72

ConTgEXt: Just-in-time LuaTEX
Hans Hagen

1 Introduction

Reading occasional announcements about LuaJIT,!
one starts wondering if just-in-time (“jit”) compi-
lation can speed up LuaTgX. As a side track of
the SwigLib project and after some discussion, Luigi
Scarso decided to compile a version of LuaTEX that
had the jit compiler as the Lua engine. That’s when
our journey into jit began.

We started with Linux 32-bit as this is what
Luigi used at that time. Some quick first tests in-
dicated that the LuaJIT compiler made ConTEXt
MKIV run faster but not that much. Because LuaJIT
claims to be much faster than stock Lua, Luigi then
played a bit with £fi, i.e. mixing C code and Lua,
especially data structures. There is indeed quite
some speed to gain here; unfortunately, we would
have to mess up the ConTEXt code base so much
that one might wonder why Lua was used in the
first place. I could confirm these observations in a
Xubuntu virtual machine in VMware running under
32-bit Windows 8. So, we decided to conduct some
more experiments.

A next step was to create a 64-bit binary because
the servers at Pragma are KVM virtual machines
running a 64-bit OpenSuse 12.1 and 12.2. It took
a bit of effort to get a jit version compiled because
Luigi didn’t want to mess up the regular codebase
too much. This time we observed a speedup of about
40% on some runs so we decided to move on to
Windows to see if we could observe a similar effect
there. And indeed, when we adapted Akira Kakuto’s
Windows setup a bit we could compile a version for
Windows using the native Microsoft compiler. On
my laptop a similar speedup was observed, although
by then we saw that in practice a 25% speedup was
about what we could expect. A bonus is that making
formats and identifying fonts is also faster.

So, in that stage, we could safely conclude that
LuaTEX combined with LuaJIT made sense if you
want a somewhat faster version. But where does the
speedup come from? The easiest way to see if jitting
has effect is to turn it on and off.

jit.on()
jit.off()

To our surprise ConTEXt runs are not much

1 LuaJIT is written by Mike Pall and more information
about it and the technology it uses is at http://luajit.org,
a site also worth visiting for its clean design.

Hans Hagen

TUGDboat, Volume 34 (2013), No. 1

influenced by turning the jitter on or off.2 This means
that the improvement comes from other places:

e The virtual machine is a different one, and tar-
gets the platforms that it runs on. This means
that regular bytecode also runs faster.

e The garbage collector is the one from Lua 5.2, so
that can make a difference. It looks like memory
consumption is somewhat lower.

e Some standard library functions are recognized
and supported in a more efficient way. Think of
math.sin.

e Some built-in functions like type are probably
dealt with in a more efficient way.

The third item is an important one. We don’t
use that many standard functions. For instance, if
we need to go from characters to bytes and vice versa,
we have to do that for UTF so we use some dedicated
functions or LPEG. If in ConTEXt we parse strings,
we often use LPEG instead of string functions anyway.
And if we still do use string functions, for instance
when dealing with simple strings, it only happens a
few times.

The more demanding ConTEXt code deals with
node lists, which means frequent calls to core Lua-
TEX functions. Alas, jitting doesn’t help much there
unless we start messing with ££i which is not on the
agenda.?

2 Benchmarks

Let’s look at some of the benchmarks. The first
one uses MetaPost and because we want to see if
calculations are faster, we draw a path with a special
pen so that some transformations have to be done
in the code that generates the PDF output. We only
show the Windows and 64-bit Linux tests here. The
32-bit tests are consistent with those on Windows
so we didn’t add those timings here (also because in
the meantime Luigi’s machine broke down and he
moved on to 64 bits).
\setupbodyfont [dejavu] % benchmark-1.tex
\starttext
\dontcomplain
\startluacode
if jit then
jit.on()
jit.of£f(Q)
end
\stopluacode

2 We also tweaked some of the fine-tuning parameters of
LualJIT but didn’t notice any differences. In due time more
tests will be done.

