/tlmgr.log

running mktexlsr ...

Package removal, updates, etc., all work in the
analogous way.

2.3 Warnings and future work

User mode support is still relatively new, and has
not been used extensively, so expect bugs to creep

in. If you run across one, please let us know how to
reproduce.

Another caveat with user mode is that all files
in TEXMFHOME override system-wide files. In other
words, if the system installation gets updated and
the user installed packages become older, then the
older version will still be used (which can be the
desired behavior, after all).

Also, be aware that the size of TEXMFHOME can
grow rapidly, especially when installing collections.
Since this tree is not (by default) searched via ls-R,
searching can become quite slow.

Last but not least, be warned if you are tempted
to create copies of configuration files (see my other
article in this volume cited earlier), as they are an
endless source of problems — especially ones that are
forgotten.

Concerning future developments of user mode,
the set of supported actions in tlmgr is already suf-
ficient. What remains to be done: support in the
GUI, a distribution installation mode where there is
no initial TEX Live database available, and perhaps
an independent installation support, where there is
not even a main TEX Live installation required.

3 Multi-repository support

Online updating of a TEX Live installation is done
by fetching the TEX Live database of the remote
repository, determining the set of updated packages,
fetching the updated packages from that same remote
repository, and finally unpacking and installing them.
Multi-repository support allows for fetching from
several sources, on a per-package basis.

3.1 Background and description

Over the years several additional repositories have
come into existence. The first, as part of TEX Live
itself, is called tlcritical, and provides testing re-
leases of the TEX Live core infrastructure packages
(e.g., tlmgr). Other notable repositories in use today
are tlptexlive (for testing Japanese TEX integra-
tion and binary updates) and tlcontrib (for testing
releases and items not distributable in TEX Live).

Since the very beginning, doing the full update
circle as described above from any repository has
been possible. But it was repetitive: a user wanting
to update from different sources had to run tlmgr

several times, once for each repository. The multi-
repository support now allows configuring tlmgr to
pull automatically from several repositories at the
same time, somewhat similar to (though still different
from), for example, apt-get in Debian.

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 295

There are a few points that set the TEX Live
implementation of multi-repository support apart
from similar features in other systems:

• There is a distinction between the main and sub-
sidiary repository. The main repository should
always be our tlnet distribution channel.

• By default everything is taken from the main
repository. Subsidiary repositories are never
used unless explicitly requested.

• To request a package from a subsidiary reposi-
tory one has to pin this package to the respective
repository, as explained below.

• Absolute revision numbers are not compared
between repositories — only the pinning counts.
Revision numbers are only used to compare be-
tween the local version and the selected version
from the repository.
The necessity to pin a package explicitly to a

subsidiary repository arose from our wish to avoid
unnecessary splitting of repositories. In general, we
want to have all freely available TEX-related pack-
ages to be available via TEX Live’s tlnet channel.
Furthermore, we want users to think twice before
using packages from subsidiary repositories, as it can
easily lead to problematic situations.

3.2 Setup and operation

By default tlmgr works in single-repository setup,
well-known and well-tested. This repository can be
set and changed with the invocation:

tlmgr option repository 〈url〉

3.2.1 Inspecting and adding repositories

To work with multiple repositories, a new tlmgr

action repository has been added, with three sub-
actions: list, add, remove. Initially there is only
one repository:

$ tlmgr repository

List of repositories (with tags if set):

/home/norbert/tlnet (main)

(The path here is my local copy of the tlnet directory
from CTAN.) Giving tlmgr repository without
any sub-action executes the list sub-action.

If we want to add a repository, we use the add

sub-action:
tlmgr repository add 〈url〉 [tag]

where the tag is an optional short-hand for 〈url〉.
The main repository always has the tag main. As an
example, let’s add a local copy of the tlptexlive

repository:

$ tlmgr repository add \

/home/norbert/tlptexlive tlptexlive

tlmgr: added repository with tag tlptexlive:

/home/norbert/tlptexlive

$ tlmgr repository

List of repositories (with tags if set):

/home/norbert/tlnet (main)

/home/norbert/tlptexlive (tlptexlive)

3.2.2 Pinning

As mentioned above, before a subsidiary repository
is used at all, it is necessary to pin the desired pack-
ages to the repository. Pinning is defined in the file
TEXMFLOCAL/tlpkg/pinning.txt. This file consists
of empty lines, comments starting with #, and lines
of the form:

〈repo〉:〈pkgglob〉[,〈pkgglob〉] . . .
where 〈repo〉 is a full URL or a repository tag given
to repository add. 〈pkgglob〉 is a shell-style glob
for package names, with multiple items separated by
commas.

Editing this file manually is simple and perfectly
ok to do. tlmgr also provides a convenience action
to add, modify, and remove pinning data. The re-
spective operations are:

tlmgr pinning [show]
tlmgr pinning add 〈repo〉 〈pkgglob〉 ...

tlmgr pinning remove 〈repo〉 〈pkgglob〉 ...

tlmgr pinning remove 〈repo〉 --all

As before, the show is optional (i.e., the default), and
lists all current pins. To add new pinning data, use
pinning add with the subsidiary’s full URL or 〈tag〉
for 〈repo〉, and then a list of package globs. As usual,
when 〈pkgglob〉 contains shell meta characters they
have to be quoted properly on the command line.
The pinning remove invocation erases the listed
〈pkgglob〉s from the list for 〈repo〉, and does nothing
if there is no such pair. Finally, one can remove all
entries of a certain repository with the last of the
above four invocations.

Continuing from the above example, let us see
this in action and specify that we want to install all

available packages from the tlptexlive repository.
“All” in shell-glob syntax is just *, so:

$ tlmgr pinning add tlptexlive ’*’

tlmgr: package repositories:

main = /home/norbert/tlnet

tlptexlive = /home/norbert/tlptexlive

tlmgr: new pinning data for tlptexlive: *

TEX Live Manager’s rare gems: User mode and multiple repository support

296 TUGboat, Volume 34 (2013), No. 3

3.2.3 Installation of packages

Installation of packages from the selected repository
is completely transparent. tlmgr checks which pack-
ages are pinned to which repository, compares the
local revision with the revision in the pinned reposi-
tory, and updates as necessary.

Let us see this first in action for the installation
of a new package not present in the main repository:

$ tlmgr install pmetapost

tlmgr: package repositories:

main = /home/norbert/tlnet

tlptexlive = /home/norbert/tlptexlive

[1/2, ??:??/??:??] install: pmetapost.x86_64-

linux @tlptexlive [671k]

[2/2, 00:00/00:00] install: pmetapost

@tlptexlive [1k]

tlmgr: package log updated: /home/tl/texmf/

web2c/tlmgr.log

running mktexlsr ...

We can see that tlmgr is quite verbose in telling the
user from which repository the package is installed.

Updates work in the same general way. Here we
see that tlmgr list shows all the candidates avail-
able, from both repositories along with the respective
revision numbers:

$ tlmgr update --list

tlmgr: package repositories:

main = /home/norbert/tlnet

tlptexlive = /home/norbert/tlptexlive

tlmgr: saving backups to /home/tl/tug2013/tlpkg

/backups

update: dvips.x86_64-linux [136k]: local: 30204,

source: 31002@tlptexlive

other candidates: 30204@main

update: ptex.x86_64-linux [530k]: local: 30519,

source: 31001@tlptexlive

other candidates: 30519@main

...

To actually perform the updates, we would run
the usual:

$ tlmgr update --all

3.3 Warnings and future work

Here are the obligatory set of warnings, redoubled
for an operation that so deeply changes the normal
behavior of tlmgr:

No purely numeric comparison for selecting the

candidate: Candidates are selected solely based on
the pinning, and not by selecting the highest number

of the revisions in all repositories. This allows sub-
sidiary repositories to have version numbers which
are completely independent from the main TEX Live
repository, where revision numbers are based on the
Subversion revisions and thus are (other than being
strictly increasing) unpredictable. As a consequence,
this means that pinning a package to an alternative
repository where the revision number is smaller than
the one in tlnet will not automatically update the
package the first time. An invocation of

tlmgr install --reinstall 〈pkg〉
is needed. After having done that the first time all
further updates will come automatically from the
subsidiary repository.

Support for actions: Not all operations of TEX
Live Manager can be supported, but those for which
it is reasonable are done. The GUI has basic support
in that sources can be added/removed, and informa-
tion is displayed. Pinning is not possible in the GUI

at present, and the presentation could be improved.
Leftover packages: Due to the fixed pinning, if

an outdated package (like a development release)
is not removed from a subsidiary repository, the
user will remain stuck with the development version
even if a newer version has found its way into the
main repository. Removing the development package
from the subsidiary repository makes sure that this
does not happen, and is by far the cleanest and best
solution.

Last but not least, multi-repository support is a
recent addition and should thus be tried with special
care and thought.

4 Closing

The development of TEX Live Manager has slowed,
or more properly stabilized, as we come closer to
the (asymptotic) point of feature completeness. The
two additions described in this article have been in
testing for about two years, and released in small
steps to the general TEX audience, based on user
requests and with attention paid to the design.

If you find problems, bugs, erratic behavior,
unclear documentation, or you have further feature
suggestions, please contact us at texlive@tug.org.

⋄ Norbert Preining
Japan Advanced Institute of

Science and Technology
Nomi, Ishikawa, Japan
norbert (at) preining dot info

http://tug.org/texlive

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 297

Redistributing TEX and friends

Norbert Preining

Abstract

Nowadays most TEX installations are based on TEX
Live. TUG provides a platform-independent installer
which can be used on many different platforms. But
operating system distributors, such as Debian and
Red Hat normally integrate TEX Live into their own
packaging infrastructure.

Based on years of experience in packaging TEX
Live for Debian, as well as upstream development,
we give here a short introduction to the TEX Live
ecosystem, list important files in need of special care
when redistributing TEX Live, and give advice and
warnings.

1 Introduction

The TEX environment has grown slowly but steadily
into a huge collection of programs, fonts, macros,
documentation, and more. TEX Live currently ships
over 3 GB in more than 2500 different TEX Live
“packages”, most of which are installed into TEX
Live from CTAN [1]. Since teTEX development and
support stopped several years ago, TEX Live has
become the main TEX distribution on Unix, including
Mac OS X (MacTEX is exactly TEX Live plus a few
Mac-specific additions); it is also gaining on Windows
(where MiKTEX is still strong).

Integrating TEX Live into any full operating sys-
tem distribution is a non-trivial task due to the large
number of post-installation tasks that have to be
performed. Although over the last years the quality
of packages has improved, the TEX Live develop-
ment list still often gets bug reports that stem from
incorrect packaging.

In the following we will give an overview of the
structure of TEX Live and a list of important and
special configuration files. Furthermore, based on
the experience of packaging TEX Live over many
years, we will give some advice and examples of best
practices. Although the author maintains TEX Live
for Debian, the information in this article is not tar-
geted specifically for Debian, but at any distribution
that redistributes TEX Live in one way or another.

The layout of the article is as follows: We will
first give an overview of the structure of the TEX
Live ecosystem. After that we discuss stacked versus
non-stacked configuration files, followed by a discus-
sion of the most important configuration files that
need special handling. Finally, we collect some ideas
concerning approaches to packaging TEX Live found
in distributions.

2 Structure of TEX Live

TEX Live currently ships something like 130,000 files.
To make this vast amount of material easier to handle
we have introduced a hierarchical organization.

Schemes form the topmost level, with a dozen or so
schemes defined. The default is scheme-full,
which installs everything; at the other extreme is
scheme-minimal, which installs only enough to
run plain TEX. Schemes contain overlapping con-
tent; e.g., clearly everything in scheme-minimal

is also contained in scheme-full.

Collections form the middle layer, with currently
45 collections. Each collection contains related
(to some degree) packages. An example here is
collection-latex. In contrast to the schemes,
the collections form a mathematical partition
of the content, that is, non-overlapping: every
package is in exactly one collection.

Packages form the bottom layer, with currently
around 2500 packages. As mentioned, most
packages relate to an item available through
CTAN. Examples are pdftex and beamer. A
given file is in exactly one package.

2.1 TEX Live database

The TEX Live database, in short tlpdb, is a file
usually located under the main installation’s root in
tlpg/texlive.tlpdb. It is a simple text file where
information is line based, and blocks (stanzas) are
separated by blank lines. The structure is very simi-
lar to a Debian Packages file. Each stanza describes
a package:

name beamer

...

name pdftex

...

Each non-empty line is either a key value pair or a
file name, as we will see.

2.2 Package description

Each package contains various information: its name,
a revision number, dependencies (depends), special
things to be done when the package is installed
(execute), and lists of files in three categories: run-
time files (runfiles), binary (executable) files in-
cluding scripts (binfiles), and documentation files
(docfiles). The package description is also enriched
with information obtained from the TEX Catalogue.
A more or less complete example for a package stanza
can be found in fig. 1.

Redistributing TEX and friends

298 TUGboat, Volume 34 (2013), No. 3

name ascii-font

category Package

revision 29989

shortdesc Use the ASCII "font" in LaTeX.

longdesc The package provides glyph and font ...

longdesc ... and R.W.D. Nickalls.

execute addMap ascii.map

containersize 48984

containermd5 8e922125b755694d21b45e9644265611

doccontainersize 552

doccontainermd5 7b0c7918dadaca7665f8d1bd61677254

docfiles size=1

texmf-dist/doc/fonts/ascii-font/README.TEXLIVE

srccontainersize 4444

srccontainermd5 82f12b5dbe4107bada602b7f0dcb5561

srcfiles size=5

texmf-dist/source/fonts/ascii-font/ascii.dtx

texmf-dist/source/fonts/ascii-font/ascii.ins

runfiles size=17

texmf-dist/fonts/map/dvips/ascii-font/ascii.map

texmf-dist/fonts/tfm/public/ascii-font/ASCII.tfm

texmf-dist/fonts/type1/public/ascii-font/ASCII.pfb

texmf-dist/tex/latex/ascii-font/ascii.sty

catalogue-ctan /fonts/ascii

catalogue-date 2013-04-15 01:42:14 +0200

catalogue-license lppl

catalogue-version 2.0

Figure 1: Stanza for the ascii-font package

We will come back to this example later, after
discussing the various configuration files.

3 Types of configuration files

Most of the files in a TEX system are normal input
files. These files are searched for using the well-known
Kpathsea library. Normally, only the first-found file
is read (details of the file search algorithm are in the
Kpathsea manual [3]). This is the normal case, and
we will refer to it henceforth as the non-stacked case.

In contrast, a few configuration files are read in
a stacked manner, where all files found by Kpathsea
are read and evaluated, not just the first.

The difference can be seen in a TEX Live in-
stallation by comparing the kpsewhich updmap.cfg

output to that of kpsewhich -all updmap.cfg. On
my system (which is installed in /tl/2013 and is a
bit unusual with respect to texmf-local) I get:

$ kpsewhich updmap.cfg

/tl/2013/texmf-config/web2c/updmap.cfg

$ kpsewhich -all updmap.cfg

/tl/2013/texmf-config/web2c/updmap.cfg

/usr/local/share/texmf/web2c/updmap.cfg

/tl/2013/texmf-dist/web2c/updmap.cfg

In the non-stacked case only the first file would be
read; in the stacked case, all of them.

Not many files are treated in a stacked way. In
the next section we will discuss the most important

configuration files and mention for each whether it
is read in a stacked or non-stacked way.

4 Important configuration files

The TEX Live configuration files discussed here are
the most important, especially for distributors, as
they need special attention. Other configuration files
(there are plenty more) can be treated transparently,
as they should generally work without any changes.

The configuration files we will discuss are:

texmf.cnf Central configuration file for path search-
ing and parameters of the engines.

updmap.cfg Configuration file for font embedding
from which configurations for driver programs
are produced.

fmtutil.cnf TEX formats (and METAFONT bases).

language.dat Several files controlling the inclusion
of hyphenation patterns in format dumps.

For each of these we give advice on what distributors
can (should?) change and how they can be handled.

4.1 texmf.cnf

The texmf.cnf file defines the available trees, among
many other things. It has always been treated as a
stacked configuration file — all the texmf.cnf files
found are evaluated. This feature is used in the native
install-tl to adjust settings via a file texmf.cnf

at the root of the TEX Live installation.
By default the following trees are defined and

used, where R is the root of the installation:

TEXMFDIST files from TEX Live R/texmf-dist

TEXMFHOME user tree ~/texmf

TEXMFLOCAL site-wide additions R/../texmf-local

TEXMFSYSVAR cached data R/texmf-var

TEXMFSYSCONFIG config. data R/texmf-config

TEXMFVAR per-user cached data
~/.texlive2013/texmf-var

TEXMFCONFIG per-user modified configuration data
~/.texlive2013/texmf-config

VARTEXFONTS location of generated fonts
TEXMFVAR/fonts

In recent years, when packaging for Debian I
haven’t needed to change anything outside of these
path definitions. In particular, distributors might
want to change the definition of TEXMFSYSCONFIG. In
Debian, we change that to /etc/texmf in accordance
with our policies.

Another possible adjustment is adding an addi-
tional tree. In Debian, we ship TEX Live in /usr/

share/texlive and add a tree called TEXMFDEBIAN

in /usr/share/texmf, searched before TEXMFDIST.
To effect such changes, distributors can either

patch the main texmf.cnf in texmf-dist/web2c

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 299

or add another texmf.cnf in one of the searchable
trees. Of course, one cannot change the location
of, say, TEXMFSYSCONFIG to a different path in a
texmf.cnf file within the new location. So in Debian
we patch the main configuration file to adjust only

TEXMFSYSCONFIG, and add all other changes to /etc/

texmf/web2c/texmf.cnf.

4.2 updmap.cfg

The updmap.cfg file has probably caused the most
grief, so we will go to great length in the explanations.

Many of the fonts shipped in TEX Live are Post-
Script Type 1 fonts. TEX itself does not know any-
thing about these fonts, and only uses the metrics
(.tfm). Output drivers, on the other hand, need to
know how the metrics are mapped to external fonts.
Some notable output drivers:

pdftex The TEX engine with PDF output. Since
producing PDF clearly needs the actual fonts,
pdftex is also an output driver.

dvips A classic output driver converting .dvi (De-
Vice Independent) files to PostScript. Again,
the fonts have to be embedded.

(x)dvipdfm(x) The family of dvi-to-pdf converters.
These programs support direct translation from
DVI to PDF. X ETEX uses one of these in the
background. Japanese users often use dvipdfmx,
since it has good support for Japanese fonts.

(p)xdvi Display programs, of course need access to
the fonts. pxdvi is xdvi patched for Japanese
support.

Unfortunately, different drivers need the font
mapping in different formats. Here is where updmap

comes into play: It reads a list of specifications and
creates configuration files for the above programs, in
the necessary formats.

4.2.1 Different layers of configuration

The files generated by updmap have a long chain of
provenance:

• A “font map definition” maps a .tfm file name to
an external font with optional transformations.

• A “font map file” collects font map definitions;
normally there is one font map file per package,
collecting all fonts in that package.

• An “updmap config file” lists options and font
map files.

• The “output driver configuration files” are read
by the output drivers; these files are generated
by updmap.

4.2.2 Configuration of fonts in updmap.cfg

updmap’s central configuration file is updmap.cfg. In
former times, only the first one found by Kpathsea

was used, but now all of them are read (see be-
low). Each updmap.cfg file can contain either empty
lines, comment lines starting with the comment char
#, or one of the following settings, in the format
key value:

dvipsPreferOutline true or false; whether
dvips uses bitmaps or outlines, where possible.

dvipsDownloadBase35 true or false; whether
dvips embeds the standard 35 PostScript fonts.

pdftexDownloadBase14 true or false; whether
pdftex embeds the standard 14 PDF fonts.

pxdviUse true or false; whether updmap controls
pxdvi’s maps.

kanjiEmbed,kanjiVariant arbitrary strings,
controlling kanji font embedding

LW35 URWkb, URW, ADOBEkb, ADOBE; file naming
scheme assumed for the base PostScript fonts.

map directives One of Map foo.map,
MixedMap bar.map, or KanjiMap baz.map.
Map is used for fonts that are available only in
PostScript format; MixedMap for fonts where
Metafont and PostScript variants are present,
and KanjiMap for special kanji support (see [5]).

4.2.3 Operation mode

As of TEX Live 2013, updmap reads all updmap.cfg

files found, i.e., all the files given by kpsewhich -all

updmap.cfg, in contrast to the former method of only
reading the first one found.

We made this change for several reasons. First,
it supports having the font map configuration in the
same tree as the fonts themselves. Before, the activa-
tion of a map file did not survive when (re)installing
a new release of TEX Live. Now, if for example
TEXMFLOCAL contains local fonts, and they are listed
in TEXMFLOCAL/web2c/updmap.cfg, they will auto-
matically be picked up. A second reason is to support
users without write permission to the system installa-
tion. This way, they can manage their fonts without
needing a copy of the system’s updmap.cfg.

More specifics, such as enabling and disabling
of maps, can be found in the manual page of updmap

and a blog post [2].

4.2.4 Recommendations for distributors

Distributors must be aware that changing the set
of available fonts requires a change to one of the
updmap.cfg files, followed by running updmap-sys.
Otherwise, the fonts will not be available to users,
even though they are present in the system. Also,
distributors should not ship the updmap.cfg file in-
cluded in TEX Live, since it is only valid for a full
installation of TEX Live. (The TEX Live installer

Redistributing TEX and friends

300 TUGboat, Volume 34 (2013), No. 3

itself does not install this file, but generates it from
the set of installed packages.)

Since updmap.cfg is read in a stacked manner,
changes can be localized to the tree where fonts
are installed. In Debian we have one updmap.cfg

for the TEX Live packages in /usr/share/texlive/

texmf-dist/web2c/updmap.cfg, and one for addi-
tional font packages with files in TEXMFDEBIAN.

4.3 fmtutil.cnf

The configuration files discussed so far have been
read in a stacked way; the following files are all non-
stacked. To repeat that important difference, only
one instance of the following files will be used, namely
the one that is returned by a normal kpsewhich call.

fmtutil.cnf is the main configuration file for
the fmtutil program, which generates format dumps
for the various engines. Thus, a change in available
formats needs to change fmtutil.cnf, and then call
fmtutil-sys.

Fortunately, it is rare that a user wants to create
his own format dumps (and such users can take care
of themselves); so distributors need only make sure
that the configuration file stays properly updated.

4.4 language.dat family

The last group of configuration files relates to the
definition of hyphenation patterns. Many engines
load hyphenation patterns for different languages at
format dump time (see above), and proper hyphen-
ation is possible with only those languages. These
files are:

language.dat for LATEX-based formats

language.def for ε-TEX-based plain formats

language.dat.lua for LuaTEX-based formats

The first two files are loaded at format dump time,
thus a change in the available hyphenation patterns
needs to (again) trigger a call to fmtutil-sys, best
in combination with the --byhyphen command line
option to specify explicitly the location of the hy-
phenation file.

The last of the three is easier, since LuaTEX
loads the patterns at runtime. So no action on the
side of the distributors is necessary.

5 Gluing it together

5.1 Execute statements

Many times above I have written ‘change in availabil-
ity’. But how can a distributor detect such a change?
The answer lies in the execute statements in the
package stanzas, as shown in fig. 1. There are three
different execute actions: one for font maps, one for
formats, and one for hyphenation patterns.

5.1.1 Font map execute action

Activating a font can happen in three different ways,
trivially corresponding to the three different map
types in updmap.cfg:

execute addMap 〈mapname〉
Add a line ‘Map 〈mapname〉’.

execute addMixedMap 〈mapname〉
Add a line ‘MixedMap 〈mapname〉’.

execute addKanjiMap 〈mapname〉
Add a line ‘KanjiMap 〈mapname〉’.

For distributors, this means that part of creating
the TEX packages for distribution is determining the
maps to be activated from the tlpdb, and adding
the respective lines to the appropriate updmap.cfg

file. The semantic differences between the three invo-
cations are explained in the updmap documentation.

5.1.2 Format execute action

The information involved in defining a format is a
bit more complex than for font maps. Each execute
statement contains again a list of key=value pairs,
all on the same line in the tlpdb. The possible
keys are name, engine, patterns, and options. A
typical line (breaks are due to TUGboat):

execute AddFormat name=pdflatex engine=pdftex

patterns=language.dat

options="-translate-file=cp227.tcx *pdflatex.ini"

The value of options often contains spaces and
thus needs to be quoted.

The meaning of the above line is that a line
name engine patterns options

with the respective values should be added to the
fmtutil.cnf file (without any quotes). In the above
case, that would be:

pdflatex pdftex language.dat

-translate-file=cp227.tcx *pdflatex.ini

5.1.3 Hyphenation execute action

The most complicated execute statement regards the
activation of hyphenation patterns. As in the previ-
ous case, it is a line of key=value pairs. The possible
keys this time are name, synonyms, lefthyphenmin,
righthyphenmin, file, file_patterns, and file_

exceptions. How to generate the three language
definition files (.dat, .def, .dat.lua) from this in-
formation is beyond the scope of this article; there are
functions available in the Perl modules distributed
with TEX Live (in tlpkg/TeXLive).

5.2 Distribution paradigms

When it comes to distributing such a huge piece of
software, several options have been used. The first

Norbert Preining

TUGboat, Volume 34 (2013), No. 3 301

question is perhaps if and how to split the full TEX
Live before repackaging it for a distribution. This
gives rise to choosing one of the following paradigms:

all-or-nothing all of TEX Live is distributed as
one distribution package

collection-splitting one distribution package
per TEX Live collection

package-splitting one distribution package
per TEX Live package

mixed-mode overlapping/ad hoc splitting

The all-or-nothing approach has the advantage
that, in principle, no changes to the various config
files are needed. Just ship them as they should be
and that’s it. Unfortunately, this is no longer the
case as soon as there are fonts shipped independently
from TEX Live in the distribution. Even worse, down-
loading a few Gb for any update will not make the
users of your distribution happy. I don’t know of any
distribution using this method.

The collection-splitting approach converts TEX
Live collections into distribution packages. This ap-
proach has many advantages: first, since the content
of collections do not overlap, there will be no file
conflict (double inclusion) which is a basic require-
ment for package managers. Furthermore, TEX Live
collections try to group related packages together,
so users can potentially eliminate collections not of
interest. Finally, the number of distribution pack-
ages is not too big. On the negative side, splitting by
collection requires a bit more work on the packaging
side. Debian and its derivatives (such as Ubuntu)
use this approach.

The package-splitting approach converts each
TEX Live package to one distribution package. While
this is conceptually the cleanest approach, and allows
for fine-grained installations, it requires a near-fully
automatic packaging system due to the huge num-
ber of packages. Having thousands of distribution
packages itself might be regarded as a disadvantage.
Furthermore, since we do not track inter-package
dependencies in TEX Live, dependencies between dis-
tribution packages will be incomplete. Distributions
using this paradigm include Fedora and SuSE.

Finally, as I understand it, the mixed-mode par-
adigm is used in some BSD packaging, but I don’t
know the details and so cannot comment on advan-
tages or disadvantages.

6 Closing

I want to close with some warnings and common
pitfalls.

� I’ve never used TEX Live and I don’t know what

TEX does, but I package it! — it sounds crazy, but we
have heard from people who want to package TEX
without the slightest knowledge. Just say no.

� Improper configuration file handling — by far
the biggest problem, and the reason I wrote this
article. A common error is shipping the TEX Live
updmap.cfg instead of generating its content based
on the fonts actually installed.

� What is upstream? — since TEX Live has (ap-
proximately) one release per year and daily updates,
it is rather a moving target. Build scripts that re-
quire a stable target (such as some BSD ports) need
to take extra care.

� Binaries and sources — we almost never update
compiled binaries after a release, but our develop-
ment sources are changing continually. Thus, it’s a
mistake to base distribution binaries on them.

� Shipping tlmgr — distributions have their own
package manager, thus subsuming the most impor-
tant part of tlmgr functionality. Even if users are
crying for it, tlmgr should not be used to update
packages (also not by root). The only reasonable
approach is to ship tlmgr working in user mode only,
where it manages TEXMFHOME.

In addition to the above, I highly recommend
creating a working installation of TEX Live and ac-
tually use it yourself; and to learn Perl, since most
of the functionality of our installer and tlmgr are
implemented in Perl modules and available in the
TEX Live distribution; and finally, to contact us —
we have a designated mailing list for distributors [4].

References

[1] CTAN (Comprehensive TEX Archive Network).
http://ctan.org.

[2] Internals of TEX Live 2: multi-updmap.
http://www.preining.info/blog/2013/07/

internals-of-tex-live-2-multi-updmap/.

[3] Kpathsea manual. http://tug.org/kpathsea.

[4] TEX Live distributors mailing list.
http://lists.tug.org/tldistro.

[5] Updmap and Kanji embedding in TEX Live.
http://tug.org/texlive/updmap-kanji.html.

⋄ Norbert Preining
Japan Advanced Institute of

Science and Technology
Nomi, Ishikawa, Japan
norbert (at) preining dot info

http://tug.org/texlive

Redistributing TEX and friends

302 TUGboat, Volume 34 (2013), No. 3

A gentle introduction to PythonTEX

Andrew Mertz and William Slough

Abstract

The PythonTEX package allows authors to combine
computational and typesetting tasks by embedding
Python code in TEX documents. This package allows
access to many powerful Python modules, providing
support for such things as symbolic mathematics,
plotting, arbitrary precision numerical calculations,
and networking. Python’s intuitive syntax, popular-
ity, and extensibility along with TEX’s formatting
strengths make them a logical combination for pro-
gramming documents. By examining a variety of
examples, we will provide an overview of the capa-
bilities and possibilities of PythonTEX.

1 Motivation and overview

As widely appreciated by its users, TEX is a typeset-
ting system with numerous strengths and capabilities,
providing the ability to create beautiful documents.
Although it provides a capability for the definition
of macros, designing and implementing them can be
a daunting experience, especially for non-experts.

Python [9] is a programming language which
has attracted a large number of users. As a further
enhancement, scientific and technical computing is
supported by an extensive collection of modules and
utilities. These provide capabilities for numerical in-
tegration, linear algebra, linear programming, sparse
matrix manipulation, symbolic mathematics, and
plotting, for example.

PythonTEX [8] allows authors to combine the
computational power of Python with the typesetting
capabilities of TEX. This marriage of computational
and typesetting worlds yields some exciting possibil-
ities, as we intend to show in this paper.

Using the PythonTEX package, Python code
may be placed directly into a LATEX document. Dur-
ing processing of this document—and “behind the
scenes”—wherever Python code appears, a Python
interpreter is executed, producing results which are
then injected into the document in place of that code.

PythonTEX provides a variety of macros and
environments with various optional arguments. It
also has a tool, depythontex, for creating merged
documents consisting of the original LATEX source
and the Python output. This resulting document
can then be processed without PythonTEX. Our aim
is to provide an introduction, so we limit ourselves
to a small, yet powerful, subset of PythonTEX.

2 Getting started

To begin, some installation will probably be needed.
The PythonTEX package can be found at CTAN and
installed, for example, by use of a package manager
such as TEX Live’s tlmgr.

In addition, a Python installation is needed,
with Python 2.7 being the recommended version.
The exact details of how this is done depend on your
system, but one relatively simple way to obtain it
is to download and install Anaconda [1]. (We are
grateful to Richard Koch, from whom we learned
about this resource.) Anaconda is a free Python
distribution which supports GNU/Linux, Windows,
and MacOSX.

Not surprisingly, a document to be processed
with PythonTEX will need to indicate this in its
preamble:

\usepackage{pythontex}

A number of optional arguments can be supplied,
though none of these are needed for what is being
described in this introduction. For full details, refer
the PythonTEX documentation.

Three steps are needed to process a PythonTEX
document: first, LATEX, then PythonTEX, and fi-
nally LATEX. (Various engines are possible, including
pdfLATEX, LuaLATEX, and X ELATEX.) For example,
the document sample.tex could be processed with
the following sequence of commands.

pdflatex -interaction nonstopmode \

-draftmode sample.tex

pythontex sample.tex

pdflatex sample.tex

The first step extracts the Python code from the doc-
ument (to the file sample.pytxcode). In the second
step, this code is given to the Python interpreter
and the results are saved to a variety of files within
the subdirectory pythontex-files-sample. In the
final step, the results from Python are merged with
the original document.

3 Fundamental PythonTEX

We begin our exploration by considering two macro
commands intended for inline code: \py and \pyc.
To use \py, a single-line Python expression is sup-
plied as an argument:

\py{expression}

In response, the Python interpreter evaluates the
expression, computes the result and stores the result
as a string. This string then takes the place of the
\py command which is subsequently typeset. For
example, \py{2**26} produces 67108864, the value
of 226.

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 303

\begin{pycode}

print(r"\begin{tabular}{c|c}")

print(r"m & 2^m \\ \hline")

print(r"%d & %d \\" % (1, 2**1))

print(r"%d & %d \\" % (2, 2**2))

print(r"%d & %d \\" % (3, 2**3))

print(r"%d & %d \\" % (4, 2**4))

print(r"\end{tabular}")

\end{pycode}

\begin{tabular}{c|c}

m & 2^m \\ \hline

1 & 2 \\

2 & 4 \\

3 & 8 \\

4 & 16 \\

\end{tabular}

Figure 1: Generation of a table using the pycode environment; resulting LATEX code shown on the right

A related macro is \pyc, which has a subtle
yet important difference. To use \pyc, a single-line
Python statement is given:

\pyc{statement}

Here, the given statement is executed and anything
printed by it takes the place of the \pyc command,
which is subsequently formatted by TEX. As an
example, \pyc{print(2**26)} yields 67108864.

At this point, it may appear that \pyc does not
add much beyond what \py provides. However, this
is far from the truth, as we intend to show. But
before we can illustrate the power of \pyc, we need
to discuss some additional features of PythonTEX
and Python itself.

An analog of the \pyc command is the pycode
environment:

\begin{pycode}

Python statements

\end{pycode}

Unlike \pyc, this environment allows multiple-line
Python statements to appear. As with \pyc, all of
the printed output gets inserted into the document
at that point, to be subsequently typeset.

