
192 TUGboat, Volume 33 (2012), No. 2

TEX and friends on a Pad

Boris Veytsman

Abstract

TEX on an Eee Pad is quite workable.

1 Introduction

Some time ago a blog entry [15] made quite a splash
in the community. The (semi-anonymous) author
stated that LATEX cannot be made on a tablet due to
its “speed, bloat, and complexity” and needs a com-
plete rewrite. He also asked for a complete change
in the licensing scheme of TEX components in order
to make LATEX acceptable for the App Store.

In my opinion, this is a complete misunderstand-
ing of what TEX is and what it is not. The most
important thing, TEX is not an “app” in the same
sense OpenOffice is. TEX is designed as a compiler
which takes a program written in a language under-
standable by humans, and creates “binary code” in
a language understood by machines. The tex files
we write are not “documents” in the same sense as
OpenOffice files. They are programs with familiar
(to a programmer) constructions like macros, loops,
conditionals. The result of compilation is code — a
DVI, a PS or a PDF file — which is basically a set of
instructions for a machine to produce printed pages
or images on a screen. Furthermore, the TEX system
does not have just one compiler, but a family of com-
pilers and utilities, like gcc and friends. While the
article [15] exclusively discusses LATEX, it is nice to
have index processors, bibliography formatters, font
manipulation utilities and many others, not to men-
tion alternative engines to pdfetex and alternative
formats to LATEX.

Once we understand that we are talking about
a family of compilers with auxiliary programs and
libraries, many objections in [15] become irrelevant.
The compilation of the engines is a complex process
with many helper applications? Anybody who ever
tried to bootstrap gcc from source would not make
this comment. Huge code base? Well, the code base
of C/C++ with all the free libraries commonly used
is not small, either.

The comparison of a TEX distribution to a C/C++

distribution including all possible libraries is not as
far fetched as it seems. A modern distribution like
TEX Live contains almost all the freely distributable
code from CTAN, the Comprehensive TEX Archive
Network. The users of Perl and R have created and
maintain similar huge collections — CPAN and CRAN.
It is commonly considered to be the strong feature
of these languages rather than a weakness.

The minimal subset of TEX Live occupies about
40 Mb — by no means large by today’s standards.
The full distribution, indeed, is 3.5 Gb and growing,
because it includes solutions for many different prob-
lems: typesetting musical scores and chess games,
working with many languages and scripts, drawing
geographic maps in any projection, creating circuit
diagrams, using medieval fonts, and many, many oth-
ers. A user can install only the parts which she really
needs: for somebody the main reason to work with
TEX might be the possibility to typeset in the Klin-
gon language, while another user might work with
TEX for years and never find out it speaks Klingon.
Fortunately, modern distributions provide easy and
powerful tools to select only the parts of TEX and
friends one really needs. And modern hard disks are
large enough that installing the full distribution is a
reasonable default.

Still, the proof of the pudding is in the eating,
so we would like to offer the most convincing proof
that TEX can be used on a tablet: the experience of
compiling and using TEX Live on one. This is the
aim of this paper.

2 Device

There are reports of running TEX on Apple IOS
devices [3]. However, due to the usability considera-
tions discussed below I chose an Android tablet on
armv7l architecture. I recently got an ASUS Trans-
former Eee Pad TF101 [2]. The selling point was the
dual nature of the device: it has a detachable key-
board with an extra battery, so it can be used both
as a light tablet (when the lower part is detached)
and a netbook (when the lower part is attached). It
has turned out to be a very useful and surprisingly
powerful machine.

Another advantage of this choice is that Android-
OS is a derivative of GNU/Linux, so I hoped to use the
familiar Linux tool chain for working with it. I found
out that one can actually install a full distribution
as an application, running in a chroot environment,
which made my task quite simple.

2.1 Rooting

To really own the device one need to “get a root” on
it. This is a dangerous operation which may break
your device and almost certainly voids your warranty.
Please do not do this unless you absolutely under-
stand what you are doing, and in no circumstances
blame me if anything goes wrong!

The operation is described in detail in [1]. After
rooting the device you need terminal access and
(optionally) a convenient shell to work before you

Boris Veytsman



TUGboat, Volume 33 (2012), No. 2 193

start Linux. Android Terminal Emulator [12] and
BusyBox [16] are good choices.

For Emacs and vi users it is useful to map the
“back” key on the dock to Escape (see, e.g. [7]) by
editing /system/usr/keylayout/asusec.kl.

2.2 Linux in chroot

The user interface of Android assumes working with
one full-screen application at any time. This is a chal-
lenge for compilers like TEX and friends: one needs
an editor window, a compiler window, a log window,
etc. One way to solve this challenge is to use an Inte-
grated Developed Environment like TEXworks [8] or
TEXnicCenter [17], where the window management
is done by the application. However, I am an incor-
rigible Emacs user with the fingers used to all those
Control- and Meta-sequences, so it would make most
sense to recreate the familiar work flow on Android.
Emacs is well integrated in Unix-like systems, and
I looked for the way to install a Linux environment
on the device. There are several ways to do so:

1. Dual boot. The system can be booted to Linux
or to Android. At any time the device is either
Linux or Android, without much integration
between these two.