3 If we want to improve these mechanisms it makes much
more sense to make more helpers. However, profiling has
shown us that the most demanding code is already quite
optimized.

TUGDboat, Volume 34 (2013), No. 1

\startluacode
statistics.starttiming()
\stopluacode

\dorecurse {10} {
\dorecurse{1000} {
\dontleavehmode
\startMPcode
for i = 1,100 :
draw fullcircle
scaled 10pt withpen pencircle
xscaled 2 yscaled 4 rotated 20 ;
endfor ;
\stopMPcode
\enspace
}
\page
}

\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())

\stopluacode

\stoptext

The following times are measured in seconds. They
are averages of 5 runs. There is a significant speedup
but jitting doesn’t do much.

traditional jit on jit off
Windows 8 26.0 20.6 20.8
Linux 64 34.2 14.9 14.1

Our second example uses multiple fonts in a
paragraph and adds color as well. Although well
optimized, font-related code involves node list pars-
ing and a bit of calculation. Color again deals with
node lists and the backend code involves calculations
but not that many. The traditional run on Linux is
somewhat odd, but might have to do with the fact
that the MetaPost library suffers from the 64 bits.
It is at least an indication that optimizations make
less sense if there is a different dominant weak spot.
We have to look into this some time.

\setupbodyfont [dejavu] % benchmark-2.tex
\starttext \dontcomplain
\startluacode
if jit then
jit.on()
jit.off Q)
end
\stopluacode
\startluacode
statistics.starttiming()
\stopluacode

\dorecurse {1000} {
{\bf \red \input tufte } \blank

73

{\it \green \input tufte } \blank
{\tf \blue \input tufte } \page
}

\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())

\stopluacode

\stoptext

Again jitting has no real benefits here, but the

overall gain in speed is quite nice. It could be that
the garbage collector plays a role here.

traditional jit on jit off
Windows 8 54.6 36.0 35.9
Linux 64 46.5 32.0 31.7

This benchmark writes quite a lot of data to
the console, which can have impact on performance
as TEX flushes on a per-character basis. When one
runs TEX as a service this has less impact because
in that case the output goes into the void. There is
a lot of file reading going on here, but normally the
operating system will cache data, so after a first run
this effect disappears.*

The third benchmark is one that we often use
for testing regression in speed of the ConTEXt core
code. It measures the overhead in the page builder
without special tricks being used, like backgrounds.
The document has some 1000 pages.

\setupbodyfont [dejavu] 7 benchmark-3.tex

\starttext \dontcomplain

\startluacode

if jit then
jit.on(Q)
jit.off ()
end

\stopluacode

\startluacode

statistics.starttiming()

\stopluacode

\dorecurse {1000} {
test \page
}

\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())

\stopluacode

\stoptext

These numbers are already quite okay for the
normal version but the speedup of the LuaJIT version
is consistent with the expectations we have by now.

4 On Windows it makes sense to use console2 because
due to some clever buffering tricks it has a much better per-
formance than the default console.

ConTEXt: Just-in-time LuaTEX

74
traditional jit on jit off
Windows 8 4.5 3.6 3.6
Linux 64 4.8 3.9 4.0

The fourth benchmark uses some structuring,
which involved Lua tables and housekeeping, an item-
ize, which involves numbering and conversions, and
a table mechanism that uses more Lua than TEX.