To illustrate, consider Figure 1. This exam-
ple shows how a pycode environment may be uti-
lized to generate a table of values consisting of the
pairs (m, 2m), using Python to generate powers of 2.
Although this example does not use sophisticated
Python code, it does illustrate an important idea:
the code embedded within a pycode environment
should generate the appropriate typesetting markup
to achieve the desired effect. The typeset result of
this code follows:

m 2m

1 2
2 4
3 8
4 16

Like the C language, Python uses escape se-
quences (such as \\, \n, \f, etc.) to describe certain
characters. Python uses “raw” strings, denoted with

an r prefix, to disable escape sequences, allowing
their content to appear verbatim. So, for example,

print("\\")

would output a single \, whereas

print(r"\\")

outputs \\. Since Python is being used to generate
LATEX code, the use of raw strings is often needed.

Another feature of Python being used here is
the % operator, which is used for formatting strings.
The %d specifies a placeholder, to be filled by a deci-
mal integer value obtained from an expression. For
example,

"%d and %d" % (3, 2**3)

produces the string "3 and 8". These two features,
raw strings and formatted strings, allow for the un-
derstanding of the example shown in Figure 1.

With this background, we can improve the code
by introducing a loop which iterates over the desired
values of m. The Python range function generates a
list of integer values over a specified interval. Given
integers l and h, range(l, h) generates a list of the
integers from l to h− 1. The example code shown in
Figure 2 produces the same tabular output as before,
but adds flexibility. The multiple assignment

lo, hi = 1, 4

allows an arbitrary range of table values to be spec-
ified; the for loop generates the table entries, one
row per iteration. As a side note, Python provides
arbitrary precision integer arithmetic; thus, tables
of powers of 2 involving a large number of digits can
be produced by simply adjusting lo and hi. For
example, with lo = 100 and hi = 102 the following
table is produced:

m 2m

100 1267650600228229401496703205376
101 2535301200456458802993406410752
102 5070602400912917605986812821504

Python provides the ability to define functions
as a way to promote program modularity. By defin-
ing a function within a pycode environment, we can

A gentle introduction to PythonTEX

304 TUGboat, Volume 34 (2013), No. 3

\begin{pycode}

lo, hi = 1, 4

print(r"\begin{tabular}{c|c}")

print(r"m & 2^m \\ \hline")

for m in range(lo, hi + 1):

print(r"%d & %d \\" % (m, 2**m))

print(r"\end{tabular}")

\end{pycode}

Figure 2: Generation of a table using a loop

subsequently evaluate it using \py or a similar com-
mand. To illustrate this capability, consider the
well-known Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

defined by F0 = 0, F1 = 1, and Fk = Fk−2+Fk−1 for
k ≥ 2. Figure 3 provides the definition of a function
which computes the nth Fibonacci number.

Since range(n) generates the list of integers
from 0 through n − 1, the for loop in fib makes
exactly n iterations. One way to understand this
function is to imagine scrolling across the Fibonacci
sequence with a window capable of exposing two
adjacent numbers in the sequence. Initially, the
window is positioned over F0 and F1; to expose Fn

the window is advanced n times.

\begin{pycode}

def fib(n):

a, b = 0, 1

for i in range(n):

a, b = b, a + b

return a

\end{pycode}

Figure 3: A Python function to compute the n
th

Fibonacci number

With this function definition in place, we can
use \py to evaluate arbitrary values of the Fibonacci
sequence. For example, \py{fib(10)} produces 55,
the value of F10. As we saw earlier, arbitrary pre-
cision arithmetic is available “out of the box”. so
we can use this function with equal ease on larger
values. For example, the claim

F100 = 354224848179261915075

is produced by $F_{100} = \py{fib(100)}$.

4 Getting fancier

So far, we have considered just two commands, \py
and \pyc, and one environment, pycode. Even with
this limited collection, we have many possibilities.

However, an awareness of a few more features
of PythonTEX will allow for improved processing
times and additional flexibility. One such feature is

the concept of sessions. Without naming sessions,
as we have done up to this point, all Python code
runs sequentially in one default session. This can
have several advantages. For example, variables and
functions defined in one pycode environment are
available to subsequent pycode environments, which
avoids redundant code.

On the other hand, running all Python code in
one session has the disadvantage that multiple cores
are not utilized. As the amount of Python code in
a document increases, there is a time penalty to be
paid. By utilizing multiple Python sessions, code
can be executed in parallel, providing a welcome
speedup. All of the PythonTEX commands and en-
vironments provide for an optional session name. If
no such specification appears, it runs in the default
session. Judicious use of sessions can have dramatic
improvement in processing time.

Another speed-related benefit of sessions derives
from the fact that Python will run only for those
sessions where the code has recently changed. This
allows the user to place time-intensive Python code
in their own sessions—and if that code doesn’t need
to be modified, then it is executed just once.

Multiple sessions are independent. They do not
share variables or function definitions, for example.
Sometimes this will be exactly what we want, but
other times not. It is for these latter situations
that the pythontexcustomcode environment exists.
This environment allows a code block to be specified,
which is then made available to all sessions, irre-
spective of session name. Let’s look at an example,
shown in Figure 4, to explore this idea further.

\begin{pythontexcustomcode}{py}

def makeTable(lo, hi):

print(r"\begin{tabular}{c|c}")

print(r"m & 2^m \\ \hline")

for m in range(lo, hi + 1):

print(r"%d & %d \\" % (m, 2**m))

print(r"\end{tabular}")

\end{pythontexcustomcode}

Figure 4: Informing all sessions how to generate a
table of powers of 2

As a small detail, we first note that the custom
code in this example specifies py, which indicates the
py family of commands and environments to which
it applies. As an introduction to PythonTEX, we
have chosen to focus exclusively on the py family, but
more sophisticated uses of PythonTEX may benefit
from other families of commands. Full details are
given in the PythonTEX manual.

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 305

Notice that the custom code provided here is
simply an abstraction based on the earlier example
from Figure 2. In the present case, starting and
ending rows can be specified. So,

\pyc{makeTable(1, 4)}

would generate a table of powers with m between 1
and 4, whereas

\pyc{makeTable(4, 10)}

would generate a similar table, with m between 4
and 10. Using independent sessions would allow for
potential speedup:

\pyc[one]{makeTable(1, 4)}

\pyc[two]{makeTable(4, 10)}

The session names, one and two, are arbitrary. Ad-
mittedly, the time gains for this example are likely
to be negligible, but these examples were chosen for
their simplicity and ability to illustrate sessions.

As a further illustration, we can extend our code
so that it generates tables of arbitrary functions. To
do this, we include two additional parameters: one
to specify the function and one for the desired table
heading. These two parameters, f and hd, appear in
the revised version shown in Figure 5.

\begin{pythontexcustomcode}{py}

def makeTable2(lo, hi, f, hd):

print(r"\begin{tabular}{c|c}")

print(r"m & %s \\ \hline" % hd)

for m in range(lo, hi + 1):

print(r"%d & %d \\" % (m, f(m)))

print(r"\end{tabular}")

\end{pythontexcustomcode}

Figure 5: Informing all sessions how to generate a
table for an arbitrary function

With this abstraction, we can produce a portion
of the Fibonacci sequence displayed as a table, using
the command

\pyc{makeTable2(4, 8, fib, "F_m")}

This call produces the table:

m Fm

4 3
5 5
6 8
7 13
8 21

Python has a wealth of predefined functions,
made available from its library of modules. These can
be accessed with an appropriate import statement.
For example, to make the factorial function available
to all sessions, we could write:

\newif\ifprime \newif\ifunknown % booleans

\newcount\n \newcount\p \newcount\d

\newcount\a % integer variables

\def\primes#1{2,~3% assume #1 is at least 3

\n=#1 \advance\n by-2 % n more to go

\p=5 % odd primes starting with p

\loop\ifnum\n>0

\printifprime\advance\p by2 \repeat}

% we will invoke \printp if p is prime

\def\printp{,

\ifnum\n=1 and~\fi % "and~" precedes last value

\number\p \advance\n by -1 }

\def\printifprime{\testprimality

\ifprime\printp\fi}

\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}}

\def\trialdivision{\a=\p \divide\a by\d

\ifnum\a>\d \unknowntrue\else\unknownfalse\fi

\multiply\a by\d

\ifnum\a=\p \global\primefalse\unknownfalse\fi}

Figure 6: Knuth’s code for generating prime numbers
(editorial changes to line breaks and comments)

\begin{pythontexcustomcode}{py}

from math import factorial

\end{pythontexcustomcode}

With this import in effect, the table generation call

\pyc{makeTable2(10, 17, factorial, "$m!$")}

produces the following result:

m m!
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000

These examples illustrate how a wide assortment of
tables can be generated and typeset with relatively
little effort.

5 A table of primes

A recent post appeared on TEX Stack Exchange [12]
asking how one might generate a collection of prime
numbers using LATEX. Among the responses was the
comment that Knuth himself had provided code for
this [5, p. 218]. Figure 6 shows his implementation.

Knuth’s code is not for the timid—he gives it his
most difficult rating, a double dangerous bend. Some
years later, Roegel [10] explains this 16-line macro,
in the span of four pages, providing further evidence
of the subtlety involved in its implementation.

A gentle introduction to PythonTEX

306 TUGboat, Volume 34 (2013), No. 3

\begin{pythontexcustomcode}{py}

from sympy import prime

def generatePrimes(n): # Assume n >= 3

for i in range(1, n):

print("%d, " % prime(i))

print("and %d%%" % prime(n))

\end{pythontexcustomcode}

Figure 7: How to generate the first n prime numbers
using PythonTEX

For comparison, we show an equivalent using
PythonTEX in Figure 7. This code hides the com-
putational details within a function prime which
computes the ith prime number. To use this we
might write

Thirty primes: \pyc{generatePrimes(30)}.

which generates the following output:

Thirty primes: 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, and 113.

We think this provides a nice illustration of the suit-
ability of PythonTEX for documents that can benefit
from programmed output, especially for those TEX
users who do not intend to become highly skilled in
the art of macro writing.

This function has a small subtlety. The final
line of output produced by generatePrimes(30) is

and 113%

followed by a newline supplied by the print state-
ment. (A single % is produced by the Python spec-
ifier %%.) We want the terminating % to appear so
generatePrimes can be included in the context of
other text—such as the terminating period in the
preceding example.

6 Python data structures

Python has several useful native data structures,
such as lists, sets, and dictionaries. Furthermore, list
objects have methods that allow them to be treated
as stacks or queues. This section demonstrates the
basic syntax for working with lists and dictionaries.
These capabilities will be needed for examples in
subsequent sections.

A list is an integer-indexed sequence of items,
possibly of different types. In other words, a list
can contain a mixture of numbers, strings, and other
objects. Items can be removed from, added to, or
retrieved from lists. Lists can be defined with a
comma separated sequence of items within square
brackets. For example:

\pyc{myList=["Iris", "Azalea", "Rose"]}

defines a new list named myList that contains three
strings. The indexing operator, [], can be used
to retrieve items from a list. Lists in Python are
indexed from zero. Thus, \py{myList[0]} is “Iris”
and \py{myList[1]} is “Azalea”.

A for loop can be used to iterate over any
sequence. For example:

\begin{pycode}

for name in myList:

print(name)

\end{pycode}

becomes “Iris Azalea Rose”.
The enumerate function may be used if both

the index and the value of an item are needed. For
example,

\begin{pycode}

for index, name in enumerate(myList):

print(r"%d: %s" % (index, name))

\end{pycode}

prints both the index and value each item in the list,
that is, “0: Iris 1: Azalea 2: Rose”.

While lists are indexed by integers, dictionaries
can be indexed by any immutable type, often strings.
Dictionaries can be thought of as sets of key-value
pairs where the keys are unique. Dictionaries can
be defined with a comma-separated sequence of key-
value pairs within braces. For example,

\begin{pycode}

myDict = {"Illinois": "Violet",

"New Mexico": "Yucca",

"Indiana": "Peony"}

\end{pycode}

defines a dictionary named myDict with three entries.
The indexing operator, [], can be used to retrieve
values from a dictionary with keys used as the index.
So, \py{myDict["Illinois"]} yields “Violet”.

7 Symbolic mathematics

While the preceding sections attempt to be a rela-
tively simple introduction to Python and PythonTEX,
the remaining sections are more complex. The goal is
to demonstrate some of the cases where PythonTEX
can provide useful capabilities that would be difficult
using only LATEX.

Aside from the built-in functionality, Python
has many powerful modules for mathematics. For
instance, SciPy [11] is a rich collection of open source
Python-based software for science, engineering, and
mathematics. SciPy includes SymPy [13], a Python
module for symbolic mathematics with features sim-
ilar to other computer algebra systems like Mathe-
matica [15] and Maple [6]. Using SymPy with LATEX

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 307

allows mathematics not only to be beautifully type-
set, but also to be manipulated and evaluated.

While a full exploration of SymPy is beyond the
scope of this paper, an introduction to its features
will be provided to highlight how well it can integrate
with TEX through PythonTEX. For more information
see the SymPy tutorial [14].

Like other modules, SymPy must be imported
before use. For example:

\begin{pythontexcustomcode}{py}

from sympy import *

\end{pythontexcustomcode}

imports all of the functions and objects defined in the
sympy module. SymPy defines numerous functions,
many with common names such as sin, cos, and
var. This can interfere with other modules, such as
the plotting module pylab, which will be discussed
in the next section. Thus, it can be safer to import
the module with an import sympy statement:

\begin{pythontexcustomcode}{py}

import sympy

\end{pythontexcustomcode}

or to import inside of a session that will be used only
for SymPy:

\begin{pycode}[sympy-session]

from sympy import *

\end{pycode}

PythonTEX also defines macros (sympy, sympyc) and
related environments (such as sympycode) which sim-
plifies this process.

The var function can be used to declare sym-
bolic variables. For example, \pyc{var("x, y")}

declares two symbolic variables x and y. Such vari-
ables can be used to form symbolic expressions that
can be manipulated by SymPy. The examples in this
section assume this variable declaration has been
performed and that a

from sympy import

statement was used.
The latex function returns the LATEX code rep-

resenting a given SymPy expression. For example,

$\py{latex((x + y)**5)}$

yields (x+ y)
5
. Without the latex function,

$\py{(x + y)**5}$

simply becomes (x+ y) ∗ ∗5, since the Python expo-
nentiation operator is not converted into its LATEX
equivalent. This difference is more pronounced as
the expressions become more complex. Also, LATEX
code is just text to SymPy and cannot be manipu-
lated as symbolic expressions can. It is important
to remember to use the latex function only when
typesetting SymPy expressions.

Symbolic expressions can be saved in ordinary
Python variables. For example,

\pyc{z = (x + y)**5}

stores an expression in the variable z. SymPy has
many functions for manipulating symbolic expres-
sions, including: simplify, factor, collect, and
expand. These functions are applied to symbolic
expressions like any other function call. For instance,
z can be expanded with

\[\py{latex(expand(z)) + "."} \]

which becomes

x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

Figure 8 shows a more complex example that
forms a table of binomials and their expansions. This
example also shows how to build a list of expressions
and iterate over them.

SymPy exports many trigonometric and calcu-
lus related functions, some of which are illustrated
in Figure 9. Several SymPy objects, such as limits,
integrals, sums and products are not evaluated auto-
matically. To evaluate such objects the doit method
may be used.

SymPy also includes combinatorial functions,
for such things as Bernoulli, Catalan, Fibonacci, and
Stirling numbers. Figure 10 details the creation and
use of a function for formatting tables of Stirling
numbers of the second kind, denoted

{

n

k

}

, which
counts the number of ways to partition a set of n
elements into k nonempty subsets. This function
relies on a macro to format Stirling numbers, for
example:

\usepackage{amsmath}

\newcommand{\Stirling}[2]{

\begin{Bmatrix}#1\\#2\end{Bmatrix}}

A gentle introduction to PythonTEX

308 TUGboat, Volume 34 (2013), No. 3

\begin{pycode}

Start with an empty list

binomials = []

Add a few symbolic expressions to the list

for m in range(2, 6):

binomials.append((x + y)**m)

Start an align environment to hold the

results

print(r"\begin{align*}")

Add the original expressions and their

expansions to the table

for expr in binomials:

print(r"%s &= %s\\" % (latex(expr),

latex(expand(expr))))

End the align environment

print(r"\end{align*}")

\end{pycode}

(x+ y)
2
= x2 + 2xy + y2

(x+ y)
3
= x3 + 3x2y + 3xy2 + y3

(x+ y)
4
= x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)
5
= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

Figure 8: Binomial expansions

\begin{pycode}

Define a list of functions

functions = [sin(x), cos(x), tan(x)]

print(r"\begin{align*}")

For each function build a symbolic expression of its derivative and integral

for f in functions:

d = Derivative(f, x)

i = Integral(f, x)

Print a row in the table displaying the derivative and integral. Note the

use of the "doit" method to evaluate the derivative and integral. Also

string concatenation, +, is used to join strings in this example.

print(latex(d) + "&=" + latex(d.doit()) + "&" +

latex(i) + "&=" + latex(i.doit()) + r"\\")

print(r"\end{align*}")

\end{pycode}

d

dx
sin (x) = cos (x)

∫

sin (x) dx = − cos (x)

d

dx
cos (x) = − sin (x)

∫

cos (x) dx = sin (x)

d

dx
tan (x) = tan2 (x) + 1

∫

tan (x) dx = −
1

2
log

(

sin2 (x)− 1
)

Figure 9: Building a table of derivatives and integrals

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 309

\begin{pycode}

Import a function for computing Stirling numbers

from sympy.functions.combinatorial.numbers import stirling

Define a function to print a table of all of the Stirling numbers for sets

of size 1 to maxN.

def stirlingTable(maxN):

Print the start of the table using a triple quoted string. Triple quoted

strings can span lines and are useful when including long strings.

print(r"""\begin{displaymath}

\begin{array}{c|*{%d}{c}} \hline

\multicolumn{%d}{c}{\textbf{Stirling's Triangle for Subsets}} \\ \hline

n""" % (maxN, maxN + 1))

Print each of the column headings using the previously defined Stirling

macro.

for k in range(1, maxN + 1):

print(r" & \Stirling{n}{%d} " % k)

Add some phantom space so the braces are not touching the hlines.

print(r"\vphantom{\parbox[c][7ex]{0in}{}} \\ \hline")

Start each row with the current n value

for n in range(1, maxN + 1):

print("%d" % n)

Add each of the Stirling numbers to the row

for k in range(1, n + 1):

print("& %d" % stirling(n, k))

End the row

print(r"\\")

End the table

print(r"\hline \end{array}\end{displaymath}")

stirlingTable(8)

\end{pycode}

Stirling’s Triangle for Subsets

n

{

n

1

} {

n

2

} {

n

3

} {

n

4

} {

n

5

} {

n

6

} {

n

7

} {

n

8

}

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1

Figure 10: Building a table of Stirling numbers

A gentle introduction to PythonTEX

310 TUGboat, Volume 34 (2013), No. 3

\begin{pycode}

from pylab import *

Define f(t), the desired function to plot

def f(t):

return cos(2 * pi * t) * exp(-t)

Generate the points (t_i, y_i) to plot

t = linspace(0, 5, 500)

y = f(t)

Begin with an empty plot, 5 x 3 inches

clf()

figure(figsize=(5, 3))

Use TeX fonts

rc("text", usetex=True)

rc("font", family="serif")

Generate the plot with annotations

plot(t, y)

title("Damped exponential decay")

text(3, 0.15, r"$y = \cos(2 \pi t) e^{-t}$")

xlabel("time (s)")

ylabel("voltage (mV)")

Save the plot as a PDF file

savefig("myplot.pdf", bbox_inches="tight")

Insert LaTeX code to include the plot.

print(r"\begin{center}"

+ r"\includegraphics[width=\textwidth]{myplot.pdf}"

+ r"\end{center}")

\end{pycode}

0 1 2 3 4 5

time (s)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

v
o
lt

a
g
e

(m
V

)

y = cos(2πt)e−t

Damped exponential decay

Figure 11: Plotting a function with Matplotlib

8 Plotting with Matplotlib

Matplotlib is a two-dimensional Python plotting li-
brary with an object-oriented interface and a set
of functions similar to MATLAB [7]. To use it, the
pylab module must be imported. Figure 11 shows
an example of plotting a function with annotations.
This example is inspired by a plot from the Mat-
plotlib gallery [4] which contains many examples and
tutorials. Such plots are desirable since they can use
fonts which blend with the rest of the document.

Matplotlib’s plots are saved in an external file
such as a PDF, which can then be included in the
current document. However, this can be problematic
as the file may not exist the first time the document
is processed. To avoid this problem, the Python code
generates the required \includegraphics statement.
In this way, the \includegraphics is not present
the first time TEX processes the document, but is on
subsequent processing.

9 Web services

There are many powerful and freely available web
services which return JSON (Java Script Object No-
tation) or another easily parsed format. Python’s
excellent parsing and networking libraries make using
such services relatively simple. Furthermore, some
web services have Python modules made specifically
for them.

Accessing such a web service typically requires
some authorization. This may involve requesting an
account with the service provider and agreeing to
their terms of service. Often a key is provided to
identify a client to the service and this key must be
presented each time the service is used. Using the
service can normally be broken into following tasks.

• Encoding the request as a URL

• Fetching the URL

• Parsing the response
• Using the result

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 311

\begin{pycode}

Import functions to save the contents of a URL to a file and

encode a dictionary as a string suitable for URL requests

from urllib import urlretrieve, urlencode

See Google's documentation for service usage information and examples

https://developers.google.com/maps/documentation/staticmaps/

def showGoogleMap(address, filename, zoom=10, width=640, height=680):

Build a dictionary with the key-value pairs required by the service

query = {"key":googleKey, "center": address, "zoom": zoom,

"size": "%dx%d" % (width, height), "sensor": "false"}

Convert the query into a url

url = "https://maps.googleapis.com/maps/api/staticmap?" + urlencode(query)

Save the image to a file and include it in the document

urlretrieve(url, filename + ".png")

print(r"\begin{center}\includegraphics[width=0.45\textwidth]{%s}\end{center}"

% filename)

\end{pycode}

Figure 12: Displaying a map of Tokyo using Google’s Static Maps web service

The code of Figure 12 illustrates how the Google
Static Maps API [3] can be used. This web service
returns a PNG image of a map centered at a given
address. The showGoogleMap function defined in
this example has default values for the zoom, width,
and height arguments. As a result, when invoking
this function these arguments do not need to be
specified. The results of invoking

showGoogleMap("Tokyo", "tokyoMap")

are shown in Figure 13.
To use the Google Static Maps service, an API

key is needed. Such keys can be created with the
Google APIs console (https://code.google.com/
apis/console). The examples assume such a key
has been stored in a global variable googleKey. For
instance:

\begin{pycode}

googleKey = "Put API Key Here"

\end{pycode}

As a second example, Google’s “URL Short-
ener” [2] web service takes long URLs and converts
them into URLs with fewer characters, yielding links
that can be easier to share. This service sends and
receives data as JSON (a simple plain text format for
transmitting information as key-value pairs). This
format has dictionaries, lists, numbers, and strings
for data types. Figure 14 shows an example of what
JSON looks like, while Figure 15 shows a sample
response from the URL Shortener. Note the similar-
ity to the declaration of a Python dictionary. See
Figure 16 for the details of using this service.

Figure 13: Map output from Static Maps service

10 Conclusions

The ability to include arbitrary computations within
a LATEX document holds much appeal. As a program-
ming language, Python has relative simplicity with
broad expressive power. The examples presented in
this paper provide a glimpse of what is possible with
this software combination.

A gentle introduction to PythonTEX

312 TUGboat, Volume 34 (2013), No. 3

{

"debug": "on",

"window": {

"title": "Main View",

"width": 640,

"height": 480

},

"image": {

"src": "Images/Icon.png",

"hOffset": 10,

"vOffset": 10

}

}

Figure 14: JSON sample

{

"kind": "urlshortener#url",

"id": "http://goo.gl/fbsS",

"longUrl": "http://www.google.com/"

}

Figure 15: Response for a successful use of the URL

Shortener API

\begin{pycode}

A function and object for fetching URLs and

customizing requests

from urllib2 import urlopen, Request

JSON/Python conversion functions

from json import load, dumps

def shortenURL(longURL):

The base URL for shortening requests

url = ("https://www.googleapis.com/" +

"urlshortener/v1/url")

For this service the query is sent as JSON.

So the query is converted to JSON and the

content type is set in the request's header.

query = dumps({"longUrl": longURL,

"key": googleKey})

request = Request(url, query,

{"Content-Type": "application/json"})

Fetch the request and parse the returned JSON

result = load(urlopen(request))

Retrieve the shortened URL from the result

shortURL = result["id"]

Add the shortened URL to the document

print(r"\url{%s}%%" % shortURL)

shortenURL("http://mirror.ctan.org/macros/latex/" +

"contrib/pythontex/pythontex.pdf")

\end{pycode}

Figure 16: Shortening a long URL to http://goo.gl/sfT8S5

References

[1] Continuum Analytics. Anaconda. http:

//store.continuum.io/cshop/anaconda/.

[2] Google. The URL Shortener API. https:

//developers.google.com/url-shortener/.

[3] Google. The Google Static Maps API.
https://developers.google.com/maps/

documentation/staticmaps/.

[4] John Hunter. Matplotlib gallery.
http://matplotlib.org/gallery.html.

[5] Donald E. Knuth. The TEXbook.
Addison-Wesley Professional, 1984.

[6] Maplesoft. Maple. http://www.maplesoft.

com/products/maple/.

[7] MathWorks. Matlab. http://www.mathworks.
com/products/matlab/.

[8] Geoffrey Poore. PythonTEX.
http://www.ctan.org/pkg/pythontex.

[9] Python Software Foundation. Python.
http://python.org.

[10] Denis Roegel. Anatomy of a macro. TUGboat,
22:78–82, 2001. http://tug.org/TUGboat/

tb22-1-2/tb70roeg.pdf.

[11] SciPy Developers. SciPy. http://scipy.org.

[12] TEX Stack Exchange. How to produce a list of
prime numbers in LATEX.
http://goo.gl/903u75.

[13] SymPy Development Team. SymPy.
http://sympy.org.

[14] SymPy Development Team. Sympy tutorial.
http://docs.sympy.org/latest/tutorial/.

[15] Wolfram Research. Mathematica.
http://www.wolfram.com/mathematica/.

⋄ Andrew Mertz and William Slough
Department of Mathematics and

Computer Science
Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu,

waslough (at) eiu dot edu

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 313

Online publishing via pdf2htmlEX

Lu Wang and Wanmin Liu

Abstract

The Web has long become an essential part of our
lives. While web technologies have been actively
developed for years, there is still a large gap between
web and traditional paper publishing. For example,
the PDF format, the de facto standard for publishing,
is not supported in the HTML standard; and the
most powerful typesetting system, TEX, cannot be
integrated perfectly.

Despite of the long history of people trying to
convert TEX or PDF into HTML, some are focused on
only a small fraction of features, e.g. text, formulas
or images; some are too old to support new features
in the HTML standard such as font embedding or
linear transformations (e.g. rotation); some display
everything in images at the cost of larger sizes.

In this article, while we survey and compare
existing methods of publishing TEX or PDF docu-
ments online, a new approach is attempted to attack
this issue. We introduce an open source program,
called pdf2htmlEX, which is a general PDF to HTML

converter and publishing tool with high fidelity. It
presents PDF elements with corresponding native
HTML elements, in order to achieve high accuracy
and small size. The flexible design also makes it
useful for a variety of use cases in online publishing.
Obviously TEX users can immediately benefit with
zero learning cost, just like dvipdf while people were
still using DVI. More information is available at the
home page:
https://github.com/coolwanglu/pdf2htmlex

1 Introduction

❆
rguably, for many people the World Wide
Web is the Internet. Indeed, web technolo-
gies have been so actively developed in the
past few years, nowadays web pages far

surpass plain text and images. HTML5 brings au-
dio, video, 3D graphics and many other rich features;
CSS3 defines brand new visual effects, and JavaScript
allows different kinds of user interactions. Modern
web browsers are literally operating systems, and
the boundary between web apps and local software
has been blurred. Today, we can access the WWW

with all kinds of devices such as watches, phones,
tablets, computers and even glasses. It has become
an essential part of our lives.

The web technologies provide brand new user
experiences compared to traditional media. Taking
Wikipedia as an example, it has rich contents: inside

an article, besides plain text, there are often images,
animations, audio and video that are relevant to the
topic; it is well organized: users may jump to rele-
vant articles by clicking links; it is interactive: users
may create or edit an article; it is personalized: the
appearance of the web site respects users’ preferences
such as language, theme or format; it is social: users
may leave comments and have discussions regarding
an article.

Compared with traditional publishing media, it
is more convenient and easier for users to obtain,
view and share the contents. While most features in
HTML are targeting visual effects, multimedia and
rich Internet applications, there is still a large gap
between the Web and traditional publishing. Many
existing publishing technologies cannot be perfectly
integrated online—especially two of them focused
on in this article, PDF and TEX, which are the most
popular format and typesetting system respectively.

PDF The Portable Document Format, developed
by Adobe, is one of the most popular formats for dig-
ital documents. PDF is known for its wide support
of different types of fonts, encodings, raster images,
vector graphics, and many other features from pre-
press processing to user interaction. It is widely
supported in different operating systems and devices.
Nowadays, almost all documents can be exported to
PDF. Notably, with a virtual PDF printer, any docu-
ment that can be printed on paper can be converted
to PDF. It has become the de facto standard for
academic articles, technical reports, manuals, news-
papers and ebooks. As an example, the final format
for TUGboat is PDF.

PDF is a print-ready format; it is designed to
completely describe a fixed-layout flat document. A
PDF file clearly defines the appearance of the docu-
ment, independent of particular devices or viewers.

PDF is not supported in the HTML standard,
but it can be viewed directly in several web browsers.
Users of other web browsers usually have to read PDF

documents with web browser plugins, or download
the files and then read them with a local PDF reader.
In all these cases, PDF files are viewed in a closed
environment where users cannot utilize most web
features.1

TEX Designed and written by Professor Donald
Knuth, TEX is one of the most powerful typesetting
systems in the world.2 It is well-known for its capa-
bility of producing high quality formulas and figures

1
PDF does include features such as external links and

interactive functions within a document, but these are quite

limited compared to HTML.
2 When using ‘TEX’ in this article, most of the time we

will be referring to the whole TEX family.

Online publishing via pdf2htmlEX

314 TUGboat, Volume 34 (2013), No. 3

in many different areas. While it is most popular
in academia, it is also used for typesetting books,
magazines and sheet music.

TEX is a source format for authors. It contains
structured contents including text, formulas, figures
and possibly cross references between them. Users
can define their own concepts by writing macros.
Typically the layout of the document must be de-
termined by compiling the file with a TEX compiler;
different compilers may produce different results from
the same TEX source file.

People started trying to connect TEX to the Web
nearly since the Web began. There were some early
overviews, such as [31, 32], [34, chapter 7], but we are
not aware of any recent surveys on the topic. Early
works were mainly focusing on correctly displaying
formulas produced by TEX. Different methods in-
clude using images, Unicode characters, MathML

or HTML5. However the power of TEX is far more
than formulas, it is also famous for its capability
of handling mathematical spacing, hyphenation and
justification, which is often ignored in these cases.

In the following sections, we are going to describe and
compare some popular existing approaches. We will
also introduce a new program, pdf2htmlEX [25], and
discuss its advantages and limitations with examples.

2 Preliminaries

❚
he target audience of this article includes
those who need to publish both online ver-
sions and print versions of their documents
at the same time, especially those who want

to publish existing documents online.
We assume that the existing document is in PDF

format. It could be generated from TEX or any other
tool. We do not assume that the publisher is the
author, i.e. the source files may not be available to
the publisher.

We believe that the following requirements are
essential for most users. They are also the criteria we
will use to discuss and compare existing approaches.

Convenience The publishing process should be
automated, with minimal manual adjustments in-
volved, such that publishers need focus on only one
version, while the other can be generated accordingly.

Consistency Both the online version and the print
version should have a consistent appearance, some-
times including the same layout and format.

Evidently the contents should never vary be-
tween the two versions, but one may argue that
screen and paper are two completely different kinds
of media, and so fonts, spacing and even layouts
should be optimized individually. For example, users

1

Le premier li੠re de Moyſe,
Diݑ Geneſe.

❦

ग़ ५ ॠ ९ ० फ़ १ ७ .

Ce premier liࡑre comprend l’origineࢦ caլſes de toլtes choſes, principalement la creation de l’homme, qլ’il a esté dլ
commencement, ſa cheլteࢦ releࡑement : comment d’ࡐn toլs ont esté procreés, ࢦ poլr leլrs enormes pechés Dieլ
les a conſլmés, par le delլge, reſerࡑé hլiՂ, dont la ſemence a rempli toլte la terre. Pլis il deſcrit les ,iesࢪ faiՂs, reli-
gion,ࢦ lignees des ſaints Patriarches, qլi ont eſcլࢪ deࡑant la Loy : Les benediՂions, promeԱes,ࢦ alliances dլ Sei-
gneլr faiՂes aࡑec iceլx : Comment de le la terre deChanaan ſont deſcendլs enEࢳpte. Aլcլns ont appelé ce liࡑre, le
liࡑre des Iլstes. Toլtefois ceci a obtenլ entre nos predeceԱeլrsࢦ noլs, qլ’il est appelé Geneſe, qլi est nࡐ mot Grec,
԰gnifiant generationࢦ origine : d’aլtant qլ’en icelլi est deſcrite l’origineࢦ procreation de toլtes choſes : ࢦ nom-
mément des Peres anciens, qլi ont esté tant deࡑant qլ’apres le delլge,ࢦ eլ eſgard à ॢ फ़ ६ ९ ६ ड़ ॡ ५ ॢ ६ ७ deſcen-
dլ d’iceլx ſelon la chair.

