
TUGboat, Volume 34 (2013), No. 2 115

Does TEX have a future?

Hans Hagen

1 Introduction

Making the transition from ConTEXt MkII to MkIV
took a lot of time. In the process all kinds of code
was evaluated, improved and, occasionally, removed.
To some extent, the frozen state of MkII reflects
the requirements of automated typesetting of the
past two decades. Today, LuaTEX is advancing au-
tomated typesetting beyond what was previously
possible. But do we really need it? In this article I
will describe several issues we faced while rewriting
the code, the choices, and compromises, we made.
I will not attempt to answer the question whether
TEX has a future, but merely offer you my own ob-
servations and thoughts.1

2 Media

It is not hard to extrapolate the advance of e-books,
and the demise, in some countries, of paper books.
Less demand for printed books means less need for
typesetting. Of course, real-time rendering is also
typesetting. But since there is no one format compat-
ible with all e-book readers, publishers are unlikely
to produce multiple device-specific versions. To what
extent is a shift in the way documents are encoded
important for TEX development? And as publishers
cut quality and costs in an attempt to stay alive, who
will want high quality output? Personally, I think
more and more authors will turn to self-publishing.
In this respect we might see a revival of TEX and
more complex typesetting. It all depends on how im-
portant a particular look and feel is, and what price
you are willing to pay to achieve it. Nevertheless, we
cannot deny the fact that times are changing, and
that technological developments will influence how
TEX-like systems evolve.

From the start ConTEXt could produce very
complex interactive documents. But apart from its
inclusion in several projects, this functionality has
never been in any serious demand by the publish-
ing world. One reason for this is that compared to
the printed product, interactivity is seen as an addi-
tional ‘free’ feature. As we enter the age of electronic
books, we see that the features commonly used are
only a portion of those available. Nevertheless, all
this accumulated functionality is available in MkIV.
When a typesetter has an eye for quality, interesting
typographic and navigational details will appear.

Originally presented at EuroBachoTEX 2013.
1 This text was copy-edited for MAPS by Michael Gu-

ravage, whom I gratefully thank for helping me express my
thoughts.

3 Application

It is quite usual to find ConTEXt hidden in a larger
publication workflow. In such cases the input comes
from a database or some online editing environment.
The layout, and therefore the typesetting, are often
relatively simple. A predefined style tells ConTEXt
how to transform input to output. The input may be
predictable, but the user still has significant influence
on the workflow. In this situation, what sets MkIV
apart is its ability to analyze and manipulate data
sets. MkII can also deal with data, but with Lua on
board, MkIV solutions seem more natural. MkII is
sufficient for traditional typesetting situations, but
MkII is a dead end compared to MkIV.

We often talk of TEX users and user groups,
but the more abstract term usage might be a better
indicator of how much TEX is used. The number
of TEX users is not growing, but TEX usage might
be on the rise. Perhaps counting the number of
pages produced with TEX is a better indicator of
how prevalent TEX is than counting the number of
installed TEX systems.

4 Coding

Another observation is that ConTEXt users often
produce more advanced and demanding documents
than I do as part of my work. For me, the biggest
advantage of MkIV is its support for OpenType.
Fonts are easier to install, and all those encodings
disappear. Another advantage is that MkIV has a
flexible XML processor built in, which can save you
time in solving problems. Of course we continue to
use and improve basic rendering capabilities, but
we often have to simplify solutions when designers
fail to see the possibilities of automated typesetting.
Stability is often cited as the reason to use older
combinations of TEX engines and macro packages.
Ease of use and improved maintenance might be
sufficient reasons to move on.

In the early days of ConTEXt my colleagues
and I were its main users. One of the nice things
with TEX compared to a word processor — never
in my life have I had to use one — is that you can
automate things. Imagine that you attend a series of
meetings where several hundred learning objectives
are identified, described, ordered and grouped. If
you are in charge of such a task, it really helps to
have a system where numbering and breaking pages
comes for free. We were often able to get the adapted
documents in the post within a few hours of leaving
the meeting. The authors were impressed when, in
the next stage of the project, we presented them with
multiple professional looking documents derived from
the same source. No other application could easily

Does TEX have a future?



