TUGBOAT

Volume 33, Number 2 / 2012
TUG 2012 Conference Proceedings

TUG 2012 130 Conference program, delegates, and sponsors
132 David Latchman / TUG 2012: A first-time attendee
138 Roundtable discussion: TEX consulting

Typography 146 David Walden / My Boston: Some printing and publishing history

156 Boris Veytsman and Leyla Akhmadeeva / Towards evidence-based typography:
First results

158 Federico Garcia / TEX and music: An update on TEXmuse

IATEX 165 TIATEX Project Team / IATEX3 news, issue 8
167 David Latchman / Preparing your thesis in IATEX
172 Peter Flynn / A university thesis class: Automation and its pitfalls
178 Bart Childs / IATEX source from word processors

Software & Tools 184 Richard Koch / The MacTgX install package for OSX
192 Boris Veytsman / TEX and friends on a Pad
196 Pavneet Arora / YAWN —A TgX-enabled workflow for project estimation
199 Didier Verna / Star TEX: The Next Generation
209 Bob Neveln and Bob Alps / Adapting ProofCheck to the author’s needs

Graphics 213 Michael Doob and Jim Hefferon / Approaching Asymptote
Macros 219 Amy Hendrickson / The joy of \csname...\endcsname

Abstracts 225 TUG 2012 abstracts (Cheswick, Garcia, Henderson, Mansour, Mittelbach,
Peter, Preining, Robertson, Thiele)

227 Die TgXnische Komddie: Contents of issues 2-3/2012
228 ArsTgXnica: Contents of issue 13 (2012)
229 MAPS: Contents of issue 42 (2011)

Hints & Tricks 230 Karl Berry / The treasure chest

Book Reviews 232 Boris Veytsman / Book review: About more alphabets: The types of Hermann Zapf
Advertisements 233 TgX consulting and production services

TUG Business 235 TUG institutional members

News 235 TgX Collection 2012
236 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions
2012 dues for individual members are as follows:

= Ordinary members: $95.

= Students/Seniors: $65.
The discounted rate of $65 is also available to citi-
zens of countries with modest economies, as detailed
on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGDboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The follow-
ing trademarks which commonly appear in TUG-
boat should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: August 2012]
Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Steve Peter, President*

Jim Hefferon*, Vice President

Karl Berry*, Treasurer

Susan DeMeritt*, Secretary

Barbara Beeton

Kaja Christiansen

Michael Doob

Jonathan Fine

Steve Grathwohl

Taco Hoekwater

Klaus Hoppner

Ross Moore

Cheryl Ponchin

Philip Taylor

David Walden

Raymond Goucher, Founding Ezxecutive Director?
Hermann Zapf, Wizard of Fonts!

*member of executive committee

fhonorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses Electronic Mail

TEX Users Group (Internet)

P.O. Box 2311 General correspondence,
Portland, OR 97208-2311 membership, subscriptions:
U.S.A. office@tug.org
Telephone Submissions to TUGboat,

letters to the Editor:
TUGboat@tug.org

+1 503 223-9994

Fax Technical support for
+1 815 301-3568 TEX users:
support@tug.org

Web
http://tug.org/
http://tug.org/TUGboat/

Contact the Board
of Directors:
board@tug.org

Copyright © 2012 TEX Users Group.

Copyright to individual articles within this publication re-
mains with their authors, so the articles may not be repro-
duced, distributed or translated without the authors’ permis-
sion.

For the editorial and other material not ascribed to a par-
ticular author, permission is granted to make and distribute
verbatim copies without royalty, in any medium, provided the
copyright notice and this permission notice are preserved.

Permission is also granted to make, copy and distribute trans-
lations of such editorial material into another language, ex-
cept that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

2012 Conference Proceedings

TEX Users Group
Thirty-third Annual Meeting
Boston, Massachusetts

July 16-18, 2012

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
TUGBOAT EDITOR BARBARA BEETON
Proceepings EpiTorR KARL BERRY

VoLuME 33, NUMBER 2 . 2012
PORTLAND . OREGON . U.S.A.

TUG 2012

Boston, Massachusetts USA
July 16-18, 2012

Sponsors
TEX Users Group = DANTE e.V.

CSLI Publications = O’Reilly = River Valley Technologies

with special assistance from individual contributors. Thanks to all!

Conference committee

Karl Berry = Robin Laakso = Steve Peter = Dave Walden

Bursary committee

Steve Peter, chair » Jana Chlebikova = Bogustaw Jackowski = Alan Wetmore

Workshop leaders
Sue DeMeritt = Cheryl Ponchin

Participants

Robert Alps, Evanston, IL

Pavneet Arora, Bolton, Canada

Rohan Attele, Chicago State University

Michael Barr, McGill University

Nelson Beebe, University of Utah

Barbara Beeton, American Mathematical Society

Karl Berry, TEX Users Group

Bill Cheswick

Bart Childs, College Station, TX

Daniel Comenetz, Belmont, MA

Julie Conroy, IDA/CCS

Jack Creilson, American Meteorological Society

J. Michael Dean, University of Utah

Sue DeMeritt, Center for Communications
Research, La Jolla, CA

Michael Doob, University of Manitoba

Julie Doring, Project Euclid-Duke Univ. Press

Sadeq Elbaneh, Lackawanna, NY

Peter Flynn, University College Cork

Federico Garcia, Alia Musica Pittsburgh

Steve Grathwohl, Duke University Press

Matthew Hacker, American Meteorological Society

Michele Hake, American Physical Society

Jim Hefferon, Saint Michael’s College

Troy Henderson, University of Mobile

Amy Hendrickson, TEXnology Inc.

Klaus Héppner, DANTE e.V.

Ned Hummel, Indiana University—Purdue
University Indianapolis

John Kitzmiller, Norwich, VT

Richard Koch, University of Oregon

Robin Laakso, TEX Users Group

David Latchman, TEXnical Designs

Philippe Baril Lecavalier, Concordia University

Richard Leigh, St Albans, UK

Sherif Mansour, Cairo University, Egypt

Wendy McKay, California Institute of Technology

Frank Mittelbach, I#TEX3 Project

Robert Moody, Victoria, BC

Bob Neveln, Widener University

Brian Papa, American Meteorological Society

Steve Peter, TEX Users Group

Cheryl Ponchin, Center for Communications
Research, Princeton, NJ

Norbert Preining, JAIST

Peter Pupalaikis, Ramsey, NJ

Thomas Ratajczak, German Army

Will Robertson, University of Adelaide

Herbert Schulz, Naperville, IL

Heidi Sestrich, Carnegie-Mellon University

Charles Shooshan, Newington, CT

William Slough, Eastern Illinois University

Michael Sofka, RPI

David Tellet, Alexandria, VA

Christina Thiele, Carleton Production Centre

Didier Verna, EPITA

Boris Veytsman, George Mason University

Bruno Voisin, CNRS and University of Grenoble

Herbert Vo3, DANTE e.V.

David Walden, E. Sandwich, MA

Alan Wetmore, US Army Research Lab

Patrick Weyer, Medfield, MA

Christine Wujick, Alexandria, VA

Monday
July 16

Tuesday
July 17

Wednesday
July 18

TUG 2012 — program and information

Sunday, July 15, 4-6 pm: opening reception and registration.
Monday, July 16: concurrent INTEX workshop, Sue DeMeritt & Cheryl Ponchin.

8:00am registration
9:00am Steve Peter, TUG Opening
9:15am Amy Hendrickson The wonders of \csname
9:55am break
10:15am Frank Mittelbach E-TEX: Guidelines for future TEX extensions, revisited
11:15am Steve Peter Metafont as a design tool
11:35am Will Robertson Lineage and progeny of fontspec and unicode-math
12:15pm lunch
1:20pm group photo
1:30 pm Sherif Mansour & Hossam Fahmy Experience with Arabic and LuaTgX
2:10pm Norbert Preining Typesetting with Kanji— Japanese typography
2:50 pm break
3:05pm Federico Garcia TEX and music
3:45pm David Walden My Boston: Some printing and publishing history
4:25pm q&a
(after Herbert Schulz Workshop: Introduction to TeXShop
hours) Steve Peter, et al. Workshop: Installing LuaTgX
9:00am Troy Henderson User-friendly web utilities for generating IANTEX output
and MetaPost graphics
9:40am Richard Koch The MacTEgX install package
10:00am Bill Cheswick An iTgX update
10:20 am break
10:40 am Peter Flynn A university thesis class: Automation and its pitfalls
11:20am David Latchman Preparing your thesis in IANTEX
noon lunch
1:00 pm Boris Veytsman TEX and friends on a Pad
1:40 pm Bart Childs IAMTEX source from word processors
2:20pm break
2:40 pm Federico Garcia Documentation in TgXnicolor
3:20pm Jim Hefferon & Michael Doob Reaching for the stars with Asymptote
4:00 pm David Walden, moderator Roundtable discussion: TEX consulting
Flynn, Hendrickson, Latchman, Peter, Thiele, Veytsman
6-10 pm banquet at Oceanaire (theoceanaire.com/Locations/Boston)
9:00am Pavneet Arora Sleep de(p)rived typesetting
9:40am Bob Neveln & Bob Alps Adapting ProofCheck to the author’s needs
10:20am break
10:40 am Christina Thiele Almost 30 years of using TEX
11:20am Will Robertson & Frank Mittelbach IATEX3: From local to global — a brief history and
recent developments
noon lunch
1:00 pm Boris Veytsman & Leyla Akhmadeeva Towards evidence-based typography: First results
1:40 pm Norbert Preining TEX Live 2012: Recent developments
2:20pm break
2:40pm Didier Verna Star TgX: The Next Generation
3:20pm TUG meeting; q&a

~4:00 pm

end

132

TUG 2012: A first-time attendee
David S. Latchman

On July 16-18, 2012, I attended the 33" annual
meeting of the TEX Users Group in Boston, MA. It
was not only my first time attending such an event
but my first time presenting. Though I did not know
what to expect, I found my experience to be both
enjoyable and educational. The 2012 conference was
held at the Omni Parker House located in the heart
of downtown Boston at the corner of School and
Tremont Streets. This hotel has the distinction of
being the longest continuously operating hotel in the
US and fits right in with the rich history of downtown
Boston. The hotel lies along the Freedom Trail, a 2.5
mile mostly-red-brick path that connects Boston’s
most significant historic sites starting from Boston
Commons and ending at the USS Constitution.

My trip to the conference was a red-eye flight
from Los Angeles. By the time I arrived in Boston,
I was as well-rested as anyone could be after such
a flight. Getting to the hotel from Logan Interna-
tional was made easy by Dave Walden’s clear travel
instructions on the TUG website. I took the Silver
Line bus to South Station. From there, I took the
Red Line subway (the T) to the Park Street station
which was a short walk to the hotel.

Downtown Boston and
the Omni Parker House

School Street is so named because it was the site
of the first public school in the United States, the
Boston Latin School. The Boston Latin School is also
the oldest existing school in the United States and has
moved several times from its original location. About
half-a-mile away is the Boston Common, another
record for the city of Boston as it is the oldest city
park in the US. A first time visitor to the city can’t
help but be in awe of the history that surrounds
them.

Just across from the Omni Parker House and
also on the corner of School and Tremont Streets
is King’s Chapel. In addition to being a historic
landmark that lies along the Freedom Trail, King’s
Chapel is also a place of worship. The Chapel is
open to visitors except during times of worship. As
it was Sunday, I didn’t have the opportunity to see
inside the chapel but did manage to visit the nearby
cemetery — the King’s Chapel Burying Ground.

Though the cemetery shares a name with the
nearby church, it is in fact the property of the city
and was founded in 1630, making it Boston’s first
cemetery. It remained Boston’s only burial site for
thirty years. The church itself didn’t come into exis-

David S. Latchman

TUGhboat, Volume 33 (2012), No. 2

,.—-‘

(a) Silver Line bus stop (b) Train at South Station

Figure 1: From Logan International airport to
downtown Boston

Figure 2: Markers at the King’s Chapel Burying
Ground

tence until some time later, in 1689, and was built on
the burial grounds as no one in Boston wanted to sell
land to a non-Puritan church. There are a few no-
table historic figures who can call the King’s Chapel
Burying Ground their final resting place. They in-
clude John Winthrop, Massachusetts’s first governor
and William Dawes, Paul Revere’s companion on his
famous ride. Though regular burials ceased in 1896,
the occasional burial still takes place.

Not far from the King’s Chapel Burying Ground
is the Granary Burying Ground, another tourist at-
traction located on Tremont Street along the Free-
dom Trail. This cemetery is the final resting place
of three signers of the Declaration of Independence
and all five victims of the Boston Massacre in 1770.
Also prominent in the cemetery is an obelisk erected
in 1827 to the parents and relatives of Benjamin
Franklin. The obelisk was constructed from granite
obtained from the Bunker Hill Monument quarry to
replace the original family gravestones which had
deteriorated over time.

One of the notable men buried at the Granary
Burial Ground is John Hancock, most remembered
not because he served as President of the Second
Continental Congress or that he was the first and

TUGboat, Volume 33 (2012), No. 2

\

(b) The Paul Revere Memorial

g
Sam

N

(c) The uel Adams Marker

Figure 3: Markers at the Granary Burying Ground

third Governor of Massachusetts but rather for the
prominence of his large and stylish signature on the
Declaration of Independence. It is believed that
Hancock made his signature so large as an act of
defiance to King George III. This story couldn’t be
further from the truth.

As the President of the Second Continental
Congress, Hancock was the first to sign the now
historical document. At the time, the Declaration
of Independence wasn’t a formal declaration of inde-
pendence from Britain but rather was intended to be
copied and distributed among the colonies to explain
the need to declare independence. As a result, Han-
cock thought he would be the nearly the only person
to sign the document (along with the Secretary of
the Congress, Charles Thompson), and so made his
signature large. As the Declaration of Independence
gained support, other delegates stated adding their
names over a period of weeks and months.

133

BE -

(b) The first telgphone marker in front of the JFK

building.

Figure 4: Government sites in Boston

For the beer drinkers reading this, it may be
surprising to note that the face featured on a Sam
Adams beer isn’t actually Sam Adams but Paul
Revere. It is said that Samuel Adams was not a
good-looking fellow while Paul Revere, on the other
hand, was considered a handsome chap. Both men
are buried at the Granary Burying Ground.

Downtown Boston doesn’t just feature histor-
ical sites and landmarks. It is also the center of
the city’s government, the section of which is, ap-
propriately, named the Government Center. Not far
from the hotel is both the City Hall Plaza and the
John F. Kennedy Federal Building. In front of the
JFK Building on Cambridge Street sits a plaque com-
memorating the first sound transmission over wire,
an event that led to the practical invention of the
telephone.

The event the plaque commemorates isn’t the
one we are all familiar with that took place on March
10th, 1876, when Alexander Graham Bell shouted the
words, “Mr. Watson, come here, I want to see you”.

TUG 2012: A first-time attendee

134

In 1875, Bell under the advice of another scientist,
Joseph Henry, stated working on an electrical multi-
reed device to transmit the human voice over wires.
Bell didn’t have the necessary skill or knowledge to
work on such a device, but a chance meeting with
Thomas Watson changed all that.

The principle behind the reed design operated
on the same principle as the human ear. The pinna
collects sound and concentrates it as it travels down
the auditory canal. Vibrations on the tympanic
membrane then transmit energy to the ossicles or ear
bones which is then converted into electrical impulses
by the cochlea to be interpreted by the brain. The
ear bones are a system of levers that amplify the force
on the cochlea. This allows the tympanic membrane
to be relatively small. Bell reasoned that if he had a
larger membrane, he would be able to collect more
sound and move a steel reed placed in a magnetic
field. This would turn sound energy into an electrical
current as the reed moves through the magnetic field.

On June 2, 1875, while troubleshooting the
multi-reed device, Watson plucked one of the reeds
to check the tension believing it to be too tight. Bell,
who happened to be listening at the right time in the
next room, heard the metallic twang and the first
working model of the telephone was born.

The Conference

The Attendees and Presenters There were 61
participants and 23 presenters (of which I was one)
listed in the TUG program, with participants coming
from Australia, Canada, UK, Germany and Egypt.
Attending the conference was a bit of a surreal expe-
rience as | saw so many people who were as passion-
ate as I was about TEX and its future development.
Where most of the conferences I have attended in the
past tend to be specialized events geared toward one
topic and where everyone —more or less—is in the
same field, I found this to be quite different. Instead
I found people with a wide array of specialties and
talents.

Day One The conference started with an opening
from the TUG president, Steve Peter, which was then
followed by a presentation by a IXTEX consultant,
Amy Hendrickson of TEXnology Inc. Amy’s talk fo-
cused on the use of \csname to create IATEX macros
and dynamically generate a series of definitions. Amy
demonstrated its use to redefine the footnotes com-
mand to produce endnotes and to dynamically create
online reports. This is something I definitely have
to look into and learn about.

After a break, Frank Mittelbach talked about
IXTEX3 and the direction of the TEX typesetting

David S. Latchman

TUGDboat, Volume 33 (2012), No. 2

engine. When TEX was started over two decades ago,
computing power was far more limited compared
to what is available today and, as a result, so too
were some of the algorithms. Frank compared the
limitations of TEX’s algorithms to I#TEX3 and how
they were overcome, to what degree and what still
needs to be done. Given the increase in computing
power and the work that has been done in recent
years, the present system could be a viable one and
remain so for some time.

Next was a presentation on font design by Steve
Peter. Steve is a linguist and font designer and
showed how font design can be done using the META-
FONT package.

Will Robertson next came on to show his work
on the fontspec and unicode-math packages. Will’s
talk focused on his experiences in developing these
packages while at the same time learning how to
program —one of the consequences of which was
contributing code to the KTEX3 project.

Will’s talk was followed by lunch and a group
photo of the conference attendees.

The next group of talks focused on using the
TEX engine to typeset foreign languages. Unfortu-
nately, the talk on using IXTEX to typeset Mayan
hieroglyphics by Bruno Delprat and Stepan Orevkov
had to be cancelled. It was a little disappointing as
I have always found it interesting how the TEX type-
setting engine can be used in so many ways, from
typesetting chess boards to creating Sudoku puz-
zles. Fortunately, the next talk by Sherif Mansour
on typesetting Arabic proved just as interesting.

Sherif is a graduate student from Cairo Univer-
sity whose research is focused on improving Arabic
typesetting using the AlQalam font in LuaTeX. One
of the problems Sherif faces is the typesetting of
right-to-left fonts in LuaTEX. Each written line on a
page in the Arabic language is about the same length
and this makes line breaking difficult. This makes for
a difficult problem to solve as the various shapes can
also change in subtle ways for the same characters.
Though I don’t envy Sherif I am interested in his
future work. Maybe I can find a way to use BTEX
to help me learn Arabic.

The next presentation by Norbert Preining fo-
cused on the problems of typesetting in Japanese.
Japanese typesetting differs from English in that
there are four different writing systems: Kanji, Hira-
gana, Katakana and Roman letters, the difficulties of
which are further compounded as Japanese employs
both vertical and horizontal typesetting styles.

Federico Garcia next talked about music type-
setting. As a developer working on writing a pro-
fessional music typesetting system in TEX, Federico

TUGboat, Volume 33 (2012), No. 2

highlighted some of the problems experienced with
typesetting music. Though I am not a musician,
I could appreciate some of the problems he faced.
One of these problems is getting the TEX engine to
automatically (and correctly) place the beams when
creating a sheet of music. Federico compared his
system with other music typesetting systems. While
many problems need to be solved before he has a fully
functional system, he believes they can be solved.

Day Two The first talk of the day by Troy Hen-
derson focused on some of the web-based utilities
he had developed to generate and plot functions in
METAPOST. I haven’t paid too much attention in
the past where METAPOST or PSTricks is concerned,
choosing to favor TikZ instead. I may have to reeval-
uate that position as the online utilities may help
me learn and pick up the code quicker.

The next talk by Richard Koch focused on in-
stalling TEX on the Mac using the MacTEX install
package. The key feature of this package, like ev-
erything Mac, is its ease of use and I#TEX can be
installed with a single click of the button. Rich-
ard demonstrated a full TEX installation during the
course of his talk; we were all assured that an actual
installation took place and no trickery was involved.

If you are an iPad owner then Bill Cheswick’s
talk on iTEX should be of interest. The iTEX app is a
IMTEX reader for the iPad and shouldn’t in any way be
confused with Donald Knuth’s proposed XML-based
successor to TEX. When typesetting a book, or a
page or any document, the final page size is generally
known down to the nanometer. TEX then uses some
clever algorithms to optimize the presentation for a
high standard of quality output. Unfortunately, this
poses some problems for ebook readers. As there
are varying screen sizes as well as the different ways
one can hold a reader, it would be difficult and time-
consuming to run TEX over a document every time
a reader shifts position.

The iTEX application solves this by using TEX
to create precomputed images for portrait and land-
scape layouts in both standard and large type ver-
sions. These images are then stored in a container
file that the app can read. Besides being a reader,
the app also converts text into INTEX typeset output.
Bill demonstrated this by importing and converting
text from Project Gutenberg and arXiv.org. The
app is free on Apple’s app store for anyone interested
to try.

KETEX and Thesis Talks The next two presenta-
tions after the break focused on theses and disserta-
tions. While my talk dealt with the various packages
students can use to make their lives easier, Peter

135

Flynn’s talk dealt with the creation of a IATEX class
file for the University College Cork (UCC). Given
the number of thesis class files present on the CTAN
server, and that we can assume there are far more
unofficial class files elsewhere, the question we must
ask is, “do we really need another thesis class file?”
According to Peter Flynn, we do.

Generally speaking, a thesis class file is supposed
to meet the formatting requirements of a particular
university by ensuring page dimensions and margins
are set correctly. But this is not the only requirement.
Students are also required to enter the formal names
of their departments and the colleges they belong to.
Given that a university might have a complex de-
partmental infrastructure and even stranger naming
standards, the best way to ensure that students enter
this information correctly is to enter them as options
to the \documentclass command rather than allow
authors to enter this information themselves. The
Cork class file was tested on January 2010 over the
course of 18 months and so far the response has been
favorable —so favorable, in fact, that other institu-
tions are looking to adopt or base their class file on
Cork’s.

Like most university class files in my experience,
the UCC class file was designed to be minimalist
in nature but at the same time meet the needs of
as many students as possible. Any package that is
added must be done carefully so as not to break any
other existing packages and must be done to meet the
needs of as many students as possible. Unfortunately,
with the number of disciplines and in some cases,
cross-disciplines, this means that all the needs of
every student cannot be built into a single class file
and students will need to add packages as they see
fit. This was the subject of my talk.

Typically, when a student looks for a INTEX
consultant they are under a lot of stress. Generally,
any attempts to compile a document freezes and
ends up with hundreds of errors. Part of my job as
a consultant isn’t to just fix these problems and get
the document compiling again but to offer solutions
and make lives easier. Once a project is concluded,
students still need to make edits before the final
submission.

IXTEX has a multitude of packages and, at a
quick glance, it almost seems as if you can do any-
thing. By knowing a student’s discipline or what
their thesis is about, a consultant can often give
advice on the best package to optimize the writing
process. Students in engineering or the sciences, for
example, may find it easy to take advantage of the
siunitx package which will allows them to enter

TUG 2012: A first-time attendee

136

mathematical units easier rather than having to en-
ter math mode then enter a confusing list of symbols.
Science students who deal with chemical equations
may also take advantage of the mhchem package for
the same reason. I talked about some past projects
and how proper package use helped my clients.

Post-Lunch Talks The next talk by Boris Veyts-
man was on using TEX on the iPad: “TEX and friends
on a Pad”. Though I can’t imagine actually typing
XTEX code on a flat screen I am nonetheless excited
at the possibility. Maybe I work too much and need
to get out once in a while. Who knows? But, bottom
line, it is possible to have IXTEX on an iPad.

Bart Childs then talked about the problems of
automating the process of converting text from word
processors into IATEX. The problems that some con-
verters face is that they usually attempt to make the
final output look like the original typewritten docu-
ment as much as possible. This introduces complex
and, oftentimes, terrible WTEX code. Bart’s goal was
to find a conversion process that would produce code
that was accurate, clean and maintainable.

Bart primarily used a hybrid process based on
the Writer2IATEX plugin for OpenOffice and macros
written in Emacs Lisp. Bart talked about his tests
on converting a book on rotordynamics (which was
heavy on the mathematical side), a C++ program-
ming text, a memoir written by a friend that con-
tained portions in the Czech language, and a novel.

Final Talks for Day Two Frederico Garcia’s sec-
ond talk focused on his colordoc package. This
package was based on Frank Mittelbach’s docstrip
package. It highlights braces and other code delim-
iters and makes for slightly more readable code. This
package is sure to come in handy if you have ever
need to troubleshoot code and aren’t sure if there is
an extra brace or bracket lurking somewhere.

The final talk for the day by Jim Hefferon and
Michael Doob focused on the Asymptote graphics
program. Hefferon and Doob showed some of the fea-
tures of the package and its ease of use in generating
graphics.

Roundtable Discussion The day concluded with
a roundtable discussion moderated by Dave Walden
with some of the TEX consultants present as panelists,
of which I was one. The other consultants included
Peter Flynn, Amy Hendrickson, Christina Thiele,
Steve Peter and Boris Veytsman. Questions asked
by the audience focused on the business aspects of
TEX consulting, such as how consultants got business
and how they dealt with problem clients, just to name
a few.

David S. Latchman

TUGhboat, Volume 33 (2012), No. 2

Figure 5: Conference room at the Omni Parker
House where TUG 2012 took place

After the roundtable discussion, proceedings
concluded for the day. Participants met for a ban-
quet at the Oceanaire Seafood Room for dinner; the
restaurant is located across City Hall Plaza.

Day Three The first talk of the day, by Pavneet
Arora, was titled “Sleep de(p)rived typesetting”, and
focused on the process of typesetting. The second
talk by Bob Neveln and Bob Alps looked at a Python
program they created to check the syntax of math-
ematical proofs: ProofCheck. Mathematical proofs
were checked against the syntax developed by A. P.
Morse in his book, A Theory of Sets. The authors
presented recent updates to the system that are de-
signed to make proof checking easier to users.

For the next talk, Christina Thiele talked about
her experiences using TEX, first to typeset articles
and journals in academia to the creation of her com-
pany, Carleton Production Center. Christina also
highlighted some of the changes in TEX that took
place when she first started using it almost thirty
years ago as well as the changes in software and hard-
ware she underwent in her career as a consultant.

The following talk by Will Robertson and Frank
Mittelbach looked at the origin, the development
and recent changes to WTEX3. The key aspects and
ideas behind KTEX3 were developed in the early
1990s but it wasn’t until recently that code came into
widespread use. The talk focused on the what XTEX3
can currently do and their plans for the future.

After Lunch The next talk by Boris Veytsman and
Leyla Akhmadeeva focused on the results of a recent
study conducted by the two authors to test whether
typographic style influenced a reader’s ability to
comprehend and remember contents in a passage. It

TUGboat, Volume 33 (2012), No. 2

is generally believed among typographers that ty-
pography is more than an art as it can influence a
person’s comprehension and reading speed. To test
this hypothesis, the authors gave university students
a one-page passage and tested their comprehension.
IXTEX was used to control various typographic fea-
tures from fonts, page layout and justification. This
preliminary study was intended for textbook design-
ers where comprehension of text is very important.
The preliminary study indicated that typography
does not play a part in reading speed or comprehen-
sion and the human brain may be flexible enough to
allow us to read even badly designed pages.

While this first study may indicate that typog-
raphy does not have an effect, I definitely would like
to see more research on the area. Though short pas-
sages using bad typography may not show an effect
on comprehension, perhaps the effects of typography
and longer passages may affect a person’s ability to
understand a passage.

Norbert Preining followed with a talk about the
recent changes and additions to TEX Live. One of
the biggest changes is the extension of the TEX Live
manager to read multiple repositories, something
that has been a feature of MiKTEX for some time.
Norbert also gave an overview of the other changes
to TEX Live 2012.

The final talk of the conference was by Didier
Verna and looked at possible modern implementa-
tions of TEX. Didier said his current project came
about from a discussion he had with Donald Knuth,
the creator of the TEX typesetting system. TEX was
initially designed to be a simple system as the com-

137

puter resources of the time were limited and this
meant that a full programming language could not
be implemented.

In the time that has passed, we have seen an
exponential growth in computing power along with
our skills in language design and implementation.
Could this be a way to modernize TEX? Didier
says this is possible and can be done using an old,
but very established modern programming language,
Common Lisp. Didier focused on the features of the
language that made it ideally suited to the task of
modernizing TEX and gave some demonstrations.

Concluding Remarks and Observations

I have always known somewhere in the back of my
mind that the development of IMTEX is community-
based, much like many open-source projects. Though
I am just a user of the system, it was great to meet
others like me as well as some of the developers who
are going to continue building and contributing to
the evolution of KTEX. As a first-time participant I
truly had a wonderful time and attending future con-
ferences is something that I definitely look forward
to. Attending gave me the chance to meet others
who were just as interested in ITEX as I was and
also gave me the chance to see the future of TEX.
Attending is definitely something I can recommend
to any TUG member who hasn’t done so.

¢ David S. Latchman
texnical dot designs (at) gmail
dot com

TUG 2012: A first-time attendee

138

Roundtable: TEX consulting
http://tug.org/consultants

There was a roundtable on TEX consulting on the
second day of the conference, moderated by David
Walden (DW). He requested background informa-
tion from the panelists, and circulated it to all the
conference participants earlier in the day. Thus, the
panel discussion itself could focus on questions more
about consulting rather than just who they were and
their basic businesses.

Most of the panelists are listed on the TUG con-
sultants page, http://tug.org/consultants; most
also have web sites that are easily found.

Peter Flynn (Silmaril Consultants) I was
introduced to TEX around 1980 and have been using
it daily since about 1985. I started consulting in 1990,
although I had done a few odd TEX-related jobs for
organisations as diverse as the Church of England
and the Local Government Computer Services Board
before that. Most of the work is writing document
classes and modifying packages (rather than writing
whole new packages), but we also proofread and
typeset books, and advise on the adoption of TEX
systems. Clients include individual authors, one-
person training companies, learned societies, auction
houses, printers and typesetters, government offices,
manufacturers, and publishers.

Amy Hendrickson (TgXnology, Inc.) T've
been doing IKTEX consulting for nearly 30 years,
since 1983. My steady client is John Wiley & Sons
publishing. I provide book class files for Wiley and
then assist their authors with their particular needs
or questions. Other than Wiley, I have many and
varied other clients coming to me, finding me through
my website.

In the last few years I've worked for quite a
few overseas companies, including an Italian climate
change organization, a Swiss software company, a
German university, where I did the design as well as
the BTEX implementation on an ejournal for their In-
stitute of Advanced Study, and a Brazilian economics
journal. I'm working now for a Swedish scientific
organization, to produce a scientific journal package
and documentation, and have been asked to come
teach in Stockholm in December. The other parts of
my consulting include teaching ITEX two or three
times a year, and occasionally doing book produc-
tion, for Wiley authors, or for others that come to
me. An example is a client last year who asked me to
design a book style and implement it for an 800-page
book on oil drilling that he is self-publishing.

TUGDboat, Volume 33 (2012), No. 2

But the usual kind of work I do is I TEX macro
writing, commonly for book or journal class file de-
velopment, with tabbed documentation in PDF; but
I also do macro writing in response to specific re-
quests. A recent example is a macro set for an online
financial report generator that uses ITEX in the
background.

David Latchman (TgXnical Designs) 1 first
started using ITEX about ten years ago, mainly to
do assignments. As I did physics, using KTEX made
the typing of equations easy (if only I had known
about this as a physics undergrad). I slowly came to
appreciate writing in TEX and started using it more
and more until I started using it almost exclusively.

Soon others came to me with their problems
in BWTEX. That grew when I noticed that people
were posting their problems online. I started with
typesetting articles and dissertations but the projects
eventually grew in scope. Most of the subject matter
I deal with is still technical in nature; I focus on the
sciences, engineering and mathematics. Soon I was
typesetting books; I have typeset some books for
companies for their internal use, as well as creating
of reports. I also modified existing style and class
files, leading to the eventual creation of style and
class files for clients.

My clients to date have included students (most-
ly graduate), writers and businesses. About a year
ago, I decided to start my company, TEXnical De-
signs, in the hopes of expanding my services. My
most recent project uses Sweave to pull and analyze
data into a report, a project I am looking forward to.

Steve Peter (Beech Stave Press) I've been
using TEX and friends since 1997 and have been con-
sulting since the turn of the century. There have
been three distinct areas of the consulting work: first,
I write document classes and packages (or in many
cases, customize existing ones); second, I support
authors using these and other packages to write for
publishers for whom I consult; and, third, I provide
editorial and typesetting services outright for stu-
dents writing theses, authors publishing in online
journals (which now often require the authors to hire
copyeditors and compositors), NGOs, and various
publishers.

Christina Thiele (Carleton Production Ctr.)
I started using TEX in 1983, on a mainframe, with
no previewer. The bulk of my involvement with TEX
has been hands-on, just-me, typesetting work. I've
worked on at least a dozen journals, ranging from
a few years to well over two decades of their issues.
Almost all have been in the humanities, but not all

TUGboat, Volume 33 (2012), No. 2

in English; there were journals in French, Spanish,
German, Italian, with small stretches of more exotic
fare, such as Arabic, Korean, and Hebrew.

But I don’t think I did anything that was really
and truly “consulting work in TEX” until 1998, to
help the National Research Council’s Research Press
start using TEX for the Canadian Journal of Physics,
a small-format single-column monthly. The macros
were originally done by Robin Fairbairns—1I was the
local contact, doing training, first-response trouble-
shooting, and answering questions of all sorts. I was
a consultant at last!

Boris Veytsman Ihave used TEX since 1994 and
consulted since 2005. T mostly do customized ATEX
packages, troubleshooting, and teaching. Among my
customers have been No Starch Press, Israel Journal
of Mathematics, Annals of Mathematics, Philoso-
phers’ Imprint, American Chemical Society, Associa-
tion for Computing Machinery, US Army Corps of
Engineers, US Census Bureau, UN Food and Agri-
culture Organization, and many individual authors,
publishers, etc.

Panel discussion

DW: We've already met the panelists, so we won'’t
go through the bio stage. And you've already heard
from five of them, giving presentations; one more
will happen tomorrow. Another thing I'd like to
say is that we’re having this panel discussion on
consulting because we’re curious, and possibly we’ll
learn something that will be useful in our amateur
work. I'm sure we’re not here to somehow create
competitors for the consultants.

I’ve collected some questions in advance, and T’ll
start by asking a few of those. The panelists should
feel free to quiz each other, or to answer each other’s
questions, or to follow on to each other’s questions.
And of course in a few minutes we’ll begin to take
some questions from the group. The first question
is a little bit of a self-serving TUG question: Raise
your hands— How many of you get business from
your advertising in TUGboat? [Four hands go up.]
And, where else do you get your business?

DL: I've gotten some from Facebook. And there
have been a few on-line free-lancing sites that I've
tried.

BYV: Mostly word of mouth, besides TUGboat. Some-
body, a former customer, recommends some friends.
CT: Word of mouth from editor to editor, which
usually means the humanities; professor to profes-
sor, same department. I'm a member of the Society
for Scholarly Publishing, SSP; many years ago I did
a poster session on the use of TEX for linguistic

139

journals, well, not just linguistics, and eventually
someone from OUP got in touch with me—it took
them about 14 months to track me down; they obvi-
ously don’t know about TUG — they found me and
I got two books out of that.

I had a query that came through the TUG office
which had some through a publisher in Sicily; they
had a book that had some in in very old KIEX,
and they needed it redone. I haven’t gotten work
through any ads in TUGboat because I don’t have
an ad there; it’s not that nobody looks at my ad.

I've had work come through poster sessions;
membership in the SSP, where you’re allowed one
little advertising blurb for free, so your name is out
there; and a number of clients came as a result of
something I’d done when I was still at Carleton Uni-
versity. Another editor and I went around and polled
profs to see who edited journals; and we found over
40, most in the humanities, but not all. So I would
say that a university is a really good source of clien-
tele. You put out an ad in their publications or their
newsletter —academics have a newsletter, students
have a newsletter —and that probably works just as
well.

AH: I think the place where I get most work is
through my website. I just sit with my website out
there, and somebody will come to me. I've had
people from all over the world ask me to do various
things; that’s been pretty useful. TUGboat has been
useful as well, and also word of mouth. I started out
working at MIT, so I have some MIT/Lincoln Lab
connections. That’s my general stomping ground.
More than that, it’s just people who come to my
website.

PF: Like Christina, I don’t have an ad in TUGboat,
but I do have a website. I get a lot of traffic through
the website. Also, going to conferences is a major
source. In my case, not just TEX but XML as well.
Being there and meeting the people is probably about
65% of the battle.

BV: I have a story about word of mouth. You know,
I have several jobs—an evening job at a university,
a daytime job at some company. And once I was
recruited for a permanent position about TEX; some-
body read about me in TUGboat, they wanted to
recruit me; I said I like my positions and don’t want
to move, and this was a very wise decision, because,
after some talk, I understood that I was being re-
cruited by another department of my own company.
So my answer that I was pretty happy where I am
was probably a good thing.

DW: A follow-up question was, how do you commu-
nicate with your customers? I assume phone and

140

e-mail. All of you? [all nod] In person, some of you?
[“occasionally”)

BV: If you do teaching, seminars or classes, obviously
you meet your students in person. For everything
else, e-mail is good.

PF: If you are using a website, then having a client
subdomain is basically an extranet with user name
and password access for clients. You can use it to
download, to place copies of things, to keep in contact
with the client.

DW: To what extent does anybody’s consulting go
beyond KTEX, or is it primarily IATEX?

PF: XML...

SP: Copyediting, editing ...

DW: Proofreading ...

AH: Design ...

DW: Well, that’s my follow-on question. How much
of the time does your TEX work take you into design,
either of the book or of fonts?

AH: Not as often as I'd like. The last few years
I’ve had the opportunity to do some design work,
and actually it’s been a lot of fun, although also
time consuming, and perhaps not very profitable.
For an e-journal, I did the design as well as the
implementation of it. I've also done design work
for small companies who wanted to use their logo
in a particular way. I find that’s kind of fun, but
it 4s really time consuming. I don’t know that I
recommend it.

BV: For me, it’s the opposite story, because some
clients want me to do design more often than I
wanted — I never tried— but now I know to whom
to recommend it.

DW: There’s a followup question over here — the
same topic?

Pavneet Arora: In what form does the design reach
you?

BV: My favorite form is specs. You have so much
baseline, so much space in the margins, and so on.
Unfortunately, many designers don’t do this; they
just send me a sample, and I have my trusty ruler
with the different scales, where I measure. Unfortu-
nately, sometimes they just do this.

CT: I usually just have journals, so once you set the
design, all you do is plug the data in each issue. But
when I’'m asked to start up a new journal, which
has happened three or four times, I prefer not to
be given the specs, because most of the editors are
completely unaware of what those mean, and I would
much rather have them go cruising the shelves or go

TUGDboat, Volume 33 (2012), No. 2

cruising through Muse' and, although you have to
be a subscriber to get the current issue, you go in
there, you can go by category, mainly humanities as
I said, and then if you go into any specific journal,
go all the way down to the bottom of the list of their
collection — the oldest issue is very often free. So
you open it up, and you take it —that’s what I’ve
done—you look at the title page, the general pages,
the bibliography, and after about five or seven of
them, you realize that a lot of them don’t have a lot
of the information that you think could go in there.
A lot of journal design is very static; it hasn’t been
reviewed in a long time. So they don’t have things
like e-mail address, contact info, the main author to
connect with, That’s very common in science
journals, but not in the humanities; they don’t seem
to want to talk to anybody, just talk to you in the
article, but please, don’t come back to me. It’s very
different in the sciences. So Muse is a really great
source for inspiration, and motivation to do better.
As T said, after five or six journal title pages, you can
see where you can do better. Of course, techniques
are so simple, it’s great.

AH: My specs for that job I was talking about, the
e-journal, the specs were the color scheme and some
graphics, and that was it. So you can imagine, there
can be a lot of choices, so what do you want to
do—do you want to have the colors graded through
the page, how do you want to link this page to the
other page. And also, I found my own graphics, by
going to the web and finding things that didn’t have
copyrights on them, and then using those graphics.
Similarly, for doing book design, I was able to do a
few book designs recently, either because the authors
didn’t know what they wanted exactly, or they just
let me loose with it. One was a book that dealt
with “the theory of everything”, so I was able to
find a graphic that matched that, and used it for the
chapter headings. Another one—it was kind of a
weird job—a guy came to me who was from the oil
fields of Texas; he had done work with oil wells, and
he wanted to write a book on oil wells to share the
information he had gained over the years. So I found
some graphics that had to do with oil wells and put
them in the book, and he was happy, and I was able
to use whatever colors I wanted to use, and so forth,
and produce the book for him.

So I think, if you’re given a set of specs, that’s
trivial; you just implement them. I've done that
plenty of times; it’s not terribly interesting, but I
can do it. But it ¢s kind of fun when you have a little

1 Muse is an electronic warehouse, with electronic subscrip-
tions, mainly to humanities journals. It’s run out of Johns
Hopkins. Ed.

TUGboat, Volume 33 (2012), No. 2

bit of leeway so that you can do something more
interesting.

PF: My initial reaction is that the design, everything
should be black, shiny, shiny black. [SP: and lucra-
tive] And lucrative. And corrupt. I have not decided.
I have ten designs that I need to design. To answer
the question, most clients will provide a PDF of the
sample, oversize, big borders, and with what they
fondly believe to be measurements. Unfortunately,
the way they do these is frequently very ambiguous.
They get the dimensions wrong, they get the scale
wrong, you try to print it and it’s nowhere even
vaguely near what they request, because they’ve test
printed it with Acrobat with the scaling turned off.
They haven’t got it right to start with. And, like
Boris, I'd much rather they’d give me the spec, a
positive spec. But if they do, and even if they try
to do it in the design, they leave out stuff. They
don’t specify chapter starts, and they don’t specify
heading 1 and heading 2, and then no heading 3
layout, even though the book contains heading 3s.
The book will contain, for example, bulleted lists,
but they won’t specify how much they’re indented.
Many, many of these specifications are grotesquely
defective. So there’s a constant stream of going back
to the client, and saying “What do you want this to
look like?” And they go back to the designer, and
the designer says, “Oh, well.”

DW: Steve, you also work on the design of the parts,
yes?

SP: Yes, but not anything I've gotten through this.
What I get is a surprising number of organizations
that have things like occasional papers, and they’ve
already got a Word template that they give out to
authors, and then they want to support TEX users.
I’ll get a copy of the Word template, which in some
cases is surprisingly tough. I had one recently where
the display math was supposed to be left justified if
it was fewer than three lines, but centered if it was
more than three lines. And my reaction then was
“Why??” And they said, “Well, that’s the way we do
it. We just press the button and you either center it
or left justify it.” I could probably do it for you, but
do you really want that? I think I've talked them
out of it; they’ve reserved the right to come back to
me and demand it to be implemented that way. I'm
hoping they avoid that.

BV: Speaking about specs, once I had beautiful
specs! Absolutely beautiful; it was a journal, and the
author was a professor of typographic design. It was
absolutely beautiful, exactly stated, it was very diffi-
cult to implement because it was grid based of course,

141

and you know how to do grid-based typesetting in
TEX, it’s ... but it was beautifully done.

DW: This brings to mind another question: you've
talked about how the customers will come back to
you, you go back to them. While I'm sure that some-
times happens in the slightly longer run, therefore
my question is, How often do you get change requests
when you maybe think the project is done? How do
you know it’s done? What do you do with those?

BV: Nobody wants this? Okay. I made a mistake
in the beginning of my work as a consultant. and
it’s too late to correct it. The mistake is I said that
you have free lifetime support. [laughter] And you
wouldn’t believe how many times I have requests for
this support. What I do is I say, “If you want me
to correct my bugs, it’s free. But if you want me to
redesign new features, I'd rather be paid for this.”
But still, if there are some bugs, some situations that
are not bugs, but I didn’t realize what they wanted,
if you start doing it, you are going to do it for a long
time. Sometimes it’s reasonable to ask money for
this; many times you just do it for free because ...
just because.

PF: I did very nearly the same that Boris said. I offer
support for fixing bugs, but not enhancements. I did
get, I think, one argument from a learned American
society for whom I'd done an SGML-to-XML-to-IATEX
conversion program, which was running in batch on
their web server, running happily for years without
any problem. And they rang me in a panic on a
Sunday night at 8 p.m. to say that it was broken, my
program. I suspected the bug was in their data, not
the program, but by the time I'd gone and checked
it out, I discovered they had a new sysadmin, who
had removed some key features from their operating
system, like rm [laughter| because he thought they
were unsafe. But the script I'd written on several
occasions removed its temporary files, and was fall-
ing flat on its face. Trying to explain that to the
customer, that their own staff member has acciden-
tally fouled things up, taught me a valuable lesson:
you can’t trust a customer to provide you with a
platform on which your stuff will execute. So you
have to write your scripts so that before they start,
they test for the presence of everything that you
need, even system facilities, and they will issue an
error message if something is not there. You do have
to be incredibly careful, if you're going to undertake
this, to make sure that stuff that’s supposed to be
there is actually there.

AH: I deal with a whole lot of clients. I will make
a macro package with documentation and template
files and so there’s a solid piece of work there. And

142

then lots of different authors will use that work, and
as the authors use it, they will say, this needs to be
changed, or I would like this additional feature, and
so on. So it’s just ongoing support of authors I think
of, rather than redoing the macro file. I find as a
consultant that this can sometimes be tedious, but
on the other hand, it’s kind of nice because it’s kind
of steady at the same time, so it’s kind of nice to
even out your funds with this kind of work. That
does tend to be useful, I think, to support authors
as they’re using your macro package.

