
TUGboat, Volume 34 (2013), No. 2 205

Typographers, programmers and mathematicians,
or the case of an æsthetically pleasing interpolation

Bogusław Jackowski

Abstract
The reason for preparing this report is that the author has been con-
vinced for many years that John D. Hobby’s algorithm for connecting
Bézier segments, implemented by Donald E. Knuth in METAFONT and
later transferred by Hobby to METAPOST, based on the notion of a “mock
curvature”, is a genuine pearl which deserves both proper acknowledge-
ment and a far wider awareness of its existence. Of course, one can find
nearly all the necessary details in the relevant papers by Hobby and in the
METAFONT source, but, needless to say, it is not easy to dig through the
publications. The present paper provides a full mathematical description
of Hobby’s interpolation algorithm, discusses its advantages and disad-
vantages (in particular, its instability) and compares Hobby’s approach
with a few selected simpler approaches.

1 Introduction
The most popular curves in computer graphics applications are based on polynomials of de-
grees 2 and 3. These include Bézier curves and B-splines of orders 2 and 3. Bernstein poly-
nomials (cf. [3], [6, p. 14] and [8]) allow Bézier curves to be generalized to degree n as defined
by the formula

B(t) def=
n∑
i=0

(n
i

)
ti(1− t)n−iBi, (1)

where Bi, i = 0, 1, . . . , n are points in a k-dimensional space.
In practical applications, k = 2 or k = 3. The present paper discusses the case k = 2,

n = 3, i.e., planar Bézier curves; such curves are used in the PostScript language (including
PostScript fonts), in page description formats such as SVG or PDF and in graphic design
programs such as CorelDRAW, Adobe Illustrator and the (free software) Inkscape program.
In such applications, the main problem is interpolation, i.e., connecting Bézier curves in an
æsthetically pleasing manner. A single Bézier arc is capable of expressing relatively few shapes,
whereas combining multiple Bézier arcs provides more possibilities.

It might seem that discussing the notion of “æsthetic pleasingness” or “beauty” with
respect to a strictly mathematical problem makes no sense. However, the physiology of the
human eye provides a valuable insight: the eye surprisingly easily identifies straight lines and
circles in a muddle of lines (cf. figure 1). Therefore, it seems reasonable to assume that perhaps
for this reason we prefer curves changing the direction uniformly (circles) or not changing the
direction at all (straight lines).

Mathematicians use the notion of curvature to investigate changes of curve direction.
A method for connecting Bézier segments that minimizes curvature change has been

proposed by J. R. Manning [7]. It turns out, however, that preserving exact curvature at
junction points is computationally complex and not necessarily needed. J. D. Hobby’s paper [2]
presents an interesting solution, substantially reducing the computational complexity of this
process due to a smart curvature approximation. The solution has been implemented by
D. E. Knuth in the METAFONT program [6] which is basically meant for creating fonts. The
same algorithm has been transferred later by Hobby to METAPOST (a modification of META-
FONT which generates PostScript output).

This paper aims at investigating Hobby’s method, discusses its advantages and disadvan-
tages, and compares it with a few other interpolation methods. Hobby’s approach presents
an interesting case which illustrates how important a mathematician can be as a link between
This paper was presented at the BachoTEX 2010 conference, and originally published in Polish
in Acta Poligraphica 1/2013. Translated and reprinted by permission.

Typographers, programmers and mathematicians . . .

206 TUGboat, Volume 34 (2013), No. 2

Figure 1: Exercise: find the segment of a straight line and a circle.

an artist, e.g., a typographer who creates fonts, and a programmer, who prepares relevant
computer tools. A mathematician creates reality models (here: “smoothness” models) and
equips programmers with a theoretical basis for creating appropriate tools.

It is assumed that readers have a basic knowledge of mathematics, for example, they are
aware that the derivative of a function f(t) at a point t has something to do with a limit
lim∆t→0

(
f(t + ∆t) − f(t)

)
/∆t. On the other hand, although professional mathematicians

would find them unnecessary, the details of the derivation of almost all formulas have been
presented here, to minimize the prerequisite mathematics. Overall, the author finds Hobby’s
idea for connecting Bézier curves a real gem that deserves a careful and more widely accessible
description than the ones presented in [2, 5].

2 Determinants
Let us start by recalling the notion of a determinant: a second order determinant, i.e., the
determinant for a pair of planar vectors, v1 = (x1, y1) and v2 = (x2, y2), is defined as

det(v1, v2) ≡
∣∣∣∣x1 x2
y1 y2

∣∣∣∣ def= x1y2 − x2y1. (2)

The following determinant property will be useful later in this paper: it is easy to check with
direct calculations for planar determinants that

det(v1 + pv2, v2) = det(v1, v2 + qv1) = det(v1, v2), (3)
where p and q are arbitrary real numbers. The geometric interpretation of a determinant
will be useful as well: the absolute value of a planar determinant represents the area of the
parallelogram spanned on the vectors in question and its sign depends on the orientation
of the vectors— for the counterclockwise orientation of the vectors v1 and v2 the respective
determinant is positive.

A small digression: the above interpretation is, in general, so important that the outstand-
ing Russian mathematician Vladimir I. Arnold in his article on the teaching of mathematics [1]
emphasizes: The determinant of a matrix is an (oriented) volume of the parallelepiped whose
edges are its columns. If the students are told this secret (which is carefully hidden in a pure
algebraic education), then the whole theory of determinants becomes easy to understand. If de-
terminants are defined otherwise, then any sensible person will forever hate all determinants.

3 Differentiating Bernstein polynomials
The derivative of a parametrically defined curve is determined by differentiating components
of the vector defining the curve. Let us imagine a vehicle (point) whose location at time t is
defined by (x(t), y(t)); then (x′(t), y′(t)) simply defines the direction and value of the velocity
of this vehicle and (x′′(t), y′′(t)) defines the direction and value of vehicle’s acceleration.

