40

The esami package for examinations*

Grazia Messineo and Salvatore Vassallo

Abstract

The package esami is a small collection of macros to
prepare written examinations and tests for students
at universities or secondary schools. It generates
output in which questions and answers are scrambled.
Exercises depend on random parameters, the values
of which are assigned during the compilation and on
which you can do many arithmetic operations.

1 Introduction

Among the main topics on tex.stackexchange.com
are questions about writing exams with many dif-
ferent versions, scrambling questions or lists, hiding
answers in tests, etc. We wrote this package in order
to solve some of these problems for written maths
examinations at the Faculty of Economy of Catholic
University in Milan.

We began to develop the package in 2008 and we
tried to extend some useful properties of the INTEX
packages exerquiz by D.P. Story [4] and probsoln
by N. Talbot [5]. In particular we liked the idea of
creating a database of exercises from which we could
select one or more. (The reader should know that we
began work with the 2008 versions of these packages
and never updated them.) Moreover we needed to
be able to use random parameters in exercises and
to generate many (from 12 to 100 or more) different,
but similar, versions of the same assignment. Over
the years, the development of our package has had
several points in common with the development of
Dr. Story’s package exerquiz and others; we found
similar solutions, but with different code.

The package was developed having mathematics
in mind, but can be used in different fields.

2 Our goal

Our goal was the creation of a simple database of
exercises: many files, including many variants on
several “basic” ones; the exercises can depend on
random parameters and they can be multiple choice
questions (MCQ) or problems, i.e. exercises with
solutions, simple or divided in multiple parts. When
the examination is generated, the process is:

e selection of the files with the exercises,

e random choice of the version of the exercise in
the files,

* Work supported by Catholic University Research Project
“Progetto M.In.E.R.Va: Creazione di esercizi di tipo interattivo
con percorsi differenziati per il recupero delle carenze e la
valorizzazione delle eccellenze in matematica”.

Grazia Messineo and Salvatore Vassallo

TUGDboat, Volume 34 (2013), No. 1

e shuffle of the exercises chosen,
e shuffle of the answers in the MCQ,
e assignment of values to random parameters.

Moreover, we need a file with the solutions of the
exercises and, for any version, a string (or more) with
the correct choice for the MCQ. Some of these facili-
ties were already contained in the package exerquiz
(and some have been introduced by Dr. Story in later
versions of the package). The choice of the variant
of an exercise was solved by changing a command of
the package probsoln. We wanted the package to
be straightforward to use for users with very little
knowledge of KTEX.

3 The exercises typology

Our aim was to use two types of exercises: “tests”,
that is, sets of multiple choice questions, and “prob-
lems”, that is, exercises with an articulate develop-
ment, such as the study of a function or the discussion
and solution of a linear system. But we also wanted
to be able to use the same software in different situ-
ations, so we decided to implement other typologies
of “exercises”:

(a) questions with a short answer where the student
has to write the answer in a provided space at
the end of the exercise;

(b) “fill-in” questions; in which some blank space
has to be filled (for example in theorems);

(¢) questions with a “long” answer;
(d) tables to be completed;

(e) “matching”: exercises where the student has to
connect the elements of two lists (like nations
and capitals).

Naturally, all these exercises can contain random
parameters, can be shuffled and can have a different
appearance.

4 The randomization problem

Instead of using only the package random for the ran-
dom choices, we preferred to use a “mixed” method.
The shuffling of the answers in the MCQ and choos-
ing of values of random parameters are totally ran-
dom. On the other hand, the choice of a variant of
an exercise is random if the number of variants is
greater than a predetermined value (currently set
at 8); otherwise, a permutation among 24 possible
permutations (6 if there are 3 variants) is chosen (de-
terministically, based on the version number of the
exam). A similar procedure is also used for choosing
the order of the exercises in the task.