CT: I only have one client like that, a very long term
with the National Research Council in Ottawa, the
Research Press, which about a year or so ago got
sort of spun off into a non-profit, so they pay bills
faster, they get back to me faster, and they don’t go
off on very peculiar adventures because of principle
or personal hobby-horses. We did it for quite some
time, until about 2005 —and then they went away
from TEX to XML direct with Word and 3B2. So
one of the journals is coming back to TEX, which has
meant that we had to ... we said, yes, we can give
you support again, starting with a new version of
TEX, because they were using Y&Y, which was great,
but now defunct. So we are in the process of taking
macros that work perfectly, even now, under Y&Y,
amd we have to upgrade and haul them forward to
use PCTEX and that structure is different, so now
they’re saying, “Well, can you make it more like...”
Well, no! It’s a different product, different company,
different GUI, ... Well, they’re not keen on the editor.
“Oh, well, that’s not the upgrade, that’s going to be
the support and maintenance”, so we’re having to
make a distinction between the get-us-going again
phase, and separating those tasks from “and could
we do”, which is what we say is the future support
for their maintenance, and that’s a different contract.
So we'’re trying to distinguish those two. That, of
course, is different pay.

SP: One thing that I've noticed, most of my ongoing
work is author support, things of that sort, which
is charged by the hour. But I have noticed a def-
inite correlation between the amount that they’re
originally willing to pay, and how much they want to
come back to you for free changes. So if they're go-
ing to nickel-and-dime you at the beginning, they’re
going to come back and ask for an amazing amount
of free work.

DW: Well, a question that I think has come up here,
that is the second part of the previous question, is:
First, how do you deal with people who, they have
different distributions and tools than you do, and for
these instances where you go back and forth with

TUGDboat, Volume 33 (2012), No. 2

them, perhaps after a long time, how do you archive
the setup that you were using when you worked with
them before, so that you can come back to them?
Or do you?

SP: Personally, I've got five different computers set
up in my office, and a number of virtual machines. I
try to match a large number of setups. Obviously,
I don’t have VMS or anything like that running.
Rarely do I have a request to do that. But either I
can match directly, or ... Really, TEX has very few
problems that I have hit with flat version dependence.
... Knock on wood.

CT: I have some very, very old files that every so
often have to be revisited. I’ve been doing the Cana-
dian Journal of Linguistics for many years. It started
as plain TEX, then eventually it went to 2.09, now
it’s 2¢. But now, for Muse, we’re going to try to put
all of the back issues up in electronic form, and PDF.
So I'm going to be revisiting files from volumes 34
to 48, which go through all those three. And so on
my machine, much to my husband’s dismay, I have
something called “oldTEX”, and I have something
called “RnewTEX” —that’s “really” new TEX —and
I’'m hoping that I can still use oldTEX with plain and
.09, and e with RnewTEX, which is actually 2003. (I
know; we’ll talk about that tomorrow.) So I have
some very old installations. I have Y&Y running
under Win98. (You see, when you’re a one-person
operation, you're a very old archival type, historical.)
The fellow I work with for the NRRC, Paul Mail-
hot (he’s in Halifax; he’s also a consultant like this),
he has four or five machines with various TEXs—
PCTEX, old and new, Y&Y, I think he has a couple
of the public domains as well —so one just collects,
Mostly they stay on the old machine that they lived
on first, and when you advance, you advance your
TEX, and if you have to, you cross borders, but other-
wise, they’re dedicated to certain clients and certain
jobs, until you run out of room.

AH: I find that fonts are the thing that’s most prob-
lematic, in terms of not being transportable. So
I'm so grateful to Will Robertson for the fontspec.
That’s just great, and it also gives us access to all
those nice Adobe fonts. That’s a terrific improve-
ment in my life. Other than that, I haven’t had
much problem with version dependence, really.

PF: I don’t have a problem with version dependence,
because most of my customers are keeping up to date.
What I've got is a few who are no longer customers
who may well want to update stuff, and if they come
back to me still running IATEX 2.09, then I strongly
suggest that they upgrade. I do make a rigid rule
that they use an SVN repository.

TUGboat, Volume 33 (2012), No. 2

DW: I have a couple more from the audience, and
then I have a couple more that we made up just in
case there weren’t any. Suppose I want to write a
TEX package, but have no experience. This person
knows how to do TEX, but doesn’t know how to
do a package. Where would this person start — are
there tutorials, textbook chapters, other suggestions?
We may have someone here who would like some
consulting, but free consulting, I'm pretty sure.
BV: There is a guide, clsguide, in “old TEX” how to
do it. For other people, it will probably be different,
but for me, I started by reading source code by other
people. This is probably the best way to learn to look
at packages, to look at .dtx, just look how people
did things. Some people prefer textbooks, but for me,
reading source code is the most educational thing.

PF: Yes, I'd agree with that —reading the source
code, but reading it very critically, because some of
it is a bit fake. The clsguide document is definitely
a good place to start. Also the three chapters at the
end of the latest Companion, which describe how
to write packages. Those are very good. There are
some serious problems with the documentation for
.1tx doc because it doesn’t explain terribly clearly
how you embed multiple output files into your .dtx
file. The documentation is ambiguous and that key
piece is missing, or not terribly clear. As I said
earlier, in my talk, I cheat, in the sense that my
.dtx files are all generated from an XML document,
so I can retain control of the way they’re output. If
I make a change, I can just do a regression test on
all the documents and they all come out looking the
same. But that’s just me.

AH: My suggestion is Victor Eijkhout, TEX by Topic.
That’s very helpful, because the other basic reference
guide is The TEXbook, and it’s not well organized,
really, in terms of, if you want one bit of information.
So I think Victor’s book, which is free to download,
is a real good help. And also just starting with an
existing . cls file, see how running heads are handled,
for instance, you can make a variation on that pretty
easily.

BV: [Victor’s book] is free to download, but if you
want to save your eyes and if you want Victor to
have a couple of bucks, I would suggest buying it
from Lulu. I did it myself, and it’s one of my favorite
books, to tell the truth, when I do TEX.

DW: It doesn’t get Victor any money, but they’re
also for sale, used, on Amazon.

Another, very specific, question from a member
of our group. He’s working on a textbook, copyedit-
ing it, which has two .bib files. When he compiles
it to PDF, sometimes the relevant .bbl file changes,

143

and sometimes it doesn’t. He wants a glimmer of,
what makes that file change, and what makes it not
change.

AH: Did he run BIBTEX on it?

DW: I presume BIBTEX was run on it? [Yes.] My
own experience in compiling, and I'm far from an
expert, is every once in a while it seems to pay to
delete all the .aux files and somehow make TEX
think that it needs to start from scratch.

CT: I've done that.

BV: I would look into the logs, the .blg file (which
is the BIBTEX log), the main TEX log, because some-
times BIBTEX just dies under you, and if you are not
careful, if you use an IDE which does not tell you,
I prefer Make because Make just stops when some-
thing goes wrong. But if you use an IDE, sometimes
it just dies and you don’t know this, and you happily
go further, which would be wrong. So just look at
the log files and they will tell you a lot of the story.

SP: Sacrificing a chicken under the full moon is the
best way.

PF: If the file is changed, and sometimes not, my
immediate reaction is to run Diff. What is TEX ed?
The only thing I can think of that can immediately
affect it is if you have two works by the same author,
one in each .bib file, of the same year, so on alternate
occasions, it would be computed as “1994a” and
“1994b” | or something like that. And if you updated
a part of the document that did not cause that to
change, it would not trigger that addendum.

Nelson Beebe: I've probably done more BIBTEX
than anybody else. Here’s an example that I use
extensively in my bibliographic work. You have an
article on a particular topic, and six months later,
an erratum is published. So I put in the BIBTEX
entries a pointer to the original to be read so if you
cite the original the first time through, you get the
original. There’s still a new reference dumped into
the . aux files if you need to run BIBTEX twice. So the
reality is, for heavily cross-referenced bibliographic
needs, you really have to run BIBTEX every time
you run TEX, and then probably one more time. If
you're using something like Make, you end up with
something that can be set up with the right number
of steps consistently.

Unfortunately, all of these people work with
GUIs that click a button; they can’t remember how
many times they have to run the index program and
B1BTEX, and other programs. They get it wrong.

BV: Yes. If you have several entries from the same
book, then the threshold is such that the book might

144

be good, or it might not, then unfortunately it is
done only on the second run of BIBTEX.

DW: Do the panel members have any questions for
each other?

SP: One thing I want to bring up, one of the reasons
I suggested we have this discussion is, about three
weeks ago, I had a call out of the blue from another
consultant listed on the tug.org site. He just wanted
to chat, and said, basically, “How do you guarantee
that you get paid?” Because he had a couple of cases
recently; one of them he described, and I know who
it was because the guy contacted me at one point,
and I wasn’t able to do the work at that point, so i
passed him on, I said just look at the tug.org site.
But I personally have had a couple of jobs and it
seems to be an increasing case in the past few years
of people getting work, and not getting paid. In
general, if I've got somebody coming to me who says
“I need you to do x, y and z and I need it by next
week”, and it’s going to be a $200 job, you can’t
really say “Send me a check for $100 first, before I'll
start on it.” If it’s a small amount and a short-term
job, T'll just go ahead and do it. And those are rarely
the problems. But it’s the ones that are $1500 and
they want things, what do other folks do?

DL: I know some people who have had this problem.
One way to combat it is to ask for a partial up-
front payment. In some cases maybe 10-15%. In
cases where you have to collect the rest of your
money, unfortunately, hopefully you have enough
information on the project client to give to some
collection agency. Beyond that, there isn’t really
much that you can do.

BYV: If you have organization or corporate customers,
they always pay. You just sign an agreement. Maybe
there are some corporations that don’t pay, but with
individual people, ... If it’s $1500, you can always
say, pay me 25% up front. But when it’s a couple
of hundred, you cannot do this, and several times I
was burned. You cannot do much when it’s a couple
hundred. Well, maybe it’s a cost of doing business.

I'm sorry if some of you are economists, but I
have a very low opinion about economics students,
because it seems they are taught that morally it’s
something which should not be done, but business
efficiency is very important, and one part of business
efficiency is not to pay when you owe. I have a prob-
lem with business students, unfortunately. Maybe
it’s just my bad luck. When it’s a couple of hundreds,
you can’t do much. You could go to small claims
court, but you’ll spend more time. What can you
do? But to say the truth, lots of students are very
good. I had one student who said “I cannot work

TUGDboat, Volume 33 (2012), No. 2

with you unless I pay you up front. Let me just pay
you my bank balance.” T said “Fine.” There are
many people who understand this.

Robin Laakso: I have a suggestion. Sometimes
when you go to a restaurant, especially a small one,
and they have a bounced check, they’ll put it on the
wall. They’ll have a list, and these days, a list on
the wall or a blog.

BV: They could try to sue you for defamation. I
wouldn’t. It’s very interesting, but. ..

DW: I think when they put it on the restaurant wall,
their excuse is not that I'm exposing this person to
the world, but I'm telling my staff not to let this
person come in any more. So they’ve got kind of a
fake excuse.

CT: I've actually had two cases. One time I got to a
point where I had too much work, and I asked Steve
if he could help on the front end grunt work. So
I couriered the stuff down, it was for a university
prof, not from my university, and it took so long
to even get messages and responses back from him.
amd we lost money. Steve did all the way up to the
PDF proofs, I gave it to the author, and it finished.
We had no recourse, I couldn’t find him any more,
the material was actually time sensitive, and five
years after economic forecast papers, that’s pointless.
So it was a total loss. And then there was another
where it was a very large book, and it simply took
a lot more time than the two authors had found
funds for. So whatever they were able to scrape
up, I gave to the fellow I co-worked with, and I
got zip. But it was for one of the authors who was
editor of a publishing house for which I had done at
least two series, at least 20-30 volumes over time,
so I felt morally obliged to bring this book to its
conclusion. And it took a very long time, there
were two rounds of very thorough edits that came
from other colleagues, yet more time. There is no
recourse, because there was no money. That’s one
of the problems with getting jobs through university
profs who apply for funding: they underestimate
savagely, because they don’t think a large sum would
get them money. Somehow, magically, things will
work out. Of course, if you feel morally obliged, they
do work out.

AH: I actually have good experience with economics
people! T've worried plenty of times. This is my
way of making a living; it’s not a luxury. One time
I was working for a guy with a journal in Brazil,
and I think, I have no recourse! If the guy doesn’t
pay me, he just doesn’t pay me. So you're kind of
relying on the people’s sense of honor and the fact
that you work with them in a nice way. And they

TUGboat, Volume 33 (2012), No. 2

usually come across. There was one example recently
where I had a guy who sort of had a temper tantrum.
He said “Oh, I can’t use what you did, so I’'m not
going to pay you.” Oh, well, that’s not going to
work. So I just had to talk to him, long distance, for
like four hours, and soothed him through whatever
his problem was, and showed him how to get the
results he was looking for, and eventually that all
worked out. However, I will say the other problem
T’ve had is that people don’t necessarily pay quickly.
When this is your rent money, that’s an issue. So I
always suggest that anybody doing consulting have
a good cache of money in your background so that
if somebody plays around with you for a couple of
months without giving you the money they owe you,
you can still pay your rent.

BV: [...] For me the US government was a very
good customer. They paid on time, and very well
and very fast. Basically, the UN was also fast; they
also paid well. Second, what I wanted to say, there is
some asymmetry here. The secret is this: even if the
customer doesn’t have any money, and there are some
problems, it is very difficult when you have—I'm
speaking about myself —some sort of moral feeling
that, well, the customers don’t want to pay, but for
us, not to finish the job, not to do the job, is very
difficult. I don’t remember ever saying that I'm going
to drop this client.

DW: Nelson, you had a question?

NB: Two related questions. They have to do with
the adoption of what we consider technology futures.
One is color, the other is input [...]

DW: Let me repeat the question. Color is getting
easier to use, color laser printers are getting inexpen-
sive. The other part of the question is, Unicode is
out there but it’s somehow mixed up sometimes with
other codes. To the panel: what is your experience
with color and with Unicode?

PF': Unicode, yes, because most of what I do, whether
I end up doing it with TEX or something else, comes
through XML. The customer has all kinds of files
and all kinds of mixed formats. I turn it around
and tell him, I'm sorry, you have to provide [better
input]. I can’t do it—it won’t process!

AH: Color’s great, and that’s the wonder of PDF
files.

CT: Just a very small comment. I offer PDF in
color even before their electronic versions because
the journals now want both hard copy and ...

SP: The question is, do you get an opportunity to
put in a colophon on your work?

145

SP: So far, no, because most of the consulting work
I'm doing is class files, and they really don’t want
to call attention to the fact that they’re using TEX,
especially since, lots of times, they’re matching Word.
I’ve had one book that I was requested to do the
typesetting on that I was able to put a colophon
on. The one commercial book that I did in Con-
TEXt, I put it in and it got printed the first time,
and for whatever bizarre reason, when the press,
Cambridge University Press, did the second edition,
they retypeset it and left off the colophon altogether.
But you could tell it was no longer my typesetting.

CT: For the job that paid nothing, the editor had
several series going —there are some Renaissance
plays, all sorts of stuff in that vein, Italian plays,
Spanish plays, English plays, and so on—and I al-
ways had a colophon, because he gave me free rein.
I always had a colophon that said the Barnaby Rich
Series is typeset using TEX with Palatino fonts. Ev-
ery single one. Always printed. And then I thought,
every book that I did in between, all those books in
that series, I would always generate a colophon page,
and I would leave it to the publisher, with or without
the editor, to make the decision about including it.
So it makes no never mind to typeset that one page
with a little block of text right in the middle and
then let someone else decide. A lot of them don’t
even know what it is; they have to look up what is
a colophon. That says something about publishers.
But I would say, produce it, make it look good, let
someone else decide if they want to include it, but
you’'ve done a good job by saying this is it.

PF: Sometimes the author or editor will mention in
the foreword or preface that it was typeset with TEX.
I leave it to the author. Other times I put a colophon.
The publisher will frequently take it out because the
publisher will re-typeset the legal blurb —that is the
title verso— because they have their own stuff that
needs to be included; so frequently the colophon will
disappear because that page has been redone.

BV: Of course a good book should have a colophon.
I have a publisher; I designed a style for this, and
it has a colophon; and the colophon mentions fonts,
everything, and my name. I don’t understand why,
but in e-books — they produce e-books and hard copy
books—my name is on e-books, and somehow they
delete it from the hard copy. Nobody has explained
why to me!

SP: I always like the e-books that say they’re printed
on acid-free paper. [general laughter]

PF: How do you get an author to sign the e-book?

DW: I'd like to thank our panelists, all six of them.
Thanks very much for taking the time.

146

My Boston: Some printing and
publishing history

David Walden

During the four summers before each of my college
years, I worked in a large cardboard box printing
plant (big letterpresses and lithography presses) in
an industrial town 40 miles east of San Francisco.
Thus began my fascination with printing. I was also
an avid reader of books and of The New Yorker
magazine, to which my father subscribed. I dreamed
of eventually living in a big city with big libraries
and thick newspapers. Thus, after college, I moved
in 1964 to the Boston area (where I have remained
ever since).

As T explored Boston and Cambridge in the
1960s, I became aware of a number of publishing
and printing activities, often by walking or driving
by their then-current locations. I also began to use
the libraries and to frequent the bookstores. Com-
pared with the small town in the Central Valley of
California in which I had grown up (and even com-
pared with San Francisco where I went to college),
Boston was a mecca for someone interested in books,
magazines, and the related printing, publishing and
distribution world.

With the TUG 2012 meeting (in some sense a
publishing event) being held in Boston, I got to
thinking about and then looking into the history of
printing, publishing, libraries, bookstores, and so
forth in Boston. In this note, a written variation on
my presentation at the conference, I sketch what I
have learned.

The presentation is at http://walden-family.
com/texland/tug2012. Numbers in braces in the
following text (for example, immediately after this
sentence) are the numbers of PDF pages in the pre-
sentation. {1,2}

A lot of this printing and publishing history hap-
pened close to the conference hotel because Boston
was once essentially a small island (the neck of land
to the mainland was sometimes under water at high
tide [Krieger99, Whitehill68]). {3} The location of
our conference hotel was close to the center of this
small almost-island. Thus, anything that happened
in early Boston took place near the hotel location.

There are several maps which a reader might
look at while reading this note (the conference hotel
is at the southwest corner of Tremont and School
Streets on all three maps): {4}

e 1772 Bonner map of Boston
e Boston Freedom Trail map
e Literary Boston, 1794-1862 map

David Walden

TUGDboat, Volume 33 (2012), No. 2

All three maps are at http://walden-family.com/
texland/tug2012.

Space and time do not allow a thorough pre-
sentation of the Boston-region history of printing,
publishing, and the like. In particular, I have mostly
omitted the author part of the literary world [Wil-
son00]. Also, this is not a scholarly piece of research
(my narrative is based on what I have read in sec-
ondary sources, been told by someone, or found in
Wikipedia). It also glosses over many details, for ex-
ample, calling the early college in Cambridge Harvard
and ignoring its early name. I hope my fragmentary
narrative is suggestive of the actual history of events.

Colonial period, 1630-1775

{5} The Pilgrims, who previously had left England to
go to Holland in the Netherlands, came to Plymouth,
just south of Massachusetts Bay, in 1620. Another
Massachusetts-based outpost was attempted at Cape
Ann in 1624. In 1628-1630 a succession of largely
Puritan settlers arrived in the Massachusetts Bay
Colony settling in locations from Salem to Boston.
(This section is substantially based on Thomas70 and
Blumenthal89; see also Reese89.)

The Puritans came to the Massachusetts Bay
Colony fleeing what they felt was the incorrect ap-
proach of the theology of the Church of England and
the relationship of church and state (King James’s
approach subordinated the church to the state). In
particular, in 1630 Governor John Winthrop and
other Puritan leaders arrived with a charter allowing
the Massachusetts Bay Colony to be governed from
the colonies rather than from England. {6} Both
Boston and Cambridge (a few miles up the Charles
River) were settled by the Puritans around 1630.
These largely Puritan immigrations to the Massachu-
setts Bay Colony continued for the next 10 years.

{7} The arriving Puritans were idealistic about
their new home, and John Winthrop gave a sermon
quoting the Sermon on the Mount and saying that
they in the Bay Colony would be a “citty on a hill,”
watched by people throughout the world for the
purity of their religious practice (and the way it was
supported, i.e., enforced, by the government).

For all their concern to be free to practice their
own religious reformations, the Puritans were not
supportive of reformations by others. Roger Williams,
among many others, was banished from the Bay
Colony. In 1630 to 1658, several Quakers who re-
fused to remain banished were hung, including Mary
Dyer whose statue is on the grounds of the Massa-
chusetts State House.

TUGboat, Volume 33 (2012), No. 2

{8} The Puritans believed in education so that
their citizens could study the Bible and read the
laws and acts that governed them. By 1635 they had
established the first public school in English North
America, Boston Latin (there are signs on both sides
of School Street outside the side door of the confer-
ence hotel noting early locations of the Boston Latin
school). A couple of years later, Harvard College was
established in Cambridge.

*

{9} In 1638 Rev. Joseph Glover contracted with
Stephen Daye for the two of them and their fam-
ilies to travel from England to Cambridge (in the
colonies) along with a printing press, type, and print-
ing materials, where Daye would be responsible for
setting up and running the printing press in Glover’s
home. This printing press, the first in British North
America (the church in colonial Mexico had a Span-
ish language printing press a hundred years earlier),
was at least nominally operated under the auspices
of Harvard. Glover died before their ship reached
Massachusetts, and Daye carried out his contract for
the widow Elizabeth Glover. Stephen’s son Matthew
was also involved with the printing activity. Stephen
was a locksmith and Matthew had apprenticed as a
printer, so historians suspect Matthew did most of
the actual printing. In any case, there was probably
a lot of on-the-job learning about printing.

{10} After printing a couple of other documents
of which no copies remain, in 1640 Stephen Daye
printed the so-called Bay Psalm Book, the first book
written and printed in British America. In most of
the churches in the Massachusetts Bay Colony, the
Bay Psalm Book replaced the earlier Psalm books
the Puritans had brought with them from England —
hence the popular name “Bay Psalm Book.” Its ac-
tual title was The Whole Booke of Psalmes Fuaithfully
Translated into English Metre.

{11} In 1649 Matthew Daye died and Samuel
Green took over the printing activity. Green also
did a lot of on-the-job learning. By 1656 Green
had two presses. According to Lawrence Wroth in
his contribution to Lehmann-Haupt52 (p. 8), for 40
years this activity was the “press of Harvard College,”
although there was not really enough work over the
years to keep Green working full time. Green stopped
printing in 1692. After Green, printing in colonial
Cambridge was finished.

Green had 19 children, 8 with his first wife
and 11 with his second wife, and many of Green’s
descendants became printers, forming a dynasty of
printers extending up and down the east coast.

In addition to no liberalism in religious practice,
there was no freedom for printing (at least within the

147

Massachusetts Bay Colony). The goal of the print
shop operated by the Dayes and then the Greens was
to support the church and the commonwealth.

(As T understand it, the original purpose of copy-
rights — circa 16" century — was to control printing
of books. The authorities only gave the “right to
copy” to a chosen few who were allowed to print only
what the authorities liked. There was somewhat of an
English tradition of freedom of expression, but this
was primarily about no prior restraint. Post-speech
or post-publication, the authorities could punish ex-
pression they didn’t like.)

{12} Some of the publications over the year of
existence of the press were [Wroth, ibid]: “a book of
capital laws . . . ; small pieces relating to the scholastic
activities of the college; annual almanacs; a second
edition of the ‘Bay Psalm Book’; catechisms; a docu-
ment relating to the troubles with the Narragansett
Indians; a platform of the prevailing Congregational
faith; and numerous sermons and doctrinal trea-
tises.”

{13} “The press reached the highest point of
its activity with the publication in 1663 of John
Eliot’s translation of the whole Bible into the Indian
tongue ...” [Wroth, ibid]. This was a massive effort,
producing over 1,000 copies and requiring a special
shipment of paper from England. It was the first
Bible printed in the western hemisphere. On the
title page, Samuel Green is listed as the printer, and
his apprentice Marmaduke Johnson is also listed.

To slightly paraphrase Wroth, this Cambridge
press did its job of being, over half a century, an
intellectual force in a new and rude environment.

*
{14} From 1674 on, printing was also allowed in Bos-
ton, on a case-by-case basis. Marmaduke Johnson
received permission to print in Boston, but died be-
fore he could do any printing. Some of the following
Boston printers were [Thomas70]:

e John Foster, 1676-1680; licensed to do printing,
he was the first person who actually did printing
in Boston.

e Samuel Sewall, 1681-1684: he was a bookseller,
licensed to do printing, who printed acts and
laws and books for himself and others; Samuel
Green Jr. was his printer.

e James Glen, who also printed for Sewall before
going out on his own.

e Samuel Green Jr., who printed work both for
himself and for booksellers and was allowed to
continue printing after Sewall’s death; Green
died in 1690.

e Richard Pierce, 1684-1690, the fifth Boston
printer, who printed for himself and booksellers.

My Boston: Some printing and publishing history

148

e Bartholomew Green, who first worked for his
father in Cambridge and then took over his
brother’s activity in 1690. In 1704 he started
the Boston News-Letter for the postmaster, who
somehow asserted a right to have a newspaper.

There were a number of other printers in colonial
Boston, i.e., between 1700 and 1775 when the Revolu-
tionary War started. All this is detailed in Thomas’s
book.

*
Looking beyond printing, there were no strong lines
between trades. Printers worked for booksellers,
booksellers did some of their own printing, print-
ers published newspapers, binding was often a sepa-
rate trade but not always, and printers publishing
newspapers did some of their own writing.

{15} Isaiah Thomas lists about 90 booksellers
between 1641 and 1771 [Thomas70]. Initially there
was a bookseller or two in Cambridge. Next there
were booksellers in Boston, particularly along the
street and slope known as Cornhill. Hezekiah Ushel
was the first in Boston, 1650-1771.

Booksellers sold (and sometimes printed) acts
and laws, books on religion, school books, books on
politics, imported books, and new printings of books
pirated from Europe. The shops of booksellers were
often also community meeting places.

*

{16} Colonial Boston also has a rich history of news-
papers [Thomas70]:

e The Boston News-Letter, 1704-1776, was started
by the Boston postmaster and printer John
Campbell. This was the first newspaper in
Colonies. It had lots of editors over the years,
and was printed through the siege of the 1770s.

e The Boston Gazette, 1719-1798, was started by
the next postmaster, William Brooker. (Ap-
parently postmasters thought they had a right
to have a newspaper.) Brooker hired James
Franklin to do the printing. The Gazette had a
long line of successor organizations.

e The New-England Courant, 1721-1727, was start-
ed by James Franklin, who had lost his job with
the Gazette within a couple of years.

Isaiah Thomas lists another ten Boston newspapers
prior to 1775, including his own Massachusetts Spy,
published in Boston from 1770 through April 1775.
I will touch more on this in the next section.

{17} Before leaving the topic of Boston’s colonial
newspapers, I'll say a little about the most famous
colonial Boston-trained printer, Ben Franklin, who
was born on Milk Street and baptized at the Old

David Walden

TUGDboat, Volume 33 (2012), No. 2

South Meeting House, and attended Boston Latin on
School Street for two years [Franklin40, Isaacson04].

{18} Ben’s much older brother James had gone
to England to apprentice as a printer. He returned
in 1717 with a press and a small amount of type.
James’s shop was at the corner of Court Street and
Franklin Avenue (called Queen Street and Dorset
Alley in pre-Revolutionary times [Drake70]). Ben
was indentured at age 12 to his brother James to
learn the printing trade. The indenture was to last
until age 21.

{19} James started the New-England Courant
in 1721, and it was the first “truly independent news-
paper in the colonies and the first with literary aspi-
rations” [Isaacson04]. For disagreeing in print with
the authorities, James was imprisoned for a month in
1722. He was released on the condition that “James
Franklin not publish the Courant,” so Ben became
the publisher in name. However, Ben couldn’t be
the publisher while still indentured to James, and
so officially Ben’s indenture was ended — although a
follow-on secret document of indenture was made.

Ben contributed a lot to the Courant, includ-
ing 14 humorous letters over six months under the
name of the widow Silence Dogood. However, Ben
and James didn’t agree on things, and in 1723 Ben
broke his secret indenture and went to Philadelphia,
knowing that James could hardly admit that such a
secret indenture existed.

By 1727, James, faced with continuing suppres-
sion of his press, had moved his printing business to
Newport, RI.

Revolutionary War (1775-1783); transition

{20} The stamp act of 1765 was an incendiary event
which produced resistance to British rule in the
colonies. This was a tax by the British Parliament
on printed materials in the colonies —the printed
materials had to be produced on paper carrying an
embossed revenue stamp. It was repealed a year later,
but Parliament continued to assert its power to reg-
ulate the colonies and other taxes and regulations
were imposed.

As resistance to British control increased, the
colonial press participated and got in trouble. One
of the printers involved in the resistance was Isa-
iah Thomas [Blumenthal89], to whose book I have
frequently referred [Thomas70].

{21} Isaiah Thomas was born in 1749. His wid-
owed mother could not support him, and at age 6
he was apprenticed to a printer with an indenture to
age 21. He did both personal jobs for the childless
printer and his wife and printing jobs. In particu-
lar, according to Thomas himself, he “set types, for

TUGboat, Volume 33 (2012), No. 2

which purpose he was mounted on a bench eighteen
inches high, and the whole length of a double frame
which contained case of both roman and italic.”

The printer was not too skilled, but Thomas
nevertheless quickly acquired the craft. A decade
or so later, he escaped from his indenture and went
elsewhere on the east coast to try to learn more
about printing. By 1770 he was back in Boston,
initially briefly in partnership with his former master.
In 1771, Thomas started his own newspaper, the
Massachusetts Spy. {22}

{23} As time went on and discontent with Eng-
land grew in the colonies, Thomas used his Massa-
chusetts Spy to support the causes of the Founding
Fathers against England, and his print shop became
known as the “Forge of Sedition.” as many resis-
tance meetings were held there. Thomas himself
refers to his press as the “sedition machine.” A 1774
edition of the paper shows the famous “join or die”
slogan (first published in a cartoon and essay by Ben
Franklin in Philadelphia), meaning that the colonies
must join together or they would die separately.

{24} Shortly before April 19, 1775, the day of the
British march on Lexington and Concord, Thomas
transported a press out of Boston to Worcester, 40
miles to the west. He snuck out of Boston on April 18,
1775, and briefly joined the Lexington militia. Then
two days later he traveled to Worcester where on
May 3 he restarted publication of the Massachusetts
Spy, including the first printed accounts of the Battle
of Lexington and Concord.

{25,26} After the war Thomas stayed in Worces-
ter and, after some struggle, he began to develop
a successful business. The business did well and
Thomas became the “country’s leading printer, pub-
lish, editor, and bookseller” [AAS12]. In Worcester,
he had a big printing plant, a bindery, and a paper
mill; he had branch offices, including one in Boston,
and partnerships with a number of other publishing-
world companies throughout the new country.

{27} “Thomas retired in 1802 and devoted the
rest of his productive and long life to collecting, schol-
arship, and philanthropy” [AAS12]. He wrote the
marvelous and comprehensive 1810 book, The His-
tory of Printing in America. “In 1812 he established
the American Antiquarian Society to house his re-
markable library of 8,000 volumes, with a mission
to collect, preserve and make available the printed
record of the United States for future generations.
He served as president of AAS until his death in
1831”7 [AAS12].

Thomas’s Old No. 1 printing press resides at
the Antiquarian Society in Worcester.

{28} After the Revolutionary War, the press

149

was no longer regulated, and the technologies of the
industrial revolution were applied in the publishing
and printing business. I have just mentioned the
example of Isaiah Thomas and his success.

Initially rotary presses were available and, even-
tually, much more efficient typesetting machines.
{29} Presumably using this technology, the Boston
Advertiser was founded in 1813, Boston’s first daily
newspaper.

{30} However, in the years of the first third of
the 1800s, Boston ceased to be the publishing center
of what was now the new country. The big publishing
centers were now New York and Philadelphia. Other
cities such as Baltimore, Cincinnati and New Orleans
also developed strong publishing activities.

Liberal elites of the mid-19*" century

{31} Although Boston was no longer the country’s
center of publishing, in the 1800s Boston was the
center of an important philosophical and literary
movement [Barryl2, Myerson80, Phillips06, Rose81,
Wilson05]. (Look at Figure 1 in parallel with the
following several paragraphs of description.)

The Puritans came here as Congregationalists,
but individuals still needed to follow the doctrine
and creed of their congregation (and to sign the Free-
man’s Oath to be a citizen of the Massachusetts Bay
Colony). As mentioned earlier, if someone wanted to
promote some other version of religion, the Puritans
kicked that person out of the Colony with lethal
punishment for not staying out.

As the Revolution drew near, the churches largely
favored the revolution, and I suppose in some sense
this was at least a partial departure from the conser-
vatism inherent in the colonial Puritan churches.

In the early 1800s, the Unitarian approach be-
came more popular: people could be religious using
their own reason and not just reliance on doctrine
and creed. Eventually Harvard appointed Unitari-
ans as president and the divinity professor, and thus
ministers coming out of Harvard were Unitarians,
and in time a majority of the First Parish churches
around the Massachusetts Bay region switched from
Congregational to Unitarian.

Kings Chapel, across the street from the confer-
ence hotel, is a special case. Before the Revolution
it was Anglican. After the Revolution it became
Unitarian, but they liked their Anglican Book of
Common Prayer and rewrote it to be consistent with
Unitarianism. (Today they state, “We are Unitar-
ian in theology, Anglican in worship service, and
Congregational in governance.”)

All this thought about reason, individual good-
ness and personal relationship with god, etc., helped

My Boston: Some printing and publishing history

150

Church of England under the reign of King Charles

e Church subordinate to state (Biblical justification);
much hierarchy, ritual, and decoration between the
individual and God; anti-Calvinism (predestination)

Puritans in the Massachusetts Bay Colony

e Congregational governance without ritual or
decoration; theocratic state; Calvinist; Biblical
literalism; exclusive

Unitarians

e Each individual could find Christian truth through
intellectual freedom, reason and empirical evidence
(e.g., from the Bible but without literalism); one
God (not Trinity); no original sin or predestination;
concern with moral and social harmony of a diverse
population; anti-revivalist; use of writings, lectures,
etc., to reach out

Transcendentalists (several thrusts)

e Religion: intuition and spirituality rather than
reason; Eclecticism instead of Christianity;
practically, more of a philosophy and idealism
than a religion; deliberately no component of being
an organized religion

e Social movement: arguing for (and practicing)
the goodness and self-reliance of man (partly as a
reaction to urbanization and capitalism); impractical

e Literature: believed literature was a contributor to
the betterment of man; called for a new, American,
literature

— wrote some now-venerated works

— attitudes evolved to acceptance of the progress
of the Industrial Age and international trade
(and acceptance of capitalism)

— further development of literature and a cultural
environment

e Broader world of social improvement; active in the
abolition movement, women'’s rights, education
reform, and improving conditions of people in
unfortunate circumstances

Figure 1: The evolution of spiritual doctrine from
the Puritans to the Transcendentalists (my superficial,
perhaps inaccurate, approximation of the transitions).

lead to the Transcendentalists and their idealism.

(In national politics today, we sometimes hear about

the Massachusetts/Cambridge/Harvard liberal elites.

It’s a long tradition. There were liberal elites in
Cambridge, Boston, and Concord over 150 years
ago.)

In addition to their philosophy and idealism, the
Transcendentalists sought to create a new American
literature.

{32} One of the important meeting places was
Elizabeth Peabody’s bookstore, which still exists
today (as a restaurant) on West Street near the

David Walden

TUGDboat, Volume 33 (2012), No. 2

conference hotel. The plaque on the wall of the
building gives a good summary of the importance of
Elizabeth Peabody and her bookstore:

Elizabeth Peabody, the first female publisher
in Boston, maintained a home and business
here in the 1840s. Her bookshop was the first
in the city to offer books by foreign authors;
and she published the periodical The Dial
with Ralph Waldo Emerson. The shop was
the meeting place for transcendentalists and
intellectuals. Journalist Margaret Fuller [who
lived on Winter Street, I believe, a couple of
blocks away] gave lectures here called “Con-
versations,” which were an important part of
the early American feminist movement.

The Dial: A Magazine for Literature, Philosophy,
and Religion was “an organ for the dissemination of
Transcendental thought” [Wilson05]. The lectures
were called “conversations” because women were not
supposed to do public speaking in the 1840s.

{33} Another meeting place was the Old Corner
Bookstore, which in the mid-to-late 1800s was both
a publishing location for and meeting place of the
transcendentalists and other intellectuals. I'll return
to the Old Corner Bookstore in the next section.

{34} Founded in 1885, the Saturday Club at
the Parker House hotel (our conference hotel) was
another meeting place of intellectuals. (Not only did
they do a lot of writing, they apparently liked to
spend a lot of time in each other’s company talking
about their thinking.) Here Charles Dickens gave a
preliminary reading of the Christmas Carol to the
Saturday Club before he did the public reading next
door at the Tremont Temple. Here they conceived
and started the Atlantic Monthly magazine in 1887.

{35} It was in volume 1, issue 6, of the Atlantic
Monthly that Oliver Wendell Holmes wrote in his
series “Autocrat at the Breakfast Table” that Boston
(specifically the State House) was the “Hub of the
Solar System,” suggesting that Boston was the center
of everything commercial and intellectual at that
time. The Massachusetts elites were not modest. At
various times, the Old Corner Book Store and other
famous downtown Boston locations have been called
“the hub of the hub.”

Mid-1800s on — Boston is just another big
American city

{36} Despite Boston’s claim as a intellectual and
cultural center, by the mid-1800s, it was just another
big American City, in general publishing terms. The
history leading up to this brings me back to the Old
Corner Book store [Hall10, Tebbel72, Tebbel75].

TUGboat, Volume 33 (2012), No. 2

Old Corner Bookstores

sells store, moves to 1868
124 Tremont, 1864

Anne Hutiison home
pre-1638

Fire 1711
New building 1712
Houghton _Riverside Press

starts as 1852
printer printing for
1846 Little Brown
and Atlantic

Residence and
apothecary shop

First use as bookstore
Carter and Hendler
1828
(Fields was an
apprentice)

Ticknor & Allen
1832
(Fields joined) bookstores
Ticknor & Co.
1833
(Allen left)

Ticknor, Reed & Fields
1845
(Reed and Fields Saturday Club
become partners) 1856

Ticknor & Fields Atlantic Monthly
1854 <«——— 1857

Other publishers
and booksellers

Globe Corner Bookstore
1982-1997

Then jeweler,
now Chipotle

5 Ticknor dies, Fields __,, Fields, Osgood & Co. __, Osgood & Co.

In Civil War
financial crisis
Houghton
acquires book
plates from
other publishers

18th Century —» Little joins —» Little becomes — Little Brown

Carter, Hilliard
& Co.
1821

151

Later 20th

Century
(Fields retires) \ F

1871 Houghton, — Houghton, —

Osgood & Co. ~ Mifflin & Co.

/ 1878 1880
Houghton & Hurd +

1863 Atlantic Monthly
(no more printing purchased by
for Little Brown) editor
(sometime

pre-WW I

—

et =B -

Atlantic Monthly
Press

1925

partner 1837
1827 and
forms association
with Brown

4
® o+ 00 o» D

Figure 2: Some transitions in Boston publishing, from the middle years of the 19*® century.

{37} Going down the left column of Figure 2,
we have the history of the Old Corner Bookstore
building, which in time became a building housing
booksellers and publishers, including eventually the
important publisher known as Ticknor and Fields.
A little while after the Atlantic Monthly was estab-
lished, Ticknor and Fields acquired the Old Cor-
ner Bookstore. Then, after Ticknor’s death, Fields
moved the publishing business and the Atlantic to
Tremont Street.

Also shown in the figure, coming out of the
1700s, were the predecessor organizations to Little
Brown.

Finally (also on the figure), Henry Houghton,
just out of college, started work as a printer, even-
tually acquired his own business; and he established
the Riverside Press in 1852 in Cambridge where he
also did printing for Little Brown and later for the
Atlantic Monthly. During the economic downturn re-
sulting from the Civil War, Houghton acquired book
plates from various failing publishers, and eventually
went into publishing himself (with Melancthon Hurd

as a New York partner), which caused Little Brown
to drop Riverside Press as a printer.

In time the successor partners to Ticknor and
Fields merged with Houghton’s company, George
Mifflin joined, and later, with Houghton growing old
and Mifflin by that time a partner, the company
became Houghton Mifflin.

In the early 1900s, the editors of the Atlantic
Monthly bought the magazine from Houghton Mifflin.

From then until circa 1970, Houghton Mifflin
and Little Brown were the “big two” Boston pub-
lishers, and the Atlantic Monthly was a Boston in-
stitution. At that point, these historic institutions
increasing were important as financial assets to be
bought and sold.

{38} Of course there were other publishers in
Boston besides the Big Two, including specialty pub-
lishers. Two examples are the Beacon Press (1854—
present) and Daniel Berkeley Updike’s Merrymount
Press (1893-1941).

The Beacon press was and is the publisher for
the Unitarians, now UU, church. Its first location

My Boston: Some printing and publishing history

152

was on Bromfield, the street parallel to School Street
behind the hotel. It later moved to Washington
Street, and then to Beacon Hill. Its current building
is on Joy Street, a block from the Beacon Street
headquarters of the UUs. In the 19*" century it
primarily printed sermons and other books related
to Unitarian theology. Since the 20" century it has
printed many non-religious books, consistent with its
mission to publish works that “affirm and promote
... the inherent worth and dignity of every person;
justice, equity and compassion in human relations;
acceptance of one another; a free and responsible
search for truth and meaning; the right of conscience
and the use of the democratic process in society; the
goal of the world community with peace, liberty, and
justice for all; respect for the interdependent web of
all existence; and the importance of literature and
the arts in democratic life” [Beacon12].

{39} Daniel Berkeley Updike was a fine book
publisher [Blumenthal89], who had previously gained
experience for over a decade at Houghton MifHlin
and its Riverside Press [Kelly11]. Updike also was
greatly interested in the history of printing types, and
in 1922 published his classic book, Printing Types,
Their History, Forms and Use: A Study in Survivals.
(Barbara Beeton has told me, in a 2012-06-21 email,
that “Updike’s archives from the Merrymount press
are now in the special collections of the Providence
Public Library; they include an incredible variety
of specimen sheets and other material of interest to
typographers and book designers.”)

*k

{40} There were lots of Boston papers in the 1800s
and 1900s, for example: Boston Daily Advertiser,
1813; Boston Journal, 1833; Boston Fvening Trav-
eler, 1845; Boston Herald, 1846; Boston Globe, 1872;
Boston American, 1904; plus smaller town papers.
There were also lots of mergers and acquisitions, i.e.,
industry consolidation as the mid-1900s neared.

{41} Boston’s newspaper row was on Washing-
ton Street, down the one-block length of School Street
from the conference hotel. {42} In the days before
radio and TV were common, crowds stood in Wash-
ington Street to hear the latest news, e.g., of an
election or prize fight.

An alley off Washington Street, a short way
from the School Street intersection, is named Pi
Alley. Purportedly it is named Pi Alley because of
all the newspapers in the area and the fact that a
box of type dropped and scrambled on the floor was

known as “pied type.”
*

{43} In the colonial days, the printers typically had
very little type —maybe one or two sizes, maybe not

David Walden

TUGDboat, Volume 33 (2012), No. 2

italic, maybe not two different typefaces. What type
they did have came from Europe.

By 1800, Williams Caslon’s types had made it to
the new country in many variations. Isaiah Thomas’s
specimen book of types featured Caslon on its cover:
“Being as large and complete an assortment as is to
be met with in any one printing-office in America.
Chiefly manufactured by that great artist William
Caslon, Esq., of London” [Blumenthal89]. (As an
homage to the popularity of Caslon type in the eras
under discussion (for instance, it was also used for the
Declaration of Independence), I used Adobe Caslon
Pro for the text of my presentation slides and also
have used it for Figure 2 of this article.)

Type foundries took a while to get going in the
United States. The first successful one in Boston was
the Dickinson type foundry, founded in 1839. There
were a few other foundries by the time of the great
Boston fire of 1872, in which all the type foundries
were destroyed.

There were five type foundries in Boston by the
time of the American Type Founders (ATF) consoli-
dation of 1892: “the Dickinson Type Founders, Bos-
ton Type Foundry, New England Type Foundry, Cur-
tis & Mitchell Type Foundry, and the H.C. Hansen
Type Foundry. The H.C. Hansen Type Foundry was
started in late 1872 after the fire (Hansen had been
an employee of Dickinson). The New England and
Curtis & Mitchell foundries soon disappeared. The
Dickinson and Boston foundries were absorbed by
ATF. H.C. Hansen, later with his sons, remained in
existence until 1922 as an independent type foundry”
[Devroye02].

No doubt a good bit of type design also went on
in Boston. Two individuals well-known for their type
designs were Bruce Rogers and Bertram Grosvenor
Goodhue [Blumenthal89).

Goodhue (1869-1924) was a celebrated archi-
tect who also did book and type design, in particular
the Merrymount type for the Merrymount press and
Cheltenham type (originally known as Boston Old
Style). Cheltenham was widely popular in the early
decades of the twentieth century. Digital versions
have been created in recent decades including a ver-
sion for the New York Times designed by Matthew
Carter.

{44,45} Rogers (1870-1957) is viewed by some
as the greatest book designer of the 20*" century.
He worked at Riverside Press from 1895 to 1911
(he took over Updike’s position [Kelly11]) where he
created many fine editions. Two of the types he
designed are Montaigne (at Riverside Press) and
Centaur (for New York’s Metropolitan Museum of
Art). Centaur remains widely available (for example,

TUGboat, Volume 33 (2012), No. 2

it comes with Microsoft and Adobe products). I par-
ticularly like the slanted hyphen of Rogers’s original
Centaur, which apparently and unfortunately is no
longer slanted in the digital recreation. Rogers prac-
ticed so-called “allusive typography” where the type
and ornamentation were matched to the content of
the book.