Let us now return to formula (1) in its general form in order to determine the value of
the first and second derivative of the function B(t) at points t = 0 and t = 1, i.e., at the nodes

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 207

B(0) = B0 and B(1) = Bn. Differentiating the polynomial once and twice produces results of
the form

B′(t) = n(1− t)n−1(B1 −B0) + V(t),
B′′(t) = (n− 1)n(1− t)n−2((B0 −B1) + (B2 −B1)

)
+ W(t),

(4)

where V(t) and W(t) are certain polynomials (the exact formulas are unimportant here) such
that V(0) = W(0) = V(1) = W(1) = 0, hence

B′(0) = n(B1 −B0), B′′(0) = (n− 1)n
(
(B0 −B1) + (B2 −B1)

)
. (5)

For t = 1, similar relations can be found:
B′(1) = n(Bn −Bn−1), B′′(1) = (n− 1)n

(
(Bn−2 −Bn−1) + (Bn −Bn−1)

)
. (6)

Note that defining “normalized” derivatives as

B′(t) ≡
(
B
′
x(t), B′y(t)

) def= 1
n

B′(t), B′′(t) ≡
(
B
′′
x(t), B′′y(t)

) def= 1
(n− 1)nB′′(t), (7)

we can rewrite dependencies (5) and (6) as

B′(0) = B1 −B0, B′′(0) = (B0 −B1) + (B2 −B1), (8)

B′(1) = Bn −Bn−1, B′′(1) = (Bn−2 −Bn−1) + (Bn −Bn−1). (9)
The geometric interpretation, shown in figure 2, should help to understand the formu-

las (8) and (9), especially the expression for the second derivative. For example, vectors B′′(0)
and B′′(1) shown in figure 2, indicate the direction of the centripetal force acting on a fic-
tive point passenger of the point vehicle (mentioned at the beginning of this section) at the
endpoints B0 and Bn, respectively.

B0

B1
B2

· · ·
Bn−2

Bn−1

Bn

B
′
(0) B

′
(1)

B0

B1
B2

· · ·
Bn−2

Bn−1

Bn

B
′′
(0) B

′′
(1)

Figure 2: Geometric interpretation of the first and second derivatives of a Bernstein polynomial.

4 Curvature
In what follows, the precise definition of the curvature of a planar curve will be needed. For
the purpose of this paper, the most commonly accepted definition which is simple and is (the
author believes) the most natural one will be used. According to this definition, the curvature
of a flat curve is simply the measure of the change of curve direction; more precisely, the
change of the angle counted with respect to the curve length for an infinitesimal change of the
“time” parameter— see figure 3.

Applying elementary transformations of the curvature formula presented in figure 3, one
obtains

κ(t) = lim
∆t→0

∆ϕ
∆t

1
∆s/∆t = lim

∆t→0

∆ϕ
∆t

1√
(∆x/∆t)2 + (∆y/∆t)2

=

= dϕ

dt

1√(
dx
dt

)2 +
(
dy
dt

)2
. (10)

Typographers, programmers and mathematicians . . .

208 TUGboat, Volume 34 (2013), No. 2

(
x(t), y(t)

)

(
x(t+∆t), y(t+∆t)

)

ϕ(t)

ϕ(t+∆t)

∆ϕ=ϕ(t+∆t)−ϕ(t)

∆x=x(t+∆t)−x(t)

∆
y

=
y
(t

+
∆
t)
−
y
(t

)
∆s
≈
√ (∆

x)
2 +(∆

y)
2κ(t)

def
= lim

∆t→0

∆ϕ

∆s

Figure 3: Definition of the curvature κ(t) of a planar curve defined
parametrically as (x(t), y(t)); for purposes of consistency with the definition
of a determinant (2), counterclockwise angles will be considered positive
(cf. figure 4).

B0

B1

B2

B3

B0

B1

B2

B3

B0

B1

B2

B3

B0

B1

B2

B3

Figure 4: Convention of determining of the angle ÷ BaBbBc with absolute
value less than π: the sign of the directed angle (from the arm BbBa

to the arm BbBc) at the vertex Bb will be considered consistent with
the sign of the determinant det(Ba − Bb,Bc − Bb); arrows denote the
assumed orientation of the angles, gray lines mark the shape of the Bézier
arcs defined by the respective quadrilaterals B0B1B2B3, according to
equation (1) for k = 2 and n = 3.

Using a more convenient notation already used in the previous point, namely, x′(t) ≡ dx
dt ,

y′(t) ≡ dy
dt , formula ϕ(t) = arctan

(
y′(t)
x′(t)

)
, and applying basic differential calculus identities,

one obtains
dϕ

dt
≡ ϕ′(t) =

(
arctan

(
y′(t)
x′(t)

))′
= 1

1 +
(
y′(t)
x′(t)

)2 (y′(t)x′(t)

)′

= 1

1 +
(
y′(t)
x′(t)

)2 x′(t)y′′(t)− y′(t)x′′(t)x′(t)2

= x′(t)y′′(t)− y′(t)x′′(t)
x′(t)2 + y′(t)2 . (11)

Observe that the numerator of formula (11) is nothing other than the determinant, namely,
det
(
(x′(t), y′(t)) , (x′′(t), y′′(t))

)
, which explains our interest in determinants. We will come

back to determinants later.
Combining equations (10) and (11) eventually yields

κ(t) = x′(t)y′′(t)− y′(t)x′′(t)(
x′(t)2 + y′(t)2

)3/2 . (12)

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 209

The above derivation is far from complete mathematical precision but making it more
rigorous does not seem difficult (e.g., it suffices to take arccot instead of arctan in order to
handle the case x′(t) = 0).

The resulting formula (12) can be assigned a simple geometrical meaning.
The simplest case is a straight line defined by z(t) = (axt+ bx, ayt+ by), where ax, bx, ay

and by are real numbers such that a2
x+a2

y 6= 0. Obviously, it has curvature equal to zero which
is no surprise. Consider thus a less trivial example, namely, a circle of radius R with its center
in the origin of the coordinate system, oriented counterclockwise: z(t) =

(
R cos(t), R sin(t)

)
,

0 ≤ t < 2π. Obviously, z′(t) =
(
−R sin(t), R cos(t)

)
and z′′(t) =

(
−R cos(t),−R sin(t)

)
; from

formula (12), it can immediately be derived that

κ = R2(
R2)3/2 = 1

|R|
= const.

Note that changing the curve orientation to clockwise, z(t) =
(
R cos(t),−R sin(t)

)
, results in

the change of the sign of curvature:

κ = − 1
|R|

.

This example explains why the entity κ−1 is called the radius of curvature and why clockwise
planar curves are called negatively oriented while counterclockwise planar curves are called
positively oriented.

The sign of curvature is, obviously, related to the accepted convention for determining
the sign of an angle (cf. figures 3 and 4). The curvature is constant in the case of a straight
line and a circle. In general, it is a local quantity. Positive curvature means that the curve
(locally) turns to the left, negative curvature that it turns to the right. The points at which
the curvature changes sign are called inflection points.

