TUGboat, Volume 33 (2012), No. 2

The joy of \csname...\endcsname

Amy Hendrickson
Abstract

A surprisingly useful tool, \csname—\endcsname, of-
fers many opportunities for interesting and useful
macros, especially when it is convenient to dynami-
cally generate a series of definitions.

Trivially a series of \csname definitions may
be used to produce endnotes, but there are more
interesting and complex constructions as well.

Another example shows how \csname may be
used for on-line report generation. In this instance,
we dynamically generate hyperlinked tabs for custom
risk analyses of particular stocks chosen on-line by
the client. We can use these named tabs to build a
hyperlinked Table of Contents on the fly.

A similar process may be used to produce hy-
perlinked, tabbed, documentation.

The final example shows how definitions made
with \csname can be used to send a set of definitions
to an auxiliary file, where each new definition con-
tains the current page number in its name, and a
number as its definition.

This allows the dynamic redefinition of the com-
mand for a particular page, within the auziliary file,
depending on whether the value of the new definition
is higher than the value of the previous definition for
the same page.

Code will be shown for each of these methods
to dynamically generate macros using \csname.

1 The basics

\csname and \endcsname are TEX primitives that
allow us to define and call macros. If we compare a
definition made with and without \csname we can
see that initially a definition made with \csname is
not much different than one made with \def. For
instance, if we compare these two definitions,
1. A definition with \def:
\def\puppy{Toy Poodle}
and the new macro is called by writing: \puppy,

2. A definition with \csname. . .\endcsname:
\expandafter\def\csname puppy\endcsname
{Toy Poodle}
called with: \csname puppy\endcsname

we find the results in either case to be ‘Toy Poodle’.
So, why bother with \csname. ..\endcsname?

2 Useful characteristics

As we will see, \csname has several of characteristics
making it uniquely useful:

219

. We can use \csname to find out if a command

has been defined, since an undefined command
is equal to \relax.

As an example, we can make a conditional
that tests to see if a command has been defined
and make choices based on the result:
\expandafter\ifx
\csname anycommand \endcsname\relax
<do this>\else<do that>\fi

. \csname allows us to define and call commands

that may be composed of numbers, symbols, and
other commands, unlike the basic command for
making definitions, \def, which must use only
letters for the name of a new definition.

For example, this is a valid definition that
uses symbols and a number in its name:
\expandafter\def\csname $&3\endcsname{Hi!}

Commands made with non-letters must be
called using \csname—\endcsname. In this case,
\csname $&3\endcsname must be used, and pro-
duces: ‘Hil’.

Another example comes from latex.ltx, the
basic ATEX macro set, a definition that uses
\csname for making macros that might have
characters other than letters in their name:
\def\@namedef#1{\expandafter\def\csname

#1\endcsname}
\@namedef{} is used widely in IWTEX code. As
one example, \@namedef{?} is used in the macro
for making labels for cross-referencing. This is
why you can make a label that looks like this,
\label{figl}, where the argument includes a
number.

. A macro argument may be used within \csname.

As an example, again from latex.ltx:

\def\setcounter#1#2{\@ifundefined{c@#1}},
{\@nocounterr{#1}}V
{\global\csname c@#1\endcsname#2\relax}}
used, e.g.: \setcounter{page}{201}
The macro checks to see if there is a counter
called \c@#1. If there is no counter with that
name it will give an error message; if there is
a defined counter, it uses \csname to call the
counter and sets it to the number given as the
second argument. In this example, it sees that a
counter named \c@page exists, so sets it equal
to the second argument, ‘201’ in this example.

Generic macro. The example above shows
\csname. . .\endcsname being used to make a
kind of generic macro since it will have the flex-
ibility to be used with any previously defined
IMTEX counter.

The joy of \csname...\endcsname



220

4. Expand commands within \csname.
Here’s where things get interesting. We can ex-
pand commands within a definition name made
with \csname...\endcsname. This opens up
many complex possibilities. For one set of pos-
sibilities, we can include a counter in the name
of a new definition.

In this article we’ll explore a number of ways in which
we can use \csname. .. \endcsname with counters.

2.1 Dynamic macro building

We can use a counter within \csname. .. \endcsname
to make a series of macros, a new macro every time
the counter is advanced.

