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LuaJITTEX

Luigi Scarso

Abstract

Here we introduce LuaJITTEX, an implementation
of LuaTgEX that uses LuaJIT 2.0 instead of Lua 5.1.

1 Introduction

On Thursday, November 8, 2012 the long-awaited
release of LuaJIT 2.0 finally happened, after 11 beta
releases over three years. It happened a month after
EuroTEX 2012 & 6" ConTEXt meeting, where I and
Hans Hagen discussed the possibility of building a
set of bindings to shared libraries of general interest
for LuaTEX. A binding is an object module that
acts as a bridge between a specific library and the
Lua interpreter of LuaTEX. Its role is to expose
the library to the point of view of Lua(TEX), thus
easing the job of the programmer. The module is
specific to the library, and its source code must be
created in some way. A manual binding is feasible
only for a small library; with a large library, it’s
better to make use of dedicated tools. Each tool has
its pros and cons, but we have found that SWIG [11]
can satisfy our needs, having used it before (see [18]
and [19]). Its syntax is quite similar to C and it can
parse the header files of a library and automatically
produce the source code of the binding. Usually the
compilation of the module is also straightforward.
In a TEX project we would like to satisfy the
requirements of several platforms, each one with its
own toolchain. A candidate library is not always
available for a target platform, or complete support
for a toolchain may be lacking (we need at least a
compiler, assembler and linker). A library can use
some “dirty tricks” that are hard to translate into
a binding module and extensive testing can become
prohibitive. Last but not least, during the meeting
we also considered the consequences on the upcoming
transition from Lua 5.1 to Lua 5.2 in LuaTEX.
When we explore some ideas, sometimes we fall
into what looks like an unsolvable problem, and it’s a
good strategy to temporarily change focus and start a
completely different activity and return after a while
to the original problem with a fresh point of view.
As it happens, I had such a problem with the binding
of a function with a variable argument list (in an
apparently absurd attempt to bind the libc library of
Microsoft Windows 7), and the new release of LuaJIT
offered a good reason to momentarily drop this task
and start to see if it was possible to replace the Lua
interpreter with a LuaJIT one. But before I go on,
it’s necessary to understand what exactly LuaJIT is
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and why such a substitution may be interesting. I
will first discuss the TEX and Lua interpreters.

2 TgEX, Lua, LuaJIT
2.1 TX

LuaTgX is the union of two interpreters, one of the
Lua language and one for the TEX language. The
main actor is the TEX interpreter [12]: the input
processor scans each input line of the source pro-
ducing a pair (character-code, category-code).
LuaTEX currently has 22! character-codes and 16
category-codes. Starting from a pair, a charac-
ter token, a control sequence token, or a parameter
token is formed; there are currently around 350 sub-
types of tokens. With an abuse of terminology, we
can call this subtype an operation code (opcode),
and hence an opcode fits into two bytes. A token
is then executed by mean of a jump_table using
a function pointer: (jump_table[opcode]) () calls
the function that implements opcode. The state-
ment while (1) means that this task continues un-
til the variable main_control_state has the value
goto_return, that signals to exit from the main loop
and end the program:
void main_control(void)
{

main_control_state = goto_next;

init_main_control();

if (equiv(every_job_loc) != null)

begin_token_list(equiv(every_job_loc),
every_job_text);

while (1) {
if (main_control_state == goto_skip_token)
main_control_state = goto_next;
else

get_x_token();

if (interrupt != O &% OK_to_interrupt) {
back_input();
check_interrupt();
continue;

}

if (int_par(tracing_commands_code)> 0)
show_cur_cmd_chr() ;

(jump_table[(abs(mode)+cur_cmd)]) ) ;

if (main_control_state == goto_return) {
return;
}
}
return;
}

This kind of interpreter is called a Syntax-Directed
Interpreter because it mimics what we do when
we trace the code manually. It is well suited for
a DSL (Domain Specific Language, see [16]) as is
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TEX in this case, but usually a DSL is not so com-
plex as TEX (which is also Turing-complete). The
main part of this kind of interpreter is usually a big
switch-case statement, where each opcode has its
own case. The C standards do not specify how to
implement a switch statement, but usually a com-
piler can use jump_table only if each label is equal
to the preceding label plus one (or if the compiler
is able to bring values of the labels to an equiva-
lent case, see [1], section 7.12 Branches and switch
statements); if the values are far from each other,
a compiler must implement it as a kind of binary
search among if-then-else like statements, and
this has a bad impact on the branch predictor of
the CPU. For example, let’s consider this switch
fragment of C code:

switch (OPCODE) {

case 0: func_000(); break;
case 1: func_001(); break;
case 2: func_002(); break;
default: break;
}