\setupbodyfont [dejavu] % benchmark-4.tex
\starttext \dontcomplain
\startluacode
if jit then
jit.on()
jit.off ()
end
\stopluacode
\startluacode
statistics.starttiming()
\stopluacode

\startbuffer
\margintext{test} test test

\startitemize[a]
\startitem test \stopitem
\startitem test \stopitem
\startitem test \stopitem
\startitem test \stopitem
\stopitemize

\startxtable
\startxrow
\startxcell test \stopxcell
\startxcell test \stopxcell
\startxcell test \stopxcell
\stopxrow
\startxrow
\startxcell test \stopxcell
\startxcell test \stopxcell
\startxcell test \stopxcell
\stopxrow
\stopxtable
\stopbuffer

\dorecurse {25} {
\startchapter[title=Test #1]
\dorecurse {25} {
\startsection[title=Test #1]
\getbuffer
\stopsection
}
\stopchapter
}
\page

\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())
\stopluacode \stoptext

Hans Hagen

TUGDboat, Volume 34 (2013), No. 1

Here it looks like jit slows down the process,
but of course we shouldn’t take the last digit too
seriously.

traditional jit on jit off
Windows 8 20.9 16.8 16.5
Linux 64 204 16.0 16.1

Again, this example does a bit of logging, but
not that much reading from file as buffers are kept
in memory.

We should start wondering when jit does kick
in. This is what the fifth benchmark does.

\starttext % benchmark-5.tex
\startluacode
if jit then
jit.on(Q)
jit.off Q)
end

local t = os.clock()

local a = 0

for i=1,10%1000%1000 do
a = a + math.sin(i)

end

context (os.clock()-t)

context.par()

local t = os.clock()
local sin = math.sin
local a =0
for i = 1,10%x1000%1000 do
a =a + sin(di)
end
context (os.clock()-t)
\stopluacode
\stoptext

Here we see jit having an effect! First of all
the LuaJIT versions are now 4 times faster. Making
the sin a local function does not make much of a
difference because the math functions are optimized
anyway. See how we're still faster when jit is disabled:

traditional jit on jit off
Windows 8 1.97 / 1.54 0.46 / 0.45 0.73 / 0.61
Linux 64 1.62 /1.27 0.41 /0.42 0.67 / 0.52

Unfortunately this kind of calculation (in these
amounts) doesn’t happen that often but maybe some
users can benefit.

3 Conclusions

So, does it make sense to complicate the LuaTgX
build with LuaJIT? It does when speed matters, for
instance when ConTEXt is run as a service. Some
25% gain in speed means less waiting time, better
use of CPU cycles, less energy consumption, etc. On
the other hand, computers are still becoming faster

TUGDboat, Volume 34 (2013), No. 1

and compared to those speed-ups the 25% is not that
much. Also, as TEX deals with files, the advance of
SSD disks and larger and faster memory helps too.
Faster and larger CPU caches contributes too. On
the other hand, multiple cores don’t help that much
on a system that only runs TEX. Interesting is that
multi-core architectures tend to run at slower speeds
than single cores where more heat can be dissipated
and in that respect servers mostly running TEX are
better off with fewer cores that can run at higher
frequencies. But anyhow, 25% is still better than
nothing and it makes my old laptop feel faster. It
prolongs the lifetime of machines!

Now, say that we cannot speed up TEX itself
that much, but that there is still something to gain
at the Lua end —what can we reasonably expect?
First of all we need to take into account that only
part of the runtime is due to Lua. Say that this is
25% for a document of average complexity.

runtime tex + runtimej,, = 100

We can consider the time needed by TEX to be
constant; so if that is 75% of the total time (say 100
seconds) to begin with, we have:

75 + runtime,, = 100

It will be clear that if we bring down the runtime
to 80% (80 seconds) of the original we end up with:
75 + runtimej,, = 80

And the 25 seconds spent in Lua went down
to 5, meaning that Lua processing got 5 times faster!
It is also clear that getting much more out of Lua
becomes hard. Of course we can squeeze more out of
it, but TEX still needs its time. It is hard to measure
how much time is actually spent in Lua. We do

keep track of some times but it is not that accurate.

These experiments and the gain in speed indicate
that we probably spend more time in Lua than we
first guessed. If you look in the ConTEXt source it’s
not that hard to imagine that indeed we might well
spend 50% or more of our time in Lua and/or in
transferring control between TEX and Lua. So, in
the end there still might be something to gain.
Let’s take benchmark 4 as an example. At some
point we measured for a regular LuaTEX 0.74 run

27.0 seconds and for a LuaJITTEX run 23.3 seconds.