4.1 Curvature of Bernstein polynomials
The formula for curvature for Bernstein polynomials (12) expressed with “normalized” deriv-
atives (7) takes the form

κ(t) =
B′x(t)B′′y (t)−B′y(t)B′′x(t)(

B′x(t)2 +B′y(t)2
)3/2 = n− 1

n

B
′
x(t)B′′y(t)−B′y(t)B′′x(t)(
B
′
x(t)2 +B

′
y(t)2

)3/2 . (13)

Hence, taking into account formulas (2), (8) and (9), it is easy to determine the curvature for
t = 0 and t = 1

κ(0) = n− 1
n

det
(
(B1 −B0), (B2 −B1) + (B0 −B1)

)
|B1 −B0|3

,

κ(1) = n− 1
n

det
(
(Bn −Bn−1), (Bn−2 −Bn−1) + (Bn −Bn−1)

)
|Bn−1 −Bn|3

,

(14)

where the notation |V| means the length of a vector V. Next, using property (3), one obtains

κ(0) = n− 1
n

det
(
(B1 −B0), (B2 −B1)

)
|B1 −B0|3

,

κ(1) = n− 1
n

det
(
(Bn −Bn−1), (Bn−2 −Bn−1)

)
|Bn−1 −Bn|3

.

(15)

Let h0,1
2 be the distance (directed) of the point B2 to the straight line connecting the

points B0 and B1 and, similarly, let hn−1,n
n−2 be the distance of the point Bn−2 to the straight

line connecting the points Bn−1 and Bn; note that h0,1
2 and hn−1,n

n−2 have the same signs as
the determinants det

(
(B1 −B0), (B2 −B1)

)
and det

(
(Bn −Bn−1), (Bn−2 −Bn−1)

)
, respec-

tively—cf. figure 5: ha corresponds to h0,1
2 and hb corresponds to hn−1,n

n−2 , i.e., h2,3
1 .

In other words, if the point B2 is located to the right of the straight line directed from B0
to B1, then h0,1

2 < 0; if it is located to the left, then h0,1
2 > 0. Similarly, if the point Bn−2

Typographers, programmers and mathematicians . . .

210 TUGboat, Volume 34 (2013), No. 2

a

b

d

ha<0

hb>0

B0

B1

B2

B3
α>0

β<0

1
2π

1
2π

Figure 5: Geometrical interpretation of formulas (17) for a Bézier arc
(n = 3); the curvature at the points B0 and B3 is given by (18).

is located to the right of the straight line directed from Bn−1 to Bn, then hn−1,n
n−2 < 0; if it is

located to the left, then hn−1,n
n−2 > 0.

As was said in section 2, the absolute value of a determinant of a pair of vectors on a
plane is equal to the area of the relevant parallelogram, thus

det
(
(B1 −B0), (B2 −B1)

)
= h0,1

2 |B1 −B0|,

det
(
(Bn−1 −Bn), (Bn−2 −Bn−1)

)
= hn,n−1

n−2 |Bn−1 −Bn|.
(16)

Hence eventually

κ(0) = n− 1
n

h0,1
2

|B1 −B0|2
, κ(1) = n− 1

n

hn,n−1
n−2

|Bn−1 −Bn|2
. (17)

The derivation of formulas (17) completes our considerations for the general (n+1)-node case.

4.2 Curvature of Bézier arcs
Now we can proceed to deriving formulas for the curvature of Bézier arcs, i.e., for the 4-node
case. The resulting formulas will be used for the smooth connection of arcs.

As was already mentioned, curvature sign depends on the convention for determining the
sign of an angle. In the following, we will determine the sign of an angle (less than π) in a
B0B1B2B3 quadrilateral according to the convention accepted so far, i.e., we will consider
each angle as directed from the previous to the next edge (see figures 3 and 4). Let us examine
the situation presented in figure 5: obviously α > 0 whereas β < 0. According to the definition
of the directed distance introduced in section 4.1, ha < 0 and hb > 0.

Using the same notation as in figure 5, the curvature formulas for the nodes (endpoints)
can be expressed as follows (regardless of the vertex configuration of the relevant quadrilateral):

κ(0) = 2
3
ha
a2 , κ(1) = 2

3
hb
b2
. (18)

Now, we will eliminate the entities ha and hb from formulas (18) in order to express
curvature as a function of length (which is always non-negative) of the handles (a and b), the
chord (d), and the (directed) angles α and β.

It follows from figure 6 that c = d− b sin(β) cot(α)− b cos(β) and ha = −c sin(α), hence
ha = − (d sin(α)− b sin(β) cos(α)− b sin(α) cos(β)) = b sin(α+ β)− d sin(α). (19)

Similarly
hb = a sin(α+ β)− d sin(β). (20)

Making use of formulas (19) and (20), we arrive eventually at the expression for Bézier curva-
ture at the endpoints, expressed as a function of length of the handles and angles between the
respective handles and the chord

κ(0) = 2
3
b sin(α+ β)− d sin(α)

a2 , κ(1) = 2
3
a sin(α+ β)− d sin(β)

b2
. (21)

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 211

a
b

d

c

ha <0 hb<0

B0

B1

B2

B3

α>0 β>0

1
2π 1

2π

Figure 6: Auxiliary sketch for deriving formula (21) which describes the
relationship between curvature and the relevant angles (here α and β) and
the length of the handles and the chord (a, b and d, respectively).

Let us emphasize once again that the resulting formulas are invariant with respect to the
vertex configuration of the quadrilateral B0B1B2B3, i.e., they do not depend on the signs of
the angles α and β (cf. figure 4).

4.3 Curvature peculiarities
As figure 7 shows, the mathematical notion of curvature usually reflects what the human eye
can see; curves with slightly changing curvature are likely to be called smooth or “neatly
formed”. If curvature changes rapidly, then we are usually able to point to the place where
such a change occurs without mathematical considerations.

(a)B0 B3

0 λ= 1.257

κ

0
25
50
75

100

(b)B0 B3

0 λ= 1.154

κ

0
2
4
6
8

10

(c)B0 B3

0 λ= 1.114

κ

0
1
2
3
4
5

(d)B0 B3

0 λ= 1.080

κ

0
0.5
1.0
1.5
2.0
2.5

(e)B0 B3

0 λ= 1.051

κ

0
0.2
0.4
0.6
0.8
1.0
1.2

(f)B0 B3

0 λ= 1.046

κ

0
0.2
0.4
0.6
0.8
1.0
1.2

(g)B0 B3

0 λ= 1.027

κ

0
0.5
1.0
1.5
2.0
2.5
3.0

(h)B0 B3

0 λ= 1.009

κ

0

5

10

15

20

(i)B0 B3

0 λ= 1.003

κ

0
25
50
75

100

Figure 7: Curvature κ of the Bézier arc having a unit chord (|B0−B3| = 1);
case (f) results from applying formula (29).

Typographers, programmers and mathematicians . . .