A compiler, maybe with some kind of optimiza-
tion enabled, can generate machine code correspond-
ing to the following pseudo-code (not C):

static address jump_table[] =
{case_0,case_1,case_2,end };

if (index > 2) goto end;

goto jump_table[index];

case_0: func_000(); goto end;

case_1: func_001(); goto end;

case_2: func_b();

end:

which is more efficient than multiple if-then-else.
Note that this jump_table is not the same as we've
seen for TEX: there we use a label to run a function in
the compiled code that refers to a jump_table being
a function pointer table defined earlier in the source
code, and once compiled it adds overhead due to
the call of the selected function. On the other hand,
the function pointer method definitely avoids the
if-then-else like statements (because it’s a choice
made by the programmer, not the compiler) and
makes the code more compact and more manageable.
More on this later.

It is known that in order to speedup the load-
ing of a large set of macros, TEX (or, more exactly,
iniTEX, a special version of TEX) can also dump the
macros into a kind of memory-compiled format (sim-
ply called format), which can be loaded at runtime.
A format depends on the current release of the in-
terpreter and the machine on which the interpreter
runs: a format cannot generally be exchanged be-
tween different releases and formats cannot always
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be exchanged between different machines even with
the same release — but this currently fails only if a
format uses floating point values, because floating
point numbers related to glue are stored in the for-
mat and hence will generally not be readable across
platforms. (See [2]: WXTEX, for example, doesn’t use
glue values in the format and hence the result .fmt
is portable, thankfully.)

This is not seen as a penalty; because TEX is
used as document compiler speed is a concern, and
a format can give a speedup of several orders of
magnitude, so it’s typically built when TEX is in-
stalled. TEX users are generally more interested in
durability /portability of their document source code,
not the format. A remarkable exception is ConTEXt
Mark IV, but its users find it natural to rebuild the
format on every update of the code— which happens
quite often, because it’s still evolving. Dumping a
format is also an uncommon characteristic for a DSL
language.

2.2 Lua

The Lua interpreter is designed in a different way:
it first translates the source code into another form
and then executes this form. The translation is
called compiling into bytecode because it’s similar
to the task of a compiler, which translates source
code (like a C program) into machine code. While
a compiler usually translates a source program into
an intermediate representation which is optimized
and then translated again into a machine code, a
Lua interpreter directly translates the source into
bytecode — but even in this case some optimization
is possible [15].

Like TEX, Lua can dump a module into a kind
of “format” (called the bytecompiled version of the
module) and this “format” can be exchanged be-
tween different machines with the same architecture
and the same interpreter (i.e. the same major and
minor version number). The reason for this is that
the Lua interpreter has a kind of “software CPU”
called Virtual Machine (VM), which is implemented
in ANSI C and it is the same for all the same re-
lease of the interpreter. The name “bytecode” is not
casual: each opcode of the instructions of the VM
fits into one byte (while the size of an instruction
is 32 bit) and a VM is nothing else than a bytecode
interpreter (after all we can also see a physical CPU
as a machine-code interpreter).

A bytecode interpreter is usually the best choice
if we want to implement a general programming
language and we also want a fast and portable inter-
preter (see [16], chapter 10). The reason is that the
design of a general programming language is more
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complex than a simple DSL, but the theory of compil-
ers is a powerful tool that can help enormously —we
have only to avoid producing machine code. In fact
any specific CPU is its own machine, and to try to
adapt the compiler to each CPU is in conflict with the
portability across different architectures. A better
solution is to design a byte-compiler for a VM — this
task is common for all platforms, gaining in portabil-
ity —and implement the VM with a high level and
widely available language like C. A VM is usually
simpler than a physical CPU, so the byte-compiler
can be optimized for performance —the translation
must be fast; this means that the code can be com-
plex and hence its design and implementation can
require more effort compared to a DSL. This is why
the bytecode is also important: we can use a cache
to avoid re-parsing the source language. Of course
a VM must be also fast, otherwise the interpreter of
the general language is slow.