2. Virtual machine. The host operating system
(Android) emulates the hardware for the guest
operating system (Linux). There is some inte-
gration between the OSes, but this requires a lot
of processing power. Besides, we are not aware
of any VM software with Android as host (while
there are many VMs with Android as guest).

3. Chroot. This is a unique possibility due to the
fact that Android uses the Linux kernel with the
same system calls. Thus, one can just start the
standard Linux daemons and programs under
Android with a separate directory mimicking
the standard Linux layout (the “root directory”
for these processes, hence the name).

I chose that last possibility. It should be stressed
that the Linux programs with this solution are tightly
integrated with the native Android system. In Fig-
ure 1, the top program shows both Android pro-
cesses (e.g. ys.android.jump) and Linux processes
(e.g. top itself).

The application “Linux Installer” [13] turned
out to be an excellent way to go. I used it to install
Debian Squeeze on a 32 Gb removable SD card.

To allow a non-root user to run useful processes,
the user must be granted some rights to the cor-
responding devices on the tablet. This is done by

Group gid

AID_NET_BT_ADMIN 3001
AID_NET_BT 3002
AID_INET 3003
AID_NET_RAW 3004
AID_NET_ADMIN 3005
AID_MISC 9998
AID_SDCARD 1015

Table 1: Some useful Android groups

adding the user to the groups listed in Table 1 in the
file /etc/group on the Linux side.1

To get X running on the Android I used the
following trick, taken from an Android forum [5].
One can start a “headless” X accessed from a remote
computer through the VNC protocol. The interesting
thing is that this “remote” computer can actually
be the local machine with a VNC client talking to
the server on the same device at IP address 127.0.0.1.
There are VNC clients for Android, normally used
to remotely access computers from a mobile device.
That one can deploy them to access the same device
is a good example of the power of unintended use.

On the server side I installed TightVNC [6], in-
cluded in the Debian distribution. There are a num-
ber of free VNC clients for Android. Unfortunately I
did not find a single one that provided easy access
to Escape and Control keys, which are essential for
Emacs users. Therefore I chose Jump VNC [14]; this
is the only non-free software used in this project.
Jump VNC understands Control and Escape keys
on the keyboard dock and provides a convenient
on-screen panel with special keys when the dock
is disconnected. I hope some free VNC client can
implement this convenient interface in the future.

I did not use resource heavy environments like
KDE or Gnome; instead, I installed a lightweight
window manager, FVWM.

Some additional screenshots of the resulting
desktop can be found at http://android.galoula.
com/screenshots/LinuxInstall/Boris_Veytsman_

2011_12_31/.

3 Installing and running TEX

Debian Squeeze has TEX in the distribution, so it
runs “out of the box”. Unfortunately, it is the very
old TEX Live 2009.2 As a nice exercise, I decided to
build TEX Live 2011 binaries from sources — maybe

1 I am grateful to Gaël Person for this advice.
2 Debian is famous for its stability, which means, among

other things, rather obsolete packages.

TEX and friends on a Pad



194 TUGboat, Volume 33 (2012), No. 2

Figure 1: A screenshot with top running

the statement in [15] that the author could not do
this was an additional incentive.

The build instructions on the TEX Live web page
[10] were easy to follow. The full build took about
2.5 hours. I decided to install all TEX Live packages:
being a TEX consultant, I prefer the full installation
since one never knows what a next customer might
need. The installation of the binaries and packages
went without a problem.

The subsequent TEX Live 2012 builds on this
machine also proceeded without errors, compiling
all 350 binaries. This armel-linux port became an
official part of TEX Live with the 2012 release.

The update cycle of LuaTEX and ConTEXt is
typically faster than that of TEX Live. I also main-
tain a ConTEXt standalone distribution (see http://
wiki.contextgarden.net/ConTeXt_Standalone).

The resulting environment is quite usable. In
fact this paper was partially written on this device.

To check how fast TEX is on the device, I used
the following files:

1. story.tex: the famous story about Mr. Drof-
nats by A. U. Thor (see [9]).

2. The source of The TEXbook[9].3

3 While TEXing of this book is prohibited, a special dis-
pensation for benchmarking is traditionally recognized by the
American Mathematical Society. I am grateful to Barbara
Beeton for explaining this.

File Pages Engines

tex pdfetex xetex luatex

DVI PDF

story.tex 1 0.77 0.90 1.45 2.97 1.49
The TEXbook 494 5.84 6.94 11.63 12.05 18.50
LATEX 2ε 492 N/A 23.84 26.28 29.10 32.66

Table 2: Benchmarks; times are in seconds

3. source2e.tex: the sources of LATEX 2ε, as of
2011/06/27 [4].

All benchmarks were done with TEX Live 2011. Since
only the plain format uses Knuthian TEX in this
distribution, I benchmarked this engine only on the
first two files. Also, LATEX requires several runs
for the references to converge; only one run was
measured. All benchmarks were done by calling

time TEX_COMMAND FILE

and taking the first time (‘real time’) from the output.
Each test was repeated three times, and the average
was taken.