212 TUGboat, Volume 34 (2013), No. 2

It follows from equation (21), however, that curvature can achieve large values when the
respective handles are short. It can even approach infinity if control points are very close to
the respective endpoints. Even worse, infinite curvature can be imperceptible to the human
eye, as figure 7 shows: for cases (a)–(c) the change of curvature is clearly visible in the middle
of the diagram; cases (d)–(f) are perceived as fragments of a circle or “circle-like” shapes; cases
(g)–(i) illustrate a transformation from a Bézier arc to a chord as the control nodes approach
the respective endpoints; in the latter case, paradoxically, the curvature near the endpoints
suddenly increases despite the eye not noticing it.

5 Bézier arc and a circle
Let us assume that for given angles α and β, −π < α, β ≤ π, and for chord length d 6= 0, the
length of the handles can be calculated from the following formulas

a = 1
3 d

ρ(α, β)
τa

, b = 1
3 d

σ(α, β)
τb

, (22)

where ρ(α, β) and σ(α, β) are certain functions, not necessarily given explicitly (we will discuss
them in a moment) and τa and τb are given real (positive) numbers; we will call these numbers
tensions.

In the METAFONT and METAPOST programs, tensions can be specified explicitly using the
‘tension’ operator ([6, pp. 129–132 and p. 136, ex. 14.15]). Usually, in practical applications,
τa = τb = 1 which is the default tension value in METAFONT and METAPOST.

Let us assume for a moment that τa = τb = 1; moreover, assume that d = 1 (in other
words, adjust units in such a way that d = 1). Then, the first derivative vectors at the
endpoints (t = 0 and t = 1; cf. (5) and (6)) have the length ρ(α, β) and σ(α, β), respectively.
This explains why the functions ρ and σ are called velocity functions.

In applications under consideration, it is natural to assume a basic symmetry property:
an exchange of variables should return a geometrically congruent (mirrored) figure, precisely

ρ(α, β) = σ(β, α). (23)

Therefore, we are actually dealing with one function, but it is more convenient to distinguish
between the velocity functions at the points t = 0 and t = 1.

In the METAFONT and METAPOST programs, the velocity function is defined with a
relatively complex heuristic formula (due to Hobby):

ρ(α, β) = σ(β, α) =
2 +
√

2(sinα− 1
16 sin β)(sin β − 1

16 sinα)(cosα− cosβ)(
1 + 1

2 (
√

5− 1) cosα+ 1
2 (3−

√
5) cosβ

) , (24)

substantiated in his paper [2]. An alternative form is also given (defined for 0 < |α| ≤ β < π),
which supposedly works better in asymmetrical cases but is far more complex computationally
and more difficult to analyze theoretically:

ρ(α, β) = f(α, β) + γ(β) sin
(
ψβ

(
α

β

))
, σ(α, β) = f(α, β)− γ(β) sin

(
ψβ

(
α

β

))
, (25)

where

f(α, β) = mµ2 + µ+ 2n
µ+ n cos(ν) + n

, m = 0.2678306, n = 0.2638750,

µ = (β − α)
(
β − α

2β

)1.402539
, ν = α+ β

2

(
2β

α+ β

)0.7539063
, (26)

γ(β) = 1.17
π

β − 0.15 sin
(
2β
)
, ψβ(x) = π

x+ (x2 − 1)
((

0.32− β

2π

)
x+ 0.5− β

2π

).
Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 213

Knuth, in his collection of essays entitled Digital Typography [4], devotes some attention
to the choice of functions ρ and σ; he proposes, among others, the following formula

ρ(α, β) = σ(β, α) = 2 sin(β)(
1 + cos

(
α+ β

2

))
sin
(
α+ β

2

) (27)

and suggests how to improve it.
A formula of this kind, but much simpler, was first proposed by J. R. Manning in his al-

ready cited paper [7] (Hobby’s formula (24) is in fact a sophisticated modification of Manning’s
formula):

ρ(α, β) = σ(β, α) = 2
1 + c cos(β) + (1− c) cos(α) . (28)

Manning suggests setting c = 2
3 . The idea behind Manning’s formula stems from a simple

observation: if α = β, then the formula ρ(α) = 2/
(
1 + cos(α)

)
provides a good approximation

of a circle by a Bézier arc. Namely, if both (symmetric) handles of the Bézier arc B(t) have
the length given by

ρ(α) = d

3
2

1 + cos(α) , (29)

where d is the length of the chord of the arc and α is the angle between handles and the
chord, then the point B

(1
2
)
coincides with the center of the segment of a circle going through

the points B(0) and B(1) and tangent to the Bézier arc at these points. Such a Bézier arc,
especially for small angles, is visually indistinguishable from a circle—more information on
the precision of such an approximation can be found in [4]; cf. also figure 7f.

All in all, we may note that the velocity function is intended to be a generalization,
heuristic of course, to two parameters of the function ρ(α) guaranteeing a good approximation
(equation (29)) of a circle by a Bézier arc. This remains, of course, related to our primary
goal— striving to obtain a possibly smooth joining of Bézier arcs. Bézier arcs computed using
velocity functions as defined above are expected to imitate circles optically which, because of
their constant curvature, are supposed to be an ideal candidate for an “æsthetic model”. This
observation provides a clue for our final results.

6 Smooth joining of Bézier arcs—J. D. Hobby’s method
Finally, we have all the necessary tools and measures necessary to face the following task:
given a series of n + 1 points on a plane P0, P1, . . . , Pn, n > 1, connect these points with
Bézier arcs in such a way that the result forms a possibly “elegant” (smooth, neat) curve.

The sine qua non condition is obvious: at a connection point the curve should not change
its direction abruptly, meaning that the handles at the connection points must be collinear.
(Collinearity of handles is a weaker condition than equality of derivatives; the equality of
derivatives, as defined by formulas (5) and (6), implies the equality of the lengths of adjacent
handles.)

This condition does not guarantee a unique solution. We might impose an additional
condition that the curvature at a junction point is the same on both sides of this point.
However, this leads to a system of trigonometrical equations that is hard to solve.

In such cases, mathematicians and physicist often replace a function with its linear approx-
imation (not always justifiably); in this particular case, the sine function would be replaced
by a linear function of the argument and the relevant velocity function—with a function
identically equal to 1.

sin(α) ≈ α, ρ(α, β) ≈ σ(α, β) ≈ 1. (30)
Such an approximation can be justified mathematically for small values of arguments (with
respect to their absolute values) for (24) and (28) (formulas (25) and (27) are undefined for
α = β = 0), but it will also be used for values significantly different from zero. Therefore, we
can consider (30) to be a heuristic simplifying assumption.

Typographers, programmers and mathematicians . . .