There are two ways to implement a VM: sim-
ulating a stack (stack-based VM) and simulating a
register machine (register-based VM). A register-
based VM is similar to a real piece of hardware,
because it uses simulated general-purpose registers,
but has no practical limits on their number as a real
CPU does. A stack-based VM doesn’t have to figure
out which register to use for which value, because in-
structions have implicit operands. Stack-based VMs
are thus easy to implement, but register-based imple-
mentations better optimize the use of the registers
of the physical CPU, which is the fastest memory
available (300 times faster than DRAM), but is also
very limited in size (typically not more than 1000
bytes, vs. a typical 4 GBytes of DRAM). Lua is the
first widely used language to have a register-based
VM ([15], section Introduction).

Let’s see for example how a=1;b=2;c=a+b is
translated in bytecode by luac, the Lua bytecode
compiler (text after ; is a comment):

SETTABUP 0 -1 -2 ; _ENV "a" 1

SETTABUP 0 -3 -4 ; _ENV "b" 2
GETTABUP 0 0 -1 ; _ENV "a"
GETTABUP 1 0 -3 ; _ENV "b"
ADD 001

SETTABUP 0 -5 0 ; _ENV "c"
RETURN 0 1

Expanding the meaning of the opcodes we have:

SETTABUP 0 -1 -2 ; UpValue[O][RK(—l)] = RK(-2)
SETTABUP 0 -3 -4 ; UpValue[0] [RK(-3)] := RK(-4)
GETTABUP 0 0 -1 ; R(0) := UpValue[O] [RK(-1)]
GETTABUP 1 0 -3 ; R(1) := UpValue[O][RK(—B)]
ADD 001 ; R(0) := RK(0) + RK(1)
SETTABUP O -5 0 ; UpValue[O] [RK(-5)] := RK(O)
RETURN 0 1 ; return R(0),R(-1)
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UpValue[0] is the current environment, while
R(.) is a register and RK(.) is a register or a con-
stant: the access can be relative. So,

UpValue[0] [RK(-1)] := RK(-2)

means “in the current environment, set RK[-1] (i.e.
"a") to RK[-2] (ie. 1).”

Each of these instructions is executed by the
bytecode interpreter, which is, perhaps a bit sur-
prisingly, a big switch-case loop (here we show a
fragment):

while (1) {

switch (op) {

case OPR_AND: {
luaK_goiftrue(fs, v);
break;

}

case OPR_OR: {
luaK_goiffalse(fs, v);
break;

}

case OPR_CONCAT: {
luaK_exp2nextreg(fs, v);
break;

}

case OPR_ADD:

case 0OPR_SUB:

case OPR_MUL:

case OPR_DIV:

case OPR_MQOD:

case OPR_POW: {
if (!isnumeral(v)) luaK_exp2RK(fs, v);
break;

}

}/* end switch */

}/* end while */

Currently most bytecode interpreters use the
threading model technique, where each instruction is
the address of the case target code. This is similar to,
but not the same as, what we have seen for the TEX
interpreter.

To explain exactly what this means, let’s first
remember that C has a goto statement that transfers
the program flow to a point marked by a label, i.e.

goto somelabel;

somelabel:

/* some code */

The address marked by somelabel is fixed at compile
time, but some compilers (notably GCC) allow us to
store the address of somelabel into an array to be
used with a goto, using the label as a value so that
the goto is computed at runtime:
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static void *array[] = { &&somelabel };

/* equivalent to goto somelabel */
goto *array[0];

somelabel:
/* code */

Such labels as values are valid only within a function:
computed goto cannot be used to jump to code in
a different function. (Computed goto for GCC is
described in [3].) Hence in this case labels are not
truly first-class values, i.e. values that can be dynam-
ically created, destroyed or passed as an argument.
In contrast, in Lua all types (nil, boolean, number,
string, table, function, userdata, thread) are first-
class values and version 5.2 of Lua adds the goto
statement too.

