TUGboat, Volume 33 (2012), No. 2

Adapting ProofCheck to the author’s needs
Bob Neveln and Bob Alps

Abstract

ProofCheck is a system for writing and checking
mathematical proofs. Theorems and proofs are con-
tained in a plain TEX or KTEX document. Parsing
and proof checking are accomplished through Python
programs which read the source file. Although the
use of these programs has never been restricted to
any particular logic or mathematical language, the
work required to actually implement an author’s
choices in these matters, especially in the logic, and
to make the necessary modifications of the support-
ing files have been sufficiently laborious as to pose
an obstacle to the use of ProofCheck. This paper
describes updates to the system whose purpose is
to alleviate these labors to the extent possible so as
to facilitate the use of ProofCheck in a logical and
linguistic setting of the author’s choice.

1 What is ProofCheck?

ProofCheck is a Python package, available at http:
//www.proofcheck.org. It checks mathematical
proofs written in TEX or IXTEX. Previous versions
were described in [2] and [3]. The mode of operation
of ProofCheck is extremely simple. It requires proofs
to be structured into lines which have a justification
at the right margin. Each line with its justification
is matched against rules of inference from a list. If a
match is found the line is checked. If all the lines of
a proof check the proof checks.

This simplicity is reflected in the file structure
of the system as shown in Figure 1. The rectangular
boxes represent TEX files. The rule matcher and
the unifier consist of Python code. We now briefly
describe these TEX files.

1.1 (B)TEX documents

An author’s document may be written in either plain
TEX or in IATEX. Figures 2 and 3 show a fictitious
proof as it would appear in the source and output files
respectively. Ordinary text may be used relatively
freely in a proof. Mathematical expressions in TEX
may also be included even if they play no role in the
checking.

Structuring a proof so that it can be checked
requires six proof structuring macros in TEX, five
in BTEX. Figure 2 shows all those needed in ITEX.
For plain TEX, these are used: \chap, \prop, \note,
\line[a-z], \By, \Bye. No other markup is needed
in structuring proofs.

The logical and mathematical symbols shown

209
Inference Common Operator
Rules Notions Properties
TEX or BTEX] | Macro
Document Definitions

C Rule Matcher

Figure 1: Main Proof Checking Files

\prop 4.23 $\Not (x,y,z \in \nats \setdif \{O\}
\And 2 < n \in \nats
\And x \toThe n + y \toThe n = z \toThe n)$
\lineb Proof: We begin by taking as given:
\note 1 $(x,y,z \in \nats \setdif \{0\})$ \By G
\linea and
\note 2 $(2 < n \in \nats)$ \By G
\linea From these givens we get our contradiction that
\note 3 $(x \toThe n + y \toThe n = z \toThe n $
\lined $ \c \false)$ \By .1,.2
\lineb \Bye .3 H .1,.2

Figure 2: Fictitious Proof: Source File
423 —(z,y,ze N~{0}A2<neN Az n+y”
n=z"n)
Proof: We begin by taking as given:

1 (z,y,2 € N« {0}) 1G
and
2 (2<neN) 1G

From these givens we get our contradiction that

3 (zrn+yrn=z"n
—1) 1.1,.2

Q.E.D..3H .1,2

Figure 3: Fictitious Proof: Output

in the fictitious proof are those used in the rules
of inference and common notions files, respectively.
In sections 2.1 and 2.2 it is shown how to adapt
ProofCheck so that it works with symbols of the
author’s choosing.

1.2 Macro definitions files

There are TEX definition files with extension .tdf or
IXTEX definition file with extension .1df that need
to be included at the beginning of a checkable source
file using a TEX \input statement. These include
the utility.tdf file which contains the proof struc-
turing macros and sets up some math fonts and the
common . tdf file which contains the TEX definitions
of the symbols used in the rules of inference and
common notions files. Further, any document which
contains many new symbols should also have its
own .tdf file. Besides TEX macros these files may
also contain ProofCheck directives, which are TEX

Adapting ProofCheck to the author’s needs

210

comments beginning with ‘%’ allowing authors to
customize the behavior of the system:

ProofCheck directives

e Symbol substitution:
%def_symbol \forall \Each

e Operator precedence specification:
%set_precedence \toThe 17

e External file referencing:
%set_ref gr graphs

e Primitive term and formula specification:
f%undefined_term: supremum

e Term and formula definor specification:
%term_definor: =

o [ATEX theorem section-level specification:
%major_unit: section

1.3 Rules of inference file

The rules of inference file is a TEX file which is
searched every time a line of a proof is checked. It
consists of logical rules of inference.