116 TUGboat, Volume 34 (2013), No. 2

handle 500 floating images on 300 pages without
crashing. This was the time that using TEX paid off
for us. That was more than 15 years ago.

Such a TEX-based workflow is a sequence of edit,
run and preview cycles; steps recognizable to any
old-time computer user. However, it is not something
that newcomers, like our children, might deem us-
able. It’s not ‘what you see is what you get’, but the
more abstract process of ‘what you key is what gets
done’. Wrapping TEX with a simpler interface would
only hide its power, flexibility and charm. Then, you
might as well use a word processor. Let’s face it,
using TEX directly only pays off when the user can
separate coding from rendering, wants to have full
control and desires to be independent of hard coded
solutions. Try explaining that to a twittering face-
booking kid. Regardless of how we move from MkII
to MkIV, the route from source to result remains the
same, and so does the intended audience. Updating
TEX engines and macro packages will not increase
TEX usage.

For some of our ConTEXt projects, traditional
paper-based books are complemented by content
intended for the web. Consequently, the document
source is often XML. We could encode documents
using a TEX-based coding, which, if they had the
freedom to choose, would likely be more comfortable
for authors to use. I wager that many authors who
have used TEX directly still prefer it as an input
language. Though XML is a widely accepted input
and storage format, it is not ideal for typesetting.
XML is geared toward publishing on the web and is
not as expressive as TEX. However, reusing content is
rare, so we needn’t worry too much about encodings.

Coding in XML has some advantages for process-
ing by TEX. There are no TEX commands for authors
to misuse or redefine, and valid XML documents pro-
duce no errors. Another advantage is that styling
and coding are completely separate. Of course, re-
lieving the author of the responsibility of rendering
complex documents can lead to sub-optimal output,
unless the author is willing to adapt his content. The
advent of XML has made people aware of the bene-
fits of structure. ConTEXt tries to enforce structure,
so TEX can fit nicely into modern publication work-
flows. However, for the quick and dirty one-time
documents, the overhead of adding structure might
not be worth the effort. So, even if in MkIV we
promote using \startchapter over \chapter and
\startitem over \item, we keep supporting the less
coding demanding variants.

The styles I write today are a mixture of TEX,
MetaPost and Lua. Solving the same problems with
MkII, if possible, would require considerably more

effort. Just as the faster Internet has become natural,
so has the MkIV mix.

5 Double-sided

An electronic medium is single-sided. A book is
always double-sided, and in the case of magazines
and newspapers also multi-column. ConTEXt has
quite some code to deal with double-sided layout.
Sometimes TEX collects more content than can fit on
one page. When this happens we have to keep track
of where content should end up. For instance, di-
mensions and alignment conditions for margin notes
must be swapped for odd and even pages.

In a single-sided universe, all the ConTEXt code
that deals with inner and outer positioning and
alignment could go away. Headers and footers could
also be simplified. By removing the distinction be-
tween left and right pages, we could also drop some
page synchronization code. Backgrounds wouldn’t
have to keep track of state either.

Related to this is page imposition. Page impo-
sition is built into ConTEXt and is rather advanced.
New imposition schemes occasionally appear through
the effort of Willi Egger, who not only typesets but
also prints and binds books. The advent of a new
folded paper gadget can be the impetus for adding
yet another variable to control the position of pages.

Some of our projects require that we produce
imposed products as part of an automated workflow.
Cover pages, combined with back pages, are on the
agenda for future integrated support. Since these
features are applied to finalized pages, implementing
them is relatively easy, and they do not interfere
much with existing code.

To separate content within electronic documents,
we might end up with all sorts of cover-like pages.
After all, additional e-pages are cheap, and color
comes for free. This means that we might see more
advanced page clustering and numbering schemes
in ConTEXt MkIV. For instance, it might be nice if
chapters had alternating or unique background colors.
It would be even nicer if this property could be im-
plemented without introducing new user commands
in the source document.