In this way it could be possible to replace the
switch-case statement storing the bytecoded in-
struction of the program with an array instruction
and counting the next instruction with a program
counter pc, as in the following pseudo-code:

static void* dispatch_table[] = {

&&O0PR_AND,

&&0PR_OR,

&&0PR_CONCAT,

&&O0PR_ADD,
.}

#define DISPATCH() \
goto *dispatch_table[instruction[pc++]]

int pc = 0O;
while (1) {

OPR_AND:
luaK_goiftrue(fs, v);
DISPATCH();

}

OPR_OR: {
luaK_goiffalse(fs, v);
DISPATCH() ;

}

OPR_CONCAT: {
luaK_exp2nextreg(fs, v);
DISPATCH();

}

OPR_ADD: {
if (!isnumeral(v)) luaK_exp2RK(fs, v);
DISPATCH();

}

}/* end while */

There is also another important benefit: computed
goto helps the branch predictor of the CPU. To
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understand the problem, let’s consider a real CPU as
an interpreter of machine code. At this level, it’s still
possible to divide the execution of a single instruction
into atomic stages: let’s call them fetch (read an
instruction from memory) decode, execute and write-
back (write the result into memory) and let’s suppose
that all the stages take the same time (which is not
true in modern CPUs). A clock is mandatory to
synchronize the stages, and a simple method (called
Single-Cycle) is fetch - decode - execute - write the
first instruction (4 cycles), fetch - decode - execute -
write the second (again 4 cycles) and so on. If we
have 4 instructions then after 16 cycles the overall
execution is done, if we suppose that none of the
instructions use jumps to other instructions.

But, if each stage is independent the CPU can
do a better job: after the fetch of the first instruction,
it can start its decode stage and simultaneously the
fetch stage of the second instruction, as explained in
this picture from [4]:

Clock Cycle
1 2 3 4 5 6 7 8

HEE

Waiting
Instructions
w Stage 1: Fetch &&&&
% Stage 2: Decode }X‘ & & & &
i Stage 3: Execute }X‘ & }X‘ & &
o Stage 4: Write-back VA & VA & &
] ) (o] [
Completed
Instructions

The CPU can thus complete 4 instructions after
8 cycles, doubling the throughput, even if each instruc-
tion still takes 4 cycles. This method is called pipelin-
ing. Modern CPUs can have more than 4 stages:
more stages means more cycles, but also simpler cir-
cuitry and hence the chance to use a faster clock;
but especially more stages mean high throughput.
In fact in this case the distance Tpipeline (in CPU
cycles) between I; and I is 1 cycle, while with the
Single-Cycle we have T'single-cycle = 4 cycles and
in general for an N-stage pipeline we have at best
Tpipeline = TSingle—Cycle/N-

Back to the picture: a problem arises if execu-
tion of I; has as a consequence a jump to Iy, skipping
I and Is—and this is known only at the execution
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stage. Given that the CPU knows that I; is a type of
jump, a simple solution is to avoid using any stage
of the pipeline until I; has ended its execute stage;
in this case I; will end at the 5** cycle and I, will
end at the 9*" cycle —and we have the same perfor-
mance of a Single-Cycle, because in this case with
a Single-Cycle the CPU fetches I, at the 5" cycle.
This is called a (control or branch) hazard.

To reduce the performance impact of this, mod-
ern CPUs have specialized hardware that predicts,
with a conditional jump, the next instruction to fetch.
This branch prediction can be a fixed rule (“never
take the second choice”) or a dynamic branch predic-
tion, which is usually based on a branch history table:
a small amount of memory indexed by the lower por-
tion of the address of the branch instruction, which
contains some bits that say whether that branch was
recently taken or not. (For the sake of simplicity,
we are not distinguishing between branch predictors
(has to decide if a branch condition will fail or not)
and branch path predictors (which address to jump
to), because often both are on the same circuitry.)

If the branch predictor makes the right choice,
the throughput increase is saved; otherwise it has to
clean the pipeline and fetch the correct instruction —
and this is bad for performance. Nowadays, with an
adequate algorithm, it’s possible to have from 99%
to 82% of correct predictions. For a comprehensive
treatment of these subjects see [14] and [17].