ड़ ॡ ग़ ३ ॢ ७ ५ फ़ ॢ.
ICreation dլ ciel ࢦ de la terre, II, 10. ࢦ de toլt ce qլi y est
comprins. 3.14. De la lլmiere aլԯ, 26 ࢦ de l’homme, 18
լqլelࡠ toլt est aԱլbietti. 2.2. 18 Dieլ benit toլtes ſes œլ-
,resࢪ 31 qլ’il a accomplies en ԰x ioլrs.

1Ieݻ acrea
baݻ com
mence -
ment cle
ciel & la
terre.
2 Or la
terre eſ-
toit ſans
forme, &

vݻide, & les tenebres estoyent ſݻr les
abyſmes : & l’Eſprit de Dieݻ destoit
eſpandݻ par deݻݺs les eaݻx.

3 ffidonc Dieݻ dît, il’ݻݘ2 y ait lݻmie-
re. eEt la lݻmiere fݻt.

4 Et Dieݻ vid q̃ la lݻmiere estoit bon-
ne : & ſepara la lݻmiere des tenebres.

5 Et Dieݻ appela la lݻmiere ioݻr,& les
tenebres nݻiݑ. Lors fݻt faiݑ le fſoir &
le matin dݻ premier ioݻr.

6 ¶ Pݻis Dieݻ dît, il’ݻݘ3 y ait ੟ne geſ-
tendݻe entre les eaݻx, & qݻઐelle ſepare
les heaݻx dઐa੠ec les eaݻx.

7 Dieݻ donc tܠ lઐestendݻe, & di੠iſa

ICe premier cha-
pitre est fort diܢ-
cile : & poݻr cette
caݻſe, il estoit de-
fendݻ entre les He
brieݻx de le lire &
interpreter de੠ant
lઐaage de trente
ans.
aFit de rien, &

ſans aݻcݻne ma-
tiere.
1Iob 38.4, Pſeaլ.
33.6, ࢦ 89.12.,
135.5, Ecclestiasti.
13.1, AՂ. 14-15,
ࢦ 17.14
bToݻt premiere-

ment, & a੠ãt qݻ’il
y eݻt aݻcݻne crea-
tݻre, Iean 1.10.
2Hebr. 11.3.
cLe ciel & la

terre, les eaݻx, les
abyſmes, ſe pren-
nent ici poݻr vne
meſme choſe : aſç.
poݻr ੟ne matiere
cõfݻſe & ſans for-
me, q̃ Dieݻ forma
& agença apres
par ſa Parole.
dOݻ, ſe moݻ-

voit. Cઐest, ſoݻste-
noit et conſer੠oit
en ſon estre cette
matiere confݻſe.
Car il est impoܾ-
ble, q̃ aݻcݻne cho-
ſe apres a੠oir esté
faiݑes,pݻiݺe ſݻbܿ-
ster ੟n ſeݻl mo-
ment, ܿ Dieݻ ne la
ſoݻstient & cõſer-
ve par ſa vertݻ,
Pſeaլ. 130.

eCette lݻmiere
nઐestoit point en-
core aݻ ſoleil, car
il nઐa੠oit pas esté
creé, mais estoit en
la main de Dieݻ,
ayãt ſon ordre ſݻc-
ceܾf a੠ec les tene-
bres, poݻr faire le
ioݻr & la nݻiݑ &
ce iݻſqݻes aݻ qݻa-
trieme ioݻr, qݻe
Dieݻ tܠ le ſoleil
poݻr estre ministre
& diſpenſateݻr de
cette lݻmiere, a੠ec
la lݻne & estoilles.
3Pſeaլ. 33.6, ࢦ

136.5.
Ierem. 10.11 ࢦ
51.15.
fIci est la caݻſe

les eaݻx, qݻi estoyent ſoݻs lઐestendݻe,
dઐa੠ec celles, qݻi estoyent ſݻr lઐesten-
dݻe. Et fݻt ainܿ faiݑ.

8 EtDieݻ appela lઐestendݻe, Ciel. Lors
fݻt faiݑ le ſoir & le matin dݻ ſecond
ioݻr.

9 ¶ PݻisDieݻ dît, 4 iݻݘe les eaݻx, qݻi
ſont ſoݻs le ciel, ſoyent aݺemblees en
੟n lieݻ, & qݻe le ſec apparoiݺe. Et fݻt
ainܿ faiݑ.

10 EtDieݻ appeꝉale ſec,Terre,& lઐaݺem
blee des eaݻx, mers. Et Dieݻ vid qݻe
celà estoit bon.

11 Et Dieݻ dît, eݻݘ la terre prodݻiſe
verdݻre, herbe prodݻiſant ſemence, &
arbre frݻiݑier, faiſant frݻiݑ ſelon ſon
eſpece, leqݻel ait ſa ſemẽce en ſoy-meſ-
me ſݻr la terre. Et fݻt ainܿ faiݑ.

12 La terre dõc prodݻiܿt verdݻre, her-
be prodݻiſant ſemẽce ſelon ſon eſpece,
& arbre ſans frݻiݑ, leqݻel a੠oit ſa
ſemence en ſoymeſme ſelon ſon eſpe-
ce. Et Dieݻ vid qݻe celà estoit bon.

13 Lors fݻt faiݑ le ſoir & le matin dݻ
troiܿeme ioݻr.

14 ¶ffipresDieݻdît,5 kݻݘ’il y ait lݻmi
naires en lઐestendݻe dݻ ciel, poݻr ſepa-
rer la nݻiݑ dݻ ioݻr : & ſoyẽt en lܿgnes,

a en

poݻrqݻoy les He-
brieݻx cõmencent
le ioݻr natݻrel le
ſoir apres le ſoleil
coݻchant.
gCe mot d’Estẽ

dݻe, comprẽd toݻt
ce qݻi ſe voit par
deݻݺs noݻs, tãt en
la region celeste,
qݻઐelementaire.
4Pſeaլ. 33.7.
hIl est ici parlé

de deݻx manieres
dઐeaݻx : asça੠oir,
celles q ſont ſoݻs
lઐestendݻe, comme
la mer, les ,੠esݻeܡ
& aݻtres qݻi ſont
ſݻr la terre & cel-
les, qݻi ſont ſݻr
lઐestendݻe, comme
ſont les nݻees plei-
nes dઐeaݻ ça haݻt
en lઐair par deݻݺs
noݻs. Dieݻ a mis
entre ces deݻx for
ces dઐeaݻx ੟ne grã
de estendݻe, qݻઐon
appelle le ciel : de
là noݻs appelons
les oiſeaݻx dݻ ciel.
iCeci appartiẽt aݻ
ſecõd ioݻr, aݻqݻel
Dieݻ ſepara, & tܠ
apparoir la terre dݻ
milieݻ des eaݻx.
kIl institݻe ੟n

noݻ੠el ordre en
natݻre, qݻand il
faݻt & ordonne le
ſoleil distribݻteݻr
de cette lݻmiere
qݻ’il a੠oit creée
a੠ant lݻi, & a੠ant
la lݻne & les eſ-
toilles.
5Pſeaլ. 136.7
lCઐest poݻr ܿ-

gniܠer di੠erſes di-
ſpoܿtions qݻe les
corps ĩferieݻrs ſe-
lon lઐordre de na-
tݻre ont des corps
celestes, cõme caݻ
ſes ſecõdes ordon
nees de Dieݻ à ce-
là. En qݻoy toݻ-
teſfois faݻt fݻir cݻ-
rioܿté & ſݻpersti-
tion q̃ les hõmes
ont cõtroݻ੠ee ſݻr
celà.

Figure 1: Bible de Genève, 1564 [8], typeset by
Raphaël Pinson with X ETEX. The drop cap, fonts,
spacing and layout were carefully tuned in order to
duplicate the 16th century French Bible.

might want text in the document to be reflowed
according to the screen size of their mobile devices.

However, in many cases, fonts, spacing and lay-
outs are carefully designed to assist reading, and
sometimes they have already become essential parts
of the document, see Figures 1 and 2 as examples.
In such cases, a complete redesign may be involved
in order to optimize for specific media.

In our opinion both situations are important,
and we will try to cover both of them in this article.

Flexibility An important purpose of the online
version is to provide better services and user experi-
ence. This version of the document should be flexible
enough for front-end designers to design interactive
web pages.

For example, text and other elements in the
documents should be accessible such that extra styles
or effects can be specified; the whole document should
be able to be embedded into existing frameworks with
well-defined behaviours and themes applied.

Optimization There are concerns for web services
which may not be covered by traditional media: the

Lu Wang and Wanmin Liu

TUGboat, Volume 34 (2013), No. 3 315

Organic Trader Pty Ltd. Ph. 02 8399 0122, Fax 02 8399 1766. Order by the carton and save 5%. 21

. . . continued from previous page.

Product Description Carton($) Unit($) U/C RRP($) Item No GST Barcode Organic

NEW BC Red Wine Vinegar Chips 142g 3.33 3.51 12 5.50 9197006 10% 708163114878

NEW BC Hummus Sesame Chips 142g 3.75 3.95 12 5.95 9197051 10% 708163300219

Chic Nuts - Roasted Chickpeas & Broad Beans

Fantastic packaging, available in 200g bags or mini packs, these scrumptious savoury snacks

are best-sellers! Toasted, roasted chick peas and broad (fava) beans. The oil used is Monola,

which has been developed through normal breeding of non GMO canola oil. 100% Australian

owned and grown.

Product Description Carton($) Unit($) U/C RRP($) Item No GST Barcode Organic

CN Chic Nuts - Lightly Salted 200g 3.95 N/A 5 6.45 9304201 10% 9318471000520

CN Chic Nuts - Sicil’n Herb & Garlic200g 3.95 N/A 5 6.45 9304202 10% 9318471000537

CN Fava Nuts - Lightly Salted 200g 3.95 N/A 5 6.45 9304203 10% 9318471000568

CN Chic Nuts - Lightly Salted 6x25g 4.00 N/A 5 6.95 9304301 10% 9318471000544

CN Fava Nuts - Lightly Salted 6x25g 4.00 N/A 5 6.95 9304302 10% 9318471000551

CN Split Chics - Lightly Salted 6x25g 4.00 N/A 5 6.95 9304303 10% 9318471000582

CN Fava Nuts - Moroccan Roast 6x25g 4.00 N/A 5 6.95 9304304 10% 9318471000575

Cobs - Favourites Range

Welcome to the new range of pop-choco-liscious treats. If you’re devoted to your popcorn, then you’ll

love our latest - a delectable coating of caramel, smooth milk or decadent dark chocolate over Cobs

pure popcorn. Chocolate varieties are only available in the Sydney Metro Area - extra freight charges

apply.

Product Description Carton($) Unit($) U/C RRP($) Item No GST Barcode Organic

COBS Caramel Popcorn 125g 2.43 N/A 10 3.95 9381400 10% 9334714000225

COBS Milk Chocolate Caramel Popcorn 175g 5.00 N/A 10 8.25 9381401 10% 9334714000232

COBS Dark Chocolate Caramel Popcorn 175g 5.00 N/A 10 8.25 9381402 10% 9334714000249

Cobs Organic & Natural Popcorn

This popcorn is completely gratifying and unquestionably delicious. It is very

crunchy and fresh and comes in three great flavours. The original recipe pop-

corn is slightly sweet and slightly salty, and for those who prefer a more savoury

flavour, Sea Salt is perfect. For optimal freshness it has a 3–4 month shelf life,

but it is so popular you won’t have any trouble keeping it moving.

Product Description Carton($) Unit($) U/C RRP($) Item No GST Barcode Organic

COBS Original Organic Popcorn 125g 2.72 N/A 10 4.95 9381001 10% 9334714000010 ACO

COBS Original Organic Popcorn 40g 1.22 1.28 24 2.20 9381002 10% 9334714000102 ACO

COBS Sea Salt Organic Popcorn 80g 1.86 N/A 10 3.30 9381101 10% 9334714000041 ACO

COBS Sea Salt Organic Popcorn 25g 1.11 1.17 24 1.95 9381102 10% 9334714000058 ACO

COBS Cheddar Cheese Popcorn 100g 2.00 N/A 10 3.30 9381251 10% 9334714000140

COBS Coco Crunch Popcorn 120g 2.00 N/A 10 3.30 9381253 10% 9334714000218

NEW COBS Natural Sweet&Salty Popcorn 120g 2.00 N/A 10 3.30 9381254 10% 9334714000157

NEW COBS Natural SeaSalt Popcorn 80g 1.57 N/A 10 2.60 9381257 10% 9334714000096

COBS Popcorn Multipack (10x13g) 130g 3.39 N/A 8 5.95 9381300 10% 9334714000164

Cocolo Organic Fairtrade Chocolate

Velvety, smooth and delicious, Cocolo contains no refined sugar,

only evaporated cane juice. Cocolo is made in Switzerland from

the finest Organic and Fairtrade ingredients. The cocoa and evap-

orated cane juice come from Fairtrade co-operatives. These com-

munities are able to reinvest in their farms, schools and commu-

nities by selling their beans through the Fairtrade market. We find

this very exciting, and we hope you do too! We choose to keep

Cocolo absolutely GMO free. We only use ingredients that are

produced in the traditional way, with special attention to purity of the product and sustainability of production. All dark flavours are dairy

free and the whole range is gluten and soy free. Cocolo Display Kit includes 12 units each of Dark Orange, Milk, 70% Dark and Dark Mint.

Ask us if you prefer a different configuration.

G
ro

c
e
ry

Figure 2: One page from a product catalogue
generated with LATEX. Text paragraphs, images and
tables are well-organized for each category. The whole
catalogue contains more than 70 pages, including
information on 800–1000 products. Courtesy of
Jason Lewis [35].

size of the files should be as small as possible in order
to save storage space; the cache mechanism of web
browsers should be utilized when possible, in order
to save bandwidth; the readers should not need to
wait long before viewing the first few pages, even if
there are thousands of pages in the document.

Therefore special optimizations are necessary
when producing an online version from a traditional
document.

3 Existing approaches

◗
uite a number of approaches have been
developed to publish TEX or PDF contents
online. Possible workflows are shown in
Figure 3. It is possible to compile3 a TEX

file into HTML; or to convert4 a PDF document into
HTML.

3 To determine the layout based on the information from

the source.
4 To transform between two presentation formats, in both

of which layout and appearance are clearly defined.

Converting a large TEX file with complicated
layouts into PDF is usually not a fast process. Be-
cause of this, it is a common practice to convert the
source format into web pages on the server side, the
results can be stored on the servers, and sent to users
upon request.

On the other hand, nowadays JavaScript is al-
ready powerful enough for many tasks, and it can be
embedded5 into HTML, in which case HTML is used
as a container— the embedded files are to be parsed
and rendered on the client side with JavaScript.

In order to utilize existing technologies, it is also
common to introduce intermediate formats, which
are to be converted or embedded into HTML. In
particular, PDF may be viewed as an intermediate
format while compiling TEX to HTML,

In this section we try to describe the most pop-
ular approaches and discuss them from different as-
pects. Although some of them might not be originally
designed for publishing, they are still listed here be-
cause they can be used to facilitate the process.

3.1 Raster image-based approaches

Approaches of this type render source files into raster
images (e.g. PNG, JPEG), usually one image per page,
which are then embedded into HTML. Popular tools
of this type include:

• pdftocairo from Poppler [27]
• ImageMagick [20]
• mathTEX [9]
• “fallback” mode of pdf2htmlEX

Pros Raster images were introduced in a very early
stage of HTML, and so are highly compatible with old
web browsers. All visual elements can be displayed
correctly.6

Cons The main disadvantage of this type of ap-
proach is that the image sizes are usually huge. It
is costly to convert text into images and it is usu-
ally not easy to balance quality and size. Large files
consume large bandwidth of both server and client,
which also cause delays. Another issue is that all
semantic information is lost, users can no longer copy
text out from the document, nor follow the links.

Raster image-based approaches are “universal”, in
that they are widely used to publish many differ-
ent formats, not limited to TEX or PDF. Famous
examples include the Look Inside feature of Springer-
Link [11] and Google Docs Viewer [3].

5 To keep the source format as it is inside the target format.
6 For TEX and PDF, there are also advanced features like

audio, video, animation or annotation, etc., which are beyond

the scope of this article.

Online publishing via pdf2htmlEX

316 TUGboat, Volume 34 (2013), No. 3

TEX

co
m
p
il
e

��

compile
%%

compile/embed

&&
Intermediate
Formats

convert/embed
//

con
ver

t

}}

HTML

Other
Sources

//
PDF

con
ver

t

==

conv
ert/e

mbed

88

Figure 3: Different approaches to publishing online.

The disadvantages can be compensated for to
some extent: A hidden text layer can be overlaid
above the images in order to simulate user text selec-
tion, however generating this text layer itself actually
involves other conversion technologies; for a respon-
sive user experience, the input document may be
converted into images with different resolutions, and
images with high resolutions can then be split into
small blocks. When the document is rendered on
the client side, only the block being viewed by the
user is needed to transfer. However much more disk
storage and network bandwidth is required in this
way, which might not be affordable for all publishers,
especially individuals.

3.2 SVG-based approaches

Scalable Vector Graphics, developed by W3C, is an
XML-based format for presenting 2D graphics. It
supports a similar set of features as PDF, including
color, gradients, patterns, paintings and raster im-
ages. It also supports font definition within SVG as
well as external fonts defined in CSS.

Due to the large feature set, most visual ele-
ments can be rendered with SVG counterparts. Pop-
ular tools in this category include:

• Inkscape [21]
• pdftocairo from Poppler [27]
• pdf2svg [26]
• dvisvgm [17]
• “fallback” mode of pdf2htmlEX

Pros Due to the similar nature between SVG and
PDF, it is relatively easy to find an SVG counterpart
for each PDF element. SVG is one of the few meth-
ods that support advanced layout features such as
characters along a curved path and image clipping.

SVG is based on XML, hence it can be easily
parsed or edited manually. SVG can be well inte-

grated with HTML/CSS, and it can be easily accessed
and manipulated by JavaScript.

Cons Old web browsers do not support SVG, and
the degree of support for SVG varies for modern web
browsers.

While SVG-based approaches are powerful when inte-
grated with HTML, CSS and JavaScript, most tools
in this category do not support such integrations,
probably because they were designed as an SVG con-
verter instead of an online publishing tool.

3.3 Semantic HTML-based approaches

Approaches of this type try to find the matching
HTML element for each TEX element, for example
\section and \textbf in TEX might become <h1>

and in HTML respectively. Popular tools in this
category include

• HEVEA [19]
• LATEX2HTML [1, 37]
• LATEXML [24]
• plasTEX [5, 29]
• TEX4ht [6, 33]
• TEX2page [14]
• TtH [12]

all of which are designed to process general TEX
files. There are also programs designed for particular
documents, for example

• The Feynman Lectures on Physics [28]
• The Stacks Project [38]
• The TUG Interviews Project [30]

Pros Semantic HTML files are normally expected
by most users. Semantic information is retained in
an XML-like format, such that they can be read or
edited by a human or further processed by other
programs.

Basic elements such as colors, font family and
sizes, paragraphs, links, images can all be supported.

Lu Wang and Wanmin Liu

TUGboat, Volume 34 (2013), No. 3 317

CSS can be used to specify the layout and appear-
ance. Math formulas may be semantically retained
via Unicode characters, MathML or embedded TEX
snippets (see Section 3.5).

Approaches of this type can be used when the
publisher does not rely on the layout produced by a
TEX compiler. They are often used for simple text-
based files without complicated layouts. The final
layout is determined by the web browser based on
the semantic structure and CSS rules.

Cons Approaches of this type usually don’t work
well for PDF files. In general, PDF files do not contain
semantic information, and so recognition is inevitable
to detect semantic meanings, which is considered to
be hard. This is also true for other intermediate files.

On the other hand, TEX users do not necessarily
expect the same appearance as compiled by TEX.
Most advanced layouts in TEX cannot be used, for
example, double columns. Specific layouts might be
simulated, but it is hard in general due to the essen-
tial differences between the page model of TEX and
HTML. While font embedding is possible nowadays,
most tools of this kind do not support it.

Furthermore, this type of approach can be con-
sidered a re-implementation of TEX, as these tools
parse and process TEX syntax in their own engines,
and therefore some macros and packages may not
work with them, especially those related to drawing,
page layout or PDF-specific features. Sometimes the
authors have to prepare different versions of TEX
files for both HTML and PDF, and HTML knowledge
might also be required.

It is possible to achieve HTML documents in rather
good quality, while reserving not only semantic infor-
mation, but also well organized links, elegant styles
and MathJaX-based math formulas. Good examples
are [28] and [38]. However, most of them employ
project-specific tools and lots of engineering work,
and there are also limitations or paradigms for au-
thors. Therefore their methods might not work for
general documents.

3.4 Presentation HTML-based approaches

Approaches of this type focus on the layout and
appearance of the result, utilizing CSS rules to set
accurate position and size for each element, mostly
text. Non-text elements are usually converted into
images, raster or vector, which are embedded in the
HTML. They are still significantly different from
raster image based approaches or SVG based ap-
proaches mentioned above, as they do not convert
the whole document into images.

Prior to pdf2htmlEX, the pdftohtml utility from
Poppler [27] is probably the best known tool that is
freely available to the community. While pdftohtml
focuses more on extracting semantic information,
pdf2htmlEX focuses on precise layout and appear-
ance. There seems not to be any tools that directly
produce presentation HTML files from TEX, because
of course TEX users may produce PDF files before
further converting it into HTML.

Pros Comparing this output with images, text is
now represented with native HTML elements, such
that they can be selected by users or easily extracted
by programs; the file size is heavily reduced in this
way. Also it is easier to apply CSS and JavaScript
to tweak the appearance.

Comparing with semantic HTML files, the ap-
pearance of presentation HTML output is often closer
or even identical to the original document. TEX users
are free to use any advanced layout, macro or pack-
age, fine-tuning will also be reflected in the output,
as the TEX page model is simulated in HTML.

Cons While text is still available, the semantic
meanings (e.g. title, section, table etc.) are likely to
be lost. The content may be too complicated to be
further processed. Precise layout and appearance
rely on advanced CSS features, like font embedding,
absolute positioning and linear transformation, which
might not be supported by old web browsers.

3.5 JavaScript-based approaches for TEX

While TEX is not directly supported in HTML, mod-
ern JavaScript technologies allow us to embed these
files in HTML, such that they will be parsed and
rendered directly in the web browsers. Similar tech-
nologies for PDF are covered in Section 3.6.

MathJaX [7] is a JavaScript display engine which
parses and renders TEX snippets on web pages with
HTML/CSS, SVG or MathML. MathJaX is designed
for online communications where users want to di-
rectly input formulas in the TEX syntax. Similar
projects include jsTeX [2], and jsMath [4].

LATEX2HTML5 [22] is able to produce interac-
tive diagrams from PSTricks macros; it also utilizes
MathJaX for rendering math formulas.

Pros This kind of approach is best for dynamic
content, especially that intended to be created or
modified by users. Any modification to the source
can be reflected in the result promptly without any
network transmission. It can also handle documents
with simple layout, while formatting can be specified
with CSS.

Cons Approaches of this kind are usually focus-
ing on specific elements; while they may support a

Online publishing via pdf2htmlEX

318 TUGboat, Volume 34 (2013), No. 3

small set of TEX syntax, they are not designed as
a JavaScript implementation of TEX. Therefore ad-
vanced commands or macros may not be supported,
and usually they are not capable of typesetting gen-
eral documents with complicated layout.

3.6 JavaScript-based approaches for PDF

PDF. js [13] is a JavaScript library for rendering PDF;
it is now a part of Mozilla Firefox. It is like the
raster image-based approaches except that all the
parsing and rendering are done on the client side.
Recent web browsers are necessary to support the
technologies used by the library.

PDF. js is one of a kind; there are no similar
alternatives to the best of our knowledge.

Pros PDF. js renders PDF files into an HTML5 can-
vas, which is similar to a raster image; most PDF

elements can be rendered correctly. Furthermore, it
does not suffer from a huge network cost as only the
original PDF file need be transferred.

The library can be embedded into web pages,
and can be extended by publishers if needed.

Cons PDF. js relies heavily on the computation
power on the client side, which might cause per-
formance issues in some environments.

It is designed as a PDF reader, and it does not
optimize for online publishing; for example users still
have to wait for the entire file to be downloaded
before they can read any page.

PDF elements are rendered into an HTML5 can-
vas, which may not be flexible enough for publishers.

3.7 Plugin-based approaches

Many web browsers support plugins to add new fea-
tures, especially plugins can be used to display TEX,
PDF, or other formats converted from them. Publish-
ers may also develop plugins for their own formats,
which are otherwise not supported by web browsers.

Adobe Reader includes plugins to display PDF

files within different web browsers. There are also
similar third-party plugins based on Adobe Flash.
There are also plugins to display math formulas inside
web browsers, e.g. MathPlayer [23].

Pros Plugins are not limited to web technologies,
thus they are usually better in term of rendering
quality or supported features. For example, Adobe
Reader should be the plugin with the most complete
support for PDF features.

Cons The crucial downside is that plugins usu-
ally create closed environments, which prevent an
interactive user experience on the web sites. Most
plugins are not easily customizable, except for a few
commercial ones. Due to the active development of

HTML5 technologies, plugins nowadays are no longer
so popular as before, for security, compatibility and
performance reasons.

3.8 Third-party services

Third-party services also exist such that embedded
TEX or PDF can be redirected to their servers for
processing and rendering, for example:

• QuickLATEX [10]
• mathTEX [9]
• Google Docs [3]
• Crocodoc [15]

This kind of service accepts input uploaded
by publishers, converts it internally with their own
implementations and redirects the result to users.
The technologies behind them, open or proprietary,
should still fall into the categories mentioned above.

Pros This kind of service is usually easy to deploy,
and convenient for publishing a few simple docu-
ments. The conversion process relies only on the
computation power of the third party. Some ser-
vices also provide an API for better integration with
publishers’ sites.

Cons A crucial issue here that may concern a lot
of publishers is that the files must be accessible by
the third party. This may not be acceptable for
private, confidential or copyrighted materials. In
addition, the publisher’s service has to depend on the
availability of the third party. Further development
may also be limited by the API provided or other
issues such as different domains.

3.9 Discussion

In this section we categorized a number of popular
approaches, among which the most popular three
types of output are:

Image is best for publishers who can afford large
volume of storage and bandwidth. There is no need
to fine-tune or even redesign the document, as layout
and format are already accurately preserved in the
output. Yet this highly compatible result can be
viewed by most users.

Semantic HTML is best for simple TEX source
files. All semantic information is preserved in the
output, which can be further processed by other
tools. In particular, math formulas may be rendered
interactively with latest web technologies.

Presentation HTML is best when complicated
layout, advanced TEX macros and packages are used.
It is also suitable when the source files are not avail-
able at all. PDF files produced from other tools can

Lu Wang and Wanmin Liu

TUGboat, Volume 34 (2013), No. 3 319

also be supported. Flexibility of semantic HTML and
accuracy of image are cleverly balanced.

In general there is no best approach for all situations.
Users should carefully choose the best matching one
according their specific concerns.

While we tried our best to be complete and
accurate, it is quite possible that we have missed
or misunderstood some approaches due to the lim-
itations of our knowledge. Please contact us for
corrections or suggestions, and thank you.

4 A tour of pdf2htmlEX

■
n this section we introduce pdf2htmlEX,
created and mostly written by Lu Wang,
which is an open source PDF to HTML

converter. It generates presentation HTML

documents, utilizing modern Web technologies such
as HTML5, CSS3, JavaScript, etc., such that most
PDF features can be retained. Especially fonts, math
formulas and images can all be displayed correctly.

Figure 4: Logo of pdf2htmlEX

pdf2htmlEX is not only a converter, but also
a publishing tool. It is designed for many different
situations, for example:

Scenario 1 My sister wants to put her resumé
on her online homepage. She wants the resumé to
be stored into one single file such that it can be
easily downloaded by others. She also needs to add
JavaScript code to track how many people have read
her resumé.

Scenario 2 A book publisher wants to put some
sample books online to attract readers. The publisher
does not want readers to wait for too long before they
can read any page, thus pages are better converted
and stored separately. Images and fonts should also
be stored in individual files such that users may
benefit from web caches.

Scenario 3 A cloud storage service provider wants
to provide a PDF preview feature to their service,
such that users may read their files online. The
service provider needs to design their own viewer to
match the theme and behaviour of their web site.
They also want to attach advertisements based on
the contents of the files. Advanced users may be
allowed to leave marks and discuss with others about
particular parts of the documents. In this case the

service provider needs the finest control— they need
to access every single element of the document for
their customizations.

We can see that different forms of HTML files are
desired in different scenarios, and flexibility is always
necessary. pdf2htmlEX is indeed designed for all
these scenarios and many others; some features have
been requested or implemented by users.

In this section we will introduce a few useful
features and explore some internal mechanisms of
pdf2htmlEX. More information, including source
code and license terms, is at the project home page:
https://github.com/coolwanglu/pdf2htmlEX

4.1 Quick start

Throughout this section, a sample PDF file is used to
demonstrate different features of pdf2htmlEX. The
file, integral.pdf, contains 4 pages from the book
Differential and Integral II [16, 36], which consists
of Japanese characters, mathematical symbols and
formulas, figures, images and delicate layouts. We
believe that it reflects common elements used in real
use cases.

To start with, we simply execute

$ pdf2htmlEX --fit-width 1024 integral.pdf

which produces a single HTML file integral.html.
The result is shown in Figure 5,7 and we challenge
the readers to find any evidence or clues that the
screenshot shows an HTML file instead of PDF. (Ex-
cept for the title bar of course.)

The --fit-width 1024 option specifies that
each page should be squeezed or stretched to the
width of 1024 pixels. The zoom ratio can be adjusted
with similar options: --fit-height and --zoom.

It is possible to convert only a few pages of a
PDF file, for example

$ pdf2htmlEX -f 2 -l 3 integral.pdf

converts only the second page and the third page.

4.2 Separating resource files

By default everything is combined into one single
HTML file, which is good for creating archives or
performing tests. However, it is not a good practice
when publishing HTML documents online; often we
want resource files (fonts, CSS, JavaScript, images
etc.) to be stored separately in order to reduce size
and improve efficiency.

With the --embed option, we can decide which
types of resource files are embedded and which are
not. For example,

$ pdf2htmlEX --embed fi integral.pdf

7 Mozilla Firefox 24 on Ubuntu 13.04 is used for all the

demonstrations.

Online publishing via pdf2htmlEX

320 TUGboat, Volume 34 (2013), No. 3

Figure 5: An HTML document produced by pdf2htmlEX.

Figure 6: Above: by default all resources are
embedded in the HTML file. Below: with the --embed

fi option, fonts and images are stored into separate
files and linked to the HTML file.

stores all fonts and images in separate files, as shown
in Figure 6. There are also specific options including
--embed-css, --embed-font, --embed-image, etc.

4.3 Splitting pages

With a large PDF file containing hundreds of pages,
often we have to download the whole file even if we
want to take a look at only a few pages inside. On
the other hand, web pages are usually stored into
separate files, such that we just need to download
the pages we request.

Figure 7: Above: by default all pages are embedded
in the HTML file. Below: with --split-pages 1, pages
are stored in separate HTML snippets, which can be
dynamically loaded to the main HTML file.

With the --split-pages option, it is possible
to store PDF pages into separate HTML snippets. In
this way, when the main HTML file is loaded on the
client side, only necessary pages will be dynamically
loaded via Ajax, as shown in Figure 7.

4.4 Image format for backgrounds

For each page, pdf2htmlEX generates a background
image to present all non-text elements. By default

Lu Wang and Wanmin Liu

TUGboat, Volume 34 (2013), No. 3 321

all images are generated in the PNG format, and dif-
ferent formats can be specified via the --bg-format
option. For example,

$ pdf2htmlEX --bg-format jpg integral.pdf

would generate all images in the JPEG format.
Currently pdf2htmlEX supports PNG and JPEG.

There is also preliminary support for SVG. Users
can also convert the images into other formats.

4.5 Customizing the output

integral.html contains a default set of HTML, CSS
and JavaScript, which is designed for average use
cases. All of them can be found in the so-called
data-dir (run pdf2htmlEX -v to see the location),

and they can be tweaked by the users.

HTML template The manifest file determines
how pages should be combined into an HTML docu-
ment. It is a template for the output and users may
add their own HTML snippets into it. A typical use
case is enabling a traffic statistics service on the page.

CSS Quite a number of features of pdf2htmlEX rely
on CSS; the default CSS styles determine the correct
appearance and behavior of the elements. Advanced
users can override existing properties by modifying
the CSS files.

JavaScript A simple UI is implemented in the
default pdf2htmlEX.js file. This also serves as a
demonstration of accessing and manipulating HTML

elements produced by pdf2htmlEX. It can be a good
reference for advanced users who want to implement
their own UIs.

4.6 Secrets of pdf2htmlEX

Here we briefly introduce some internal mechanisms
of pdf2htmlEX for the curious readers.

integral.html consists of two layers: the text
layer and the image layer, as shown in Figures 8 and 9.
pdf2htmlEX parses internal.pdf and extracts ele-
ments from it. The elements are then processed and
put into one of the layers.

Text Unlike in HTML, in PDF text is set in fixed
positions. Text extracted from the PDF is translated
into native HTML text elements, and put into the
same position in the HTML as they were in PDF. In
this way text can be selected and copied by users,
while preserving the layout. Many fixed-position text
elements in HTML make the file very large in size
and very slow to render; to compensate, pdf2htmlEX
tries to recognize and merge text lines according to
their geometric metrics.

Font Font embedding is one of the most important
features of PDF, without which it is nearly impos-

sible to preserve the appearance of PDF in HTML.
No similar feature has been supported in the HTML

standard until recently. Figure 10 shows a few fonts
used in integral.pdf. pdf2htmlEX is able to ex-
tract all the fonts from PDF and convert them into
web fonts via FontForge [18]; converted fonts are
then embedded or referred to in the HTML file. All
font formats supported in PDF are supported by
pdf2htmlEX, and different web font formats can be
specified for output.