If we assume that the LuaJIT virtual machine is
twice as fast as the normal one, some juggling with
numbers makes us conclude that TEX takes some
19.6 seconds of this. An interesting border case is
\directlua: we sometimes pass quite a lot of data
and that gets tokenized first (a TEX activity) and the
resulting token list is converted into a string (also
a TEX activity) and then converted to bytecode (a
Lua task) and when okay executed by Lua. The time

75

involved in conversion to byte code is probably the
same for stock Lua and LualJIT.

In the LuaTgEX case, 30% of the runtime for
benchmark 4 is on Lua’s tab, and in LuaJITTEX it’s
15%. We can try to bring down the Lua part even
more, but it makes more sense to gain something
at the TEX end. There macro expansion can be
improved (read: ConTEXt core code) but that is
already rather optimized.

Just for the sake of completeness Luigi compiled
a stock LuaTEX binary for 64-bit Linux with the -03
option (which forces more inlining of functions as
well as a different switch mechanism). We did a few
tests and this is the result:

LuaTgX 0.74 =02 -03

benchmark-1 15.5 15.0
benchmark-2 35.8 34.0
benchmark-3 4.0 3.9
benchmark-4 16.0 15.8

This time we used --batch and --silent to
eliminate terminal output. So, if you really want to
squeeze out the maximum performance you need to
compile with -03, use LuaJITTEX (with the faster
virtual machine) but disable jit (disabled by default
anyway).

We have no reason to abandon stock Lua. Also,
because during these experiments we were still using
Lua 5.1 we started wondering what the move to 5.2
would bring. Such a move forward also means that
ConTEXt MKIV will not depend on specific LuaJIT
features, although it is aware of it (this is needed
because we store bytecodes). But we will definitely
explore the possibilities and see where we can benefit.
In that respect there will be a way to enable and
disable jitting. So, users have the choice to use either
stock LuaTEX or the jit-aware version but we default
to the regular binary.

As we use stock Lua as benchmark, we will
use the bit32 library, while LuaJIT has its own bit
library. Some functions can be aliased so that is
no big deal. In ConTEXt we use wrappers anyway.
More problematic is that we want to move on to Lua
5.2 and not all 5.2 features are supported (yet) in
LualJIT. So, if LuaJIT is mandatory in a workflow,
then users had better make sure that the Lua code
is compatible. We don’t expect too many problems
in ConTEXt MKIV.

4 About speed

It is worth mentioning that the Lua version in Lua-
TEX has a patch for converting floats into strings.
Instead of some INF# result we just return zero, sim-
ply because TEX is integer-based and intercepting

ConTEXt: Just-in-time LuaTEX

76

incredibly small numbers is too cumbersome. We
had to apply the same patch in the jit version.

The benchmarks only indicate a trend. In a real
document much more happens than in the above
tests. So what are measurements worth? Say that
we compile The TEXbook. This grandparent of all
documents coded in TEX is rather plainly coded
(using of course plain TEX) and compiles pretty fast.
Processing does not suffer from complex expansions,
there is no color, hardly any text manipulation, it’s
all 8 bit, the pagebuilder is straightforward as is
all spacing. Although on my old machine I can get
ConTEXt to run at over 200 pages per second, this
quickly drops to 10% of that speed when we add
some color, backgrounds, headers and footers, font
switches, etc.