The key point in the above is that the prediction
is based on the current branch instruction. We have
seen that, in the best situation, a switch-case is
implemented with the switch condition used as off-
set in a look-up table: in the TEX pseudo-code above
the crucial line is ‘goto jump_table[index];’. The
branch predictor sees this line as a branch instruc-
tion and, starting from index, it has to choose be-
tween all the following cases (the branches): it has
one base address and n equally-spread branches to
choose from, and modern CPUs cannot manage large
n efficiently. The line ‘if (index > 2) goto end;’
which is mandatory for the switch also adds over-
head.

With a computed goto the key line is

goto *dispatch_table[instruction[pc++]]

Each individual case becomes the address used by
the branch predictor; the branch predictor has n
different base addresses and statistically the next
instruction is not equally spread between all n choices
and hence the address to jump is better predicted.
The difference between these two can be sig-
nificant: following [5], a branch predictor mispre-
dicts 81%-98% with switch and 57%63% with the
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threaded model.

So, why doesn’t the Lua implementation use the
computed goto? The reason is that this extension
is not ANSI C, the language chosen to implement
Lua. This is clearly explained in [15]: the threading
model would compromise the portability of Lua. For
example, the Microsoft C compiler doesn’t support
labels as values, and the Intel ICC compiler supports
them under Linux but not under Microsoft Windows.

In the end, this is a good choice at least for
TEX, given that also TEX aims to be portable: and
if it were a true bottleneck, it should be possible
to re-factor the C source of Lua with macros and
conditional compilation to choose at compile time the
type of the interpreter. And, finally, maybe there will
be ANSI C compatible interpreters with lower error
rates based on completely different models (after all,
a failure rate of 57% is surely high enough to justify
further research).

So far we have seen that TEX and Lua use differ-
ent kinds of interpreter (direct-syntax vs. bytecode),
both optimal for their purposes; both have bytecode
output, with almost the same issues on portability,
though not so relevant for the TEX users (and TEX is
slightly better), both use the best choice of main loop
of the interpreter, compatible with the portability
goal and manageability of the code.

Let’s look now at LuaJIT.

2.3 LuaJIT

LuaJIT, by Mike Pall [6], drops the requirement of
portability on as many platforms as possible, and
changes important parts of the Lua interpreter, keep-
ing compatibility with Lua 5.1 plus other constructs
like goto. First, LuaJIT still has a bytecode inter-
preter, but it is written in assembly language. It’s
clear that this immediately leads to the conclusion
that there can be (and in fact are) some platforms
that are not supported, but we postpone this topic
for later.

The way that LuaJIT builds the VM is a bit
complex: first, a buildvm program is built for the
given platform, then buildvm uses a dasc file (a
mix of C and assembly) that describes the physical
CPU and emits a 1j_vm.s assembly file (the VM)
that is finally compiled. For an x86_64 CPU, the
vm_x86.dasc file looks like this:

/* Generate the code for
a single instruction. */
static void build_ins(BuildCtx *ctx,
BCOp op, int defop)
{
int vk = 0;
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|// Note: aligning all instructions
|// does not pay off.
|=>defop:

switch (op) {

/* -- Comparison ops —-- */

/* Remember: all ops branch for a true
comparison, fall through otherwise. */

| .macro jmp_comp, 1t, ge, le, gt, target

| Iswitch (op) {

| |case BC_ISLT:

| 1t target

| |break;

| |case BC_ISGE:

|  ge target

| |break;

| |case BC_ISLE:

|  le target

| |break;

| |case BC_ISGT:

| gt target

| |break;

| |default: break;

13

| .endmacro

/* Shut up GCC. */

case BC_ISLT: case BC_ISGE:
case BC_ISLE: case BC_ISGT:
| // RA = srcl, RD = src2,
| // JMP with RD = target
| ins_AD
| .if DUALNUM
| checkint RA, >7
| checkint RD, >8
| mov RB, dword [BASE+RA%*8]
| add PC, 4
| cmp RB, dword [BASE+RD*8]
|  jmp_comp jge, jl, jg, jle, >9
|6:
| movzx RD, PC_RD
| branch
} /* end main switch */

}

It seems that the main loop is still a switch
statement but LuaJIT under the hood uses a thread-
ing model — the same computed goto we saw above.
This is possible because assembly language does not
have the limitations of the C language, but of course
the price to pay is maintaining several different as-
sembly language sources of the same program.