The prime example of a rule of inference is the
modus ponens rule. In the rules file it looks like this:

(r—a9) ;pkq

In order for checkable proofs to be of reasonable
length it is important that there be many rules. We
now have over 1500 in the default rules.tex file.
This file which has been supplied by default with
the package is based on the logic in [1], which is not
in wide use. The size of this file makes it difficult
to simply edit desired changes. In section 2.5 an
improvement is described which makes it possible to
obtain a variety of standard and non-standard rules
of inference files.

1.4 Operator properties file

When the rules of inference file is searched each rule
is compared with the line to be checked using a
unifier. A unifier is a program which determines
whether there is some substitution which makes two
given expressions the “same”, which ordinarily means
identical. But it is important to allow expressions
such as ((A A B) A C) and (A A (C A B)) to be
considered the same.

The unifier may assume that certain operators,
such as conjunctions, are commutative and associa-
tive, or transitive, such as equality, if theorems to this
effect are stored in the properties.tex file. This file
can be edited and such theorems may be commented
out if desired for the logic under consideration.

Bob Neveln and Bob Alps

TUGDboat, Volume 33 (2012), No. 2

1.5 Common notions file

The common notions file consists of mathematics
which is either taken for granted, or at least is outside
the scope of the document.

2 Adapting ProofCheck

It is very desirable that an author be able to check
mathematics without being required to use the same
symbols as those in the rules of inference and common
notions files.

2.1 Example of a symbol definition

In the source file shown in Figure 2, the macro
\setdif produces the symbol ‘~” in the output file
shown in Figure 3. To obtain ‘N \ {0}’ instead of
‘N « {0} in the output, while still using ‘\setdif’
in the source file one can use the TEX definition:
\def\setdif{\setminus}

This modification affects only the output file
and does not free the author of the need to match
the symbol in the source file with the corresponding
symbol in the rules or common notions files.

2.2 Example of a symbol substitution

Unlike symbol definition, symbol substitution allows
an author to use a freely chosen symbol in the source
file without forgoing a match with ProofCheck files.
To use ‘\setminus’ (for ‘\’) in the source file and still
match ‘\setdif’ in the ProofCheck files an author
could use the following symbol substitution:

%def_symbol \setminus \setdif

In cases where the issue can be resolved by a symbol-
for-symbol replacement either a symbol definition
or a symbol substitution can solve the problem. In
propositional logic for example, since notation is
almost universally infix, symbol-for-symbol replace-
ments are enough. Since the rules of inference file
consists of logic, and quantifiers like propositional
logic share a common syntax, syntactical agreement
with the rules of inference file can almost always
be accomplished with such replacements. Semantic
issues are discussed in section 2.5.

2.3 Setting operator precedence

Infix operators are constants which, whether logical
or mathematical, require precedence values in order
to avoid fully parenthesizing. To establish the prece-
dence of a new infix operator, or reset that of an old
one, a line is inserted into a macro definitions file.
To set the precedence of the exponential operator
used in Figure 2 to 17 the following line suffices:

%set_precedence \toThe 17

The viewdfs script may be run to see all cur-
rently established precedence values.

TUGboat, Volume 33 (2012), No. 2

(Data Base)

Inference
Rules

Figure 4: Rules File and Database

2.4 New terms and formulas

Much of the work of making mathematical proofs
checkable lies in constructing definitions for the terms
and formulas used in the work, which satisfy the
requirements of formality. Definitions recognized by
ProofCheck must have the form:

({definiendum) (definor) {definiens))
Term and formula definor symbols can be established
using the directives:

Y%term_definor:
%formula_definor:

The parser then “learns” the author’s terms and
formulas when it reads a definition. A definition
should be marked using \prop and given a \By D
justification.

Terms and formulas may also be presented to
the parser without definitions using ProofCheck di-
rectives:

Y%undefined_term:
Y%undefined_formula:

2.5 Rules database

The rules of inference used in the original imple-
mentation of ProofCheck are those of a logic system
consisting of the sentence logic of tautologies and a
free predicate logic which allows non-denoting terms
and includes definite and indefinite descriptions. Rec-
ognizing that most potential users work with more
traditional logic, ProofCheck has been modified to
allow a user to select a rules of inference file which
implements the user’s preferred logic system. A data-
base has been built to store rules of inference, where
each rule is flagged with respect to the 20 different
attributes shown in Figure 5. Rules have been added
to the database which are valid only in more tradi-
tional logic. The user can create a query to select
rules based on these attributes. We have identified 8
logic systems for which queries have been pre-defined.
Each of the 8 systems uses tautologies for sentence
logic, but differ in the area of predicate logic. The
systems are as follows:

211

Sentence logic
e tau - tautology rule
e trf - rule contains True symbol (T) or
False symbol (1)
e ent - entailment rule (relevance and necessity)
e tui - intuitionistic rule
e mdl - contains a modal operator