We do this by including a definition, made using
\csname. .. \endcsname with a counter in its name,
within the body of another definition. The outer
definition advances a counter every time it is used,
producing a new and unique inner macro every time
it is called.

For example, we can make a command that will
make more commands in this way:

\newcount\applenum
\def\applename#1{\global\advance\applenum by 1
\expandafter\def\csname apple\the\applenum

\endcsname{**#1*x}}

Every time we use the \applename{} macro, we
define a new macro, named \applel, \apple2 and
SO On.

Using a loop to call the macros

To access the newly made inner macro we can use
a loop, which advances a counter in each iteration,
and calls the inner macro using the current state of
the counter as part of the macro name.

To call the macros made with the \applename
macro above, we test to see if \applename(number)
is defined. If defined, we call the command using the
current state of the \loopnum counter in the body
of the name of the command; else, end the loop.

\newcount\loopnum

\loopnum=1

\loop\expandafter\ifx

\csname apple\the\loopnum\endcsname\relax

\else
\csname apple\the\loopnum\endcsname\
\global\advance\loopnum by 1

\repeat

Used:
\applename{Macintosh}\applename{Gala}

Results:
**Macintosh** **Gala**

Amy Hendrickson

TUGDboat, Volume 33 (2012), No. 2

3 Endnotes example

For our first real world example we will use this
tool to make endnotes. In this example we want
to change the definition of \footnote so that it
produces endnotes rather than footnotes. We do this
by making an endnote definition that makes a new
definition every time it is called.

We start with a new counter to be used by
our endnotes, \endnum. In the \endnote macro we
advance the \endnum counter, then raise and print
the number in the text for our endnote number.

Next we make a construction with \csname that
builds a new definition, using the current state of the
\endnum counter. This new definition will be used to
save the text of the endnote.

\newcount\endnum
\def\endnote#1{\global\advance\endnum by 1
$~{\the\endnum}$’,
hhh
%% Here we make the new definition using
%% \the\endnum in the definition name so that
%% each new definition is unique:
hhh
\long\expandafter
\def\csname endnote\the\endnum\endcsname{’
\small\leftskip=12pt\relax\parindent=-12pt
\indent\hbox to 12pt{\the\loopnum.\hfill}%
hh
%% Here we save the text of the endnote:
#17,
\strut\vskip2pt}}
Now we set \footnote to be equal to \endnote, so
every time \footnote is used, the command actually
called is \endnote:
\let\footnote\endnote

To print the endnotes, we make a loop that ad-
vances a counter with every iteration. That counter
is used within the name of the definition made with
\csname. .. \endcsname. The loop continues until it
comes to an undefined endnote, thus cycling through
every defined endnote. An example is shown in
figure 1.

\newcount\loopnum

\def\printendnotes{\global\loopnum=1

hh

%% Test to see if any end notes have been

%% defined; If so, provide the title and

%% start loop; if not, do nothing.

hhh

\expandafter\ifx

\csname endnote\the\loopnum\endcsname\relax
\else

\subsection*{Endnotes}\everypar{}

\vskip6pt

\small\leftskip=12pt



TUGboat, Volume 33 (2012), No. 2

221

‘‘A day of dappled seaborne clouds.%
\footnote{Quotation from James Joyce’s
‘Portrait of the Artist as a Young Man’.}
The phrase and the day and the scene
harmonised in a chord. Words. Was it

their colours? He allowed them to glow
and fade, hue after hue: sunrise gold, the
russet and green of apple orchards, azure
of waves, the greyfringed fleece of
clouds.\footnote{The Bloomsday

celebration in Dublin this year features a
concert of compositions honoring Joyce.}

\printendnotes

“A day of dappled seaborne clouds.! The phrase
and the day and the scene harmonised in a chord.
Words. Was it their colours? He allowed them
to glow and fade, hue after hue: sunrise gold,
the russet and green of apple orchards, azure of
waves, the greyfringed fleece of clouds.?

Endnotes

1. Quotation from James Joyce’s ‘Portrait of the
Artist as a Young Man’.

2. The Bloomsday celebration in Dublin this year
features a concert of compositions honoring Joyce.

Figure 1: Testing the endnote commands

%% Loop continues until it finds an

%% undefined endnote

hh

\loop\expandafter\ifx

\csname endnote\the\loopnum\endcsname\relax
\else

%% Print endnote

\csname endnote\the\loopnum\endcsname

\vskip2pt

He

%% Reset: redefine current endnote to \relax

%% preventing this definition from being

%% used the next time \printendnotes is called.

hh

\global\expandafter

\let\csname endnote\the\loopnum\endcsname\relax

hh

\global\advance\loopnum by 1

\repeat

\fi

%% \fi ends test at beginning of this macro

%% to see if any endnotes have been defined.