The seed of the randomization process is based
on a combination of the exam date and the version



TUGDboat, Volume 34 (2013), No. 1

number, such that different versions on the same date
are essentially different and the “same” exams given
on different dates are different. Moreover, when a
value is given to a random parameter the seed is
changed using the order number of the exercise, so
that parameters defined in the same interval, but in
different exercises, are not all equal.

5 The exam

In order to generate an assignment we need some
files besides the .sty file:

(a) the files with the exercises chosen from the data-
base;

(b) a “master” file in which the user has to write
the date of the exam, the number of versions
to generate, and the name of the files of the
exercises; in this file it is also possible to change
the appearance, for example the geometry of
the page, or the size of the font (for this, some
little BTEX knowledge is needed);

(c) another “master” file for solutions similar to the
previous one, that generates the solutions for
any version of the exam and the string of the
correct answers to the MCQ;

(d) a configuration file with commands for the foot-
ers, the headers, the geometry of the page, the
instructions for the students, etc.

One more optional file can be used to check the
database: for any file of exercises it prints all the vari-
ants both in numeric and in parametric format. This
uses an option that modifies the way in which the
mathematical expressions are elaborated by KTEX.

So the task of the teachers is the creation of the
database of exercises written using the instructions
of the package.

We had many reasons for this type of structure:

(a) the process of production and checking of the
exercises is completely independent from the
generation of an assignment, even if the format
of the files is the same: this allows the creation
of a database of exercises that can be increased
as the teachers have time;

(b) the appearance of the assignment can be modi-
fied without any change to the .sty file;

(c) users with little or no knowledge of XTEX can
generate the assignment if the database is suffi-
cient;

(d) with some small modifications to the master
file it’s possible to obtain exams in one or more
parts, with different kinds and numbers of exer-
cises, etc.

41

6 The database of exercises

Every exercise with all its variants is written in a
separate file; each variant is enclosed in the command
\newproblem, a highly modified version of the (2008
version) command with the same name in the package
probsoln. This command has just one argument:
the text of the exercise itself.

6.1 Multiple choice questions

If the exercise is an MCQ the syntax is almost the
same as that of exerquiz:

\item \PTs{(points)}
. Exercise text ...

\begin{answers}{(number-of-columns)}
\bChoices[random]

\AnsO incorrect answer \eAns

\AnsO incorrect answer \eAns

\Ans1 correct answer \eAns
\eFreeze

\AnsO none of the preceding \eAns
\eChoices

\end{answers}

where:

e The ‘\item \PTs{(points)}’ introduces a ques-
tion with a score of \PTs points! (it can also be
a decimal number and the separator can be the
comma, unlike in exerquiz);

o \begin{answers}{(number-of-columns)}
\bChoices [random]

\eChoices
\end{answers}
typesets the answers in (number-of-columns);
if there is the option random, the answers are
randomly shuffled;

e \AnsO indicates an incorrect answer;

e \Ans1 indicates a correct answer;

e \eFreeze: after this command the answers are
not randomized, and they appear at the end of
the list.

Unfortunately, the method we used to obtain the
string with the correct answers to a set of MCQ has
for now excluded the possibility of using questions
with more than one correct answer or with answers
having different scores.

6.2 Open exercises

If the exercise is an open exercise (i.e. an exercise
with a complete solution), it is embedded in the

1 Since the package is written for Italian users, the default
label is “punto” or “punti” (Italian words for “point” and
“points”): this can be changed using the macro \PTsHook.

The esami package for examinations



42

environment problem or problem# (if it has one or
more parts). The syntax is:

\begin{problem} [(score)]
. Text of the exercise ...
\begin{solution} [{space-for-sol)]
. solution ...
\end{solution}
\end{problem}

where (space-for-sol) is the height of the (optional)
blank space left for the solution and (score) is the
score of the exercise. If it is an exercise with multiple
parts:

\begin{problem#} [(total-score)]
. text ...
\begin{parts}
\item \PTs{({partial-score)}
. text ...
\begin{solution} [(space-for-sol)]
. text of solution ...
\end{solution}
\item \PTs{({partial-score)}

\end{parts} \end{problemx}

where \PTs{(partial-score)} is the score of each part.
The package exerquiz has the facility of automati-
cally calculating the total score of an exercise. In our
package, due to the shuffling of the exercises, this is
not always possible.