Personal observations, 1964—present

{46} This last section, covering the period of time I
have lived in Boston and adjacent towns, is about
my personal experience and observations rather than
trying to cover printing and publishing history.

As T mentioned at the start of this note, Boston
seemed a literary mecca when I first arrived here
in 1964. In Harvard Square, near where I originally
lived, the Harvard Coop and the Paperback Book-
smith were my primary bookstores, but there were a
variety of other stores selling new books in the Har-
vard Square neighborhood. Also, there seemed to be
dozens of used bookstores. The Out of Town News
in the middle of Harvard Square and Nini’s Corner
across the street had lots of magazines and newspa-
pers from around the world for sale. At the time
Out of Town News had perhaps a hundred different
foreign newspapers shipped in by air and would sell
up to 600 London papers on Sundays and 1,500 Irish
papers a week.

I had also not previously been where I could eas-
ily use the libraries of multiple communities. Most of
the time since I arrived in Boston I have had library
cards for three different library systems, e.g., origi-
nally Cambridge, Boston, and Belmont (on my way
to and from work). Also, because I originally worked
for MIT, I could use its libraries and occasionally
found a reason and way to access Harvard libraries.

In my early years in the region, Boston also had
many bookstores selling new books and even more
used-book stores, it seemed, than in Cambridge.

{47} T also liked the major newspaper options:
Globe (more liberal), Herald (more conservative), and
Christian Science Monitor (a wonderful 6-day-a-week
paper providing unbiased world news). Over time
some interesting weekly newspapers were founded as
well as the African-American Bay State Banner.

{48} As I got to know Boston, I also got to know
the locations of such publishing institutions as the
Riverside Press in Cambridge, {49} Little Brown at
the corner of Joy and Beacon Streets on Beacon
Hill facing the Boston Common, {50} the Atlantic
Monthly on Arlington Street facing the Boston Public
Garden, and {51} Houghton Mifflin which in 1972
moved into the high rise building diagonally across
the intersection from the conference hotel.

153

*

Much has changed in the nearly 50 years I have lived
in or around Boston (an average of 3.5 miles from
the conference hotel and never more than 8.3 miles).
At some point (circa 1980 perhaps) the big chains of
bookstores began displacing the independent book-
stores and small chains, for example, Barnes and
Noble, Waldenbooks, Borders, and eventually Wa-
terstones (from the UK) came to Boston.

A few years ago, Out of Town News stopped
carrying most of its foreign newspapers.

As mentioned above, the big two publishers
(Little Brown and Houghton Mifflin) have become
substantially financial assets rather than institutions
dedicated to the mission of publishing. The River-
side Press is gone from Cambridge, and the Atlantic
Monthly is now part of a non-Boston publishing em-
pire.

{52} A notable exception to the decline of pub-
lishing in Boston is “David R. Godine, Publisher.”
Godine started his publishing business printing his
own books in nearby Brookline. Dedicated to pub-
lishing quality books, the business has slowly grown.
When I first became aware of it, {53} it was based
in the beautiful Victorian Ames-Webster mansion at
the corner of Dartmouth Street and Commonwealth
Avenue in Boston (it is now based about 400 feet
from the conference hotel).

{54} Another exception is International Data
Corporation, now part of the International Data
Group. This company publishes business data and
300 magazines in 85 countries. It founded the “Dum-
mies” series of books (later sold to Wiley). Its head-
quarters is across the street from the Boston Public
Library in a high rise building (known locally as the
Darth Vader building—not a compliment).

Of course, Godine and IDC are not the only pos-
itive notes, but they are an exception to the apparent
general decline of publishing and printing in Boston.
(During many of my years in Boston, Addison-Wesley,
Knuth’s TEX publisher was based just outside of Bos-
ton. I also now know that Bitstream was started
in Cambridge; and Matthew Carter, a founder of
Bitstream and now of Carter and Cone, lives in Cam-
bridge. A few other type design activities are still
based in Boston.)

As we have moved into the Internet era, the
Globe and Herald newspapers were bought by out-
of-town newspaper empires (the Herald has since
become independent again but is struggling). The
Christian Science Monitor has become an on-line
newspaper. And most of the chain bookstores have
succumbed to the competition of on-line bookstores
such as Amazon and to the popularity of the e-book.

My Boston: Some printing and publishing history

154

)

With our present American culture of “no new taxes,’
the city and town libraries have cut their hours.

Nonetheless, Boston still remains a major urban,
educational, and cultural center with some pretty
nifty literary resources, particularly its libraries. {55}
Some notable libraries are at Harvard (founded 1636)
libraries (with 80 libraries and 15 million books); the
Boston Athengum (founded 1807); the New England
Historical and Genealogical Society (founded 1845);
Boston Public Library (founded 1848, the first large
city public library in the country including having
a circulating library [Whitehill56], now with many
branches and 15 million books); and MIT (founded
1865) libraries (divided into several sub-libraries with
3 million books).

In addition to being notable, these libraries
are close enough together to require minimal travel
time among them —so close together it is probably
faster to take public transportation than to find park-
ing. A walk passing each of them would only take
about 90 minutes: one mile from the {56} Athensum
to the {57} NEHGS; two blocks from the NEHGS
to the {59} BPL (the BLP was previously {58} on
Tremont Street); 1.5 miles from the BPL to MIT (1
mile as the crow flies across the Charles River, or as
the Tech dinghy sails), {60} whose original building
was across the street from the current location of the
NEHGS; and 1.7 miles from MIT to Harvard. {61}

The youngest of these libraries is almost 150
years old. So obviously it is possible for a literary
institution to withstand and adapt to the evolution
of culture and economics — I suspect because they
have never viewed profit as a key aspect of their
missions.

Furthermore, since 1964, accessibility to library
materials has become even easier. There were always
many town libraries and libraries at the dozens of
other colleges and universities in and around Boston.
Now lots of the libraries are in library networks, so
one can ask for a book at any of the cooperating
libraries to be sent to one’s own library. Also, there
is the Massachusetts Virtual Library which supports
exchange of books among networks. There is so much
exchange going on that there is a company which has
made a business of vans driving among the various
libraries and networks of libraries doing deliveries
and returns of exchanged books.

I am sure much of this is no different than what
is going on in other states in the United States and in
other areas around the world. Still, being based near
Boston is particularly convenient for using libraries
for research projects.

{62} For bookstores, today Barnes and Noble is
the only big chain still in Boston, with a store at the

David Walden

TUGDboat, Volume 33 (2012), No. 2

Prudential Center in Back Bay and operating some
of the university and college bookstores. It is a little
hard to find a general-purpose independent store
focusing on new books in Boston. Commonwealth
Books and Brattle Book Shop primarily sell used
books, and are within easy walking distance of the
conference hotel.

In Cambridge, the MIT Press bookstore and the
MIT Coop bookstore, selling new books, are across
the street from each other. Moving on to Cam-
bridge’s Central Square and then Harvard Square,
there are still a few used bookstores (e.g., Rodney’s).
Selling new books, in Harvard Square there are still
the Harvard Book Store (founded in 1932 and never
a part of Harvard), Grolier Poetry Bookshop (1927),
and Schoenhof’s Foreign Books (1856). Harvard
Book Store and Grolier are still independently owned,
in each case by a relatively new owner concerned that
an institution not go out of business. Schoenhof’s is
no longer independently owned.

{63} A particular favorite bookstore for me is
the Harvard Book Store. It has no relationship to
Harvard University except to have Harvard buildings
on three sides of it. They have a large selection of
new books and used books, and they offer bicycle
delivery in Cambridge and nearby. {64} They also
have an Espresso Book Machine (EBM), which they
have named Paige M. Gutenborg, for in-store on-
demand printing of a customer’s self-published book
or millions of legally printable books from Google
books, publishers, and other on-list books archives.
(The EBM is another publishing activity where Ja-
son Epstein has been a prime mover. Epstein was
previously editorial director at Random House for 40
years and personally edited many famous authors; he
co-founded the New York Review of Books, founded
the Library of America line of books, and published
the Reader’s Catalog in the mid-1980s to make 40,000
books available through a phone-call purchase.)

{65} A visit to the Harvard Book Store and their
in-store book-printing machine brings us geograph-
ically full circle. {66} The Harvard Book Store is
a three minute walk from the location of Stephen
Daye’s original 1639 print shop. {67} And by doing
in-house printing, the bookstore has in some sense
come full circle in the history of American printing
and bookselling — back to its roots where booksellers
often printed and published books and where printers
sometimes had retail sales of books they printed.

Recently, I took the opportunity of visiting the
Harvard Book Store and Paige M. Gutenborg to have
a facsimile copy of the Bay Psalms printed for me.
And that brings this talk full circle.

TUGboat, Volume 33 (2012), No. 2

Acknowledgments

{68} Steve Peter gave me pointers to useful books.
Jeff Mayersohn of Harvard Book Store pointed me
to people and places, loaned me books, and gave
me a print-on-demand copy of the Bay Psalms. The
librarians at the Boston Athenseum and Boston Pub-
lic Library helped me find books. Karl Berry caught
many typographical errors and made other editorial
suggestions. Barbara Beeton suggested some content
additions and editorial changes. Jeffrey Stanett and
Ryan Shea Paré of First Printer restaurant answered
questions and allowed me to take photographs of
their printing-history artifacts.

Bibliography and references

A AS12. American Antiquarian Society website, 2012:
http://www.americanantiquarian.org.

Barry12. John M. Barry, Roger Williams and the Cre-
ation of The American Soul: Church, State, and the
Birth of Liberty, Viking Press, New York, 2012.
Beaconl2. Beacon Press website, 2012: http://www.
beacon.org.

Blumenthal89. Joseph Blumenthal, The Printed Book
in America, published for the Dartmouth College Li-
brary by University Press of New England, Hanover, NH,
trade paperback edition, 1989 (reprint of the 1977 edition
published by David R. Godine, Boston).

Drake70. Sanuel Adams Drake, Old Landmarks and
Historic Personages of Boston, Singing Tree Press, 1970
(facsimile reprint of the edition published in 1900 by
Little, Brown, and Company, Boston, which was the
“new and revised” version of the 1974 original published
by James R. Osgood and Company, Boston).
Devroye02. Luc Devroye website, 2002 (it’s wonderful;
look at it): http://luc.devroye.org/hansen.
Franklind0. The autobiography of Benjamin Franklin,
with postscript by Richard B. Morris, Washington Square
Press, New York, 1940.

Hall10. David D. Hall, general editor, A History of the
Book in America (five volumes), The University of North
Carolina Press, Chapel Hill, NC, 2010: Volume 1, The
Colonial Book in the Atlantic World, edited by Hugh
Amory and David D. Hall; Volume 2, An Eztensive Re-
public: Print, Culture, and Society in the New Nation,
1790-1840, edited by Robert A. Gross and Mary Kel-
ley; Volume 3, The Industrial Book, 1840-1880, edited
by Scott E. Casper, Jeffrey D. Groves, Stephen W. Nis-
senbaum, and Michael Winship; Volume 4, Print in Mo-
tion: The Exzpansion of Publishing and Reading in the
United States, 1880-1940, edited by Carl F. Kaestle and
Janice A. Radway; Volume 5, The Enduring Book: Print
Culture in Postwar America, edited by David Paul Nord,
Joan Shelley Rubin, and Michael Schudson.
Isaacson04. Walter Isaacson, Benjamin Franklin: An
American Life, Simon & Schuster Paperbacks, New York,
2004.

155

Kelly11. Jerry Kelly, The Art of the Book in the Twen-
tieth Century, RIT Cary Graphic Arts Press, Rochester,
NY, 2011.

Krieger99. Alex Krieger and David Cobb, editors, Map-
ping Boston, MIT Press, Cambridge, MA, 1999.
Lehmann-Haupt52. Hellmut Lehmann-Haupt (in col-
laboration with Lawrence C. Wroth and Rollo G. Silver),
The Book in America: A History of the Making and Sell-
ing of Books in the United States, second edition, R. R.
Bowker Company, New York, 1952.

Myerson80. Joel Myerson, The New England Transcen-
dentalists and the Dial: A History of the Magazine and
Its Contributors, Fairleigh Dickinson University Press,
Rutherford, NJ.

Phillips06. Jerry Phillips and Andrew Ladd, Romanti-
cism and Transcendentalism (1800-1860), Facts on File,
Inc., New York, 2006.

Reese89. William S. Reese, The First Hundred Years of
Printing in British North America: Printers and Collec-
tors, http://wuw.reeseco.com/papers/first100.htm.
Rose81. Anne C. Rose, Transcendentalism as a Social
Movement, 1830—-1850, Yale University Press, New Haven,
CT, 1981.

Tebbel72, 75, 78, and 81. John Tebbel, A History
of Book Publishing in the United States, R.R. Bowker,
New York: Volume 1, The Creation of an Industry, 1972;
Volume 2, The Ezpansion of an Industry, 1865-1919,
1975; Volume 3, The Golden Age between Two Wars,
1920-1940, 1978; Volume 4, The Great Change, 1940—
1980, 1981.

Thomas70. Isaiah Thomas, The History of Printing in
America with a Biography of Printers € an Account of
Newspapers, M. M. McCorison, editor, Imprint Society,
Barre, MA, 1970 (new edition based on the two volume
1874 edition published by the American Antiquarian
Society, Worcester, MA, which was derived from the
original 1810 book by Thomas).

Updike66. Daniel Berkeley Updike, Printing Types,
Their History, Forms, and Use: A Study in Survivals,
Volume II, The Belknap Press of Harvard University
Press, Cambridge, MA, 1966.

‘Whitehill56. Walter Muir Whitehill, Boston Public Li-
brary: A Centennial History, Harvard University Press,
Cambridge, MA, 1956.

‘Whitehill68. Walter Muir Whitehill, Boston: A Topo-
graphical History, second edition, enlarged, Belknap Press
of the Harvard University Press, Cambridge, MA 1968.
Wilson00. Susan Wilson, Literary Trail of Greater Bos-
ton: A tour of sites in Boston, Cambridge, and Concord,
Houghton Mifflin, Boston, 2000.

Wilson05. Leslie Perrin Wilson, “No Worthless Books”:
Elizabeth Peabody’s Foreign Library, The Papers of the
Bibliographical Society of America, Volume 99, Number 1,
2005, pp. 113-152.

¢ David Walden
http://walden-family.com/texland

My Boston: Some printing and publishing history

156

TUGDboat, Volume 33 (2012), No. 2

Towards evidence-based typography:
First results

Boris Veytsman and Leyla Akhmadeeva

At the previous TEX Users Group meeting we de-
scribed a program to revisit the long-standing dicta
of typography from the point of view of experimen-
tal science [9]. Indeed, any practitioner of the art
“knows” that serif fonts are better for continuous body
copy, while sans serif fonts are better for the texts
intended to be read in chunks, like advertisements,
that optimal line sizes are based on the physiology of
eye movement, etc. However, many traditional views
about human organisms are not confirmed by rig-
orous experiment: after all, a couple hundred years
ago people also “knew” that profuse blood letting
helps to cure a number of diseases including bubonic
plague and the common cold [5]. Thus we started a
long term program to study whether the traditional
ideas of typography are confirmed by experiment.

Recently Legge and Bigelow studied readabil-
ity and legibility of text with different font sizes [7]
which led them to the so-called ecological hypothesis:
the print sizes actually used over the centuries in
book making are in the “comfort zone” for a normal
vision reader, and variations in the size are of low
importance. A natural generalization of this hypoth-
esis is that other typographic devices like serifs or
their absence do not matter much if they have been
used in typography for a long time. We decided to
test this generalized hypothesis.

In our experiments we asked the subject to read
texts typeset differently and answer multiple choice
questions about them. TEX allowed us to easily
obtain high quality texts with controlled typographic
features.

In the first series of tests we studied the influence
of serifs on reading and comprehension. The exper-
iments with serif and sans serif fonts described in
the literature [2-4, 8] give controversial results: some
studies show the advantage of serifs, while some in-
dicate sans serif fonts are more legible. One should
note that in these experiments (with the notable
exception of [8]) the texts were typeset in different
“superfamilies” (mostly Times and Helvetica), which
may be a confounding factor: there are many dif-
ferences between Times and Helvetica besides one
being a serif font and another being a sans serif one.
Therefore we chose for our experiments a pair of
fonts from the same “superfamily”: PT Serif and
PT Sans by Paratype [6] (see Figure 1; note the
difference in the alphabet width of the fonts due to
the serifs). Their shapes are very close, and thus we

Boris Veytsman and Leyla Akhmadeeva

The quick brown fox jumps over the lazy dog.
01234567890 fi & ce

The quick brown fox jumps over the lazy dog.
01234567890 fi & ce

Figure 1: PT Serif and PT Sans fonts

can assume that the presence or absence of serifs is
the main difference between the fonts. The experi-
ments with Cyrillic readers (n = 238) showed (see
Figures 2 and 3) that there was no statistically sig-
nificant difference between serif and sans serif fonts —
neither in the speed of reading nor in the number
of correct answers about the text [1].} These results
corroborate the generalized ecological hypothesis.

Currently we are studying the influence of the
line length (is it really necessary to do two-column
typesetting in landscape orientation) and justifica-
tion on reading speed and comprehension. Our pre-
liminary results indicate that these factors also do
not significantly influence the outcome.

We are glad to acknowledge the support of TUG
and the Federal Program of Russian Federation “Sci-
entists and Science Teachers for Innovation in Rus-
sia, 2009-2013”. We are grateful to Karl Berry,
Charles Bigelow and the participants of TUG 2011
& TUG 2012 for valuable suggestions. Last, but not
least, we would like to acknowledge our wonderful
students Ilnar Tukhvatulin, Kamilla Mufteeva, Alla
Borisova and Aliya Habiryanova.

References

[1] Leyla Akhmadeeva, Ilnar Tukhvatullin,
and Boris Veytsman. Do serifs help in
comprehension of printed text? An experiment
with Cyrillic readers. Vision Research, 65:21-24,
2012.

[2] A. Arditi and J. Cho. Do serifs enhance or
diminish text legibility? Invest. Ophthalmol.
Vis. Sci., 41(4, Suppl. S):5437, March 2000.

[3] A. Arditi and J. Cho. Serifs and font legibility.
Vision Res., 45(23):2926-2933, 2005.

[4] M. L. Bernard, B. S. Chaparro, M. M. Mills,
and C.G. Halcomb. Comparing the effects
of text size and format on the readibility
of computer-displayed Times New Roman
and Arial text. Int. J. Hum.-Comput. Stud.,
59(6):823-835, December 2003.

[6] Thomas Dover. The Ancient Physician’s Legacy
to his Country: Being what he has collected

1 A preprint of the paper is available at http://borisv.
lk.net/publications/serifl

TUGboat, Volume 33 (2012), No. 2 157

himself, in Fifty-eight Years Practice: Or, an
Account of the several Diseases incident to
Mankind, Described in so plain a Manner, That
50 100 150 200 250 300 350 50 100 150 200 250 300 350 any Person may know the Nature Of hzs own
‘ L Disease, Together with several Remedies for
each Distemper, faithfully let down, Designed
for the Use of all Private Families. Henry Kent,
London, 1742.

[6] Pavel Farai. Support Package for Free Fonts by
ParaType, May 2011.
http://mirrors.ctan.org/fonts/paratype.

oo [7] Gordon E. Legge and Charles A. Bigelow. Does
print size matter for reading? A review of
findings from vision science and typography.

F 0.002 J. ViSiO'm 11(5)(8):1722, 2011.

[8] R. A. Morris, K. Aquilante, D. Yager, and
C. Bigelow. Serifs slow RSVP reading at
Jrm— SOFEBBAFOT |- 0000 very small sizes but don’t matter at larger

—— ———r ——————— sizes. In SID 2002, San Jose, CA: Digest of

50 100 150 200 250 300 350 50 100 150 200 250 300 350 Technzcal Pa,pe’r’g’ pages 2447247 The Society

for Information Display, 2002.

L L L
SansSerif

0.006 - 0.006

0.004

Probability Density

0.002

0.000

Words per Minute

Figure 2: Reading speed for sans serif and serif fonts [9

Boris Veytsman and Leyla Akhmadeeva.
Towards evidence-based typography: Literature
review and experiment design. T'UGboat,
32(3):285—-288, 2011. http://tug.org/
TUGboat/tb32-3/tb102veytsman-typo.pdf.

¢ Boris Veytsman
School of Systems Biology &
Computational Materials
Sert ‘ Science Center, MS 6A2
George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

o

5 10

o
o
=)

1
SansSerif

0.15 - ~ 0.15
¢ Leyla Akhmadeeva
Bashkir State Medical University
3 Lenina Str. Ufa 450000, Russia
010 - 010 la (at) ufaneuro dot org

Probability Density

0.05 - r 0.05

0.00 - 668088688 Es 6800888886 - 0.00

T T T T T T
5 10 0 5 10

o

Correct Answers

Figure 3: Reading comprehension for sans serif and
serif fonts

Towards evidence-based typography: First results

158

TEX and music: An update on TEXmuse

Federico Garcia

1 Introduction

For some years I've been working on a professional
music typesetting system using TEX and METAFONT,
called TEXmuse. This article has some background
and examples of the main idea of the TEXmuse sys-
tem which, as will be seen, is entirely inspired by the
TEX ‘spirit’. This touches on the potentially disas-
trous problems of WYSIWYM for music typesetting,
and on what similarly oriented systems have done
(and not). Some achievements of TEXmuse could
potentially change the life of any composer.

2 A sample of the current prototype

2.1 The user’s input and the first scan

In the main input file of a TEXmuse document the
user defines a series of instruments (more accurately
‘staves’), and then requests TEXmuse to assemble a
score out of a subset of them (possibly all of them):

\newstaff [\trebleclef\AMajor]
{righthnd}{MztAMj.txm}

\newstaff [\bassclef\AMajor]
{lefthnd}{MztAMj. txm}

\score: {righthnd,lefthnd}.

This convention makes it possible for the same doc-
ument to produce both a general score (which in-
cludes all the instruments) and the individual in-
strumental parts; it also allows changing the order
of the staves, replacing one by another, reusing the
same music in several different documents, etc.—
while keeping the actual musical content indepen-
dent.

The \score command is (planned to be) flex-
ible enough to allow several kinds of groupings be-
tween the staves. Piano music is typically type-
set as two staves joined by a brace at the left of
each musical line, and that is what the braces in
{righthnd,lefthnd} mean. But a construction like
[oboe,clarinet] would instead join the staves by a
bracket, and the simple flute, violin would sim-
ply include the staves in the score without any par-
ticular grouping or joining shape.

The \newstaff command defines the staves,
and instructs TEXmuse where to look for the ac-
tual musical content of each staff. The actual musi-
cal content is typically collected in txm files, in the
form of a series of staff environments, each named
as the staves themselves. The file may contain staff
environments even if they are not used in the doc-

Federico Garcia

TUGDboat, Volume 33 (2012), No. 2

ument, in which case the program would simply ig-
nore them.

In this case—an excerpt from Mozart’s Sonata
in A—the music for both staves is collected in the
auxiliary file MztAMj.txm. The following is the en-
vironment for the staff ‘righthnd’ as it appears in
that file (the output appears in section 2.5):

\begin{righthnd} \rangefrom{g4}\meter68
4c.3d4c 5ede 4b.3c4b 5d4d 5ada 5bdb
5c\split{3ed5c4b\\4b b5adg} 4c.3d4c bede
4b.3c4b 5d4d
5a4b 5c\split{4<bd>5<ac>4<bg>5<ae,>\\
\,4f5e4dbc}

4r

\end{righthnd}

This kind of input is not too different from the
model used in commercial music software: numbers
tell the program what rhythmic value to expect for
the coming note(s): quarter notes are indicated by
‘5’, eighth notes (smaller by one than the quarter
note) by ‘4’; sixteenths by ‘3’; and so on.

Rests are issued with an ‘r’, the characters ’
and , are used to shift between octaves, and . adds
a dot to the previous note. Multi-note entries (i.e.,
individual notes that have several noteheads on the
same stem — pitches sounding at the same time) are
indicated by < and >, although there are many util-
ities and shorthands for different multi-note situa-
tions.!

The \split operation tells TEXmuse that the
music in the staff is to be split into two voices, one
of which will be typeset above the other (but on
the same staff). The user does not need to indicate
which note on the upper voice corresponds to (i.e.,
goes on the same vertical axis as) which in the lower:
TEXmuse scans both voices and pairs them up as
expected, according to their rhythmic durations.

In fact, this ability of TEXmuse to align voices
by rhythm is true not only of \split, but is in-
deed the mechanism that allows the user to input
staff by staff. Apart from the convenience of keep-
ing each staff independent of the others, horizon-
tal input (i.e., staff by staff) is the natural way the
musician thinks of the music. The opposite —re-
quiring the user to figure out in advance the rhyth-
mic/vertical correspondences—is as unnatural as
it would be to typeset a paragraph word by word,
starting with the first word on the top line, contin-
uing with the word that would be below it on the

I For example, after \dyads it won’t be necessary to wrap
every set of two notes with < and >; \coll will make TEX add
a note at the specified interval (like in \col18b, which adds
the lower octave); and so on.

TUGboat, Volume 33 (2012), No. 2

second line, then the first word on the third line,
and so on. It is this unfriendly requirement that
makes MusiXTEX (the remarkably complete system
developed in the 1990s under the leadership of the
late Daniel Taupin) hopelessly useless for the type-
setting of music beyond small snippets; it has in fact
prompted the implementation over the years of sev-
eral ‘pre-processors’, non-TEX utilities that trans-
late horizontal input into the vertical arrays required
by MusiXTEX.

TEXmuse achieves this because its code, so to
speak, teaches music to TEX, so that it is able to
interpret the music of each staff and deduce their
mutual rhythmic relationship (and therefore their
vertical alignment). It will be seen in the coming
sections where exactly this deduction happens. But
this discussion introduces a more general and rel-
evant issue concerning the use of TEX for typeset-
ting music: beyond the question of pure ability to
produce the score itself, what concessions would any
such program require from the user? How far can we
go in preventing the author/composer from having
to stop thinking of music to help TEX with typo-
graphical decisions? This is an important question,
because by its very nature TEX can very well fail at
this; but it will be shown that it is here too that
it can succeed and surpass the alternatives. This
discussion is the main topic of section 3 below.

2.2 From txm to tm

After scanning the user’s input in the txm file(s),
TEXmuse’s first step is to translate it into internal
functions that govern the appearance of each note.

In the previous section we saw that the user
typed ‘4c.’ for the very first note of the righthnd
staff. After TEXmuse's internal translation, this first
note looks (to TEX, privately) much more involved:

\@nntr\@nhd1{c5}\@invbl2{c5}\Q@agdt\@stem
\add@bm1\end@{432}\relax

To paraphrase:

\@nntr For this coming new entry,
\@nhd1l a notehead of kind 1 (the familiar filled-
in ellipse)
{c5} on the fifth ¢ on the keyboard,
\@invbl2 with a kind-2 invisible accidental (a f)
{c5} on that same c,
\@agdt with an augmentation dot,
\@stem a stem,
\add@bm1l added to a beam of index 1,
\end@ and ending at position 432.

The idea of ‘a dotted eighth note on ¢5’ (which is
what the user requested with ‘4c.’) has been made

159

fully explicit into discrete commands that order the
actual notehead, the stem, etc. But not only that,
in the process TEX has done a couple of other things
as well:

e After \end@432, TEX knows that the current
staff won’t have a note until position 432 is
reached by all other staves. If, say, the sec-
ond staff has a note that ends at 288, then that
staff will have its second note starting at 288,
but the first staff (which already spans up to
432) will have nothing on that note. The pro-
cess is a ‘quantization’ of the rhythmic space,
in which the 256'"-note (a note with six flags)
contains 9 units. The first note in our sample
is a dotted eighth-note: 288 (32 times a 256"-
note) +144 (a dotted note is increased by half)
= 432.

o TEXmuse also deduced that this note should be
part of a beam.? It has looked ahead for the
coming notes and has realized that since those
notes are also beamable rhythmic values and
they are part of the same beat in the current
meter, they should be beamed together.

e The note also has an invisible sharp sign. By
‘invisible’ TEXmuse means that it doesn’t have
to be actually drawn, and the question might
arise then why to include it at all. This is part
of TEXmuse’s ‘spelling’ mechanism, a compo-
nent of its ability to interpret the musician’s
intentions and to render it correctly onto the
typeset score. This mechanism and its impor-
tance will be addressed in more detail later (sec-
tion 3.3).

For this note, TEXmuse has deduced that the
user meant cf (since we're in A major), but it
also realizes that there is no need to explicitly
give the sharp in the actual score. In addition
to ‘invisible’, accidentals can be ‘rigid’ (when
they must technically be added to mean the cor-
rect note) and ‘courtesy’ (sometimes also called
‘cautionary’, when the context makes it desir-
able to add the clarification).

In this way, notes in the user’s input have been con-
verted into sequences of internal commands like the
line listed above. These ‘entries’ are written, staff
by staff, on auxiliary files named (staffname).tn (in
this case, the entry listed above is the first entry in
righthnd.tm). Those files will be read by TEXmuse
in the next step of the run, to gather the notes and
write METAFONT programs to draw them.

2 The beam is the familiar thick line that joins the stems of
several notes when they are small rhythmic values (an eighth-
note or smaller).

TEX and music: An update on TEXmuse

160

2.3 From TEX to METAFONT

With the information in the tm files, TEX can now
proceed to write programs in METAFONT that will
draw the notes into a font. The following is the
program that TEX writes for the first note in our
sample:

newchar (1) ;

staff_1;
notehead(1,C5);
openbeam(1) ;
augm_dot;
stem;

staff_2;
upper;
notehead(1,E4);
stem;
lower;
notehead(1,H3);
openbeam(1) ;
augm_dot;
stem;

endcharat (432-0) ;

The first thing to note here is that this listing con-
tains information about both staves. In fact, it is
the tm—mf stage that gathers the notes, from all
the staves, to make the composite ‘characters’ that
include any note that belongs in each vertical axis
across the score.

In this first note, the right hand (staff_1 for
METAFONT) is simple enough; but the left hand
contains two noteheads, which are in addition sepa-
rated as ‘upper’ and ‘lower’ sub-notes. This comes
from a \split in the original user’s input for the left
hand (not shown above), and illustrates what a split
ends up looking like in the METAFONT program.

The \add@bm (‘add to a beam’) command has
generated an openbeam in the METAFONT program.
Since this is the first note, there are no beams cur-
rently open, so \add@bm is interpreted as opening
one. Future notes with \add@bm will be given an
addtobeam instead, until a \close@bm is found and
the beam closed.®> On the other hand, the ‘432’ is
retained and it still signals the end of the entry in
endcharat (432-0) —METAFONT will do the math
and find 432. TEX had used the ending positions
of the notes to figure out the relationships between
staves; but now the same information (which ulti-
mately encodes the rhythmic profile of the piece)

3 The reason for this two-step conversion is that the rests,
that can also be included under a beam, behave differently. In
other words, \add@bm is not ezactly equivalent to openbeam or
addtobeam, and \close@bm is not directly closebeam; in this
particular case the difference is innocuous because no rests
are involved.

Federico Garcia

TUGDboat, Volume 33 (2012), No. 2

will be used by METAFONT for the spacing of the
music. (In music, the longer the rhythmic value the
more space there is after a note; the space after each
note is later stretched proportionally, if necessary, to
reach the right margin.)

TEXmuse now enters the drawing stage, read-
ing the character programs with the music-drawing
functions defined in its code. The user (or a batch
file) runs mf on these METAFONT programs gener-
ated by TEX, and out of this a new font is created
(or many, if there are more than 256 characters in
the piece). TEX will then use the font to typeset the
music — which, for TEX, is just regular text.

2.4 From METAFONT to TEX

But the new font does not contain every single sym-
bol in the music. METAFONT does not really draw
some pre-formed symbols that are part of a musi-
cal score; for example, any lettering or any numbers
will be inserted by TEX (retaining user control on
their font and appearance), as well as some musical
symbols like the clefs that don’t really change from
instance to instance and would be inefficient to draw
on the fly. TEX will insert those symbols at the ap-
propriate positions in the score, but for that it needs
METAFONT to tell it where those positions are.
This information is passed to TEX in the log file
of the METAFONT run. This is an excerpt from it:

Line at measure 3

Next break after measure 6

\fi\leavevmode\iffalse

\fi\rlap{\hbox{\raise 7.0pt\hbox
{\mae ?}\kern2.2pt

\raise-3.5pt\hbox

{\mse \char 146}}}\iffalse

\fi\rlap{\raise38.5pt\hbox{\mae \&\kern2.2pt

{\mse \char 146}}}\iffalse

[1]

\fi{\tmfont\chari}\iffalse 3.9 [2]

\fi{\tmfont\char2}\iffalse 1.5 [3]

This is pretty low-level plain TEX, but you can still
spot the \char commands that request particular
symbols. \mse is TEXmuse’s base musical symbols
font (‘muse’), in which character 146 is the key sig-
nature of A major. The clefs, at the time of writing,
come from the TrueType font ‘Maestro’ (the default
font for Finale, a mainstream commercial music pro-
gram): 7 in that font is the bass clef, and & is the
treble clef.*

4 Eventually, Maestro will be entirely replaced by TEX-
muse’s own fonts. It has so far been used to permit imple-
mentation of the prototype even in the absence of a complete
native font, and also to test TEXmuse’s ability to use and
interact with user-selected fonts.

TUGboat, Volume 33 (2012), No. 2

\tmfont is the command that stands for the
actual font that METAFONT has just drawn, and so
{\tmfont\charl} is the exact point where META-
FONT tells TEX to print the very first note of the
piece. The log file continues requesting what goes
in the score—the characters that it just drew or
insertions from other fonts — and simply by reading
the file TEX gets to typeset the music.

2.5 Sample output

- " %
[rl; Ji—l—ﬂ

TEXmuse is still very incomplete. Apart from the
fact that it doesn’t yet connect the barlines across
the two staves of the piano, much less join the staves
with a brace on the left sides, the ‘g’ (which as of now
can’t be scaled down. ..) appears slightly misplaced

to the left, and the ¢
ctf, not bgl!).

But the skeleton is in place, and many of the
missing features are more or less simply analogous
to features already working in the current prototype.
TEX can indeed interpret intuitive user input, and
it can program METAFONT virtually without help
from the user. The system is promising in terms of
flexibility and programmability.

’is misdrawn (it should give

3 TEX and music: Why and why not

There are legitimate reasons, however, to be skepti-
cal about music typesetting in TEX —or in fact in
any system like TEX, with plain-text input, a com-
pile phase, and fixed output.

3.1 Music, tables, and TEX

As mentioned, TEXmuse (like the pre-processors for
MusiXTEX) goes to a lot of trouble to make out the

161

vertical correspondences implied by the user’s hor-
izontal output. The analogy above (typing a para-
graph in vertical fashion) can be complemented by
the realization that music, from the typographical
point of view, is more like a table than it is like run-
ning text: vertical alignment by rhythm is as im-
portant, detailed, and meaningful as the horizontal
dimension where a melody is presented.

In a way what the system does is hide the table
from the user, in order to spare him the need to think
of it explicitly. But this doesn’t change the fact
that the music is still a table... and tables are one
context where the shortcomings of a TEX-like system
are acute.” As any I¥TEX user knows, maintaining
a table (editing it, updating it, correcting it) is not
the most straight-forward intuitive process for us.
In Excel, or even in a table in Word, you can simply
click on a cell and start typing or deleting; in KTEX
you have to count \hline’s and &’s even to find the
cell. Searching is impeded, selecting a portion of the
table for copying or pasting is impossible, ... TEX
is simply not a natural environment for tables the
way Excel is.

There is therefore a big built-in inconvenience
in the use of TEX, or any such system, for mu-
sic typesetting. For me, a conclusion has emerged,
as work on TEXmuse has progressed, that the ad-
vantages that do come naturally with TEX —pro-
grammability, for example, or precisely targeted con-
trol where user decisions are documented, visible,
and accessible as part of the input —are, by them-
selves, not nearly enough to compensate for that in-
convenience. In other words, that TEXmuse, if it was
only a matter of those advantages, would unfortu-
nately not be the best choice for a musician’s music
typesetting needs. Much more than that is needed
for a system based on plain-text input to compete
with WYSIWYGs, no matter how deficient the latter
are... (and they are).

3.2 WYSIWYM in music?

The reference in the previous paragraph is to the
needs of a musician, as distinct from the needs or
concerns of an engraver proper. A musician does not
need to know, for example, the rules for position-
ing beams, any more than a mathematician needs

5 As Frank Mittelbach pointed out in another talk at this
conference, (I4)TEX has severe limitations in this area (for
example, there’s no way to make a cell span several cells both
horizontally and vertically at the same time). The problem
referred to here is even more immediate and pressing.

6 Of course the problem is not only TEX’s: the same is
true of HTML, for example, or any system that takes what
is inevitably one-dimensional input to manipulate what is in-
evitably two-dimensional output.

TEX and music: An update on TEXmuse

162

to know about the rules governing the positioning
of superscripts. The real test for TEXmuse, or any
system that aspires to being a good choice for musi-
cians (composers, analysts, etc.), is whether or not
it assists the musical mind without imposing con-
cerns that are more typographical, or, even worse,
syntactical, than musical.

For example: when we are in, say, ¢ minor, ev-
ery e is flat by default —that’s part of what ‘being
in ¢ minor’ means. So, in ¢ minor, the musician will
write a scale simply as c-d-e-f-g, even though the e is
actually eb. Requiring the musician to explicitly re-
quest eb is forcing the mind to step outside a purely
musical train of thought: think of a mathematician
having to request explicitly the italics for the let-
ters in the equations. From the typographical point
of view, this is correct: the copyist or engraver, in
music or in math, does indeed go through the extra
step. But from the ‘semantic’ point of view, so to
speak, of someone who is writing down a thought,
this gets in the way. In a sense, those kinds of extra
steps, foreign to the train of thought, are the whole
point of using a computer — rule-based, mechanical,
in principle automatic: isn’t that what the computer
exists for?

It is a priority that the input the user is required
to learn and apply when typing music be as intuitive
as possible: as close as possible to the actual steps
and motions of writing the music by hand. In the
¢ minor example, eb should be simply typed as e
(just as you would write it on paper), the flat being
silently deduced by the engine. It’s not a matter
of ‘what you see is what you mean’, because we do
mean eb although we don’t write it out (or see it) in
full. Rather than WYSIWYM, the paradigm is more
one of ‘what you see is what you’d write’.

Or even more to the point: it’s a ‘dear com-
puter, you know what I mean!” kind of thing. Say
there’s a passage where every entry will consist of
two notes—well, the user should be able to say
\dyads and not worry about grouping every pair
of notes with whatever syntax; if an entry will be
repeated the same way (which happens quite often
in music), shouldn’t we have a shortcut, like using
%7 so that we can type ‘<ceg>%%% and obtain the
same result as if typing ‘<ceg><ceg><ceg><ceg>'?
Not that we want the %-like symbol to be output —
we want to do less typing, and our meaning should
be clear to the computer.

TEXmuse’s command \coll, similarly, permits
constructions like \col1l8b{cdef}, meaning to add

7 A sign resembling the % is widely used informally for
musical repetitions.

Federico Garcia

TUGDboat, Volume 33 (2012), No. 2

a lower octave (‘8va bassa’) to each note—a trick
composers have used in their manuscripts for the
copyists to add the extra note.®

And so on. These are very simple tools to pro-
gram, and they follow naturally from admitting that
horizontal input is, well, a necessary evil, that needs
to be alleviated as much as possible.

The point, however, is that even with a suc-
cessful syntax—one that helps rather than infuri-
ates the user—even then it is legitimate to fear
that TEXmuse, or any system like it, is not a real
alternative for use by musicians... the successful
syntax just means that entering the music won’t be
more annoying than entering it in a WYSIWYG; but
there’s still a long way to go in order to overcome
the structural inconvenience pointed out above, of
not having direct, mouse-click access to each note
in the score.

3.3 Tipping the balance
Consider the following snippet:

GE=—EE

D) r
The three ‘accidentals’ in this example (the sharp f,

the natural f, and the flat b) are all necessary parts of
the pitch specifications; in particular, the second one
cancels the effect of the first one (since in principle
accidentals carry through full measures and there-
fore the original sharp on the a would apply to the
second a as well).

Next, let’s observe that the note with the f and
the one with the b are in fact the same pitch (i.e.,
the same key on the piano). The musical spelling in
the example (the particular choice of af for the first
one and bb for the second) is the correct one mu-
sically: since sharps are generally ‘felt’ to point up
while flats tend to point down, the chosen spelling
makes the notes actually reflect graphically the con-
tour of the melody — a fact that, apart from looking
better, is important semantically as well. Context
matters, however: if the note following the bb was
another b (natural), then the bb should be spelled as
aff (a better way of leading to b); but if the last note
was ¢, then bb would again be the preferred spelling
(even though that flat would lead upwards in that
particular case).

Most music typesetting programs today allow
for ‘MIDI input’, meaning that they can take pitches
in as keystrokes on a musical keyboard plugged into

8 Jtalian coll is an archaic contraction of con il, which
was used since early times in instructions like “coll violino I”
(“with the first violin”). The engraver would then copy the
same music that was in the first violin. “Coll” was later
generalized to other shorthand uses.

TUGboat, Volume 33 (2012), No. 2

the computer. But they don’t have a dynamic inter-
preter that would spell the notes correctly. You can
(with more or less work) set each particular key on
the piano to be spelled one way or another, but that
isn’t good enough: in our example, the two occur-
rences of aff /bb would be spelled both as either bb
or as af, and then you’d have to go back and correct
them.

This is actually only a minor inconvenience, in
part because it’s only one small side of a much big-
ger annoyance. The ‘dynamic pitch interpreter’ that
is lacking here would not only be able to make musi-
cal sense of pitch keystrokes, but, much more impor-
tantly, it would free the user from making spelling
decisions for each context. It’s not simply that the
second-to-last note in the example should be spelled
differently according to what note follows — the pas-
sage can change context in innumerable ways that
would affect spelling;:

e Say a different instrument will join the melody
only starting in the middle: then it doesn’t need
the f, since there’s no f to cancel. A copy-paste
operation in many a program today would in-
correctly include the f.

e Say the composer decided to split the one mea-
sure into two (changing the time signature):
then the f is not technically needed, since a
new measure cancels any previous accidentals.
But in most cases it is a good idea, for clarity’s
sake, to put in the accidental anyway (the so-
called ‘courtesy’ accidental). Many programs
today would simply remove the accidental al-
together, following the technical rule, and once
the composer requests that the accidental be
shown anyway, that decision will apply in any
further use of the music, regardless of whether
the new context requires it or not; and ten the
courtesy accidental will create more, not less
confusion. ..

e Say this line is for clarinet, and since the clar-
inet is a transposing instrument, you’ll have to
transpose it up a whole-tone for the clarinetist
to read. In programs today, you’ll get:

which is completely unacceptable: bfi—cf should
have been spelled c—db.?

9 The problem arises from the fact that the correct bb
transposition is not necessarily always a ‘major second,” but
may actually have to be a ‘diminished third’ in some por-
tions; the two things are equivalent in terms of pitch —key
on the piano—but not in terms of note on the staff. The

163

Because of all these potential problems, experi-
enced music typesetters know that the process of set-
ting a score includes a special step dedicated solely
to proof-read the spelling. Even so, this is the area
of music typesetting that is by far responsible for
most typographical errors found in scores, new or
old.'0

This is a huge issue indeed —the kind of is-
sue that, if solved, would make a program so use-
ful above and beyond WYSIWYGs that it may well
start to compensate for the inconveniences of plain-
text input. TEXmuse has a prototype of a spelling
mechanism that does just this. (And has prompted
several colleagues of mine to ask me regularly, but
especially after struggling to meet deadlines, how
close I am to completing the program so that they
can use it!)

Less ground-breaking but similarly welcome is
TEXmuse’s system of beaming automation that also
takes context in mind. This is not as significant in
terms of a score’s correctness, but it does separate
amateur from professional musical engraving.'!

And another important advantage of TEXmuse:
by deciding on line-breaking and page-layout — this
latter not fully implemented yet—once again ac-
cording to context and without user intervention,
TEXmuse will simplify the handling of the multiple
looks a score takes. Any piece for more than one
instrument consists not only of the general score
(with every instrument in it), but also of the in-
dividual parts (the flutist gets the flute music only,
the oboist the oboe music only, and so on). If, as
in commercial software today, user intervention is
needed to lay the pages out, then that means that
the user will be helping out not with one document,
but with a multitude of them. Spelling creates the
most typos in scores, but it is this process, ‘part ex-
traction’, that consumes most of a composer’s time
these days.

You could say that WYSIWYGs could just add these
functionalities to their engines, and that is true to a
certain extent. But the fact is that these utilities are
actually more at home in an input-compile-output
model than in a GUL. They all depend heavily on

program’s downfall is again the lack of a dynamic, context-
sensitive pitch-to-note interpreter.

101 saw an exercise in a recent conducting class where
students were given one page from a score by Debussy where
they had to find five typos (five!). All the errors (in a score
that is close to 100 years old) were spelling mistakes.

1 The paradigmatic case is a 3/4 time signature, where
beams span across the three beats if there are only eighth-
notes, but should break into beats in the presence of
sixteenth-notes or smaller rhythms.

TEX and music: An update on TEXmuse

164

context, and on the context of the whole piece at
that. With a GUI, automation would mean that
editing (by the user) would create on-the-fly changes
(by the program) that could easily get the user lost.
A spelling mechanism would make notes dance from
spelling to spelling after each new note was input;
every copy-paste would necessitate the computer go-
ing over the full score; every new bar would poten-
tially make you jump to a new line or even a new
page (have you seen Word trying to deal with or-
phans and widows?). TEX, on the other hand, is a
parsing, transformation language that operates on
an input stream: exactly the right environment to
implement the spelling of a melody and the beaming
of a rhythm.

To sum up: by (a) keeping the inconveniences of
plain-text input as minor as possible, and (b) imple-
menting automation and interpretation mechanisms
far beyond present applications, TEXmuse is indeed
promising as a real alternative for high-quality, so-
phisticated, and musical music typesetting.