It’s important to stress a couple of things: the
optimal use of registers (LuaJIT keeps all important
variables of the state in registers, and this kind of
optimization is hard to achieve with a C compiler,
at least for an x86 CPU) and the size in bytes. An
assembly program once compiled is usually smaller
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than the C counterpart, which means it has a better
chance of fitting into cache memory (which is at
least two times faster than DRAM). For example,
in a compiled version of LuaJITTEX for an x86_64
CPU the VM is 28560 bytes and it’s common to find
laptop computers with an L1 cache of 128 KiB with
an access time 100 times faster than DRAM. Note
that the bytecode is still portable between different
LuaJIT VMs (sharing the same version), but it’s not
compatible with the Lua VM. The interpreter alone
is claimed to be from 2 to 4 times faster than the
Lua interpreter [7].

The second important feature is that the VM
supports translation of the bytecode into machine
code at run time. This is called Just In Time com-
pilation (hence the name LuaJIT), and it uses a
trace compiler: a compiler that keeps track of fre-
quently used “flat” sequences of bytecodes and only
translates the “hot” ones the first time, reusing the
machine-code subsequently. The VM and the trace
compiler cooperate very closely, but we can describe
the operations in four phases (see [7], section ‘How
a trace compiler works’):

1) interpretation: the VM interprets the byte-
codes and collects statistics, so that if some code
path (i.e. a sequence of Lua statements) reaches a
given threshold its trace (the relative linear sequence
of bytecodes) is considered “hot” and the VM goes
on to the next phase;

2) interpretation and recording: while continu-
ing the interpretation of bytecode, the VM records
the associate actions and translates them into an
intermediate representation called static-single as-
signment (SSA), in which each variable is assigned
exactly once;

3) trace compilation: if the recording is ok (for
example all bytecode of the trace can be translated
into a SSA), the SSA is optimized and translated into
machine code;

4) trace execution: the compiled code is executed

and reused if possible.
It’s important to note that even during the trace
compilation phase some runtime conditions (e.g. a
bound check that fails) can halt execution of the
compiled code and return to the standard way of
bytecode interpretation, with a loss of performance.
Of course we cannot forget the fact that we can have
the benefits of a compiled language (high speed of
execution) with the benefits of an interpreted one
(high speed of development) — the key point of the
JIT method.

The last important fact is the support of the
Foreign Function Interface (FFI) via the Lua module
f£fi. Briefly, this module allows two things:
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1) pure Lua code can call external C functions
(i.e. functions in external libraries such as .*d11 and
*.80); there is a special namespace ££i.C that per-
mits using, at least on POSIX systems and Microsoft
Windows, the symbols from the current system C
library.

2) it’s possible to use C data structures from
pure Lua code: they are compiled to machine code
at runtime by the JIT compiler. An example shown
at http://luajit.org/ext_ffi.html is eloquent:
replacing a Lua table with a C struct on x86_64
has a speedup of 110x (i.e. 110 times faster than
Lua) and the memory consumption is 64 times less.
Apart from the C preprocessor, LuaJIT with the ffi
module is hence similar (but less powerful) to a C
interpreter like cling [8] (an interpreter for C++).

3 Building LuaJITTEX and first results
3.1 Building LuaJITTEX

Building LuaJITTEX was a bit of a complicated task,
because LuaJIT has its own system to detect the host
CPU and build the VM in assembly language, and this
system doesn’t fit well with the way LuaTEX builds
its binaries. After a few tries, we eventually decide to
modify the layout of the source code of the original
LuaTEX, moving the LuaJIT source to the same level
of other support libraries like png, cairo, z1ib, xpdf
and using the original build system of LuaJIT. This
seemed reasonable, given that LuaTgX is moving in
the same direction (i.e. also move the stock Lua 5.2
to the level of the support libraries), so integration
in the future can be easier than now. Some C files
(less than ten) also needed to be adapted, but overall,
after the change of the layout the integration was
quite easy.

We knew that an important point was build-
ing LuaJITTEX for several platform with different
compilers and checking the performance with a sig-
nificant Lua code base. Initially the first version was
only for Linux 32-bit, then the support for 64-bit
was added; after that, we checked the mingw 32-bit
version, using the same compiler of LuaTEX, but
cross-compiling under Linux. After the mingw ver-
sion we started to work on the source of luatex.exe
from http://www.w32tex.org/ by Akira Kakuto,
which is known to compile with the Microsoft com-
piler for x86. We were able to adapt that source
code to LuaJIT as well and compile it with the MS
compiler VC 2008 Express edition, again under Linux
with Wine.