6.3 Other types of exercises
The other types of exercises we defined are:

fill-in For creating exercises in which some text is
left blank and must be filled in by the student,
or exercises with an open short answer. The
syntax is:
\fillin [(type)]{{width-of-blank)}{{answer)}
The two mandatory parameters are the width
of the blank space, expressed as a length, and
the correct answer —text or number —that the
student has to write: it will be printed in the so-
lutions only. The optional parameter (type) de-
fines the way the blank space is denoted: u (un-
derlined), the default, produces an underlined
space; b (bozed) produces a little box; e (empty)
produces an empty space. In the blank space
it’s not possible to use the commands for the
simplifications (see Section 9).

Example 1

The capital of Italy is
\fillin[u]l{5cm}{Rome},
the capital of France is
\fillin[b]{4cm}{Paris}

Grazia Messineo and Salvatore Vassallo

TUGDboat, Volume 34 (2013), No. 1

The capital of Italy is
France is

, the capital of

matching This is based on an idea from the package
examdesign [1]. It is used to create exercises in
which the student has to match items in two lists.
The pairs are defined with ‘{(item1)}{ (item2)}’,
repeated for each pair of items to match. The
two lists are shuffled and then printed with the
command \matching.

Example 2
\pair{Italy}{Rome}
\pair{Germany}{Berlin}
\pair{Greece}{Athens}

\matching
Greece (A) Berlin
Ttaly (B) Athens
— Germany (C) Rome

The solution shows the correct matching.

tabella This is used to create exercises with many
short open answers in a column. The syntax is
(the \cr at the end of the line is necessary):

\begin{tabella} [(num-visible-cols)]
{{visible-cols-align)}
{(hidden-col-align)}

. & ... \cr

\end{tabella}

The optional parameter (default 2) is the num-
ber of columns of the table visible in the text
of the exercise. The last column is invisible in
the text and visible in the solutions. The sec-
ond parameter gives the alignment of the visible
columns (the same for all the columns) and the
third the alignment of the hidden column.

Example 3
\begin{center}
\renewcommand\arraystretch{3}
\begin{tabella}[1]{1}{1}
\hline
The domain of the function is:
& $D=(-\infty;2]$ \cr
\hline
The range of $f(x)$ is:
& $£(D)=(-\infty,0]$ \cr
\hline
\end{tabella}
\end{center}
we obtain (the second column is visible only in
the solutions):

The domain of the function is:
The range of f(z) is:

D = (—o0;2]
f(D) = (=o0,0]




TUGDboat, Volume 34 (2013), No. 1

The following environments don’t define exer-
cises, but help to format or check the exercises.

problema and problema* These environments are
like problem and problem*, but if the package
option solutionsonly is specified, only the so-
lution of the exercise is printed and not the
text.

risposta This environment generates a ruled or
boxed space in which the student has to write
the answer to an exercise (“risposta” is the Ital-
ian word for “answer”). The syntax of the com-
mand is:

\begin{risposta}{(type)} (vertical-space)}

\end{risposta}
The (type) parameter defines if the blank space
has to be boxed (option b, the default) or ruled
(option 1). The parameter (vertical-space) de-
fines the height of the space for the answer: it
is a length if it is boxed or the number of rules
if it is ruled.

workarea This environment defines a blank space
on the paper sheet where the student can write.
In this space it’s possible to put some text, a
graphic, coordinate axis, etc. The syntax is:
\begin{solution}{(height)}
\end{solution}

\begin{workarea} [(width)1{(height)}
\end{workarea}

The height of the solution and workarea en-
vironments should be equal; if the workarea
height is larger, the text of the workarea will
be misaligned in the space of the solution, over-
lapping with the exercise. The width of the
workarea is optional and by default is equal to
the textwidth.