4 Future directions

The presentation of the current state of TEXmuse
and of music typesetting in general at the 2012 TUG
meeting generated excellent comments. Two major
areas of feedback are particularly significant, and I
would like to mention them as future lines of work.

4.1 TgXmuse and LilyPond

An existing program has been conspicuously absent
from the foregoing— the music typesetting system
LilyPond. Also plain-text-compile-fixed-output, it
stemmed from work on a preprocessor for MusiX-
TEX, MFp, whose author (Jan Nieuwenhuizen) was
concerned not only about providing horizontal in-
put capabilities, but also about the relatively poor
quality of MusiXTEX’s output. In the latter part of
the 1990s, Jan and Han-Wen Nienhuys abandoned
MPp and started work on LilyPond — now a non-
TEX application, but based on TEX (and IXTEX) for
inspiration and approach.

LilyPond today is a complete working system,
well known, with excellent output and an active
community of both users and developers. With a
much more reasonable input system than MusiX-
TEXs, it still fails in meeting the need for input that
is intuitive to a musician—section 3.2 above makes
in fact constant if veiled reference to LilyPond’s in-
put model, attempting an explanation to the ob-
served fact that most musicians who try it find it un-
satisfactory. (Mentioning LilyPond directly would

Federico Garcia

TUGDboat, Volume 33 (2012), No. 2

have been unfair, since on the one hand the points
are of general scope, and on the other these ‘com-
plaints’ are not all there is to LilyPond or all T think
of it.12)

The fact is that LilyPond has essentially solved
the problem of graphically realizing a musical score
that has been encoded in some kind of plain-text
syntax. If, on the other hand, TEXmuse is able to
interpret intuitive input — with a syntax tailored to
composers and allegedly amenable to them —and
from it write METAFONT programs to draw the mu-
sic, could it not write LilyPond programs instead?
That way we don’t have to build METAFONT’s mu-
sical engine from the ground up.

This is an excellent point and working on this
is the most reasonable path to getting TEXmuse to
any degree of completeness in a reasonably short
time. Even if the METAFONT macros will eventu-
ally be fully developed (so we keep the whole pro-
cess within the TEX installation), a ‘lilytex’ package
where TEXmuse uses LilyPond (instead of META-
FONT) is certainly high on the agenda of TEXmuse's
development.

4.2 BTEX3

Some of the modules of TEXmuse, including the sig-
nature automation capabilities, are general-purpose
computer programming, and in developing them in
TEX some of the well-known ‘features’ of TEX have
made their presence felt. \expandafter must be
among the top five command names in occurrence in
TEXmuse’s code. With the ‘coming of age’ of M TEX3
and the update about it at TUG 2012 (by Frank Mit-
telbach and Will Robertson), a new line for future
work on TEXmuse suggests itself: the conversion to
XTEX3’s programming environment expl3. Individ-
ual, self-contained modules (the spelling mechanism,
for example) will be translated into the new lan-
guage, as a way to test the algorithms, have a taste
of expl3, and make TEXmuse an active part of the
most current developments in the TEX world.

¢ Federico Garcia
Artistic Director
Alia Musica Pittsburgh
federook (at) gmail dot com
http://wuw.fedegarcia.net

12 In particular, LilyPond has full beaming automation
(see note 11).

TUGboat, Volume 33 (2012), No. 2

IXTEX3 News

Issue 8, July 2012

Extended floating point support

Bruno Le Floch has been re-writing the floating point
module to function in an ‘expandable’ manner. This
allows floating point calculations to be computed

far more flexibly and efficiently than before. The ex-
pandable nature of the new code allows its use inside
operations such as writing to external files, for which
previously any such calculations would have to be pre-
calculated before any of the writing operations began.
Bruno’s work on the floating point module has been
officially released into the main SVN repository for
13kernel; TEX Live 2012 will contain the ‘old’ code for
stability while this year is spent testing the new code in
production environments and ironing out any wrinkles.
Here’s a neat example as suggested in the documenta-
tion, which produces ‘6.2784 x 102’

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntax0ff

\calcnum {
round (200 pi * sin (2.3~ 5) , 2)
}

This feature is invaluable for simple (and not-so-simple)
calculations in document and package authoring, and
has been lacking a robust solution for many years.
While Lual4TEX can perform similar tasks within its
Lua environment, the floating point support is written
using the expl3 programming language only, and is
thus available in pdfIATEX and XHgIATEX as well.

Regular expressions in TEX

As if expandable floating point support wasn’t enough,
Bruno has also written a complete regular expression
engine in expl3 as well. Many reading this will be
familiar with the quote attributed to Jamie Zawinski:

Some people, when confronted with a problem,
think “I know, I’ll use regular expressions.”
Now they have two problems.

And as humorous as the saying is, it’s still fair to say
that regular expressions are a great tool for manipulat-
ing streams of text. We desperately hope that people
will not start using the regex code to do things like

165

parse XML documents; however, for general search—
replace duties, there’s never been anything like 13regex
for the INTEX world. As a trivial example, there are

23 instances of the word ‘We’ or ‘we’ in this document
(including those two). This value is counted automati-
cally in two lines of code.

And again, it is available for pdfIATEX and XgIATEX
users as well as Lual&4TEX ones; it also bears noting
that this provides an easy solution for applying regular
expression processing to ITEX documents and text
data even on the Windows operating system that does
not have native support for such things.

Separating internal and external code

ITEX packages are written by a wide range of package
authors and consist of code and commands for various
purposes. Some of these commands will be intended for
use by document authors (such as \pbox from the pbox
package); others are intended for use by other package
writers (such as \@ifmtarg from the ifmtarg package).
However, a large portion of them are internal, i.e., are
intended to be used only within the package or within
the IMTEX kernel and should not be used elsewhere.
For example, \@float is the XTEX kernel interface for
floats to be used in class files, but the actual work is
done by a command called \@xfloat which should not
be used directly. Unfortunately the IXTEX 2¢ language
makes no clear distinction between the two, so it is
tempting for programmers to directly call the latter to
save some “unnecessary”’ parsing activity.

The downside of this is that the “internal” commands
suddenly act as interfaces and a reimplementation or
fix in any of them would then break add-on packages as
they rely on internal behavior. Over the course of the
last twenty years probably 80% of such “internal” com-
mands have found their way into one or another pack-
age. The consequences of this is that nowadays it is
next to impossible to change anything in the ETEX 2¢
kernel (even if it is clearly just an internal command)
without breaking something.

In IXTEX3 we hope to improve this situation drastically
by clearly separating public interfaces (that extension
packages can use and rely on) and private functions
and variables (that should not appear outside of their
module). There is (nearly) no way to enforce this with-
out severe computing overhead, so we implement it
only through a naming convention, and some support

IATEX3 News, and the INTEX software, are brought to you by the IATEX3 Project Team; Copyright 2012, all rights reserved.

166

mechanisms. However, we think that this naming con-
vention is easy to understand and to follow, so that we
are confident that this will be adopted and provides the
desired results.

Naming convention for internals

We’ve been throwing around some ideas for this for a
number of years but nothing quite fit; the issue comes
down to the fact that TEX does not have a ‘name-
spacing’ mechanism so any internal command needs to
have a specific prefix to avoid clashing with other pack-
ages’ commands. The prefix we have finally decided

on for expl3 code is a double underscore, such that
functions like \seq_count:N are intended for external
use and __seq_item:n is an internal command that
should not be used or relied upon by others.

All this is well and good, but it can be inconvenient

to type long prefixes such as __seq_ before all com-
mand names, especially in a package for which nearly
all package functions are internal.

We therefore also extended DocStrip slightly by adding
a ‘shorthand’ for internal package prefixes. Commands
and variables in .dtx code may now contain @@ which
is expanded to the function prefix when the .sty file is
extracted. As an example, writing

h<Q@@=seq>
\cs_new:Npn \@@_item:n

is equivalent to

\cs_new:Npn __seq_item:n

TUGhboat, Volume 33 (2012), No. 2

There are clear advantages to this syntax. Function
names are shorter and therefore easier to type, and
code can still be prototyped using the @@ syntax (e.g.,
pasting code between a .dtx file and a regular .tex
document). Most importantly, it is explicitly clear from
the code source which commands are intended to be
used externally and which should be avoided.

We hope that this syntax will prove popular; in our
initial experiments we think it works very well. In fact
we found a good number of smaller errors when being
forced to think about what is internal and what is an
external function.

Continual revolution —the ‘small bang’

In addition to the major additions introduced above,
Frank Mittelbach has been examining expl3 with a
fresh eye to resolve any outstanding issues in the con-
sistency or logic of the names of functions.

We are very mindful of the fact that for people to

find expl3 a useful tool, it must have a stable inter-
face. This said, there are still some musty corners that
we can show where people simply haven’t been using
certain functions. In select cases, we’re re-assessing
whether all of the (sometimes esoteric) odds and ends
that have been added to expl3 really belong; in other
cases, it’s now clear that some naming or behaviour
choices weren’t correct the first time around.

To address this tarnish, we’re carefully making some
minor changes to parts of the expl3 interface and we’d
like to allay any fears that expl3 isn’t stable. The
expl3 language now offers a wide range of functions
plus their variants, and we’re talking about changing
but a very small percentage of these, and not common
ones at that. We don’t want it to become a mess, so we
think it’s better to tidy things up as we go. Follow the
LaTeX-L mailing list for such details as they arise.

IATEX3 News, and the INTEX software, are brought to you by the IATEX3 Project Team; Copyright 2012, all rights reserved.

TUGboat, Volume 33 (2012), No. 2

Preparing your thesis in BKTEX
David S. Latchman

Abstract

The submission of a thesis or dissertation is the cul-
mination of many a graduate student’s career. Given
the time and effort toward research and attaining
their degrees, this can often be a stressful time for
many students. IWTEX offers the advantage of sepa-
rating form from content and as the typical university
thesis class can take care of a university’s format-
ting requirements, this makes a student’s life easier —
well, at least it is supposed to.

Unfortunately, some formatting ‘blends’ into
content thereby adding to the stress of an already
unpleasant task. But there is some light at the end
of the tunnel. With some preparation, typesetting
a thesis in ITEX can be relatively pain-free. But
it’s not just a matter of knowing what packages
but how to use them and what is needed to use
them effectively. Topics covered will include the
typesetting of equations— both mathematical and
chemical — as well as the proper formatting of tables
and bibliographies.

1 The graduate student and BTEX

As a TEX consultant, I often work with graduate
students to help them get their theses and disserta-
tions ready for final submission. For many graduate
students, this marks their first foray into XTEX and
can be, for some, a most stressful experience; the
emotional roller coaster ride of dealing with a review
board notwithstanding. In most cases, the writing
and editing process begins in Microsoft Word and
continues there to the final editing and proofreading
stages, where they are now getting ready to convert
their thesis to I TEX and eventual submission. There
are many reasons why IXTEX isn’t used at the start of
the writing process. Some academic advisers and stu-
dents are simply unfamiliar with IATEX. It can also
be difficult to annotate and track changes in IXTEX.
While many universities have their own thesis
and dissertation class files to automate formatting
of the document itself, class files intentionally fall
short in many ways. Such class files are also de-
signed to meet the needs of as many students as
possible. Students can then add packages in the
preamble depending on their personal needs and re-
quirements. Applied correctly, the right package can
help a student stay focused on writing and explaining
themselves and not on how to format something.
Typically, a student turns to a consultant when
they are unable to compile their document and help

167

is not available. There might be that lone person
in the lab or research group who knows IATEX but
who might not have the time or may be unwilling
to put the effort into correcting errors. Moreover,
consulting with students isn’t just about fixing errors.
After a project is completed, students are going to
continue to make edits. Thus fixing any problems
also means educating clients on how they can do
things better and make their lives easier. Some of
the packages and techniques discussed in this article
are based on past projects I have worked on.

2 A theology dissertation
2.1 Language-specific packages

As a science graduate, I often find humanities projects
interesting as I infrequently have the opportunity to
work in the area. One recent project was a theology
thesis that needed to be converted from Word to
KTEX. By itself, that would have been an interesting
thesis to read —but since it was in German, and I
don’t speak a word of the language I could focus only
on the technical aspects of the project.

ITEX is structured for academic writing. While
authors generally attempt to divide their writing into
chapters and sections in Word, they don’t always
format their document properly by using the appro-
priate headings. This isn’t necessary only for Word
to create a table of contents but for any program to
convert a Word document to BTEX. Once the appro-
priate headings are set, conversion can take place.

While most universities have very strict format-
ting guidelines, in the case of this project there were
none. Some students think of that as a positive, as
it allows the freedom to design and format a thesis
to look as they would like. While that may be true
to some extent, we need to follow some typographic
rules and formatting and not ignore them completely.
I decided on the use of the KOMA-Script package as
it follows European rules for typography and defaults
to ISO A4 sized paper [1]. After an appropriate cover
was designed, I focused on typography.

The KOMA-script package has book, article and
report classes. The DIVcalc option for the scrbook
class allows for the automatic calculation of both
the page margins and text area based on font size.
While it may seem lazy to make the package do
these calculations, it removes the temptation for
users to interfere with the settings of their .tex file.
This can be done by specifying the options in the
\documentclass:

\documentclass[DIVcalc, 11pt]{scrbook}

As the thesis is in German, the babel package was
also needed [2]:

Preparing your thesis in KTEX

168

\usepackage [german] {babel}

This allows KTEX to follow German-specific typeset-
ting rules and ensure proper hyphenation.

The next step is to allow my client to type their
thesis as easily as possible using the text editor of
their choice. Generally, native English writers don’t
have to contend with accented characters and may
forget that they even exist. If we do need them
¥TEX has various commands to produce them. This
is fine for the occasional accented character but it
would be tedious if one is writing an entire report in
a non-English language. As most text editors and
word processors encode text in UTF-8, which includes
characters with accents, we can use the inputenc
package in the document’s preamble to allow an
author to write and edit their thesis as naturally as
possible [3]:

\usepackage [utf8] {inputenc}

We also need to load fonts that will support accented
characters found in European languages:

\usepackage [T1]{fontenc}

With the inclusion of the above packages, a stu-
dent can type and edit the thesis with their favorite
text editor.

2.2 Bibliographies

One of the strengths of IXTEX is its ability to handle
bibliographic data using BIBTEX [4]. English users
generally experience no problems compiling their doc-
uments to produce a bibliography, but non-English
language users are not always so fortunate. BIBTEX
was first released in 1988 and predates the advent
of Unicode. Thus, it does not support files encoded
in UTF-8, the default file encoding on most modern
OSes. While it is possible to recode a .bib file into
something that BIBTEX can understand, this may be
a complex task for a non-computer-savvy first-time
IATEX user. A solution should always allow someone
to compile their thesis with little to no effort.

IXTEX does offer some solutions to this problem;
the one that stands out for me is the BIBIATEX pack-
age. BIBIATEX has several advantages over BIBTEX.
For one, it can handle files that are encoded in UTF-8.
While BIBIATEX has suffered from a lack of biblio-
graphic styles in the past, this has changed in recent
times. For German humanities students, we now
have the biblatex-fiwi package [5]:

\usepackage [style=fiwi] {biblatex}

Using the BIBIATEX package is slightly different
from using BIBTEX. We still need the .bib file where
the bibliographic data is stored:

David S. Latchman

TUGDboat, Volume 33 (2012), No. 2

©@BOOK{KR,
AUTHOR = "Kernighan, Brian W. and Ritchie, Dennis
M.",
TITLE = "{The C Programming Language Second
Edition}",
PUBLISHER = "Prentice-Hall, Inc.",
YEAR = 1988
}

To incorporate a bibliography with BIBIATEX:

\documentclass[DIVcalc, 11pt]{scrbook}
\usepackage [german] {babel}
\usepackage [utf8] {inputenc}

\usepackage [T1]{fontenc}

\usepackage [style=fiwi] {biblatex}
\bibliography{refs}

\begin{document}

A1l works should be properly cited”\cite{KR}.

\printbibliography
\end{document}
In BIBTEX, the \bibliography command serves two
purposes: it controls where the bibliography appears
in the text and specifies the file containing the bib-
liography information. With BIBIATEX, however,
the \bibliography command just reads the file and
appears before the \begin{document} environment
while the position of the \printbibliography com-
mand controls where the bibliography appears.
BIBIATEX also makes compiling the thesis easier.
With BIBTEX, WTEX (here, pdflatex) has to be run
twice after bibtex:

pdflatex mythesis.tex
bibtex mythesis.aux

pdflatex mythesis.tex
pdflatex mythesis.tex

With BIBIATEX, it only needs to be run once:

pdflatex mythesis.tex
bibtex mythesis.aux
pdflatex mythesis.tex

3 Publication-quality tables

Proper formatting of tables is another task I look at.
Tables feature mainly in the sciences and engineer-
ing and may be infrequently seen in the humanities.
Nonetheless, proper formatting is important. A prop-
erly formatted table organizes and displays data in
rows and columns and should make it easy to look
up values.

For many people, the standard practice is to
design tables in Excel or some other spreadsheet pro-
gram and translate this into M TEX. Unfortunately,
this often leads to poor table design. It may come
as a surprise to some, but there are rules for proper
table design which have been established for cen-
turies [6]. Proper table design can be an art in itself,
but the fundamentals are easy to follow. They are:

TUGboat, Volume 33 (2012), No. 2

Parameter (Units)

Estimate (% RSE)!

Vi (mL/kg) 48.6 (18.0)
Ko (1/day) 232 (5.51)
K12 (1/day) 3.76 (15.3)
Ko (1/day) 10.8 (28.4)
F, 0.242 (4710)
Frosal 0.339 (15.0)
K, (1/day) 18.9 (11800)
K (1/day) 19.6 (164)

! Relative standard error of estimate (standard error
divided by estimate), presented as a percentage

(a) Standard BTEX table

Parameter (Units)

Estimate (% RSE)'

Vi (mL/kg) 48.6 (18.0)
Ko (1/day) 232 (5.51)
K12 (1/day) 3.76 (15.3)
Ko (1/day) 10.8 (28.4)
F, 0.242 (4710)
Frosal 0.339 (15.0)
K, (1/day) 18.9 (11800)
K (1/day) 19.6 (164)

! Relative standard error of estimate (standard error
divided by estimate), presented as a percentage
(b) Table using the booktabs package

Figure 1: A table using IXTEX vs. booktabs.

1. Avoid use of vertical lines,

2. Avoid double horizontal lines,

3. Always place the units in the heading of the
table instead of the body, and

4. Do not use quotation marks to repeat the con-
tent of cells.

Once a table has been edited to conform to the
above rules, I include the booktabs package [7].

\usepackage{booktabs}

This package increases the vertical spacing between
lines, increasing the white space in the table which
allows data to be found and read easily.

We can see the differences between the two ta-
bles. The bottom table has more space between lines.
This improves readability as the eye can follow a line
more easily. This is an easy fix that makes a thesis
look noticeably better.

4 Breaking equations

Sometimes students in the sciences and engineering
are faced with the challenge of dealing with equa-

169

tions that span more than one line. The collection
of AMS-ETEX packages allows for the typesetting
of multi-line equations with the align, split and
gather environments. While these packages can and
do work, they all require equations to be broken man-
ually. This poses a problem as breaks are sensitive
to changes in fonts, column width and various other
edits in the equation itself. Ideally a solution should
exist that allows TEX to automatically break equa-
tions and allow students to focus on the process of
writing their thesis.

The equation shown (fig. 2) appears in a bio-
physics thesis on the effects of drugs on cancer growth.
We can see in fig. 2(a) that there are several prob-
lems with using the align environment to manually
break equations as the \left and \right delimiters
for parentheses do not span lines. This has the effect
of parentheses with different sizes on different lines.
While it is possible to manually adjust the size of
the parentheses, this means that considerable effort
and attention must be given to equation editing.

One solution to this problem is the breqn pack-
age, which supports automatic line breaking [8], as
seen in fig. 2(b). Usually, when edits have been
made to equations, attention must be paid to care-
fully check that equations have been typeset properly.
By allowing the package to handle equation break-
ing and formatting, students can focus on editing
and writing their thesis. (The dmath environment
is just like the equation environment except that it
supports line breaking.)

5 Nitrogen isotopes and technical editing

Another project I worked on was a thesis that focused
on the nitrogen isotope cycle in the Arctic. Nitrogen
and its compounds cycle through the planet and the
rates at which the various isotopes do so differ from
each other. By tracking the differences in cycle rates,
scientists can better understand the implications for
climate change. This was a technical editing project
and I needed to ensure that physical quantities and
chemical equations were entered correctly. As these
featured heavily in the thesis, an easier solution for
both me and my client was needed.

Physical quantities comprise a number and an
associated SI unit (Systéme International d’Unités)
and chemical equations are symbolic representations
of chemical reactions from beginning to end. Both
can be entered in IMTEX by entering math mode but
this poses problems — starting with editing. While
entering equations in TEX is intuitive, this is only
applicable to mathematical equations and one has to
literally enter an SI unit or chemical equation as a
mathematical equation which brings us to the next

Preparing your thesis in KTEX

170

\begin{align*}

TUGDboat, Volume 33 (2012), No. 2

\frac{d}{dt}\ApopSig(t) &= K_{\inApop,\UpSig} \cdot \UpSig(t) \cdot \\

&\left(1 - \right.\\

& \left.\frac{\ProSrvlSig(t)}{IC_{50,\ProSrvlSig} + \ProSrvlSig(t)} \right) \\

& - K_{\outApop} \cdot \ApopSig(t)

ProSrulSig(t)
IC50, Prosruisig + ProSrulSig(t)

\end{align*}
d . .
%ApopSZg(t) = KinApop,Upsig : UpSZg(t)'
(1-
- KoutApop : APOPSW(t)
(a) Less than ideal line breaking using the align environment
\begin{dmath*}

\frac{d}{dt}\ApopSig(t) = K_{\inApop,\UpSig} \cdot \UpSig(t) \cdot \left(1 -
\frac{\ProSrv1Sig(t)}{IC_{50,\ProSrvlSig} + \ProSrvlSig(t)} \right)

- K_{\outApop} \cdot \ApopSig(t)
\end{dmath*}
d) ‘
%Apopsqu(t) = KinApop,Upsig . UPSZg(t) |1

- KoutApop : ApopSig(t)

ProSrvlSig(t)
ICs0, prosruisig + ProSrulSig(t)

(b) Much better line breaking using the breqn package

Figure 2: Equation breaking using align vs. breqn.

problem, that of consistency. Typesetting equations
has its own set of rules from the spacing between
numbers and variables to how superscripts and sub-
scripts are placed. A writer or editor will always
have to keep these typesetting rules in mind. A solu-
tion to these problems is to utilize the siunitx and
mhchem packages [9, 10].

5.1 SI units

Entering physical quantities in X TEX can be some-
thing of a challenge as the subscript and superscript
operators are only available in math mode. Thus,

This is my 1°{st} article in a TUG journal.

will result in an error and not compile. Of course, one
can simply enter math mode to write in superscript
but we are then faced with the problem of the text
being in (math) italics.

This is my 1$"{st}$ article in a TUG journal.

becomes
This is my 1°¢ article in a TUG journal.

This particular case doesn’t look too bad but the ital-
icization can be a problem when typesetting physical
units. To solve this, we can enter math mode, print
text and then leave math mode.

This is my 1$"{\textrm{st}}$ article in a TUG
journal

David S. Latchman

(\ApopSig, etc., just typesets \mathit{ApopSig}).

becomes
This is my 15 article in a TUG journal.

This looks better and works when typesetting physi-
cal quantities. While this may be easy for one or two
cases when one needs to typeset physical quantities,
it can become difficult to maintain consistency during
the writing and editing process for many units and
troubleshoot problems when they do arise. Consider:
The acceleration due to Earth’s gravity, g,
is $9.81\, \textrm{m}\,\textrm{s}~{-2}$.
becomes
The acceleration due to Earth’s gravity, g, is
9.81ms~2.

The siunitx package provides users with the tools
to typeset numbers and units in a way that is both
consistent and easy. Each unit is defined by its
own macro. When typing a physical quantity, one
enters the information syntactically and this makes
for much easier editing without the need to constantly
compile to see and verify output.

The siunitx package can be loaded with the
\usepackage command as usual:
\usepackage{siunitx}

Typesetting SI units then becomes simple. The \SI

macro allows a writer to enter a number with its
physical quantity. Thus:

TUGboat, Volume 33 (2012), No. 2

The acceleration due to Earth’s gravity, g, is
\SI{9.81}{\meter\per\second\squared}.

As we can see, this package allows for physical quan-
tities to be written as they are said in day-to-day
language. This makes for much easier writing as well
as proofreading and editing.

5.2 Chemical equations

Many of the same problems that exist with typeset-
ting and editing physical quantities in IBTEX also
exist with chemical equations. One can manually
enter math mode, typeset a chemical equation us-
ing TEX’s mathematical notation and then leave
math mode. To solve some of these problems and
make editing and proofreading easier, I turned to the
mhchem package. This allows for chemical equations
and symbols to be typeset easily.

The biggest plus of the mhchem package is that
the notation is both easy to read and write. It is much
easier to type the chemical notation for phosphoric
acid as H3P04 than H_3P0_4. The former is typi-
cally used in email communication when discussing
chemical equations and reactions and is thus a more
natural form of expression. The mhchem package uses
this form of notation. Instead of using mathematical
notation to write phosphoric acid, we can write the
chemical as:
$\ce{H3P04}$

which gives H;PO,. As the package does all of the
heavy work, this means neither the author nor edi-
tor has to think about formatting. This makes the
writing and editing process much easier.

The true strength of the mhchem package comes
from entering and typesetting chemical equations. In
math mode, the chemical equation for photosynthesis
would be written as
$6\, \mathrm{C0}_2 + 6\,\mathrm{H}_2\mathrm{0} \

xrightarrow{\textrm{light}} \mathrm{C}_6\mathrm{

H}_{12}\mathrm{0}_6 + 6\,\mathrm{0}_2$
As we can see, this is not only difficult to write but
read as well. Instead, we can write
\ce{6C02 + 6H20 ->[\text{light}] C6H1206 + 602}

which is a much more natural representation of

light
6CO, + 6 H,0 —25% CgH,,04 + 60,

This is much easier to read, edit and check for prob-
lems and can be entered in either math mode or text
mode.

6 Conclusion

The packages mentioned are by no means a compre-
hensive list of the packages that a student should
use but rather highlight how appropriate choices can

171

make writing and editing a thesis easier and allow
for consistent typesetting. This means that a thesis
doesn’t just read well but also looks good. Univer-
sity thesis and dissertation class files are designed
to fit the needs of as many students as possible and
it would be impossible to include all the packages
that every student could conceivably need. To do so
would make a class file unreasonably large and make
it more difficult to maintain.

The advantage of a minimalist design or includ-
ing the packages that most students need is that
packages can be added by students depending on
their needs. It would be best for students to take the
time to acquaint themselves with the various ITEX
packages available and how they can best use and
take advantage of them to make the eventual writing
and editing process easier. But for first-time INTEX
users, this may be an intimidating task; not only
must they learn how to use IMTEX but they must also
select the “right” packages they need. If possible,
it may be best to seek the advice of a more experi-
enced IXTEX user who can offer advice on how best
to prepare the packages to be used in the document’s
preamble.

In the absence of such an expert, academic de-
partments can help their students by compiling how-
to lists of the most commonly used packages to be
published on the department website or be given
along with the university’s formatting requirements.
This should help students be better prepared to focus
on the task of writing and publishing their research
and hopefully, eventually graduating.

Bibliography

[1] Markus Kohn, Jens-Uwe Morawski, Frank Neukam,
and Axel Kielhorn. The Guide: KOMA-Script, 2012.

[2] Johannes Braams. Babel, a multilingual package for
use with BTEX’s standard document classes, 2011.

[3] Alan Jeffrey and Frank Mittelbach. inputenc.sty,
2008.

[4] Philipp Lehman, Audrey Boruvka, Philip Kime, and
Joseph Wright. The BIBEMTEX Package, 2012.

[5] Simon Spiegel. Der biblatez-fiwi-Stil, 2011.

[6] Stephen Few. Show Me the Numbers: Designing
Tables and Graphs to Enlighten. Analytics Press,
Oakland, Calif., 2004.

[7] Simon Fear. Publication quality tables in BTEX,
2005.

[8] The breqn maintainers. The bregn package, 2012.

[9] Joseph Wright. siunitr — A comprehensive (SI)
units package, 2011.

[10] Martin Hensel. The mhchem bundle, 2011.

¢ David S. Latchman
texnical dot designs (at) gmail dot com

Preparing your thesis in KTEX

172

A university thesis class:
Automation and its pitfalls

Peter Flynn

Abstract

Despite the number of thesis classes available, there
are always features that can better be met by writing
Yet Another Thesis Class. There are also variations
in the documentation, assumptions about preloaded
packages, and the extent to which the author can
modify the layout.

In the case of UCC, the official requirements
were very simple, avoiding the tendency to over-
specify detail. The class was required to be usable
in any discipline, so preloaded packages were kept to
a minimum.

The class attempted to automate as much of the
front matter as possible, based on the class options,
to avoid unwanted variations in the metadata; and
to ensure that the required components appeared
in the right place without the author having to do
anything.

The result has been piloted with 20-30 PhD
candidates for a year, and now needs only a few final
changes before release. Two other institutions in the
state have already expressed an interest in basing
their own thesis classes on this one.

A summary of some of the points covered here
was published in a recent TUGboat [3]. Recommen-
dations on how to actually write a thesis are covered
in the companion paper to this [5] and in an earlier
summary [2].

1 Yet Another Thesis Class

A recent retrieval from CTAN! shows 42 thesis or
thesis-related packages currently available for IMTEX
(see Figure 1). These are almost all institution-
specific, and implement a wide variety of rules and
restrictions which fall into five broad groups:

title page metadata;

sequencing of preliminary pages;
wording of formal declarations;
formatting and layout;

markup abbreviation and shortcuts.

The level of detail required by each institution
varies so widely that using a thesis class from else-
where usually means some re-configuration and re-
programming, which may be beyond the skills of the
author. In some cases there is extensive documen-
tation and an example thesis document; in others

1 Scripted with the assistance of dog, tidy, and lzprintf,
thanks to the robustness of the directory and link structure
implemented by the CTAN team.

Peter Flynn

TUGboat, Volume 33 (2012), No. 2

adfathesis Australian De-
fence Force Academy
thesis format.

afthesis Air Force Institute
of Technology thesis
class.

beamer2thesis Thesis
presentations using
beamer.

classicthesis A ‘classically
styled’ thesis package.

ebsthesis Typesetting the-
ses for economics.

elteikthesis Thesis class
for ELTE University
Informatics wing.

fbithesis Computer Science
thesis class for Univer-
sity of Dortmund.

gatech-thesis Georgia In-
stitute of Technology
thesis class.

hepthesis A class for aca-
demic reports, espe-
cially PhD theses.

jasthesis A ‘standard’ thesis
class.

jkthesis Document class for
formatting a thesis.

msu-thesis Class for Michi-
gan State University
Master's and PhD
theses.

muthesis Classes for Uni-
versity of Manchester
Dept of Computer
Science.

pitthesis Document class
for University of Pitts-
burgh theses.

pittetd* Electronic Theses
and Dissertations at
Pitt

psu-thesis Package for writ-
ing a thesis at Penn
State University.

ryethesis Class for Ryerson
Unversity Graduate
School requirements.

sapthesis Typeset theses
for Sapienza University,
Rome.

seuthesis IATEX template
for theses at Southeast-
ern University.

suthesis Typeset a Stanford
University thesis.

thesis Typeset thesis.

thesis-titlepage-fhac
Little style to create
a standard titlepage for
diploma thesis.

thuthesis Thesis template
for Tsinghua Univer-
sity.

uafthesis Document class
for theses at University
of Alaska Fairbanks.

ucdavisthesis A the-
sis/dissertation class
for University of Cali-
fornia Davis.

ucthesis University of Cali-
fornia thesis format.

ucthesis209 IATEX 2.09
document style for UC
theses.

uhthesis University of Hous-
ton thesis document
style.

uiucthesis UIUC thesis
class.

umich-thesis University of
Michigan Thesis IATEX
class.

umthesis Dissertations at
the University of Michi-
gan.

unamthesis Style for Uni-
versidad Nacional
Auténoma de México
theses.

unswthesis UNSW theses.

uothesis Class for disserta-
tions and theses at the
University of Oregon.

uowthesis Document class
for dissertations at the
University of Wollon-
gong.

uscthesis USC thesis style
for IKTEX 2.09.

utorontothesis A thesis
class definition for
University of Toronto.

utthesis Thesis package for
the University of Texas
at Austin.

ut-thesis University of
Toronto thesis style.

uwthesis University of
Washington thesis
class.

uwthesis209 IATEX 2.09
style for University of
Washington theses.

withesis University of
Wisconsin-Madison
Thesis IKTEX Class.

york-thesis A thesis class
file for York University,
Toronto.

* There are potentially many other non-CTAN classes in Electronic
Thesis and Dissertation (ETD) sites worldwide.

Figure 1: Thesis and thesis-related packages available

from CTAN as of May 2012

TUGDboat, Volume 33 (2012), No. 2

there is very light formatting and specification, and
authors are left to modify the document as they see
fit.

In the present case, there were other require-
ments which led to the decision to write a local
thesis class rather than modify an existing one:

e the class had to be usable by all disciplines, not
just those in which IXTEX has traditionally been
used the most;

e it had to automate (where possible) those areas
where the author would not in any case have a
choice;

e it had to allow for the writing of a thesis in the
Irish language.

Some guidance was available in the form of the the-
sis requirements published by the university. I am
indebted to the staff of the Registrar’s Office, the
Graduate Studies Office, and the Boole Library; to
the individual colleges, departments, faculties, and
schools; and to students and other users for all their
comments and suggestions.

2 Building the thesis class

We took an early decision to base the class on the
standard report class because it appeared to be the
one most familiar to existing users for writing theses.?
This also meant we could adopt (or in some cases,
prohibit) existing class options.

Among the suggestions we received in feedback
from users (when we discussed developing a thesis
class), was to keep it simple and make it obvious.
We interpreted this to mean that we should as far
as possible keep the existing meanings for existing
commands and environments, and not introduce new
ones which were not easily memorable.

Other suggestions included adding optional ar-
guments to certain commands for features which were
very frequently used, as repeatedly having to specify
something manually was seen as part of the tedium
of using TEX by users who lacked the programming
skills needed to write their own macros.

2.1 Title page metadata

This is often technically one of the simplest parts
of a document class design, but it has an impact
out of proportion to its position. It is, after all, just
one page in a document that will run to hundreds
of pages, but it is the first page people see, and the
first place that critical eyes will look for errors. It
is also hard to convince new postgraduate students

2 Users later reported the most compelling reason was that
the report class supports the abstract environment, which
the book class does not.

173

Human Interfaces
to Structured Documents

The usability of software
for authoring and editing

Peter Flynn
MA
102229277

NATIONAL UNIVERSITY OF IRELAND, CORK

SCHOOL OF APPLIED PSYCHOLOGY

DEPARTMENT OF APPLIED PSYCHOLOGY

Thesis submitted for the degree of
Doctor of Philosophy

31 December 2012

Supervisor: Dr Jurek Kirakowski
Head of Department/School: Prof John Groeger

Research supported by Silmaril Consultants

Figure 2: Title page layout for the UCC thesis

that they do not have much choice in how this page
is laid out.

The current layout (see Figure 2) is vertically-
and horizontally-centred, and contains conventional
metadata:

e title and subtitle;

e author and [optional] registration number and
qualifications;

institutional identity (crest® and name);
divisional identity (college, school, etc);

class of degree;

date;

names of supervisors and head of discipline.

The only less conventional addition was the acknowl-
edgement of a sponsor — this is commonplace in the
Acknowledgements, but its appearance on the ti-
tle page is becoming a condition of some funding
agencies. There is provision for the numbering of
multi-volume theses with a \volume command, but

3 The crest is a character in a METAFONT font which was
drawn for us by Jeremy Gibbons in 1989, and is only accessible
for download locally.

A university thesis class: Automation and its pitfalls

174

\documentclass[apsych,phd, 12pt]{uccthesis}
\usepackage{palatino}
\begin{document}
\title{Human Interfaces

\\to Structured Documents}
\subtitle{The usability of software

\\for authoring and editing}

\author [102229277]{Peter Flynn}
\qualifications{MA}
\department{Applied Psychology}
\professor{Prof John Groeger}
\supervisor{Dr Jurek Kirakowski}
\sponsor{Silmaril Consultants}
\date{31 December 2012}
\maketitle

\end{document}

Figure 3: Commands for the title page metadata

I am informed by the Graduate Studies Office that
multi-volume theses are a great rarity nowadays.

Because of complexities in the university struc-
ture, we had decided to enforce the discipline and
degree options in the \documentclass command,
rather than allow authors to name their affiliation
in an uncoordinated manner. This enabled us to
use the information before anything else, to set the
string names for the faculty (college) and depart-
ment (school) and the bibliographic reference format
prevalent in the discipline. The remaining metadata,
therefore, is given with conventional commands as
shown in Figure 3.

The \title, \author, and \date are standard;
the remainder were added with the commonly-used
method of defining an internal command default
which is then redefined when the author uses the
equivalent external command, for example:

\def\@subtitle{\relax}
\newcommand{\subtitle}[1]1{%
\gdef\@subtitle{#1}}

We can then test the internal commands for equality
to \relax during the processing of \maketitle to
see whether or not the metadata commands were
used, so that their absence can be accommodated
in the spacing or replaced by warning messages, for
example:

\if\relax\@subtitle
\else{\large\@subtitle\par}\fi

\if\relax\@professor You need to give the
name of your head of discipline
\else\@professor\fi

Peter Flynn

TUGboat, Volume 33 (2012), No. 2

All the additional commands are given defaults or
warnings in this way, so that a beginner accustomed
only to \title, \author, and \date (or a user who
has not Read The Fine Manual) will not be faced
with BTEX errors.

2.2 Sequencing of preliminary pages

The university rules require only that the Table of
Contents comes immediately after the title page.
Because the underlying report is invoked with the
oneside option, there are no blank pages. The
\tableofcontents command is therefore contained
in the \maketitle command, so that it cannot be
omitted or moved.

The List of Figures and List of Tables are also
in the \maketitle command, but as the class must
also be usable in disciplines where there may be no
tables or figures at all, the need for these lists is
determined by two Boolean switches:

\iflof\listoffigures\fi
\iflot\listoftables\fi

These are set to false at the end of the document if
there were no figures or tables, using global counters
defined in the table and figure code, and written
to the .aux file, where they will take effect on the
subsequent run:

\ifnum\c@totfigure=0 \write\@mainaux{}
\string\global\string\loffalse}\fi

\ifnum\c@tottable=0 \write\@mainaux{%
\string\global\string\lotfalse}\fi

However, there are also class options nolot and
nolof which will prevent the LoT or LoF being used
even when tables and figures are present—when
there are only one or two tables or figures in use, a
formal list may not be wanted.

The compulsory formal Declaration that this
work is the student’s own is also produced automati-
cally as part of the \maketitle command, after the
ToC (and LoF and LoT, if present), set centred on a
page to itself.

No other declaration is required by the univer-
sity, and it is not usual for copies of any of the forms
signed by the supervisor or Extern to be included,
but these could clearly be implemented at the same
point by the same method if needed.

A considerable number of students require pre-
liminary (unnumbered) sections, before the thesis
proper starts with the first part or chapter. These
are needed to hold explanatory material such as an
Introduction, a list of materials, or tutorial matter
on a special topic. While this could be done with a
\section* command, a new \prelim command was
created to ensure a page-break beforehand, and to

TUGDboat, Volume 33 (2012), No. 2

create an entry in the ToC which would otherwise
be absent.

The abstract environment was also changed to
use this \prelim so that it too would occupy a page
to itself (the Abstract is limited by the rules to 300
words).

In addition, two new environments were created,
dedication and acknowledgements; the first sets
the content centred on a page by itself; the second
just uses the \prelim command to title the Acknowl-
edgements. The rules do not specify an order for
the Abstract, Dedication, Acknowledgements, or any
other prelims.

No decision has been taken about the position of
glossaries: these are not mentioned in the rules, and
while the glossaries package is recommended, there
is no compelling evidence one way or another for its
placement either here or at the end of the document.

2.3 Formatting and layout

The current rules [7] are very undemanding in this

regard:
The text must be either printed, typewritten or
otherwise reproduced on good quality size A4
paper, with a left-hand margin 4 cm. Double or
one and a half spacing is recommended. Copies
must be bound or otherwise securely fastened
and numbered consecutively, page numbers to be
located centrally at the bottom of the page.

No mention is made of the other margins, or of the
typeface or size, or of the format of bibliographic
references, so some unilateral decisions were made
(the handling of bibliographic formats is dealt with
in §3).
e The top and bottom margins are set to 3cm and
the right-hand (foredge) to 2.5cm;

e The typeface defaults to Computer Modern;
e The body size defaults to 11pt;

e The setspace package is used to set the default
to 11/2 line-spacing — some leading would in any
case have been needed for 11pt type on lines
this length;

e Page numbering uses roman numerals from the
title page to the beginning of the first part or
chapter, at which point it restarts in arabic
numbers.

After some discussion locally and on comp.text.tex,
we decided to make the default document setting
\raggedright. This was partly because it helps
avoid H&J problems, especially in the natural sci-
ences where very long words are more frequent; partly
because a thesis is not a professionally-typeset publi-
cation like a book, and does not appear to benefit

175

greatly from justification; and partly because ragged-
right setting improves readability on a page width
with relatively long lines.

However, as \raggedright also turns off para-
graph indentation, the parskip package is used to
add space between paragraphs. This layout is in
fact expected by students whose experience to date
has been restricted to wordprocessors, where it is
conventional to use an empty paragraph between
paragraphs to simulate paragraph-spacing. Two ex-
tra options, justified and indented can be used
to restore the state to book-style.

Running headers and footers were implemented
with the fancyhdr package, to provide navigational
detail from \leftmark and \rightmark without the
capitalization used in the default classes (this proved
remarkably difficult to defeat), and with the use of
an \hbox in the definitions to allow long titles to be
line-wrapped. In draft mode, the footer also provides
the \jobname and a timestamp.

Some minor changes included more space above
and below captions; the enforcement of the rule for
caption positions (Tables: above, Figures: below) by
restyling floats with the float package;* the allocation
of more space to the page number in the ToC, LoF,
and LoT; and the reassignment of wider values to the
page-fractions for floats, along the lines suggested in
the TEX FAQ [1].

Two minor changes are made to the default lay-
out of block quotations and description lists (below),
but all the remaining parts, chapters, sectioning, lists,
and other structural elements behave and appear as
usual in a ITEX document. The \usepackage com-
mand can be used in the normal way: a list of the
packages already in use is contained in the class
documentation.

2.4 Markup abbreviation

No attempt was made to abbreviate any of the com-
mands: although students do this frequently for their
own pattern of usage, I have not been able to see
any common methods. There are a few conven-
tions in some disciplines for short-name macros for
commonly-occurring constructs, and authors are free
to use them. However, as mentioned earlier, some
frequently-occurring constructs were found to ben-
efit from a small amount of automation, the most
important of which is the block quotation.

2.5 Quotations

The KTEX default for quotations is unusual, in that
it does not make the type size smaller, nor does it

4 This has the (possibly) useful side-effect of allowing the
[H] positional specifier.

A university thesis class: Automation and its pitfalls

176

1. BACKGROUND, SCOPE, AND METHODOLOGY 1.1 Background

for them. In effect, it is its own markup, saying ‘Message for you’ or ‘Don’t
forget...”. But it is also available in white, preprinted with ‘Phone Message’,
and with fields for the caller’s name, number, date, time, and topic. The first is
markup-free and has universal applicability. The second is for a special
purpose, and the markup has been designed to prompt the writer not to forget
key information.

Given the seemingly unattainable nature of fully re-usable markup,
considerable attention has been paid to the use of logic, heuristics, and
statistics to automate the process (Kelly & Abrahamson, 1991; Taghva, Condit,
& Borsack, 1995; Abolhassani, Fuhr, & Gévert, 2003). However, while systems
have been developed for ‘vertical’ applications such as news article markup
(Haake, Huser, & Reichenberger, 1994), to date there is no general-purpose
system available to implement the techniques for an arbitrary range of
documents.

It is nevertheless true that there is usually some degree of structure evident
within even simple documents, such as a blank line or indentation to indicate
a new paragraph, or a large font to indicate a heading, and it is possible to
develop ad-hoc systems using simple toolsets such as the Unix text tools to
impose rudimentary but sufficient markup to enable documents to be opened
in an XML or BTjX editor, and leave the finer detail to human editing.
Interpreting in any greater detail the arbitrary and inconsistent nature of
manually-applied formatting and layout, given its high level of
context-dependency, remains a subject for further work in the field of
Information Retrieval. As some of the authors above remarked:

Further, all these heuristics become useless and the difficulties we have

mentioned multiply, if the device fails to zone a page properly. For

example, the title-finding module will not find the title if, in a two column

document, its zoning order follows the first column of text. This may

oceur if a document's title is right justified; also, if a floating object is

zoned improperly, any object recognized by Autotag may be identified

incorrectly. Proper zoning is a prerequisite for correct Autotag output.

(Taghva et al., 1995, p325)

(We identify in section 4.3.4.1 on page 220 a related problem with the use of
Named Styles when dealing with wordprocessor document.)

‘While physical structural simplicity may be evident in some classes of

documents (novels, for example), at the opposite extreme there are a number

Draft: thesis 13 2012-05-27T00: 16:00

Figure 4: Default page layout for the UCC thesis

defeat indentation on the first line, both of which
are established conventions.® In academic work, a
block quotation also usually requires a citation.