So, running documents like The TEXbook for
comparing the speed of, say, pdfTEX, XHTEX, Lua-
TEX and now LuaJITTEX makes no sense. The first
one is still eight bit, the rest are Unicode. Also,
The TgXbook uses traditional fonts with traditional
features so effectively that it doesn’t rely on any-
thing that the new engines provide, not even e-TEX
extensions. On the other hand, a recent document
uses advanced fonts, properties like color and/or
transparencies, hyperlinks, backgrounds, complex
cover pages or chapter openings, embeds graphics,
etc. Such a document might not even process in
pdfTEX or XH{TEX, and if it does, it’s still comparing
different technologies: eight bit input and fast fonts
in pdfTEX, frozen Unicode and wide font support
in X{TEX, instead of additional trickery and control,
written in Lua. So, when we investigate speed, we
need to take into account what (font and input) tech-
nologies are used as well as what complicating layout
and rendering features play a role. In practice speed
only matters in an edit-view cycle and services where
users wait for some result.

It’s rather hard to find a recent document that
can be used to compare these engines. The best we
could come up with was the rendering of the user
interface documentation. The last column is the
time in seconds, the others are the command line
invocation.

texexec ——engine=pdftex --global x-set-12.mkii 5.9
texexec --engine=xetex --global x-set-12.mkii 6.2
context --engine=luatex --global x-set-12.mkiv 6.2
context --engine=luajittex --global x-set-12.mkiv 4.6

Keep in mind that texexec is a Ruby script and
uses kpsewhich while context uses Lua and its own
(TDS-compatible) file manager. But still, it is inter-
esting to see that there is not that much difference if
we keep jit out of the picture. This is because in MKIV
we have somewhat more clever XML processing, al-

Hans Hagen

TUGDboat, Volume 34 (2013), No. 1

though earlier measurements have demonstrated that
in this case not that much speedup can be assigned
to that.

And so recent versions of MKIV already keep up
rather well with the older eight bit world. We do way
more in MkIV and the interfacing macros are nicer
but potentially somewhat slower. Some mechanisms
might be more efficient because of using Lua, but
some actually have more overhead because we keep
track of more data. Font feature processing is done
in Lua, but somehow can keep up with the libraries
used in XATEX, or at least is not that significant a
difference, although I can think of more demanding
tasks. Of course in LuaTEX we can go beyond what
libraries provide.

No matter what one takes into account, perfor-
mance is not that much worse in LuaTgX, and if we
enable jit and so remove some of the traditional Lua
virtual machine overhead, we’re even better off. Of
course we need to add a disclaimer here: don’t force
us to prove that the relative speed ratios are the
same for all cases. In fact, it being so hard to mea-
sure and compare, performance can be considered
to be something taken for granted as there is not
that much we can do about getting nicer numbers,
apart from maybe parallelizing which brings other
complexities into the picture. On our servers, a few
other virtual machines running TEX services kicking
in at the same time, using CPU cycles, network band-
width (as all data lives someplace else) and asking
for disk access have much more impact than the 25%
we gain. Of course if all processes run faster then
we’ve gained something.

For what it’s worth: processing this text takes
some 2.3 seconds on my laptop for regular LuaTEX
and 1.8 seconds with LuaJITTEX, including the extra
overhead of restarting. As this is a rather average
example it fits earlier measurements.

Processing a font manual (work in progress)
takes LuaJITTEX 15 seconds for 112 pages compared
to 18.4 seconds for LuaTEX. The not yet finished
manual loads 20 different fonts (each with multiple
instances), uses colors, has some MetaPost graphics
and does some font juggling. The gain in speed
sounds familiar.

5 The future

At the 2012 Lua conference Roberto Ierusalimschy
mentioned that the virtual machine of LuaJIT is
about twice as fast due to it being partly done in
assembler while the regular machinery is written in
standard C code and keeps portability in mind.

He also presented some plans for future versions
of Lua. There will be some lightweight helpers for

TUGDboat, Volume 34 (2013), No. 1

UTF. Our experiences so far are that only a handful
of functions are actually needed: byte to character
conversions and vice versa, iterators for UTF charac-
ters and UTF values and maybe a simple substring
function is probably enough. Currently LuaTgX has
some extra string iterators and it will provide the
converters as well.