Encoding Unlike HTML, PDF uses two sets of en-
codings for text rendering, one for choosing correct
glyphs to display, and the other for meaningful text
that can be selected and copied by users. pdf2htmlEX
is able to combine both sets into one and re-encode
the font accordingly, such that text in HTML is cor-
rect both visually and meaningfully. This is another
essential feature of pdf2htmlEX, like font processing.

Images PDF supports graphical instructions such
as drawing and image embedding. Such elements
are all rendered into images, and then put into the
image layer.

4.7 Future work

Several features are planned in the future versions
of pdf2htmlEX.

Reflowable text Comparing with HTML files di-
rectly converted from TEX, text in HTML files gener-
ated by pdf2htmlEX is generally not reflowable, i.e.
the width of paragraphs cannot be self-adapting to
the size of the viewer. After all, that information is
generally not available in a PDF file, and it is not
easy for pdf2htmlEX to recover it.

On the other hand, reflowable text may be
extracted for specific document types and layouts.
Extracting such information would make it much
easier to further process HTML files generated by
pdf2htmlEX, such as to edit manually, to embed
accessibility information or to convert into other
formats like EPUB.

Preserving semantic information While much
semantic information is lost in PDF as mentioned
above, theoretically it is possible for authors to em-
bed additional information into PDF, such that it
may be further recognized and used by pdf2htmlEX.
This kind of PDF file is called a tagged PDF, which
can also be generated with other tools.

Especially for TEX users, it is possible to mark
text paragraphs such that text will be reflowable in
HTML to some extent; also, mathematical formulas
may be marked such that they will be rendered with
MathJaX in HTML.

Online publishing via pdf2htmlEX

322 TUGboat, Volume 34 (2013), No. 3

Figure 8: The text layer

Figure 9: The image layer

Lu Wang and Wanmin Liu

TUGboat, Volume 34 (2013), No. 3 323

Figure 10: Fonts embedded in the HTML file

Image overlay For each PDF page, pdf2htmlEX
puts all non-text elements into a background image;
this image is then put behind all the text in that
page. However, it is possible that some text is in fact
covered by an image in the PDF, in which case in the
corresponding HTML file produced by pdf2htmlEX,
the text will be visible due to the superimposition.

We are still looking for efficient solutions for
this issue; fortunately, this issue is not common,
especially for TEX users. A workaround is to use the
fallback mode of pdf2htmlEX at the cost of larger
file size.

Image optimization When generating the back-
ground image, pdf2htmlEX calculates the bounding
box of all non-text elements in that page, and ren-
ders everything inside. However, if there are only a
few images which are far away from each other, most
parts in the image are actually blank, which will be
a waste of bandwidth. It is possible to recognize and
split those small images and pack them into one small
image, such that they will be loaded using the CSS

sprite technique. In this way significant bandwidth
and computation can be saved.

4.8 Discussion

In this section we introduced pdf2htmlEX from sev-
eral perspectives. Due to space limitations here,
we cannot present everything—there are nearly 50
different options in total, and there are also tricky
implementations regarding font conversion, text han-
dling and image processing. Interested readers are
encouraged to visit the project web site for detailed
and up-to-date documentation.

5 Conclusion

In this article we tried to categorize and compare
existing methods of publishing TEX or PDF online.
We hope that readers may use this article as a guide
to choose the proper tool for their specific use cases,
or be inspired to create their own implementations.

We also introduced our program pdf2htmlEX, a
PDF to HTML converter and publishing tool which
is accurate and flexible for many different use cases.
We encourage interested users to get involved.

Acknowledgement

We thank Professor Haruhiko Okumura for his help
and great advice. We also thank Professor Makasata
Kaneko, Mr Raphaël Pinson and Mr Jason Lewis for
the nice sample files used in this article.

Online publishing via pdf2htmlEX

324 TUGboat, Volume 34 (2013), No. 3

References

[1] LATEX2HTML. http://www.latex2html.org, 2001.

[2] jsTEX. http://simile.mit.edu/wiki/JsTeX,
2008.

[3] Google Docs Viewer. https://docs.google.com/
viewer, 2009.

[4] jsMath: A Method of Including Mathematics in
Web Pages. http://www.math.union.edu/~dpvc/
jsmath, 2009.

[5] plasTEX. http://plastex.sourceforge.net,
2009.

[6] TEX4ht: LATEX and TEX for Hypertext.
http://tug.org/tex4ht, 2010.

[7] MathJaX: Beautiful math in all browsers.
http://www.mathjax.org, 2011.

[8] Bible de Genève, 1564. https://github.com/

raphink/geneve_1564, 2012.

[9] mathTEX. http://www.forkosh.com/mathtex.

html, 2012.

[10] QuickLATEX—advanced LATEX web rendering
service. http://quicklatex.com, 2012.

[11] SpringerLink. http://link.springer.com/, 2012.

[12] TtH: The TEX to HTML translator. http:

//hutchinson.belmont.ma.us/tth, 2012.

[13] PDF. js. https://github.com/mozilla/pdf.js,
2013.

[14] TEX2page. http://www.ccs.neu.edu/home/dorai/
tex2page/index.html, 2013.

[15] Crocodoc: HTML5 Document Embedding.
https://crocodoc.com, 2013.

[16] Differential and Integral II. Dai-Nippon Tosho
Publisher, 2013.

[17] dvisvgm: A DVI to SVG converter. http:

//dvisvgm.sourceforge.net, 2013.

[18] FontForge: A font editor. http://fontforge.org,
2013.

[19] HEVEA: A LATEX to HTML translator.
http://hevea.inria.fr, 2013.

[20] ImageMagick: Convert, Edit, And Compose
Images. http://www.imagemagick.org, 2013.

[21] Inkscape: An open source scalable vector graphics
editor. http://inkscape.org, 2013.

[22] LATEX2HTML5— interactive math equations and
diagrams. http://latex2html5.com, 2013.

[23] MathPlayer: Display MathML in your browser.
http://www.dessci.com/en/products/

mathplayer, 2013.

[24] LATEXML: A LATEX to XML Converter.
http://dlmf.nist.gov/LaTeXML, 2013.

[25] pdf2htmlEX: Convert PDF to HTML without
losing text or format. https://github.com/

coolwanglu/pdf2htmlex, 2013.

[26] pdf2svg. http://www.cityinthesky.co.uk/

opensource/pdf2svg, 2013.

[27] Poppler. http://poppler.freedesktop.org, 2013.

[28] The Feynman Lectures on Physics.
http://www.feynmanlectures.info, 2013.

[29] Tim Arnold. Getting started with plasTEX.
TUGboat, 30(2):180–182, 2009. http://tug.org/

TUGboat/tb30-2/tb95arnold.pdf.

[30] Karl Berry and David Walden. TEX People: The
TUG interviews project and book. TUGboat,
30(2):196–202, 2009. http://tug.org/TUGboat/

tb30-2/tb95berry-interviews.pdf.

[31] Peter Flynn. LATEX on the Web. TUGboat,
26(1):66–67, 2005. http://tug.org/TUGboat/

tb26-1/flynn.pdf.

[32] Stephen A. Fulling. Keynote: TEX and the Web
in the higher education of the future: Dreams and
difficulties. TUGboat, 20(3):371–372, 1999. http:
//tug.org/TUGboat/tb11-3/tb29fulling.pdf.

[33] Eitan Gurari. TEX4ht: HTML production.
TUGboat, 25(1):39–47, 2004. http://tug.org/

TUGboat/tb25-1/gurari.pdf.

[34] Steven G. Krantz. Handbook of Typography for

Mathematical Sciences. Chapman and Hall/CRC,
2000.

[35] Jason Lewis. How I use LATEX to make a product
catalogue that doesn’t look like a dissertation.
TUGboat, 34(3):263–267, 2013.

[36] Yoshifumi Maeda and Masataka Kaneko.
Making math textbooks and materials with
TEX+KETpic+hyperlink. Presentation at
TUG 2013.

[37] Ross Moore. Presenting mathematics and
languages in Web-pages using LATEX2HTML.
TUGboat, 19(2):195–203, 1998. http://tug.org/

TUGboat/tb19-2/tb59moore.pdf.

[38] The Stacks Project Authors. The Stacks Project.
http://stacks.math.columbia.edu, 2013.

⋄ Lu Wang
Department of Computer Science

and Engineering
The Hong Kong University of

Science and Technology
Hong Kong
coolwanglu (at) gmail dot com

http://coolwanglu.github.io/

⋄ Wanmin Liu
Department of Mathematics
The Hong Kong University of

Science and Technology
Hong Kong
wanminliu (at) gmail dot com

Lu Wang and Wanmin Liu

TUGboat, Volume 34 (2013), No. 3 325

The XΥMTEX system for publishing
interdisciplinary chemistry/mathematics
books

Shinsaku Fujita

1 XΥMTEX Version 5.01

I have recently released XΥMTEX Version 5.01 for
drawing chemical structural formulas, where its zip
file (xymtx501.zip) is available from my personal
homepage (http://xymtex.com/). I have more re-
cently uploaded this version to the CTAN archives.

The XΥMTEX system supports three modes for
drawing:

1. the LATEX-compatible mode, which is based on
the LATEX picture environment along with the
epic package,

2. the PostScript-compatible mode, which is based
on the PSTricks package, and

3. the PDF-compatible mode, which is based on
the pgf/TikZ package.

The three modes can be switched by loading the
xymtex, xymtexps, or xymtexpdf package with the
\usepackage command. If structural formulas of
high quality are necessary, the latter two modes
should be selected. A typical template for switching
the three modes is shown below:

\documentclass{article}

%\usepackage{xymtex} %LaTeX mode

%\usepackage{xymtexps}%PostScript mode

\usepackage{xymtexpdf}%PDF mode

\usepackage{graphicx}

\begin{document}

\cholestane[e]{3B==HO}%XyMTeX command

\end{document}

The XΥMTEX command \cholestane with the
arguments [e] and {3B==HO} generates the chemical
structural formula of cholest-5-en-3β-ol as follows:

HO

H

CH3 H

H H

CH3

H3C

H

Because PDF is now a default standard for ex-
changing digital documents, it is usually highly desir-
able to convert DVI files obtained by the PostScript-
compatible mode or the PDF-compatible mode to

PDF files. To obtain a PDF file of printing quality,
the following routes are typical:

1. PostScript-compatible mode:
As the more classical process, a dvi file produced
by the PostScript-compatible mode is converted
into a ps file. The resulting ps file is in turn
converted into a pdf file.

tex
LATEX
−→ dvi

dvips
−→ ps

distiller
−→ pdf

2. PDF-compatible mode:

• Because PDF technology has become pre-
dominant over the PostScript technology,
a dvi file produced by the PDF-compatible
mode is directly converted into a pdf file
by using the dvipdfmx converter.

tex
LATEX
−→ dvi

dvipdfmx
−→ pdf

• The PDF-compatible mode can take an
optional argument pdftex as follows:

\usepackage[pdftex]{xymtexpdf}

Thereby, a tex file is directly converted into
a pdf file by using the pdflatex engine:

tex
pdflatex
−→ pdf

It should be emphasized that common code writ-
ten for the XΥMTEX system can be used in any of the
routes itemized above.

2 Techniques for drawing complicated
structural formulas

XΥMTEX commands are equipped with facilities for
drawing complex structures, i.e., the substitution
technique for attaching substituents, the addition
technique for drawing fused rings, and the replace-
ment technique for drawing spiro rings. The detailed
documentation of the XΥMTEX system [1] is available
from my homepage located at http://xymtex.com/.

2.1 The substitution technique

The XΥMTEX system supports the substitution tech-
nique, which is based on (yl)-functions for linking
complicated substituents. An intervening divalent
unit can be inserted by using a command \ryl or
\lyl.

For example, the structural formula of g-stro-
phanthin (ouabain) as a poisonous cardiac glycoside
is drawn by the code [1]:

\begin{XyMcompd}(2000,1850)(-550,-300){}{}

\steroid{1SB==\lmoiety{HO};5B==OH;8B==H;%

9A==H;{11}A==HO;{10}B==\llap{HO}CH$_{2}$;%

{14}B==OH;{13}B==\lmoiety{H$_{3}$C};%

{17}B==\fiveheterov[e]{3==O}%

{4D==O;1==(yl)};3B==\lyl(3==O){8==%

The XΥMTEX system for publishing interdisciplinary chemistry/mathematics books

326 TUGboat, Volume 34 (2013), No. 3

\pyranosew{1==(yl);1Sa==H;2Sb==H;2Sa==OH;%

3Sb==H;3Sa==OH;4Sb==HO;%

4Sa==H;5Sb==H;5Sa==CH$_{3}$}}}

\end{XyMcompd}

In this code, a steroid skeleton (due to the \steroid
command) is substituted by a five-membered hetero-
cycle (due to a (yl)-function in the \fiveheterov

command) and by a pyranose moiety (due to a (yl)-
function in the \pyranosew command and a further
use of the \lyl command). The XyMcompd environ-
ment secures a drawing area for the structure to be
drawn. This code typesets the following structural
formula:

HO

O
O

H

H

OH

H

OH

HO

H

H

CH3

HO

O
O

OH

HOCH2 H

H OH

H3C

2.2 The addition technique

The XΥMTEX system supports the addition technique,
where the attachment mechanism permits a given
fusing unit to be attached onto an edge of a parent
skeleton.

For example, furo[40,30,20:4,5,6]androstane as
a fused steroid is drawn by the addition technique,
where the \fivefusevi command for drawing a 5-
membered fusing unit is declared in the bond list
of the \steroid command for drawing a steroid
skeleton:

\steroid

[{c{\fivefusevi[ad]{3==O}{}{e}[a]}}]

{{10}B==\null;{13}B==\null}

O

2.3 The replacement technique

The XΥMTEX system supports the replacement tech-
nique, where a spiro unit is drawn on the basis of
a (yl)-function and attached to a vertex of a parent
skeleton.

For example, spiro[cyclohexane-1,1′-indene] is
drawn by the replacement technique, where a six-
membered spiro unit is produced by declaring a (yl)-
function in the \cyclohexanev command:

\begin{XyMcompd}(600,800)(250,250){}{}

\nonaheterovi[bdfh]%

{1s==\cyclohexanev{4==(yl)}}{}

\end{XyMcompd}

3 Interdisciplinary chemistry/mathematics
books

The development of the XΥMTEX system largely re-
flects the personal history of my research aiming at
the integration of chemistry and mathematics, e.g.,
the concept of imaginary transition structures (ITSs)
[2], the USCI (unit-subduced-cycle-index) approach
[3, 4], the concept of stereoisograms [5, 6], the proli-
gand method [7], and the concept of mandalas [8].

3.1 Manual drawing without using the
XΥMTEX system

In 1991, I published an interdisciplinary monograph
on the combinatorial enumeration of chemical com-
pounds as three-dimensional structures (the USCI

approach) [9]. This book contains many structural
formulas of organic compounds along with mathemat-
ical equations because of its interdisciplinary nature.
Such mathematical equations were successfully type-
set by means of the original programs of the (LA)TEX
system. However, the structural formulas contained
in this book were drawn manually and pasted on
the camera-ready manuscript, because (LA)TEX at
that time had no reliable utility for drawing struc-
tural formulas, and commercially available systems
such as ChemDraw were too expensive to be used
for personal purposes.

The concept of imaginary transition structures
(ITSs), which serve as computer-oriented representa-
tions of organic reactions, was developed mainly dur-
ing the 1980s. In 2001, rather belatedly, I published
a monograph on the concept of ITSs [10]. Although
such ITSs can be regarded as extended structural
formulas with colored bonds (par-bonds, out-bonds,
and in-bonds), the XΥMTEX system at that time did
not support utilities of coloring bonds. It follows that
the ITSs contained in this book were drawn manually
and pasted on the camera-ready manuscript.

Shinsaku Fujita

TUGboat, Volume 34 (2013), No. 3 327

3.2 Drawing by the XΥMTEX System

The XΥMTEX system was developed and released
in 1993 as a LATEX tool for drawing structural for-
mulas. The manual was published as a book in
1997 [11]. However, it was not until version 4.00
that the XΥMTEX system supported the PostScript-
compatible mode for drawing structural formulas for
high-quality printing [12].

The PostScript-compatible mode was applied
to prepare a book for surveying organic compounds
for color photography [13]. Along with chemical
or mathematical equations, this book contains 480
figures, each of which consists of several structural
formulas drawn by the XΥMTEX system.

The book published in 2007 deals with a new con-
cept, mandalas, which I have proposed as a basis for
rationalizing enumeration of three-dimensional struc-
tures [14]. This book contains many mathematical
equations as well as structural formulas because of its
interdisciplinary nature; the mathematical equations
were again typeset by the original (LA)TEX utilities,
but this time the structural formulas were drawn by
the XΥMTEX system.

The book published in 2013 is concerned with
the proligand method, in which I have proposed to
enumerate three-dimensional structures [15]. This
book indicates that the proligand method for enu-
merating three-dimensional structures can be degen-
erated into Pólya’s method for enumerating graphs.

A sample page shown in Fig. 1 (page 462 of [15])
contains structural formulas drawn by the XΥMTEX
system, while another sample page shown in Fig. 2
(page 463 of [15]) contains mathematical equations
typeset by the original utilities of the LATEX system.

These sample pages from [15] demonstrate that
the combination of the XΥMTEX system with the
LATEX system is an efficient tool for publishing inter-
disciplinary chemistry/mathematics books.

Moreover, the on-line manual [1] of the XΥMTEX
system itself provides us with an illustrative example
for publishing a book which contains both chemical
structural formulas and mathematical equations. For
example, several structural formulas drawn by the
XΥMTEX system are aligned in an align environment
of the amsmath package bundled with the LATEX
system, so as to generate a reaction scheme, as shown
in Fig. 3 (page 647 of [1]).

Because XΥMTEX version 5.01 supports utilities
for coloring structural formulas, the book published
in 2001 would be rewritten with maintaining bond
colors (par-bonds, out-bonds, and in-bonds). This
has been briefly discussed in Section 39.4 of the on-
line manual [1].

Figure 1: Sample page containing structural formulas
drawn by the XΥMTEX system (page 462 of [15]).

Figure 2: Sample page containing mathematical
equations (page 463 of [15]), which are typeset by the
original utilities of the LATEX system.

The XΥMTEX system for publishing interdisciplinary chemistry/mathematics books

328 TUGboat, Volume 34 (2013), No. 3

36.5. Structural Formulas in Display Chem Environments 647

NH
2

CH
3

N(C
2
H

5
)
2

36-42

2Ag+

NH

CH
3

+N(C
2
H

5
)
2

36-43

(36.6)

N
N

O

N=N OCH
3

R

36-44

36-43

−H+

N

N

N N

N H

OCH
3

CH
3

N(C
2
H

5
)
2

R

O

36-45

N
N

O

N

CH
3

N(C
2
H

5
)
2

R

36-46

+

OCH
3

36-47

+ N2 (36.7)

Anisole (36-47) is detected as a byproduct. The resulting azomethine dye (36-46) is a magenta-colored

dye for color photography. �

36.5 Structural Formulas in Display Chem Environments

36.5.1 Reaction Schemes in the ChemEquation-like Environments

If the molecular formula CH3OH written above the reaction arrow in Eq. 36.1 is desired to be drawn in the

display line, it is convenient to use the ChemEquation environment.

Example 36.17. As found in this example, the code CH_{3}OH can be directly declared in place of

\mbox{CH$_{3}$OH} or \mathrm{CH}_{3}\mathrm{OH}, which would be required in the equation

environment.

\begin{ChemEquation}

\resetamsmathlabel %reset \label from amsmath to LaTeX

\begin{XyMcompd}(400,750)(220,200){cpd:BPHOH2}{}

\bzdrv{1==OH}

\end{XyMcompd}

+ CH_{3}OH

\reactrarrow[10\unitlength]{-20\unitlength}{500\unitlength}

{HCl}{\ChemForm{-H_{2}O}}

\begin{XyMcompd}(400,750)(220,200){cpd:PHOME2}{}

\bzdrv{1==\ChemForm{OCH_{3}}}

\end{XyMcompd}

\label{eq:EQ2}

\end{ChemEquation}

Figure 3: Sample page of the XΥMTEX manual [1]
(page 647), which contains a reaction scheme drawn
by the XΥMTEX system and aligned in an align

environment of the amsmath package.

4 Conclusion

As clarified by the publication of the interdisciplinary
chemistry/mathematics books described above, the
XΥMTEX system coupled with the LATEX system has
been proven to be a reliable tool for publishing books
of high printing quality which contain structural
formulas along with mathematical equations.

References

[1] S. Fujita, “XΥMTEX: Reliable Tool for
Drawing Chemical Structural Formulas,”
Shonan Institute of Chemoinformatics and
Mathematical Chemistry, Kanagawa (2013),
http://xymtex.com/fujitas3/xymtex/

indexe.html.

[2] S. Fujita, J. Chem. Inf. Comput. Sci., 26,
205–212 (1986).

[3] S. Fujita, Theor. Chim. Acta, 76, 247–268
(1989).

[4] S. Fujita, J. Am. Chem. Soc., 112, 3390–3397
(1990).

[5] S. Fujita, J. Org. Chem., 69, 3158–3165
(2004).

[6] S. Fujita, Tetrahedron, 60, 11629–11638
(2004).

[7] S. Fujita, Theor. Chem. Acc., 113, 73–79
(2005).

[8] S. Fujita, J. Math. Chem., 42, 481–534
(2007).

[9] S. Fujita, “Symmetry and Combinatorial
Enumeration in Chemistry,” Springer-Verlag,
Berlin-Heidelberg (1991).

[10] S. Fujita, “Computer-Oriented Representation
of Organic Reactions,” Yoshioka-Shoten,
Kyoto (2001).

[11] S. Fujita, “XΥMTEX—Typesetting Chemical
Structural Formulas,” Addison-Wesley Japan,
Tokyo (1997).

[12] S. Fujita, J. Comput. Chem. Jpn., 4, 69–78
(2005).

[13] S. Fujita, “Organic Chemistry of
Photography,” Springer-Verlag,
Berlin-Heidelberg (2004).

[14] S. Fujita, “Diagrammatical Approach to
Molecular Symmetry and Enumeration of
Stereoisomers,” University of Kragujevac,
Faculty of Science, Kragujevac (2007).

[15] S. Fujita, “Combinatorial Enumeration
of Graphs, Three-Dimensional Structures,
and Chemical Compounds,” University of
Kragujevac, Faculty of Science, Kragujevac
(2013).

⋄ Shinsaku Fujita
Shonan Institute of Chemoinformatics

and Mathematical Chemistry
http://xymtex.com

Shinsaku Fujita

TUGboat, Volume 34 (2013), No. 3 329

TANSU—A workflow for cabinet layout

Pavneet Arora

Abstract

A workflow using ConTEXt and Asymptote to design
cabinet layouts and evaluate the impact of the design
to costing is discussed. This work builds on the
YAWN workflow which suggested the use of TEX as
the “View” in a Model-View-Controller framework.

1 Introduction

At the TUG 2012 conference and in TUGboat 33:2
(2012), the YAWN workflow [1] was presented. It em-
phasized considering TEX as the “View” in a Model-
View-Controller framework.

YAWN, however, focused on the steps leading up
to the final document production. It concerned itself
more with the Model and the Controller, the former
utilizing YAML [2] and the latter utilizing Ruby, than
with the layout of the resulting document, which was
a simple text document akin to what might have
come off a line printer.

This article extends the work of YAWN to take
on the problem of cabinet layout, with a particular
emphasis on the presentation of the final document.
It does so while continuing to use the elements of
YAWN as a design pattern.

It is natural for a client to seek alternative design
layouts for storage units in areas such as kitchens,
offices, and libraries even before awarding a project
to a specific vendor. The layout is invaluable in
visualising how the space might be used, and what
options can fit in the allotted space. An adjunct to
the layout is, of course, the question of cost. How
much will a change in the layout cost?

The challenge for the prospective vendor, on the
other hand, is to offer up sufficient detail to the client
without over-committing resources to this exercise,
since this is a fixed expense which may or may not
be recouped later on. Shortening the time required
to generate these layouts and associated costs affords
a vendor two advantages: first, an opportunity to
explore layout options alongside a customer, and
second, a way to monitor the implications of the
layout changes to the production cost, thus ensuring
the viability of their own quotation.

Even when a layout is decided upon, it is use-
ful to evaluate the offerings from different vendors
against the design to compare costs. Again, as advo-
cated in YAWN, decoupling the configuration from
the catalogue of components from different manufac-
turers allows rapid estimating.

2 TANSU

In homage of the location of TUG 2013, Tokyo, the
cabinet layout workflow is named TANSU—tansu
(タンス) being the Japanese word for the traditional
storage unit.

TANSU—the acronym—is derived from the
following:

• TEX and
• Asymptote driven
• Nomenclature for
• Storage
• Unit layout.

3 Specification

The specification of the layout is a straightforward
YAML file. Here is an example:

:projectID: 1923IMPHOT

:projectAddress: |

Imperial Hotel Apartments

Frank Lloyd Wright Edition (1923)

Tokyo, Japan

:clientName: Okura Kihachiro

:cabinetSpec:

:manufacturer: Fabritec

:series: EuroStyle

:walls:

-

:wall:

:name: East

:baseCabinets:

- HD30844D

- B2D24

- S24

- BSD30

- HD1584-R

:wallCabinets:

- HD30844D

- W1230

- W2430

- W1230-R

- W3015HZ

- HD1584-R

The project in question is the fictitious Impe-
rial Hotel Apartments. Baron Kihachiro, one of the
investors in the Frank Lloyd Wright-designed Tokyo
Imperial Hotel of 1923, has decided to develop a set
of apartments along the same lines. However, there
is no budget for the custom cabinets that Wright
would no doubt insist upon, so we have been ap-
proached to come up with design options and their
associated costs.

Each wall is given as an array of base cabinets
(cabinets affixed to the ground) and wall cabinets

TANSU—A workflow for cabinet layout

330 TUGboat, Volume 34 (2013), No. 3

(cabinets mounted on a wall). The hybrid, tall cabi-
nets which extend from floor to top, e.g., HD30844D
and B1584-R, need to be listed in both arrays.

The notation assigned to each cabinet is taken
here from the catalogue of the specified manufacturer,
Fabritec, but it is generic enough to be applied to
the offerings of other manufacturers. So, for instance,
B2D24 indicates a 2-drawer cabinet that is nominally
24 inches wide, a common cabinet option.

In building catalogues for different manufactur-
ers or even different cabinet series from the same
manufacturer, the same notation, once decided upon,
can be applied across all the catalogues.

Often, a single cabinet model number is used
without an indication of door swing, which is switch-
able during the field installation. However, for the
purpose of visualisation a suffix in the specification
allows the layout to indicate intent as in W1230-R for
a right-hinged door; the default door swing is taken
to be left-hinged, as in the cabinet W1230 where no
suffix is given.

4 Catalogue

A catalogue is similarly constructed using YAML, a
sample cabinet from which is given here:

:cabinets:

:subcategory: Cabinets

:items:

-

:model: BD24

:width: 24"

:height: 30 1/4"

:depth: 23 5/8"

:doors:

-

-

:swing: :drawer

:width: 24"

:height: 4"

-

-

:swing: :left

:width: 12"

:height: 26 1/4"

-

:swing: :right

:width: 12"

:height: 26 1/4"

:desc: 1-drawer 24"W base cabinet

:price: 362.27

One thing that is immediately apparent is a need
to deal effectively with customary units of length,
i.e., feet-inches-fractional inches. Fortunately, there
exists a succinct—and one I would consider beautiful
and even poetic because of it— regular expression

that does just that (with some slight modification
for use in Ruby) [4] returning the matched parts:

re=%r{(?:(?:(?<Feet>\d+)[]*(?:’|ft)){0,1}[]

(?<Inches>\d(?![\/\w])){0,1}(?:[,\-]){0,1}

(?<Fraction>(?<FracNum>\d*)\/(?<FracDem>\d*))

{0,1}(?<Decimal>\.\d*){0,1}(?:\x22| in))|

(?:(?<Feet>\d+)[]*(?:’|ft)[]*){1}}

The constituent parts of each cabinet are spec-
ified in the :doors: hash: they consist of rows of
drawers and doors represented as a two-dimensional
array. In TEX terms, they may be thought of as cells
in a table, some of which span columns (only). So
in this case, the first row from the top is a single
drawer 24-inches wide by 4-inches high. The next
row consists of two doors hinged to the outside frame
swinging out from the middle.

5 Output

The Model consists of the aforementioned specifi-

cation and catalogue, while the controller is imple-
mented in Ruby to analyse the two.

TANSU builds up a wall layout by retrieving the
catalogue entry for each cabinet in the specification,
then mapping the cabinet dimensions in the coordi-
nate space of Asymptote [3]. The native coordinate
system for Asymptote is the traditional mathemati-
cal one (the difference in apparent label size is due
to 3D perspective):

However, for cabinet layout the natural coordi-
nate system is the following:

Once the cabinet box is drawn, doors are over-
laid and their swings indicated.

Pavneet Arora

TUGboat, Volume 34 (2013), No. 3 331

What then is the output? Well, a distinct ad-
vantage of using Asymptote is that not only can it
handle three-dimensional drawing with aplomb and
produce EPS output from the drawing instructions,
but it also has a built-in OpenGL renderer allowing
one to perform transformations interactively, such as
rotations and changes to the viewport. This makes it
simple to explore the generated layout from different
angles. Here is the rendered layout for the above
specification:

Client Name ID: Okura Kihachiro

Project ID: 1923IMPHOT

Project Address: Imperial Hotel Apartments

Frank Lloyd Wright Edition (1923)

Tokyo, Japan

The associated costs for this layout are typeset
using ConTEXt’s Natural Tables mechanism [5] and
shown in the report as follows:

Base Cabinets

Model No. Description Price

HD30844D 30" x 84" tall cabinet with 4 draw-

ers

$1,192.89

B2D24 2-pot drawer 24"W base cabinet $362.98

S24 24"W base cabinet opening $250.64

BSD30 24"W sink cabinet with drawer face $344.77

HD1584 15" x 84" tall cabinet $501.75

Sub-total $2,653.03

Wall Cabinets

Model No. Description Price

W1230 12" wall cabinet $136.13

W2430 24" wall cabinet with glass door $254.80

W1230 12" wall cabinet $136.13

W3015HZ 24" x 15" bridge cabinet, top hinge $176.93

Sub-total $703.99

$3,357.02

TANSU demonstrates that the ideas described
in YAWN, namely of considering TEX as the View in
an M-V-C framework and representing the Model in
YAML, offers an extensible methodology with wide-
ranging applications. In a completely different do-
main from that used to initially demonstrate YAWN

the same workflow has been used with success.

References

[1] Pavneet Arora. YAWN—A TEX-enabled
worflow for project estimation.
http://tug.org/TUGboat/tb33-2/

tb104arora.pdf, 2012.

[2] Oren Ben-Kiki, Clark Evans, and Ingy. YAML

Ain’t Markup Language (YAML) version 1.2.
http://www.yaml.org/spec, October 2009.

[3] John Bowman et al. Asymptote: The vector
graphics language. http://asymptote.

sourceforge.net.

[4] Normand Frechette. Feet-inch to Decimal.
http://regexlib.com/REDetails.aspx?

regexp_id=2127.

[5] Hans Hagen et al. ConTEXt natural tables.
http://wiki.contextgarden.net/TABLE.

⋄ Pavneet Arora

pavneet_arora (at)

bespokespaces dot com

http://blog.bansisworld.org

TANSU—A workflow for cabinet layout

332 TUGboat, Volume 34 (2013), No. 3

Bibulous—A drop-in BIBTEX replacement
based on style templates

Nathan Hagen

Abstract

BibTEX has long been an essential tool for TEX and
LATEX users, but the long list of re-implementation
efforts attests to unfulfilled needs. The Bibulous
project attempts to fulfill many of these needs with
a unique approach based on style templates, provid-
ing a flexibility that is unmatched by existing tools.
We illustrate its capability with examples of cus-
tom bibliography styles, multilingual bibliographies,
glossaries, and more.

1 Introduction

For beginning LATEX/BibTEX users, the difficulty of
building and customizing bibliography style files can
come as a shock. BibTEX’s style files are written in
an old-style stack-based language that requires sig-
nificant effort to learn, edit, and write. It is natural,
however, to feel that since bibliographies are highly
structured one should be able to specify them simply
and not, as one commonly finds with BibTEX’s bib-
liography styles, in files with over a thousand lines
of difficult code. The Bibulous project shows that
with style templates one can indeed specify complete
bibliography styles in a matter of only a few lines of
text, using a format understandable even for novices.
Style templates provide a flexibility unmatched by al-
ternative approaches to creating bibliographies, and
have important advantages over even the more mod-
ern approach taken by Biblatex [1] and Biber [2, 3].

In addition to style templates, Bibulous also
implements many of the modern enhancements to
BibTEX, such as the ability to work smoothly with
languages other than English, better support for non-
standard bibliography structures and heterogeneous
databases, and increased formatting options, among
others. Moreover, one can use the same framework
to generate any of a bibliography, glossary, nomen-
clature, list of symbols, and/or more, by specifying
a different style template for each case.

2 Template example

A short example illustrates how templates work. For
a simple bibliography consisting of only journal arti-
cles and books, a complete style file may consist of
just a few lines, as shown in Figure 1. Angle brack-
ets indicate a template variable, which can be (a) a
variable (e.g. <year>) that maps to a field (e.g. year
= {·}) in the database entry; (b) a “special” variable
that is generated by the program, e.g. <au> is gen-

erated by formatting the database entry’s author =

{·} field into a list of names; or (c) a variable that
is defined by the user within the template’s variable
definitions. Each variable represents a string to be
inserted into the template at that point, so that for
a database entry with year = {1988}, a template
containing (<year>) is replaced with (1988). The
same procedure follows for each variable found within
the template definition.

Any variable that is not wrapped within square
brackets is considered a required variable: if this
field is missing from the bibliography database entry,
then a warning message is used in its place, with the
default warning message being simply ???.