To implement this, the quotation environment
was modified to change the size and start with a
\noindent; and to take an argument, the BIBTEX
key of the cited passage. This enables the quotation
to be set with a right-aligned citation immediately
below. Although such a citation would be compul-
sory, it is currently defined as optional in order for
its presence to be tested, and to allow for uncited use
where the context already makes the origin obvious.
However, if an optional argument such as this is to
contain page or chapter references, which are them-
selves optional to the \cite command, additional
armour is required:

\begin{quotation}[{[p.36]{smith92}}]

In response to user requests for an Epigraph at the
start of chapters, an epigraph environment was cre-
ated, in the same way as the modified quotation
above. This has two arguments, however: a compul-

5 I have never been able to find a use for the quote envi-
ronment, so the use of quotation is recommended to authors.

Peter Flynn

TUGhboat, Volume 33 (2012), No. 2

sory one for the BIBTEX key, but if the citation is to
be informal and non-rigorous, that argument can be
empty, and the optional argument can be used, for
example:

\begin{epigraph} [Popular saying]l{}

In both cases this is cumbersome and needs regular-
ising, so a future version will probably use the xargs
package to handle the additional metadata.

2.6 Description lists

A frequent annoyance for users is the inability of
the label argument to an \item in the description
list environment to be broken at line-end when it is
very long. The default formatting is also unusual
compared with modern practice of setting the label
value on a line by itself (as with the default format-
ting of HTML’s <dt> element type). A number of
alternative formats from the IWTEX Companion |[6]
have been tried, but no final decision has been taken
on this yet.

3 Adherence to university structure

The university is currently in transition from the tra-
ditional hierarchical Faculties and Departments to a
more fluid structure of Colleges and Schools. As a re-
sult we have a complex and overlapping transitional
organisation in which disciplines are being merged,
split, and renamed. In order to ensure that the cor-
rect names are used, the author’s affiliation and class
of degree must be given as class options, rather than
as free text in the argument of a command. This also
avoids misspellings, and the unfortunate tendency
of some students to represent the discipline in terms
other than the official ones. With the imminent ar-
rival of electronic submission, where the name of the
discipline or school will be part of the PDF metadata,
regularity is becoming more important.

In creating these options, it became clear that
other data could also be keyed to it, in particular the
bibliographic reference format required for each disci-
pline. As a result, selecting an affiliation option now
both sets the correct naming and presets the .bst
file (and any associated .sty file) for the discipline.

As there are currently 87 options for affiliation
and 92 for class of degree, this method would have
been unworkable in terms of manual maintenance.
Fortunately, the class was developed using an XML-
based methodology which generates the .dtx and
.ins files, so the relevant string names and tokens
could simply be transformed from an annual XML
extract from the databases maintained by the uni-
versity administration. In any case, if and when the
transitional phase of restructuring is completed, the

TUGDboat, Volume 33 (2012), No. 2

class interface will be updated to use a key/value
syntax rather than 179 separate options!

4 Testing, feedback, and adoption

Informal testing was initially carried out by use in my
own thesis, but was extended to drafts provided by
students who came looking for help with IXTEX for-
matting. Discussions were held with the Registrar’s
Office and the Graduate Studies Office to ensure that
the layout implemented conformed to the rules.

In January 2010, an early version of the XML-
generated class was made available locally for down-
load [4], and over the course of 18 months about 45
students used it for their theses, reporting bugs as
they were discovered.

The feedback was largely positive, and the au-
tomation of the title page and prelims was seen as
a major benefit. The most useful feedback came as
bug reports, and led to a spate of updates over the
next six months as various solutions to errors were
tested and implemented.

Some unresolved issues remain:

e separate options for the disciplines and classes
of degree need to be replaced by key/value pairs;

e glossaries appear to be much more common than
was previously envisaged;

e the formatting problems of description lists re-
main unresolved;

e the debate continues over the default unindented,
paragraph-spaced, ragged-right setting vs justi-
fied and indented setting;

e the identification of the ‘right’ bibliographic ref-
erence format for each discipline is problematic.
An enquiry among colleagues representing each
discipline provided only a 20% response, so there
is a lot more data to collect (the default has
been set to Harvard). A few disciplines have
two common formats — physics, for example, al-
lows either IEEETR or AIP —so a mechanism
is required to allow that to be specified.

At the moment the assumption is that students will
be using BIBTEX, not biblatez, as not all the formats
required are yet available in the latter.

The class has by no means been tested to de-
struction: it appears to work with all the common
packages, including hyperref, but the more use it gets
and the more bugs are reported, the more likely it is
to work.

A number of academics who use IMTEX them-
selves have started recommending the class to their
students, and some informal changes have been made
to create variant formats within the class for essays,
term papers, and minor dissertations. An approach

177

has also been received from a group of students in
another institution in the state (which has no resi-
dent IATEX expertise or support), asking for help in
writing a thesis class, and I am aware of at least three
students in a third institution who have adopted the
class and simply changed the identity by editing the
.cls file.

Writing a class file is a non-trivial activity, and
I was fortunate to have access to a development
and maintenance methodology which made editing
and creation very much easier than writing a .cls
file by hand. Having a clearly-defined goal makes
development easier, as does having a set of patterns
to work to, and I am indebted to the many authors
of the classes listed in Figure 1 for their work. The
intention is that from version 1.00 the package will
be available on CTAN (minus the crest, which is
reserved to the institution).

References

[1] Robin Fairbairns, editor. TEX Frequently Asked
Questions. UK TEX Users Group, Cambridge,
UK, Mar 2012.

[2] Peter Flynn. Sorry, Professor, the dog ate my
thesis: How to expect the unexpected when
using BTEX. In Living and Working with ETEX.
London Mathematical Society, Oct 2006.

[3] Peter Flynn. Typographers’ Inn. TUGboat,
33(1):8-10, 2012.
[4] Peter Flynn. UCC Thesis Document Class.

http://research.ucc.ie/latex/#uccthesis,
Apr 2012.

[5] David Latchman. Preparing your thesis in
LTEX. In TUG 2012, Boston, MA, Jul 2012.
TEX Users Group.

[6] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The
BTEX Companion. Addison-Wesley /Pearson
Education, Boston, MA, 2nd edition, 2004.

[7] University College Cork. Thesis Submission:
Layout of Thesis. http://www.ucc.ie/en/
graduatestudies/current/thesis/Layout/,

Nov 2009.

¢ Peter Flynn

Electronic Publishing Unit,
University College Cork

Cork, Ireland

Phone: +353 21 490 2609

pflynn (at) ucc dot ie

http://research.ucc.ie/
profiles/H505/pflynn

A university thesis class: Automation and its pitfalls

178

KTEX source from word processors
Bart Childs

Abstract

Hennings’ CTAN survey is a good starting point
when considering projects implied by the title of
this article. I found it a fair view of most related
packages. He suggests having one of two goals: con-
verting the document structure or converting the
appearance. My goal is neither of these. I want to
produce IXTEX source that is accurate in content,
clean, and therefore maintainable.

This is in keeping with Knuth’s original goals in
producing TEX: graphic excellence and a document
convenient for archiving. Structure and appearance
are important. I believe clean ITEX is more likely to
have this intrinsic result (not use of word processing
systems). My current conversion system is a hybrid
based on the use of the Open Office Writer package,
its Writer2LaTeX application, and macros for the
Emacs editor written in Elisp. The test cases for
this system are books: 1) on rotordynamics, 2) a
C++ programming text, 3) a memoir on a friend’s
life including significant text fragments in the Czech
language, and 4) a novel that includes three love
triangles. Even the worst case with significant math-
ematics formatting done in WordPerfect is tractable;
I did not say easy. The lack of (intelligent?) use of
word processors causes many of the problems. I esti-
mate that a 300-page novel written in a reasonable
dialect of Word, WordPerfect, or Writer could be
converted to IATEX in an hour or two.

1 Genesis

My primary formatting system has been TEX-based
for more than thirty years. Throughout this time I
have had occasional need to import small parts of
documents done in word processors into my TEX-
based documents. I have accomplished that in a
number of ways: from keyboarding small projects
to somewhat automatic conversion depending upon
what was available. I used some of the earlier systems
discussed by Hennings [2].

Several years ago, two colleagues were writing
a text on “programming” and became aware that
they would have significant advantages if they could
convert the half of the book that was completed to
ITEX and take some instruction on how to complete
the rest in KTEX.

I sketched the process and created a small set
of Emacs Elisp macros to do that conversion. We
agreed to the generalities with plans to make a formal
agreement upon the return of the senior author from

Bart Childs

TUGDboat, Volume 33 (2012), No. 2

a summer-long trip. Much of the I/ TEX work was to
be done by the junior author, naturally. The health
of the junior author suddenly deteriorated and my
conversion project was cancelled.

I continued to be intrigued by the concept. I
learned more Elisp, added macros, and a number
of open packages that seemed to offer promise as a
means of getting much of the conversion done in an
automatic manner. I never felt that a mostly auto-
matic conversion was realistic for projects involving
significant mathematics content. I expected to pur-
sue a “PhD with a screwdriver” approach. I was
willing to do this based on working from the Word
.rtf (Rich Text File format), total extraction of
text without formatting, and/or a mostly automatic
conversion that needed tweaking —my pipe dream.

A few years after retirement, a friend and col-
league in the college of engineering asked me for help
finding someone to keyboard a new text he was writ-
ing based on a few dozen of his research papers—and
related studies. The topic of the text is rotordynam-
ics— from small pumps and turbines to large ones as
in the main engine of the space shuttle. I resurrected
my plan and we agreed on the plan of work.

The draft source of this rotordynamics text is
being done in WordPerfect, the formatter the author
has used for many years. Most of the text is being
adapted from the author’s contributions in the sub-
ject. The current version is approximately 400 pages
in length with another 25% to be added. The lists
of contents, figures and tables will likely occupy 18
pages. There are hundreds of equations with one of
them being a full page.

2 The process evolves

I started this conversion using the process I had
prototyped for the programming text. The rotordy-
namics text was quite a different document because
of the large fraction of displayed equations. The
displayed equations and figures in the rotordynamics
text require approximately the same fraction of space
required by figures, programs, and code fragments
in the programming text. Most (maybe all) of the
code fragments, programs, and figures in the pro-
gramming text were restricted from floating. There
had to be some “manual floats”.

I did some small portions of the rotordynamics
book as manual conversions for test cases. Some of
the equations were manually entered because conver-
sion of mathematics among word processing systems
was generally accepted to be non-existent (I think
that is improving). The manual process was based
on: a) having a .pdf of the document, b) editing the
.rtf file, ¢) editing a text file exported from a word

TUGboat, Volume 33 (2012), No. 2

processor (with some encoding), and/or d) a form
of ITEX exported from one of several systems. I
was delivering IATEX source faster than I could have
keyboarded it from good copy. Still, it was unsatis-
factory because it was mostly a manual process.

The source documents were done in WordPerfect
on a PC and I was doing IATEX on a Mac. There
are good TEX and Emacs systems for the Mac using
Mac OS X. Some Emacs systems were not acceptable
to me because my system uses function keys.

I continued to strive for big improvements be-
cause keyboarding mathematics would be slow. A
significant improvement came by changing the for-
mat in which sources were delivered to me. The
source was 1) edited to remove the graphics from the
WordPerfect source, and 2) exported in .rtf form,
with 3) the graphics elements put in a .zip file. The
version of WordPerfect being used would create .rtf
files hundreds of times bigger than needed if the
graphics was included in the export to the .rtf. Re-
moving the graphics was no loss because it —like the
mathematics — was not being exported.

I would take the .rtf from WordPerfect, im-
port it to OO0 Writer, and save it! This apparently
lost nothing but gave a smaller file and therefore my
system was faster in using it. I also noticed that
Writer’s export of text with encoding was different
from the other systems I had used. Further, the ex-
port could be done in Unicode which was compatible
with Emacs.

Apparently there was significant appreciation
of Unicode in the WordPerfect export process. The
export of the mathematics from WordPerfect was
not converted but many symbols, Greek letters, etc.
were now viewable on the screen. Most (I4)TEX
users should be able to glean the proper content
from a printed .pdf of the WordPerfect. Now, the
Emacs macros could do much more. At this time, my
benefactor had other obligations and so I had time
to work on the macros and test the system using the
modified process.

I continued to learn more Elisp.

3 Keeping the mind busy

My benefactor’s diversions lasted a bit longer than
planned. I read more about Unicode and realized
how provincial some of us are here in the English-only
USA.

A college buddy of mine is a Czech immigrant
and was corresponding with a publisher in the Czech
Republic about his memoir. When he wrote to the
publishers and sent it by email, the formatting was
lost. I suggested learning a bit of ATEX, converting
it to .pdf, and emailing that. He had sent me a draft

179

of the book so I could create some examples. The
published version [1] was done while I was creating
this system. Of course I was naive and would still
have been so had I not read Horak’s note [3].

But while waiting, I thought I could polish my
Emacs macros to handle his Czech problems. It was
fairly easy and with the improvements in the Writer
export process, it was really easy. I mention this
project because it shows evidence of real problems
with similar projects. That will be discussed later.

In the abstract I mentioned a novel about three
love triangles. That project was technically triv-
ial but also contains the same real problems with
conversion of word processor sources.

4 Real problems

There are several sources of problems that impeded
progress in these projects. Some of these sources
could be avoided by “user learning” while others
resulted from differences in the design and implemen-
tation of the systems they used. The authors had
several kinds of problems that automatic conversion
did not handle:

1. Inconsistent use of functionality.

2. Wrong use of functionality.

3. Not using available functionality.

4. Oops. Operator, operand placement. Misunder-
standings. Mysticism about style files.

This quote is in section 1.2 of the Writer2LaTeX
User’s Manual [4]:

You can use IMTEX as a typesetting engine
for your OOo documents: Writer2LaTeX can
be configured to create a B'ITEX document
with as much formatting as possible preserved.

Note that the resulting IMTEX source will be

readable, but not very clean. ... You will find

that Writer2LaTeX uses the principle garbage

in — garbage out!
Each of the above examples of garbage in — garbage
out was present in at least two of the test cases cited.
Garbage in — garbage out may be a bit strong of a
description for these but the message is clear. For
example, in the Czech memoir it was certainly appro-
priate to attempt to show correct accents — Horak [3]
would be proud. It overwhelmed the author’s limits
of skill with the systems he was using.

Each of the authors has a doctorate and has
taught at major universities. They are consistent
users of computers but obviously are not the most
persistent readers of the formatter manuals. Maybe
the manuals are poor, non-existent, or not conve-
nient? Maybe the easy-to-use graphics interfaces
overwhelmed the authors? Maybe these interfaces

IXTEX source from word processors

180

do not encourage users like these to seek the infor-
mation they need? Maybe they just do not care?

4.1 Inconsistent use of functionality

The author of the memoir that used many Czech
words, phrases, and sentences is to be saluted for
attempting to make that text look proper to a Czech
reader. There are five special items in this sentence

On my next visit to Prague, he joined Vlida
and me, along with our wives, for lunch at a
French restaurant in Obecn? dim (Municipal
House).

The nickname Vlad'a has an accent over the letter
“a” and an accent often called a caron modifying the
letter “d”. The accented “i” in the first italicized
word is a dotless “i”. Finally, the second italicized
word has an accent that almost appears to be the
degrees (as in temperature) symbol. Although it
was not the author’s intention, the distances these
accents were raised or kerned differed in most cases.

(I do not claim my caron here is perfect.)

4.2 Misuse of functionality

In the rotordynamics book there were many instances
of using different Greek characters as the same: the
phi and varphi, ¢ and ¢, as well as others. Since
this document was constructed using papers written
years ago, this is easily understood.

The author of the novel containing three love
triangles suffered a similar problem. The author
did not like the double prime (") for the opening
and closing quotes. When he wrote the first part he
selected special graphics characters for the quotes.
When he wrote the other two parts, the smart quotes
were automatic for him. He did not recall why; it
may have been a new revision of his formatter.

4.3 Not using available functionality

In two of the test cases the authors used itemized
lists. The exported form yielded consecutive lists
of one item. This did not bother the bulleted lists
but would have been an error with enumerated and
description lists.

In many cases the authors did not use styles, so
chapter and section beginnings show the formatting
but no KTEX commands. This is not a total loss,
because I convert the section numbers into labels that
would aid if we were trying to resolve differences in
my output with the older version.

4.4 Oops?

These examples can be difficult. A glaring example
is that WordPerfect’s mathematics operators may
follow the operand in some cases. In IETEX the

Bart Childs

TUGDboat, Volume 33 (2012), No. 2

operator is always first! I did not find a general rule
as to when to expect this. My Emacs macros for
adjusting this are interactive to enable the user (me)
to minimize such problems.

A really big oops worth repeating is the lack of
using styles, which caused inconsistencies. I had to
handle some of these manually.

5 Typical Emacs macros

The first versions of these macros were developed
when I was using an export that was usually desig-
nated text with encoding. This export would discard
all (or nearly all) formatting, such as emphases. The
improvements in Writer2LaTeX have led to a re-
duced need of this kind of detailed editing. Still, the
concepts in the design of these macros are applica-
ble in the current system of conversion as well as
keyboarding original documents.

This list contains three cases where it is more
efficient to use text with encoding exports than the
converted exports, assuming the goal of clean ATEX.
These came from the rotordynamics text, the pro-
gramming text, and the User’s Manual. These are:

Tables Tables are exported with all formatting on
every cell. The usual (IMTEX) procedure is to
give default formatting in a template and excep-
tional formatting when needed in a cell.

Mathematics Text is often used for explanatory
purposes in equations.

Programs as well as verbatim text need special
handling.

Portions of some documents are easier to convert
by exporting as text with encoding and then insert-
ing the formatting by editing. Two examples are
mathematics that does not convert and formatted
code fragments in a processor where font changes
are done manually rather than using a package like
listings.

The macros were implemented using the mouse
(or similarly functioning device) to point or highlight
in conjunction with function keys. In Emacs one can
also highlight a region of text by setting the mark
and moving the point. The function keys can also
be modified by use of shift, control, and alt.

5.1 Applying fonts to text

In this paragraph there are single words and a three-
word sequence that are emphasized by changing fonts.
The default font is changed to italics or typewriter.
Source exported as text with encoding will have for-
matting removed. A similar situation occurs when
text is inserted into mathematics code.

TUGboat, Volume 33 (2012), No. 2

The user can highlight a phrase or click within
the single word. Then the user presses the appropri-
ate function key for the formatting command to be
inserted with grouping of the appropriate text. If
the user has clicked within a word, then the extent
of the word is determined by whitespace delimiters.
Clicking on whitespace is a special form of this—the
commands are inserted and the cursor placed on the
right brace for user input.

Instead of highlighting a region, the user can
use the Emacs form of setting the mark and moving
the cursor to the other end of the region. I imple-
mented these functions for bold, italic, sans serif,
and typewriter fonts. I did not insert the italic
correction but easily could have paying attention to
the following character. I did not because in many
cases it is just not needed, and besides, the user
should have some responsibilities. The same func-
tions are reused for simple grouping and the \text{}
commands which were used mostly in math modes.

5.2 Inline mathematics

Inline mathematics is common in the rotordynamics
text. Most of the resulting mathematics is usually a
fraction of a line in length.

The implementation is like the font changes
in the previous subsection. A significant difference
is that the export processes handling WordPerfect
mathematics yields significant artifacts of excessive
white space and formatting trash. This almost always
includes many of the grave characters— this must
be an escape character for the internal form of Word-
Perfect mathematics.

I have not had a reasonable test case with Word
mathematics, yet. There are small examples of math-
ematics in the programming text.

5.3 Display mathematics

The concepts in the previous subsection are appli-
cable. However, there are several forms of display
mathematics. These forms were used in the rotordy-
namics text:

1. \[...\], the standard for display equations
without numbers.

2. \begin{equationx}...\end{equationx}, just
an alias for the former, or wvice versa.

3. \begin{equation}...\end{equation}, which
numbers the equations and should have an ac-
companying \label.

4. \begin{equation}\begin{split}...
\end{split}\end{equation}, which numbers
a collection of equations and should have an
accompanying \label.

181

Chapter 8 of Frank Mittelbach et al.’s E'TEX Com-
panion has some seventy pages of excellent details of
advanced mathematics formatting.

I implemented these four display math choices
using one function key and prompting the user for
which of the above forms was desired. I developed
similar choice macros for presenting fractions and
matrices which made conversions faster and most
importantly more consistent. The most important
facet of this conversion is that with a little care the
totality of the mathematics was converted correctly
and hours of detailed, laborious proofreading was
avoided.

5.4 Programs, code fragments,
verbatim text

Programs should be formatted by language sensi-
tive packages like 1istings. The package fancyvrb
requires some study but gives great results. Both
packages come with inline commands whose use is
aided by adaptation of the above font changing and
inline mathematics concepts.

5.5 Other macros — fix-up

There were several other macros that aided the con-
version. I consider these to be “fix-up” in nature.
These include:

e \captions in the rotordynamics text often con-
tain inline mathematics. The use of the IMTEX
delimiters (\(\)) is not allowed; they must be
converted to the TEX toggle ($).

e Interactive aid to standardizing presentation of
fixed-point and floating-point numbers.

e Locating multicharacter super/subscripts that
were likely exported incorrectly (needing group-
ing).

e Locating likely problems due to insertion of in-
advertent whitespace.

e Locating unescaped TEX control characters.

e Macros to aid the insertion of labels and their
references.

6 Current system

The current system has been improved greatly with
the release of OO0 Writer2LaTeX version beta 1.2.
Despite its being labeled a beta release, I have not
found any problems to date.

I find these observations about this new release
interesting: 1) the user’s guide is 10% shorter and
2) the output files are 3-5% shorter than with ver-
sion 1.0. The IXTEX output is cleaner, as most of
the reduction in the size is the elimination of need-
less formatting like: 1) most paragraphs were inside

IXTEX source from word processors

182

grouping braces and a declaration that I used En-
glish and 2) {\textquotedblright} for a simple (”).
A cursory look at the user’s guide indicates some
removal of redundancy. There is a lack of the com-
pleteness that is characteristic of the documentation
of releases from the TEX communities.

I plan to work with OOo and continue to make
this product better. I believe it to be the best hope
I know of, especially in the open domain.

The following quote is from one of the pages on

its web site (http://writer2latex.sourceforge.

net/index3.html):

You will never get a result that looks
identical to the original, in fact that’s the
whole point: LaTeX is in general a superior
typesetting engine compared to Writer.
For example LaTeX produces much better
results for formulas, it has an excellent
paragraph and page breaking mechanism,
it uses ligatures etc. On the other hand
Writer has a few features that LaTeX does
not support well. If the layout of your
document depends on text flowing around
pictures or linked text boxes, you will never
get good results with Writer2LaTeX.
According to TeX’s author Donald E.
Knuth, TeX is a typesetting system intended
for the creation of beautiful books - and
especially for books that contain a lot of
mathematics (quoted from "The TeX
book"). Writer2LaTeX will aim to
produce excellent result for this kind of
documents; including of course shorter texts
with a book-like layout.

This quotation is fair but I think it makes my point
“go ahead and inhale”. Show the logos (TEX and
KTEX) correctly, use the correct dashes and spacing,
use the proper quotes, ...

6.1 Examples of other problems

I present an annotated list of a few other problems
I addressed in the macros. These are based on two
of the test cases: the rotordynamics text and the
programming text. I think it is fair to classify most
of these as “not very clean ITREX”.

Export of spacing. The export of chapter 5 of the

rotordynamics text has 47 occurrences of (}),

a space preceding a right brace. The majority

of those are in constructs like \textit{word }

while most of the rest are weird constructs like
\textit{ } and \textbf{\textit{\ \ }}.

The first may be sloppy keyboarding by the

author. The second seems to be intentional

Bart Childs

TUGDboat, Volume 33 (2012), No. 2

spacing, why not (\)? The last is likely a
hacked indentation kludge?

Inline mathematics. Some inline mathematics is
converted to italics. That is troublesome to me
because it should really remain as unconverted
mathematics. Then too, that may be the fault
of the author.

Export of structure. The structure of the chap-
ter and lists range from inconsistent to missing.
This is likely the authors’ fault as the use of
styles seems to be the cause.

7 VWriter and friends

In spite of these remarks I salute OOo. I believe
that the Writer package and Writer2LaTeX appli-
cation have made a great contribution to the goal of
converting many documents into a form for better
presentation and archival, namely (I)TEX. That
may not have been the intent. The intent may have
been to enable a good Writer user to simply use
ITEX as an output device?

The BTEX code output in version beta 1.2 is
improved, but not clean. The Writer2LaTeX User’s
Manual is 45 pages in length. The exported IETEX
(with the clean option) source averages about four-
teen occurrences of \mdseries and twelve occur-
rences of \textstyleSourceText per page. Each
paragraph is grouped with \mdseries as the start.
The latter is effectively an alias for \texttt and used
in tables.

8 Conclusions

Reasonable document interchange and archival qual-
ity is now possible for a wide range of systems. I
believe that (I#)TEX is the most reasonable basis for
many archival systems.

The advances by OOo and its Writer system
are impressive and appreciated. I hope that its open
status and development will continue. Note: I have
addressed only a small part of a large project — OOo.

A point made in a number of venues is the prob-
lem of TEX systems not having a native graphical
input process. Lyx and OOo are touted as solutions —
along with several others. The authors of the three
test cases I have used show that the graphical in-
terfaces are not a solution to the problems—in my
humble opinion. All the authors are highly educated
and familiar with the problems of getting people
to learn at the college level. Still, each has shown
the results from casual learning about their systems.
The effective use of styles, consistent use of symbols
and special functions, document structure, etc., were
lacking in each of their documents.

TUGboat, Volume 33 (2012), No. 2

The first line of a ITEX document requires a
statement of the class of the document. There is a
finite number of them. It does not seem to enter the
stream of consciousness for many that if they learned
how to type “Mary had a little lamb” on a machine
that there should be at least a small change in the
start of a letter to a sweetheart, a grocery list, or
any other class of documents.

In a moment of frustration I lamented “Users
avoid using IWTEX because you have to learn how to
do some things while users of Word believe if it takes
any non-obvious effort to do something, it should not
be done!”

I raised the question earlier about why educated
users of computers seem to get so little from user’s
guides and manuals. Maybe the manuals are poor,
non-existent, or not convenient? Maybe the easy-
to-use graphics interfaces overwhelmed the authors?
Maybe these interfaces do not encourage users like
these to seek the information they need? Maybe they
just do not care?

Was the intent in creating Writer2LaTeX to give
the user “IXTEX as an improved output device”? I
think that poses a bigger challenge, “How do you
teach a Writer user to write for KTEX?”

9 Questions

I did not intend this as a FAQ but thought it might
be a good way to end the present paper.

LL BTEX Do any of the test cases use ITEX be-
yond Leslie Lamport’s book?

Answer No for memoir and book on the three love
triangles. Yes for the science and engineering
texts. Packages used: float, lscape, makeidx,
fancyvrb, graphicx, array, amsmath, amssymb,
sidecap, wrapfig, and caption. These were
probably not all necessary, but useful.

183

Word test case? What do you want for a Word
test?

Answer A one-pager, like Norman Naugle’s An Fl-
ementary Sum. Then, many others would help.
I hope it would also convert to Writer and back
too.

How long? How long did it take you to type Nor-
man’s note?

Answer An hour or so. The next question might
be, why didn’t you just do it in Word? Well,
probably that would have taken seven or eight
hours—and fortunately I do not have Word in
my house.

References

[1] Charles Ota Heller. Prague, My Long Journey
Home. Abbott Press, December 2011.

[2] Wilfried Hennings. Converters from PC
Textprocessors to I TEX — Overview, June
2012. http://tug.org/utilities/texconv/
pctotex.html.

[3] Karel Hordk. Those obscure accents. . . .
TUGboat, 29(1):42-44, 2007,

[4] Henrik Just. User’s manual for Writer2LaTeX,
March 2012. http://sourceforge.net/
projects/writer2latex.

o Bart Childs
Texas A&M University
College Station, TeXas 77843-3112
USA
bart (at) tamu dot edu
http://faculty.cse.tamu.edu/bart/

IYTEX source from word processors

184

The MacTEX install package for OS X
Richard Koch

Abstract

MacTgX installs everything needed to run TEX on
a Macintosh, with a single click of the mouse. I'll
discuss the history of this package — Wendy’s conspir-
atorial lunch and Jonathan Kew’s all-night coding
session — modifications over the years, and impor-
tant changes in the 2012 release.

1 A demo

MacTgX is a flat file available as a free download,
linked from http://tug.org/mactex. It is a very
large download, about 2.16 GB, but smaller versions
are available for users with slow download links.

On the desktop, the file inherits an icon from
Apple’s Installer program.

Figure 1: MacTEX-2012

Double clicking this icon starts the installation pro-
cess and the window shown at the top of the next
page appears (fig. 2).

This window is familiar to Mac users because
the same window appears when they install other
packages, and (until recently) when they installed
system updates. The installation process is summa-
rized by the list of items on the left; this list is fixed
by Apple and cannot be changed. Notice that the
dialog background is a merging of the Mac OS X logo
with a Duane Bibby drawing of the TEX lion and
Donald Knuth. The idea of a TEX-related illustra-
tion goes back to Jonathan Kew’s initial version of
the package; this particular form was provided by
Bob Kerstetter.

At the extreme top right of the window you’ll
notice a small padlock. It brings up a window listing
the Developer ID Certificate issued by Apple to val-
idate this package. Apple’s Mountain Lion system
refuses to install packages which lack an official De-
veloper signature (although workarounds exist). An
Apple engineer contacted me in May to make sure
MacTEX would have this signature, so Apple knows
about TEX.

When the user pushes Continue, a more detailed
document is displayed; we don’t show it here. Push-
ing Continue again leads to a pane listing licenses

Richard Koch

TUGDboat, Volume 33 (2012), No. 2

governing the various pieces of MacTEX. This dialog
is also shown on the next page (fig. 3).

(The abstract to this paper says that MacTEX
installs TEX with a single button click. Are you
counting clicks? By my count, we are up to four, not
counting the double click which started the process.)

The next dialog (fig. 4) appears during what
Apple calls the “Installation Type” portion of the
process. This allows users to select the disk where
the installation will appear. MacTEX always installs
on the system disk in standard spots, so this dialog
merely shows the available space required on the hard
disk. A button at extreme left leads to a Custom
installation panel.

That custom dialog is shown below the Installa-
tion Type dialog (fig. 5). One can see that MacTEX
is separated into pieces: TEX Live, GUI applications,
Ghostscript, Convert, the Latin Modern fonts, and
the TEX Gyre fonts. Most users will install TEX
Live, but users with a favorite editor may skip GUI
Applications, and users who compile Ghostscript
and ImageMagick themselves or obtain them as part
of Fink or MacPorts will skip those packages. We
provide two optional font packages; these packages
install duplicates of certain TEX fonts in Apple’s
Font Directory, making them available to standard
Macintosh programs like Adobe Illustrator.

A final click leads to a standard dialog (not
shown) asking the user to supply an Administrator
Password. This password is required because TEX
Live will be installed in /usr/local, which is owned
by root. On the Macintosh, standard users are Ad-
ministrators and the Administrator Password is their
own password rather than an actual root password.

Then installation occurs, with a progress dialog
as shown (fig. 6), followed by a final success dialog
(fig. 7). Not counting custom installation, the process
requires six clicks and one password.

2 GUI applications

TEX is installed under /usr/local/texlive, a lo-
cation not shown by Apple’s Finder. Consequently,
the only files commonly seen by users are those in-
stalled in /Applications/TeX. We install two edi-
tors, TeXShop and TEXworks, and we install IXTEXit,
a graphical application which allows users to input
equations in TEX source format, convert them to
PDF, and paste the PDF into standard Macintosh
programs using drag-and-drop operations. We in-
stall the Excalibur spell checker, but we do not in-
stall the more commonly used cocoAspell by An-
ton Leuski because it has a special installer and
extra dictionaries available from Leuski’s web site,
http://cocoaspell.leuski.net/.

TUGDboat, Volume 33 (2012), No. 2 185

8.0 0 w Install MacTeX-2012 &

Welcome to the MacTeX-2012 Installer

MacTeX-2012
May, 2012

& Introduction
& Read Me

’ This installer provides all the software needed to use the TeX
® License typesetting system on Mac 05 X. All of the software is fully

® Destination Select configured and ready to use. Included are

» the actual TeX program, and the XeTeX extended version with

® Installation Type Unicode and native font support;
@ Installation « macro packages, such as LaTeX, AMSTeX, and ConTeXt
@ Summary s TeXShop and TeXworks, graphical user interfaces for TeX

+ Ghostscript, required by certain TeX utilities

A custom install option is available for users who only need some of
the sofrware provided.

If you are new to TeX, consult the README installed in /
Applications/TeX to begin learning and using TeX.

Go Back | I__'_Enntinue_
Figure 2: Initial Dialog
a0o0 w Install MacTeX-2012 =]
Software License Agreement
- | English s
@ Introduction
@ Read Me THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXFRESS OR IMPLIED
@ License WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
| . WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

@ Destination Select PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
® Instatiation T COPYRIGHT OWMNER OR CONTRIBUTORS BE LIABLE FOR ANY

nsiLa REn 1y DIRECT, INDIRECT, INGIDENTAL, SPEGIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
& Summary USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THECRY CF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

@ [nstaliation

TeX Live and teTeX are covered by a variety of licenses (a.g. GNU
General Public License, LGPL, BSD license, X license). All licenses are
compatible with the reguirements for free and open source software, as
far as we know.

| Print... | |- Save... | |“ Co Baci-LI |_' Continue

Figure 3: License Dialog

The MacTgX install package for OS X

186 TUGDboat, Volume 33 (2012), No. 2

800 w Install MacTeX-2012 2

Standard Install on “Macintosh_2"

& Introduction

& Read Me This will take 4.05 GB of space on your computer.
© License Click Install to perform a standard installation of
e Destinatlnﬁ . this software for all users of this computer. All

y users of this computer will be able to use this
& Installation Type software.

@ Installatign

@ Summary
| Customize | | GoBack | | |Install |
Figure 4: Installation Type Dialog
@ Install MacTeX-2012 =}
Custom Install on "Macintosh_2"
E{ft@ge MName Location ~ |Action Size
& Introduction ¥ TeXLive-2012 . Macintash_2 5 Upgrade 3.52 GB
i '1_0_‘{ GUI-Applications :§ Macintosh_2 =+ Upgrade 379.6 MB
it - ¥ Ghostseri pt-9.05 | Macintosh_2 % Upgrade 142 MB
© License ¥ Convert-IM-6.7.6 | Macintosh_2 3 Upgrade 9.3 MB
a Destinatlnﬁ select [] Latin-Modern-Fonts || Macintosh_2 < Skip 7.5 MB
1 | TeX-Cyre-Fonts 1 Macintosh_2 % Skip 4.4 MB
& Installation Type
L] Er‘:staIFqun
@& Summary
Space Reguired: 4.05 GB Remaining: 55.69 GB
| Standard Install _| | CoBack | | Install |

Figure 5: Custom Install Dialog

Richard Koch

TUGDboat, Volume 33 (2012), No. 2 187

n.0 68 w Install MacTeX-2012 2

Installing MacTeX-2012

& Introduction

& Read Me

@ License

e Destinatlnﬁ Select
@ Installation Type Writing files...

© Installation | —)

@ Summary

Go Bac_k) ;__-_C_n_r_ltinue

Figure 6: Actual Installation

8.0 0 w Install MacTeX-2012 2

The installation was completed successfully.

& Introduction

© Read Me

@ License

e Destinatlnh Select
@ Instestion Type The installation was successful.
& Installation

& Summary The software was installed.

Go Back

Figure 7: Success Dialog

The MacTgX install package for OS X

188

Finally, we install Adam Maxwell’s wonderful
TEX Live Utility, a program which gives a standard
Macintosh interface on the TEX Live tlmgr, allowing
users to keep TEX Live packages up to date, search
for new packages, and configure paper size, among
other things.

3 Configuring TEX Live and GUI
applications

In a word, nothing is needed. The installer guesses
the user’s desired paper size from Mac printer set-
tings. It adds the TEX binary location to the PATH
variable, and makes TEX man pages readable. All
supplied GUI applications are already configured to

find TEX.
4 Getting started with TEX

There is no standard spot for user documentation on
the Macintosh, so we install a short READ ME FIRST
document in /Applications/TeX. This document
starts with a two-page introduction to TEX for a
first time user, leading the user through the process
of writing and typesetting a short document with
TeXShop. Since both pages contain half-page illus-
trations, the introduction is very short with only
the essential steps. The user is also directed to a
movie in the TeXShop help menu illustrating the
typesetting job.

After that, the READ ME FIRST document lists
links to information about other editors and GUI
front ends on the Macintosh, to important TEX in-
formation at TUG and elsewhere, to online tutorials
about TEX and TEX Live with links that immediately
bring up the information, and to the TUG web page
for books about TEX.

5 TEXDist

MacTgX installs the TEX Distribution data struc-
ture and Preference Pane by Gerben Wierda and
Jérome Laurens which makes it easy to use multiple
TEX distributions on Mac OSX. This structure is
described in detail in my article Support for mul-
tiple TEX distributions in i-Installer and MacTgX,
TUGboat 28:3 (2007), http://tug.org/TUGboat/
tb28-3/tb90koch. pdf.

Installing MacTEX does not erase distributions
from past years. The TEXDist Pref Pane is added to
the standard Apple System Preferences by MacTEX.
It lists all available TEX distributions on the present
Mac, and lets the user choose the one to make active
with a single button click. This click automatically
reconfigures all GUI editors and utilities, and modifies
PATH and MANPATH in shells. It isn’t even necessary
to restart applications. You can typeset with TEX

Richard Koch

TUGDboat, Volume 33 (2012), No. 2

Live 2011, keep your editor active, switch to TEX
Live 2012 with the Pref Pane, and typeset again with
TEX Live 2012.

MacTgX installs a link named /usr/texbin
which points (indirectly) to the active TEX distri-
bution. Any GUI app configured to find TEX at
/usr/texbin can share in the advantages of the
TEXDist structure.

6 The (nonexistent) special version of
TEX Live installed by MacTEX

The key message of this section is that there is no
special version of TEX Live for the Mac! We have
always strictly followed the rule that we install the
full TEX Live, completely unmodified.

On Unix machines, TEX Live is generally in-
stalled by running the install-tl script in a shell.
The TEX Live portion of MacTEX is constructed by
removing /usr/local from the machine creating it,
installing TEX Live to /usr/local on that machine
with the TEX Live install script, pointing Apple’s
PackageMaker software to the install location, and
asking it to construct an install package. Later when
MacTgX installs this package on a user machine, it
runs a postinstall script to configure paper size and
do a few other things, but this script does not modify
files in TEX Live.

The install-t1 script has a menu which allows
users to change a few configuration options. We
change just three things, namely setting TEXMFVAR,
TEXMFCONFIG, and TEXMFHOME to (respectively):

e ~/Library/texlive/2012/texmf-var
e ~/Library/texlive/2012/texmf-config
e ~/Library/texmf

On Unix machines, these variables point to “hid-
den” locations in the user’s home directory. The
home directory on the Macintosh has a special folder
named Library which is the standard place for con-
figuration information, so we use it for TEX.

In Apple’s latest operating systems, Lion and
Mountain Lion, the Library folder is itself hidden.
But by holding down the Option Key while pushing
the Finder’s Go menu, the user can visit this folder.

7 Smaller install packages

MacTEX is a gigantic download. That is why we
supply the much smaller install package BasicTEX,
which is about 66 megabytes. This package installs
most files needed for ordinary typesetting using TEX,
BTEX, or XHIEX. It contains the Computer Modern
fonts and Latin Modern fonts. Many users report
that all their documents typeset fine with this instal-
lation.

TUGboat, Volume 33 (2012), No. 2

A new user can easily produce TEX documents
using only TeXShop or another GUI front end with
BasicTEX.

In 2012, the subset of TEX Live installed by
BasicTEX became one of the install schemes for TEX
Live. BasicTEX is exactly the result of installing
scheme-small with install-tl.

BasicTEX used to contain ConTEXt, but then
Mojca Miklavec introduced a standalone ConTEXt
distribution. Since ConTEXt is upgraded more of-
ten than once a year, and since this distribution
can coexist with TEX Live, it makes sense for Con-

TeXt users to install it separately. See http://wiki.

contextgarden.net/ConTeXt_Standalone.
We also distribute MacTEX Additions, an install
package containing everything in MacTEX except

TEX Live: http://tug.org/mactex/morepackages.

html.

8 A defective install on the NeXT machine

I am one of the few people who bought a NeXT
computer. Software for this machine was not—let
us say — abundant. So owners bought more or less
everything released for the machine.

Early in the life of the NeXT, I bought software
which came on a CD and was installed by the NeXT
analogue of Apple’s Installer program. As installa-
tion proceeded, icons in the dock began changing to
question marks, and by the end only a couple of icons
remained. Puzzled, I clicked on one of the question
marks, but nothing happened. With some concern,
I started the Terminal program to run a shell, but
Terminal had vanished. Eventually I logged into
the machine remotely and discovered that the entire
Applications folder had been erased.

A few hours later, the company selling the CD
issued a profound apology and explained that the
NeXT installer didn’t anticipate symbolic links in
the Application directory, or maybe didn’t anticipate
hard links, or maybe it had nothing to do with links,
but at any rate it didn’t anticipate something unusual.
I don’t know the details, but I learned a lesson:
installers are dangerous.

The memory of that event colors my life to
this day. Every so often, users ask for a feature in
MacTEX which is not provided by Apple’s Package-
Maker utility. When I explain the problem, users
often sketch a way to construct the package directly
without using Apple’s utility. I will never do that.
There are a half dozen Apple engineers who know
everything about pax files, compression algorithms,
soft links, hard links, dangerous links, secret links,
and everything else that could go wrong with an

189

install package. The thought that they’d lose their
jobs if something went wrong is strangely reassuring.

9 Gerben Wierda’s i-Installer

My first TUG conference was in 2001 in Delaware
(http://tug.org/tug2001), where I met Han Thé
Thanh, the author of pdfTEX. Since pdfTEX outputs
PDF files and the graphic system of Mac OS X is based
on PDF, his software made creating an interface to
TEX a breeze.

TUG 2001 occurred only a few months after
the first release of Mac OS X, version 10.0 on March
24, 2001. I talked about TeXShop, which had been
running on an early beta version of the system, and
about i-Installer, a program by Gerben Wierda which
installed TeX, Ghostscript, ImageMagick, various
font utilities, and other Unix software. Gerben’s
software worked over the Internet, downloading pack-
ages from servers as needed. The current web page
at http://ii2.sourceforge.net/ doesn’t seem to
contain an initial release date, but it must have been
early in the beta period for Mac OS X. Gerben ceased
supporting i-Installer in 2007, but Google searches
lead to users who report trying to install TEX with
it as late as April of 2011.

During advance preparation for my 2001 talk, I
noticed a situation when the Finder could become
confused. Sure enough, I ran into that problem
during the talk and I had to restart the Finder before
proceeding. Afterward, someone came up to me and
said “I couldn’t care less about TeXShop, but I
was very impressed when you restarted the Finder
without rebooting the Macintosh”.

10 Wendy’s lunch

In Delaware, I also met Wendy McKay —a Mac
fanatic with twice my enthusiasm and five times my
energy. MacTgX is really Wendy’s invention.
Gerben’s i-Installer was an ambitious project,
able to install not just TEX packages, but also more
general Unix open source code. It had to deal with
network issues like choosing an appropriate server,
dealing with timeouts, and security matters. That
made for a program with an industrial look which
could be intimidating for new users. Wendy began
lobbying for a “one-button TEX installer”. This
lobbying extended over several TUG conferences.
Everything came to a head in North Carolina
at the Practical TEX 2005 conference (http://tug.
org/practicaltex2005). By then, Wendy was lug-
ging suitcases full of electronic equipment to confer-
ences, and had set up a long distance meeting of Mac
folks on Thursday afternoon, in which Europeans
not at the conference could participate remotely.

The MacTgX install package for OS X

190

To prepare for the meeting, Wendy asked Mac
folks to share the same table for Wednesday lunch.
She soon began discussing a one button installer, said
something like “who’s going to volunteer to make
one”, and suddenly turned to Jonathan Kew and said
“it looks like you, Jonathan”. Done. The sweetest
maneuver I've ever witnessed.

11 Jonathan Kew

Jonathan had to leave the conference early on Fri-
day. We wished him safe travels after the Thursday
meeting, expecting an installer in a couple of months.

TUG conferences are fun, but information tends
to come so fast that I'm exhausted after a couple
of days. In North Carolina, I went to bed as soon
as I could Thursday evening. When I got up the
next morning, I read an email message from Wendy:
“Jonathan just finished the installer.”

Jonathan programmed all night. And he didn’t
have just a rough draft of an installer. He had a
package which installed everything: TEX (in those
years we used teTEX), Ghostscript, ImageMagick,
and font utilities. His installer displayed a custom
MacOSX image. It was constructed with elabo-
rate shell scripts, so the entire process of creating
it involved installing teTEX and Ghostscript with
Gerben’s i-Installer and then running a few scripts.
The installer contained postinstall scripts to set the
user’s PATH and MANPATH variables, using code which
Jonathan found hidden inside i-Installer.

That morning at breakfast, Jonathan willed the
project to me. I said “but I don’t even understand
shell scripts” and he said “read what I have, it is
self-explanatory.” And it was. When I need a shell
script today, seven years later, I look up Jonathan’s
scripts and carefully copy the syntax.

12 Herbert Schulz and MacTEXtras

The next year, we put the install package on the TEX
Collection DVD. The DVD also contains extensive
extra material curated by Herbert Schulz. This extra
material includes the front ends Aquamacs, iTEXMac,
LyX, and TEXMaker. Information is provided about
BBEdit, TextMate, and TextWrangler. It contains
the Skim previewer, the CocoAspell spell checker,
other useful utilities, and documentation and de-
mos. All this extra material is also available on the
MacTgX web site in a package named MacTgXtras.

For several years now, Herbert and I have been
jointly responsible for the Macintosh portion of the
DVD. Herb is an expert on features of TEX Live
I ignore: installing extra fonts, running updmap
and updmap-sys, issues with restricted shell escape.
People who attended the Boston conference learned

Richard Koch

TUGDboat, Volume 33 (2012), No. 2

that Herb is also an expert on several features of
TeXShop which I ignore.