Predicate logic
e prd - predicate logic rule (contains a predicate
or quantifier)
std - standard predicate logic rule
fre - free logic rule
uni - universal logic rule
equ - contains the equals symbol (=)
idn - contains the identity symbol (=)
def - contains definite description (the)
idf - contains indefinite description (an)
cas - contains case symbol (¢)
nul - contains the Nul symbol (Nul)
exs - contains the exists predicate symbol (ex)
unv - universalization rule

Miscellaneous
e prn - has parentheses as reference punctuators
e mlt - multi-goal rule
e gvh - Given: Hence rule

Figure 5: Attributes of Inference Rules

2.5.1 Eight logic systems

Here, SPL means Standard Predicate Logic, and FPL
means Free Predicate Logic.

1. SPL without equality or descriptions (Kelley,
Morse)

SPL with equality (Suppes)

SPL with definite descriptions (Bernays)

SPL with indefinite descriptions (Bourbaki)
FPL without identity, equality, or descriptions
FPL with identity and equality

FPL with definite descriptions

FPL with indefinite descriptions (Alps—Neveln)

® N o Uk N

2.5.2 Query examples

For example, to produce the rules of standard predi-
cate logic with equality and without descriptions the
following query is used:

(md1=0 And (tau=1 Or (std=1 And def=0)))

As another example, to produce rules for Alps—
Neveln logic, the needed query is:

(nd1=0 And (fre=1 Or tau=1))

Adapting ProofCheck to the author’s needs

212

2.6 The common notions file

Using a different logic affects the validity of theorems
compiled in the common notions file. Therefore,
these theorems must be reviewed and modified to
suit the logic being used.

The work of the authors uses a set/class theory
similar to that of Morse and Kelley, and this is re-
flected in the theorems of the common notions file.
The use of a different set theory, such as Zermelo—
Fraenkel, would require that the common notions be
modified for consistency with the chosen set theory.
Work is underway to create a common notions file
compatible with SPL with definite descriptions and
Zermelo—Fraenkel set theory.

2.6.1 External references in proofs

External references to the common notions file can
be identified by a leading ‘0’. In the marginal justi-
fication of the following note, a theorem numbered
11.7 in the common notions file is referred to:

12 (x€e Az € B) $011.7; .10

Multiple external reference files are permitted with
an appended identification code established using a
ProofCheck directive. The command

%set_ref gr graphs

causes ProofCheck to refer to the file graphs.tex
when references using gr are used as in the justifica-
tion of the following note:

12 (x€e A—z€B) 111.7gr; .10

3 Conclusion

A widely-held view is that formal proofs are by ne-
cessity lengthy and intractable. A fairly recent logic
text, for example, claims that:

In principle, all of known mathematics can
be formalized in terms of the symbols and ax-
ioms. But in everyday practice, most ordinary
mathematicians do not completely formalize
their work; to do so would be highly impracti-
cal. Even partial formalization of a two-page
paper on differential equations would turn
into a 50 page paper. For analogy, imagine
a cake recipe written by a nuclear physicist,
describing the locations and quantities of the
electrons, protons, etc., that are included in
the butter, the sugar, etc.!

I The quoted text is on page 28 of [4].

Bob Neveln and Bob Alps

TUGDboat, Volume 33 (2012), No. 2

Existing proof assistants? tend to support this
notion, conveying the impression that “computer
proofs” are massive, and the packages themselves
tend to be massive.

But as in [2] and in [3] we again claim that
checkable proofs can be done which are less than
an order of magnitude longer than proofs which are
considered rigorous by prevailing standards. We seek
mathematicians interested in trying ProofCheck. We
will gladly provide assistance to anyone seeking to
use it.

References

[1] Robert A. Alps and Robert C. Neveln.
A predicate logic based on indefinite
description and two notions of identity.
Notre Dame Journal of Formal Logic,
22(3), 1981.

[2] Bob Neveln and Bob Alps. Writing and
checking complete proofs in TEX.
TUGboat, 28(1), 2007, pp. 80-83.
http://tug.org/TUGboat/tb28-1/
tb88neveln.pdf.

[3] Bob Neveln and Bob Alps. ProofCheck:
Writing and checking complete proofs in ETEX.
TUGboat, 30(2), 2009, pp. 191-195.
http://tug.org/TUGboat/tb30-2/
tb95neveln.pdf.

[4] Eric Schechter. Classical and Nonclassical

Logics. Princeton University Press, Princeton,
New Jersey, 2005.

o Bob Neveln
Widener University
neveln (at) cs dot widener dot edu

o Bob Alps
Evanston, Illinois
BobAlps (at) aol dot com

2 See Wiedijk’s list: www.cs.ru.nl/~freek/digimath