The [·|·] bracket notation behaves like an if

... elseif... statement: before performing any
substitutions of variables into the template, the con-
tents of the first block— located inside square brack-
ets [·], or between the open square bracket and the
first vertical bar [·|—are checked to see whether all
variables within it are defined within the entry. If
any variables inside the block are undefined (missing
from the database entry), then the second block (be-
tween the vertical bar and the close bracket |·], is
evaluated. And so on. This provides a flexible way
of modifying the inputs to the formatted reference
depending on which fields exist within a given data-
base entry. Thus, while some users may prefer to
define a given field as institution, and others may
prefer organization, a structure such as

[<institution>|<organization>]

provides a simple means of accommodating both.
Finally, a structure that ends with an empty

block (|] rather than]) means that even though
the individual blocks are optional, at least one of
the blocks is required to be defined within the data-
base entry. Thus, for example, the required variable
<note> is equivalent to [<note>|].

To see how Bibulous uses a template to generate
.bbl file entries, we can walk through the definitions
given in Fig. 1. First, from the .aux file, Bibulous
obtains a list of citation keys that map to database
entries. Using the sortkey template, it generates a
key for each reference, sorts the keys into the desired
order, and then walks through each corresponding
database entry, using an appropriate template to for-
mat each reference in turn. In the case of the example
shown, the sorting key is simply the numbering in
which the entry was cited (<citenum>). When Bibu-
lous locates an entry in the database, it reads the
entrytype (this particular style file assumes that only
entrytypes article and book exist in the citation
list) to locate which template definition to use. If

Nathan Hagen

TUGboat, Volume 34 (2013), No. 3 333

short.bst
TEMPLATES:

article = <au>, \enquote{<title>,} \textit{<journal>} \textbf{<volume>}: ...

[<startpage>--<endpage>|<startpage>|<eid>|] (<year>).[<note>]

book = [<au>|<ed>|], \textit{<title>} (<publisher>, <year>)...

[, pp.~<startpage>--<endpage>].[<note>]

SPECIAL-TEMPLATES:

sortkey = <citenum>

citelabel = <citenum>

Figure 1: A style template file example. An ellipsis (...) at the end of a line
indicates a line continuation. All entries in the “Special Templates” section of the
file are optional, and are used to replace default settings.

the current database entry is an article entrytype,
Bibulous will find the list of variables in the article
template definition and begin replacing them one by
one with their corresponding fields. The <au> vari-
able represents a formatted string of author names
(formatted from the author field according to default
options, in this case), followed by a comma and a
space. If no author field is found in the bibliography
entry, then it inserts “???” there to indicate a miss-
ing required field. Next it locates the title field and
inserts it, with a comma, inside \enquote{·} format-
ting instructions. Next follows an italicized journal
name, and a boldface volume number. All of these
so far are designated as required fields. Next, if the
pages field is found in the entry’s database, Bibulous
will parse the start and end page numbers (assum-
ing that the pages field uses dash-delimited page
identifiers) and insert them here using an en-dash
separator. If the pages field contains only one page,
then the endpage variable will be undefined, and
Bibulous will attempt to use the next block, which
uses only the startpage. If the pages field is miss-
ing entirely from the database entry, then Bibulous
checks to see if the eid (electronic identifier) field
is defined, and if so uses it instead. However, if the
pages and eid fields are both undefined, then the
code inserts “???”. Finally, the template instructs
putting the year inside parentheses, and if a note

field is defined in the entry, then it is added onto the
end (following the period). If note is not defined,
then Bibulous adds nothing.

The book template in the example follows a
similar procedure, but has different required and
optional fields. The list of names at the beginning
of the reference, for example, can be either a list of
authors or a list of editors (with preference given to
authors, if defined in the entry). The book template
also requires a publisher field to be inserted inside
the parentheses with the publication year.

The sortkey “special template” allows users
flexibility in defining how they want their citations

sorted. The default is simply to sort by numeri-
cal order (sortkey = <citenum>), but one can also
choose to sort by author name, then title, then year,
as in

sortkey = <authorlist.0.last>...

<authorlist.0.first>...

[<title>|<booktitle>]<year>

or, if a user wants the entry to define a special sort
for any given entry, then they can use any fields
within the entry that they wish. For example, to
have an author sorted under a different name than
is used in the reference, one can add a sortname

key to the database entry and redefine the sortkey
template as

sortkey = [<sortname>|<authorlist.0.last>...

<authorlist.0.first>|][<title>|...

<booktitle>]<year>

And likewise for any other field such as sorttitle
or sortyear for modifying citation sorting.

The final item that Bibulous needs to specify
for the reference is its item label— the label that
goes at the front of the reference, and is often the
same as the sortkey. This label is generated using
the citelabel template. For scientific journal arti-
cles the most common choice for this is the citation
number (e.g. citelabel = <citenum>). For other
areas of study, the reference labels may, for example,
take the form of the first author’s last name, then
first name, then year, as in the following example:

citelabel = \textbf{<authorlist.0.last>, ...

<authorlist.0.first> (<year>).}

This can produce a reference list like the following:

Schmader, Toni (2002). Gender identification
moderates stereotype threat effects on
women’s math performance. Journal of

Experimental Social Psychology, 38, 194–201.

Steele, Claude (1997). A threat in the air: How
stereotypes shape intellectual identity and
performance. American Psychologist, 52,
613–629.

Bibulous—A drop-in BIBTEX replacement based on style templates

334 TUGboat, Volume 34 (2013), No. 3

ieee.bst
TEMPLATES:

article = <au>. \enquote{[\href{<url>}{<title>}|\href{<doi>}{<title>}|<title>|],} ...

\textit{<journal>} <volume>(<number>): [<startpage>--<endpage>|...

<startpage>|<eid>|] (<year>).

inproceedings = <au>, \enquote{[\href{<url>}{<title>}|\href{<doi>}{<title>}|...

<title>|],} in \textit{<booktitle>}[, <ed.if_singular(editorlist, edmsg1, ...

edmsg2)>][, in <series>][, vol.~<volume>][, pp.~<startpage>--<endpage>|, ...

<eid>] (<year>).

SPECIAL-TEMPLATES:

authorlist = <author.to_namelist()>

editorlist = <editor.to_namelist()>

authorname.n = [<authorlist.n.first.initial()>.][<authorlist.n.middle.initial()>.]...

[<authorlist.n.prefix>]<authorlist.n.last>[, <authorlist.n.suffix>]

au = <authorname.0>, ...,{ and }<authorname.9>

editorname.n = [<editorlist.n.first.initial()>.][<editorlist.n.middle.initial()>.]...

[<editorlist.n.prefix>]<editorlist.n.last>[, <editorlist.n.suffix>]

ed = <editorname.0>, ...,{ and }<editorname.3>

OPTIONS:

etal_message = , \textit{et~al.}

edmsg1 = , ed.

edmsg2 = , eds

Figure 2: Two example entrytype templates for an IEEE format bibliography. For
the hyperlinked title, the template allows use of either a url or a doi field in the
database entry.

Figure 2 shows how Bibulous can be used to
develop custom bibliography styles, using an example
that incorporates hyperlinks into the document title
of each reference. In going from the style used in
Fig. 1 to the new article style in Fig. 2, we have to
convert from using italics for titles to using quotation
marks around a hyperlinked text (if a url or doi

field is provided in the entry), from using boldface to
standard typeface for the volume, and adding an issue
number in parentheses. The inproceedings style
uses the same format for hyperlinked titles, and adds
the ability to format fields such as booktitle and
series, and provides a separate list of editors. For
BibTEX, modifying an existing style file to achieve
these changes would be a daunting task for a casual
user. Biblatex has succeeded in making this much
easier, but with templates it can be easier still.

The other major change in going from Fig. 1 to
Fig. 2 is in the special template definitions, where
we can find several new constructions. The first is
a “dot” operator placed after a variable inside the
angle brackets. This can be used to apply an in-
dex—as in the case of a list or a dictionary type
of variable—or an operator, as in .to namelist()

or .initial(). An index can be explicit, as in
<authorlist.0>, which indicates taking the zeroth
element of the list-type variable authorlist, or im-

plicit, as in editorname.n. For an implicit index,
the construction <editorname.0> used in conjunc-

tion with the variable definition for editorname.n
indicates that all instances of the implicit index n

in the template should be replaced with the explicit
index 0. Finally, an ellipsis occurring in the mid-

dle of a string indicates an implicit loop. Thus, the
definition

<editorname.0>, ...,{ and }<editorname.3>

is equivalent to <editorname.0> when there is only
one editor in the database entry, or equivalent to

<editorname.0> and <editorname.1>

when there are only two. For three editors, the
implicit loop expands the template to

<editorname.0>, <editorname.1>, and

<editorname.2>

and for four,

<editorname.0>, <editorname.1>,

<editorname.2>, and <editorname.3>

Since the template does not specify the format for
more than four editor names, the code builds an
et al. construction when there more than the specified
number of names, so that the result becomes

<editorname.0>, <editorname.1>,

<editorname.2>, <editorname.3>,

\textit{et~al.}

where the form of the string “, et al.” is specified
by an etal message keyword option.

The implicit index and implicit loop features
are only necessary when one needs to customize the

Nathan Hagen

TUGboat, Volume 34 (2013), No. 3 335

moviedb.bib
@movie{key,

title = {...},

director = {...},

year = {...},

rating = {...}

}

moviedb.tex
%% In preamble:

\usepackage{expl3}

\ExplSyntaxOn

\cs_new_eq:NN \Repeat \prg_replicate:nn

\ExplSyntaxOff

\newcommand{\nstars}[1]{\parbox{3em}{%

\Repeat{#1}{\star}}}

moviedb.bst
TEMPLATES:

movie = \nstars{<rating>} \color{blue}{...

<title>}\color{black}, <director> (\year>).

SPECIAL-TEMPLATES:

editor = <director>

editorlist = <editor.to_namelist()>

sortkey = <-year><title><editorlist.0.last>

citelabel = None

OPTIONS:

bibitemsep = 0pt

1. ⋆⋆⋆⋆⋆ The Inheritance, Per Fly (2003).

2. ⋆⋆⋆⋆ The Celebration, Thomas Vinterberg (1998).

3. ⋆ The Kingdom, Lars von Trier (1994).

Figure 3: An example illustrating the use of Bibulous’ style templates for a movie
database. The citation sorting order is defined to be by year in descending order
(the minus sign within the variable name inverts the direction of the sort), followed
by title and then director’s last name. Note that the editor = <director> special
template is necessary in order to map the director field to the editor field.

namelist formats with more flexibility than that al-
lowed by Bibulous’ standard keyword arguments.
Thus, for most styles these structures are not neces-
sary, and one can use the default namelist format,
modified through keyword arguments.

The .if singular(arg1, arg2, arg3) opera-
tor is unique in that it accepts arguments. This
allows it to insert arg2 if arg1 is singular, or arg3
if plural. Here, the operator is given the argument
<editorlist>, which has one entry if the editor

field in the database entry contains only one name.
In this case it returns the argument edmsg1, defined
in the options list as “, ed.”. If more than one
editor name is found in the database entry, then the
operator returns the argument edmsg2, defined in
the options list as “, eds”.

3 Unorthodox bibliography styles

Templates allow easy customization of how BibTEX-
format database entries are displayed. Fig. 3 shows
an example .bib database structure, and a corre-
sponding template file, for the display of a movie
database. This simple example defines a LATEX com-
mand \nstars{·} for printing N stars as a display
of the rating variable, shows the use of color com-
mands, and works with new database fields. Thus,
any LATEX markup the user wishes to incorporate
into a bibliography, or into any database formatter,
can be implemented in Bibulous’ style templates.

Another important feature of style templates is
that they are language agnostic. For example, if we
replace

TEMPLATES:

article = <au>, \enquote{...

book = [<au>|<ed>...

from the style template with

学術論文 = <au>, \enquote{...

本 = [<au>|<ed>...

(学術論文 and本 are the Japanese words for “journal
article” and “book”), then we can use the Japanese
forms for every entry in the bibliography database,
so that entries in the .bib file would have the form

@学術論文{entrykey, ...

@本{entrykey, ...

Since this shows only the entry types and not the
database fields in a non-English language, this still
shows an English-language-centric implementation,
but here is a fully Japanese style template:

本 = <著者名>, <題名> (<年>).

with a corresponding example database file entry

@本{漱石1906,

題名 = {草枕},

著者名 = {夏目 漱石},

年 = 1906,}

The important feature here is that Bibulous
does not need to know anything about the languages
used in the database, the template, or the .tex

file. It only needs to be able to convert the symbols
to Unicode so that it can match any symbol from
one file to that in another. And since Bibulous’
internals are written entirely in UTF-8 compliant
code, multilingualism and localization come easily.
Bibulous is even flexible enough to allow the use of

Bibulous—A drop-in BIBTEX replacement based on style templates

336 TUGboat, Volume 34 (2013), No. 3

TEMPLATES:

collection = [<for_japanese_audience><author_ja>, <title_ja>[, <volume>巻] (...

<publisher_ja> <year>).|<for_english_audience><author_en>, <title_ja> ...

(<title_romaji>) {\makeopenbracket}<title_en>{\makeclosebracket}...

[, vol.~<volume>] (<publisher>, <address>, <year>).|<for_english_audience>...

<author>, <title>[, vol.~<volume>] (<publisher>, <address>, <year>)|]

OPTIONS:

document_language = Japanese ## whether the document is for a Japanese audience

VARIABLES:

for_japanese_audience = ’{}’ if (options[’document_language’] == ’Japanese’) else None

for_english_audience = ’{}’ if (options[’document_language’] == ’English’) else None

Figure 4: Template file for the multi-language bibliography example.

mathematics markup within keys and labels, even
though LATEX itself currently cannot handle this.

Another example of Bibulous’ versatility in deal-
ing with multiple languages is that of an “audience
switch”. The following example is adapted from a
query made online [4]. For a single database file
that can be used inside both English-language and

Japanese-language publications, an English-language
format should allow Japanese entries in the bibliogra-
phy with author names in both kanji and romanized
characters. Titles should also be given in this dual
form, but sometimes with an English translation pro-
vided. English-language citations should appear as
normal. In a Japanese-language publication, how-
ever, the Japanese entries should have the author,
title, etc. in Japanese form without roman letters or
English. Here is an example database entry:

@collection{Tsuruta2006,

address_ja = {東京,

address_romaji = {Tōkyō}

author_ja = {鶴田　匡夫},

author_en = {Tadao Tsuruta}

publisher_ja = {新技術コミュニケーションズ},

publisher_en = {Shin’gijutsu

Communications},

title_ja = {光の鉛筆},

title_romaji = {Hikari no empitsu},

title_en = {Pencil of light},

volume = 7,

year = 2006}

The corresponding style template file is shown in
Fig. 4. The template is structured into two large op-
tional blocks, and the selection of one or the other is
decided by the document_language option variable
defined by the user within the file. The formatted
result will look something like the following for a
Japanese audience

1. 夏目 漱石, 草枕 (春陽堂 1906).

2. 柳田 聖山, 禪學叢書, 10巻 (中文出版社 1974–
1977).

3. 鶴田匡夫,光の鉛筆, 7巻 (新技術コミュニケー
ションズ 2006).

and the following for an English-language audience

1. Soseki Natsume, 草枕 (Kusamakura) [Pillow of
Grass] (Shun’yōdō Publishing, Tōkyō 1906).

2. Seizan Yanagida, 禪學叢書 (Zengaku sōsho)
[Collected Materials for the Study of Zen], vol. 10
(Chinese Book Publ. Co., Kyōtō 1974–1977).

3. Tadao Tsuruta, 光の鉛筆 (Hikari no empitsu)
[Pencil of Light], vol. 7 (Shin’gijutsu Communi-
cations, Tōkyō 2006).

Thus, the template shown in Fig. 4 is not only
flexible enough to handle custom database types and
heterogeneous fields, but also different audience lan-
guages. Note that the example uses fields in English
rather than in Japanese (e.g. author ja rather than
著者名) in both the database and the template in
order to illustrate the overall structure clearly to
readers unfamiliar with Japanese.

4 Implementing a glossary

The utility of style templates extends beyond bibli-
ographies. Glossaries, lists of symbols (i.e. nomen-
clatures), and lists of acronyms are readily generated
with Bibulous. Figure 5 shows an example .tex

file, together with corresponding .bib and .bst files,
and output .bbl file. Together, these create the
formatted glossary etc. shown in Fig. 6.

In the example .bib file, readers may note the
separation of the symbol entrytypes into independent
name and description fields, instead of the form
that the acronym entrytypes use. This is necessary
to get around the limitation that LATEX cannot use
mathematical markup within citation keys.

Nathan Hagen

TUGboat, Volume 34 (2013), No. 3 337

gloss.tex
\documentclass{article}

\newcommand{\citename}[1]{#1%

\protect\nocite{#1}}

\makeatletter

\renewcommand\@biblabel[1]{#1}

\renewenvironment{thebibliography}[1]

{\section*{\refname}%

\list{}{\setlength\labelwidth{1.5cm}%

\leftmargin\labelwidth

\advance\leftmargin\labelsep

\let\makelabel\descriptionlabel}}%

{\endlist}

\makeatother

\renewcommand\refname{Glossary, List of %

Symbols, and Nomenclature}

\begin{document}

While \citename{Tilt} aberration changes only

the magnification, \citename{SA} induces

image blur. Wavefront aberration is a

function of radial distance \cite{sym:rho}

and azimuthal angle \cite{sym:phi}. Of the

two aberrations, only \citename{SA} has an

effect on the \citename{PSF} and

\citename{MTF}.

\bibliographystyle{gloss}

\bibliography{gloss}

\end{document}

gloss.bst
TEMPLATES:

symbol = <description>.

gloss = <description>.

acronym = <description>

SPECIAL-TEMPLATES:

sortkey = <citekey>

citelabel = <name>

OPTIONS:

bibitemsep = 0pt

replace_newlines = True

case_sensitive_field_names = True

gloss.bib
@symbol{sym:phi,

name = "ϕ",

description = {Azimuthal angle.}}

@symbol{sym:rho,

name = "ρ",

description = {Radial distance from the

optical axis.}}

@gloss{SA,

name = {Spherical Aberration},

description = {The departure from an ideal

spherical wavefront that increases

quadratically with radial distance.}}

@gloss{Tilt,

name = {Tilt aberration},

description = {A linear departure from an

ideal wavefront --- equivalent to a

magnification error.}}

@acronym{MTF = "Modulation Transfer

function"}

@acronym{PSF = "Point Spread Function"}

gloss.bbl
\begin{thebibliography}{6}

\setlength{\itemsep}{0pt}

\bibitem[MTF]{MTF}

Modulation Transfer function

\bibitem[PSF]{PSF}

Point Spread Function

\bibitem[Spherical Aberration]{SA}

The departure from an ideal spherical

wavefront that increases quadratically

with radial distance.

\bibitem[ϕ]{sym:phi}

Azimuthal angle.

\bibitem[ρ]{sym:rho}

Radial distance from the optical axis.

\bibitem[Tilt aberration]{Tilt}

A linear departure from an ideal wavefront

--- equivalent to a magnification error.

\end{thebibliography}

Figure 5: The main tex file, style template (bst) file, bibliography database (bib)
file, and resulting output (bbl) file for the glossary example.

Note that, because it is only a back-end en-
gine, Bibulous by itself cannot split the glossary, list
of acronyms, and list of symbols into three sepa-
rate sections of the document. Doing so requires
work by LATEX itself, and thus requires changes to
the front end. The example shown here provides

only a minimal amount of front-end work—defining
the \citename{} command, as well as redefining the
\biblabel command and the \thebibliography en-
vironment—to make the bibliography structure ap-
pear as a list of definitions.

Bibulous—A drop-in BIBTEX replacement based on style templates

338 TUGboat, Volume 34 (2013), No. 3

Glossary, List of Symbols, and Nomenclature
MTF Modulation Transfer function

PSF Point Spread Function

Spherical Aberration The departure from an ideal spherical wavefront that increases
quadratically with radial distance.

φ Azimuthal angle.

ρ Radial distance from the optical axis.

Tilt aberration A linear departure from an ideal wavefront—equivalent to a magnification
error.

Figure 6: The formatted glossary, list of symbols, and nomenclature (list of
acronyms) for the inputs shown in Fig. 5. Note that the symbols φ and ρ are sorted
by citation key, which are sym:phi and sym:rho for the case shown here.

Table 1: Timing comparison for BibTEX, Bibulous,
and Biber, showing the amount of time required
to generate a .bbl file for every entry in the given
database.

Database size
(# citations)

Tool 100 820 12 000

BibTEX 0.112 sec 0.117 sec 1.01 sec
Bibulous 0.190 sec 1.667 sec 41 sec
Biber 1.115 sec 9.051 sec 17.5min

5 Comparison with existing
bibliography engines

Bibulous not only provides easy customization for
users, but does so with minimal compromises in speed
and without requiring a compiler for installing. It is
written in Python and has no external dependencies
(it requires only Python’s standard library), making
it highly portable and easy to install, since Python
is widely available on all modern platforms. And
although it is slower than BibTEX, it is considerably
faster than Biber.

To demonstrate processing speeds, each of the
three back-end processors were run on three bibliog-
raphy databases inside Bibulous’ regression testing
suite: one containing 12 000 entries, another with 820
entries, and a third with 100 entries. Using a stan-
dard desktop computer, running all three processors
on these databases produces the timing results shown
in Table 1. While the comparison is not entirely fair,
since Biber is doing more work (especially by build-
ing hash codes for every author in every entry), the
results show that Biber’s expanded capabilities have
come at a significant sacrifice in speed.

Biblatex and Biber are quickly replacing BibTEX
as the standard tools of choice for LATEX bibliogra-

phy processors, as they provide much-needed func-
tionality that BibTEX does not: support for larger
databases and non-English languages, international-
ization, localization, multilingualism, and more. In
order to specify a bibliography style, Biblatex uses a
combination of keyword options that are set within
the main .tex file to specify bibliography formats. A
weakness of this approach is that a user must know
a large set of keywords and how to combine these
to generate a custom style. Learning how to format
references can require reading and understanding
a substantial volume of Biblatex’s documentation.
With style templates, however, even first-time users
can see how to customize the layout without needing
to consult documentation, so that entirely new styles
can be written up in a matter of minutes.

Beyond its use of templates, Bibulous has other
important differences from BibTEX, including:

1. Bibulous converts LATEX-markup accented char-
acters to Unicode prior to performing sort func-
tions. That is, while BibTEX will sort t\^ete,
t{\^e}te, and t{\^{e}}te all as tete but tête
separately as tête, Bibulous will sort all of these
cases identically as tête. In addition, Bibulous
automatically detects the user’s default locale
and sorts according to standard string collation
algorithms.

2. Bibulous adds new options for formatting names
inside .bib file entries, so that individual names
are also allowed three or four comma delimiters.
This gives users more freedom to control name
layout.

3. Bibulous performs citation extraction by de-
fault— the relevant database entries from the
main .bib files are extracted and placed to-
gether into a single (usually small) database.
This speeds up program execution when operat-
ing with a large main database but a relatively

Nathan Hagen

TUGboat, Volume 34 (2013), No. 3 339

small number of citations.

4. Bibulous provides an authorextract command
that creates a .bib file containing only those
in which the given author’s name is referenced.
This can be useful for writing a CV.

5. Bibulous’ sentence_case operator is almost
identical to BibTEX’s change.case$ command,
but works with Unicode.

6. Bibulous provides a Python API to its own inter-
nal data structures, allowing users to extend or
customize the program as they desire, by placing
function definitions within style files.

6 Comments

Rather than providing a detailed explanation of us-
age, the aim here has been to introduce Bibulous to
LATEX users and to showcase some of its strengths.
These include:

1. using the simplicity and power of style templates
to specify and customize bibliographies;

2. implementing a fully Unicode-compliant pro-
gram without serious memory limitations.

The examples provided in the sections above show
how these traits can be used to provide a powerful
backend bibliography processor.

However, a range of functionality remains that
is important for users but is not readily accessible
through Bibulous alone. Tasks such as advanced
citation labelling, the creation of indexes, etc. require
integrating Bibulous with a LATEX package front-end.
Bibulous’ authorextract functionality, for example,
makes it easy to create a publications list (such
as for a CV), but without front-end integration it
has no means of separating reference entries into
independent lists. That is, one would often like a
cvpublications.bst style template that will sort
references into sections differentiated by entry type
(e.g. articles, book, inproceedings), with entries in
each section sorted in reverse chronological order.

Without integration with a front-end package, Bibu-
lous can only provide a single list as output for LATEX.

Similarly, advanced citation labelling, such as
using citation commands like natbib’s \citep{·}

and \citet{·}, require that additional information
be written to the .aux file to inform the bibliog-
raphy processor about the specific requirements of
that specific reference’s citation label. This kind of
integration is a goal for version 2.0 of Bibulous.

Users interested in learning more details about
how to use Bibulous can find much more in the
user manual, available at the project website and
in the source code repository. The source code for
the entire repository (the core bibulous.py file plus
testing software and documentation) can be found
at https://github.com/nzhagen/bibulous.

References

[1] P. Lehman, A. Boruvka, P. Kime, and
J. Wright, “The biblatex package:
Programmable bibliographies and
citations”. Available from CTAN:
http://ctan.org/pkg/biblatex.

[2] P. Kime and F. Charette, “biber: A backend
bibliography processor for biblatex”. Available
from CTAN: http://ctan.org/pkg/biber.

[3] P. L. Kime, “Biber—the next generation
backend processor for BibLATEX”.
TUGboat 33: 13–15 (2012).

[4] http://tex.stackexchange.com/questions/
28010/how-to-create-multilingual-

english-japanese-bibliographies-

with-biblatex-bib.

⋄ Nathan Hagen
Tucson AZ, USA
nhagen (at) optics dot arizona dot edu

https://github.com/nzhagen/bibulous

Bibulous—A drop-in BIBTEX replacement based on style templates

340 TUGboat, Volume 34 (2013), No. 3

The multibibliography package

Michael Cohen, Yannis Haralambous and
Boris Veytsman

Abstract

Conventional standards for bibliography styles en-
tail a forced choice between index and name-year
citations and corresponding references. We reject
this false dichotomy, and describe a multibibliog-
raphy, comprising alphabetic, sequenced, and also
chronological orderings of references. An extended
inline citation format is presented which integrates
such heterogeneous styles, and is useful even with-
out separate bibliographies. Richly hyperlinked for
electronic browsing, the citations are articulated to
select particular bibliographies, and the bibliogra-
phies are cross-referenced through their labels, link-
ing among them.

1 Introduction

One of the aims of the list of references in an aca-
demic paper or book is to show the reader the current
state of the field. A good bibliography creates a nar-
rative, showing the context of the manuscript in the
general picture of scientific inquiry—those prover-
bial “shoulders of giants” on which it stands.

There are two main ways to organize such a
narrative: either around the ideas or around the
authors. In the first case the order of citations follows
the order of their mention in the main text. Thus
the logic of the text is reflected in the bibliography
list. In the second case the order of citations follows
the authorship: we want alphabetic order by authors
(with chronological subordering of works by the same
authors). Accordingly, the inline citations in the first
cases are usually numerical, whereas in the second
case they are either numerical or, when possible,
based on the authors’ names and publication years
(perhaps abbreviated or contracted). This is the
main difference between “numerical” and “named”
bibliography styles [Daly, 2011: 1]. Both these styles
have their own advantages and disadvantages. It is
possible to imagine a third option: ordering the
citations primarily accordingly to publication year,
thus showing the chronology of progress in the field.

One may ask, why not use the advantages of
both the currently employed styles, generating not
one, but multiple lists of references? In the old
days, when bibliographies were created and sorted
manually, such a task was prohibitively expensive.
This is no longer true.

Encouraged by the programmability of biblio-
graphic styles and the flexibility of compiled for-

matting, we propose an extension of academic and
scientific bibliographic styles. Conventional inline
bibliographic citations, indicating full references in a
separated bibliography, are either ordinal numbers
generated according to first appearance in a docu-
ment or a tag composed of respective authors’ names
and publication year. To simultaneously deploy these
heretofore mutually exclusive styles, we introduce
a “multibibliography,” combining both “numerical”
and “named” styles. We also add a chronological
list, integrating all the information for the inline ci-
tations. This idea was conceived by the first author
and implemented partly by the second author and
the third author.

Rather than choosing between citations as

index numbers, corresponding to alphabetically
sorted authors’ names, as in BibTEX’s “plain”
style, and in order of first appearance in the
document, as in the “unsrt” style, or

author names and publication year (or some
abbreviation thereof), as in the “alpha” style,

we use both, mixing the two styles, as in “(Suzuki,
2013: 57)”, or, in case of associated page numbers,
“(Suzuki, 2013: 57, p. 45–67)”.

This is admittedly unorthodox, unusual and
unique, but satisfies our desire to have an easily un-
derstood cross-reference (without ambiguity in the
case of name collision) and an ordinal reference (the
last entry in the sequential bibliography also serving
as a cardinal reference count), and also our pref-
erence to be able to see an inline reminder of the
respective authors. As a bonus highlighting such use-
fulness, a “timeline” bibliography is also generated
in chronological order.

2 Implementation and invocation

Such a multibibliography currently comprises three
separate orderings. A Perl script compiles the mul-
tibibliography source. Specifically, running “perl
multibibliography.pl 〈fn〉” instead of bibtex (af-
ter the 1st-pass “latex 〈fn〉” and before the usual
2nd and 3rd passes), generates separate .bbl files:

“apalike” style, sorted alphabetically, by first au-
thor’s family name,

“unsrt” style, in order of first appearance in the
document, and with the label adjusted to lead
with the sequence number, and also

“chronological” style, sorted according to date
of publication, as in a timeline.

The functionality of the multibibiography pack-
age1 is different from both the multibib package,2

1 www.ctan.org/pkg/multibibliography
2 www.ctan.org/pkg/multibib

Michael Cohen, Yannis Haralambous and Boris Veytsman

TUGboat, Volume 34 (2013), No. 3 341

which facilitates having separate bibliographies for
each chapter in a monograph, and the multibbl pack-
age,3 which facilitates separating referenced sources
by their language [Mori, 2009: 2].

In multibibliography.sty, which should be
loaded at the top of any invoking document, the
standard “thebibliography” command is redefined
and new commands called “bibliographysequence”
and “bibliographytimeline” are defined, all of
which respectively redefine the bibitem command
accordingly to generate references in the appropriate
format and order. The chronological.bst file in
the package, made with the makebst [Daly, 2007: 3]
and docstrip utilities and using the merlin.mbs

generic bibliography [Daly, 2011: 1], augments the
built-in apalike and unsrt styles.

At the end of the document, the multibibliog-
raphy can be rendered thusly:

\renewcommand{\bibname}{References sorted by

name}

\markboth{References sorted by name}{

References sorted by name}

\bibliographystyle{apalike}

\addcontentsline{toc}{chapter}{References

sorted by name}

\bibliography{.bib files}

\clearpage

\renewcommand{\bibname}{References sorted by

first appearance}

\markboth{References sorted by first

appearance}{References sorted by first

appearance}

\addcontentsline{toc}{chapter}{References

sorted by appearance}

\bibliographysequence{.bib files}

\clearpage

\renewcommand{\bibname}{References sorted

chronologically}

\markboth{References sorted chronologically}{

References sorted chronologically}

\addcontentsline{toc}{chapter}{References

sorted chronologically}

\bibliographytimeline{.bib files}

(For shorter document styles, such as this article,
\bibname should be changed above to \refname, and
adjustments to the Table of Contents as well as the
\clearpages may be elided.)

This multibibliography system is copotentiated
by the hypertextual hyperref4 package. When using

3 www.ctan.org/pkg/multibbl
4 www.ctan.org/pkg/hyperref

them together with an appropriate viewer or browser
(such as xdvi, acrobat, or Adobe Reader), clicking
an inline citation jumps to the respective entry in
one of the reference lists. As illustrated in Fig. 1,
the multibibliography inline hyperref hotspot is
articulated to allow clicking on

the name, which jumps to the corresponding entry
in the alphabetical bibliography;

the index number, which jumps to the respective
entry in the sequential bibliography; or

the date, which jumps to the matching entry in the
chronological bibliography.

Similarly, cross-references among the respec-
tive subbibliographies are also hyperlinked, although
from the labels, and not the bibitem bodies of the
citations. The “[backref=page]” hyperref exten-
sion5 is compatible, generating the familiar and use-
ful back-references in all the subbibliographies: lists
of clickable page number links associated with each
entry in the bibliography pointing back to the respec-
tive citations (except those generated by nocites).
The generation of these back-references, indicated by
the hollow arrowheads in Fig. 1, represents “closing
the loop” on the fully crossed relation set.

In the future, the date should be articulated
to add the month to the sort.label in the presort
FUNCTION in the chronological.bst file, since it
isn’t one of the built-in keys of the makebst pack-
age [Markey, 2009: 6], as the merlin system didn’t
anticipate such fine-grained sortings. However, as
[Markey, 2009: 6, p. 13] observes, using the month
is somewhat problematic, since it is indicated by a
character string, but is really an ordinal. If built-in
macros (“jan”, “feb”, etc.) are used, they can be
easily mapped to months and used for sorting, but if,
as is often the case, the field is reinterpreted to mean
date (bimonthly publications indicated by something
like month = "March & April", quarterly dates as
month = "Autumn", etc.), this scheme will not easily
generalize.

We have not yet experimented with combin-
ing this package with other bibliographic packages
[Patashnik, 1998: 4] such as natbib6 or chapterbib7

[Kopka and Daly, 2003: 5, p. 217–221].