7 The master files
7.1 The file master and master-sol

The only difference between these two files is that
the second one shows the solutions. They contain all
the instructions to generate the exam. In both files
it’s necessary to write:

e the (same) date in the (same) format, namely
(day) /{month)/{year) (the day and month can
be in any format, the year should be written
with four digits: 3/12/2012, 03/7/2013),

e the name of the exercises (command \esercizi),

e the number of versions (command \numcompiti).

The exam can be in multiple parts and in any part
it’s possible to use one or more of the environments

43

defined above and one or more commands for the
choice of the exercises. In the file there is also the
definition of the random seed (command \seme). It
is also possible to use the classical sectioning com-
mands.

In these files the MCQ are embedded in the en-
vironment test with the optional parameter (score).
In this environment there are one or more sets of
MCQ, each introduced by \begin{questions}.

The other kinds of exercises can be contained or
not in the \begin{questions} environment, except
that problem and similar cannot be there. However,
although fill-in exercises with more than one blank
to fill and matching exercises can be used in a test
environment, the string of correct answers at the end
of the file is no longer useful because the numbering
of questions is wrong. If you are not interested in
the final string of correct answers, you can use them
without any problem. (See also the £i1llb package
option described later.)

7.2 The file totale-versioni

The file totale-versioni (i.e. all the versions) is
used to generate all the versions of an exercise that
are in a file of the database and it’s desired to check
them. In this case the master must have the op-
tion prova (see Section 8); the compilation gives
a numeric version and, with the option param the
parametric version (with the random parameters not
evaluated) of the exercises.

The totale-version file itself has just one com-
mand, \def\esercizio{(file)}, where (file) is the
name of the file of exercises. When compiling the
parametric version the name of the parameters and
their range of variation will be printed. The file works
similarly to the command \selectallproblems of
the package probsoln.

8 Package options
The package esami has many options:

e allowrandomize and norandomize: with the
first the answers in MCQ are shuffled (default),
with the second they are printed in the order
they are written;

e shuffle, shufflerandom and noshuffle: the
first (default) shuffles the exercises (randomly
if there are more than eight, in a determinis-
tic way if there are 8 or less), with the second
the exercises are always shuffled randomly (by
uncommenting some lines in the file esami.sty
it’s possible to make the choice be random for
more than n < 8 exercises and deterministic
otherwise), with the third the exercises are not
shuffled at all;

The esami package for examinations



44

e xxxx: reads the file ‘esami-xxxx.cfg’ that con-
tains some commands and configurations, such
as the name of the course, instructions for the
students, etc. The names of some configuration
files are given in the file esami.sty, but it’s
possible to read another configuration file with-
out modifying anything: it’s sufficient to put
a unknown option like zzz and create the file
esami-zzz.cfg;

e pointsonright: a boolean option that gener-
ates a little box on the right of the page with
the score of the exercise

e nosolutions: with this option the exam is gen-
erated without solutions (default);

e solutions: generates the file of solutions;

e solutionsonly: generates a file with solutions
only if the environment problema is used;

e prova: as mentioned above, when compiling
the file totale-versioni with this option, a
PDF file is generated with all the variants of
an exercise; the correct answers of all MCQ and
the solutions of the exercises are automatically
shown;

e param: with this option, used only in conjunc-
tion with the option prova, the versions of the
exercise are printed in parametric form; it also
shows the range of variation of the parameters;

e correzione: can be used only with the option
prova, to print only the text of all the exercises,
without solutions;

e fillb: this option is necessary to have the cor-
rect answers in the string of solutions if there
are exercises of £illin type;

e twocolumns: with this option, the MCQ are
printed in two columns;

e sansserif: a sans serif font is used.

e autopston and autopstoff: both these options
load the package auto-pst-pdf, in the second
case with the option off; in this way it’s possible
to compile the file directly with PDFIATEX even
if the exercises contain graphics in pstricks —
the graphics package we use. With the first
option, the images are generated and included in
the document, while the second doesn’t generate
the images but includes them if they exist.