214 TUGboat, Volume 34 (2013), No. 2

Applying relation (30) to the formula for Bézier curvature at endpoints, derived from
combining formulas (21) and (22), yields

κ(0) = 2
3

1
3 d

σ(α, β)
τb

sin(α+ β)− d sin(α)(
1
3 d

ρ(α, β)
τa

)2 =
2τ−1
b σ(α, β) sin(α+ β)− 6 sin(α)

dτ−2
a ρ2(α, β)

,

κ(1) = 2
3

1
3 d

ρ(α, β)
τa

sin(α+ β)− d sin(β)(
1
3 d

σ(α, β)
τb

)2 = 2τ−1
a ρ(α, β) sin(α+ β)− 6 sin(β)

dτ−2
b σ2(α, β)

,

(31)

and we have

κ(0) ≈ κ(0) def=
2τ−1
b (α+ β)− 6α

dτ−2
a

, κ(1) ≈ κ(1) def= 2τ−1
a (α+ β)− 6β

dτ−2
b

. (32)

The function κ defined above is the mock curvature introduced by Hobby in [2], mentioned by
Knuth in [6] and discussed in detail in [5, § 274–277]. It constitutes a key to joining Bézier
arcs smoothly: first we solve a set of linear equations, derived from (32), obtaining the values
of angles between chords and the respective handles, and then we compute the length of the
relevant handles from (22).

6.1 Equations
At the junctions of Bézier arcs, we require that mock curvature be preserved, bringing the task
to solving a set of linear equations. The formulation of these equations consists of a series of
tedious but elementary calculations.

First, let us adopt the notation and conventions presented in figure 8.

··· Pk−2

Pk−1

Pk

Pk+1

Pk+2 ···

τa,k−1

τb,k−1 βk−1

αk−1

τa,k

τb,k

βk

αk

γk
κk−1(1) =κk(0)

dk−1 = |Pk−Pk−1|, dk = |Pk+1−Pk|

Figure 8: Notation assumed for formulating linear equations (38); index k
refers (unlike in [5]) to the quantities related to the Bézier arc based on the
endpoints Pk and Pk+1.

Second, observe that the collinearity of handles at junction points implies that
αk + βk−1 + γk = 0 for k = 1, 2, . . . , n− 1, (33)

where γk is the turning angle of the broken line P0P1 . . .Pn at the point Pk.
Third, observe moreover that the preservation of the mock curvature at the point Pk

results in a simple linear equation

κk−1(1) ≡
2τ−1
a,k−1(αk−1 + βk−1)− 6βk−1

dk−1τ
−2
b,k−1

=
2τ−1
b,k (αk + βk)− 6αk

dkτ
−2
a,k

≡ κk(0). (34)

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 215

By making use of (33), we can eliminate βk−1 and βk from (34) obtaining

τ−1
a,k−1(αk−1 − αk − γk)− 3(−αk − γk)

dk−1τ
−2
b,k−1

−
τ−1
b,k (αk − αk+1 − γk+1)− 3αk

dkτ
−2
a,k

= 0, (35)

i.e.,
τ−1
a,k−1

dk−1τ
−2
b,k−1

αk−1 +
(

3− τ−1
a,k−1

dk−1τ
−2
b,k−1

+
3− τ−1

b,k

dkτ
−2
a,k

)
αk +

τ−1
b,k

dkτ
−2
a,k

αk+1

= −
3− τ−1

a,k−1

dk−1τ
−2
b,k−1

γk −
τ−1
b,k

dkτ
−2
a,k

γk+1 .

(36)

Now, by introducing one-letter symbols for known values (coefficients)

Ak
def=

τ−1
a,k−1

dk−1τ
−2
b,k−1

, Bk
def=

3− τ−1
a,k−1

dk−1τ
−2
b,k−1

, Ck
def=

3− τ−1
b,k

dkτ
−2
a,k

,

Dk
def=

τ−1
b,k

dkτ
−2
a,k

, Ek
def= −Bkγk −Dkγk+1 ,

(37)

we obtain a set of n− 1 linear equations with n+ 1 unknowns:

A1α0 + (B1 + C1)α1 +D1α2 = E1 ,

A2α1 + (B2 + C2)α2 +D2α3 = E2 ,

A3α2 + (B3 + C3)α3 +D3α4 = E3 ,
· · ·

An−1αn−2 + (Bn−1 + Cn−1)αn−1 +Dn−1αn = En−1 .

(38)

Thus, two more equations are needed.
If a closed curve is to be obtained, then αn = α0 and the problem reduces to n unknowns.

The missing equation can be obtained by assuming that mock curvature is preserved at the
point P0 = Pn,

A0αn−1 + (B0 + C0)α0 +D0α1 = E0 . (39)
If an open curve is to be obtained, then either the angles α0 and αn should be given explicitly
which reduces the number of unknowns by 2, or another condition must be found.

Before we proceed to this issue, let us discuss a purely technical detail; the angle that we
want to find is, in fact, βn−1 because αn is located outside the broken line P0P1 . . .Pn. It
is, however, more convenient (because of the symmetry of formulas), to use the unknown αn;
therefore, we accept an artificial condition

γn = 0. (40)

This means that relation (33) for the angles β0 and βn−1, in the case of an open curve, takes
the form

β0 = −α1 − γ1, βn−1 = −αn . (41)
We may also assume that mock curvature at the endpoints is given explicitly or implicitly

or, alternatively, we may impose the requirement of the equality of mock curvature at the
endpoints and at the respective neighbouring nodes, namely, κ0(0) = κ0(1) and κn−1(0) =
κn−1(1). The latter condition can be generalized in a natural way as follows:

κ0(0) = ω0κ0(1), ωnκn−1(0) = κn−1(1), ω0, ωn ≥ 0. (42)

It is exactly this idea that has been used in the METAFONT program (there is, however, no
possibility of explicitly setting the mock curvature at a given point). The additional parameters
ω0 and ωn are called curls.

Both METAFONT and METAPOST allow to explicitly set curls at the endpoints of a
path using the ‘curl’ operator ([6, pp. 128ff.]); by default, curl=1. Conditions (42) can be

Typographers, programmers and mathematicians . . .

216 TUGboat, Volume 34 (2013), No. 2

transformed to
2τ−1
b,0 (α0 − α1 − γ1)− 6α0

d0τ
−2
a,0

= ω0
2τ−1
a,0 (α0 − α1 − γ1) + 6(α1 + γ1)

d0τ
−2
b,0

,

ωn
2τ−1
b,n−1(αn−1 − αn)− 6αn−1

dn−1τ
−2
a,n−1

=
2τ−1
a,n−1(αn−1 − αn) + 6αn

dn−1τ
−2
b,n−1

.