6 Paper size

Paper books have standard page sizes; electronic
books do not. Splitting tables with spans or large

Hans Hagen



TUGboat, Volume 34 (2013), No. 2 117

cells is somewhat painful. So why should we split a
large table in an e-document when we could just as
well scroll?

In a way we’re going back in time. Long ago
scrolls were used as a continuous medium. Thus,
scrolling on a display is not as new as it may seem.

The concept of a page is derived from the med-
ium — but what if we ignore this? For instance,
if each chapter of a book were a separate entity,
we could have one long page per chapter. This is
problematic since TEX sets a limit on how high a
page can be. But imagine that instead of thinking
vertically we go horizontal. Headers and footers go
away or get a new meaning, and the edges would give
some indication of where we were. Perhaps we need a
floating indicator; we’ve seen stranger things. Would
this require a programmable viewer that we could
control from our document, or could we anticipate
standard features in viewers and viewing devices?
Luckily for us we can adapt the TEX backend for
either eventuality; at least we have done so for over
three decades.

7 Floats

Floats are nice for paper. It is interesting to no-
tice that in ConTEXt’s early years floats were very
prevalent in the documents we produced. In fact,
they were a selling point. In educational documents
especially, graphics need to appear near to where
they are mentioned in the text. In a purely electronic
document we needn’t struggle with fitting graphics
on a page. Relaxing this requirement would sim-
plify designs. Removing the corresponding ConTEXt
code would definitely make the codebase leaner and
meaner. But don’t worry, we have no plans to delete
anything.

What if we combine the previously mentioned
vertical layout with horizontal extensions? Again
with a finger we swipe our way down the page, where
we run into an indicator denoting a larger image.
Swiping our finger to the left displays the image;
which might be accompanied by texts, images or

animations. Another swipe and we’re back in the
main thread. It is amazing that we can do this with
TEX. In fact we can proceed to multi-dimensional
or even parallel documents. I remember turning
the Metafun manual into a QuickTime 360 movie. I
must have a ConTEXt presentation style somewhere
that implements this one page presentation where
clicking on areas exposes different parts of the page.
TEX is and will always be a fine playground for such
concepts. MkIV with Lua and MetaPost makes it
even finer.

8 Margins

The first step from a paper document to, e.g., an
e-book device, is to get rid of margins. Due to
technical limitations all devices shipped around 2012
have rather hard-coded physical margins. Perhaps
one day we will have devices that have matte displays
running from edge to edge. Imagine a device without
buttons, logos or stickers proudly mentioning the
internal chip sets or operating system.

The current tendency is to remove margins. In
the near future we might see them coming back.
Margins provide structure, and also room for vari-
ous indicators and navigation aids. This is a good
thing. Support for putting things in margins is quite
important. In MkIV we already go further than in
MkII and more will come.

9 Accessibility

A table of contents still makes sense in an electronic
document, but what about an index? An index’s
usefulness is proportional to how carefully it was
prepared. In many cases a search option works just
as well. The concept of a table of contents can be
expanded to include local tables and navigation aids
that help the reader find what he wants. Similarly,
we can collect information in multiple indexes. We
added multiple interactive indexes to ConTEXt while
involved in a project that produced quality assurance
manuals. In another project we needed index entries
arranged in a linked list, which is why this func-
tionality exists in MkII. This cross-linked variant is
not yet available in MkIV only because I don’t know
anybody who needs it. Interestingly, implementing
it in MkIV is far easier than in MkII.

A great deal of functionality, some of it even
documented, is there because we once needed it.
Take, for instance, flow charts. We can make really
big ones. Selected cells can become hyperlinks —
allowing us to jump through the document. Again,
this functionality was a side effect of making those
interactive QA manuals.

Does TEX have a future?



118 TUGboat, Volume 34 (2013), No. 2

Mechanisms like these have always been part
of ConTEXt, even when they make no sense for pa-
per documents. They are more coding issues than
demanding typographical challenges. They do not
interfere with other typographical components, so
simplifying or removing this functionality has no ben-
efits. We can do much more in MkIV, but sometimes
I get the feeling that less is more.