13 Gerben’s surprise

The MacTEX installer Jonathan wrote depended
heavily on Gerben Wierda to do the heavy lifting. In
May of 2006, Thomas Esser announced that teTEX
would no longer be upgraded, and suggested that
users migrate to the TEX Live project. Gerben be-
gan issuing warning messages to the TEX on OSX
mailing list which most of us ignored; after all, he
had provided TEX reliably since the beta days of
Mac OS X.

After some grumbling, Gerben indeed developed
a new TEX distribution based on TEX Live rather
than teTEX, called gwTEX. He told us it would be
officially released at TUG 2006 in Marrakesh (http:
//tug.org/tug2006), which started on November
9th, and to expect a surprise announcement there.

For the surprise, see http://www.tug.org/twg/
mactex/award/2007/gerben/aboutgwtex.html. It
shows a picture taken at this event; Gerben is holding
a large sign with the text “I Quit”. To my knowl-
edge, this is the first time that the announcement
of a new software release was accompanied by the
announcement that support for it would end in two
months.

Gerben’s announcement caused some fast foot-
work on the MacTEX front, and after several months
of indecision we switched to providing an unmodified
full TEX Live in the package.

14 MacTgX changes over the years

We provide MacTEX to a small group of beta testers
before releasing it to the Internet and for the DVD.
I need to mention the most important beta tester,
Bruno Voisin, who was at the Boston conference.
Bruno is an even stronger Mac fanatic than Wendy,
and he will complain bitterly if an interface behaves
in a non-Mac fashion. The hidden files in TEX Live
are visible files in ~/Library due to Bruno. In
MacTgX 2012, the Ghostscript installation is im-
proved over past years due to discoveries made by
Bruno this spring. Thanks.

There have been a few significant changes in
MacTEX over the years. The first occurred when
we added optional install packages, so that, for ex-
ample, a user could install only TEX Live, skipping
other packages. This change was made to accommo-
date users who obtain Ghostscript and ImageMagick
through MacPorts or Fink, or compile them directly
from source. But it also made MacTEX easier to
maintain, since the various pieces can be created
independently.

TUGboat, Volume 33 (2012), No. 2

Originally, we installed a few libraries from
ImageMagick and some font utilities to /usr/local/
lib. A concerted effort has been made to get rid
of these; today we install no libraries. This is a de-
liberate choice which will not change; it makes the
lives of developers easier because they do not need
to contend with foreign libraries on their machines.

When MacTEX was first provided on the DVD,
it contained its own separate copy of TEX Live. TEX
Live is enormous, so putting two separate copies on
the DVD rapidly become untenable. Nowadays, we
provide a special version of MacTEX for the DVD;
this special version installs TEX Live by calling the
install-tl script on the DVD. Therefore the DVD
contains only one copy of TEX Live, used by MacTEX
and by users on other platforms.

The most recent change occurred in 2012. Ap-
ple’s Mountain Lion system requires that install pack-
ages be signed by a registered Apple Developer. Un-
til this year we created MacTEX using the original
PackageMaker, which created install packages which
were actually folders in disguise. Such packages can-
not be signed. So with some pain we switched to
Apple’s newest PackageMaker, which creates flat files.
Since the interface did not change, most Mac users
probably don’t know that anything is different.

This more recent PackageMaker is poorly doc-
umented and contains several unfinished features.
This caused two problems with the 2012 version of
MacTgX, which I like to call The Two Fiascos.

15 The first fiasco

By design, MacTEX doesn’t provide choices for the
user. That’s the whole point of the package: install
and run.

But in the final days before release, we discov-
ered that Apple’s new PackageMaker constructs pack-
ages which allow users to change where software is in-
stalled. For example, our package installs TEX Live in
the standard location, /usr/local/texlive/2012,
but users can change this location to their home
directory. If they do this, they will have a folder
named 2012 in their home directory containing a
gigantic number of files owned by root. And TEX
won’t work. If you are a Mac user, don’t change our
default locations!

Quiz: glance back at the pictures of installation
shown at the start of this paper. What unexpected
item in these pictures is an active element the user
can manipulate to cause this fiasco?

191

16 The second fiasco

Some users trying to install from the DVD first copy
the install package to their hard disk and eject the
DVD. Installation won'’t work if they do this because
the Install package reads TEX Live from the DVD. So
we check for the problem by making certain that the
directory /Volumes/TEXCOL2012/texlive exists. If
not, we abort installation with an error dialog that
the DVD must be mounted.

Apple’s new PackageMaker makes this check
very easy. It contains canned JavaScript modules
which can be dragged into the project to test for
various conditions. We dragged, and we dropped.
Then we made a test DVD, and we tested by installing
on Leopard and on Snow Leopard. Worked like a
charm. At that point, TUG manufactured the DVD.

It turns out that the canned JavaScript doesn’t
work on Lion or Mountain Lion. So without help,
the version of MacTEX on the DVD will not install
on these systems. Users who want to install from
the DVD should go to http://tug.org/mactex and
download a very small fix for this problem.

17 A final glitch

MacTEgX installs two Ghostscript binaries, gs-noX11
without X11 support and gs-X11 with X11 sup-
port. In a post-install phase, MacTEX determines
whether X11 is installed on the Macintosh, and sets
the symbolic link gs to point to the appropriate bi-
nary. Users who upgrade to Mountain Lion and then
install MacTEX will have no problems.

Apple removes X11 during the Mountain Lion
upgrade because it now wants users to obtain Xquartz
directly from the open source developers. So users
who install MacTEX and then upgrade will end up
linked to the wrong version of Ghostscript. To fix
this, either install Xquartz or use Terminal to run
the following commands:

cd /usr/local/bin
sudo rm gs
sudo 1ln -s /usr/local/bin/gs-noX11l gs

18 Making MacTgX

The full documentation explaining how MacTEX is
constructed is now part of TEX Live. It can be
found in the TEX Live source repository available at
tug.org/texlive/svn/ in the file Master/source/
mactexdoc.tar.xz.

¢ Richard Koch
2740 Washington St.
Eugene, Oregon, USA
koch (at) math dot uoregon dot edu
http://uoregon.edu/ koch/

The MacTgX install package for OS X

192

TEX and friends on a Pad

Boris Veytsman

Abstract
TEX on an Eee Pad is quite workable.

1 Introduction

Some time ago a blog entry [15] made quite a splash
in the community. The (semi-anonymous) author
stated that IATEX cannot be made on a tablet due to
its “speed, bloat, and complexity” and needs a com-
plete rewrite. He also asked for a complete change
in the licensing scheme of TEX components in order
to make IATEX acceptable for the App Store.

In my opinion, this is a complete misunderstand-
ing of what TEX is and what it is not. The most
important thing, TEX is not an “app” in the same
sense OpenOffice is. TEX is designed as a compiler
which takes a program written in a language under-
standable by humans, and creates “binary code” in
a language understood by machines. The tex files
we write are not “documents” in the same sense as
OpenOffice files. They are programs with familiar
(to a programmer) constructions like macros, loops,
conditionals. The result of compilation is code—a
DVI, a PS or a PDF file— which is basically a set of
instructions for a machine to produce printed pages
or images on a screen. Furthermore, the TEX system
does not have just one compiler, but a family of com-
pilers and utilities, like gcc and friends. While the
article [15] exclusively discusses IWTEX, it is nice to
have index processors, bibliography formatters, font
manipulation utilities and many others, not to men-
tion alternative engines to pdfetex and alternative
formats to M TEX.

Once we understand that we are talking about
a family of compilers with auxiliary programs and
libraries, many objections in [15] become irrelevant.
The compilation of the engines is a complex process
with many helper applications? Anybody who ever
tried to bootstrap gcc from source would not make
this comment. Huge code base? Well, the code base
of C/C++ with all the free libraries commonly used
is not small, either.

The comparison of a TEX distribution to a C/C++
distribution including all possible libraries is not as
far fetched as it seems. A modern distribution like
TEX Live contains almost all the freely distributable
code from CTAN, the Comprehensive TEX Archive
Network. The users of Perl and R have created and
maintain similar huge collections— CPAN and CRAN.
It is commonly considered to be the strong feature
of these languages rather than a weakness.

Boris Veytsman

TUGDboat, Volume 33 (2012), No. 2

The minimal subset of TEX Live occupies about
40 Mb—by no means large by today’s standards.
The full distribution, indeed, is 3.5 Gb and growing,
because it includes solutions for many different prob-
lems: typesetting musical scores and chess games,
working with many languages and scripts, drawing
geographic maps in any projection, creating circuit
diagrams, using medieval fonts, and many, many oth-
ers. A user can install only the parts which she really
needs: for somebody the main reason to work with
TEX might be the possibility to typeset in the Klin-
gon language, while another user might work with
TEX for years and never find out it speaks Klingon.
Fortunately, modern distributions provide easy and
powerful tools to select only the parts of TEX and
friends one really needs. And modern hard disks are
large enough that installing the full distribution is a
reasonable default.

Still, the proof of the pudding is in the eating,
so we would like to offer the most convincing proof
that TEX can be used on a tablet: the experience of
compiling and using TEX Live on one. This is the
aim of this paper.

2 Device

There are reports of running TEX on Apple 10S
devices [3]. However, due to the usability considera-
tions discussed below I chose an Android tablet on
armv71 architecture. I recently got an ASUS Trans-
former Eee Pad TF101 [2]. The selling point was the
dual nature of the device: it has a detachable key-
board with an extra battery, so it can be used both
as a light tablet (when the lower part is detached)
and a netbook (when the lower part is attached). It
has turned out to be a very useful and surprisingly
powerful machine.

Another advantage of this choice is that Android-
0S8 is a derivative of GNU/Linux, so I hoped to use the
familiar Linux tool chain for working with it. I found
out that one can actually install a full distribution
as an application, running in a chroot environment,
which made my task quite simple.

2.1 Rooting

To really own the device one need to “get a root” on
it. This is a dangerous operation which may break
your device and almost certainly voids your warranty.
Please do not do this unless you absolutely under-
stand what you are doing, and in no circumstances
blame me if anything goes wrong!

The operation is described in detail in [1]. After
rooting the device you need terminal access and
(optionally) a convenient shell to work before you

TUGboat, Volume 33 (2012), No. 2

start Linux. Android Terminal Emulator [12] and
BusyBox [16] are good choices.

For Emacs and vi users it is useful to map the
“back” key on the dock to Escape (see, e.g. [7]) by
editing /system/usr/keylayout/asusec.kl.

2.2 Linux in chroot

The user interface of Android assumes working with
one full-screen application at any time. This is a chal-
lenge for compilers like TEX and friends: one needs
an editor window, a compiler window, a log window,
etc. One way to solve this challenge is to use an Inte-
grated Developed Environment like TEXworks [8] or
TEXnicCenter [17], where the window management
is done by the application. However, I am an incor-
rigible Emacs user with the fingers used to all those
Control- and Meta-sequences, so it would make most
sense to recreate the familiar work flow on Android.
Emacs is well integrated in Unix-like systems, and
I looked for the way to install a Linux environment
on the device. There are several ways to do so:

1. Dual boot. The system can be booted to Linux
or to Android. At any time the device is either
Linux or Android, without much integration
between these two.

2. Virtual machine. The host operating system
(Android) emulates the hardware for the guest
operating system (Linux). There is some inte-
gration between the OSes, but this requires a lot
of processing power. Besides, we are not aware
of any VM software with Android as host (while
there are many VMs with Android as guest).

3. Chroot. This is a unique possibility due to the
fact that Android uses the Linux kernel with the
same system calls. Thus, one can just start the
standard Linux daemons and programs under
Android with a separate directory mimicking
the standard Linux layout (the “root directory”
for these processes, hence the name).

I chose that last possibility. It should be stressed
that the Linux programs with this solution are tightly
integrated with the native Android system. In Fig-
ure 1, the top program shows both Android pro-
cesses (e.g. ys.android. jump) and Linux processes
(e.g. top itself).

The application “Linux Installer” [13] turned
out to be an excellent way to go. I used it to install
Debian Squeeze on a 32 Gb removable SD card.

To allow a non-root user to run useful processes,
the user must be granted some rights to the cor-
responding devices on the tablet. This is done by

193
Group gid
AID_NET_BT_ADMIN 3001
ATID_NET_BT 3002
AID_INET 3003
AID_NET_RAW 3004
AID_NET_ADMIN 3005
AID_MISC 9998
ATD_SDCARD 1015

Table 1: Some useful Android groups

adding the user to the groups listed in Table 1 in the
file /etc/group on the Linux side.!

To get X running on the Android I used the
following trick, taken from an Android forum [5].
One can start a “headless” X accessed from a remote
computer through the VNC protocol. The interesting
thing is that this “remote” computer can actually
be the local machine with a VNC client talking to
the server on the same device at IP address 127.0.0.1.
There are VNC clients for Android, normally used
to remotely access computers from a mobile device.
That one can deploy them to access the same device
is a good example of the power of unintended use.

On the server side I installed TightVNC [6], in-
cluded in the Debian distribution. There are a num-
ber of free VNC clients for Android. Unfortunately I
did not find a single one that provided easy access
to Escape and Control keys, which are essential for
Emacs users. Therefore I chose Jump VNC [14]; this
is the only non-free software used in this project.
Jump VNC understands Control and Escape keys
on the keyboard dock and provides a convenient
on-screen panel with special keys when the dock
is disconnected. I hope some free VNC client can
implement this convenient interface in the future.

I did not use resource heavy environments like
KDE or Gnome; instead, I installed a lightweight
window manager, FVWM.

Some additional screenshots of the resulting
desktop can be found at http://android.galoula.
com/screenshots/LinuxInstall/Boris_Veytsman_
2011_12_31/.

3 Installing and running TEX

Debian Squeeze has TEX in the distribution, so it
runs “out of the box”. Unfortunately, it is the very
old TEX Live 2009.2 As a nice exercise, I decided to
build TEX Live 2011 binaries from sources — maybe

1 T am grateful to Gaél Person for this advice.
2 Debian is famous for its stability, which means, among
other things, rather obsolete packages.

TEX and friends on a Pad

194

TUGboat, Volume 33 (2012), No. 2

dtop - 23:02:59 up 15 min, 2 users,

§ Tasks: 139 total, 1 running, 138 sleeping.
S.3%us, 7.3%sy, 0.0%ni, 86.8%id,
745932k total, 668756k used,

Ok total, Ok used,

0 stoppe
0. 0%wa.,
77176k free,

Ok free,

load average: 0.26, 0.24, 0.23

d,

0.0%hi,

0 zombie
0.7%si,

18980k buffers
307036k cached

0.0%st

e (0 (0099), No. 0

rElty\\
0N\ USAY
borisy (at) lk dot netl}

\begin{abstract}
Tes{} on an EEPad is successfully installed
end{abftract}

etitle

-ctionclntroduction:
label{sec:intro}

ite{lLaTex
CVS:i1.2

=1 Some time ago a blog entry

—:——— eeepad.ltx To L1s

0 s §.2 .2 vs.android. jump
0 os 0.0 o: keaftirgd- 0
137 boris o -} 8.5 big ! system_server
1061 boris 20 0 14652 1lm 1668 § 4 1.6 1:01.11 Xtightvnc ﬁi—l
1363 horis 20 0 2736 1216 936 R 1 0.2 0:00.15 top
53 root RT o 0s 1 0.0 0:03.57 kinteractiveup
88 boris 20 0 15952 6644 3744 B 1 0.9 0:20.33 surfaceflinger
124 root -51 0 0 i} os 1 0.0 0:11.47 irg 182-3d
5 root 20 0 o o 0s o 0.0 0:01.14 kworkersu:0
190 1010 20 0 2176 1148 0556 35 o 0.2 0:00.48 wpa_supplicant
1107 boris 20 0 21084 6016 3932 5 0 0.8 0:02.86 maillist
1 root 20 0 356 224 116 & 0o 0.0 0:00.67 init
2 root 20 o o o os 0o 0.0 0:00.00 kthreadd
6 Toot RT o o o (1<) 0 0.0 0:00.00 migrations0
7 root RT i} i} i} os o 0.0 0:00.00 migrations1
9 root 20 i} i} i} os o 0.0 0:00.61 ksoftirgd- 1
s 10 root 0 -20 0 0 0s 0 0.0 0:00.00 khelper
= e LR T CyCOT R it
and
al Materials Science Center, MSTBAZN\

and is workable.

iPadll} made quite a splash
2 P S Y
(LaTer Ref Fill)--11:03 0.26

=

Figure 1: A screenshot with top running

the statement in [15] that the author could not do
this was an additional incentive.

The build instructions on the TEX Live web page
[10] were easy to follow. The full build took about
2.5 hours. I decided to install all TEX Live packages:
being a TEX consultant, I prefer the full installation
since one never knows what a next customer might
need. The installation of the binaries and packages
went without a problem.

The subsequent TEX Live 2012 builds on this
machine also proceeded without errors, compiling
all 350 binaries. This armel-linux port became an
official part of TEX Live with the 2012 release.

The update cycle of LuaTEX and ConTEXt is
typically faster than that of TEX Live. I also main-
tain a ConTEXt standalone distribution (see http://
wiki.contextgarden.net/ConTeXt_Standalone).

The resulting environment is quite usable. In
fact this paper was partially written on this device.

To check how fast TEX is on the device, I used
the following files:

1. story.tex: the famous story about Mr. Drof-
nats by A. U. Thor (see [9]).

2. The source of The TEXbook[9].3

3 While TEXing of this book is prohibited, a special dis-
pensation for benchmarking is traditionally recognized by the
American Mathematical Society. I am grateful to Barbara
Beeton for explaining this.

Boris Veytsman

File Pages Engines
tex pdfetex xetex luatex
DVI PDF
story.tex 1077 090 145 297 1.49
The TEXbook 494 5.84 6.94 11.63 12.05 18.50
BTEX 2¢ 492 N/A 23.84 26.28 29.10 32.66

Table 2: Benchmarks; times are in seconds

3. source2e.tex: the sources of IIEX 2¢, as of
2011/06,/27 [4].

All benchmarks were done with TEX Live 2011. Since
only the plain format uses Knuthian TEX in this
distribution, I benchmarked this engine only on the
first two files. Also, I¥TEX requires several runs
for the references to converge; only one run was
measured. All benchmarks were done by calling

time TEX_COMMAND FILE

and taking the first time (‘real time’) from the output.
Each test was repeated three times, and the average
was taken.

The results are in Table 2. As seen from this
table, a 500-page document is processed in about
15 seconds in plain and about 30 seconds in IXTEX.

Another benchmark is compiling the present
paper. One run of pdflatex takes 4.1 seconds.

TUGboat, Volume 33 (2012), No. 2

The full compilation from scratch (issuing make af-
ter make distclean) involves a run of pdflatex, a
run of bibtex and two runs of pdflatex.? This
takes 13.3 seconds to complete. For comparison,
on my desktop (4-core 2.4 MHz processor) it takes
1.9 seconds, and on my laptop (ASUS Eee PC 900HD,
800 MHz processor) — 11.9 seconds.

While details are beyond the scope of this paper,
I would like to mention that such important and
useful tools as R, Maxima, Octave, and Gnuplot also
run on the device without any problems and with
reasonable speed.

4 An alternative approach

This paper describes a creation of a full Linux envi-
ronment under chroot on an Android device. Re-
cently Ma Qi Yudan started to work on an alternative
approach [11]: a compilation of TEX binaries using
Android NDK. In this way one can create standalone
applications that do not require a Linux installation
to run. My tests showed that these applications are
not faster than those under Linux; this is not surpris-
ing, since Linux applications are not run in a virtual
machine, i.e., do not incur any overhead.

5 Conclusions

TEX and friends can run on an Android tablet. More-
over, they make it a useful work machine rather than
a mere consumer toy.

Acknowledgements

I am grateful to my son Max Veytsman for rooting
the device, helping with understanding the Android
system, reading the manuscript and many useful com-
ments; to Gagl Perron for help with Linux Installer;
to Qi Yuan Ma for telling me about his approach; to
Karl Berry and Barbara Beeton for encouraging this
paper, suggesting benchmarking targets and editing
the text.

References

[1] Anon. AsusTransformer Root + CWM recovery.
http://androidroot.mobi/technical/asus-eee-
pad-transformer-tf101-root-cwm-recovery,
May 2011.

[2] AsusTeK Computer, Inc. Eee Pad Transformer
TF101. http://wuw.asus.com/Eee/Eee_Pad/Eee_
Pad_Transformer_TF101, 2011.

[3] Kaveh Bazargan. TEX as an eBook reader.
TUGboat, 30(2):272-273, 2009. http://wuw.tug.
org/TUGboat/tb30-2/tb95bazargan . pdf.

4 As it happens, the second run is not necessary and
is triggered by the message “Label(s) may have changed”
produced by a too-cautious IATEX.

195

[4] Johannes Braams, David Carlisle, Alan Jeffrey,
Leslie Lamport, Frank Mittelbach, Chris Rowley,
and Rainer Schopf. The FTEX 2 Sources. WTEX3
Project, June 2011.

[5] Dangermouse. Gnome, KDE, IceWM or

LXDE desktop on your Android! http:

//www.androidfanatic.com/community-

forums.html?func=view&catid=9&id=1615,

March 2009.

GlavSoft LLC. TightVNC software. http:

//www.tightvnc.com, 2012.

Patrick Hof. Installing a Debian chroot

on the Asus Eee Pad Transformer. http:

//www.offensivethinking.org/thoughts/2011/

07/14/debian-chroot-eee-pad-transformer,

July 2011.

Jonathan Kew and Stefan Loffler. TEXworks.

Lowering the entry barrier to the TEX world.

http://wuw.tug.org/texworks, 2012.

[9] Donald Ervin Knuth. The TgXbook. Computers
& Typesetting A. Addison-Wesley Publishing
Company, Reading, MA, 1994. Illustrations by
Duane Bibby.

[10] TEX Live. Build procedure. http://www.tug.org/
texlive/build.html, 2012.

[11] QI Yuédn Ma. TEX Live for Android. http:
//code.google.com/p/texlive-for-android,
2012.

[12] Jack Palevich. Android Terminal Emulator.
http://www.appbrain.com/app/android-
terminal-emulator/jackpal.androidterm, 2012.

[13] Gaél Perron. Linux installer. http://android.
galoula.com/en/LinuxInstall, 2011.

[14] Phase Five Systems LLC. Jump Desktop.
http://www.jumpdesktop.com, 2011.

=

[7

[8

[15] Valletta Ventures. The price of a messy codebase:
No ITEX for the iPad. http://vallettaventures.
tumblr.com/post/13124883568/the-price-of-
a-messy-codebase-no-latex-for-the-ipad,
November 2011.

[16] Denys Vlasenko. BusyBox. http://busybox.net,
2012.

[17] Tino Weinkauf and Sven Wiegand. TEXnicCenter —
The center of your KTEX universe.
http://wuw.texniccenter.org, 2012.

¢ Boris Veytsman

School of Systems Biology &
Computational Materials
Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

USA

borisv (at) lk dot net

TEX and friends on a Pad

196

YAWN — A TgX-enabled workflow
for project estimation

Pavneet Arora

Abstract

A framework for using TEX and its variants — the
term TEX is used generically in this article—in a
project estimation workflow is discussed. While the
emphasis here is less on the final output and more
on issues related to the upstream processing, the
framework itself does not place limits on how TEX
might be used to create more beautiful output.

1 Introduction

Part of TEX’s enduring appeal is its ability to be
molded into a workflow. As the available tools have
evolved — both in their expression (e.g., languages
such as Ruby, Python, Perl, and Lua), and in their
representation (e.g., XML) — the decoupling of the
typesetting engine from the rest of the toolset has
enabled it to adapt and stay current.

Often, these workflows relate to publishing and
the emphasis is on the form of the final output given
a marked up input. TEX’s programming capabilities
further foster integrating workflow solutions tightly
to the document.

The problems that I deal with in my work, how-
ever, typically have less to do with the final output
and more to do with upstream processing. Chief
among these is the issue of project estimation.

The challenge with project estimation is that
its evaluation is not a straightforward derivation. It
requires exploring different solutions, adjusting cost-
ing parameters iteratively, and, yes, even judgement
based on past experience to come up with a reasoned,
if not always reasonable, attempt at an estimate. In
essence, we seek the capability to run a set of guided
“what-if” scenarios.

In the end, though, one does need to represent
this estimate in a form that is meaningful to both
the supplier whose very viability relies on it, and
the customer who will use it to help decide to whom
the project will be awarded. So the desired outcome
is still a well-presented document. It is the steps
leading up to it, though, that are the focus of this
article.

2 A specific example to illustrate
the generic problem

To help illustrate the nature of the problem, let’s
begin with a specific estimation problem: develop a
cost estimate for a lighting control system: one that
covers both hardware and labour, and encompasses

Pavneet Arora

TUGDboat, Volume 33 (2012), No. 2

design, cabling, control componentry, installation,
etc. T will explain this in some detail so that the
knottiness of the issues might be exposed. As specific
as this example is, however, the estimation problem
is a generic one and many aspects are shared across
domains.

Everyone is familiar with light switches and
dimmers in their own homes, so that is a good place
to start. Architectural designs show these on their
drawings connected to light fixtures, e.g., pot lights,
pendants, surface mount lights, under-cabinet lights,
etc. Imagine if to this mix we add:

scene based keypads

control processors

power modules

contact closure modules

occupancy and vacancy sensors
RS-232 interfaces to other equipment

Clearly, the complexity of the design grows im-
mensely. From an estimation perspective, though,
even this complexity is tractable, anchored as it is to
physical aspects of the design. So far the engineering
is contained.

The complexity runs quickly ahead, though,
when we have to confront the haze of the gesta-
tion period during which projects are formed, and
when details are decidedly lacking. During this time,
it is easy to become overwhelmed with the fractured
shards of the project definition. Amongst these are:

e Varying granularity of the known scope. In the
case of our lighting control system, for instance,
we may not know what types of light fixtures
are to be used, nor a breakdown on a room-
by-room basis. But we might have a rough
count of the total number of light loads whose
detailed decomposition will evolve during the
design. To use a software development analogy,
we are talking here about stubs for routines
which will be fleshed out later.

e Blended designs utilizing existing and new com-
ponents. We need only to include the new com-
ponents in the estimate, but need to ensure fit
and compatibility with existing components.

e Staged implementations requiring that the de-
sign anticipate, at the onset, the expected capac-
ity of the overall design. The design needs to be
comprehensive, but the estimate need concern
itself with only the most immediate phase of the
project.

e Interdependencies between components, i.e., a
selected component requires a host of other com-
ponents in order to function. As an example, a

TUGboat, Volume 33 (2012), No. 2

wireless keypad or switch would require the pres-
ences of a wireless network to communicate with
the main processor. Otherwise, its inclusion in
a materials list is not meaningful.

e Tiered product solutions. Often, component
manufacturers will have tiered groups of solu-
tions with overlapping applications to a specific
problem. From an estimating perspective it is
good to run these alternative solutions against
a common problem specification to see how the
solution differs in cost and capability.

3 Typical solutions

Keep in mind, though, that the requirement to pro-
duce a budget does not wait for a full and final
specification. We must produce budget estimates
with varying degrees of confidence during the entire
design period.

There are two typical approaches to the esti-
mation problem, especially when they relate to a
specific vendor’s equipment: either use their design
software to create an equipment list, or their esti-
mation software to create broad-brushed budgets.
Neither approach is satisfactory.

The design software has several shortcomings:

e [t is quite laborious. Often, it can take days to
create a design.

e With the absence of detailed specifications dur-
ing the early stages of the project, it is difficult
to capture this uncertainty in the design. The
design software assumes a final or near final
specification.

e The software, oriented as it is towards a design,
is specific to a single solution set. So from the
same company we might have multiple pieces of
software, one per tiered solution, into which the
design has to be entered repeatedly.

e There is no way to mark components as existing
even when the design is to be blended with
existing parts.

e There is no way to capture items outside of
the vendor’s portfolio, e.g., wire and cable costs
cannot be captured inside the design software.
This leads to manual tracking of material and
labour costs.

The estimation software, which amounts to a
simple spreadsheet, also suffers from the following:

e Most importantly, this approach ties pricing,
part numbers, and quantities to the design. If
the pricing changes, or if parts are added to
the vendor’s portfolio, one is left to migrate the
design from one spreadsheet to the next —an
approach that is error-prone at best.

197

e The template to capture the design is rudimen-
tary and requires specific quantities of compo-
nents. One is left to aggregate these outside of
the estimation software.

e It does not have the logic to detect interdepen-
dencies between components.

4 A workflow that works

The estimation problem kept me up for several nights
and also led me to the mirthful twin title of my talk
at TUG 2012: Sleep De(p)rived Typesetting. Sleep
deprivation is always a powerful motivator when
seeking out a solution. The secondary title stems
from the acronym that I gave to the workflow that
I assembled: YAWN. This stands for its constituent
components:

YAML (YAML Ain’t Markup Language)
Algebra

Words

Numbers

In struggling with the software solutions offered
from vendors, I yearned for greater flexibility. To my
mind, if the vendors were simply going to package
spreadsheets, why couldn’t they do so with the (say)
incredible capabilities of Lotus Improv—a superb
spreadsheet product developed for NeXTSTEP — now
sadly relegated to history.

The Wikipedia entry for Improv only reinforced
my unease regarding existing solutions. Pito Salas,
the lead developer of Improv, expressed it succinctly:

. it became clear that the data, views of the
data, and the formulas that acted on that data
were separate concepts. Yet in every case, the
existing spreadsheet programs required the user
to type all of these items into the same (typically
single) sheet’s cells.

What I was seeking was to decouple the spec-
ification from the materials list and the materials
list from the budget estimate with its detailed bill
of materials and labour costs.

Pito’s words pointed me to the natural object-
oriented framework: Model-View-Controller, or MVC.
That is, if one expressed the specification in a human-
readable form, and used a controller to analyse this
specification model along with component and pric-
ing models for alternative solutions, one could then
produce a view, which would satisfy both the supplier
and customer in providing a meaningful document
expressing the estimate.

I began with XML as a representation of the
model, but decided that I didn’t need all of its fea-
tures. Instead, I chose to use the simpler syntax of
YAML, a data serialization language which allows for
key-value pair hashes as well as arrays, both of which

YAWN — A TgX-enabled workflow for project estimation

198

I did need. The implementation of the controller in
Ruby grew directly from the selection of YAML as
the model language, since Ruby is able to read and
write YAML directly and easily. I should note that
there are YAML wrappers for many other languages
as well.

Here is a small example of a design specification,
to give a flavour of the YAML representation:
:specification:

- larea:

:name: FO
:sections:
= room:
:name: Common Areas
:design:
:loads:
- :lightload:
:type: :mlv
:fixturewattage: 50
:fixtureqty: 10
:qty: 70
:controlstations:
- :gangbox:
- :keypad:
:qty: 10

Entries preceded with a dash indicate elements
of an array, while keys that are surrounded with
colons might contain either single or compound el-
ements, and tokens prefixed with colons indicate
constants. Because it is a simple text file, one is
easily able to track the development of the design by
using version control software. Additionally, since
the structure of the document is free-form, one is
free to interject key—value pairs as comments or sec-
ondary information that might be ignored during
processing but is still valuable when reviewing the
specification.

The controller first takes a specification and
apply business logic to create a materials list. This
intermediate form was also expressed in YAML, again
allowing for visual inspection. In some cases, a re-
quest for pricing is given already as a predefined
materials list with no design specification required.
By having this intermediate form as a text represen-
tation, one is able to create it directly as an input

Pavneet Arora

TUGDboat, Volume 33 (2012), No. 2

to the remainder of the workflow. As a secondary
step this materials list was combined with a pricing
model also expressed in YAML to create a complete
bill of materials. Different controllers and/or pricing
models may be used against a common specification
to explore their impact on the generated estimate.

Which leads me to the view. I believe that if we
consider TEX as a toolset that can produce views on
demand, we have rounded out the framework into a
workable form.

In my estimation workflow, TEX’s capabilities
are used only lightly —in essence to convert tabular
data of the bill of materials into formatted output —
but as the document requirements grow, I can easily
enhance the output into more pleasing forms. I also
envision doing a summary document that creates
an estimation diff that compiles and compares the
costs of alternative product solutions.

5 Conclusions

TEX works very effectively in the standard object-
oriented Model-View-Controller framework. By iso-
lating specification and the control logic from final
document production in the manner prescribed by
the MVC framework and its associated design pat-
terns, TEX can be of tremendous value in enabling
workflows outside of the domain of publishing.

References

[1] Oren Ben-Kiki, Clark Evans, and Ingy. YAML
Ain’t Markup Language (YAML) version 1.2.
http://www.yaml.org/spec, October 2009.

[2] Trygve Reenskaug. MVC. http://heim.ifi.
uio.no/~trygver/themes/mvc/mvc-index.
html.

[3] Wikipedia. Lotus Improv. http://en.
wikipedia.org/wiki/Lotus_Improv#ATG.

¢ Pavneet Arora
pavneet_arora (at)
bespokespaces dot com
http://blog.bansisworld.org

TUGboat, Volume 33 (2012), No. 2

Star TEX: The Next Generation
Didier Verna

Abstract

While TEX is unanimously praised for its typesetting
capabilities, it is also regularly blamed for its poor
programmatic offerings. A macro-expansion system
is indeed far from the best choice in terms of general-
purpose programming. Several solutions have been
proposed to modernize TEX on the programming
side. All of them currently involve a heterogeneous
approach in which TEX is mixed with a full-blown pro-
gramming language. This paper advocates another,
homogeneous approach in which TEX is first rewrit-
ten in a modern language, Common Lisp, which
serves both at the core of the program and at the
scripting level. All programmatic macros of TEX are
hence rendered obsolete, as the underlying language
itself can be used for user-level programming.

Prologue

TEX
The [finall frontier.

These are the voyages,

Of a software enterprise.

Its continuing mission:

To explore new tokens,

To seek out a new life,

New forms of implementation. . .

1 Introduction

In 2010, I asked Donald Knuth why he chose to
design and implement TEX as a macro-expansion
system rather than as a full-blown, procedure-based,
programming language. His answer was twofold:

1. He wanted something relatively simple for his
secretary who was not a computer scientist.

2. The very limited computing resources at that
time practically mandated the use of something
much lighter than a complete programming lan-
guage.

The first part of the answer left me with a slight
feeling of skepticism. It remains to be seen that TEX
is simple to use. Although it probably is for simple
things, its programmatic capabilities are notoriously
tricky. The second part of the answer, on the other
hand, was both very convincing and arguably now
obsolete as well. Time has passed and the situation
today is very different from what it was 30 years
ago. The available computing power has grown expo-
nentially, and so have our overall skills in language
design and implementation.

199

Several ideas on how to modernize TEX already
exist. Some of them have actually been implemented.
In this paper, we present ours. The possible future
that we would like to see happening for TEX is some-
what different from the current direction(s) TEX’s
evolution has been following. In our view, modern-
izing TEX can start with grounding it in an old yet
very modern programming language: Common Lisp.
Section 2 clarifies what our notion of a “better”, or
“more modern” TEX is. Section 3 on the next page
presents several approaches sharing a similar goal.
Section 4 on the following page justifies the choice
of Common Lisp. Finally, section 5 on page 205
outlines the projected final shape of the project.

2 A better TEX

The TEX community has this particularity of being
a mix of two populations: people coming from the
world of typography, who love it for its beautiful
typesetting, and people coming from the world of
computer science, who appreciate it for its automa-
tion and similarity to a programming language. It is
true that the way TEX works is much closer to that
of a compiled language than a WYSIWYG editor.

In both worlds, TEX is unanimously acclaimed
for the quality of its typesetting. This shouldn’t
be surprising, as it has always been TEX’s primary
objective. The question of its programmatic capa-
bilities, however, is much more arguable. People
unfamiliar with programming in general easily ac-
knowledge that TEX’s programmatic interface is not
trivial to use. For people coming from the world of
computer science, it is even more obvious that TEX
is no match for a real programming language, partly
due to its macro-expansion nature.

Let us recall that TEX was not originally meant
to be a programming language. To quote its author,
Donald Knuth [8]:

I’'m not going to design a programming lan-
guage; I want to have just a typesetting lan-
guage. [...] In some sense I put in many of
TEX’s programming features only after kick-
ing and screaming.

From this perspective, it seems natural to con-
sider that a “better” TEX, today, would essentially
deliver the same typesetting quality from a more
modern programmatic interface. More precisely:

e access to the typesetting subset of TEX’s primi-

tives should be provided with a consistent syntax
(in particular, no more need for \relax),

e the programmatic API (\def, \if, etc.) should
be dropped in favor of support from a real pro-
gramming language,

Star TEX: The Next Generation

200

e the system should remain simple to use, at least
for simple things, just as TEX is today,

e the system should remain highly extensible and
customizable, just as TEX is today,

e and finally, preserving backward compatibility,
although not considered mandatory, should also
be considered.

3 Alternatives

The idea of grounding TEX into a real program-
ming language is not new. Let us mention some
such attempts that we are aware of. evaldtex! and
sTEXme? both use Scheme (another dialect of Lisp).
PerlTEX [13, 15], as its name suggests, chooses Perl.
QaTEX/PyTEX [4] use Python, and finally, also as
its name suggests, LuaTEX> employs Lua.

These approaches, although motivated more or
less by the same general idea, work in very different
ways. Some of them wrap TEX in a programming
language by giving the language access to TEX’s in-
ternals. Others wrap a programming language in
TEX by allowing TEX to execute code (LuaTEX be-
longs to this category). Some do both. For instance,
sTEXme ships with a extended Scheme engine that
can access TEX'’s internals, as well as a modified TEX
engine that can evaluate Scheme code.

Some of them allow authors to write TEX macros
in a different language (PerlTEX lets you write TEX
macros in Perl). Others, like QaTEX, aim at com-
pletely getting rid of TEX macros so that all program-
matic functionality is written in another language
(Python, with PyTEX in that case). This particular
case is closer to what we have in mind.

Finally, some approaches use a synchronous
dual-process scheme in which both TEX and the
programming language of choice run in parallel, com-
municating either via standard input/output redi-
rection, or by file or socket I/O. That is the case of
sTEXme and PerlTEX. Others, like eval4tex use a
multi-pass scheme instead. In a first pass, the “for-
eign” code is extracted and sent to the programming
language. The programming language in question
executes its code and sends it back to TEX. In the
final pass, TEX is left with only regular TEX macros
to process.

In spite of all these variations, it is worth stress-
ing that all these approaches have something in com-
mon: they are heterogeneous. They involve both a
programming language engine on one hand, and the
original, though possibly modified, TEX engine on
the other hand. Even LuaTgX which is somehow

1 http://www.ccs.neu.edu/home/dorai/evaldtex/
2 http://stexme.sourceforge.net/
3 http://www.luatex.org

Didier Verna

TUGDboat, Volume 33 (2012), No. 2

more integrated than the other alternatives is built
like this: a Lua interpreter is embedded in a more
or less regular TEX, written in WEB and C.

The idea that we suggest in this paper is that
another, fully integrated approach is also possible.
In this approach, another programming language
would be used to completely rewrite TEX and pro-
vide the desired programmatic layer at the same
time. We are aware of at least one previous attempt
at a fully integrated approach. NTS?*, the “New
Typesetting System” was supposed to be a complete
re-implementation of TEX in Java, but the project
was never widely adopted. We don’t think that this
project’s demise indicates in any way that the ap-
proach is doomed in general. On the contrary, the
remaining sections explain why we think that Com-
mon Lisp is a very good candidate for it.

4 Common Lisp: why?

Lisp is a very old language. It was invented by
John McCarthy in the late 1950s [9]. Contrary to
what many people seem to think however, being old
doesn’t imply being obsolete. In this case, it is a
synonym for being mature and modern. When Lisp
was invented, it was in fact way ahead of its time, to
the point that even its inventor hadn’t realized the
extent of his creation. A sign of this is the recent
incorporation of features that Lisp already provided
50 years ago into so-called “modern” programming
languages, such as C# with the addition of dynamic
types, or C++ and Java with the addition of lambda
(anonymous) functions.

4.1 Standardization

Common Lisp, in particular, was standardized in
1994 [1] (it was in fact the first object-oriented lan-
guage to get an ANSI standard). Remember how
stability was important to Donald Knuth for TEX?
This means that even across different implementa-
tions (there are half a dozen or so), that the core of
the language will never change, and in fact hasn’t for
the last 20 years. Compare this to modern scripting
languages such as Python or Ruby, for which the
“standard” is essentially the current implementation
of the current version of the language written by the
author of the language. . .

The Common Lisp standard is fairly comprehen-
sive: it includes not only the language core but a large
library of functions. Of course, because the standard
is 20 years old, it lacks several things that are con-
sidered important today (such as a multi-threading
API). Every Common Lisp implementation provides
its own version of non-standard features, but again,

4 http://nts.tug.org

TUGboat, Volume 33 (2012), No. 2

there are only half a dozen out there, and if one
chooses to stick to only one of them, then one gets
the same stability as for standardized features, or at
least backward-compatibility.

4.2 General purpose vs. scripting

Common Lisp also has this particularity of being
both a full-blown, general purpose, industrial scale
programming language and a scripting or extension
language at the same time. This is something that
cannot be said of most modern languages out there
but is nevertheless crucial in the fully integrated
approach that we are advocating. This was certainly
not the case of Java, in the now dead NTS project.

Common Lisp is indeed a full-blown, general pur-
pose, industrial scale programming language. It is
multi-paradigm (functional, object-oriented, impera-
tive, etc.), highly extensible (both at the syntactic
and semantic levels [12]), highly optimizable (no-
tably with static typing facilities [19, 20]) and has a
plethora of libraries (such as Perl-compatible regu-
lar expressions, database access, web infrastructure,
foreign function interfaces, etc.). Today, millions of
lines of Common Lisp code are used in industrial
applications all over the world.

But Common Lisp is also a scripting language.
It is highly interactive (it comes with a REPL: a
Read Eval Print Loop), highly dynamic (with fea-
tures ranging from dynamic type checking to an em-
bedded JIT-compiler and debugger), highly reflexive
(something crucial for extensibility and customizabil-
ity) and at the same time easy to learn (notably out
of its minimalist syntax).

This last point constitutes the beginning of our
tour of the language. Remember that one of our
objectives is to provide a system just as simple as
TEX, at least for simple things. Below is a one minute
crash course on Lisp syntax.

Literals Common Lisp provides literals such as
numbers (1.254) or strings ("foobar"). Literals
evaluate to themselves.

Symbols Common Lisp provides symbols that can
be used to name functions or variables (possibly at
the same time). pi has the expected mathematical
value. identity is the identity function.

S-Expressions Compound expressions are written
inside parentheses and denote function calls in prefix
notation. (+ 1 2) represents the sum of 1 and 2.

Quotation In Common Lisp, everything has a
value. If you want to prevent evaluation, put a quote
in front of the expression. For instance, >identity
is the symbol identity itself. > (+ 1 2), instead of

201

being a function call, now represents the list of 3
elements: the symbol + and the numbers 1 and 2.

Definitions To define a global variable, we can
write something like this:

(defvar devil-number 666)
To define a function:
(defun dbl (x) (* 2 x))

And that is the end of our Common Lisp crash
course. With that knowledge, you know practically
all there is to know about the language in order to
use it for simple things. The rest is a matter of know-
ing the names of standard (built-in) variables and
functions. In particular, this is certainly not more
complicated than learning the basic and inconsistent
TEX syntax (do you provide arguments in braces or
inline with a final \relax to be on the safe side?),
and it would also certainly be enough to write basic
IXTEX documents like this:

(document-class article)

(begin document)
(section "Title")

(end document)

4.3 Built-in paradigms

In a somewhat surprising way, Common Lisp pro-
vides programming paradigms, idioms or library-
based features that (I4)TEX also provide (or would
like to provide). This means that such features are
already here for us and would not need to be re-
implemented in a Lispy TEX. This section only
presents some of them; there are in fact many more.

4.3.1 key=value pairs

The success of key/value arguments in I¥TEX is pro-
portional to their actual need: there are at least
a dozen packages providing this functionality, each
and every one of them with its own pros and cons.
Common Lisp provides a clean and straightforward
implementation of this for free in its function call pro-
tocol (the so-called “lambda lists”). The following
function takes one mandatory (positional) argument
and two optional keyword arguments, which are in
fact named, floating arguments:

(defun include-graphics

(file &key width height)
L)

It can be called with just the mandatory argument:
(include-graphics "image")
or with either or both keywords (prefixed with a :’):

(include-graphics "image" :height <value>)

Star TEX: The Next Generation

202

Keyword arguments can have default values which
themselves may be dynamically computed.

4.3.2 Packages

ITEX implements the notion of packages, essentially
a collection of macros stored in a file. The de-facto
standard for this in Common Lisp is called ASDF®
(Another System Definition Facility). Common Lisp
systems resemble TEX packages, only much more
evolved. For instance, systems are composed of a
hierarchy of files with customizable loading order,
automatic dependency tracking and recompilation
of obsolete object files (compare this to having only
interpreted macros) and much more.

4.3.3 Namespaces

A frequent rant about ITEX is the lack of name-
spaces. Common Lisp provides a related concept
called packages (not to be confused with BTEX pack-
ages). A package is a collection of symbols naming
functions, variables, or both. Packages have names
through which you access their symbols. Packages
may declare some symbols as public while the oth-
ers remain private. Suppose for instance that there
is a package named 1tx, that implements KTEX 2¢,
and declares its function document-class as public.
From the outside, one would canonically refer to
this function as 1tx:document-class. On the other
hand, the need to reference all such IXTEX symbols
explicitly in a document would probably be cumber-
some. In such a situation, one may use use-package,
in which case all public symbols become directly ac-
cessible. Using the 1tx package makes it possible to
call the function document-class implicitly, without
the package name prefix.