}

Portfolio Analysis and Modeling

Click on Tab to go to Analysis

k] Bl B3
:CEEL:
_nmxg'o
I —
LEELE]:
SA=ET N> =

—
= =

S =
- H Bl B B
BEEEBBHE

b=
SEBERABE
= B ~MZR3
= =)

fer)
=]
=
=
m
|
=
(<]

S =] [=]
s K=
@D o
o (=]
o =]
<) =
o = = &
HEEe "
= 2 |

[=)
=
(%]
(%]
I>
EE
=
=

Z

@D -l Bl B BB
EEBEEE
= bl W B B B
= —
BEEEAE
= = e = &

CAT BIDU USo
XL DIA NDX
HAL AMZN ETFC

Symbols Continued on Next Page

Figure 2: One form of automated online report
generation; this is a draft version of customized
financial reporting. Each symbol is automatically
generated and is hyperlinked to the appropriate page
of the report. The company analyzed depends on input
from the client; the symbols and their linking is done
through macros utilizing \csname.

4 Example: On-line report generation

A somewhat similar construction may be used to
make hyperlinked tabs for on-line report generation
(figure 2). (The actual reports use color, too.)

This set of macros is used to automate the nam-
ing of hypertargets so that we can hyperlink to them
on the first page of the report, using a \csname con-
struction and a loop, and using TikZ for making the
hyperlinked tab.

The name and number of companies analyzed
is determined by the client who submits a request
online. Each company’s analysis will start on a titled
new page. Part of the definition for the title of a
report will be the command \maketab{#1}.

\maketab takes a stock symbol as its argument,
and generates a hypertarget so that we can link to
it from the beginning of the report, in the equiva-
lent of the table of contents page, using the same
\codenum counter. Then it makes a new definition
with \csname and the \codenum counter in its name,

The joy of \csname...\endcsname



222

Welcome I Getting Started I Edited Bookl Front I Chapters I Graphics FIgs/TabIes Example/More

Figures Tables Table Notes Special Captions NEl[IERELEREER ]S

To Rotate figure or table

You need \usepackage {graphicx}, and then you can use
\rotatebox{ (angle) } {\vbox{ table or figure }},ie,

\begin{table} [p]

\rotatebox{90} { \vbox{

\caption{This is the table caption.}
\begin{tabular}{crccc}
\multicolumn{3}{1}{\bf Parameters}&\\
\end{tabular}}}

\end{table}

Figure 3: A similar technique is used for making
hyperlinked tabbed documentation, where the
hypertargets are made with \csname and a counter,
accessed with hyperlinks named with \csname and
a counter. The tabs in this example are also made
with TikZ.

with the stock symbol as its definition, and sends it
to the .aux file.

\def\maketab#1{\global\advance\codenum by 1
\hypertarget{link\the\codenum}{}%
\immediate\write\@auxout{\string\expandafter

\string\gdef\string\csname\space

tab\the\codenum\string\endcsname{#1}}}

Once we have this in place we can use our loop
construction for the first, and possibly continuing,
pages to build the hyperlinked tabs. \gettabs uses
a loop to call the individual tabs, as long as there
is one defined. This can continue over a number of
pages if necessary.

\begin{multicols}{5}

\loopnum=1 \gettabs

\end{multicols}

As you can see, \gettabs is where the work is
done. Here is how it is defined:

\def\gettabs{\loop

\expandafter\ifx

\csname tab\the\loopnum\endcsname\relax

\else

\vskip6pt\hbox to 1in{}

He

%% \hyperlink takes two arguments;

%% the first the name of the hypertarget,

%% and the second, the text that will link

%% to the hypertarget when clicked:

\hyperlink{link\the\loopnum}

{\plaintab{\csname tab\the\loopnum\endcsnamel}

\hskip12pt}%
\hfill}%} <== end \hbox started above
\global\advance\loopnum by 1

\repeat}

If you are interested in how to make the tab
with TikZ, here is that code:

Amy Hendrickson

TUGboat, Volume 33 (2012), No. 2

\definecolor{dkblue}{cmyk}{.9,.53, .32, .2}
\def\plaintab#1{%
\hbox{\normalsize\sf
\begin{tikzpicture}
[rounded corners=3pt, inner sep=3ptl%

\node [rectangle,fill=dkblue]
{\Large\sf\color{white}
\vrule depth 3pt width Opt height 15pt \relax
#1};
\end{tikzpicture}}}

A similar technique can be used to produce
tabbed documentation, as shown in figure 3. For
the full example, please see http://www.texnology.
com/docs.pdf.