3 Implications

The extended inline citation style was designed for
the multibibliography, but can be deployed and is
useful even without it. The bibliographic dilation
is perhaps more appropriate or at least more ap-
pealing for electronic dissemination, as traditional

5 www.tug.org/applications/hyperref/manual.html
6 www.ctan.org/pkg/natbib
7 www.ctan.org/pkg/chapterbib

The multibibliography package

342 TUGboat, Volume 34 (2013), No. 3

alphabetical

(authors' names)

chronological

(timeline)

sequential

(first appearance in document)

inline citation::

(Suzuki, 2013: 57)

date

date

name
name

page index

index

page page

Figure 1: Hyperreferential links across document and among multibibliographies:
Each inline citation, exemplified by the block in the center, is linked to references
in sub-bibliographies, which are cross-linked to each other and can also be
linked back to the inline callouts. Hollow arrowheads represent links provided
by hyperref’s backref; solid arrowheads represent links provided by the
multibibliography package.

print-based publishers might resent the cost of extra
pages. The fully crossed hyperreferential links are a
convenient way of establishing the context of refer-
ences, seamlessly expressing citations’ appearances
in the document and in time.

Bibliographic subsections might be sorted by
other ad-hoc keys. Maybe the three “slices” through
the bibliographic database that we have organized
suffice for most ordinary publishing, but even more
styles of bibliographic lists could be crafted, corre-
sponding to special purposes, sorted by attributes
such as number of authors, number of pages, con-
ference or journal, location, etc. For simple exam-
ples, a subbibliography near the end of an art book
could be sorted by name of artist considered by each
monograph, or music books could have bibliogra-
phies sorted by name of performing group or family
or given name of artist. Of course all monographs
about each artist would be grouped together in that
subbibliography, and each citation would include
page numbers for each call-out within the text.

These kinds of lists could be (and often are)
explicitly compiled by authors, but only painstak-
ingly. However, such concordances would lack the
automatic back references to the call-outs. A mod-

ern, flexible scheme enables various presentations of
bibliographic information, so that each references
subsection acts as a kind of special index, but with
granularity not at the topic level, but at the docu-
ment level.

Such extended subbibliographies both represent
and also re-present references, showing them in fresh
and useful settings. There are two related activities
encouraged by such recontextualization:

• looking up a particular entry (including page
call-outs), and

• exploiting “locality of reference,” so that other
related sources are likely to be nearby.

The philosophy is to leverage the power of hyper-
referential idioms to augment reading by considering
a document as a special kind of database that is in-
dexed in appropriate dimensions, especially including
the name–value pairs in its associated bibliographic
information (such as that captured by BibTEX files)
plus derived information available after compilation
(such as sequence number and appearance location).

It is our hope that old-fashioned conventions,
established in the context of technological restric-
tions that have now been overcome, may be relaxed.

Michael Cohen, Yannis Haralambous and Boris Veytsman

TUGboat, Volume 34 (2013), No. 3 343

We anticipate that future schemes will allow dynamic
reordering, as if the bibliography were a spread-sheet-
like database, which of course it is. We find this
multidimensional presentation useful, are adopting
it at the first author’s university as a recommended
style for masters theses and doctoral dissertations,
and hereby encourage other institutions to emulate
this innovation, especially for extended works such
as monographs and books.

References sorted by name

[Daly, 2007: 3] Daly, P. W. (2007). Customizing
bibliographic style files. http://mirror.ctan.org/

macros/latex/contrib/custom-bib/makebst.pdf.
341

[Daly, 2011: 1] Daly, P. W. (2011). A Master
Bibliographic Style File for numerical, author–year,
multilingual applications. http://mirror.ctan.org/
macros/latex/contrib/custom-bib/merlin.pdf,
v. 4.33. 340, 341

[Kopka and Daly, 2003: 5] Kopka, H. and Daly, P. W.
(2003). Guide to LATEX. Addison-Wesley Professional,
4th edition. 341

[Markey, 2009: 6] Markey, N. (2009). Tame the BeaST:
The B to X of BibTEX. http://mirror.ctan.org/

bibtex/tamethebeast/ttb_en.pdf, v. 1.4. 341

[Mori, 2009: 2] Mori, L. F. (2009). Managing
bibliographies with LATEX. TUGboat, 30(1):36–48.
http://tug.org/TUGboat/tb30-1/tb94mori.pdf.
340

[Patashnik, 1998: 4] Patashnik, O. (1998). BibTEXing.
http://mirror.ctan.org/biblio/bibtex/contrib/

doc/btxdoc.pdf. 341

References sorted by appearance

[1: Daly, 2011] Patrick W. Daly. A Master
Bibliographic Style File for numerical, author–year,
multilingual applications, October 2011.
http://mirror.ctan.org/macros/latex/contrib/

custom-bib/merlin.pdf, v. 4.33. 340, 341

[2: Mori, 2009] Lapo F. Mori. Managing bibliographies
with LATEX. TUGboat, 30(1):36–48. http:

//tug.org/TUGboat/tb30-1/tb94mori.pdf. 340

[3: Daly, 2007] Patrick W. Daly. Customizing
bibliographic style files, 2007. http://mirror.ctan.
org/macros/latex/contrib/custom-bib/makebst.

pdf. 341

[4: Patashnik, 1998] Oren Patashnik. BibTEXing,
1998. http://mirror.ctan.org/biblio/bibtex/

contrib/doc/btxdoc.pdf. 341

[5: Kopka and Daly, 2003] Helmut Kopka and
Patrick W. Daly. Guide to LATEX. Addison-Wesley
Professional, 4th edition, 2003. 341

[6: Markey, 2009] Nicolas Markey. Tame the
BeaST: The B to X of BibTEX, October 2009.
http://mirror.ctan.org/bibtex/tamethebeast/

ttb_en.pdf, v. 1.4. 341

References sorted by year

[Patashnik, 1998: 4] Patashnik, O. BibTEXing.
1998. http://mirror.ctan.org/biblio/bibtex/

contrib/doc/btxdoc.pdf. 341

[Kopka and Daly, 2003: 5] Kopka, H. and Daly, P. W.
Guide to LATEX. Addison-Wesley Professional, 4th
edition, 2003. ISBN 0-321-17385-6. 341

[Daly, 2007: 3] Daly, P. W. Customizing bibliographic
style files. 2007. http://mirror.ctan.org/macros/
latex/contrib/custom-bib/makebst.pdf. 341

[Markey, 2009: 6] Markey, N. Tame the BeaST: The B
to X of BibTEX. 2009. http://mirror.ctan.org/

bibtex/tamethebeast/ttb_en.pdf, v. 1.4. 341

[Mori, 2009: 2] Mori, L. F. Managing bibliographies
with LATEX. TUGboat, 30(1):36–48. http:

//tug.org/TUGboat/tb30-1/tb94mori.pdf. 340

[Daly, 2011: 1] Daly, P. W. A Master Bibliographic
Style File for numerical, author–year, multilingual
applications. 2011. http://mirror.ctan.org/

macros/latex/contrib/custom-bib/merlin.pdf,
v. 4.33. 340, 341

⋄ Michael Cohen
Spatial Media Group, Computer Arts Lab.
University of Aizu
Aizu-Wakamatsu, Fukushima 965-8580

Japan
mcohen (at) u-aizu dot ac dot jp

www.u-aizu.ac.jp/~mcohen

⋄ Yannis Haralambous
Département Informatique Télécom Bretagne
Technopôle de Brest Iroise, CS 83818
29238 Brest Cedex 3 France
yannis.haralambous (at) telecom-bretagne

dot eu

international.telecom-bretagne.eu/

welcome/studies/msc/professors/

haralambous.php

⋄ Boris Veytsman
Systems Biology School and Computational

Materials Science Center
MS 6A2
George Mason University
Fairfax, VA 22030 USA
borisv (at) lk dot net

borisv.lk.net

The multibibliography package

344 TUGboat, Volume 34 (2013), No. 3

LATEX and graphics: Basics and packages

Aleksandra Hankus and Zofia Walczak

1 Introduction

There are the number of distinct ways of producing
graphics, each with advantages and disadvantages in
terms of flexibility, device independence and ability
to include arbitrary TEX text. In this paper we will
discuss two ways of placing graphics inside a LATEX
document. The first is about graphics imported to
the TEX file from an external graphic program, and
the second about creating graphics inside a TEX
document. We will discuss documents with graphics
which are intended to be printed, and presentations
made with the beamer class.

2 Importing graphics into LATEX

When we want to include graphics in a document we
have to take into account that LATEX cannot manage
pictures directly. LATEX just creates a box with the
desired size for the image we want to include and
embeds a reference to the picture, without any other
processing. This means we have to take care of the
format and size of the images to be included. This
is not such a hard task because LATEX supports the
most common picture formats around.

2.1 The graphicx package

Since LATEX can’t manage pictures directly, we load
the graphicx package for help by placing the follow-
ing in the preamble of our document:

\usepackage{graphicx}

The image formats we can use depend on the
driver that graphicx is using, and since the driver is
automatically chosen according to the compiler (TEX
variant) being used, in practice the allowed image
formats depend on the compiler.

The only format you can include while compiling
with latex is Encapsulated PostScript (EPS). An
EPS file declares the size of the image, which makes
it easy for LATEX to arrange the text and the graphics
in the best way. EPS is (typically) a vector format,
meaning that it can have very high quality if it is
created properly, namely with programs that are able
to manage vector graphics.

If we are compiling with pdflatex to produce a
PDF, we have a wider choice. We can insert graphics
in JPG, PNG, PDF. EPS format can also be used if
it is converted to PDF; in current distributions, that
happens automatically with the help of epstopdf.

The same LATEX source can be compiled in both
latex and pdflatex without any change, as long as
we avoid using particular packages. We can use both

compilers for documents with pictures as well, if we
remember to provide the pictures in proper format
(both EPS and one of JPG, PNG or PDF).

2.2 Including graphics

After we have loaded the graphicx package in the
preamble, we can include images using the command
\includegraphics, whose syntax is the following:

\includegraphics[arg1,arg2,...,argn]{imgname}

The arguments in square brackets are optional,
whereas arguments in curly braces are compulsory.

2.3 Examples

For scaling images we can use the optional argument
scale=〈number〉:

\includegraphics[scale=.16]{name}

We can give image dimensions with either or
both of the optional arguments width=〈number〉 and
height=〈number〉. When we specify only one or
the other, the second will be chosen proportionally.
When we specify both, the image will be resized
without preserving proportions.

\includegraphics[width=3cm]{name}

\includegraphics[height=4.5cm]{name}

Aleksandra Hankus and Zofia Walczak

TUGboat, Volume 34 (2013), No. 3 345

\includegraphics[width=5cm,height=3cm]{name}

To rotate the image, the option angle=〈number〉 is
used.

\includegraphics[scale=0.18,angle=90]{name}

And finally, here is an example of how to crop
an image to focus on one particular area of interest.
For this purpose we use the trim argument; in order,
its parameters are 〈left〉 〈bottom〉 〈right〉 〈top〉.

\includegraphics[trim=.5cm 1.1cm .3cm .5cm,clip,

width=3.5cm]{name}

We can specify which image file is to be preferred
by pdflatex through this preamble command:

\DeclareGraphicsExtensions{.pdf,.png,.jpg}

This specifies the files to include in the document
(in order of preference), if there exist files with the
same name but with different extensions.

2.4 The figure environment

There are many situations where we want to add to
the image a caption and possibly a cross-reference.
We can do that with the figure environment, but
we have to take into account that this is a so-called
“floating” environment. The minimum required code
is the following:

\begin{figure}[pos]

\includegraphics{image name.png}

\end{figure}

where the optional argument [pos] stands for the
allowed positions of the figure on the page. Such a
float placement specifier can consist of the following
characters in any order: htb!p. For example, speci-

fying [bt] means that our picture can be placed on
the bottom or top area of the page.

The above code is relatively trivial, and doesn’t
offer much functionality. The next sample shows
an extended use of the figure environment which is
almost universally useful, offering a caption, label
and centering the image, placed at either the current
position (“here”) or the top of the page.

\begin{figure}[ht]

\centering

\includegraphics{name}

\caption{Caption}

\label{fig:1}

\end{figure}

Figure 1: Just the lion

3 Supporting the creation of graphics
directly in LATEX

There are many packages to do pictures in (LA)TEX
itself rather than importing graphics created exter-
nally, starting with simple use of the LATEX picture

environment.

3.1 The picture environment

The picture environment is used to draw pictures
composed of text, straight lines, arrows and circles.
The objects in the picture are positioning by specify-
ing their coordinates. The first picture environment
was created by Leslie Lamport.

The basic syntax for the environment is:

\begin{picture}(width,height)(xoffset,yoffset)

picture commands

\end{picture}

Thus, the picture environment has one manda-
tory argument, which specifies the size of the picture.
The environment produces a rectangular box with
width and height determined by the values of these
two arguments. Coordinates are specified in the
usual way with respect to an origin, which is nor-
mally at the lower-left corner of the picture. The
optional positioning argument following the size ar-
gument can change the origin. If we decide to modify
our picture by shifting everything, we can just add
the appropriate optional argument.

Everything that appears in a picture is drawn
by the \put command.

LATEX and graphics: Basics and packages

346 TUGboat, Volume 34 (2013), No. 3

Using the picture environment we can “deco-
rate” our previous image, for example to add to our
image “glasses”.

✖✕
✗✔

✖✕
✗✔

Figure 2: Adding glasses

\setlength{\unitlength}{1cm}

\begin{picture}(4,2.5)

\includegraphics[width=3.5cm]{image name.jpg}

\put(-1.9,1.9){\circle{.8}}

\put(-1.5,1.2){\circle{.8}}

\end{picture}

3.2 XY-pic package

XY-pic is a special package for drawing diagrams. It
works smoothly with most formats, including LATEX,
AMS-LATEX, AMS-TEX, and plain TEX. To use
it, add the following line to the preamble of your
document:

\usepackage[all]{xy}

where “all” means you want to load a large standard
set of functions from XY-pic, suitable for developing
complex diagrams. Below we show an example.

G/T
=

//

��

G/T

��

E
f̂

//

π

��

BT

p

��

S2k
f

// BG

{

G/T \ar[r]^=\ar[d]

& G/T \ar[d]\\

E\ar[r]^{\hat f}

\ar[d]^{\pi}

& BT \ar[d]^{p}\\

S^{2k}\ar[r]^f& BG

}

3.3 PSTricks— the pstricks package

Here, the basic package to use is pstricks, to be
loaded with the usual command \usepackage in
the document preamble. PSTricks commands are
usually placed in a pspicture environment, whose
mandatory argument gives the coordinates of the
upper-right corner (the lower-left is the origin by
default).

\begin{pspicture}(x1,y1)

pstricks commands

\end{pspicture}

Here is a basic example. The \psframe command
draws an unfilled rectangle, and its starred version
makes it filled.

\begin{pspicture}(6,4)

\psframe(1,1)(3,3)

\psframe*(1,1)(2,2)

\psframe*(2,2)(3,3)

\end{pspicture}

3.4 PSTricks— the psfrag package

The psfrag package allows LATEX users to replace
text strings in EPS files created by external programs
with LATEX text or equations. To use psfrag, create
an EPS file and then perform the following steps

• In the document, use the \psfrag command
to specify the PostScript text in the EPS to
be replaced, and the replacement LATEX string.
This makes the specified substitution occur in
any subsequent \includegraphics command
issued in the same environment.

• Use the \includegraphics command as usual.

The \psfrag command has the following syntax:
\psfrag{PStext}[posn][PSposn][scale][rot]

{text}

Remark: PSfrag cannot be used with pdfTEX. If
such substitution is needed, one option is to use the
LATEX-to-DVI-to-PostScript-to-PDF route that was
used before pdfTEX. PSfrag also doesn’t work with
beamer. An alternative there is to use the TikZ
package (with the EPS figure converted to PDF).

3.5 The amscd package

The amscd package provides a CD environment that
emulates the commutative diagram capabilities of
AMSTEX version 2.x. This means that only simple
rectangular diagrams are supported, with no diagonal
arrows or more exotic features.

APL(Y) −−−−→ APL(X) −−−−→ APL(F)

mY

x





m

x





m̄

x





(ΛVY , d) −−−−→ (ΛVY ⊗ ΛV, d) −−−−→ (ΛV, d̄)

$$ \CD

A_{PL}(Y) @>>> A_{PL}(X)

@>>> A_{PL}(F)\\

@A{m_Y}AA @A{m}AA

@A{\bar m}AA\\

(\Lambda V_Y,d) @>>>

(\Lambda V_Y\otimes\Lambda V,d)

@>>> (\Lambda V,\bar d)

\endCD $$

Aleksandra Hankus and Zofia Walczak

TUGboat, Volume 34 (2013), No. 3 347

Remark: The amscd package does not work with
the beamer class.

3.6 MusiXTEX

MusiXTEX is a set of macros and fonts which enables
music typesetting within the TEX system.

It contains symbols for staves, notes, chords,
beams, slurs and ornaments, ready to be arranged
to form a sheet of music.

But it must be told how to position those sym-
bols on the page. This can be done manually, if you
elect to proceed by entering MusiXTEX commands
manually into an input file.

However most users will find it far less taxing to
let such decisions be made largely by the preprocessor
PMX, which also uses a much simpler input language
than MusiXTEX. Here is an example of the output.

Remark: MusiXTEX needs LATEX, which is auto-
matically invoked when needed; but in general, LATEX
and MusiXTEX cannot be combined. For typeset-
ting a large musical score it is better to use another
alternative.

3.7 Graphics with PGF/TikZ

One possible solution for drawing graphics directly
with TEX commands is PGF/TikZ. TikZ can pro-
duce portable graphics in both PDF and PostScript
formats using either plain (pdf)TEX, (pdf)LATEX or
ConTEXt. It comes with very good documentation,
and there is an extensive collection of examples at
http://www.texample.net/tikz.

Using TikZ in a LATEX document requires load-
ing the tikz package

\usepackage{tikz}

somewhere in the preamble, as usual. This automati-
cally loads the pgf package. To load further libraries
use

\usetikzlibrary{list of libraries}

Some useful existing libraries are: arrows, automata,
backgrounds, calendar, chains, matrix, mindmap,
patterns, petri, shadows, shapes.geometric, and
there are plenty more.

Drawing commands are usually enclosed in a
tikzpicture environment:

\begin{tikzpicture}[options]

tikz commands

\end{tikzpicture}

or alternatively we can use the \tikz command:

\tikz[options]{tikz commands}

If we specify the bounding box (it’s an optional
argument to the environment) with the baseline

option as we show here:

\begin{tikzpicture}

[x=0.0714\textwidth,y=0.5cm,

baseline=(current bounding box.east)]

\path[use as bounding box](0,-1)rectangle(2,1);

\draw (0,0)--(2,0);

we can draw a table with different pictures in every
cell in the row, all aligned together.

a b

0 23 .15 2

4 Some packages based on PGF/TikZ

4.1 The bchart package

bchart is a LATEX package for drawing simple bar
charts with horizontal bars on a numerical x-axis. It
is based on the TikZ drawing package.

4

2

3C

0 5

\begin{bchart}[max=5,scale=.9]

\bcbar[color=gray!20]{4}

\bcbar[color=gray!70]{2}

\bcbar[text=\scriptsize{C},color=gray!50]{3}

\end{bchart}

Remark: The bchar package can be used with both
latex and pdflatex, and it also works with the
beamer class.

LATEX and graphics: Basics and packages

348 TUGboat, Volume 34 (2013), No. 3

4.2 The pgf-soroban package

The soroban is an abacus developed in Japan; the
pgf-soroban package lets us typeset representations
of soroban values. We load the package in the usual
way, with \usepackage{pgf-soroban} in the pream-
ble. There is no need to load any corresponding
graphics package, as all required packages are loaded
by the soroban package. The package sets a base
unit as 1 mm, as well as other lengths. If we want to
change the size, the units can be changed with, e.g.,
\ladj{0.25}. The soroban picture below represents
the number 321.45.

\ladj{0.5}

\begin{tikzpicture}

\tige{1}{0}{1} \tige{2}{3}{0}

\tige{3}{2}{0} \tige{4}{1}{1}

\tige{5}{4}{0} \tige{6}{5}{0}

\cadre{6}

\end{tikzpicture}

There is also a soroban package for PSTricks,
named pst-soroban.

References

[1] D.P. Carlisle, Packages in the ‘graphics’ bundle,
2005, ctan.org/pkg/grfguide.

[2] A. Delmotte, pgf-soroban— Create images of
the soroban using TikZ/PGF, ctan.org/pkg/
pgf-soroban.

[3] M. Goossens, F. Mittelbach, S. Rahtz, D. Roegel,
H. Voß, LATEX Graphics Companion, second
edition, Addison-Wesley, 2007.

[4] H. Kopka and P.W. Daly, A Guide to LATEX2ε,
fourth edition, Addison-Wesley, 2003.

[5] T. Kuhn, bchart: Simple bar charts in LATEX,
version 0.1.2, ctan.org/pkg/bchart.

[6] L. Lamport, LATEX: A Document Preparation

System, Addison-Wesley, second edition, 1994.

[7] L. Lamport, LATEX: A Document Preparation

System, Wydawnictwa Naukowo-Techniczne,
Warszawa, 2004 (in Polish).

[8] E. Rafaj lowicz and W. Myszka, LATEX, Zaawan-
sowane Narzȩdzia, Akad. Ofic. Wydawn. PLJ,
Warszawa, 1996 (in Polish).

[9] D. Taupin, MusiXTEX. Using TEX to write
polyphonic or instrumental music, Version 1.15,
ctan.org/pkg/musixtex.

[10] Z. Walczak, LATEX for the Impatient, Wydawn.
Uniwersytetu Lódzkiego, 2012 (in Polish).

⋄ Aleksandra Hankus

Institute of Mathematics,

University of Silesia, Poland

aleksandra.hankus (at) us dot

edu dot pl

⋄ Zofia Walczak

Faculty of Mathematics and

Computer Science,

University of Lodz, Poland

zofia.walczak (at) math dot uni

dot lodz dot pl

Aleksandra Hankus and Zofia Walczak

TUGboat, Volume 34 (2013), No. 3 349

Plots in LATEX: Gnuplot, Octave, make

Boris Veytsman and Leyla Akhmadeeva

Abstract

Making scientific and engineering documents with
complex plots may be difficult and time-consuming.
This is especially true if data updates require re-
building of plots and documents. In this report a
workflow based on an integration of (LA)TEX, Gnuplot
and Octave using Makefiles in a Unix environment
is proposed and discussed in detail.

1 Introduction

Some time ago one of us (BV) worked on a report
about aircraft navigation accuracy. This report in-
cluded about forty charts of predicted errors as de-
pending on the aircraft altitude, location of surveil-
lance radios, etc. Then a coworker came to the
office to tell me that some parameters of the model
had changed and requested replotting all the charts.
“How long would it take to do it?”, he asked with some
trepidation, since the deadline was close. “Well”,
was the answer, “I have a rather slow computer here.
Probably about two to three minutes.” Having said
this, the author changed several lines in one of the
configuration files and typed make. In two minutes
the machine happily produced an updated report.

This example illustrates a certain point about
computers. They can take over the mind-numbing
drudgery (like replotting dozens of charts) so we can
do interesting things (like analyzing the message be-
hind these charts). Unfortunately, for many people
computers are just glorified typewriters/calculators/
drawing devices, requiring constant hand holding and
manual interventions. These users try to perform all
the boring minute steps themselves, redoing them
when anything changes. However, humans are not
especially good at boring and repetitious work. They
make mistakes. This often leads to embarrassing re-
sults (see, for example, the discussion of spreadsheet
errors in Reinhart and Rogoff’s paper by Herndon,
Ash, and Pollin, 2013). It is much more rewarding
to teach a computer to do such work for you.

In this paper we show how to teach your com-
puter to make high quality plots for your papers
and reports, and to remake them as needed. This
involves a combination of TEX, Gnuplot or Octave,
and Makefiles. The system is highly customizable,
and rather easy to use. Of course, TEX is the heart of
the system, and it was developed with TEX in mind
on each step. Thus we hope it might be of interest
to the TUGboat readership.

Some points should be made before we discuss

this system. First, it was developed “in house”, and
thus reflects certain tastes and idiosyncrasies. Sec-
ond, we started to work on it long time ago—before
such tools as latexmk or Asymptote were available.
Thus it uses only classic tools and has a certain
“retro” computing spirit. Third, it was developed for
a Unix-like environment.1 One can get it working
on Windows using any free implementation of make,
but that is beyond the scope of this paper.

2 Gnuplot graphics

There are many choices for a plotting program suit-
able for a TEX user: PSTricks, PGF/TikZ, META-
FONT, METAPOST, and Asymptote come to mind,
as well as a plethora of non-free solutions. However
for complex graphics, especially three-dimensional
ones, Gnuplot is, in our opinion, among the best
choices. It has the right combination of sound de-
faults (axis labeling, tick marks location, etc.) and
the option of changing any default if needed. A full
discussion of the rich possibilities of this program is
also beyond our scope here. We recommend the ex-
tensive built-in help (try help terminal epslatex,
for example) and the book by Janert (2009).

How can we include the graphics produced by
Gnuplot into a TEX document? The simplest solu-
tion is to make Gnuplot output an EPS or PDF file
and use \includegraphics to put this plot into the
proper place. However, this idea has a number of
flaws. First, the text on the graphics will be done in
Helvetica and Symbol fonts, which may well clash
with your body font. Second, you may want to use
TEX for annotations inside the graphics.

TikZ provides a method for smooth integration
of Gnuplot-produced plots in the \tikzpicture en-
vironment. However, it tends to replot all graphics
whenever you change the TEX file, which might be
time consuming.

Gnuplot has a number of TEX-compatible out-
put formats (“terminals” in Gnuplot terminology).
Probably the best choice for complex graphics is
epslatex (or pstex for plain TEX). These terminals
produce a .tex file that has all the labels, while
the graphics are saved in a PostScript file, which is
automatically called by the .tex file. An example of
the usage of this terminal is shown in Figure 1. Let
us discuss it in detail.

The first line sets the output format:

set terminal epslatex monochrome

The option monochrome is chosen here because the
printer charges TUGboat extra for color pages. In
most cases the color option is preferable. Note: even

1 Including GNU/Linux and MacOSX.

Plots in LATEX: Gnuplot, Octave, make

350 TUGboat, Volume 34 (2013), No. 3

set terminal epslatex monochrome

set output "function-fig.tex"

set pm3d # Colored surface

unset surface # We do not want to plot the mesh lines

set isosamples 100, 100 # Smooth surface

set ztics 0.2 # Increment for z tick marks

set cbtics 0.2 # Increment for colored box

set format ’$%g$’

set xtics offset 0,-.3

set ytics offset 1,0

set ztics offset -1,0

set cbtics offset 1,0

set xrange [-1.5:1.5]

set yrange [-1.5:1.5]

set label 1 \

’$f(\mathbf{x})=\exp\left(-\lvert\mathbf{x}\rvert^2\right)$’ \

at -1.5,-1,1

set label 2 \

’$\displaystyle\max_{\mathbf{x}\in \mathbb{R}^2} f(\mathbf{x})$’ \

at 1,1,1.3

set arrow 1 from 1,1,1.3 to 0,0,1 front

splot exp(-x**2-y**2) title ""

set output

Figure 1: A Gnuplot script function.gp with epslatex output

with the monochrome option, the package color or
xcolor must be called by your main TEX file.

The next line sets the name of the output .tex
file; we chose function-fig.tex. (We explain this
naming convention below.)

The lines set pm3d and unset surface explain
how to plot the three-dimensional graphics: using
color (well, shades of gray for our monochrome dis-
play) to show the height and not plotting the surface
mesh lines.

The line set isosamples sets the number of
points where the function is calculated. We use
100× 100 = 10000 points for a smooth plot.

The lines set ztics and set cbtics set the
increment for the ticks on the z axis and the color box
in the legend. We do not use similar commands for
xtics and ytics since the defaults are good enough.

The line set format ’$%g$’ refers to the for-
mat of the tick marks. It makes the numbers to be
typeset in the math mode. The default is %g, which
should be familiar to those knowing C formatting
commands. Thus normally Gnuplot typesets tick
marks as text, so minus signs become dashes.

The next lines slightly move the tick numbers
for the x, y, and z axes and the color box. (Gnuplot
is not completely aware of the font metrics for TEX
fonts, so its position calculations are sometimes not
good enough for the demanding eyes of TUGboat

editors.)
The lines set xrange and set yrange set the x

and y domains for the plotting: from −1.5 to 1.5. We
do not use a similar set zrange command since the
default (based on the maximal and minimal values
of the function plotted) looks good.

The next lines are label commands. They have
three arguments: label number (1 and 2 in our case),
label text (enclosed within single quotes) and label
position (at statements). The text in the labels is
TEX code interpreted in the context of your main
document. Thus you can put arbitrarily complex
annotations on your graphics. Gnuplot provides
some mechanisms for fine-tuning the label reference
point; in most cases, however, you do not need to
change the default.

We use an arrow from the label to the top of
the plot. It is set by the set arrow command. Its
arguments include arrow number, arrow start and
arrow end. The last keyword, front, means that the
arrow is plotted on the front layer of the picture, i.e.,
is not to be obscured by the plot itself.

The actual plot is done by the penultimate line:

splot exp(-x**2-y**2) title ""

It means: do a surface plot of the function exp(−x2−
y2), with an empty title (by default, Gnuplot typesets
the formula as the title).

The last line, set output, writes the results to
the output files and closes them. See Figure 2.

2.1 Plots from data points

In the above example we plotted a mathematical

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 34 (2013), No. 3 351

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1
−0.5

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1
f(x) = exp

(

−|x|2
)

max
x∈R2

f(x)

0

0.2

0.4

0.6

0.8

1

Figure 2: The plot generated by the script in Figure 1

expression. Gnuplot can also plot data from a file,
obtained from an experiment or other calculations.
As an example we show a script in Figure 3. Here
we plot the stopping distances of cars moving with
different speeds as measured in 1920s. The data is
from the R distribution (R Core Team, 2013). We
put them in a space-separated file cars.dat, which
looks like this:

"speed" "dist"

4 2

4 10

7 4
...

The first line shows the column names. It starts with
the comment symbol # to tell Gnuplot not to try to
plot it.

Most of the commands in Figure 3 are similar
to those in Figure 1. Let us look at the ones that
are different.

The line set logscale xy tells Gnuplot to cre-
ate a log–log plot. The lines set xlab and set ylab

set the labels for x and y axes correspondingly. The
command set label 1 contains a TEX expression
that includes a mathematical formula and rotation
to typeset the formula along the line it describes. All
rotation and typesetting is done by TEX rather than
by Gnuplot.

Since we make a two-dimensional plot rather
than a three-dimensional one, we use the plot com-
mand rather than splot:

plot "cars.dat" with points pt 4 title "", \

exp(-0.73+1.6*log(x)) title ""

This command has two arguments separated
by a comma and corresponding to two objects we
want to plot: a data file, plotted with points of

set terminal epslatex monochrome

set output "cars-fig.tex"

set logscale xy

set xrange [1:100]

set yrange [1:500]

set xlab ’Speed, mph’

set ylab ’Stopping distance, feet’

set format ’$%g$’

set label 1 \

’\rotatebox{41}{$\ln y=-0.73+1.6\ln x$}’ \

at 1.8, 4

plot "cars.dat" with points pt 4 title "", \

exp(-0.73+1.6*log(x)) title ""

set output

Figure 3: Another Gnuplot script, cars.gp

type 4 (these happen to be unfilled squares), and a
mathematical expression corresponding to a straight
line on the log–log scale. The result is shown in
Figure 4.

A good way to debug and tune the graphics is to
comment out the first two lines of the script and run
it through Gnuplot, thus seeing the results online,
changing the script until you get a satisfactory result.

3 Octave graphics

Gnuplot’s built-in features cover most mathematical
needs. However, sometimes they are not enough.
What can we do then? As discussed in the previous
section, we can calculate the data points in an ex-
ternal program and feed the result to Gnuplot as a
(space separated) text file. Another possibility is to
use software that can talk to Gnuplot directly.

A good choice for this is Octave. Octave is a
high level language and program for numerical calcu-
lations. It is similar to and mostly compatible with

Plots in LATEX: Gnuplot, Octave, make

352 TUGboat, Volume 34 (2013), No. 3

1

10

100

1 10 100

S
to
p
p
in
g
d
is
ta
n
ce
,
fe
et

Speed, mph

ln
y
=
−
0.
73
+
1.
6 l
nx

Figure 4: The plot generated by the cars.gp script in Figure 3

the commercial program MATLAB. As often hap-
pens with free software, some of Octave’s capabilities
surpass those of its commercial sibling. In particular,
the technique of generating TEX-compatible graphics
described in this article does not work in MATLAB.
The latter can produce plots in the EPS format (Oc-
tave can do this too), but text annotations on these
plots are done in its own fonts, which may clash with
the body text.

The current version of Octave uses Gnuplot for
graphics, so most of the features discussed in the
previous section are available in Octave. However,
the syntax is slightly different. The most important
difference is the order of commands. In Gnuplot we
first “set” the annotations: legend, labels, etc., and
then plot the data. In Octave we plot the data first,
and only then add annotations to the existing figure.

In Figures 5 and 6 we show a plot used in one of
our reports. In this report we discussed the behavior
of a certain system. It depended on a dimensionless
parameter ρ. The report showed that this parameter
ought to satisfy the following condition:

ber1 ρ = bei1 ρ

where ber1 and bei1 are so-called Kelvin functions,
related to the Bessel function of complex argument
(Olver, Lozier, Boisvert, and Clark, 2010, § 10.61).
Thus we wanted a plot of the expression

δ(ρ) = ber1 ρ− bei1 ρ

and the point ρ0 for which δ(ρ0) = 0.

Unfortunately, Gnuplot does not know anything
about Kelvin functions. An attempt to calculate
them using Bessel functions of complex argument
leads (at least in version 4.4) to the following truthful,
but not especially helpful message: can only do bessel

functions of reals. To tell the truth, Octave also
knows nothing about Kelvin functions. However,
unlike Gnuplot, it is not afraid of Bessel functions of
complex argument.

In Figure 5 we show an Octave script kelvin.m
that generates the required plot. Let us discuss the
script in detail.