There is a good chance that LPEG will become
a standard library (which it already is in LuaTEX),
which is also nice. It’s interesting that, especially on
longer sequences, LPEG can beat the string matchers
and replacers, although when in a substitution no
match and therefore no replacements happen, the
regular gsub wins. We're talking small numbers here,
in daily usage LPEG is about as efficient as you can
wish. In ConTEXt we have a 1peg.UR and 1lpeg.US
and it would be nice to have these as native UTF
related methods, but I must admit that I seldom
need them.

This and other extensions coming to the lan-
guage also have some impact on a jit version: the
current LuaJIT is already not entirely compatible
with Lua 5.2 so you need to keep that into account
if you want to use this version of LuaTEX. So, un-
less LuaJIT follows the mainstream development, as
ConTEXt MKIV user you should not depend on it.
But at the moment it’s nice to have this choice.

The yet experimental code will end up in the
main LuaTEX repository in time before the TEX Live
2013 code freeze. In order to make it easier to run
both versions alongside, we have added the Lua 5.2
built-in library bit32 to LuaJITTEX. We found out
that it’s too much trouble to add that library to
Lua 5.1 but LuaTEX has moved on to 5.2 anyway.

6 Running

So, as we will definitely stick to stock Lua, one might
wonder if it makes sense to officially support jitting in
ConTEXt. First of all, LuaTEX is not influenced that
much by the low level changes in the API between
5.1 and 5.2. Also LuaJIT does support the most
important new 5.2 features, so at the moment we’re
mostly okay. We expect that eventually LuaJIT will
catch up but if not, we are not in big trouble: the
performance of stock Lua is quite okay and above
all, it’s portable!® For the moment you can consider
LuaJITTEX to be an experiment and research tool,
but we will do our best to keep it production ready.

So how do we choose between the two engines?
After some experimenting with alternative startup

5 Stability and portability are important properties of TEX
engines, which is yet another reason for using Lua. For those
doing number crunching in a document, jit can come in handy.

7

scenarios and dedicated caches, the following solution
was reached:
context --engine=luajittex ...

The usual preamble line also works:
% engine=luajittex

As the main infrastructure uses the luatex and
related binaries, this will result in a relaunch: the
context script will be restarted using luajittex.
This is a simple solution and the overhead is rather
minimal, especially compared to the somewhat faster
run. Alternatively you can copy luajittex over
luatex but that is more drastic. Keep in mind
that luatex is the benchmark for development of
ConTEXt, so the jit aware version might fall behind
sometimes.

Yet another approach is adapting the configu-
ration file, or better, provide (or adapt) your own
texmfcnf.lua in for instance texmf-local/web2c

path:
return {
type = "configuration",
version = "1.2.3",
date = "2012-12-12",
time = "12:12:12",
comment = "Local overloads",
author = "Hans Hagen, PRAGMA-ADE, Hasselt NL",

content = {
directives = {
["system.engine"] = "luajittex",
},
},

This has the same effect as always providing
--engine=luajittex but only makes sense in well
controlled situations as you might easily forget that
it’s the default. Of course one could have that file
and just comment out the directive unless in test
mode.

Because the bytecode of LuaJIT differs from the
one used by Lua itself we have a dedicated format
as well as dedicated bytecode compiled resources
(for instance tmb instead of tmc). For most users
this is not something they should bother about as it
happens automatically.

Based on experiments, by default we have dis-
abled jit so we only benefit from the faster virtual
machine. Future versions of ConTEXt might provide
some control over that but first we want to conduct
more experiments.