5 Another \csname technique, for
classification levels

The problem:

When producing a classified document, the highest
level of classification (secret, top secret, etc.) on
any particular page must appear at the top of that
page. When the classification level is given, the user
doesn’t know the page on which it will appear. In
addition, the user doesn’t know in advance whether
this particular classification level is the highest on
that page.

The solution:

We can use a \write to be sure that we know the
page number where the markup has appeared, so
the macro for making classification level markup will
send the level along with the page number to an
auxiliary file, using a \write command.

Now we have a page number and a level appear-
ing on that page. However, we still don’t know which
level is highest for the particular page.

The second part of the solution involves defining
the highest level for a particular page, in the auziliary
file, by also sending code for comparing levels on
a particular page, and making a definition for the
particular page only if the present level is the highest
for that page number. When the auxiliary file is
input, the next time IKTEX is run on the root file,
the definition of the highest level on each page has
been defined.

There are many more complications in the full
problem. For instance, how do we pass information
on the level of a paragraph that has broken over
pages, so that the part of the paragraph on the
second page will contribute to the calculation of the
highest level on the second page? For the sake of
brevity, we’ll consider only the general mechanism
here.


http://www.texnology.com/docs.pdf
http://www.texnology.com/docs.pdf

TUGboat, Volume 33 (2012), No. 2

5.1 Setting up

We use a \write for every instance where a classifi-
cation level is written in the text with the command
\secmark. \write is only activated after the page is
made up, so we are sure that we will be using the
correct page number when we send the information
to the auxiliary file. Since we will have many \write
commands in the .tex document, we will write to
a new auxiliary file, \ jobname.lev, instead of using
standard IATEX auxiliary file, \jobname.aux. We
name the new write:

\newwrite\collect

5.2 The counter to be used

The next item we need is a counter to use when
defining our \csname commands. Since we want a
command that has the current page number in its
name, we would be tempted to use the INTEX page
counter, \c@page.

However, in the common case where the be-
ginning of the document uses roman numerals, and
the body of the document uses arabic numerals, we
would have the unfortunate result of having multiple
pages with the same page number.

So instead, we make a new counter, and call it
\superpage:

\newcount\superpage

5.3 Using \shipout

\shipout is the TEX primitive that is called every
time a page is completed. We use \shipout to gen-
eralize this solution, so that this system will work
independently of any page style, and its headers and
footers.

We can use \shipout to advance the counter
called \superpage. This gives us a new number for
every page, continuous through the document. Now
\shipout can be used to print the classification term
on the top and bottom of the page using \superpage
as the counter found in the name that has been
defined with \csname. .. \endcsname.

5.4 Doing the \writes

The \secmark macro works by sending a definition
for the classification level on a particular page to
\jobname.lev file, using a \write associating the
page number with the level given. The \write will
not be activated until the page is made up, so we
are guaranteed to have the correct page number sent
to the \jobname.lev file. This works as well for
figure or table floats, since \write will send out the
information to the .lev file only after the page is
made up, and the page where the floats will appear
has been determined.

223

The \write sends information to the auxiliary
file, \jobname.lev, including several conditional
tests. The command looks messy and verbose be-
cause when the write is made, we have to stop the
expansion of many commands by preceding each one
with \string, except for those few commands that
we want to expand immediately; in this case, the
super page number:

\write\collect{%% ~~J makes a blank line

%% in the \jobname.lev file so that

%% it is easier to see where each test ends:
~tJ°"J

hh
\string\expandafter\string\ifx\string\csnamej,
\space LevelOnSuperPage\the\superpage
\string\endcsname\string\relax
\string\expandafter\string\gdef\string\csname
\space LevelOnSuperPage\the\superpage
\string\endcsname{#1}