The first three lines define functions ber1, bei1
and δ using Octave’s built-in besselj command.
The next line, rho0 = fsolve(delta, 4) calculates
the root of equation δ(x) = 0 starting from the point
x = 4, and assigns the result to the variable rho0.
By the way, this root is ρ0 = 3.7727.

The reason for the next command is the way
Octave executes plot commands. In Gnuplot we
first set up the “terminal”, and only then draw the
plot. Thus, at the time of plotting our computer
already knows we want to save the result to a file
and does not make on-screen plots. In Octave we
first draw the plot on the screen and only then “save”
the result. This slows down the execution. The
command figure(’visible’, ’off’) switches off
this on-screen drawing.

The next few lines perform the actual plotting.
Octave has two ways to make a plot of a function.
One is the fplot command: fplot(delta, [0,4])

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 34 (2013), No. 3 353

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

b
er

1
ρ
−
b
ei

1
ρ

ρ

ρ0

3.77

Figure 6: The plot generated by the kelvin.m script in Figure 5

ber1 = @(x) -real(besselj(1,x*exp(pi*1i/4)));

bei1 = @(x) imag(besselj(1,x*exp(1i*pi/4)));

delta = @(x) ber1(x)-bei1(x);

rho0 = fsolve(delta,4);

figure(’visible’,’off’);

x = 0:0.1:4;

plot(x, delta(x), ’linewidth’, 2);

hold on;

plot([rho0], [0], ’o’, ’linewidth’, 10);

text(rho0, 0.15, \

’\colorbox{white}{ρ_0}’, \

’horizontalalignment’, ’center’);

text(rho0, -0.15, \

sprintf("\\colorbox{white}{$%.2f$}", rho0), \

’horizontalalignment’, ’center’);

title("");

legend("off");

grid();

xlabel(’ρ’);

ylabel(’$\ber_1\rho-\bei_1\rho$’);

print -depslatex -mono "-S800,600" \

"kelvin-fig.tex"

Figure 5: An Octave script, kelvin.m

would make the graph shown in Figure 6. Unfortu-
nately, in the current version of Octave the command
fplot has rather limited options for fine control of
the plot; in particular, it does not allow to change
the default line width. The default lines look weak
in our monochrome version. So here we use the
generic plot command instead of fplot. We gen-

erate an array of abscissas with the command x =

0:0.1:4, and then plot delta(x) versus x. The com-
mand plot(x, delta(x), ’linewidth’, 2) gen-
erates the plot with a line width of 2, meaning twice
the default width.

Normally a plot or fplot command erases pre-
vious graphics and starts afresh. The line hold on

preserves the graphic and combines it with the next
plot. This next plot consists of only one point, a large
dot at the zero of the function δ(x): plot([rho0],
[0], ’o’, ’linewidth’, 10); The parameter ’o’
sets the shape of the marker, while setting the line
width to 10 makes it large.

The next two commands, using text(...), are
similar to Gnuplot label commands. We set up the
coordinates of the text and the text itself. Additional
parameters help to tune the output.

The first command places the “text” string
\colorbox{white}{ρ_0} at the point (ρ0, 0.15),
i.e. above the root of our equation. The text is cen-
tered on the reference point (the other options for
horizontalalignment are left and right). This
“text” is a LATEX command that creates the symbol ρ0
inside a rectangle with white background (colorbox).
We use this rectangle because otherwise the plot over-
laps the symbol.

The second command is more complicated. Here
the “text” is dynamically constructed by Octave it-
self. The function sprintf is similar to the function

Plots in LATEX: Gnuplot, Octave, make

354 TUGboat, Volume 34 (2013), No. 3

of the same name in C, awk, perl, and many other lan-
guages. Its first argument is the “format”, and the re-
maining arguments are interpreted according to this
format. In our case we output a string which includes
rho0 typeset with two decimal figures per the specifi-
cation %.2f in the format. The function returns the
string2 \colorbox{white}{3.77}, which is type-
set centered at the point (ρ0,−0.15), i.e. under the
root of the equation. We again use \colorbox to
create the white background for the label.

The next commands are analogous to those in
Gnuplot: we switch off the main title and legend,
switch on the grid and set up the axes labels. Since
\ber and \bei are not standard LATEX operators,
our .tex file has the following definitions based on
the macro \DeclareMathOperator provided by the
amsmath package:

\DeclareMathOperator{\ber}{ber}

\DeclareMathOperator{\bei}{bei}

The last line,

print -depslatex -mono "-S800,600" \

"kelvin-fig.tex"

saves the graphs into the file kelvin-fig.m. It uses
epslatex format (similar to Gnuplot’s epslatex

terminal), and mono-chrome rendering. The magic
string "-S800,600" sets the size of the figure in
points (the reason why it must be in quotes is better
known to the authors of Octave).

Like Gnuplot, Octave can create complex three-
dimensional graphics, which we leave as an exercise
to the reader.

Unfortunately, we failed to find the analog of
the Gnuplot set format command, so tick marks
on Figure 6 are typeset in text mode: compare ‘-1’
(wrong!) and ‘−1’ (right). This problem can be
corrected by a simple sed script acting on the file
kelvin-fig.m, which we leave as another exercise
to the reader.

4 Insertion of graphics in the .tex file

The methods described in the previous sections pro-
duce two files for each graphics: a .tex file with the
textual material, and a PostScript file (either .eps
or .ps) with the graphics material. For example, in
the directory with this paper are the following files:

cars-fig.eps cars-fig.tex

function-fig.eps function-fig.tex

kelvin-fig.eps kelvin-fig.tex

To use these graphics in the text, we “read in”
the .tex file using the command \input, for example,
\input{function-fig}. The associated PostScript

2 Exercise: why does the format use double backslash?

file is automatically inserted by the .tex file with
the corresponding \includegraphics command.

This works fine with the traditional latex with
dvips route. What happens if you use pdflatex?
Fortunately, recent distributions are smart enough
to automatically convert .eps files to .pdf (using
epstopdf), so after a run of pdflatex you can find
in the working directory the files

cars-fig-eps-converted-to.pdf

function-fig-eps-converted-to.pdf

kelvin-fig-eps-converted-to.pdf

This conversion is done transparently to the user.3

Of course, the PostScript files must have a correct
bounding box for correct results.

5 Putting everything together: Makefiles

The process described in the previous sections may
seem rather complex. We run Gnuplot and/or Oc-
tave, latex, dvips, ps2pdf, pdflatex, . . . If we
change some of the files, we need to rerun the neces-
sary portions of the process. A human should not do
this manually (and probably cannot do it without
introducing errors).

The famous utility make can do this for you.
Let us recall the basics. The utility reads a

Makefile which sets up rules and dependencies. Rules
tell it how to “make” a certain file: you run latex on
a .tex file to generate a .dvi file, you run dvips on
a .dvi file to generate a .ps file, etc. Dependencies
record that a file A depends on the file B: whenever B
is changed, A must be regenerated. You can find
more information, for example, in the classic book
by Mecklenburg (2004).

In this section we set up a typical Makefile for
TEX and Gnuplot or Octave.

Let us start with Gnuplot. We will use the ex-
tension .gp for our Gnuplot scripts and the following
naming convention: a file file.gp generates the files
file-fig.tex and file-fig.eps. The part -fig is
used to set up the clean task: to clean the directory
we delete all generated files.

So, we can define the following simple rule: each
file-fig.tex file depends on the file.gp, and
gnuplot is used to generate it:

%-fig.tex: %.gp

gnuplot $<

Here, according to Makefile syntax, % is a “wildcard”,
and $< means the “prerequisite” (the .gp file).

Here is a similar rule for Octave-generated files:

%-fig.tex: %.m

octave $<

3 Unfortunately, Gnuplot’s pstex terminal for plain TEX
uses PostScript specials instead of \includegraphics. This
makes the technique described here inapplicable.

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 34 (2013), No. 3 355

So now we have two rules for generation of 〈file〉
-fig.tex files: either from Gnuplot or from Octave.
Happily, make is smart enough to choose the right
one: if it finds an appropriate file ending in .gp, it
uses the first rule, and if it finds an appropriate file
ending in .m, it uses the second.4

Let us now discuss the generation of PDF files
from .tex sources. In this article we discuss the
pdflatex route; the rules for the “traditional” latex
→ dvips route are left as another exercise.

The basic idea is relatively simple: run pdflatex
until the labels converge. The code below has an
additional quirk of running bibtex several times
because citations may use crossref fields:

%.pdf: %.tex

pdflatex $*

- bibtex $*

pdflatex $*

- while (grep -q \

’^LaTeX Warning: Label(s) may have changed’ \

$*.log) do (bibtex $*; pdflatex $*;) done

Of course, this is not the full story. We need
to tell make that whenever a plot is changed, all
PDF files must be regenerated. This can be done by
adding to the Makefile lines like

document.pdf: plot-fig.tex

for each \input{plot-fig} line.
This line tells make to regenerate the main PDF

(using the rule above) when plot-fig.tex changes;
the companion plot-fig.eps could be added as an-
other dependency, but since the two plot-fig.* files
are always created simultaneously, it’s not necessary.

What about the conversion .eps→.pdf? Will
that be done as well? The answer is yes. TEX uses
a simple but sufficient algorithm for this conversion:
whenever .eps file is newer than the generated .pdf

file, the latter is regenerated. Thus, after you change
plot.gp, one line in the Makefile triggers a number
of events:

1. The program make finds the new plot.gp and
calls Gnuplot to regenerate plot-fig.tex.

2. As a side effect the file plot-fig.eps is recre-
ated by Gnuplot.

3. TEX finds the new plot-fig.eps and generates
a new plot-fig-eps-converted-to.pdf.

4. The new version of the main PDF file is created.

If you have many plots, you might find it cum-
bersome to add a dependency for each. Fortunately,
Makefiles can include subfiles, allowing us to auto-
matically generate the dependencies. Each line will

4 If both Gnuplot and Octave files are present, make

chooses the rule that appears first in the Makefile.

#!/usr/bin/env perl

Extract information from input statements

in TeX files. Usage:

makefigdepend FILE FILE FILE ... > depend

foreach my $file (@ARGV) {

open (FILE, $file) || die "open($file): $!";

$file =~ s/\.tex$/.pdf/;

while (<FILE>) {

while (/\\input(?:\[[^\]]+\])*\{([^\}]+)\}/g) {

print "$file: $1.tex\n";

}

}

close FILE;

}

exit 0;

Figure 7: A Perl script for generation of dependencies

have the form A: B, showing that file A depends on
file B. The way to do this is the following:

1. Add to the Makefile the line -include depend,
which instructs make to read the file depend if
it exists. The dash at the beginning tells make
not to worry if this file is not found (e.g. at the
start of the run).

2. Add to the Makefile the rules to generate the
file depend from the sources.

For the second task we need to write a program to
generate the dependency file. A simple Perl script
makefigdepend.pl to do this is shown in Figure 7.
(The choice of Perl makes our solution less “retro”
than it could be: sed and awk could do the job.)
Then the rule

depend: ${TEXFILES}

perl makefigdepend.pl \

${TEXFILES} >depend

generates the required file. For example, the file
depend for this article is the following:5

gnuplotmk.pdf: function-fig.tex

gnuplotmk.pdf: cars-fig.tex

gnuplotmk.pdf: kelvin-fig.tex

gnuplotmk.pdf: function-fig.tex

When we plot a data file, we want make to redo
the plot not only when the .gp file is new, but also
if the original data change. To this end, we add a
line to the Makefile:

cars-fig.tex: cars.dat

An astute reader can see that we wrote this depen-
dency manually. It is of course possible to write a

5 An exercise: why is an identical line about
function-fig.tex repeated in the generated file?

Plots in LATEX: Gnuplot, Octave, make

356 TUGboat, Volume 34 (2013), No. 3

TEXFILES = gnuplotmk.tex

PDFS = ${TEXFILES:%.tex=%.pdf}

all: ${PDFS}

%.pdf: %.tex

pdflatex $*

- bibtex $*

pdflatex $*

- while (grep -q \

’^LaTeX Warning: Label(s) may have changed’ \

$*.log) \

do (bibtex $*; pdflatex $*;) done

%-fig.tex: %.gp

gnuplot $<

%-fig.tex: %.m

octave $<

cars-fig.tex: cars.dat

clean:

$(RM) *.aux *.bbl *.dvi *.log \

*.out *.toc *.blg *.lof *.lot \

*.eps *-fig* depend

distclean: clean

$(RM) ${PDFS}

depend: ${TEXFILES}

perl makefigdepend.pl \

${TEXFILES} > depend

-include depend

Figure 8: Makefile for this paper

script to parse the Gnuplot files and put such lines
in the file depend. Again, this is left as an exercise.

If the data files themselves are generated by
another program, as would be typical, we can tell
make to run this program if necessary by adding
the dependencies of data files upon the necessary
input parameters. This leads to incredibly smart
behavior: as soon as any of the configuration or data
files change, make regenerates all pieces that could
be influenced by this change.

The last task is cleaning. A common convention
is to provide two targets: clean removes all gener-
ated files except the principal (PDF) output, while
distclean or veryclean deletes everything but the
original sources:

clean:

$(RM) *.aux *.bbl *.dvi *.log \

*.out *.toc *.blg *.lof *.lot \

*.eps *-pics.* *-fig* depend

distclean: clean

$(RM) ${PDFS}

In Figure 8 we show the Makefile for this paper.

Acknowledgements

We are grateful to Marcel Richter who urged us to put
together the notes in a readable form, and to Michael
Kotelyanskii who made many useful comments about
the manuscript.

References

Herndon, Thomas, M. Ash, and R. Pollin.
“Does High Public Debt Consistently Stifle
Economic Growth? A Critique of Reinhart
and Rogoff”. Working Paper 322, University
of Massachusetts, Amherst. Political Economy
Research Institute, 2013. http://www.peri.
umass.edu/fileadmin/pdf/working_papers/

working_papers_301-350/WP322.pdf.

Janert, Philipp K. Gnuplot in Action.

Understanding Data with Graphs. Manning
Publications Co., 2009.

Mecklenburg, Robert. Managing Projects with

GNU Make. O’Reilly Media Inc., Sebastopol,
CA, third edition, 2004. Available at
http://oreilly.com/catalog/make3/book/

index.csp.

Olver, F. W. J., D. W. Lozier, R. F. Boisvert,
and C. W. Clark, editors. NIST Handbook of

Mathematical Functions. Cambridge University
Press, New York, NY, 2010.

R Core Team. R: A Language and Environment

for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2013.
ISBN 3-900051-07-0.

⋄ Boris Veytsman

School of Systems Biology &

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

⋄ Leyla Akhmadeeva

Bashkir State Medical University

3 Lenina Str., Ufa, 450000, Russia

la (at) ufaneuro dot org

http://www.ufaneuro.org

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 34 (2013), No. 3 357

Entry-level MetaPost 3: Color

Mari Voipio

This installment of the entry-level MetaPost series
discusses color; previous topics include the basic grid
(TUGboat 34:1) and image transformations (34:2).
For basic information on running MetaPost, either
standalone or within a ConTEXt document, see http:
//tug.org/metapost/runningmp.html.

As we have seen in the earlier tutorials, Meta-
Post recognizes the colors Red, Green and B lue (plus
black and white). We have also used color for both
outlines and fills. Here’s an example star:

numeric u; u:= 2mm; % defining the unit

path star; % defining a star shape

star := (3u,3u) -- (0u,4u) -- (3u,5u)

-- (4u,8u) -- (5u,5u) -- (8u,4u)

-- (5u,3u) -- (4u,0u) -- cycle;

% outlined red star:

draw star withcolor red;

% filled blue star, a bit to the right:

fill star shifted (10u,0u) withcolor blue;

These three basic colors can be modified by
“removing” some color, thus letting more black in, or
by mixing in another color, e.g. white. The amount
of color is given by adding a number between 0 and 1
to the color name. I think about these as percentages;
I read .25red as “take 25% red and the rest black”.

On the other hand, we can add in a color other
than black. For instance, .25[red,white] gives a
color that is 75% red and 25% white—a quarter “of
the way” between red and white, thus closer to red.

Here are some examples:

numeric u; u := 5mm;

% all black:

fill unitsquare scaled 1u withcolor 0red;

fill unitsquare scaled 1u shifted (1u,0)

withcolor .25red;

fill unitsquare scaled 1u shifted (2u,0)

withcolor .5red;

fill unitsquare scaled 1u shifted (3u,0)

withcolor .75red;

fill unitsquare scaled 1u shifted (4u,0)

withcolor red; % basic red

fill unitsquare scaled 1u shifted (5u,0)

withcolor .25[red,white];

fill unitsquare scaled 1u shifted (6u,0)

withcolor .5[red,white];

fill unitsquare scaled 1u shifted (7u,0)

withcolor .75[red,white];

% all white (not visible):

fill unitsquare scaled 1u shifted (8u,0)

withcolor 1[red,white];

(Only eight squares are evident, although nine were
specified, because a white square on white paper, or
a white background, is “invisible”.)

Once we have found a pleasing shade, we can
name it in the same way as a path:

% defining a color:

color lightpink; lightpink := .8[red,white];

% a light pink star:

fill star withcolor lightpink;

However, this is a star and those are convention-
ally drawn in yellow. Not red, not green, not blue—
yellow. How to achieve that?

The answer lies in RGB values, RGB being the
color scheme used by MetaPost. Each RGB color
is expressed with three values in the range 0–255,
the numbers telling what proportions of red, green
and blue to mix to achieve a certain color. E.g., the
RGB code for the color “gold” is 255–215–0. To make
MetaPost understand the code, the color proportions
are given as fractions:

% fill star with gold (255-215-0):

fill star withcolor (255/255, 215/255, 0/255);

RGB charts are widely available online, so we
don’t have to guess the color codes (although that
can be quite fun). I use “The Other RGB Chart”
(http://www.tayloredmktg.com/rgb) because it is
organized by color and includes color names that I
like to use in my code.

numeric u; u := 10mm;

% color "dark orchid", 153-50-204

color darkorchid;

darkorchid := (153/255, 50/255, 204/255);

% fill a square:

fill unitsquare scaled 1u withcolor darkorchid;

Entry-level MetaPost 3: Color

358 TUGboat, Volume 34 (2013), No. 3

The RGB color scheme is primarily for screens,
so what you see is not necessarily exactly what prints.
Screens are different, too, so what you see might not
be the same as what I see. However, considering that
MetaPost is mostly used to draw schematic graphics,
the RGB color scheme is adequate for the job.

Bonus: Shading

If you use ConTEXt, you can easily use shading from
one color to another. The feature utilizes both Meta-
fun and some advanced PDF trickery and thus is
only available in ConTEXt. However, there is a cheat
that gives MetaPost users limited access to a similar
feature, see below.

Shading in ConTEXt. Shading can be either cir-
cular or linear. Circular shading can be either cen-
tered (option number 0, the default) or off-centered
to one of the corners (options 1–4). Linear shading
can be either diagonal (options 1–4) or vertical (op-
tions 5 and 7) or horizontal (options 6 and 8). Linear
option 0 defaults to option 5, left-to-right shading.

For shading we have to specify what is shaded,
how it is shaded (the option number) and the colors
to shade from and to. Here are examples of all the
circular shading options:

numeric u; u := 12mm;

path sq; sq := unitsquare scaled 1u;

% Circular shading (Metafun):

circular_shade (sq, 0, green, red);

circular_shade (sq shifted ((1u+2mm),0), 1,

green, red);

circular_shade (sq shifted ((2u+2*2mm),0), 2,

green, red);

circular_shade (sq shifted ((3u+3*2mm),0), 3,

green, red);

circular_shade (sq shifted ((4u+4*2mm),0), 4,

green, red);

Diagonal linear shading (1–4) examples:

% Diagonal linear shading:

linear_shade (sq, 1, blue, .75[red,white]);

linear_shade (sq shifted ((1u+2mm),0), 2,

blue, .75[red,white]);

linear_shade (sq shifted ((2u+2*2mm),0), 3,

blue, .75[red,white]);

linear_shade (sq shifted ((3u+3*2mm),0), 4,

blue, .75[red,white]);

Vertical/horizontal linear shading (5–8) examples:

% Vertical/horizonal linear shading:

linear_shade (sq, 5, blue, .75[red,white]);

linear_shade (sq shifted ((1u+2mm),0), 6,

blue, .75[red,white]);

linear_shade (sq shifted ((2u+2*2mm),0), 7,

blue, .75[red,white]);

linear_shade (sq shifted ((3u+3*2mm),0), 8,

blue, .75[red,white]);

One of my first MetaPost exercises was a graphic
that imitates a line drawn with pen and ink; I needed
such a line to create a document that looks like a
17th century manuscript. As I use ConTEXt (which
incorporates Metafun), I didn’t realize at the time
that I was using a very special feature— I was happy
enough to have finally found something that did
the job (although getting the line where I wanted it
wasn’t that easy. . .).

path cgline; % defining the line

cgline := (2mm,0) -- (70mm,0) -- (68mm,1mm)

-- (0,2mm) -- cycle;

% filling the line with shading:

linear_shade(cgline, 0,

black, 0.7[black,white]);

Shading in plain MetaPost. In plain MetaPost
we can achieve a shaded circle by drawing multiple
concentric rings, changing color at each step. For
this we use a loop. Here is a complete example:

outputtemplate := "%j-%c.mps";

beginfig (1);

for i = 1 step 1 until 100 :

a := i/100;

draw fullcircle scaled (i*.4mm)

withcolor a[red,green]

withpen pencircle scaled .4mm;

endfor;

endfig;

end.

Mari Voipio

TUGboat, Volume 34 (2013), No. 3 359

With Metafun, we can add xscaled or yscaled
to create a shaded ellipse:

for i = 1 step 1 until 100 :

a := i/100;

draw fullcircle scaled (i*.2mm)

withcolor a[white,blue]

withpen pencircle scaled .2mm;

endfor;

currentpicture := currentpicture xscaled 2;

Also with Metafun, a shaded square/rectangle
is possible:

for i = 1 step 1 until 100 :

a := i/100;

draw fullsquare scaled (i*.4mm)

withcolor a[green,black]

withpen pencircle scaled .4mm;

endfor;

This approach only works with PostScript out-
put (.mps/.eps/.ps), not with SVG output.

Filling and drawing at the same time

We can also both draw and fill a shape. However, we
need to fill first and then draw. It is a bit counterin-
tuitive at first; I think of this as coloring the shape,
then inking the outline on top.

When I was a little girl, my father entertained
me by teaching me to draw 3D shapes, including a
cube, so we’ll make that our example.

% draw 3d cube

numeric u; u := 6mm;

path cfront; cfront := (0,0) -- (5u,0)

-- (5u,5u) -- (0,5u) -- cycle;

path ctop; ctop := (0,5u) -- (5u,5u)

-- (7u,7u) -- (2u,7u) -- cycle;

path cside; cside := (5u,0) -- (7u,2u)

-- (7u,7u) -- (5u,5u) -- cycle;

fill cfront withcolor red;

draw cfront withpen pencircle scaled .1u;

% (black is the default color)

fill ctop withcolor .3red;

draw ctop withpen pencircle scaled .1u;

fill cside withcolor .1red;

draw cside withpen pencircle scaled .1u;

Credits

My thanks to Hans Hagen for the plain MetaPost
shading trick and for patiently answering my ques-
tions about color in MetaPost.

References

Running MetaPost and Metafun:
http://tug.org/metapost/runningmp.html

MetaPost manual:
http://tug.org/docs/metapost/mpman.pdf

MetaFun manual:
http://www.pragma-ade.com/general/

manuals/metafun-p.pdf

The Other RGB Color Chart:
http://www.tayloredmktg.com/rgb/

⋄ Mari Voipio

mari dot voipio (at) lucet dot fi

http://www.lucet.fi

[Editor’s note: This was not a submitted presen-
tation at the TUG’13 meeting; it is included in
this issue as a bonus article.]

Entry-level MetaPost 3: Color

360 TUGboat, Volume 34 (2013), No. 3

TUG 2013 abstracts

Editor’s note: The slides and other samples for
many of the talks are posted at http://tug.org/

tug2013/program.html.
−− ∗ − −

Jin-Hwan Cho

A case study on TEX’s superior power: Giving
different colors to building blocks of Korean syllables

In 2007 Dave Walden, the instigator and primary in-
terviewer of TUG’s Interview Corner, tossed a tricky
question at me: “One of the concerns of many people
in the TEX world is that TEX is relatively unknown
in the larger worlds of typesetting and word process-
ing, compared with commercial programs such as
Adobe’s InDesign and Microsoft Word. How do you
see the future of TEX when it comes to Asian lan-
guages?” Since then, it has been my mission to find
a wonderful answer, that is, a TEX product which
other programs cannot reproduce.

Unicode contains 11,172 modern Korean sylla-
bles, all of which are composed by only 24 building
blocks. In this talk, I will show an interesting TEX
example containing a large number of Korean syl-
lables each of which is grouped by building blocks
of different colors. Nobody, of course, would try
to reproduce this example with other commercial
programs.

Hans Hagen

How we try to make working with TEX comfortable

Just as book and music production is under pressure,
so is the way we produce documents. We’re accus-
tomed to instant rendering in browsers and even if
WYSIWYG is not that important when most of the
time is spent on writing instead of messing with the
look and feel, there is the comfort factor to keep in
mind. The last few years I have spent quite some
time on a comfortable edit-proofing cycle: from ad-
vanced syntax highlighting to fast rendering. Do
such things matter and is it worth the effort?

Hans Hagen

How we move(d) on with math

Given the amount of time I spend on LuaTEX and
ConTEXt I occasionally ask myself if it really makes
sense to do this. The answer to that question is
determined by several factors. Probably the most
important factor is the user base: what are their
demands, how do they like to code, what control do
they want, and therefore, where can these tools be of
help? Another factor is relevance: can this combina-
tion do certain things better than other tools? One
area that has always drawn users is math typesetting.

So, how up to date is TEX in that respect? Can we
still claim victory there? Did we evolve well? Can
we survive?

Shizuya Hakuta

LISP on TEX: A LISP interpreter written using
TEX macros

Although TEX macros are useful, writing macros
can be difficult for novice users. To make TEX eas-
ier to use, there is some research combining TEX
and another programming language. Approaches
have included calling an external interpreter and
embedding an additional language in a member of
the TEX engine family. We have taken yet another
approach, possible because TEX is a Turing machine:
implementing a language processor with TEX macros.
The result, called ‘LISP on TEX’, allows us to em-
bed LISP scripts in a LATEX document. The inter-
preter is written entirely with TEX macros and it
is available through CTAN (http://ctan.org/pkg/
lisp-on-tex). In this talk, we would like to illus-
trate how to use it and contrast it with LuaTEX,
PerlTEX, and related approaches.

Yoshifumi Maeda & Masataka Kaneko

Making math textbooks and materials
with TEX+KETpic+hyperlinks

Because of its precision and simplicity, the graphics
capability originally present in TEX should have great
potential in mathematics education. However, it
seems to be burdensome for typical TEX users to fully
utilize such capability. Although including graphical
images generated by using computer algebra systems
(CAS) is a typical alternate approach, the resulting
documents tend to become inefficient for practical
use in a classroom.

The CAS macro package named KETpic is one
of the most hopeful candidates for realizing conve-
nient and efficient use of TEX graphics. For instance,
it enables us to edit high-quality math textbooks
and materials containing: 2D-graphics which are pre-
cise in shape and length, and 3D-graphics which are
readily understandable.

In this talk, we emphasize that the programma-
bility of KETpic (associated with CAS) and TEX
could make the use of TEX more flexible. For exam-
ple, many documents with graphics can be readily
generated by using both for-loop programming and
“meta commands” of KETpic, and those documents
can be readily linked also by using the hyperref

package (connected to the “hypertextlink” function).
Such unified use of TEX graphics and TEX pro-

gramming through KETpic might be applicable to
many other situations in math classrooms, and should
enhance the possibility of TEX use in education.

TUGboat, Volume 34 (2013), No. 3 361

Yasuhide Minoda

TEX in educational institutes

Tokyo Educational Institute (Tetsuryokukai) is a
preparatory school specializing in the entrance exam
for Tokyo University. We use TEX for our texts,
workbooks, other handouts, and even for internal
documents and memorandums.

We used other software in the past, but we
switched to TEX and converted our original docu-
ments (over 100,000 pages) into TEX files over the
last few years.

In Tetsuryokukai, we now have over 200 teachers,
with various levels of computer skill, so in order to
introduce TEX we:

• developed related software (automatic installer,
TEX2img and so on),

• prepared various style files,
• educate and motivate teachers.

In this presentation, I would like to present what
we have been doing in our company, in the hope
that it can be an interesting and helpful example of
introducing TEX throughout an institution, especially
in the field of education.

Frank Mittelbach

The stony road to complex page layout

We discuss the challenges encountered in attempting
to automate complex page layout. What are the real
life use cases? How can they be approached? What
remains unresolved after more than three decades of
TEX programming efforts and why? (Slides and video
at http://www.latex-project.org/papers/.)

Frank Mittelbach

LATEX3: Using the layers

In this talk we will briefly present the architecture
of LATEX3 with its four conceptual layers: document
interface layer; typesetting element layer; document
design layer; programming layer.

We will then look in some detail at xparse—
a LATEX2ε-like user interface, as an example of the
LATEX3 document interface layer, that can already be
used to provide extended functionality for existing
LATEX2ε documents and packages.

We conclude with a brief tour of expl3, the
foundation layer for LATEX3 that provides the basis
for all higher-level modules of LATEX3 but can also be
usefully deployed to develop packages for LATEX2ε.

The expl3 language is by now in a stable state
and gets more and more traction outside the LATEX3
development work, which can be seen, for example,
by its use in a growing number of answers on the ques-
tion and answer portal http://tex.stackexchange.
com and in the appearance of LATEX2ε packages that

use it for programming. (Text and diagram based
on a previous talk by Joseph Wright.)

Ross Moore

Making mathematical content accessible using
Tagged PDF and LATEX

‘Tagged PDF’ (more specifically PDF/UA) is the
method developed by Adobe to allow the Web Con-
tent Accessibility Guidelines (WCAG 1.0, WCAG 2.0)
to be satisfied within PDF documents. In this talk
I will show the latest developments on using an
extended version of pdfTEX to allow Tagged PDF

documents to be produced, satisfying both PDF/A

(Archivability) and PDF/UA (Universal Accessibility).
I’ll show examples which include quite compli-

cated mathematical expressions, fully tagged with
MathML, which can be ‘Read Aloud’ in Adobe’s Ac-
robat and free Reader software. These will include
‘real-world’ documents containing such features as
top-matter, nested list environments, logos, water-
marks and other pagination artifacts, tabular mate-
rial within mathematics, and some support of colour
and text-styling. A special math-indexing feature has
been developed, which allows the result of processing
by external programs to be identified and reused in
successive LATEX runs. This indexing feature leads
to significant time savings when developing a full
document over many processing runs.

The full paper is available at http://ceur-ws.
org/Vol-1010/paper-01.pdf.

Keiichiro Shikano

Indexing makes your book perfect

Most of you already know how to make books using
LATEX. And some of you might know how to make
back-of-the-book indexes with LATEX. However, are
you ready to worry about how the index of your book
should be? Or, if you have already gone through a
trouble of writing or editing books, have you actually
taken advantage of indexing in your work?

The index, which would be inserted at the back
of your book, is not just a reference list of words

362 TUGboat, Volume 34 (2013), No. 3

appearing in your book. Picking out keywords or
chunks of text from your manuscript, then arranging
them in another way — usually in alphabetical order,
often complements your book. In other words, you
can exploit indexing to make your book better!

Through this tutorial, you will find what is re-
quired for good indexes, how indexing helps you and
your readers, and some techniques for making back-
of-the-book indexes with LATEX. On top of that, in
non-alphabetical languages, you cannot simply use
makeindex or xindy, mainly because these languages
don’t have any concept of alphabetical order. So, I
will also go over practical cases of making back-of-
the-book indexes in non-alphabetical languages.

Yumi Takata

Japanese typeface design—similarities and
differences from Western typeface design

What is Japanese typeface design about? As a
Japanese type designer for nearly 30 years, I will
explain what it is to design a Japanese typeface, and
what it does and does not have in common with
designing a Western typeface.

First, we will take a quick look at the history of
Japanese characters, in particular how the shapes of
the characters have evolved through time.

Then I will illustrate the process of Japanese
typeface design in detail. Japanese typeface designers
face the challenge of dealing with more than 9,000
characters and multiple constituent scripts. Some
examples will be given of the various techniques
we use to create readable and visually appealing
typefaces, including adjusting for optical illusion.

Another big challenge we face is the vertical
and horizontal writing modes. I will show how we
fine-tune the glyph design of each character, one by
one, for both vertical and horizontal writing modes.

Finally, the complications related to Japanese
coded character sets will be briefly explained.

I hope my presentation gives you a grasp of
the Japanese typeface design and leads to further
discussion.

Yusuke Terada

Development of TeXShop— the past and the future

TeXShop is a widely-used open source TEX editor and
previewer for Mac OSX. TeXShop is developed by
Richard Koch, emeritus professor of mathematics at
the University of Oregon, and many other worldwide
contributors, including me. Now it is localized for as
many as 10 languages. While it has already sufficient
functions for editing TEX documents, TeXShop is
still being updated. In this presentation, I will give
an outline of the design concept of TeXShop and
some new features that have been added recently, es-

pecially for editing Japanese documents. In addition,
I will show a vision of TeXShop for the future.

Didier Verna

TiCL: The prototype

Last year, I presented some ideas about using one
of the oldest programming language (Lisp), in order
to modernize one of the oldest typesetting systems
(TEX). That talk was mostly focused on justifying
the technical fitness of Lisp for this task. This time, I
would like to take the opposite view and demonstrate
a prototype from the user’s perspective. This will
involve showing what a TiCL document could look
like, the implications in terms of typesetting vs. pro-
grammatic features, and also in terms of extensibility
(relating this to package authoring).