9 Package commands

9.1 Commands working with parameters

As we said above, one of the goals of the package
is to use random parameters in exercises. We de-
fined only integer parameters but it is possible to
define also rational or (pseudo)real parameters, as

Grazia Messineo and Salvatore Vassallo

TUGDboat, Volume 34 (2013), No. 1

D.P. Story does in the package rangen [3]. Since
we use the package £p [2] to do calculations, almost
all the commands operating on parameters are pre-
fixed by FP. The command to define a parameter is
\FPsetpar [(seed)] {{param-name) H (inf ) I (sup)}
[(excl-values)].

e the name of the random parameter will be the
control sequence \(param-name);

e the parameter’s range will be between (inf) and
(sup) (inclusive);

e the optional {seed) is used to have a different
seed for the generation of the random number,
with a default value given by \seme (the Italian
word for seed) defined in the preamble;

e one or more values can be excluded from the
choice with (excl-values). If there is more than
one excluded value, the whole list is enclosed in
braces.

The lower and the upper bounds ({inf) and (sup),
with (inf) < (sup)) and the excluded values can
be random parameters defined earlier. In order to
satisfy the conditions the generation of the random
number may be repeated many times; the maxi-
mum number of repetitions is given by the command
\maxLoopLimit, by default 10 (this can be redefined
in the preamble of the document).

Example 4

\FPsetpar{a}{2}{10}[3]
\FPsetpar{b}{4}{12}[{\a,6}]

generates two random numbers \a (with range be-
tween 2 and 10, but not 3) and \b (with range be-
tween 4 and 12, excluding both the value assigned
to \a and 6).

We defined some commands in addition to those
in the fp package to do operations on parameters.

The command \FPsv [{decimal)]1{{operation)}
is used to evaluate (operation) (on numbers or pa-
rameters) obtaining either the numeric value with
(decimal) decimal places (by default 0 decimal places)
or, with the package option param, the typesetting
of the operation.

Example 5 \FPsv{2xk+1}, with (say) k = 2, gives
either 5 or, with the option param, 2 x k + 1;
\FPsv [2]{(2%k+1)/2} gives 2.50 or (2xk +1)/2.

The syntax of the arithmetic operations is the same as
in the package fp. When used with param, it’s easier
to read if the operations are given in parentheses.

The command \FPval{(name)}{({operation)}
assigns to \(name) the rounded result of (operation).
(This is a modified form of the command \FPeval
from fp.)



TUGDboat, Volume 34 (2013), No. 1

Example 6

\FPsetpar{k}{1}{3}

\FPval{a}{2xk+1}

\FPsetpar{b}{2}{20} [\a]

generates a random parameter \b which assumes a
value between 2 and 20, but different from \a, where
\a is given by 2*k+1. In the parametric version it
will appear like this:

The parameter b varies from 2 to 20. b # (2% k + 1).

We also defined some commands to simplify
fractions, that can also be used for correct formatting
of the text.

The command \sempli{(num)}{(den)} simpli-
fies a fraction where (num) and (den) can contain
parameters or operations on them.

Example 7 If £ = 1, \sempli{2+k}{3*k+1} gives
% or, with param specified, 3*2%7_1

The command \semplix{(num)}{(den)} sim-
plifies a fraction where (num) and (den) can contain
parameters, but where the result 1 does not appear
and the result —1 is shown as just a minus sign “—”
(for example to be used before an x). This command
can also be used to format coefficients of a variable,

setting the denominator equal to 1.

Example 8 If £ = 2, \FPsv{k-1}x gives 1z while
\semplix{k-1}{1}x gives just z.

The command \esempli{(num)}{(den)} sim-
plifies a fraction such that the result 1 does not
appear, and the result —1 has to appear explicitly
(as in exponents). The command can be used with a
denominator of 1 to correctly format the exponents.