(43)

by using the definition of mock curvature (32) to develop κ0(0), κ0(1), κn−1(0), and κn−1(1).
Using relation (41) to order equations (43) yields(

τ−1
b,0

τ−2
a,0
− 3
τ−2
a,0
−
τ−1
a,0ω0

τ−2
b,0

)
α0−

(
τ−1
b,0

τ−2
a,0
−
τ−1
a,0ω0

τ−2
b,0

+ 3ω0

τ−2
b,0

)
α1 =

(
τ−1
b,0

τ−2
a,0
−
τ−1
a,0ω0

τ−2
b,0

+ 3ω0

τ−2
b,0

)
γ1 ,(

τ−1
b,n−1ωn

τ−2
a,n−1

− 3ωn
τ−2
a,n−1

−
τ−1
a,n−1

τ−2
b,n−1

)
αn−1−

(
ωnτ

−1
b,n−1

τ−2
a,n−1

−
τ−1
a,n−1

τ−2
b,n−1

+ 3
τ−2
b,n−1

)
αn=0,

(44)

By multiplying the first equation (44) by −τ−2
a,0 , and the second by −τ−2

b,n−1 (thanks to which
the obtained formulas are easier to compare with those given in [5]), we finally obtain the two
missing equations:

C0α0 +D0α1 = E0 ,

Anαn−1 +Bnαn = 0,
(45)

where

C0 = ω0
τ−3
a,0

τ−2
b,0

+ 3− τ−1
b,0 , D0 = ω0

τ−2
a,0

τ−2
b,0

(
3− τ−1

a,0
)

+ τ−1
b,0 , E0 = −D0γ1,

An = ωn
τ−2
b,n−1

τ−2
a,n−1

(
3− τ−1

b,n−1
)

+ τ−1
a,n−1, Bn = ωn

τ−3
b,n−1

τ−2
a,n−1

+ 3− τ−1
a,n−1.

(46)

One may of course ask about the solvability of the set of linear equations thus formulated.
In this way, we go back to determinants as those are exactly the determinants (of degree equal
to the number of unknowns) that mathematicians use for examining this problem; columns
(or rows) of coefficients of the set of equations constitute relevant “vectors”. If a determinant
for a given set of equations is non-zero, then there exists a unique solution.

We will not go into mathematically advanced analysis of this issue (readers interested in
details, please refer to [2]). We content ourselves by adducing without proof the theorem given
in [2] (see also [5, § 276]): if for 0 ≤ k ≤ n− 1 we assume τa,k ≥ 3

4 , τb,k ≥
3
4 (a limitation built

into METAFONT and METAPOST), then the equation sets for both a closed path (38)+(39)
and an open path (38)+(45) have unique solutions and, in general, any disturbance introduced
at a given node, caused, e.g., by the change of a node location, disappears exponentially as
the distance from this node grows (more precisely: the change of conditions at node k results
in an angle change at node j proportional to 2−|k−j|). It should be noted, however, that there
are cases for which a tiny perturbation at a certain node may cause the global change of the
shape of the resulting curve (see subsection 6.4, figures 10 and 11).

6.2 Two-point case
So far we have assumed that n > 1. The discussion can be extended to the n = 1 case, i.e., to
the two-point case, but this requires additional assumptions.

If n = 1 and we are dealing with a closed curve, then it is reasonable to assume that this
is simply a degenerate case, i.e., P0 = P1 and, moreover, lengths of both handles are equal to
zero—cf. equation (22). Note that the METAFONT path expression ‘(0,0)..(1,0)..cycle’
corresponds, in fact, to the case n = 2: P0 = (0, 0), P1 = (1, 0), P2 = (0, 0) = P0.

If n = 1 and we are dealing with an open curve, then the degenerate case P0 = P1 can
be treated as above. In other cases, the set of equations reduces to two equations (45). In
this case, E0 = 0 (because γ1 = 0 by (40)) which means that α0 = α1 = 0, provided the
relevant matrix determinant is non-zero. However, for default values of coefficients defining
curl and tension, i.e., 1, we have C0 = D0 = A1 = B1 = 3, thus the determinant equals 0

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 217

which means that the set of equations (45) has infinitely many solutions and therefore again
an additional assumption is needed. The simplest way would be to assume that if no angles
are given explicitly, then α0 = α1 = 0.

If the angle α0 is given, then α1 can be computed from the second equation of system (45);
and vice versa, if the angle α1 is given, then α0 can be computed from the first equation of
system (45); the asymmetry is due to the asymmetry of the curl boundary conditions (equations
(45) and (46)) and to the fact that curl and angle cannot both be specified at a given endpoint.

At this stage, we have all the angles in question either given explicitly or calculated. The
only remaining task is to calculate the length of the handles from formula (22).

6.3 Operator ‘atleast’
The above discussion explains how all the METAFONT path constructors work except for the
‘tension atleast’ operator ([6, p. 129, 132, 136, and ex. 14.15]) which is a variant of the
‘tension’ operator (section 5, equation (22)). It is a primitive operator in the METAFONT

and METAPOST engines but, in principle, it could be implemented using METAFONT/META-
POST macros. The recipe is as follows: first skip the ‘atleast’ operator (modifier), i.e., use
the standard ‘tension’ operator thereby reducing the problem to a known issue.

Figure 9 illustrates the further procedure. Assume that we have computed all the handles
by using the algorithm described above. Then we check whether the nodes defining the relevant
Bézier segments form a concave quadrilateral (case (d) in figure 9). If so, then the extension
of one of the handles bisects the other— the handle being bisected should be shortened by
moving its endpoint to the intersection point (which, on the one hand, results in increasing
tension and, on the other hand, introduces a discontinuity of mock curvature). More precisely,
the length of the shortened handle (a in figure 9) can be determined using the law of sines.
In such a way, inflection points can be avoided. Sometimes, however, surprising results are
obtained, namely, when the “shortening handle” is very short.

(a) (b) (c) (d)

a

b

d

a

b

d

α
β

α
β

a=
d sin(β)

sin(α+β)

Figure 9: Implementation of the ‘atleast’ operator: only the configuration
of the control points presented in figure (d) is to be taken into account; (a),
(b) and (c) configurations are ignored.

Let us note that the ‘tension atleast’ operator is a little like increasing the tension
just enough to avoid concave quadrilaterals such as shown in figure 9d, except that increasing
the tension might affect the direction of angles α and β.

6.4 Instability of the interpolation algorithm—the straight angle issue
One of the crucial steps of Hobby’s algorithm is determining angles γk between subsequent
segments of the broken line P0P1 . . .Pn—see figure 8 and equation (33). If the broken line
turns by an angle significantly different from the straight angle (its absolute is much less
than π), then the algorithm behaves stably, i.e., small changes in the location of the points P0,
P1, . . . ,Pn yield small changes in the shape of the resulting curve. Unfortunately, an essential

Typographers, programmers and mathematicians . . .