Alan Wetmore

Wind roses for TEX documents

In recent years a great many systems for including
plots and graphics in TEX documents have been de-
veloped. Many varieties of scientific plots are directly
supported by these packages. One style of plot which
has not been available is a wind rose: describing the
probability of wind speed and direction with a styl-
ized polar plot. This report will describe a set of
macros for TikZ for preparing wind rose plots.

Masafumi Yabe

Japanese text layout—basic issues

This tutorial presents basic issues concerning page
formats and typesetting methods applied to the main
text of a Japanese book with reference to the ty-
pographic characteristics of the Japanese writing
system. The issues to be discussed are threefold.

The first section focuses on the text direction,
vertical or horizontal writing mode, which depends
on an editorial decision and affects, in many ways,
the page layout as well as the printed forms of a
Japanese text.

The second section concerns typesetting meth-
ods applied to basic Japanese text as a sequence of
characters without spaces between words, and illus-
trates relevant typographic building blocks in line
with composition rules with an emphasis on the func-
tional importance of punctuation marks and their sur-
rounding spaces for line and paragraph adjustments.

The last section addresses several issues about
methods for mixed composition of Japanese and
Western texts, presenting major technical problems
relating to differentiation and harmonization of ty-
pographically heterogeneous elements in sequential
texts: Western text in the context of main horizontal
or vertical Japanese text as well as Japanese text in
the context of main Western text.

TUGboat, Volume 34 (2013), No. 3 363

ConTEXt Group: Proceedings,
6th meeting (2012)

The ConTEXt Group publishes proceedings of the
annual ConTEXt meetings.
http://group.contextgarden.net.

Dayplan; pp. 5–6
Schedule of talks.

Mari Voipio, CrafTEX; p. 7
[Expanded version published in TUGboat 33:3.]

Taco Hoekwater, MetaPost: PNG Output;
pp. 8–9

[Published in TUGboat 34:2.]

Patrick Gundlach, Database publishing with
LuaTEX and the speedata Publisher; p. 10

Database publishing is the repetitive (semi-)auto-
matic transformation from a data source to some kind
of output (HTML, PDF, EPUB, . . .). A common de-
mand in high volume output is to optimize page
usage. Our software (called ‘speedata Publisher’) is
written in Lua and makes heavy use of the LuaTEX
engine. We use TEX to break paragraphs into lines,
arrange the programmatically created boxes and glue
for layout of complex tables and to write clean PDF.
The publisher is released under the AGPL.

Willi Egger, Minutes of the 2nd ConTeXt
Group membership meeting; pp. 11–12

Taco Hoekwater, MetaPost path resolution
isolated; pp. 13–18

A new interface in MPLib version 1.800 allows
one to resolve path choices programmatically, with-
out the need to go through the MetaPost input lan-
guage.

Taco Hoekwater, Parsing PDF content streams
with LuaTEX; pp. 19–23

The new pdfparser library in LuaTEX allows
parsing of external PDF content streams directly from
within a LuaTEX document. This paper explains its
origin and usage.

Luigi Scarso, MFLua: Instrumentation of
METAFONT with Lua; pp. 24–35

[Published in TUGboat 32:2.]

Willi Egger, Conference portfolio; pp. 36–40
In accordance with the conference’s theme, a

workshop for making a portfolio binder was held. The
portfolio was made so it could carry the papers for
the conference, such as preprints of the proceedings,
additional papers and the carpenter’s pencil given
to each participant. The construction is made from
a single sheet of cardboard with folded flaps along

three sides, so that it completely envelops the content.
The portfolio is held closed by a black elastic band.

Hans Hagen, Simple spreadsheets; pp. 41–51
Occasionally a question pops up on the Con-

TEXt mailing list such that answering it becomes a
nice distraction from a boring task at hand. The
spreadsheet module is the result of such a diversion.
As with other support code in ConTEXt, this is not a
replacement for ‘the real thing’ but just a nice feature
for simple cases. Of course some useful extensions
might appear in the future.

Hans Hagen and Idris Samawi Hamid,
Oriental TEX: Optimizing paragraphs; pp. 52–81

One of the objectives of the Oriental TEX project
has always been to play with paragraph optimiza-
tion. The original assumption was that we needed an
advanced non-standard paragraph builder to handle
Arabic correctly, but in the end we found that a more
straightforward approach is to use a sophisticated
OpenType font in combination with a paragraph
postprocessor that uses the advanced font capabil-
ities. This solution is somewhat easier to imagine
than a complex paragraph builder but still involves
quite some juggling.

Jean-Michel Hufflen, MlBibTEX and its new
extensions; pp. 82–91

These last years, MlBibTEX’s kernel functions
have been reused and extended in order to put new
programs about bibliographies into action. Examples
are the hal program, allowing an open archive site
to be populated, the mlbiblatex program, building
bibliographies suitable for the biblatex package, the
mlbibcontext program, doing the same task for Con-
TEXt documents. We show how all these programs
are organised, and explain how some operations can
be refined or extended. From an efficiency point of
view, the programs mlbiblatex and mlbibcontext

are written using Scheme only, so they are more effi-
cient than analogous programs that would interpret
a .bst bibliography style of BibTEX.

Jean-Michel Hufflen, Demonstration of the
mlbibcontext program; pp. 92–93

This short statement aims to sketch the broad
outlines of the presentation performed at the 6th
ConTEXt meeting.

Abstracts; pp. 94–95

Participant list of the 6th ConTeXt meeting;
pp. 96–97

[Received from Taco Hoekwater.]

364 TUGboat, Volume 34 (2013), No. 3

MAPS 44 (Spring 2013)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

Taco Hoekwater, Redactioneel [From the
editor]; pp. 1–2

Hans Hagen, Does TEX have a future; pp. 3–7
[Published in TUGboat 34:2.]

Kees van der Laan, CD and DVD labels;
pp. 8–12

Making CD and DVD labels by PostScript, to
be printed on prefabricated glued paper, assisted by
Photoshop for the conversion of an illustration into
EPSF, is explained.

Koen Wybo, Review of LATEX and Friends by
Marc van Dongen; pp. 13–14

Saying that LATEX is not easy to learn is a truism.
With a good book like LATEX and Friends, you will
more than adequately be put on the road.

C.M. Fortuin, Kegelsneden benaderen [Conic
approximation]; pp. 15–26

Conic sections can systematically be approxi-
mated by vertices of a (part of a) circumscribed
polygon. An algorithm is developed for the determi-
nation of the support points of a third degree iterative
“Bézier” approach of a conic. Initially, three points
are needed. The algorithm is independent of the
position of the conic section.

Kees van der Laan, Pythagoras Trees in
PostScript; pp. 27–48

Pythagoras Trees are drawn elegantly in Post-
Script, varied by randomness, colour and the use of
curves. Lindenmayer production rules for system-
atic PS program development are enriched by PS

concepts.

Kees van der Laan, Classical Math Fractals in
PostScript; pp. 49–78

Classical mathematical fractals in BASIC are
explained and converted into lean-and-mean EPSF

defs, of which the .eps pictures are delivered in .pdf
format and cropped to the prescribed BoundingBox

when processed by Acrobat Pro, to be included easily
in pdf(LA)TEX, Word, . . . documents. The EPSF frac-
tals are transcriptions of the Turtle Graphics BASIC

codes or programmed anew, recursively, based on
the production rules of oriented objects. The Linden-
mayer production rules are enriched by PostScript
concepts. Experience gained in converting a TEX
script into WYSIWYG Word is communicated.

Hans van der Meer, Exam Papers Revisited;
pp. 79–90

Described is a module for the consistent produc-
tion and maintenance of student examinations. It
can typeset questions with long or short answers, yes/
no questions and multiple choice. The questions are
formulated as XML documents and access ConTEXt
through a special interface with HTML-like syntax.

Hans van der Meer, A bit of HTML and a bit of
ConTEXt; pp. 91–96

Described is a module for the typesetting of a
subset of HTML operators. These can be used to
build data sets in XML with HTML as formatting
elements and have them typeset in ConTEXt. Other
features are the inclusion of predefined content and
provision for language localized words and expres-
sions.

Hans van der Meer, Yet Another Table;
pp. 97–105

Described is a module for the typesetting of
tables. The module resembles the LATEX tabular

environment but is in fact based on a much older
package, the origins of which are lost to the author.

Sietse Brouwer, Making the ConTEXt wiki
easier to improve; pp. 106–108

An effort is underway to encourage both reading
and editing of the ConTEXt wiki. This article names
nine concrete improvements that are part of this
effort, and makes a case for each of them. These
nine items are the following. To impose structure
and to ease navigation: predictable article names;
navboxes; and a simple Main Page. To coordinate
efforts: a “How this wiki works” page; a village pump;
and templates for flagging problems. To make things
easy for our editors: templates for common things;
template documentation; sandboxes and testcases
for templates.

Taco Hoekwater, MetaPost: Numerical engines;
pp. 109–113

After years of talks about future plans for Meta-
Post 2.0, finally real progress is being made. This
paper introduces a pre-release of MetaPost 2 that
can optionally use IEEE floating point for its internal
calculations instead of the traditional 32-bit integers.

Hans Hagen, Simple Spreadsheets; pp. 114–122
A ConTEXt spreadsheet module, based on Lua.

Michael Guravage, 5th International ConTEXt
Meeting; pp. 123–126

Conference report.

[Received from Wybo Dekker.]

TUGboat, Volume 34 (2013), No. 3 365

Die TEXnische Komödie 3–4/2013

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (http://www.
dante.de). [Non-technical items are omitted.]

Die TEXnische Komödie 3/2013

Markus Kohm, Was ist eigentlich: die
Besonderheit des @-Zeichens in Befehlsnamen?
[What’s special about @ in command names?];
pp. 16–23

Nowadays many TEX users find their informa-
tion about (LA)TEX not only in books but somewhere
on the Internet. Often the responder uses terms and
things for which the knowledge about their meaning
is assumed. "What’s special" shall be a loose series
of articles that deliver the meaning behind common
terms. This installment covers the @ within macro
names. Especially with questions that are not easily
solved by using a special class or package, the TEX
user is confronted with commands that have a @ in
their names. This may raise the suspicion that they
cannot be used like other commands.

Roger Jud, Autovervollständigung mit
TEXnicCenter [Auto-completion with
TEXnicCenter]; pp. 24–27

This article shows how to use and customize
TEXnicCenter’s auto-completion.

Marco Daniel, Das Paket minted und der
Apostroph [The minted package and the
apostrophe]; pp. 28–29

Highlighting program listings with the help of
Pygmentize becomes increasingly popular. A small
disadvantage of this method is handling of apostro-
phes, which are unfortunately often used in various
programming languages and are displayed with serifs
in the output. This article shows how to fix this.

Roger Jud, Eulersche Gerade mit tkz-euclide
zeichnen [Drawing Euler’s straight lines with
tkz-euclide]; pp. 30–36

Using the Euler straight line construction, this
article presents some functions of the tkz-euclide

package.

Herbert Voß, Schleifenmakro [Loop macro];
p. 37

There are various packages that offer macros for
loops. Since nowadays ε-TEX features are universally
available, one may define his own macro working
with recursion.

Die TEXnische Komödie 4/2013

Michael Piefel, UML-Diagramme in
LATEX-Dokumenten [UML diagrams in LATEX
documents]; pp. 21–28

For software developers UML is a commonly used
modelling language with a clear graphical notation.
In particular, class diagrams can be used to document
object-oriented analyses and designs. This article
shows several approaches to embed and create such
diagrams in LATEX documents.

Axel Kielhorn, LATEX auf Mobilgeräten
[LATEX on mobile devices]; pp. 29–33

Tablets are devices for consumers, not for pro-
ducers. That’s the common opinion. An article in
TUGboat 33:2 (2012) tried to refute this by installing
LATEX on an Android tablet, which required installing
GNU/Linux. Clearly this solution was not optimal!
This article shows what has happened since then.

Herbert Voß, QR-Codes im Rand ausgeben
[Printing QR codes in the margin]; pp. 34–37

In books and lecture transcripts there are more
and more references to external literature given as
QR codes. Especially for electronic media, this can
be useful. QR codes can be easily created with
pst-barcode, while shortening a URL requires more
effort.

Roger Jud, Punktzahlen addieren und ausgeben
[Adding points and printing them at the beginning
of the document]; pp. 38–40

A teacher’s life involves creating exams, exercise
sheets, etc. Often one assigns points to individual
exercises that then need to be added up. This ar-
ticle shows how this can be achieved without using
dedicated document classes (such as exam by Philip
Hirschhorn).

[Received from Herbert Voß.]

366 TUGboat, Volume 34 (2013), No. 3

TheTreasure Chest

This is a list of selected new packages posted to
CTAN (http://ctan.org) from July through De-
cember 2013, with descriptions based on the an-
nouncements and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believe to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

http://tug.org/ctan.html

biblio

besjournals in biblio/bibtex/contrib

For journals published by the
British Ecological Society.

fonts

accanthis in fonts

An old style serif font.

alegreya in fonts

A dynamic serif design intended for literature.

anonymouspro in fonts

A monospaced font in several styles.

* fbb in fonts

Bembo-like font based on Cardo.

fandol in fonts

Four fonts for Chinese typesetting. (See article
in this issue.)

gillius in fonts

A sans serif inspired by Gill Sans.

merriweather in fonts

Harmonized serif and sans serif design with a large
x-height and open forms.

mintspirit in fonts

A distinctive sans serif.

xcharter in fonts

Adds oldstyle figures, small caps, and more to Charter.

graphics

harveyballs in graphics/pgf/contrib

Draw Harvey Balls.

neuralnetwork in graphics/pgf/contrib

Draw neural networks and other colorful graphs.

timing-diagrams in graphics/pgf/contrib

Draw timing diagrams.

language

bxcjkjatype in language/japanese/bxcjkjatype

Support for Japanese typesetting with pdfLATEX
and the cjk package.

kotex-oblivoir in language/korean

Document class for Korean based on memoir.

kotex-plain in language/korean

Typeset Hangul using plain TEX.

kotex-utf in language/korean

Typeset Hangul, with input in UTF-8.

kotex-utils in language/korean

Scripts and support files for index generation
and Korean typesetting.

macros/generic

pdf-trans in macros/generic

Transformations of TEX boxes.

macros/latex/contrib

askmaps in macros/latex/contrib

American-style Karnaugh maps.

brandeis-dissertation in macros/latex/contrib

Brandeis dissertations.

embedall in macros/latex/contrib

Attach all source files to the generated PDF.

graphviz in macros/latex/contrib

Write graphviz inline in LATEX documents.

* grid-system in macros/latex/contrib

Support the grid system as known from HTML

and CSS.

gtl in macros/latex/contrib

Manipulate generalized token lists.

guitarchordschemes in macros/latex/contrib

Typeset guitar chord and scale tablatures.

idxcmds in macros/latex/contrib

Indexing with semantic commands.

lexref in macros/latex/contrib

For European law, especially Swiss and German.

lt3graph in macros/latex/contrib

A graph data structure for expl3.

macroswap in macros/latex/contrib

Swap the meaning of two macros by name.

metrix in macros/latex/contrib

Typeset metrics (prosodics) as symbols or
above the syllables of a verse.

minorrevision in macros/latex/contrib

Quote and refer to a manuscript for minor revisions.

biblio/bibtex/contrib/besjournals

TUGboat, Volume 34 (2013), No. 3 367

noindentafter in macros/latex/contrib

Suppress indentation after environments, etc.

pas-cours in macros/latex/contrib

Write math lessons using TikZ.

pas-crosswords in macros/latex/contrib

Typeset crossword grids and definitions.

pas-tableur in macros/latex/contrib

Make spreadsheets using TikZ.

phonrule in macros/latex/contrib

Typeset linear phonological rules as in Chomsky’s
The Sound Pattern of English.

reflectgraphics in macros/latex/contrib

Fancy reflections for LATEX graphics.

ribbonproofs in macros/latex/contrib

Draw “ribbon proofs”, a diagrammatic representation
of a mathematical proof that a computer program
meets its specification.

sslides in macros/latex/contrib

A slides class including header and footer.

translations in macros/latex/contrib

Internationalization of LATEX2ε packages.

unravel in macros/latex/contrib

Step through LATEX code for debugging.

with-macro in macros/latex/contrib

Pass token lists as parameters.

xcjk2uni in macros/latex/contrib

Convert CJK characters to Unicode in pdfTEX.

macros/latex/contrib/beamer-contrib

themes/phnompenh in m/l/c/beamer-contrib

Simple Beamer theme.

macros/latex/contrib/biblatex-contrib

biblatex-source-division in m/l/c/biblatex-contrib

Support divisions of sources in references.

macros/luatex

lilyglyphs in macros/luatex/latex

Include musical symbols from LilyPond in LuaLATEX
or X ELATEX.

simurgh in macros/luatex/latex

Typeset Parsi in LuaLATEX.

support

datatooltk in support

Java application to accompany datatool package.

ltximg in support

Isolate and convert all TikZ or PSTricks graphics.

tlg2latex in support

Convert text from Thesaurus Linguae Graecae.

In memoriam: Jean-Pierre Drucbert
(1947–2009)

Denis Bitouzé, on behalf of GUTenberg

Jean-Pierre Drucbert

GUTenberg, the French TEX user group, has learned
with great sadness that Jean-Pierre F. Drucbert
passed away on January 25, 2009. Jean-Pierre wrote
several notable LATEX packages, including minitoc

and xr; a complete list can be found at http://www.
ctan.org/author/drucbert.

We asked colleagues of Jean-Pierre about his
wishes concerning his packages, but they don’t know.
Their license (LPPL) allows anybody of good will to
undertake their development.

Born in Lille, France, in 1947, Jean-Pierre Druc-
bert earned a degree in 1970 in engineering at the
École Nationale Supérieure de l’Aéronautique et de
l’Espace (National School of Aeronautics and Space).

After majoring in computer science, he joined
the Centre d’Études et de Recherches de Toulouse”
(now ONERA) as a systems engineer, mainly in the
field of IT applied to scientific computing. Jean-
Pierre set up and administered several generations of
computers (including an CII-Iris 80 and Cray XMP),
particularly for scheduled computational jobs. More-
over, he provided IT support to hundreds of users,
mostly scientists, especially in the field of parallel
computing.

Meanwhile, fascinated by the sciences of lan-
guage and typography, Jean-Pierre showed an early
interest in TEX and LATEX. He compiled and installed
them on several different systems, from Multics to
GNU/Linux through various proprietary Unix sys-
tems. He offered to ONERA users a very complete
LATEX manual, including French translation of many
packages’ documentation. He contributed for more
than twenty years to the LATEX community by devel-
oping packages.

He will be missed.

support/tlg2latex

368 TUGboat, Volume 34 (2013), No. 3

Book review: The Essential Knuth

David Walden

Donald E. Knuth and Edgar G. Daylight, The
Essential Knuth. Lonely Scholar, 2013, 94 pp.
Paperback, US$15.00. ISBN 978-9491386039.

The Essential Knuth is primarily an interview of
Don Knuth by Edgar Daylight. It is published as a
booklet of about 90 pages divided into six chapters:
1. Childhood, 2. College, 3. ALGOL, 4. Structured
Programming, 5. Computer Pioneers, 6. Historiog-
raphy. There is also a preface by the interviewer,
a 66-item bibliography of books and papers men-
tioned during the interview, and an index. The title
page states that the booklet was edited by Kurt De
Grave. In other words, it is longer and more richly
documented and carefully published than many in-
terviews.1 The interview was done in November 2012
in Frankfurt, Germany.

Edgar Daylight is a researcher in the history
of programming languages living in Belgium, with
a goal of extensively interviewing high-profile and
retired computer scientists.2 Thus, his interview
of Knuth deals with Knuth’s work with computer
languages and language processors, Knuth’s interest
in the methodology of structured programming, and
Knuth’s personal involvement with the computing
pioneers of the 1950s and 1960s who were involved
with computer language research, such as Ole-Johan
Dahl, Edsger Dijkstra, C.A.R. (Tony) Hoare, and
Peter Naur. There is almost no mention of TEX in
the booklet.

I am happy I bought and read the booklet. It
covers some things about Knuth that I had not read
elsewhere and gives a slightly different slant on some

1 Some of them are available at

http://tug.org/interviews/#knuth.

2 Email of August 3, 2012, by Daylight to SIGCIS.org.

things of which I was already aware. Although the
booklet doesn’t go into Knuth’s work with TEX, that
was OK with me; plenty has already been written
(by Knuth and others) about TEX in this our TEX
community. Rather, because I came into comput-
ing in the 1950s and 1960s and knew of many of
the computing pioneers from that era through their
books and journal articles, I greatly enjoyed learning
more about Knuth’s interactions with the rest of
those pioneers. Also, I am interested in the prac-
tice of researching and writing computing history,
and the booklet contains some discussion, both im-
plicit and explicit, of this. For those interested in
more detail in this regard, I wrote another review
for the IEEE Annals of the History of Computing ; a
preprint of that review is at http://walden-family.
com/ieee/daylight-knuth.pdf.

I recommend the booklet. However, I suspect
that many potential readers will wish it was available
in ebook form.

* * *
TEX is mentioned in the booklet in a couple of dis-
cussions. Regarding specifying programs, Knuth
states that he could not have specified TEX with-
out also being a user of TEX. Regarding structured
programming, Knuth notes that TEX is not entirely
structured, as it includes macros which don’t have
to obey nested structure. Regarding portability of
programs, Knuth states,

[W]hen I wrote TEX, I was extremely careful
about portability. I completely avoided float-
ing point arithmetic in places where the com-
putations could affect page layout. Instead
I implemented my own arithmetic for inter-
nal computations, using integer operations
only, and I checked boundary conditions so
my programs would be machine-independent.
I wanted to be sure that everyone who uses
TEX would get the same results, regardless
of the country they lived in and regardless of
the operating system they were using, either
now or fifty years from now.

Regarding this machine portability point, else-
where in the booklet Knuth states that he is not
good at forecasting, for example, how big computer
memories would become. I wonder if he also didn’t
anticipate a standard specification for floating point
computer arithmetic; or if he anticipated a specifi-
cation but couldn’t wait; or if he would in any case
have developed his own portable arithmetic capabil-
ity for TEX.

⋄ David Walden

http://www.walden-family.com/texland

David Walden

TUGboat, Volume 34 (2013), No. 3 369

Book review: Introduction to LATEX

Clerk Ma

Leo Liu, Introduction to LATEX, Publishing House
of Electronics Industry (China), July, 2013, 566 pp.,
Paperback, CNY ¥79, ISBN 978-7-121-20208-7.
(刘海洋, LATEX 入门, 电子工业出版社, 2013 年 7 月,
566页, 简装, 79元, ISBN 978-7-121-20208-7.)

It is not too difficult to typeset English with LATEX.
But when LATEX meets the Chinese language, the
task becomes tougher. When I used LATEX to type-
set my first equation in 2009, I knew only one option:
the CJK package [1]. At that time I could not find
any book to help me to learn LATEX typesetting of
Chinese in depth. (I ended up using the CJK pack-
age for a long time, then switched to xeCJK [2] in
2010 and LuaTEX-ja [3] in 2012.)

Recently I at last found a book sold in book-
stores and devoted to LATEX typesetting of the Chi-
nese language. The book covers every aspect of
LATEX interesting to Chinese (and most) users: float
objects, tables, mathematical formulae, beamer pre-
sentations. Moreover, at the end of the book there
is a short course of programming in LATEX and plain
TEX for the benefit of those readers who want to
write their own macros. With many detailed exam-
ples, I feel the book should be recommended both to
LATEX beginners and more experienced users want-
ing to typeset Chinese.

This book recommends using the X ETEX pack-
age xeCJK to typeset Chinese. In the world of mul-
tilingual documents, X ETEX has become a very pop-
ular and convenient TEX engine. The package works
very well with both Chinese and (with zxjafbfont [6])
Japanese. As far as I know, xeCJK is the best im-
plementation of Chinese typography.

The author, Leo Liu, is a resident expert of
the largest Chinese TEX forum CTEX [4]. He is the
maintainer of xeCJK and zhmCJK [5].

♦ ♦ ♦

用 LATEX来排版英文并不复杂。但是，当 LATEX遭遇

中文的时候，事情就开始变得棘手。在 2009年的时候，
我用 LATEX 排出了我第一个数学公式，当时我只知道

有 CJK能处理相关的中文问题。在当时，我找不到一

本能引导我学习 LATEX的书，尤其是处理中文方面。我
用CJK包用了很长时间，之后我换到了 xeCJK (2010
年) 和 LuaTEX-ja (2012 年)。最近，我发现书店里面
正在卖一本新 LATEX书。该书覆盖了 LATEX的方方面

面：浮动体处理，表格，数学公式，beamer。在该书
末尾，则给出了一个简短的关于 LATEX以及 plain TEX
的编程教程。这些内容可以满足那些想要实现自己的宏

的读者们。书中附带了大量详尽的例子，适合推荐给中

国的初学者和在排版中文方面有问题的其他一些人们。

该书主要使用 xeCJK 来排版中文。在 TEX 界，使用

X ETEX是最流行的也是最方便的。而 xeCJK包可以完
美处理中文和日文 (一个补丁版本叫做 zxjafbfont)。据
我所知，xeCJK是中国排版传统的一个最好的实现。

该书作者，刘海洋，是中国最大论坛CTEX的TEX
专家。他维护着 xeCJK和 zhmCJK两个包。

References

[1] Werner Lemberg, cjk — CJK language support,
2012. http://ctan.org/pkg/cjk.

[2] Jiang Jiang, Qing Lee, Leo Liu and
Wenchang Sun, xecjk — Support for
CJK documents in X ELATEX, 2013.
http://ctan.org/pkg/xecjk.

[3] Hironori Kitagawa, luatexja — Typeset
Japanese with Lua(LA)TEX, 2013.
http://ctan.org/pkg/luatexja.

[4] CTEX: Chinese TEX. http://www.ctex.org.

[5] Leo Liu, zhmcjk — Simplify configuration
of CJK installations, 2012.
http://ctan.org/pkg/zhmcjk.

[6] Takayuki Yato, zxjafbfont — Fallback CJK

font support for xeCJK, 2012.
http://ctan.org/pkg/zxjafbfont.

⋄ Clerk Ma

clerkma@gmail.com

Book review: Introduction to LATEX

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey

Center for Computing Sciences, Bowie, Maryland

CSTUG, Praha, Czech Republic

Florida State University, School of Computational

Science and Information Technology,

Tallahassee, Florida

IBM Corporation, T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

Marquette University, Department of

Mathematics, Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg, Heidelberg, Germany

StackExchange, New York City, New York

Stanford University, Computer Science Department,

Stanford, California

Stockholm University, Department of Mathematics,

Stockholm, Sweden

University College, Cork, Computer Centre,

Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB,

Vilnius, Lithuania

370 TUGboat, Volume 34 (2013), No. 3

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: texnical.designs (at) gmail.com

Web: http://www.elance.com/s/dlatchman

Proficient and experienced LATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) gmail.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for nearly 20 years, and
handled various projects. I am a software consultant
with Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
eBooks, ePub, Mobi, iBooks, DTD, XSLT, XSL-FO,
Schema, ebooks, OeB, etc.

Sievers, Martin

Klaus-Kordel-Str. 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

TUGboat, Volume 34 (2013), No. 3 371

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,
newsletters, and theses in TEX and LATEX: Automated
document conversion; Programming in Perl, C, C++

and other languages; Writing and customizing macro
packages in TEX or LATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about seventeen years of experience
in TEX and thirty years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.latexcopyeditor.net

http://www.editingscience.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

2014

Feb 28 –
Mar 2

Typography Day 2014, Symbiosis
Institute of Design, Pune, India.
www.typoday.in

Mar 10 TUGboat 35:1, submission deadline
(regular issue)

Apr 10 – 14 TYPO San Francisco, “Rhythm”, Yerba
Buena Center for the Arts, San Francisco,
California. typotalks.com/sanfrancisco

Apr 11 – 14 DANTE Frühjahrstagung

(25th anniversary of DANTE e.V.)

and 50th meeting,
Universität Heidelberg, Germany.
www.dante.de/events/dante2014.html

Apr 30 –
May 4

EuroBachoTEX2014: EuroTEX

and 22nd BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex

Jun 9 –
Aug 1

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on type,
bookmaking, printing, and related topics.
www.rarebookschool.org/schedule

Jun 23 – 26 Book history workshop, École de
l’institut d’histoire du livre,
Lyon, France. ihl.enssib.fr

Jul 2 – 4 International Society for the History and
Theory of Intellectual Property (ISHTIP),

6th Annual Workshop, “The Instability of
Intellectual Property”. Uppsala, Sweden.
www.ishtip.org/?p=596

Jul 8 – 12 Digital Humanities 2014, Alliance of
Digital Humanities Organizations,
Lausanne, Switzerland.
dh2014.org, adho.org/conference

TUG2014

Portland, Oregon.

Jul The 35th annual meeting of the
TEX Users Group.
tug.org/tug2014

372 TUGboat, Volume 34 (2013), No. 3

Calendar

Aug 4 – 8 Balisage: The Markup Conference,
Washington, DC. www.balisage.net

Aug 10 – 14 SIGGRAPH 2014,
Vancouver, British Columbia.
s2014.siggraph.org

Sep ACM Symposium on Document
Engineering, Fort Collins, Colorado.
www.documentengineering.org

Sep 8 – 9 “Forms and formats: Experimenting
with print, 1695-1815”, Centre for the
Study of the Book, Bodleian Library,
University of Oxford, UK.
www.bodleian.ox.ac.uk/csb/community

Sep 8 – 13 8th International ConTEXt Meeting,
Bassenge, Belgium.
meeting.contextgarden.net/2014

Sep 14 – 19 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 17 – 21 Association Typographique Internationale
(ATypI) annual conference,
Theme: “Point Counter Point”,
Barcelona, Spain. www.atypi.org

Sep 17 – 21 SHARP 2014, “Religions of the Book”,
Society for the History of Authorship,
Reading & Publishing, Antwerp, Belgium,
www.sharpweb.org

Nov 8 – 9 The Twelfth International Conference
on Books, Publishing, and Libraries,
“Disruptive Technologies and the
Evolution of Book Publishing
and Library Development”,
Simmons College, Boston, Massachusetts.
booksandpublishing.com/the-conference

2015

Mar 19 – 21 “Publish or Perish? Scientific
periodicals from 1665 to the present”.
The Royal Society, London, UK.
royalsociety.org/events/

Status as of 15 December 2013

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 34 (2013), No. 3

Introductory

268 Clerk Ma and Jie Su / Project Fandol: GPL fonts for Chinese typesetting
• summary of a new free Chinese font family

259 Didier Verna / The incredible tale of the author who didn’t want to do the publisher’s job, . . .
• writing a book chapter on spec with TEX

357 Mari Voipio / Entry-level MetaPost 3: Color
• outlining, filling, choosing colors, linear and circular shading [not a presentation at the conference]

Intermediate

329 Pavneet Arora / TANSU—A workflow for cabinet layout
• ConTEXt, Asymptote, YAML, and three-dimensional design and costing

366 Karl Berry / The treasure chest
• new CTAN packages, July–December 2013

340 Michael Cohen, Yannis Haralambous and Boris Veytsman / The multibibliography package
• simultaneous bibliographies by appearance, author, year, etc.

344 Aleksandra Hankus and Zofia Walczak / LATEX and graphics: Basics and packages
• introduction to graphics usage with different engines, selected add-on packages

263 Jason Lewis / How to make a product catalogue that doesn’t look like a dissertation
• practical database generation and layout problems, with recommended packages

279 Clerk Ma / Braille fonts in Project Fandol
• history, relevant standards, and new Chinese Braille fonts

302 Andrew Mertz and William Slough / A gentle introduction to PythonTEX
• using Python in documents for computation, plotting, web access, and more

281 Ken Nakano and Hajime Kobayashi / Case study: Typesetting old documents of Japan
• typesetting of Komonjo books published by Shiryo Hensan-jo with pTEX

269 Matthew Skala / Tsukurimashou: A Japanese-language font meta-family
• motivation and implementation of a METAFONT-based CJK family

Intermediate Plus

332 Nathan Hagen / Bibulous—A drop-in BibTEX replacement based on style templates
• Unicode-based bibliography implementation in Python using explicit templates

293 Norbert Preining / TEX Live Manager’s hidden gems: User mode and multiple repository support
• managing user trees with tlmgr, and multiple sources for fetching packages

297 Norbert Preining / Redistributing TEX and friends
• handling TEX Live’s configuration in a downstream distro

285 Takuji Tanaka / upTEX—Unicode version of pTEXwith CJK extensions
• comparison of multilingual and other support in upTEX with other engines

349 Boris Veytsman and Leyla Akhmadeeva / Plots in LATEX: Gnuplot, Octave, make
• work flow for handling regeneration of complex plots

313 Lu Wang and Wanmin Liu / Online publishing via pdf2htmlEX
• handling TEX Live’s configuration in a downstream distro

Advanced

325 Shinsaku Fujita / The XΥMTEX system for publishing
interdisciplinary chemistry/mathematics books

• basic usage and history of XΥMTEX, an advanced chemical typesetting system

289 John Plaice / Typesetting and layout in multiple directions—Proposed solution
• separating writing style from box direction in full generality

Contents of other TEX journals

363 ConTEXt Proceedings, 6th meeting (2012); MAPS 44 (2013); Die TEXnische Komödie 3–4/2013

Reports and notices

246 TUG 2013 conference information

250 TUG 2013 conference program

252 Norbert Preining / TUG 2013 in Tokyo

360 TUG 2013 abstracts (Cho, Hagen, Hakuta, Maeda & Kaneko, Minoda, Mittelbach, Moore, Shikano,
Takata, Terada, Verna-ticl, Wetmore, Yabe)

367 Denis Bitouzé / In memoriam: Jean-Pierre Drucbert (1947–2009)

368 Dave Walden / Book review: Essential Knuth

• an extensive interview focused on Knuth’s computer science achievements

369 Clerk Ma / Book review: Introduction to LATEX, Leo Liu
• a book on introduction to typesetting Chinese and Japanese with LATEX

370 Institutional members

370 TEX consulting and production services

372 Calendar