Compilations in hand, we started a period of
testing using the Lua code base of ConTEXt Mark V.
That ended around mid-December 2012, and eventu-
ally the LuaJITTEX project was created at http://
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foundry.supelec.fr/gf/project/luajittex; the
first release was on Christmas 2012. On 31 De-
cember the first version of luajittex.exe made by
Prof. Kakuto was on the w32tex server. Later, in
January 2013 we fixed the binary for Mac OSX 64-
bit and added support for the compilation with the
clang compiler. Of course as always testing is wel-
come: as stated in [9], the choice of compiler can
influence the performance, and we need more feed-
back on this.

3.2 First impressions

Extensive tests were done on the Lua code base of
ConTEXt Mark IV, and [13] (in this issue of TUG-
boat) reports numerical results. The first tests show
that there was an improvement of speed of about
25%, and, if we decompose into the TEX time and
the Lua time, we have measured effectively a 2x
speedup of the Lua interpreter. Turning the JIT
compilation itself on and off didn’t change the re-
sults significantly; in fact, with JIT on, LuaJITTEX is
a bit slower than with JIT off. Very likely the reason
is that few functions of the Lua standard libraries
are JIT-compiled (see [10]) and when the JIT com-
piler sees a Not Yet Implemented (NYI) instruction,
it has to jump from the trace compilation phase to
the interpretation phase, and this has a cost. And
of course, when nothing can be JIT-compiled the
analysis is useless overhead.

Given that Mark IV uses the standard libraries
and does lots of node-list manipulations it’s not a
surprise that there is a performance penalty: there is
not much to JIT. Thus, the speedup essentially comes
from the new VM written in assembly language.

The full power of JIT can be seen with pure Lua
or with the math functions; we have also made some
quick tests on using the £fi module and registered
10x speedups. Of course the price to pay is the loss of
garbage collection: using ffi we must pay attention
to the memory management and how the garbage
collector works. We have not checked the calling of
external libraries.

The overall impression is that LuaJITTEX is
faster than LuaTgX, but not so overwhelmingly fast:
in both, the TEX interpreter is still the dominant
part. The memory footprint was slightly less in
LuaJITTEX.

4 Conclusion

LuaJITTEX looks like the best way to write a high-
performance Lua interpreter —it’s hard to believe
that another implementation could do better without
multi-threading. We have consistently measured that
the VM is 2 times faster than standard Lua (as in [7])
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on an x86 CPU, which shows that LuaJIT is well-
adapted to the LuaTEX code base. We also measured
a 25% improvement on time, which is probably the
best we can achieve modifying only the Lua side.

We think that the JIT compiler and FFI can
achieve their full potential only if one starts by writ-
ing LuaJIT code from the very beginning; currently
LuaJIT is not well-suited to a large standard Lua
code base that uses the standard libraries.

Overall, we don’t see LuaJITTEX as a potential
replacement of LuaTEX, but rather as an engine that
can have higher performance in particular situations,
for example, an automatic workflow of simple type-
setting tasks, especially in the hands of a developer
with a good knowledge of the C language and mem-
ory management. In this situation, writing a format
that is a mix of TEX, Lua and C, together with the
ability of LuaJIT to make simple the task of the
binding, can make LuaJITTEX a very effective tool.

On the other hand, we cannot hide the potential
compatibility issue as LuaTEX moves on to Lua 5.2
and the resulting differences with LuaJIT 2.0 (which
currently uses Lua 5.1 plus some constructs from
Lua 5.2). We will try to keep LuaJITTEX and LuaTEX
in sync as much as possible, but the preference is
for LuaTgX, which is the main reference. Users
with no particularly demanding tasks are strongly
encouraged to use LuaTgX.

Finally, it was very instructive to learn how to
set up a toolchain for different compilers, especially
for the compilation of luatex.exe. We see this as
preparation for the SwigLib project, where one of
the challenges will be checking the binaries of the
libraries for different platforms.
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