A lot of code in ConTEXt deals with structure.
It makes sense to think about ways to improve how
we gain access to it: linked lists, pop ups, summaries,
reading routes, etc. MkII has several mechanisms
that make controlled reading possible, but they never
took off. In MkIV most mechanisms that structure
data also retain part of it for re-use. Because we store
data for use in a second or subsequent typesetting
pass, information can be used multiple times.

Some mechanisms also support user data. For
instance, when starting a chapter, besides setting its
title, you can also name a variable that stores the
name of an image — a sort of visual title. As this
name is carried around, the image can appear as an
icon in the table of contents and on the first page
of the chapter. We needed this a long time ago in
MkII. This is one reason why in MkIV we can now
set user variables in commands that start chapters
and sections.

In one project we participate in, a free math
method, the content is first published on the web.
Given the nature of electronic documents, it went un-
noticed that, when typeset for the printed page, the
document was quite large. Selective use of content,
multiple products, and efficient typesetting are solu-
tions to this. The e-book version is not constrained
by the number of pages. Information can be repeated
when needed; complemented with the necessary nav-
igational aids. I’m confident that ConTEXt can deal
with both variants.

There has been a time, probably due to the fact
that I gave presentations showing PDF on a projector,
that ConTEXt was promoted as a system for creating
electronic documents in PDF format. This is just one
feature, but interaction has always been integrated
in the core — never an add-on. However, there is a
fundamental difference between interaction in MkII
and MkIV. Using different techniques in MkIV, we no
longer have interfering status nodes. This makes the
whole mechanism more robust, although internally
it has become pretty complex.

10 Columns

Columns make sense in broadsheet newspapers and
journals where one wants to put as much as possible
on a page. But I wonder if columns make sense

in electronic documents. After all, electronic pages
are cheap, and getting rid of multi-columns makes
typesetting much easier. In TEX the mechanisms
that deal with columns, e.g., page builder, floats and
notes, are often complex. The code can be pretty
messy. It would be nice to get rid of this legacy.

A good application of columns can be found in
parallel bible translations. Not only must the text be
synchronized in multiple columns, it also has to be
broken across pages in a reasonable way. Footnotes
are another complication.

Will such products be made in the future? The
production of printed encyclopedias has already stop-
ped, and concordances might soon follow. On the
other hand, the fact that Thomas Schmitz typesets
sophisticated documents for tablets, notebooks, pro-
jectors, and paper indicates that, for critical editions,
the future is not yet determined. And I know several
TEXies who typeset catalogs for conferences and fes-
tivals where a proper paper version is the only way to
provide an effective overview. All these documents
share a mixture of one column, multi-column and
specially composed pages.

ConTEXt currently has two mechanisms that
deal with columns. The first mixes well with single
column mode, the second is more powerful and en-
capsulated. In MkIV the pluggability of the output
routine has been improved; so if needed we can sup-
port yet unforeseen page building schemes. Parallel
streams are first on the agenda.

11 Move on

If we consider only paper documents, do we antici-
pate needing more typesetting functionality than we
already have? Does it make sense to develop macro
packages any further? Of course, it is not difficult to
make a wish list including more support for complex
critical editions and parallel typesetting of transla-
tions. For those who use a simple input format such
as Markdown, existing ConTEXt functionality is more
than sufficient. In fact, as long as we can deal with
the concepts found in HTML we’re okay. Most of
these documents consist only of running text, tables,
images, a bit of sectioning, itemized lists and maybe
descriptions.

TEX is over thirty years old. It is still maintained
and kept up-to-date. It provides users with a lot of
freedom. It has an active user community. It is often
chosen for long term use. It is boringly stable. With
these attributes, we can safely assume that TEX will
be around for a while. The same is true for macro
packages. They will stay and evolve. But how will
TEX change along the inexorable path from paper to



TUGboat, Volume 34 (2013), No. 2 119

electronic media? Typesetting habits change slowly,
so we still have some time to ponder these questions.