Example 9 If £ = 2, x"{\FPsv{k-1}} gives z!
while x"{\esempli{k-1}{1}} gives just z.

The command \sempliz{(num)}{(den)} sim-
plifies fractions that can assume the value 0; with
the other commands, the result 0 gives an error and
stops the compilation.

The command \simpsqrt{(ind)}{{rad)} allows
extracting factors from radicals; however, it is not
possible to do other operations with these factors.
The first mandatory parameter (ind) is the index of
the radical and can be parametric; the second one,
(rad) is the radicand and can be also a parameter or
an operation.

Example 10 If a =2 and b =1,
\simpsqrt{2}{a~2+4*b} gives 2v/2.

45

9.2 Commands for exercises and lists

The commands to manage both exercises and lists
are in the same category since they work in the same
way: given a list of tokens, they shuffle the objects
and pick some elements.

The main command to manage exercises is:
\esercizi{(filel), (file2), ..., (fileN)}
This chooses a random exercise for each given file,
shuffies them and sends the result to the output.

The command \estrai [(m)]1{(list)}H(name)},
with (list) being a comma separated list of n ob-
jects, picks n —m elements from (list); the selected
elements will be called \(name)i, \(name)ii, and
so on; they can be used, for example, within the
command \esercizi.

Example 11

\estrai[2]{sets,log,expt{arg}

This chooses two elements of the given list, set-
ting \argi and \argii to the values: by writing
\esercizi{\argi,\argii} we obtain two random
exercises, one from each of the two randomly-chosen
topics (sets, logarithms, and exponentials).

The command \estraialfa{(n)}{(list)}{(name)}
similarly picks (n) random objects from (list), but
preserving the order. As before, the elements will be
called \(name)i, \(name)ii, etc.

Example 12

\estraialfa[2]{a,b,c,d}{alpha}

This chooses two elements from the given set of four
letters, while preserving alphabetical order. The cho-
sen elements are stored in \alphai and \alphaii.

Finally, the command \estraies [(m)]1{(list)}
also works similarly to the command \estrai, but
only on an exercise’s list; the chosen elements go to
the output instead of being stored.

With these commands we can have many differ-
ent possibilities of random choice.

It’s possible to use the commands \esercizi
and/or \estraies many times. This is useful if one
would like to have exercises from two or more different
subsets (for example, 5 exercises about limits chosen
from 7 available, and 3 about derivatives chosen
from 5) or, more simply, if one likes to have some
exercises in two columns and others in one column.

10 Open issues

In the package there remain open issues. The code
can be improved and made more efficient, in partic-
ular in the management of the lists— for example
using etoolbox —and the solution we found to ob-
tain the string of the solutions of the MCQ, using

The esami package for examinations



46

\label and \ref and the aux file, doesn’t allow for
questions with more than one correct answer.

Other improvements can be made from an aes-
thetic point of view: in particular, we decided to put
each MCQ in a minipage to avoid misunderstandings
by the students if a question was split across pages.
As a result, the output is sometimes very ugly.

11 Examples of the working files

To conclude, here is a set of small complete files.
First, an exercise file test1.tex, with one MCQ:

\newproblem{ \FPsetpar{a}{2}{5}
\item \PTs{1} exercise la
\begin{answers}{1}\bChoices [random]
\Ansl answer 1 correct\eAns

\AnsO answer 2 wrong\eAns

\AnsO answer 3 wrong\eAns
\eChoices\end{answers}}

Next, the file totale-versioni used to print all
versions of an exercise file (in this case, with MCQ):

\documentclass[english]{article}
\usepackage [mg,prova,param] {esami}

%/ make parametric version;

%% for the numeric version, omit ‘param’
\date{30/4/2008} %% for the seed
\begin{document}