The results are in Table 2. As seen from this
table, a 500-page document is processed in about
15 seconds in plain and about 30 seconds in LATEX.

Another benchmark is compiling the present
paper. One run of pdflatex takes 4.1 seconds.

Boris Veytsman



TUGboat, Volume 33 (2012), No. 2 195

The full compilation from scratch (issuing make af-
ter make distclean) involves a run of pdflatex, a
run of bibtex and two runs of pdflatex.4 This
takes 13.3 seconds to complete. For comparison,
on my desktop (4-core 2.4 MHz processor) it takes
1.9 seconds, and on my laptop (ASUS Eee PC 900HD,
800 MHz processor) — 11.9 seconds.

While details are beyond the scope of this paper,
I would like to mention that such important and
useful tools as R, Maxima, Octave, and Gnuplot also
run on the device without any problems and with
reasonable speed.

4 An alternative approach

This paper describes a creation of a full Linux envi-
ronment under chroot on an Android device. Re-
cently Mǎ Qı̌ Yuán started to work on an alternative
approach [11]: a compilation of TEX binaries using
Android NDK. In this way one can create standalone
applications that do not require a Linux installation
to run. My tests showed that these applications are
not faster than those under Linux; this is not surpris-
ing, since Linux applications are not run in a virtual
machine, i.e., do not incur any overhead.

5 Conclusions

TEX and friends can run on an Android tablet. More-
over, they make it a useful work machine rather than
a mere consumer toy.

Acknowledgements

I am grateful to my son Max Veytsman for rooting
the device, helping with understanding the Android
system, reading the manuscript and many useful com-
ments; to Gaël Perron for help with Linux Installer;
to Qı̌ Yuán Mǎ for telling me about his approach; to
Karl Berry and Barbara Beeton for encouraging this
paper, suggesting benchmarking targets and editing
the text.

References

[1] Anon. AsusTransformer Root + CWM recovery.
http://androidroot.mobi/technical/asus-eee-

pad-transformer-tf101-root-cwm-recovery,
May 2011.

[2] AsusTeK Computer, Inc. Eee Pad Transformer
TF101. http://www.asus.com/Eee/Eee_Pad/Eee_

Pad_Transformer_TF101, 2011.

[3] Kaveh Bazargan. TEX as an eBook reader.
TUGboat, 30(2):272–273, 2009. http://www.tug.

org/TUGboat/tb30-2/tb95bazargan.pdf.

4 As it happens, the second run is not necessary and
is triggered by the message “Label(s) may have changed”
produced by a too-cautious LATEX.

[4] Johannes Braams, David Carlisle, Alan Jeffrey,
Leslie Lamport, Frank Mittelbach, Chris Rowley,
and Rainer Schöpf. The LATEX2ε Sources. LATEX3
Project, June 2011.

[5] Dangermouse. Gnome, KDE, IceWM or
LXDE desktop on your Android! http:

//www.androidfanatic.com/community-

forums.html?func=view&catid=9&id=1615,
March 2009.

[6] GlavSoft LLC. TightVNC software. http:

//www.tightvnc.com, 2012.

[7] Patrick Hof. Installing a Debian chroot
on the Asus Eee Pad Transformer. http:

//www.offensivethinking.org/thoughts/2011/

07/14/debian-chroot-eee-pad-transformer,
July 2011.

[8] Jonathan Kew and Stefan Löffler. TEXworks.
Lowering the entry barrier to the TEX world.
http://www.tug.org/texworks, 2012.

[9] Donald Ervin Knuth. The TEXbook. Computers
& Typesetting A. Addison-Wesley Publishing
Company, Reading, MA, 1994. Illustrations by
Duane Bibby.

[10] TEX Live. Build procedure. http://www.tug.org/

texlive/build.html, 2012.

[11] Qı̌ Yuán Mǎ. TEX Live for Android. http:

//code.google.com/p/texlive-for-android,
2012.

[12] Jack Palevich. Android Terminal Emulator.
http://www.appbrain.com/app/android-

terminal-emulator/jackpal.androidterm, 2012.

[13] Gaël Perron. Linux installer. http://android.

galoula.com/en/LinuxInstall, 2011.

[14] Phase Five Systems LLC. Jump Desktop.
http://www.jumpdesktop.com, 2011.

[15] Valletta Ventures. The price of a messy codebase:
No LATEX for the iPad. http://vallettaventures.

tumblr.com/post/13124883568/the-price-of-

a-messy-codebase-no-latex-for-the-ipad,
November 2011.

[16] Denys Vlasenko. BusyBox. http://busybox.net,
2012.

[17] Tino Weinkauf and Sven Wiegand. TEXnicCenter —
The center of your LATEX universe.
http://www.texniccenter.org, 2012.

� Boris Veytsman
School of Systems Biology &

Computational Materials
Science Center, MS 6A2

George Mason University
Fairfax, VA 22030
USA
borisv (at) lk dot net

TEX and friends on a Pad