218 TUGboat, Volume 34 (2013), No. 2

problem arises for angles close to the straight angle. This problem is not in the least specific
to METAPOST and METAFONT. It seems to be an intrinsic quandary in the realm of discrete
graphics (in general, numerical methods), as small perturbations are unavoidable there due to
rounding errors.

In the case of METAFONT and METAPOST, it is a convention adopted by the authors
that is the immediate source of problems, namely, both programs operate on angles less than
or equal (with respect to the absolute value) to π. If a temporary value occurs which does
not meet this limitation, then it is reduced to the appropriate numerical range by adding or
subtracting a multiple of 2π. For example, an angle π + ε, where π > ε > 0, will be replaced
by the angle π + ε− 2π = −π + ε. If ε ≈ 0, then unstable behavior can be expected (we omit
here the issue of the precision of the computer representation of the number π).

In order to see how instability can manifest, let us consider a trivial example, namely,
a cyclic path built from two nodes, P0 and P1; as mentioned in subsection 6.2, it is convenient
to regard this example as a three-point case, i.e., to apply the interpolation algorithm to the
points P0, P1 and P2, where P0 = P2 which means that the respective broken line turns by
the straight angle at the points P0 = P2 and P2. The question is: to the right or to the left?

For this case, α0 = α2 and equations (38) and (39) boil down to the system of two linear
equation with two unknowns

(B0 + C0)α0 + (A0 +D0)α1 = E0 ,

(A1 +D1)α0 + (B1 + C1)α1 = E1 .
(47)

Coefficients on the left side of system (47) are given by simple formulas, namely

A0 = A1 = D0 = D1 = 1
d
, B0 = B1 = C0 = C1 = 2

d
, (48)

where d = |P1 − P0|, provided the default values of the curl and tension parameters are
assumed. Coefficients E0 and E1 depend on the turning angles γ0 and γ1 of the broken line
P0P1P2 (cf. equation (33))

E0 = −2γ0 + γ1

d
, E1 = −γ0 + 2γ1

d
. (49)

The above conditions can be rewritten as
4α0 + 2α1 = −(2γ0 + γ1), 2α0 + 4α1 = −(γ0 + 2γ1). (50)

If we assume turning to the left, i.e., γ0 ≈ π and γ1 ≈ π, then α0 ≈ 1
2π and α1 ≈ 1

2π; but if we
assume turning to the right, i.e., γ0 ≈ −π and γ1 ≈ −π, then α0 ≈ − 1

2π and α1 ≈ − 1
2π. In

other words, using the angle ≈ π instead of ≈ −π reverses the orientation of the resulting path.
Theoretically, two other cases might occur: γ0 ≈ −π, γ1 ≈ π and γ0 ≈ π, γ1 ≈ −π, which
would produce figure-eight shaped curves. It turns out, however, that the METAFONT and
METAPOST path expression ‘P0..P1..cycle’ usually creates positively oriented nearly circular
paths, occasionally creates negatively oriented nearly circular paths (see figure 10), but never
figure-eight shaped curves; however, if the direction at one node is specified explicitly, figure-
eight shapes may occur: the expression ‘(0,0){down}..(100,0)..cycle’ creates an oval path
while the expression ‘(0,0){up}..(100,0)..cycle’ creates an figure-eight shape.

If the broken line “turns back”, i.e., turns by a nearly straight angle, the algorithm
implemented in METAFONT and METAPOST tries to detect this situation and, in most cases,
chooses the positive angle (see [5, § 454]). Sometimes, however, despite the precautions taken,
the algorithm fails to decide properly whether the angle in question is a positively oriented
nearly straight angle, or a distorted by rounding errors negatively oriented (on purpose) nearly
straight angle.

Based on the foregoing considerations, it is not difficult to predict that if input data
contains several (nearly) collinear adjacent points, instability is bound to emerge.

Without a detailed analysis, we present one more example, a little bit less trivial: we apply
the interpolation algorithm to creating a cyclic path (nota bene, cyclicality is not crucial) for
input data consisting of five nearly collinear points, arranged horizontally. It turns out that
shifting one of the nodes (vertically) by 2−16, i.e., by the smallest non-zero value accepted by

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 219

P1≈ (96.57745, 25.93689)

P0
P1

P1≈ (96.57745, 25.93536)

P0

P1

P0=(0, 0), |P1|≈100

Figure 10: A very small location change of the point P1 reverses the
orientation of the resulting curve (gray arrow); the curve on the left side
of the figure was created with the following METAFONT/METAPOST path
expression ‘(0,0) .. ((100,0) rotated 15.03189) .. cycle’, the curve on
the right side with the slightly modified path expression ‘(0,0) .. ((100,0)
rotated (15.03189+.0003)) .. cycle’.

(a)

(d)

(b)

(c)

Figure 11: Even a minimal location change of a single point can result
not only in the change of orientation, but also in a change of the shape
of the resulting curve. In case (a), points are distributed uniformly,
i.e., Pi = (20i, 0), for i = 0, 1, . . . , 4; in case (b), P1 is shifted up
by 2−16, in case (c), P4 is shifted down by 2−16; in case (d), P0 is shifted
down by 2−16; in all cases, the METAFONT/METAPOST path expression
‘P0..P1..P2..P3..P4..cycle’ was used.

METAFONT and “canonical” implementations of METAPOST (without double precision), can
change not only the orientation of the resulting curve, but also its shape—see figure 11.

Although the problem cannot, by its nature, be cured, it is rather innocuous in practice.
Nevertheless, as suggested by John D. Hobby (in private communication), the following fixes
to METAFONT/METAPOST implementations can be proposed:
• One natural idea is that users should avoid approaching this situation. METAFONT and

METAPOST already have internal variables that can be used to enable and disable certain
error messages and an appropriate error message could be helpful.
• Since the discontinuities are caused by adding or subtracting 2π from the γk angles, users
should perhaps have a way of specifying whether or not to do this.

6.5 Other technical details
It is clear that the implementation of such a complex algorithm as the one described above
abounds in technical challenges. Not all of them can be discussed in a paper like this one.
Information on specific implementation-related solutions, such as, for example, the fact that
METAFONT imposes a limit ≤ 12 (for default tension values) on Hobby’s velocity function (24)
or that the curl value can be altered in some cases, can be found in [5] (§ 116 and § 296,
respectively). A word of warning is needed, however: the program source is not an easy read.

Typographers, programmers and mathematicians . . .