\FPeval\seme{209} %/ or some other number
\randomi=\seme
\def\esercizio{test1} ¥/ exercise file
\begin{center} %/, the title
\makeatletter \ifes@param
{\textbf{\esercizio -p}}
\else {\textbf{\esercizio}}\fi
\vspace{5mm}\end{center}
\begin{shortquiz} 7% for MCQ
\begin{questions} % for MCQ
\selectallproblems{\esercizio}
\end{questions}
\end{shortquiz}
\end{document}

Finally, an example of master file for generation
of the exam (or solutions). The commented-out
commands are for solutions.
\documentclass[english]{article}

\usepackage [test,shuffle,nosolutions]{esami}
%\usepackage [test,shuffle,solutions] {esami}

with these options a configuration file esami-test.cfg
is read, the exercises are shuffled, the figures are not
generated and the text is printed in one column.
\def\numcompiti{10} %, How many versions?
\date{17/02/2012}

\begin{document}

\date{\Data}

\pagestyle{esame} %% defined in cfg file

Grazia Messineo and Salvatore Vassallo

TUGDboat, Volume 34 (2013), No. 1

%\immediate\openout\sols=\thenomefile.sol.tex
%% for solutioms
\whiledo{\thevers<\numcompiti}{\stepcounter{vers}

%% the routine to generate the versions
\FPeval\seme{round ((\thenomefile+\thevers):0)}

%% the random seed can be anything;

%% \thenomefile ¢‘is’’ the date
\randomi=\seme
%\immediate\write\sols{\string\begin{minipage}
%{.3\textwidth}Solution of Version \thevers}

%% for solutions
\testa %) the header defined in cfg file
\section*{Part one}
%\immediate\write\sols{\string\subsection*{Part
% one} \par\string\begin{enumeratel}}

%% for solutions
\begin{test}[6] %% MCQ for a total of 6 points

\begin{questions}

\esercizi{test1}

\end{questions}
\end{test}
%\immediate\write\sols{\par\end{enumerate}
\string\end{minipage}\par}/i% for solutions
\section*{Part two}

}

%\immediate\closeout\sols %% for solutions
%\stringasol

\end{document}

References

[1] Jason Alexander. The package examdesign.
mirror.ctan.org/macros/latex/contrib/
examdesign, 2006.

[2] Michael Mehlich. The package fp. mirror.
ctan.org/macros/latex/contrib/fp, 1999.

[3] D.P. Story. The package rangen. www.math.
uakron.edu/~dpstory/rangen.html, 2009.

[4] D.P. Story. Exerquiz & AcroTEX. www.acrotex.
net, 2012.

[5] Nicola L.C. Talbot. The package probsoln.
mirror.ctan.org/macros/latex/contrib/
probsoln, 2011.

¢ Grazia Messineo
Universita Cattolica Milano
Largo Gemelli, 1
Milan, 1-20123; and
ITC “G. Falcone”
Viale Italia, 22
Corsico, 1-20094  Italy
grazia dot messineo (at) unicatt dot it

o Salvatore Vassallo
Universita Cattolica Milano
Largo Gemelli, 1
Milan, 1-20123
salvatore dot vassallo (at) unicatt dot it


mirror.ctan.org/macros/latex/contrib/examdesign
mirror.ctan.org/macros/latex/contrib/examdesign
mirror.ctan.org/macros/latex/contrib/fp
mirror.ctan.org/macros/latex/contrib/fp
www.math.uakron.edu/~dpstory/rangen.html
www.math.uakron.edu/~dpstory/rangen.html
www.acrotex.net
www.acrotex.net
mirror.ctan.org/macros/latex/contrib/probsoln
mirror.ctan.org/macros/latex/contrib/probsoln

	Introduction
	Our goal
	The exercises typology
	The randomization problem
	The exam
	The database of exercises
	Multiple choice questions
	Open exercises
	Other types of exercises

	The master files
	The file master and master-sol
	The file totale-versioni

	Package options
	Package commands
	Commands working with parameters
	Commands for exercises and lists

	Open issues
	Examples of the working files