4.3.4 Interactivity

As you likely know, TEX can be used in an interac-
tive fashion. The following example shows a sample
conversation between TEX and a user who mistypes
a macro name:

didier(s003)% tex

This is TeX, Version 3.1415926 [...]

x\relax

*\hule
! Undefined control sequence.
<*> \hule

?H

The control sequence at the end of the top
line of your error message was never \def’ed.
If you have misspelled it (e.g., ‘\hobx’),

5 http://www.common-1lisp.net/project/asdf

Didier Verna

TUGDboat, Volume 33 (2012), No. 2

type ‘I’ and the correct spelling
(e.g., ‘I\hbox’). Otherwise just continue,
and I’11 forget about whatever was undefined.

? I\hrule

*\bye

This kind of interaction pretty much resembles a
REPL which Common Lisp, like every interactive
language, provides out of the box. Where Com-
mon Lisp specifically comes into play is that every
Common Lisp application may embed a interactive
debugger for free, precisely useful for this kind of
error /recovery interaction. In Common Lisp, the
programmer has the ability to implement his own
recovery options (known as restarts in Lisp jargon)
without unwinding the stack. This is different and
much more powerful than regular catch/throw facili-
ties. If you are not interested in using the full-blown
debugger, you can implement a function for catching
errors and listing the available recovery options in a
bare 10 lines of code.

4.3.5 Dumping

Out of the historical concern for performance, TEX
has the ability to dump and reload so-called “format”
files, which saves a lot of parsing and interpretation
(¢f. the \dump command). Given the increase in
computing power over the last 30 years, the question
of performance is admittedly much less critical than
it used to. Even today, though, performance is not a
concern that should be completely disregarded. For
example, compiling a lengthy Beamer presentation
with lots of animations can still be annoyingly slow.

Common Lisp happens to provide a dumping
feature out of the box. Although not part of the ANSI
standard, all Lisp compilers provide it. In SBCLS for
instance, the function save-lisp-and-die dumps
the whole global state (stack excepted) of the current
Lisp environment into a file that can later be quickly
reloaded with the -—core command-line option. In-
stead of dumping a core image, it is also possible to
dump a fully functional standalone executable.

Because the dumping mechanism is accessible
to the end-user, interesting applications could be en-
visioned with very little programming, such as mid-
document dumping. By outputting to in-memory
strings instead of files, for example, a document au-
thor could be given the possibility to dump in the
middle of a large document’s processing. The result-
ing facility would be quite similar to \includeonly —
except that the whole document would be typeset
every time.

6 http://www.sbcl.org

TUGboat, Volume 33 (2012), No. 2

4.3.6 Performance

Let us tackle the problem of performance from a more
general point of view. One frequent yet misinformed
argument against dynamic languages is: “they are
slow”. From that point of view, it may seem odd
to even begin to envision the reimplementation of a
program such as TEX in a dynamic language.

One first and frequent misconception about in-
teractive languages is that as soon as they provide
a REPL, they must be interpreted. This is in fact
not the case. Nowadays, many Common Lisp im-
plementations such as SBCL don’t even provide an
interpreter. Instead, the REPL has a JIT (Just In
Time) compiler which compiles the expressions you
type and only then executes them. To put this in per-
spective, compare the processes of interpreting TEX
macros by expansion and executing Lisp functions
compiled to machine code. ..

Yet, starting with the assumption that perfor-
mance should indeed be a concern (this is not even
necessarily the case), the argument of slowness may
still make some sense in specific cases. For exam-
ple, it is obvious that performing type checking at
run-time instead of at compile-time will induce a
cost in execution speed. In general however, this
argument, as-is, is meaningless. For starters, let us
not confuse “dynamic language” with “dynamically
typed language”. A dynamic language gives you a
lot of run-time expressive power, but that doesn’t
necessarily mean that you have to use all of it, or
that it is impossible to optimize things away.

Let us continue on type checking in order to
illustrate this. Look again at the definition for our
“double” function:

(defun dbl (x) (* 2 x))

This function will no doubt be relatively slow, be-
cause Common Lisp has a lot of things to do at
run-time. For starters, it needs to check that x is
indeed a number. Next, the multiplication needs to
be polymorphic because you don’t double an integer
the same way you double a float or a complex. That
is in fact not the whole story, but we will stop here.
On the other hand, consider now the following

version:
(defun dbl (x)

(declare (optimize (speed 3) (safety 0))

(type fixnum x)
(the fixnum (* 2 x)))

In this function, we request that the compiler op-
timizes for speed instead of safety. The result is
that the compiler will “trust” us and bypass all dy-
namic checks. Next, we actually provide static type
information. x is declared to be a fixnum (roughly

203

equivalent to integers in other languages) and so is
the result of the multiplication. This is important
because there is no guarantee that the double of an
integer remains the same-size integer. Consequently,
in general, Lisp would need to allocate a bignum to
store the result.

As it turns out, compiling this new version of
the function leads to only 5 lines of machine code.
The compiler is even clever enough to avoid using
the integer multiplication operator, but a left shift
instruction instead. What we get in this context is
in fact the behavior of a statically and weakly typed
language such as C. Consequently, it should not be
surprising that the level of performance we get out
of this is comparable to that of equivalent C code.
Recent experimental studies have demonstrated that
this is indeed the case [19, 20].

This particular example is also a nice illustration
of what we meant earlier by saying that Common
Lisp is both a full-blown, industrial scale, general
purpose programming language, and a scripting lan-
guage at the same time. When working at the script-
ing level, the first version of dbl is quick and good
enough. When working in the core of your applica-
tion however, you appreciate it when the language
provides a lot of tools (optimization ones notably)
to adjust your code to your specific needs.

4.4 Extensibility and customizability

Another aspect of the language well worth its own sec-
tion is its level of extensibility (adding new behavior)
and customizability (modifying existing behavior).
We know how important this is in the (I8)TEX world,
which is a complicated ball of intermixed threads all
interacting with each other [21], which wouldn’t be
possible without the level of intercession that TEX
macros offer. Similarly, at least part of the success
of LuaTEX is due to its ability to provide access to
TEX’s internals, so it seems that there is also a lot
of interest in this area.

4.4.1 Homoiconicity and reflection

Once again, Common Lisp is here to help. We men-
tioned earlier how the root of extensibility and cus-
tomizability in Common Lisp is its highly reflexive
nature. Reflection is usually decoupled into introspec-
tion (the ability to examine yourself) and intercession
(the ability to modify yourself).

In Lisp, reflection is supported in the most direct
and simple way one could think of. Remember the
expression (+ 1 2), with or without evaluation? As
we said before, this expression can either represent
a call to the function “sum” with the arguments 1
and 2, or the list of three elements: the symbol + and

Star TEX: The Next Generation

204

the numbers 1 and 2. What this really means is that
every piece of code, if not evaluated, can be seen as a
piece of data, and hence can be manipulated at will.
In fact, every piece of Lisp code is represented as a
list, which happens to be a user-level data structure.
This property of a programming language is known
as homoiconicity [5, 11].

Another important distinction in this notion is
structural vs. behavioral reflection [10, 17]. While
structural reflection deals with providing a way to
reify a program, behavioral reflection deals with ac-
cessing the language itself. Lisp is one of the very
few languages to provide both kinds of reflection to
some extent, as we’ll now discuss.

4.4.2 Structural reflexivity

This section gives only a couple of examples of struc-
tural reflexivity, again, to demonstrate how some
well-known TEX idioms map to Common Lisp in a
straightforward way.

The functional nature of Lisp implies that func-
tions are first-class citizens in the language [3, 18].
In general, this means that functions can be used
like any other object in the language. In particular,
this means that functions can be modified, stored in
variables, etc.

Storing a functional value in a variable will be
useful in order to implement a variant of the function
which needs to call the original one at some point.
This is equivalent to the following common TEX
idiom:

\let\oldfoo\foo
\def\foo{... \oldfoo ...}

Defining a function several times is simply equiv-
alent to overriding the previous definition(s). This
behavior matches that of \def or (more or less)
\renewcommand. It is in fact more powerful for at
least two reasons:

1. Since Common Lisp has a proper notion of scope
(and in fact provides both dynamic and lexi-
cal scoping; something that very few other lan-
guages, can do), function or variable redefinition
can be performed at different scoping levels, not
only local or global.

2. Because of its interactive nature, there is no
real distinction between functions defined in
a core image or executable and those defined
in the REPL and that consequently, they can
be redefined in the exact same way. Consider
what this really means for a minute: one could
redefine any function in the TEX program just
as easily as any TEX macro. ..

Didier Verna

TUGDboat, Volume 33 (2012), No. 2

Finally, reflexivity in Common Lisp goes as far
as allowing both introspection and intercession at the
level of package internals. In most other languages, it
is simply not possible to access the so-called “private *
parts of a namespace, class, or whatever encapsula-
tion scheme is supported. In Common Lisp, remem-
ber that a public symbol is accessed by prefixing
its name with the name of the package and a colon
separator, for example: 1tx:document-class.

It turns out that it is just as easy to both intro-
spect and intercede a package’s internals. One just
needs to use a double colon instead of a single one.
This is not unlike the @ character convention used by
IMTEX, along with the macros \makeatletter and
\makeatother. The double colon really is a warning
that you are prying on private property, but nothing
technically prevents you from doing so.

4.4.3 Behavioral reflexivity

Lisp goes even further by providing some level of
behavioral reflection as well.

Lisp macros (functions executed at compile-
time) provide a form of intercession at the compiler
level, allowing one to program language modifica-
tions in the language itself (what [16] calls a “homo-
geneous meta-programming system”, as opposed to
C++ templates for instance, which are heterogeneous:
a different language).

CLOS [2, 6], the Common Lisp Object System
is written in itself, on top of a so-called Meta-Object
Protocol, known as the MOP [14, 7]. Using the CLOS
MOP permits intercession at the object system level,
allowing the programmer to modify the semantics of
the object-oriented layer.

Finally, it is also possible to extend the Lisp
syntax, which is a form of intercession at the parser
level, allowing to modify the language’s syntax di-
rectly. This is the only concrete example that we will
provide in this section, although a striking one. We
assume that the reader is familiar with TEX’s dou-
ble superscript syntax, allowing to denote characters
that are not normally printable.

Suppose that we are given a function called
~~-reader which performs TEX’s double-superscript
syntax to character conversion (this function is 10
lines long). The following code effectively installs the
corresponding syntax in the Common Lisp reader:
(make-dispatch-macro-character #\7)
(set-dispatch-macro-character #\~ #\~

#’|""-reader|)

The first line informs the Lisp reader that the ~
character is to be treated in a special way (do you
see a relationship to active characters and catcodes?).
The second line informs the Lisp reader that if two

TUGboat, Volume 33 (2012), No. 2

such characters are encountered in a row, then, the
regular parser should stop and pass control to our
user-provided function. We can now verify that this
extended syntax works:

CL-USER> ~°M
#\Return
CL-USER> ~~00
#\Nul

This particular example is a bit simplified, but it
conveys the idea. By modifying the way the Lisp
parser behaves, we are able to modify the language
itself, not only the program we are executing. And
again, we are not very far from TEX’s notion of active
characters.

5 Common Lisp: how?

Section 2 on page 199 listed five objectives for a mod-
ern reimplementation of TEX. Section 4 on page 200
demonstrated how Common Lisp can help fulfill three
of these goals: providing real programming capabil-
ities, extensibility and customizability, all of this
while maintaining a relative ease of use.

This section is devoted to the last two objectives,
namely providing a more modern and consistent API
while at the same time (although not mandatory)
maintaining backward compatibility. In actuality,
this section provides a more concrete view of the
project itself. Although very little has been imple-
mented already, the project does have a name: TiCL
(the acronym for “TEX in Common Lisp”).

5.1 API

Mapping the typesetting TEX primitives (that is, the
non-programmatic ones) to Common Lisp would be
rather straightforward.

e TEX parameters become Lisp variables. For
instance, \badness is represented by a Lisp
(global, dynamically scoped) variable badness.

e TEX quantities become Lisp objects. The term
“object” is to be taken in a broad sense, that is,
depending on the exact requirements, either an
object of some class from the object system, of
some structure, or anything else. In Lisp, it is
customary to provide abstract constructor func-
tions following a specific naming scheme. For
instance, creating a TEX glue item could be done
with a call to a function such as make-glue:

(defun make-glue (b &key plus minus)
.

Since functions like this are bound to be used
quite often, a syntactic shortcut may come in
handy, such as the rather idiomatic one follow-
ing, which also demonstrates the Lisp way to

205

set some variable to a specific value (but see
section 5.1.1):

(setf baselineskip
#g(b :plus x :minus y))

e Obviously, every TEX primitive command be-
comes a Lisp function. Again, the point here is
to both simplify the syntax and make it more
consistent at the same time (no more \relax!).
Here are a couple of examples:

(input file)

(hbox material)

(hbox material :to dim)

(hbox material :spread dim)

The reader familiar with TEX will notice im-
mediately that the arguments in the last two
examples are in reverse order, compared to the
regular TEX versions. If this is really too much
to get accustomed to, variants are easy to im-
plement:

(hbox-to dim material)

(hbox-spread dim material)

Such syntactic variants are usually implemented
with Lisp macros, evaluated at compile-time, so
that there is no additional run-time cost.

5.1.1 Lisp-2

Let us go back to the baselineskip assignment
example for a minute:

(setf baselineskip <glue>)

This assignment may seem odd to a TEXnician, who
is more accustomed to direct assignments such as

\baselineskip 10pt

In fact, TEX has this way of using the same macro
for both denoting its value and setting it.

We intentionally omitted one point in section 4.3
on page 201 in order to put it here: the fact that
Common Lisp is a “Lisp-2” (as opposed to Scheme
for instance, which is a Lisp-1). What this means is
that Common Lisp has 2 different namespaces for
functions and variables. In other words, the same
symbol can be used to both refer to a function and
a variable at the same time.

An interesting consequence of this is that it is
possible to define a function baselineskip the pur-
pose of which is to assign a value to the eponymous
variable baselineskip. Assuming this function ex-
ists, the above Lisp expression can hence be simplified
as follows:

(baselineskip <glue>) ; set it!

Again, this aspect of Common Lisp brings us even
closer to one of TEX’s idioms: that of quantity as-
signment.

Star TEX: The Next Generation

206

TUGhboat, Volume 33 (2012), No. 2

User level Lisp

I Loy

P
(3.

Procedural TeX

Traditional TeX

Figure 1: TiCL architecture

5.2 Backward compatibility

The programmatic interface to the typesetting part of
TEX described in the previous section is what we call
“procedural TEX”. Along with the actual typesetting
engine, this mostly corresponds to TEX’s stomach
and bowels. On top of that, it is in fact possible
to design either completely new typesetting systems
or programmatic versions of Plain TEX, KTEX, etc.
entirely in Lisp.

In order to maintain backward compatibility, we
also need to implement “traditional” TEX (still in
Lisp), that is, the surface layer consisting of both the
macro versions of Lispified TEX primitives, and the
rest of TEX’s programming API. This is mostly lo-
cated in TEX’s mouth and eyes. Figure 1 depicts this
architecture (disclaimer: this is an overly simplified,
extremely naive view; see section 5.3 for details). As
mentioned earlier, the whole point of this architecture
being implemented in Lisp, in terms of extensibility
and customizability, is that the user of TiCL can ba-
sically interfere at every level of the system, whether
by adding personal functions, rewriting built-in func-
tions or even internal typesetting algorithms.

Another advantage of this fully integrated ap-
proach is that it is actually quite simple to provide
“mixed” functionality, that is, using Common Lisp
code directly in an otherwise regular TEX source file.
The only requirement is an escape syntax allowing
Common Lisp to take over interpretation of Lisp
code, and insert the result back into the regular TEX
character stream. A prototype for this has already
been implemented. It simply consists in a Common
Lisp implementation of TEX’s eyes with an additional
bit of syntax: the appearance of two consecutive and
equal subscript characters in a regular TEX source
file will trigger the evaluation of the subsequent Lisp

Didier Verna

expression. Since this syntax is invalid in TEX, it
cannot break any existing document.

Below is an example illustrating this idea (taken
from [15]). The Lisp function ast is used to define a
TEX macro \asts outputting a specified number of
asterisks.

\documentclass{article}

\newcommand\asts{}
__(defun ast (n)
(format nil "\\renewcommand\\asts{ A}"
(make-string n :initial-element #*)))

\begin{document}
__(ast 10)

\asts
\end{document}

For the curious, our current implementation of TEX’s
eyes in Common Lisp is roughly 200 lines. The
support for the double subscript syntax (including
parsing it, reading the Lisp code, evaluating it and
inserting the result back into the regular TEX stream)
amounts to only 16 lines, that is, around 8% of the
total.

5.3 Expected problems

After all those “would” and “could”, let us get to a
more pessimistic (realistic?) view of the project. This
section sheds some darkness on the too-bright picture
we have drawn of TiCL until now. As mentioned
earlier, TiCL is in fact pretty much only an idea
at present. If this project ever comes to fruition, a
number of problems are expected.

5.3.1 A huge task

Completely reimplementing TEX is a huge task. This
is probably one of the reasons all alternative projects

TUGboat, Volume 33 (2012), No. 2

(NTS excepted) chose the hybrid approach instead of
the fully integrated one. One thing that may help is
the existence of foreign function interfaces, notably
for the C language. The project could be developed
gradually by linking to the WEB/C implementation
of the not-yet-reimplemented parts.

5.3.2 Compatibility

Another question to consider is whether the TEX-
incompatible part would eventually be accepted by
the (or a new) community. This question is in fact
pertinent for KTEX3 as well and we don’t have an
answer. The existence of a compatibility mode with
pluggable Lisp, as described in section 5.2 on the fac-
ing page, would probably help getting people accus-
tomed to the benefits of using Lisp, while remaining
in a reassuring context of traditional TEX.

5.3.3 TEX’s organs

Figure 1 on the preceding page was already pointed
out to be overly simplified. In reality, we know that
the TEX organs don’t constitute a pipeline. Some
levels from “down below” do affect the upper stages
which makes things much more complicated. In the
long run, this may imply that it would be impossi-
ble to have new programmatic typesetting systems
(accessing “procedural TEX” directly) work in con-
junction with traditional TEX. Currently, we don’t
know for sure, although we are aware of the fact that
this was one of the reasons the NTS project failed.

5.3.4 Mixed mode

Along those same lines, “mixed” mode, that is, the
ability to mix regular TEX macros with Lisp code is
expected to be tricky. If we want to provide more
interaction than just the double subscript syntax,
for example, the ability to define TEX macros in
Lisp with Lisp access to the macro’s arguments, we
are bound to encounter issues related to the time of
expansion.

This problem is in fact not related to Lisp at
all, but rather to any approach aiming to provide
the ability to define TEX macros in another language.
Section 4 of [15] describes these kinds of problems
in more detail.

5.3.5 Sandboxing

As with any scriptable application, the security prob-
lem is an important one. How much programmatic
access to the application itself, or its surrounding en-
vironment, are we willing to give the end-user? Some
versions of TEX are equipped with means to address
this issue (¢f. the ~shell-escape command-line op-
tion and the \writel8 command). Using a true,

207

comprehensive programming language with scripting
capabilities makes this problem even worse because
we have more than a couple of “macros” to control
access to. We have a whole stack of language fea-
tures to control, such as file I/O, operating system
interfaces, etc. Currently, we are not aware of any
sandboxing library already available for Lisp.

5.3.6 Intercession

This is in a similar vein as the sandboxing problem.
In [21], we were complaining about (rejoicing in?)
the huge intercession mess that the IWTEX world is.
Well, now you should really be afraid because we are
going to make things worse! Remember that any Lisp
executable granting scripting privileges to the end-
user effectively provides write-access to the whole
executable. This surely makes it trivial to extend or
customize the system. Whether this is a good thing
for the system in the long run, there is no way to
tell. After all, A TEX s alive and kicking, in spite of
(because of?) its high intercession capabilities. . .

6 Conclusion

In this paper, we advocated a “homogeneous” ap-
proach to TEX modernization in which TEX itself is
first rewritten in a programming language serving
both at the core of the program and at the scripting
level. All programmatic macros of TEX are hence
rendered obsolete, as the underlying language itself
can be used for user-level programming. In a rather
puzzling way, our notion of “modernity” consists
of reimplementing a 30-year-old language using a
50-year-old one!

We demonstrated why we think that Common
Lisp is a very good choice for doing this. Common
Lisp is both a scripting language and a full-blown,
industrial scale, general-purpose programming lan-
guage at the same time. Common Lisp also provides
several paradigms or idioms that are actually quite
close to features that TEX either provides as well, or
would like to provide.

Will the TiCL project ever come to birth? That
is not sure at that point, as it will require a tremen-
dous effort. We would like to see it happening, of
course. Amongst all the current alternatives, LuaTEX
seems to be the only one vigorously alive and gaining
momentum.

Of course, the other project that needs to be
mentioned is IMTEX3. We only do so in an anecdotal
fashion because it does not make use of a real pro-
gramming language, but continues in the tradition
of building directly on top of TEX. Still, ITEX3 is
not experimental anymore and is light years ahead
of what I4TEX 2¢ is. In particular, it is much better

Star TEX: The Next Generation

208

than its ancestor in terms of syntax consistency and
programmatic capabilities. Nevertheless, since it is
still restricted to TEX’s macro-expansion world, ev-
ery time a new programming paradigm is needed, it
will have to be implemented manually.

To sum up, the “big TEX modernization plan’
currently seems to follow two different paths: stay-
ing strictly in the TEX area or creating hybrids of
TEX and another real programming language. The
approach we would like to suggest with TiCL is a
third one: a homogeneous approach in which the im-
plementation language of TEX is also the one which
serves at the scripting level. Will this project see the
light of day? Can these three approaches co-exist in
the long term? Only the future will tell...

)

Epilogue

These were the voyages,

Of a software enterprise.

Its continuing mission:

To explore new tokens,

To seek out a new life,

New forms of implementation.
To \textbf{go},

Where no TEX has gone before!

References

[1] Common Lisp. American National Standard:
Programming Language. ANSI X3.226:1994
(R1999), 1994.

[2] Daniel G. Bobrow, Linda G. DeMichiel,
Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common Lisp
Object System specification. ACM SIGPLAN
Notices, 23(SI):1-142, 1988.

[3] Rod Burstall. Christopher Strachey —
Understanding programming languages. Higher
Order Symbolic Computation, 13(1-2):51-55, 2000.

[4] Jonathan Fine. TEX forever! In Proceedings
EuroTpX, pages 140-149, Pont-a-Mousson,
France, 2005. DANTE e.V.

[5] Alan C. Kay. The Reactive Engine. PhD thesis,
University of Hamburg, 1969.

[6] Sonya E. Keene. Object-Oriented Programming in
Common Lisp: A Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[7] Gregor J. Kiczales, Jim des Riviéres, and
Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

[8] Donald E. Knuth. Digital Typography. CSLI
Lecture Notes. CSLI, September 1998.

[9] John MacCarthy. Recursive functions of symbolic
expressions and their computation by machine,
part I. Communications of the ACM, 3:184-195,

Didier Verna

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

TUGDboat, Volume 33 (2012), No. 2

1960. Online version at http://www-formal.
stanford.edu/jmc/recursive.html.

Patty Maes. Concepts and experiments in
computational reflection. In OOPSLA. ACM,
December 1987.

M. Douglas Mcllroy. Macro instruction extensions
of compiler languages. Commun. ACM, 3:214-220,
April 1960.

Marjan Mernik, editor. Formal and Practical
Aspects of Domain Specific Languages: Recent
Developments, chapter 1. IGI Global, 2012.

Andrew Mertz and William Slough. Programming
with PerlTEX. TUGboat, 28(3):354-362, 2007.

Andreas Paepcke. User-level language crafting —
Introducing the CLOS metaobject protocol.

In Andreas Paepcke, editor, Object-Oriented
Programming: The CLOS Perspective, chapter 3,
pages 65-99. MIT Press, 1993. Downloadable
version at http://infolab.stanford.edu/
~paepcke/shared-documents/mopintro.ps.

Scott Pakin. PerlTEX: Defining B'TEX macros
using Perl. TUGboat, 25(2):150-159, 2004.

Tim Sheard. Accomplishments and research
challenges in meta-programming. In Walid
Taha, editor, Semantics, Applications, and
Implementation of Program Generation, volume
2196 of Lecture Notes in Computer Science, pages
2-44. Springer, 2001.

Brian C. Smith. Reflection and semantics in
Lisp. In Symposium on Principles of Programming
Languages, pages 23-35. ACM, 1984.

J.E. Stoy and Christopher Strachey. OS6—
An experimental operating system for a small
computer. Part 2: Input/output and filing
system. The Computer Journal, 15(3):195-203,
1972.

Didier Verna. Beating C in scientific computing
applications. In Third European Lisp Workshop at
Ecoop, Nantes, France, July 2006.

Didier Verna. CLOS efficiency:instantiation. In
International Lisp Conference, pages 76-90, MIT,
Cambridge, Massachusetts, USA, March 2009.
Association of Lisp Users.

Didier Verna. Classes, styles, conflicts:

The biological realm of WTEX. TUGboat,
31(2):162-172, 2010. http://tug.org/TUGboat/
tb31-2/tb98verna.pdf.

¢ Didier Verna
EPITA / LRDE
14-16 rue Voltaire
94276 Le Kremlin-Bicétre Cedex
France
didier (at) lrde dot epita dot fr
http://www.lrde.epita.fr/"didier

TUGboat, Volume 33 (2012), No. 2

Adapting ProofCheck to the author’s needs
Bob Neveln and Bob Alps

Abstract

ProofCheck is a system for writing and checking
mathematical proofs. Theorems and proofs are con-
tained in a plain TEX or KTEX document. Parsing
and proof checking are accomplished through Python
programs which read the source file. Although the
use of these programs has never been restricted to
any particular logic or mathematical language, the
work required to actually implement an author’s
choices in these matters, especially in the logic, and
to make the necessary modifications of the support-
ing files have been sufficiently laborious as to pose
an obstacle to the use of ProofCheck. This paper
describes updates to the system whose purpose is
to alleviate these labors to the extent possible so as
to facilitate the use of ProofCheck in a logical and
linguistic setting of the author’s choice.

1 What is ProofCheck?

ProofCheck is a Python package, available at http:
//www.proofcheck.org. It checks mathematical
proofs written in TEX or IXTEX. Previous versions
were described in [2] and [3]. The mode of operation
of ProofCheck is extremely simple. It requires proofs
to be structured into lines which have a justification
at the right margin. Each line with its justification
is matched against rules of inference from a list. If a
match is found the line is checked. If all the lines of
a proof check the proof checks.

This simplicity is reflected in the file structure
of the system as shown in Figure 1. The rectangular
boxes represent TEX files. The rule matcher and
the unifier consist of Python code. We now briefly
describe these TEX files.

1.1 (B)TEX documents

An author’s document may be written in either plain
TEX or in IATEX. Figures 2 and 3 show a fictitious
proof as it would appear in the source and output files
respectively. Ordinary text may be used relatively
freely in a proof. Mathematical expressions in TEX
may also be included even if they play no role in the
checking.

Structuring a proof so that it can be checked
requires six proof structuring macros in TEX, five
in BTEX. Figure 2 shows all those needed in ITEX.
For plain TEX, these are used: \chap, \prop, \note,
\line[a-z], \By, \Bye. No other markup is needed
in structuring proofs.

The logical and mathematical symbols shown

209
Inference Common Operator
Rules Notions Properties
TEX or BTEX] | Macro
Document Definitions

C Rule Matcher

Figure 1: Main Proof Checking Files

\prop 4.23 $\Not (x,y,z \in \nats \setdif \{O\}
\And 2 < n \in \nats
\And x \toThe n + y \toThe n = z \toThe n)$
\lineb Proof: We begin by taking as given:
\note 1 $(x,y,z \in \nats \setdif \{0\})$ \By G
\linea and
\note 2 $(2 < n \in \nats)$ \By G
\linea From these givens we get our contradiction that
\note 3 $(x \toThe n + y \toThe n = z \toThe n $
\lined $ \c \false)$ \By .1,.2
\lineb \Bye .3 H .1,.2

Figure 2: Fictitious Proof: Source File
423 —~(z,y,z e N~{0}A2<neN Az n+y”
n=z"n)
Proof: We begin by taking as given:

1 (z,y,2 € N« {0}) 1G
and
2 (2<neN) 1G

From these givens we get our contradiction that

3 (zrn+yrn=z"n
—1) 1.1,.2

Q.ED..3H .1,2

Figure 3: Fictitious Proof: Output

in the fictitious proof are those used in the rules
of inference and common notions files, respectively.
In sections 2.1 and 2.2 it is shown how to adapt
ProofCheck so that it works with symbols of the
author’s choosing.

1.2 Macro definitions files

There are TEX definition files with extension .tdf or
IXTEX definition file with extension .1df that need
to be included at the beginning of a checkable source
file using a TEX \input statement. These include
the utility.tdf file which contains the proof struc-
turing macros and sets up some math fonts and the
common . tdf file which contains the TEX definitions
of the symbols used in the rules of inference and
common notions files. Further, any document which
contains many new symbols should also have its
own .tdf file. Besides TEX macros these files may
also contain ProofCheck directives, which are TEX

Adapting ProofCheck to the author’s needs

210

comments beginning with ‘%’ allowing authors to
customize the behavior of the system:

ProofCheck directives

e Symbol substitution:
%def_symbol \forall \Each

e Operator precedence specification:
%set_precedence \toThe 17

e External file referencing:
%hset_ref gr graphs

e Primitive term and formula specification:
f%undefined_term: supremum

e Term and formula definor specification:
%term_definor: =

o [4TEX theorem section-level specification:
%major_unit: section

1.3 Rules of inference file

The rules of inference file is a TEX file which is
searched every time a line of a proof is checked. It
consists of logical rules of inference.

The prime example of a rule of inference is the
modus ponens rule. In the rules file it looks like this:

(=9 ;pka

In order for checkable proofs to be of reasonable
length it is important that there be many rules. We
now have over 1500 in the default rules.tex file.
This file which has been supplied by default with
the package is based on the logic in [1], which is not
in wide use. The size of this file makes it difficult
to simply edit desired changes. In section 2.5 an
improvement is described which makes it possible to
obtain a variety of standard and non-standard rules
of inference files.

1.4 Operator properties file

When the rules of inference file is searched each rule
is compared with the line to be checked using a
unifier. A unifier is a program which determines
whether there is some substitution which makes two
given expressions the “same”, which ordinarily means
identical. But it is important to allow expressions
such as ((A A B) A C) and (A A (C A B)) to be
considered the same.

The unifier may assume that certain operators,
such as conjunctions, are commutative and associa-
tive, or transitive, such as equality, if theorems to this
effect are stored in the properties.tex file. This file
can be edited and such theorems may be commented
out if desired for the logic under consideration.

Bob Neveln and Bob Alps

TUGDboat, Volume 33 (2012), No. 2

1.5 Common notions file

The common notions file consists of mathematics
which is either taken for granted, or at least is outside
the scope of the document.

2 Adapting ProofCheck

It is very desirable that an author be able to check
mathematics without being required to use the same
symbols as those in the rules of inference and common
notions files.

2.1 Example of a symbol definition

In the source file shown in Figure 2, the macro
\setdif produces the symbol ‘~” in the output file
shown in Figure 3. To obtain ‘N \ {0}’ instead of
‘N « {0} in the output, while still using ‘\setdif’
in the source file one can use the TEX definition:
\def\setdif{\setminus}

This modification affects only the output file
and does not free the author of the need to match
the symbol in the source file with the corresponding
symbol in the rules or common notions files.

2.2 Example of a symbol substitution

Unlike symbol definition, symbol substitution allows
an author to use a freely chosen symbol in the source
file without forgoing a match with ProofCheck files.
To use ‘\setminus’ (for ‘\’) in the source file and still
match ‘\setdif’ in the ProofCheck files an author
could use the following symbol substitution:

%def_symbol \setminus \setdif

In cases where the issue can be resolved by a symbol-
for-symbol replacement either a symbol definition
or a symbol substitution can solve the problem. In
propositional logic for example, since notation is
almost universally infix, symbol-for-symbol replace-
ments are enough. Since the rules of inference file
consists of logic, and quantifiers like propositional
logic share a common syntax, syntactical agreement
with the rules of inference file can almost always
be accomplished with such replacements. Semantic
issues are discussed in section 2.5.

2.3 Setting operator precedence

Infix operators are constants which, whether logical
or mathematical, require precedence values in order
to avoid fully parenthesizing. To establish the prece-
dence of a new infix operator, or reset that of an old
one, a line is inserted into a macro definitions file.
To set the precedence of the exponential operator
used in Figure 2 to 17 the following line suffices:

%set_precedence \toThe 17

The viewdfs script may be run to see all cur-
rently established precedence values.

TUGboat, Volume 33 (2012), No. 2

(Data Base)

Inference
Rules

Figure 4: Rules File and Database

2.4 New terms and formulas

Much of the work of making mathematical proofs
checkable lies in constructing definitions for the terms
and formulas used in the work, which satisfy the
requirements of formality. Definitions recognized by
ProofCheck must have the form:

({definiendum) (definor) {definiens))
Term and formula definor symbols can be established
using the directives:

Y%term_definor:
Y%formula_definor:

The parser then “learns” the author’s terms and
formulas when it reads a definition. A definition
should be marked using \prop and given a \By D
justification.

Terms and formulas may also be presented to
the parser without definitions using ProofCheck di-
rectives:

Y%undefined_term:
Y%undefined_formula:

2.5 Rules database

The rules of inference used in the original imple-
mentation of ProofCheck are those of a logic system
consisting of the sentence logic of tautologies and a
free predicate logic which allows non-denoting terms
and includes definite and indefinite descriptions. Rec-
ognizing that most potential users work with more
traditional logic, ProofCheck has been modified to
allow a user to select a rules of inference file which
implements the user’s preferred logic system. A data-
base has been built to store rules of inference, where
each rule is flagged with respect to the 20 different
attributes shown in Figure 5. Rules have been added
to the database which are valid only in more tradi-
tional logic. The user can create a query to select
rules based on these attributes. We have identified 8
logic systems for which queries have been pre-defined.
Each of the 8 systems uses tautologies for sentence
logic, but differ in the area of predicate logic. The
systems are as follows:

211

Sentence logic
e tau - tautology rule
e trf - rule contains True symbol (T) or
False symbol (1)
e ent - entailment rule (relevance and necessity)
e tui - intuitionistic rule
e mdl - contains a modal operator

Predicate logic
e prd - predicate logic rule (contains a predicate
or quantifier)
std - standard predicate logic rule
fre - free logic rule
uni - universal logic rule
equ - contains the equals symbol (=)
idn - contains the identity symbol (=)
def - contains definite description (the)
idf - contains indefinite description (an)
cas - contains case symbol (¢)
nul - contains the Nul symbol (Nul)
exs - contains the exists predicate symbol (ex)
unv - universalization rule

Miscellaneous
e prn - has parentheses as reference punctuators
e mlt - multi-goal rule
e gvh - Given: Hence rule

Figure 5: Attributes of Inference Rules

2.5.1 Eight logic systems

Here, SPL means Standard Predicate Logic, and FPL
means Free Predicate Logic.

1. SPL without equality or descriptions (Kelley,
Morse)

SPL with equality (Suppes)

SPL with definite descriptions (Bernays)

SPL with indefinite descriptions (Bourbaki)
FPL without identity, equality, or descriptions
FPL with identity and equality

FPL with definite descriptions

FPL with indefinite descriptions (Alps—Neveln)

® N o Uk N

2.5.2 Query examples

For example, to produce the rules of standard predi-
cate logic with equality and without descriptions the
following query is used:

(md1=0 And (tau=1 Or (std=1 And def=0)))

As another example, to produce rules for Alps—
Neveln logic, the needed query is:

(nd1=0 And (fre=1 Or tau=1))

Adapting ProofCheck to the author’s needs

212

2.6 The common notions file

Using a different logic affects the validity of theorems
compiled in the common notions file. Therefore,
these theorems must be reviewed and modified to
suit the logic being used.

The work of the authors uses a set/class theory
similar to that of Morse and Kelley, and this is re-
flected in the theorems of the common notions file.
The use of a different set theory, such as Zermelo—
Fraenkel, would require that the common notions be
modified for consistency with the chosen set theory.
Work is underway to create a common notions file
compatible with SPL with definite descriptions and
Zermelo—Fraenkel set theory.

2.6.1 External references in proofs

External references to the common notions file can
be identified by a leading ‘0’. In the marginal justi-
fication of the following note, a theorem numbered
11.7 in the common notions file is referred to:

12 (x€e A—z€B) $011.7; .10

Multiple external reference files are permitted with
an appended identification code established using a
ProofCheck directive. The command

%set_ref gr graphs

causes ProofCheck to refer to the file graphs.tex
when references using gr are used as in the justifica-
tion of the following note:

12 (x€e A—z€B) 111.7gr; .10

3 Conclusion

A widely-held view is that formal proofs are by ne-
cessity lengthy and intractable. A fairly recent logic
text, for example, claims that:

In principle, all of known mathematics can
be formalized in terms of the symbols and ax-
ioms. But in everyday practice, most ordinary
mathematicians do not completely formalize
their work; to do so would be highly impracti-
cal. Even partial formalization of a two-page
paper on differential equations would turn
into a 50 page paper. For analogy, imagine
a cake recipe written by a nuclear physicist,
describing the locations and quantities of the
electrons, protons, etc., that are included in
the butter, the sugar, etc.!

I The quoted text is on page 28 of [4].

Bob Neveln and Bob Alps

TUGDboat, Volume 33 (2012), No. 2

Existing proof assistants? tend to support this
notion, conveying the impression that “computer
proofs” are massive, and the packages themselves
tend to be massive.

But as in [2] and in [3] we again claim that
checkable proofs can be done which are less than
an order of magnitude longer than proofs which are
considered rigorous by prevailing standards. We seek
mathematicians interested in trying ProofCheck. We
will gladly provide assistance to anyone seeking to
use it.

References

[1] Robert A. Alps and Robert C. Neveln.
A predicate logic based on indefinite
description and two notions of identity.
Notre Dame Journal of Formal Logic,
22(3), 1981.

[2] Bob Neveln and Bob Alps. Writing and
checking complete proofs in TEX.
TUGboat, 28(1), 2007, pp. 80-83.
http://tug.org/TUGboat/tb28-1/
tb88neveln.pdf.

[3] Bob Neveln and Bob Alps. ProofCheck:
Writing and checking complete proofs in ETEX.
TUGboat, 30(2), 2009, pp. 191-195.
http://tug.org/TUGboat/tb30-2/
tb95neveln.pdf.

[4] Eric Schechter. Classical and Nonclassical

Logics. Princeton University Press, Princeton,
New Jersey, 2005.

o Bob Neveln
Widener University
neveln (at) cs dot widener dot edu

o Bob Alps
Evanston, Illinois
BobAlps (at) aol dot com

2 See Wiedijk’s list: www.cs.ru.nl/~freek/digimath

TUGboat, Volume 33 (2012), No. 2

Approaching Asymptote
Michael Doob and Jim Hefferon

Asymptote is a relatively new tool to make graph-
ics that is integrated with the TEX family. On its
website! its developers, Andy Hammerlindl, John
Bowman, and Tom Prince, characterize it as “a pow-
erful descriptive vector graphics language inspired
by METAPOST that features robust floating-point
numerics, automatic picture sizing, native three-di-
mensional graphics, and a C++ /Java-like syntax en-
hanced with high-order functions.” It is free software,
released under the GNU General Public License.

Those developers have described Asymptote’s
advanced capabilities and algorithms in several pa-
pers (for instance, [1], [3], and [4]) and presentations
(see [2]). The comprehensive manual and additional
documentation is on the website. Also check out
Philippe Ivaldi’s wonderful gallery and tutorial.?

We are not developers, we are users (specifically,
mathematical users). This is a gentle introduction
aimed at people who need to produce mathematically-
oriented graphics, and who may find that this system
fits their needs and how they think.

We will first briefly compare Asymptote with
METRAPOST, since that program may be familiar to
readers. We will then introduce capabilities that are
basic to Asymptote by using some figures, chosen
both to be close to what a person might produce
in everyday work and to illustrate the power of the
system. We will finish by comparing this system with
two others that have many of the same capabilities
and are widely used in the TEX community, TikZ
and PSTricks.

1 Tangent: Predecessor systems

METAFONT is a programming language written by
Donald Knuth to define the fonts for TEX. META-
POST? is an extension of METAFONT targeted at
PostScript output. It remains widely used for graph-
ics for mathematics and related fields, and it is under
active development.

METAPOST produces two-dimensional line art
of very high quality. A number of innovative al-
gorithms are built in. Its output is vector-based,
not raster — that is, not dot-by-dot —so making a
graphic larger or smaller is smooth. One of its key
strengths is solving systems of equations. For in-
stance, the language allows you to easily find the
intersection of two lines, so if you label an intersection
and later adjust one line a bit then the label moves

1 http://asymptote.sourceforge.net
2 http://www.piprime.fr/asymptote
3 http://www.tug.org/metapost.html

213

with the intersection. METAPQOST is integrated with
TEX so that, for instance, you can produce labels
that use the ITEX style of the target document.

The most important point about METAPOST
(and Asymptote also) is that it is not mouse-driven.
Instead, you write a program to produce the out-
put. Below we will discuss some advantages of this—
how this allows us to construct figures in a way that
fits with our training— but one disadvantage is that
because the syntax of the METAPOST language is
unlike most other languages, users can find awkward
switching from programming in more everyday lan-
guages to programming in this one.

2 Meeting Asymptote: Two dimensions

Asymptote has essentially all of the capabilities of
METAPOST. Its syntax is Java-like. Asymptote has
a more extensive built-in function set than META-
POST. And it comes with many add-on modules
(METAPOST is relatively weak in this area). In the
next section we will highlight one add-on for drawing
in three dimensions but first we focus how Asymptote
does at METAPOST’s strength, two-dimensional line
art. Since Asymptote develops on those capabilities
it too makes those drawings with ease.

For a first taste we will walk through making an
elementary school star, as shown. The file star.asy
contains this Asymptote code.

size(.5inch);

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);

star=star--cycle;

draw(star) ;
For the first line, Asymptote expects that you typ-
ically want to specify the size of the graphic, and
we've specified that its width is a half inch. In the
second through fifth lines we construct the path with
five line segments (as with METAPOST the -- op-
erator connects points with line segments while . .
makes Bezier curves) and close the path with cycle.
Finally we draw that path to the output picture (the
default line width is 1 PostScript point).

We compile that code to a graphic by running it
through Asymptote. You should be able to try this
also because there are versions for GNU/Linux, Mac,
or Windows. We use the executable that comes with
Ubuntu Linux but the commands below should work
anywhere. The command line

$ asy star

produces the output file star.eps in Encapsulated
PostScript. You can get just about any graphics
format, such as PDF.

$ asy -fpdf star.asy

Approaching Asymptote

214

ETEX can use this output with the regular graphicx
command

\includegraphics{star.pdf}

or you can instead embed the Asymptote code inside
your ITEX file and the graphic will automatically
be inserted; see the documentation for that.

With that first taste of the system we can begin
to go further. Asymptote has four basic operations
that we will illustrate with four small listings.

The draw command is first. This .asy file
size(35pt);
path star;
for(int i=0; i < 5; ++i)

star=star--dir(90+144i) ;
star=star--cycle;
draw(star,linewidth(2)+lightblue+beveljoin) ;

draws this star.

The draw command has many options. For instance,

here we are drawing with a pen 2 points wide, in

blue, and with line segments joined in a bevel.
Asymptote’s second basic operation, £ill, col-

ors in a closed path.

size(35pt) ;

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);
star=star--cycle;
fill(star,lightblue);

Here we £i11 the star with blue.

Asymptote’s third basic operation is clip. It
omits from a shape the part that does not fit in the
clip-to area. For instance, we can drop the parts of
the star that lie outside a circle.
size(35pt);
path star;
for(int i=0; i < 5; ++i)

star=star--dir (90+144i);
star=star--cycle;
fill(star,lightblue);
clip(scale(0.618)*unitcircle);

(Comparing this star to the prior one shows that
after clipping Asymptote has expanded the shape to
fit in the declared width.)

Michael Doob and Jim Hefferon

TUGhboat, Volume 33 (2012), No. 2

The fourth basic operation, label, brings in
TEX text.

size(35pt) ;

path star;

for(int i=0; i < 5; ++i)
star=star--dir(90+144i);

star=star--cycle;

draw(star,linewidth(2)+lightblue);

label("\footnotesize 0",point(star,0),NE);

The label incorporates a INTEX command to produce
a subscript-sized label

0

)= ¢

that is northeast of the path’s starting point (the
initial point on the initial line segment is point 0 of
the path star, the initial point on the following line
segment is the path’s point 1, etc.).

Asymptote embeds these four core capabilities
inside of a powerful language with a familiar syntax.

We will illustrate with some examples of jobs
that are typical for our work. For each we will first
describe the figure and then examine the code listing
in more detail.

The next graphic began life as an illustration
for a calculus lecture.

Y

T

For us, the natural way to produce this is not to use
a mouse to try to get a good approximation of the
true picture. Instead, we want to define the func-
tion f(z) = e~ and from that have the computer
generate the graph and fill the area below it.

That thinking goes a long way toward writing
the code, shown below. The key line is the fourth
one where, after importing modules and declaring
the horizontal size (TUGboat has columns that are
about three inches wide), we define the function f.
With that function, Asymptote makes the path that
is the function’s graph, fills the area between that
graph and the z-axis, and finally draws the curve.
include "jh.asy";
import graph;
size(3inch);
real f(real x) {return exp(-x);}
real xmin=-0.1, xmax=4.1;
real ymin=-0.1, ymax=1/exp(-.1);
path g=graph(f,xmin,xmax,operator ..);
path c=buildcycle(g,

(xmax, f (xmax))--(xmax,0),

TUGboat, Volume 33 (2012), No. 2

(xmax,0)--(xmin,0),
(xmin,0)--(xmin,ymax)) ;
£i11(c, THINPEN+FILLCOLOR+opacity(0.75));
xaxis("\footnotesize x",ymin,xmax,AXISPEN,
above=true);
yaxis(Label("\footnotesize y",align=E),AXISPEN,
above=true);
draw(g,FCNPEN) ;

There are two things to note about this listing.
The first is that to get the area to be filled we must
close in the left and right sides. The buildcycle
command creates the cyclic curve from the given
sequence of bounding curves; the left and right sides
are just line segments created with the —- operator.