7 Addendum

These developments and experiments took place in
November and December 2012. At the time of this
writing we also made the move to Lua 5.2 in stock

ConTEXt: Just-in-time LuaTEX

78

LuaTgX; the first version to provide this was 0.74.
Here are some measurements on Taco Hoekwater’s
64-bit Linux machine:

LuaTgX 0.70 LuaTgX 0.74

benchmark-1 23.67 19.57 faster
benchmark-2 65.41 62.88 faster
benchmark-3 4.88 4.67 faster
benchmark-4 23.09 22.71 faster
benchmark-5 2.56/2.06 2.66/2.29 slower

There is a good chance that this is due to im-
provements of the garbage collector, virtual machine
and string handling. It also looks like memory con-
sumption is a bit less. Some speed optimizations in
reading files have been removed (at least for now) and
some patches to the format function (in the string
namespace) that dealt with (for TEX) unfortunate
number conversions have not been ported. The code
base is somewhat cleaner and we expect to be able
to split up the binary in a core program plus some
libraries that are loaded on demand.® In general,
we don’t expect too many issues in the transition to
Lua 5.2, and ConTEXt is already adapted to support
LuaTgX with 5.2 as well as LuaJITTEX with an older
version.

Running the same tests on a 32-bit Windows
machine gives this:

LuaTgX 0.70 LuaTgX 0.74

benchmark-1 26.4 25.5 faster
benchmark-2 64.2 63.6 faster
benchmark-3 7.1 6.9 faster
benchmark-4 28.3 27.0 faster
benchmark-5 1.95/1.50 1.84/1.48 faster

The gain is less impressive but the machine is
rather old and we can benefit less from modern CPU
properties (cache, memory bandwidth, etc.). I tend
to conclude that there is no significant improvement
here but it also doesn’t get worse. However we need
to keep in mind that file I/O is less optimal in 0.74
so this might play a role. As usual, runtime is neg-
atively influenced by the relatively slow speed of
displaying messages on the console (even when we
use console2).

A few days before the end of 2012, Akira Kakuto
compiled native Windows binaries for both engines.

6 Of course this poses some constraints on stability as
components get decoupled, but this is one of the issues that
we hope to deal with properly in the library project.

Hans Hagen

TUGDboat, Volume 34 (2013), No. 1

This time I decided to run a comparison inside
the SciTE editor, that has very fast console output.”

LuaTgX 0.74 LuaJITTEX 0.72

(Lua 5.2) (Lua 5.1)
benchmark-1 25.4 25.4 similar
benchmark-2 54.7 36.3 faster
benchmark-3 4.3 3.6 faster
benchmark-4 20.0 16.3 faster
benchmark-5 1.93/1.48 0.74/0.61 faster

Only the MetaPost library and conversion bench-
mark didn’t show a speedup. The regular TEX tests
1-3 gain some 15-35%. Enabling jit (off by default)
slowed down processing. For the sake of complete-
ness I also timed LuaJITTEX on the console, so here
you see the improvement of both engines.

LuaTEX 0.70 LuaTgX0.74 LuaJITTEX 0.72

benchmark-1 26.4 25.5 25.9
benchmark-2 64.2 63.6 45.5
benchmark-3 7.1 6.9 6.0
benchmark-4 28.3 27.0 23.3

benchmark-5 1.95/1.50 1.84/1.48 0.73/0.60

In this text, the term jit has come up a lot but
you might rightfully wonder if the observations here
relate to jit at all. For the moment I tend to con-
clude that the implementation of the virtual machine
and garbage collection have more impact than the
actual just-in-time compilation. More exploration of
jit is needed to see if we can really benefit from that.
Of course the fact that we use a bit less memory is
also nice. In case you wonder why I bother about
speed at all: we happen to run LuaTgX mostly as a
(remote) service and generating a bunch of (related)
documents takes a bit of time. Bringing the waiting
down from 15 to 10 seconds might not sound impres-
sive but it makes a difference when it is someone’s
job to generate these sets.

In summary: just before we entered 2013, we
saw two rather fundamental updates of LuaTEX show
up: an improved traditional one with Lua 5.2 as well
as the somewhat faster LuaJITTEX with a mixture
between 5.1 and 5.2. And in 2013 we will of course
try to make them both even more attractive.

¢ Hans Hagen
http://pragma-ade.com

7 Most of my personal TEX runs are from within SciTE,
while most runs on the servers are in batch mode, so normally
the overhead of the console is acceptable or even neglectable.