220 TUGboat, Volume 34 (2013), No. 2

7 Comparison of selected interpolation methods
The interpolation algorithm described in section 6 works well in most applications, except for
the (rarely encountered in practice) cases of instability. This fact is well-known to METAFONT

and METAPOST users. It does not mean, however, that the algorithm is recommended in
every situation. Sometimes it is better to use other algorithms and this issue will be briefly
surveyed at the end of our discussion.

P0

P1

P2

P3

P4

P5

P6

P7

P8

t= 0

κ
123 4 5 6 7 8 0

0 λ

conditions (51)

P0

P1

P2

P3

P4

P5

P6

P7

P8

t= 0

κ
123 4 5 6 7 8 0

0 λ

conditions (52)

P0

P1

P2

P3

P4

P5

P6

P7

P8

t= 0

κ
123 4 5 6 7 8 0

0 λ

conditions (53)

P0

P1

P2

P3

P4

P5

P6

P7

P8

t= 0

κ
123 4 5 67 8 0

0 λ

Hobby’s
interpolation

Figure 12: Comparison of interpolation methods for a closed curve;
curvature scale κ is common for all the cases; parameter λ, as in figure 7,
refers to the length of a path.

Let a series of points P0, P1, . . . , Pn, n > 1, be given as above and let Pk, Pa
k , Pb

k+1,
and Pk+1 (a—after, b—before) be the nodes of a Bézier arc based on the chord PkPk+1.

The easiest way to connect the points is to use a broken line:

Pa
k = Pk + 1

3(Pk+1 −Pk), Pb
k = Pk + 1

3(Pk−1 −Pk). (51)
METAFONT and METAPOST users do not need to calculate the handles explicitly. Such a
connection of points can be obtained by using the macro ‘--’, which expands to the following
path expression ‘{curl 1} .. {curl 1}’. A similar optical effect could be achieved by super-
imposing conditions Pa

k = Pk, Pb
k = Pk; the macro ‘---’, which expands to ‘... tension

infinity ...’, yields a similar result, i.e., Pa
k ≈ Pk, Pb

k ≈ Pk, but the latter two methods,
seemingly equivalent, can yield perceptibly different curves.

In order to smooth corners, setting the first derivative explicitly (cf. equation (5)), e.g.,

Pk −Pb
k = Pa

k −Pk = 1
3

(Pk+1 −Pk−1)
2 , (52)

may yield fairly satisfactory results. This is a local method, i.e., a change of coordinates of
point Pk has an impact on the resulting curve only at points Pk−2, Pk−1, Pk+1, and Pk+2.

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 221

A non-local method, far less complex than the method described in section 6, involves the
assumption of the equality (continuity) of the first and second derivatives at junction points
(see formulas (5) and (6)):

Pk −Pbk = Pak −Pk ,

(Pa
k−1 −Pb

k) + (Pk −Pb
k) = (Pk −Pa

k) + (Pb
k+1 −Pa

k).
(53)

As already mentioned, Hobby’s interpolation usually produces satisfactory results. Fig-
ure 12, an example excerpted from [2] and [7], provides a convincing argument. Let us note
that the continuity of the first and second derivative (conditions (53)) implies the continuity
of curvature (equation (12)) while Hobby’s interpolation does not guarantee the continuity of
curvature (figure 12, t = 1, 4, 6, 8).

conditions (51)

P0

P1

P2

P3

P4

P5

P6

conditions (52)

conditions (53)

Hobby’s
interpolation

Figure 13: Comparison of interpolation methods for a sample 7-point set of
data; an additional boundary condition P0 = Pa

0 , P6 = Pb
6 has been imposed

in each case except the broken line interpolation.

Hobby’s interpolation exhibits the smallest curvature fluctuation and produces the most
regular optical curves in comparison with the other methods. In particular, curves obtained
by applying condition (53) do not look as smooth. It turns out that curvature discontinuity
is nearly imperceptible unless it is accompanied by a noticeable change of curve direction.
(cf. remarks in subsection 4.3). And vice versa, even though curvature is constant for a broken
line, namely, equal to zero except nodes where its value is undefined, the eye immediately
catches these points because curve direction is not preserved there.

A typical task for which Hobby’s method cannot be recommended is the visualisation
of empirical data—METAFONT and METAPOST generate too “rotund” shapes (figure 13).
Condition (53) also produces hardly acceptable results in this particular case— the diagram of
a function should rather not reveal loops. In such cases, the best approach seems to be using
as simple a method as possible, e.g., (51) or (52).

Of course, there are many variants of the methods briefly reviewed in this section. We
have not discussed them here at length not because they are not worthy of being applied.
On the contrary, it is good to know that the unquestionably excellent Hobby’s interpolation
algorithm can sometimes successfully be replaced by a simpler one.

8 Acknowledgements
The author very gratefully thanks Alan Hoenig, Daniel Luecking, and John Hobby for review-
ing an earlier version of this paper and suggesting several significant improvements, as well as
correcting drafting errors.

References
[1] Arnold, Vladimir I., On teaching mathematics, 1997, http://pauli.uni-muenster.de/

~munsteg/arnold.html, accessed 14.04.2013.

Typographers, programmers and mathematicians . . .

222 TUGboat, Volume 34 (2013), No. 2

[2] Hobby, John. D., “Smooth, Easy to Compute Interpolating Splines”, Discrete and
Computational Geometry, 1986, vol. 1(2), ftp://db.stanford.edu/pub/cstr/reports/
cs/tr/85/1047/CS-TR-85-1047.pdf, accessed 14.04.2013.

[3] Joy, Kenneth I., Bernstein Polynomials, 2000, http://www.idav.ucdavis.edu/
education/CAGDNotes/CAGDNotes/Bernstein-Polynomials.pdf, accessed 14.04.2013.

[4] Knuth, Donald E., Digital Typography, CSLI Publications, Stanford, California, 1999.
[5] Knuth, Donald E., METAFONT: The Program, Computers & Typesetting, vol. D,

Addison-Wesley, Reading, Massachusetts, 1986.
[6] Knuth, Donald E., The METAFONTbook, Computers & Typesetting, vol. C,

Addison-Wesley, Reading, Massachusetts, 1986.
[7] Manning, J. R., “Continuity Conditions for Spline Curves”, Computer Journal, 1974,

vol. 17(2), p. 181–186, http://comjnl.oxfordjournals.org/content/17/2/181.full.
pdf, accessed 14.04.2013.

[8] http://en.wikipedia.org/wiki/Bernstein_polynomial, accessed 03.06.2013.

� Bogusław Jackowski
GUST
Gdańsk, Poland
b_jackowski (at) gust dot org dot pl

Bogusław Jackowski