On the other hand, look at how quickly the web
is evolving, and how quickly younger generations
adapt to new electronic devices. When using TEX it
is natural to think in book-related categories. But
just as a computer desktop is not a real desktop,
an e-book is not a real book. Real books have a
physical presence; we can hold them in our hands
and turn each page as we read. E-books try to mimic
these physical characteristics with ridiculous results.
For example, you can choose an e-book from an e-
bookshelf, and turning pages is simulated by showing
the binding and a moving cut edge. But will we want
or need these visual clues in the future when we have
instant access to everything from anywhere on any
device we choose? Why carry around a book when
we can have its contents projected on our retina, or
hear it spoken in our ear? Regardless of how TEX
and its attendant macro packages evolve, we’d best
refrain from predicting the future, let alone promote
TEX as the ultimate and last word on typography.
We can only hope that future hardware and software
will allow us to TEX like we allow printers to use
printing presses.

� Hans Hagen
http://pragma-ade.com

Collection 2013

proTEXt
TEX for MS Windows

based on MiKTEX

MacTEX
TEX for MacOSX

including full TEX Live

TEX Live
TEX for GNU/Linux, Unix,

and MS Windows

CTAN
Comprehensive TEX

Archive Network

Editors: Thomas Feuerstack (proTEXt) • Karl Berry (TEX Live)

Richard Koch (MacTEX) • Manfred Lotz (CTAN)

TEX

DVD
June 2013

DANTE e.V.
www.dante.de

O
gutenberg.eu.org

www.tug.org

AsTEX (French)

CervanTEX (Spanish)

CSTUG
(Czech/Slovak)

CTEX (Chinese)

CyrTUG (Russian)

DANTE (German)

DK-TUG (Danish)

Estonian User Group

εφτ (Greek)

GuIT (Italian)

GUST (Polish)

GUTenberg (French)

GUTpt (Portuguese)

ÍsTEX (Icelandic)

ITALIC (Irish)

KTUG (Korean)

Lietuvos TEX’o
Vartotojų Grupė

(Lithuanian)

MaTEX (Hungarian)

Nordic TEX Group
(Scandinavian)

NTG (Dutch)

TEXCeH (Slovenian)

TEX México

Tirant lo TEX (Catalan)

TUG (international)

TUGIndia

TUG-Philippines

UK TUG

ViêtTUG (Vietnamese)

❧ http://www.tug.org/texcollection ❧ 2013

proTEXt: an easy to install TEX system for MS Windows: based on
MiKTEX, with the TEXstudio editor front-end.

TEX Live: a rich TEX system to be installed on hard disk or a portable
device such as a USB stick. Comes with support for most modern
systems, including GNU/Linux, MacOSX, and Windows.

MacTEX: an easy to install TEX system for MacOSX: the full TEX Live
distribution, with the TeXShop front-end and other Mac tools.

CTAN: a snapshot of the Comprehensive TEX Archive Network, a set of
servers worldwide making TEX software publically available.

proTEXt ist ein einfach zu installierendes TEX-System für MS Windows,
basierend auf MiKTEX und TEXstudio als Editor.

TEX Live ist ein umfangreiches TEX-System, zur Installation auf
Festplatte oder einem portablem Medium, z. B. USB-Stick. Binaries für
viele Platformen sind enthalten.

MacTEX ist ein einfach zu installierendes TEXSystem für MacOSX, mit
einem vollständigen TEX Live, sowie TEXShop als Frontend und weitere
Programme.

CTAN ist ein weltweites Netzwerk von ftp-Servern für TEX-Software. Auf
der DVD befindet sich ein kompletter Abzug des deutschen
CTAN-Knotens dante.ctan.org.

proTEXt : un système TEX pour Windows facile à installer, basé sur
MikTEX avec l’éditeur TEXstudio.

TEX Live : un système TEX complet qui peut être installé sur disque dur
ou en mode portable sur une clé USB. Fonctionne sur la plupart des
systèmes modernes, dont GNU/Linux, MacOSX et Windows.

MacTEX : un système TEX facile à installer pour MacOSX. Il comporte
une distribution TEX Live complète ainsi que l’éditeur TeXShop et
d’autres outils pour Mac.

CTAN : une copie du Comprehensive TEX Archive Network, le réseau de
serveurs assurant la distribution publique de TEX et ses amis dans le
monde entier.