\string\else

\string\ifnum \string\csname\space
LevelOnSuperPage\the\superpage\string\endcsname
\string< #1
\string\expandafter\string\gdef\string\csname
\space LevelOnSuperPage\the\superpage
\string\endcsname{#1}\string\fi\string\fi

~~JYh

... which might make more sense when we see how
the code looks by the time it is expanded and appears
in the \jobname.lev file. Here, the level sent for
page 5 is ‘2’

\expandafter\ifx

\csname LevelOnSuperPage5\endcsname\relax
\expandafter\gdef

\csname LevelOnSuperPage5\endcsname{2}
\else\ifnum\csname LevelOnSuperPage5\endcsname<
2 \expandafter\gdef

\csname LevelOnSuperPage5\endcsname{2}

\fi\fi

This process can be repeated as many times as needed
for each page, with only the highest number, deter-
mined by each test, being used to define \csname
LevelOnSuperPage?\endcsname.

Then, when \jobname.lev is brought into the
base .tex file the next time I#TEX is run on the doc-
ument, it will include a series of unique macros, one
for each page in the document where a classification
mark has been used, defining the highest number
given for that page. Since the definition is made
with \csname. .. \endcsname we can have the super-
page number contained in the name of the definition.
This allows us to call the definition using the current
superpage number in the \csname. .. \endcsnane, in
the shipout.

The joy of \csname...\endcsname



224

5.5 Using the level information

We can use these definitions with every shipout, with
the macro \makeclassification being called at the
top and bottom of the page. Here is its definition:

\def\makeclassification{’
\vbox{\baselineskip=12pt

%% Is there a definition for this page?
\expandafter\ifx

\csname LevelOnSuperPage\the\superpage
\endcsname\relax

%% if not:

\centerline{}

\else

%% if there is a definition:

\centerline{Y

\ChangeNumIntoClassification{/
\expandafter\csname
LevelOnSuperPage\the\superpage
\endcsname}}\vskip3pt\fi}}
\ChangeNumIntoClassification, seen above, uses
the definition of

\csname LevelOnSuperPage\the\superpage
\endcsname

as its argument, which will yield a number from
1 to 4. This allows us to use \ifcase to trivially
change that number into the classification term:
\def\ChangeNumIntoClassification#1{Y%
\ifcase#1\or Unclassified \or Classified

\or Secret \or Top Secret

\else ! Please Run LaTeX Again to Get the
Classification Level !

\fi}

And now we will have the highest classification level
reliably appearing on top of each page.

Summary: Ways in which \csname is
exceptionally useful

1. Testing to see if a macro has been defined.
2. Making a macro that has characters other than

letters in its name, e.g., a cross referencing label.

3. Making a generic macro that can be modified
with the argument of another macro.

4. Generating new macros by using a counter in
the name made with \csname. .. \endcsname.

Amy Hendrickson

TUGDboat, Volume 33 (2012), No. 2

5. Calling macros made with \csname with a loop.
The loop may be stopped by testing to see if
the most recent \csname (counter)\endcsname
combination has been defined.

Using this method to stop looping has the
advantage that we don’t need to know in ad-
vance how many definitions were made, and we
will cycle through all available definitions before
ending the loop.

6. A \csname...\endcsname definition including
a counter in its name can be used to generate a
series of hypertext targets automatically.

7. Definitions can be made using the page number
as part of the name, which can be called by the
output routine.

8. Finally, we have the technique of sending in-
formation to an auxiliary file with a \write
and making new \csname (counter)\endcsname
definitions in the body of the auxiliary file,
depending on the results of a conditional test.
When the auxiliary file is input into the root
.tex file, we can then use the resulting definition
in a variety of ways.

\csname in the future

More than a coding oddity, \csname. .. \endcsname
is a workhorse, allowing many constructions that
wouldn’t otherwise be available.

Likely there are many more opportunities to
use these techniques, particularly with off-label uses
for IXTEX such as report generation, or building e-
documents on the fly, and other web-oriented macro
writing projects.

Enjoy!
(The slides for the TUG 2012 conference talk are avail-
able at http://www.texnology.com/talk.pdf.)

o Amy Hendrickson
57 Longwood Avenue
Brookline, MA 02446
USA
amyh (at) texnology dot com
http://www.texnology.com