The second thing to note is that this code im-
ports the standard Asymptote module graph to
bring in the commands graph, xaxis, and yaxis.
This is one of the add-on modules mentioned above
to help with common tasks. This listing also has
include "jh.asy" to bring in a local .asy file. It
contains some of the authors’ own commands and
defines some constants to give a set of graphics a
more uniform look. Here is jh.asy.

import fontsize; defaultpen(fontsize(9.24994pt));
import texcolors;
pen FILLCOLOR=lightyellow;

pen THINPEN=squarecap + linewidth(0.4pt);

pen AXISPEN=THINPEN + gray(0.3)
+opacity(.5,"Normal");

pen FCNPEN=squarecap +linewidth(1.5pt) + gray(0.3)
+opacity(.5,"Normal");

The prior example is written in a style where
we declare what we want and Asymptote figures out
how to draw it. The advantage of this over using a
mouse-based painting program is like the advantage
of separation of appearance from content that we
get when using a system built on TEX rather than
a word processor. The next example also illustrates
this writing style.

To show the area between two curves

\

\

our inclination is to define the two functions and then
ask Asymptote to use those definitions to generate
the paths, find the intersections, and then construct
and fill the desired area.

215

import graph;
size(0,1.5inch);

real p_up(real x) {return x"2-2*x+0;}

real p_down(real x) {return -x"2-x+2;}

real xmin=-1.2, xmax=2.1;

real ymin=-1.2, ymax=2.4;

path g_up=graph(p_up,xmin,xmax,operator ..);

path g_down=graph(p_down,xmin,xmax,operator ..);

pair ipoints []J=intersectionpoints(g_up,g_down);

path c=
graph(p_up,ipoints[0].x,ipoints[1].x,

operator ..)
graph(p_down, ipoints[1] .x,ipoints[0] .x,
operator ..)

-- cycle;

£ill(c,lightyellow);

draw(g_up,red);

draw(g_down,lightblue);

xaxis(above=true); yaxis(above=true);

path clippath = (xmin,ymin)--(xmax,ymin)
--(xmax,ymax)--(xmin, ymax)
--cycle;

clip(clippath);

In detail the code is much like the prior example.
After importing the module, we set the graphic size
(we set the height to be 1.5 inches; setting the width
to 0 has the system find the natural width). We
then define the functions p_up and p_down. We ask
Asymptote to make paths that are the two graphs
with given left and right endpoints, find where those
two intersect, and construct the closed curve c be-
tween the two (ipoints.x gives the first component
of ipoints). Asymptote fills the area inside, draws
the two graph paths, and finally clips the ends of the
parabolas that extend too far away from the part of
the picture that we want to show.

Asymptote includes a full suite of powerful pro-
gramming constructs. The next illustration is rec-
tilinear graph paper with three different line thick-
nesses.

Approaching Asymptote

216

The code is a simple illustration of looping. We won’t
expand on it since readers who have programmed in
mainstream languages such as Java or Python will
recognize it right away.

size(3inch);
pen thinpen=(linewidth(.4)+extendcap+miterjoin);
pen mediumpen=(linewidth(1)+squarecap);
pen thickpen=(linewidth(1.8)+squarecap);
int xmin=-16, xmax=16;
int ymin=-12, ymax=12;
// draw horizontals
for (int k=xmin; k<=xmax; ++k) {
if (k==0) draw((k,ymin)--(k,ymax) ,thickpen);
else if (k45 ==0)
draw((k,ymin) --(k,ymax) ,mediumpen) ;
else draw((k,ymin)--(k,ymax),thinpen);
}
// draw verticals
for (int k=ymin; k<=ymax; ++k) {
if (k==0) draw((xmin,k)--(xmax,k),thickpen);
else if (k%5 ==0)
draw((xmin,k)--(xmax,k) ,mediumpen) ;
else draw((xmin,k)--(xmax,k),thinpen);

}

The final two-dimensional graphic has a polar
flavor; it’s a logarithmic spiral.

The source shows how easily we can define and com-
bine functions, and again illustrates how the language
fits with how a person with mathematical training
thinks.

import graph;

size(3inch);

real pi=2*acos(0);

real a=0.5, b=0.1; // parameters for the shape
// polar to cartesian

real x(real t) { return axexp(b*t)*cos(t);}
real y(real t) { return axexp(b*t)*sin(t);}

pair f(real t) { return (x(t),y(t));}
draw(graph(x, y, O, 6%pi, operator ..),lightblue);

Michael Doob and Jim Hefferon

TUGboat, Volume 33 (2012), No. 2

In particular, note that the function f returns a pair
of reals, where the coordinate functions were defined
earlier in the listing.

3 In the limit: Three dimensions

In addition to its capabilities in two dimensions,
Asymptote comes with modules targeted at three-
dimensional graphics. These develop some of META-
POST’s ideas from two dimensions. For instance,
a core capability of METAPOST (and originally in
METAFONT) is to produce useful and good-looking
curves without requiring that the author completely
specify those curves. Asymptote extends this to 3D.

Our first graphic is a straightforward image,
another one that might appear in a calculus lecture.

z-axis

T-axis

Because it is a three-dimensional graph, we will im-
port a different module, but the thinking behind
the code is similar to what we’ve done earlier. In
addition to drawing the axes, we declare where the
plane intersects each axis, make a surface connecting
those three points, and have Asymptote draw and
fill the surface.

size(3inch);
import settings;
settings.render=10;
settings.maxtile=(50,50) ;
import graph3;
currentprojection=orthographic(2,2,2);
currentlight=(9,3,4);
// where plane intercepts x, y, and z axes
triple intercepts=(5,2,4);
path3 P = (intercepts.x,0,0)
--(0,intercepts.y,0)
--(0,0,intercepts.z)
--cycle;
draw(surface(P), lightbluetopacity(.85));
draw(P,red);

TUGboat, Volume 33 (2012), No. 2

dot(P,red);

axes3("\footnotesize x-axis",
"\footnotesize y-axis",
"\footnotesize z-axis",
(0,0,0),(6,3,5));

The listing imports the 3D module graph3. This
gives us a command to draw axes in three dimen-
sions and also lets us define the projection to be
orthographic (projection lines are orthogonal to the
plane to which the image is projected, that is, the
projection is from infinity) and to define the location
of the light source.

One more point about this graphic: we produced
it as a .png file using this command line.

$ asy -fpng intercepts_plane

We chose this format to show well on the printed
page; we used .pdf for the earlier figures but it
doesn’t show in our viewer because Asymptote’s de-
fault behavior is to produce a figure that can be ma-
nipulated with the mouse —turned, or zoomed to—
but that behavior relies on a viewer’s capabilities,
and some viewers lack that capability (TUGboat’s
printed pages also don’t have it!). Because of this
change to the .png raster format we also changed
Asymptote’s defaults to adjust render for 10 pixels
per big point to reduce jaggies and changed maxtile
to get around a common bug in the graphics driver.
Our final two figures are less prosaic. We want
to close with the message that Asymptote can indeed
do some fancy things, often with very little code.
First, here is a stellated icosahedron.

The construction is logical and easy to implement
using Asymptote. First define the twelve points of
the icosahedron, then use these points to define the
twenty faces and, finally, create a function that will

217

erect a pyramid on (i.e., stellate) each of these faces.
Asymptote itself takes care of the projections and
shading.

size(3inch);

import settings;

settings.render=10;

import three;
currentprojection=perspective(21,25,15);
currentlight=White;

real phi = (1+sqrt(5))/2;

// Vertices of the icosahedron are of the form
// (0, \pm 1, \pm\phi), (\pm\phi, O, \pm 1),
// (\pm 1, \pm\phi, 0)

triple []1 Pts = {

o, 1, phi),
(o, -1, phi),
(phi, 0, 1),

(1, phi, 0,
(-1, phi, 0,

(-phi, 0, 1),
(phi, 0, -1),
(o, 1, -phi),
(-phi, 0, -1),
(-1, -phi, 0,
(1, -phi, 0,
c o, -1, -phi)
};

// Faces listed as triples (i,j,k) corresponding
// to the face through Pts[i], Pts[j] and Pts[k].
triple [] faces = {
// upper cap
(0,1,2), (0,2,3), (0,3,4), (0,4,5), (0,5,1),
// upper band
11,6,7), (11,7,8), (11,8,9), (11,9,10),
(11,10,6),
// lower band
(10,1,2), (6,2,3), (7,3,4), (8,4,5), (9,5,1),
// lower cap
(3,6,7), (4,7,8), (5,8,9), (1,9,10), (2,10,6)
};
// draw the twelve vertices of the icosahedron
for (triple T: Pts)
draw(shift(T)*scale3(.08)*unitsphere,

yellow);
real t=3.0; // Scaling for stellation height
// Function to compute the stellation point
triple stell_point(triple u, triple v, triple w)

{return t/3*(u+v+w);}

void stellate(triple Face) {
int i=round(Face.x),
j=round(Face.y),
k=round(Face.z);
triple S=stell_point(Pts[i], Pts[j], Pts[kl);
draw(shift(S)*scale3(.08)*unitsphere,
yellow);
draw(S--Pts[i] ,red);
draw(S--Pts[j],red);
draw(S--Pts[k] ,red);

Approaching Asymptote

218

draw(Pts[i]--Pts[j]--Pts[k]--cycle,red);
draw(surface(S--Pts[i]l--Pts[jl--cycle),

lightgreen);
draw(surface(S--Pts[i]--Pts[k]--cycle),
lightgreen) ;
draw(surface(S--Pts[jl--Pts[k]--cycle),
lightgreen);

}

for (triple Face: faces) stellate (Face);

Finally, while the prior image is polyhedral, that
is, the sides are flat, our closing example is a real
surface in that it is curved.

/—S(

As with the earlier listing, the code here merely
defines a function f and a region over which the graph
of that function will lie, and then asks Asymptote to
produce the graph. (The nx value gives the mesh).

size(3inch);

import settings; settings.render=10;

import graph3;

currentprojection=orthographic(2,4,1);

currentlight=(5,4,4);

real pi=2%acos(0);

path3 P=(-1,-1,0)--(-1,1,0)--(1,1,0)--(1,-1,0)
--cycle;

draw(surface(P),lightred,nolight);

real f(pair z)
{return 2+sin(z.x*pi)*sin(z.y*pi);}
draw(surface(f,(-1,-1),(1,1),nx=128), lightblue);

pen axispen=(linewidth(1.5)+squarecap);
axes3((-1.3,-1.3,0),(1.3,1.3,3.3) ,axispen);

4 Convergence of technologies:
Comparison with TikZ and PSTricks

The TEX community now has the luxury of choice
among three very capable graphics systems, Asymp-

Michael Doob and Jim Hefferon

TUGboat, Volume 33 (2012), No. 2

tote, TikZ,* and PSTricks.® (We have left META-
POST off this list because at the moment three-
dimensional graphics are an issue.) These three
are similar. They are close in ability and very pow-
erful, and all are under active development. All
have extensive add-on sets that greatly increase their
usefulness.

Any of the three can be a great choice for your
projects. To some extent, which you choose will
be dictated by which one has modules that fit your
exact needs. It is also partly a matter of taste.

One point in favor of using Asymptote is that
it is a stand-alone program. This may reduce the ex-
tent to which your document depends on the current
software ecosystem because under natural develop-
ment you make a stand-alone graphic. Put another
way, Asymptote fits a bit better with the Unix phi-
losophy of having a number of tools, each of which
does one thing only, but does it well.

For us, a particularly appealing feature is that
Asymptote lifts many METAPOST constructs from
2D to 3D. It also has additional advanced functions.

Finally, programming in Asymptote is in a style
close to Java and C++, which you may find famil-
iar. For us, graphics is something that we do only
occasionally and so we must switch to this language
from others. Having familiar constructs helps that
switching.

References

[1] J. C. Bowman. Asymptote: Interactive
TEX-aware 3D vector graphics. TUGboat,
31(2):203-205, 2010. http://tug.org/
TUGboat/tb31-2/tb98bowman . pdf.

[2] John Bowman. Interactive TEX-aware 3D
vector graphics. TpX Users Group Annual
Meeting, 2010. http://river-valley.tv/
interactive-tex-aware-3d-vector-graphics.

[3] John C. Bowman and Andy Hammerlindl.
Asymptote: A vector graphics language.
TUGboat, 29(2):288-294, 2008. http:
//tug.org/TUGboat/tb29-2/tb92bowman . pdf.

[4] John C. Bowman and Orest Shardt. Asymptote:
Lifting TEX to three dimensions. TUGboat,
30(1):58-63, 2009. http://tug.org/TUGboat/
tb30-1/tb94bowman . pdf.

¢ Michael Doob
University of Manitoba

¢ Jim Hefferon
Saint Michael’s College
jhefferon (at) smcvt dot edu

4 http://sourceforge.net/projects/pgf
5 http://tug.org/PSTricks

TUGboat, Volume 33 (2012), No. 2

The joy of \csname...\endcsname

Amy Hendrickson
Abstract

A surprisingly useful tool, \csname—\endcsname, of-
fers many opportunities for interesting and useful
macros, especially when it is convenient to dynami-
cally generate a series of definitions.

Trivially a series of \csname definitions may
be used to produce endnotes, but there are more
interesting and complex constructions as well.

Another example shows how \csname may be
used for on-line report generation. In this instance,
we dynamically generate hyperlinked tabs for custom
risk analyses of particular stocks chosen on-line by
the client. We can use these named tabs to build a
hyperlinked Table of Contents on the fly.

A similar process may be used to produce hy-
perlinked, tabbed, documentation.

The final example shows how definitions made
with \csname can be used to send a set of definitions
to an auxiliary file, where each new definition con-
tains the current page number in its name, and a
number as its definition.

This allows the dynamic redefinition of the com-
mand for a particular page, within the auziliary file,
depending on whether the value of the new definition
is higher than the value of the previous definition for
the same page.

Code will be shown for each of these methods
to dynamically generate macros using \csname.

1 The basics

\csname and \endcsname are TEX primitives that
allow us to define and call macros. If we compare a
definition made with and without \csname we can
see that initially a definition made with \csname is
not much different than one made with \def. For
instance, if we compare these two definitions,
1. A definition with \def:
\def\puppy{Toy Poodle}
and the new macro is called by writing: \puppy,

2. A definition with \csname. . .\endcsname:
\expandafter\def\csname puppy\endcsname
{Toy Poodle}
called with: \csname puppy\endcsname

we find the results in either case to be ‘Toy Poodle’.
So, why bother with \csname. . .\endcsname?

2 Useful characteristics

As we will see, \csname has several of characteristics
making it uniquely useful:

219

. We can use \csname to find out if a command

has been defined, since an undefined command
is equal to \relax.

As an example, we can make a conditional
that tests to see if a command has been defined
and make choices based on the result:
\expandafter\ifx
\csname anycommand \endcsname\relax
<do this>\else<do that>\fi

. \csname allows us to define and call commands

that may be composed of numbers, symbols, and
other commands, unlike the basic command for
making definitions, \def, which must use only
letters for the name of a new definition.

For example, this is a valid definition that
uses symbols and a number in its name:
\expandafter\def\csname $&3\endcsname{Hi!}

Commands made with non-letters must be
called using \csname—\endcsname. In this case,
\csname $&3\endcsname must be used, and pro-
duces: ‘Hil’.

Another example comes from latex.ltx, the
basic IATEX macro set, a definition that uses
\csname for making macros that might have
characters other than letters in their name:
\def\@namedef#1{\expandafter\def\csname

#1\endcsname}
\@namedef{} is used widely in IXTEX code. As
one example, \@namedef{?} is used in the macro
for making labels for cross-referencing. This is
why you can make a label that looks like this,
\label{figl}, where the argument includes a
number.

. A macro argument may be used within \csname.

As an example, again from latex.ltx:

\def\setcounter#1#2{\@ifundefined{c@#1}/,
{\@nocounterr{#1}}V
{\global\csname c@#1\endcsname#2\relax}}
used, e.g.: \setcounter{page}{201}
The macro checks to see if there is a counter
called \c@#1. If there is no counter with that
name it will give an error message; if there is
a defined counter, it uses \csname to call the
counter and sets it to the number given as the
second argument. In this example, it sees that a
counter named \c@page exists, so sets it equal
to the second argument, ‘201’ in this example.

Generic macro. The example above shows
\csname. . .\endcsname being used to make a
kind of generic macro since it will have the flex-
ibility to be used with any previously defined
IMTEX counter.

The joy of \csname...\endcsname

220

4. Expand commands within \csname.
Here’s where things get interesting. We can ex-
pand commands within a definition name made
with \csname...\endcsname. This opens up
many complex possibilities. For one set of pos-
sibilities, we can include a counter in the name
of a new definition.

In this article we’ll explore a number of ways in which
we can use \csname. .. \endcsname with counters.

2.1 Dynamic macro building

We can use a counter within \csname. .. \endcsname
to make a series of macros, a new macro every time
the counter is advanced.

We do this by including a definition, made using
\csname. .. \endcsname with a counter in its name,
within the body of another definition. The outer
definition advances a counter every time it is used,
producing a new and unique inner macro every time
it is called.

For example, we can make a command that will
make more commands in this way:

\newcount\applenum
\def\applename#1{\global\advance\applenum by 1
\expandafter\def\csname apple\the\applenum

\endcsname{**#1*x}}

Every time we use the \applename{} macro, we
define a new macro, named \applel, \apple2 and
SO on.

Using a loop to call the macros

To access the newly made inner macro we can use
a loop, which advances a counter in each iteration,
and calls the inner macro using the current state of
the counter as part of the macro name.

To call the macros made with the \applename
macro above, we test to see if \applename(number)
is defined. If defined, we call the command using the
current state of the \loopnum counter in the body
of the name of the command; else, end the loop.

\newcount\loopnum

\loopnum=1

\loop\expandafter\ifx

\csname apple\the\loopnum\endcsname\relax

\else
\csname apple\the\loopnum\endcsname\
\global\advance\loopnum by 1

\repeat

Used:
\applename{Macintosh}\applename{Gala}

Results:
Macintosh **Gala**

Amy Hendrickson

TUGDboat, Volume 33 (2012), No. 2

3 Endnotes example

For our first real world example we will use this
tool to make endnotes. In this example we want
to change the definition of \footnote so that it
produces endnotes rather than footnotes. We do this
by making an endnote definition that makes a new
definition every time it is called.

We start with a new counter to be used by
our endnotes, \endnum. In the \endnote macro we
advance the \endnum counter, then raise and print
the number in the text for our endnote number.

Next we make a construction with \csname that
builds a new definition, using the current state of the
\endnum counter. This new definition will be used to
save the text of the endnote.

\newcount\endnum
\def\endnote#1{\global\advance\endnum by 1
$~{\the\endnum}$’,
hh
%% Here we make the new definition using
%% \the\endnum in the definition name so that
%% each new definition is unique:
hhh
\long\expandafter
\def\csname endnote\the\endnum\endcsname{’
\small\leftskip=12pt\relax\parindent=-12pt
\indent\hbox to 12pt{\the\loopnum.\hfill}%
hh
%% Here we save the text of the endnote:
#17,
\strut\vskip2pt}}
Now we set \footnote to be equal to \endnote, so
every time \footnote is used, the command actually
called is \endnote:
\let\footnote\endnote

To print the endnotes, we make a loop that ad-
vances a counter with every iteration. That counter
is used within the name of the definition made with
\csname. .. \endcsname. The loop continues until it
comes to an undefined endnote, thus cycling through
every defined endnote. An example is shown in
figure 1.

\newcount\loopnum

\def\printendnotes{\global\loopnum=1

hh

%% Test to see if any end notes have been

%% defined; If so, provide the title and

%% start loop; if not, do nothing.

hh

\expandafter\ifx

\csname endnote\the\loopnum\endcsname\relax
\else

\subsection*{Endnotes}\everypar{}

\vskip6pt

\small\leftskip=12pt

TUGboat, Volume 33 (2012), No. 2

221

‘‘A day of dappled seaborne clouds.%
\footnote{Quotation from James Joyce’s
‘Portrait of the Artist as a Young Man’.}
The phrase and the day and the scene
harmonised in a chord. Words. Was it

their colours? He allowed them to glow

and fade, hue after hue: sunrise gold, the
russet and green of apple orchards, azure
of waves, the greyfringed fleece of
clouds.\footnote{The Bloomsday

celebration in Dublin this year features a
concert of compositions honoring Joyce.}

\printendnotes

“A day of dappled seaborne clouds.! The phrase
and the day and the scene harmonised in a chord.
Words. Was it their colours? He allowed them
to glow and fade, hue after hue: sunrise gold,
the russet and green of apple orchards, azure of
waves, the greyfringed fleece of clouds.?

Endnotes

1. Quotation from James Joyce’s ‘Portrait of the
Artist as a Young Man’.

2. The Bloomsday celebration in Dublin this year
features a concert of compositions honoring Joyce.

Figure 1: Testing the endnote commands

%% Loop continues until it finds an

%% undefined endnote

A5

\loop\expandafter\ifx

\csname endnote\the\loopnum\endcsname\relax
\else

%% Print endnote

\csname endnote\the\loopnum\endcsname

\vskip2pt

B

%% Reset: redefine current endnote to \relax

%% preventing this definition from being

%% used the next time \printendnotes is called.

Hh

\global\expandafter

\let\csname endnote\the\loopnum\endcsname\relax

hh

\global\advance\loopnum by 1

\repeat

\fi

%% \fi ends test at beginning of this macro

%% to see if any endnotes have been defined.

}

Portfolio Analysis and Modeling

Click on Tab to go to Analysis

k] Bl B3
:EEEL:
_nmxg'u
I —
LEELE]:
SA=ETN> =

—
= =

S =
- H Bl B B
BEEBBAE

b=
SEBERBE
= B ~MZR3
= =)

[
B
=
=
m
=
)
=

S =] [=
— O
@D =)
(=] S
o (=
<) =
o = = &
HEEe "
= 2 |

[«
=
[
%
I>
EE
b=
=

Z

@D) Bl B BB
EEELELEL
= bl W B B B
= —
BEEEAE
= = B = &=

CAT BIDU USo
XL DIA NDX
HAL AMZN ETFC

Symbols Continued on Next Page

Figure 2: One form of automated online report
generation; this is a draft version of customized
financial reporting. Each symbol is automatically
generated and is hyperlinked to the appropriate page
of the report. The company analyzed depends on input
from the client; the symbols and their linking is done
through macros utilizing \csname.

4 Example: On-line report generation

A somewhat similar construction may be used to
make hyperlinked tabs for on-line report generation
(figure 2). (The actual reports use color, too.)

This set of macros is used to automate the nam-
ing of hypertargets so that we can hyperlink to them
on the first page of the report, using a \csname con-
struction and a loop, and using TikZ for making the
hyperlinked tab.

The name and number of companies analyzed
is determined by the client who submits a request
online. Each company’s analysis will start on a titled
new page. Part of the definition for the title of a
report will be the command \maketab{#1}.

\maketab takes a stock symbol as its argument,
and generates a hypertarget so that we can link to
it from the beginning of the report, in the equiva-
lent of the table of contents page, using the same
\codenum counter. Then it makes a new definition
with \csname and the \codenum counter in its name,

The joy of \csname...\endcsname

222

Welcome I Getting Started I Edited Bookl Front I Chapters I Graphics FIgs/TabIes Example/More

Figures Tables Table Notes Special Captions NEl[IEELEREER IS

To Rotate figure or table

You need \usepackage {graphicx}, and then you can use
\rotatebox{ (angle) } {\vbox{ table or figure }},ie,

\begin{table} [p]

\rotatebox{90} {\vbox{

\caption{This is the table caption.}
\begin{tabular}{crccc}
\multicolumn{3}{1}{\bf Parameters}&\\
\end{tabular}}}

\end{table}

Figure 3: A similar technique is used for making
hyperlinked tabbed documentation, where the
hypertargets are made with \csname and a counter,
accessed with hyperlinks named with \csname and
a counter. The tabs in this example are also made
with TikZ.

with the stock symbol as its definition, and sends it
to the .aux file.

\def\maketab#1{\global\advance\codenum by 1
\hypertarget{link\the\codenum}{}%
\immediate\write\@auxout{\string\expandafter

\string\gdef\string\csname\space

tab\the\codenum\string\endcsname{#1}}}

Once we have this in place we can use our loop
construction for the first, and possibly continuing,
pages to build the hyperlinked tabs. \gettabs uses
a loop to call the individual tabs, as long as there
is one defined. This can continue over a number of
pages if necessary.

\begin{multicols}{5}

\loopnum=1 \gettabs

\end{multicols}

As you can see, \gettabs is where the work is
done. Here is how it is defined:

\def\gettabs{\loop

\expandafter\ifx

\csname tab\the\loopnum\endcsname\relax

\else

\vskip6pt\hbox to 1in{}

He

%% \hyperlink takes two arguments;

%% the first the name of the hypertarget,

%% and the second, the text that will link

%% to the hypertarget when clicked:

\hyperlink{link\the\loopnum}

{\plaintab{\csname tab\the\loopnum\endcsnamel}%

\hskip12pt}%
\hfill}}} <== end \hbox started above
\global\advance\loopnum by 1

\repeat}

If you are interested in how to make the tab
with TikZ, here is that code:

Amy Hendrickson

TUGhboat, Volume 33 (2012), No. 2

\definecolor{dkblue}{cmyk}{.9,.53, .32, .2}
\def\plaintab#1{%
\hbox{\normalsize\sf
\begin{tikzpicture}
[rounded corners=3pt, inner sep=3ptl%

\node [rectangle,fill=dkblue]
{\Large\sf\color{white}
\vrule depth 3pt width Opt height 15pt \relax
#1};
\end{tikzpicture}}}

A similar technique can be used to produce
tabbed documentation, as shown in figure 3. For
the full example, please see http://www.texnology.
com/docs.pdf.

5 Another \csname technique, for
classification levels

The problem:

When producing a classified document, the highest
level of classification (secret, top secret, etc.) on
any particular page must appear at the top of that
page. When the classification level is given, the user
doesn’t know the page on which it will appear. In
addition, the user doesn’t know in advance whether
this particular classification level is the highest on
that page.

The solution:

We can use a \write to be sure that we know the
page number where the markup has appeared, so
the macro for making classification level markup will
send the level along with the page number to an
auxiliary file, using a \write command.

Now we have a page number and a level appear-
ing on that page. However, we still don’t know which
level is highest for the particular page.

The second part of the solution involves defining
the highest level for a particular page, in the auziliary
file, by also sending code for comparing levels on
a particular page, and making a definition for the
particular page only if the present level is the highest
for that page number. When the auxiliary file is
input, the next time IKTEX is run on the root file,
the definition of the highest level on each page has
been defined.

There are many more complications in the full
problem. For instance, how do we pass information
on the level of a paragraph that has broken over
pages, so that the part of the paragraph on the
second page will contribute to the calculation of the
highest level on the second page? For the sake of
brevity, we’ll consider only the general mechanism
here.

TUGboat, Volume 33 (2012), No. 2

5.1 Setting up

We use a \write for every instance where a classifi-
cation level is written in the text with the command
\secmark. \write is only activated after the page is
made up, so we are sure that we will be using the
correct page number when we send the information
to the auxiliary file. Since we will have many \write
commands in the .tex document, we will write to
a new auxiliary file, \ jobname.lev, instead of using
standard IATEX auxiliary file, \jobname.aux. We
name the new write:

\newwrite\collect

5.2 The counter to be used

The next item we need is a counter to use when
defining our \csname commands. Since we want a
command that has the current page number in its
name, we would be tempted to use the INTEX page
counter, \c@page.

However, in the common case where the be-
ginning of the document uses roman numerals, and
the body of the document uses arabic numerals, we
would have the unfortunate result of having multiple
pages with the same page number.

So instead, we make a new counter, and call it
\superpage:

\newcount\superpage

5.3 Using \shipout

\shipout is the TEX primitive that is called every
time a page is completed. We use \shipout to gen-
eralize this solution, so that this system will work
independently of any page style, and its headers and
footers.

We can use \shipout to advance the counter
called \superpage. This gives us a new number for
every page, continuous through the document. Now
\shipout can be used to print the classification term
on the top and bottom of the page using \superpage
as the counter found in the name that has been
defined with \csname...\endcsname.

5.4 Doing the \writes

The \secmark macro works by sending a definition
for the classification level on a particular page to
\jobname.lev file, using a \write associating the
page number with the level given. The \write will
not be activated until the page is made up, so we
are guaranteed to have the correct page number sent
to the \jobname.lev file. This works as well for
figure or table floats, since \write will send out the
information to the .lev file only after the page is
made up, and the page where the floats will appear
has been determined.

223

The \write sends information to the auxiliary
file, \jobname.lev, including several conditional
tests. The command looks messy and verbose be-
cause when the write is made, we have to stop the
expansion of many commands by preceding each one
with \string, except for those few commands that
we want to expand immediately; in this case, the
super page number:

\write\collect{%% ~~J makes a blank line

%% in the \jobname.lev file so that

%% it is easier to see where each test ends:
~tJ"J

hh
\string\expandafter\string\ifx\string\csnamej,
\space LevelOnSuperPage\the\superpage
\string\endcsname\string\relax
\string\expandafter\string\gdef\string\csname
\space LevelOnSuperPage\the\superpage
\string\endcsname{#1}

\string\else

\string\ifnum \string\csname\space
LevelOnSuperPage\the\superpage\string\endcsname
\string< #1
\string\expandafter\string\gdef\string\csname
\space LevelOnSuperPage\the\superpage
\string\endcsname{#1}\string\fi\string\fi

“~ I}

... which might make more sense when we see how
the code looks by the time it is expanded and appears
in the \jobname.lev file. Here, the level sent for
page 5 is ‘2’

\expandafter\ifx

\csname LevelOnSuperPage5\endcsname\relax
\expandafter\gdef

\csname LevelOnSuperPage5\endcsname{2}
\else\ifnum\csname LevelOnSuperPage5\endcsname<
2 \expandafter\gdef

\csname LevelOnSuperPage5\endcsname{2}

\fi\fi

This process can be repeated as many times as needed
for each page, with only the highest number, deter-
mined by each test, being used to define \csname
LevelOnSuperPage?\endcsname.

Then, when \jobname.lev is brought into the
base .tex file the next time I2TEX is run on the doc-
ument, it will include a series of unique macros, one
for each page in the document where a classification
mark has been used, defining the highest number
given for that page. Since the definition is made
with \csname. .. \endcsname we can have the super-
page number contained in the name of the definition.
This allows us to call the definition using the current
superpage number in the \csname. .. \endcsnane, in
the shipout.

The joy of \csname...\endcsname

224

5.5 Using the level information

We can use these definitions with every shipout, with
the macro \makeclassification being called at the
top and bottom of the page. Here is its definition:

\def\makeclassification{’
\vbox{\baselineskip=12pt

%% Is there a definition for this page?
\expandafter\ifx

\csname LevelOnSuperPage\the\superpage
\endcsname\relax

%% if not:

\centerline{}

\else

%% if there is a definition:

\centerline{Y

\ChangeNumIntoClassification{/
\expandafter\csname
LevelOnSuperPage\the\superpage
\endcsname}}\vskip3pt\fi}}
\ChangeNumIntoClassification, seen above, uses
the definition of

\csname LevelOnSuperPage\the\superpage
\endcsname

as its argument, which will yield a number from
1 to 4. This allows us to use \ifcase to trivially
change that number into the classification term:
\def\ChangeNumIntoClassification#1{Y%
\ifcase#1\or Unclassified \or Classified

\or Secret \or Top Secret

\else ! Please Run LaTeX Again to Get the
Classification Level !

\fi}

And now we will have the highest classification level
reliably appearing on top of each page.

Summary: Ways in which \csname is
exceptionally useful

1. Testing to see if a macro has been defined.
2. Making a macro that has characters other than

letters in its name, e.g., a cross referencing label.

3. Making a generic macro that can be modified
with the argument of another macro.

4. Generating new macros by using a counter in
the name made with \csname. .. \endcsname.

Amy Hendrickson

TUGDboat, Volume 33 (2012), No. 2

5. Calling macros made with \csname with a loop.
The loop may be stopped by testing to see if
the most recent \csname (counter)\endcsname
combination has been defined.

Using this method to stop looping has the
advantage that we don’t need to know in ad-
vance how many definitions were made, and we
will cycle through all available definitions before
ending the loop.

6. A \csname...\endcsname definition including
a counter in its name can be used to generate a
series of hypertext targets automatically.

7. Definitions can be made using the page number
as part of the name, which can be called by the
output routine.

8. Finally, we have the technique of sending in-
formation to an auxiliary file with a \write
and making new \csname (counter)\endcsname
definitions in the body of the auxiliary file,
depending on the results of a conditional test.
When the auxiliary file is input into the root
.tex file, we can then use the resulting definition
in a variety of ways.

\csname in the future

More than a coding oddity, \csname. .. \endcsname
is a workhorse, allowing many constructions that
wouldn’t otherwise be available.

Likely there are many more opportunities to
use these techniques, particularly with off-label uses
for IMTEX such as report generation, or building e-
documents on the fly, and other web-oriented macro
writing projects.

Enjoy!
(The slides for the TUG 2012 conference talk are avail-
able at http://www.texnology.com/talk.pdf.)

o Amy Hendrickson
57 Longwood Avenue
Brookline, MA 02446
USA
amyh (at) texnology dot com
http://www.texnology.com

TUGboat, Volume 33 (2012), No. 2

TUG 2012 abstracts

Bill Cheswick

An iTEX update

An update on the iTEX project for ebook publishing
with TEX, described in TUGboat 32:2.

Federico Garcia

Documentation in TpXnicolor

My package colordoc builds on Frank Mittelbach’s
docstrip system of documentation, adding some
utilities to use color in the code: matching delimiters
({ and }) are colored the same, just as matching \if—
\fi pairs. Commands are made red, bold, and italics,
when they are being \def ined, just as variables when
they are being declared (\newcount, \newif, etc.).
These tools have saved me a lot of time and trouble
when editing or trying to understand a code. In the
presentation I also describe the interesting general
lines of the workings of both doc and colordoc.

Troy Henderson
User-friendly web utilities for generating BTEX
output and MetaPost graphics

The full article was printed in TUGboat 33:1. The
online previewers are available at:
http://www.tlhiv.org/ltxpreview
http://www.tlhiv.org/mppreview
http://www.tlhiv.org/mpgraph

ETEX
MetaPost
Function Grapher

Sherif Mansour & Hossam Fahmy

Ezxperience with Arabic and LuaTEX

This is an experience report of an attempt to include
the AlQalam font for Arabic script within LuaTEX.
We describe the problems we faced trying to fig-
ure out how to use a new right-to-left font within
LuaTgX. We also describe how to call the many dif-
ferent shapes that are defined via parameters in the
original font. We also present some ideas to modify
the line breaking algorithm of TEX to allow the use
of different shapes for the same character in order to
justify the line. This is still work in progress.

Frank Mittelbach

E-TEX: Guidelines for future TEpX extensions,
revisited

Shortly after Don Knuth announced TEX 3.0 I gave
a paper analyzing TEX’s abilities as a typesetting
engine. The abstract back then said:

Now it is time, after ten years’ experience, to
step back and consider whether or not TEX 3.0 is an
adequate answer to the typesetting requirements of
the nineties.

Output produced by TEX has higher standards
than output generated automatically by most other
typesetting systems. Therefore, in this paper we will

225

focus on the quality standards set by typographers
for hand-typeset documents and ask to what extent
they are achieved by TEX. Limitations of TEX’s
algorithms are analyzed; and missing features as well
as new concepts are outlined.
Now — two decades later —it is time to take another
look and see what has been achieved since then, and
perhaps more importantly, what can be achieved now
with computer power having multiplied by a huge
factor and last not least by the arrival of a number
of successors to TEX which have lifted some of the
limitations identified back then.
[Slides available at www.latex-project.org/papers.]

Steve Peter

Metafont as a design tool

Well-written Metafont sources provide a font designer
with a nearly unparalleled tool to explore variations
on a typographic theme. Paired with TEX in an
advanced environment, the designer can explore serif
structure, bracketing, weight variations and more
in the context in which the font will be used: real
textual matter. I'm going to ignore the production
problems inherent to Metafont (not to mention the
various possible solutions) to concentrate on the de-
sign aspects of this amazing tool.

Norbert Preining
Typesetting with Kanji — Japanese typography
Japanese typography is very particular and demand-
ing in several respects: four writing systems mixed to-
gether (Kanji, Hiragana, Katakana, Roman letters);
vertical and horizontal typesetting; traditional grid
layout versus a mixture of writing systems. This all
led to a spin-off TEX implementation called “Publish-
ing TEX” (pTEX) that can deal with these specifics.
Until 2011 there was an independent distribution
of TEX for Japanese users, first based on teTEX, later
on TEX Live (ptetex, ptexlive). TEX Live 2011
and 2012 introduced all of the necessary tools and
features and we hope that with TEX Live 2012 the
need for a special setup for Japanese users is past.
In this talk we give an overview of the specialities
of Japanese typography, presenting the difficulties
met in modern texts. Continuing, we present the
solutions provided by TEX Live to some of these
problems, and discuss further development.

Norbert Preining
TpX Live 2012: Recent developments
TEX Live will be released in early summer 2012 and
brings a couple changes that have been in the works
for a long time: a “multi-updmap” that reads several
updmap.cfg files, and multi-repository support for
the TEX Live Manager tlmgr.

The updmap program generates the necessary

226

configuration files for dvips, dvipdfm(x), pdftex,
and pxdvi to display PostScript Typel fonts. It
reads a configuration file that lists several map files,
and combines all the font definitions from these map
files. Until now local font maps had to be integrated
into this updmap.cfg file, and so could easily be
overwritten or otherwise be lost.

The new implementation has a long history. The
original Perl version was written by Fabrice Popineau
for Windows, later extended by Reinhard Kotucha
and Karl Berry and used, starting last year, on all
platforms supported by TEX Live. The code has now
been extended to deal with multiple configuration
files in a transparent way.

This allows a clear separation of updmap.cfg file
parts. One updmap.cfg file now can (but does not
have to) provide information about only the texmf
tree it resides in. In other words, fonts installed into,
for example, the TEXMFLOCAL tree can be activated
by an entry in the updmap.cfg file in this tree.

We will discuss this new functionality and pro-
vide usage examples and advise on transition from
the old system.

The other big change in TEX Live this year is
the extension of the TEX Live Manager with the
capacity of reading multiple repositories. In recent
years, a few alternative TEX Live repositories have
come into existence with a wide range of usage pat-
terns: distribution of local packages (Japanese TEX
related packages in tlptexlive, Korean TEX User
Group repository), TEX Live infrastructure testing
(in tlcritical), provision of development and non-
free packages (in tlcontrib), etc.

Until now a user had to go through all desired
repositories one by one passing the necessary param-
eters for each in turn. The new tlmgr supports use
of several sources at the same time. The selection of
packages appearing in multiple repositories is done
by “pinning” packages to a repository.

We will present this new functionality, give usage
examples, and a guided tour through setting up and
using this new feature.

We will close with an overview of other changes
in TEX Live 2012.

Will Robertson & Frank Mittelbach

ITEX8: From local to global — a brief history and
recent developments

The original source code for ITEX3 dates to the
early 1990s. Key aspects of its development occurred
during that decade, but it was not until the late
2000s that the project began delivering code that
was widely used by mainstream IATEX users. What
happened in this time? This talk will discuss how

TUGDboat, Volume 33 (2012), No. 2

IXTEX3 development evolved over the decades and
how it reached a state of being used to produce real
users’ documents whether or not they are actually
aware of it. KTEX3 can be thought to consist of
separate ‘layers’, and the programming layer known
as expl3 is starting to be used to solve problems
in and write packages for I¥TEX 2¢. Our plans are
not restricted to such ‘under-the-hood’ measures,
however, and we have discussed layers of I4TEX3
that will have more visibility at the user interface.
Our talk will discuss these separate layers and where
our plans lead in the future, and will conclude with
a demonstration of what’s new in the current code.
[Slides available at www.latex-project.org/papers.]

Will Robertson

Lineage and progeny of fontspec and unicode-math
My first IATEX package, fontspec, was written in
2004 before I knew how to program in IATEX and
in truth before I knew how to program at all. This
trial-by-fire introduced me to the lovely world of
TEX programming and after some time I ended up
writing a smattering of other works. (All the while
actually starting to learn what this whole ‘program-
ming’ thing was all about, including how to please
and displease people who were just trying to get
work done, thank you very much.) Some time later
I foolishly tried ‘planning’ an ambitious new pack-
age, unicode-math, that took significantly longer
to release. In the course of writing that package I
learned really just how little I actually knew, and
as a side-effect somehow ended up helping to write
code for the KTEX3 project. In this talk I will talk
about the motivation for writing these two packages,
discuss recent developments with them, and finally
touch on how ITEX3 influenced their development.

Herbert Schulz

Workshop: Introduction to TeXShop

A workshop introducing some of the more obscure
and less used features of TeXShop for users who wish
to become more proficient in its use to produce BTEX
documents.

Christina Thiele

Almost 30 years of using TEX

It’s not just TEX that’s gotten older and more sea-
soned ... Reflections on changes in TEX and friends
as used in a small typesetting company: software
and hardware, of course, but also procedures and
skills, resources that went from zero to virtually
infinite, all of it interwoven with life and personal
change. It’s not earth-shaking news, but we’ve come
far enough that looking back yields some interesting
comparisons.

TUGDboat, Volume 33 (2012), No. 2

Die TgXnische Komddie 2—3/2012

Die TgXnische Komédie is the journal of DANTE
e.V., the German-language TEX user group (http:
//wwu.dante.de). [Editorial items are omitted.]

Die TEXnische Komdédie 2/2012

MARCO DANIEL, Das Paket xparse
Dokumentenmakros auf Basis expl3 [The xparse
package — Documenting macros on the basis of
expl3|; pp.39-47

Writing bigger documents in TEX usually makes
an author define his or her own macros and envi-
ronments. The most common method for authors is
to use the \newcommand or \newenvironment com-
mand. The xparse package provides functions for
the definition of macros with various optional argu-
ments, starred versions or combinations of macros.

DoMINIK WASSENHOVEN, biblatex mit
tufte-latex verwenden |[Using biblatex with
tufte-latex|; pp.51-53

Triggered by a question on TEX.sx (‘Can I use
biblatex with Tufte classes?’ at http://tex.
stackexchange.com/questions/45934), I noticed
some issues if the biblatex package is used with
the Tufte document classes. Fortunately there is a
solution which will be presented here.

DoMINIK WASSENHOVEN, Aufrechte Klammern
in kursivem Text [Straight brackets in italic text];
pp-51-53

In The Elements of Typographic Style Robert
Bringhurst recommends typesetting brackets always
straight even if they are placed inside italic text: “Use
upright (i.e., ‘roman’) rather than sloped parentheses,
brackets and braces, even if the context is italic.”

JURGEN HANNEDER, Der TEXnische Fortschritt
und seine Tiicken |[TEXnical progress and its
pitfalls]; pp.54-60

The development of TEX in the last decades:
fun and frustrations ...

PATRICK GUNDLACH, Strichcodes erzeugen
mit LuaTEX [Creating barcodes with LuaTgEX];
pp-61-71

(English version published in TUGboat 33:1.)

CHRISTINE ROMER, Biicher schreiben mit der
KTEX-Dokumentenklasse memoir [Writing books
with the memoir document class|; pp.72-82
Memoir is a modern and powerful document
class, little known in the German TEX world. This
may be due to the powerful competitor KOMA-Script,
the sub-optimal documentation or the misleading

name. In the presence of two modern document

227

classes for typesetting complex publications (scrbook
and memoir) it is not obvious why introductory TEX
books still recommend using the obsolete book class.

HERBERT Voss, Anwendung aktiver Zeichen [The
usage of active characters|; pp.83-87

It is common knowledge that TEX knows as
basic elements primitives and —at the user level —
macros, which consist after complete expansion only
of primitives. Macros as well as primitives are used
with a leading backslash. A special role is taken
by active characters which — without the leading
backslash — can behave like macros.

Die TEXnische Komédie 3/2012

MARKUS KoHM, KOMA-Script wird volljahrig
[KOMA-Script comes of age|; pp. 10-16

In 1994 not only IATEX 2¢ but also KOMA-Script
was born, so in 2012 it will be 18 years old. Com-
pared with IATEX 2¢ which was completely developed
at birth KOMA-Script had to grow in the last 18
years. It started as a baby, not just complaining
at each incident, but keeping its environment busy.
His father, me, lost some nerves; he will take the
opportunity to reflect on the last 18 years.

MARKUS KonM, Kopfzeilentricks mit scrpage?2
[Headline tricks with scrpage2]; pp.17-21

For the 4*" edition of the KOMA-Script book I
have used a special version of the headline, where the
page number is separated from the column title by a
small black bar. The page number goes far into the
margin. This was created using the KOMA-Script
package scrpage?2.

CLEMENS NIEDERBERGER, Das xtemplate Paket
[The xtemplate package|; pp.22-30

One of the key steps in the development of
IATEX3 is the separation of implementation, layout
design and user interface. The xtemplate package
stands between the first two, in the “designer inter-
face foundation layer”. Based on a not necessarily
real world example we show the ideas of the package
and its usage.

CHRISTINE ROMER, Lyrik mit WTEX [Lyric Poetry
with IATEX]; pp.31-39

Using the verse package and its extensions in
memoir, poems can be typeset in an appealing way
and interpretation aids for the textual analysis can be
introduced. There are still some reservations about
the visualisation of the metre.

228

UWE ZIEGENHAGEN, europass Lebensldufe setzen
mit WTEX [Typesetting europass CVs with IWTEX];
pp-40-49

In this article two packages, ecv and europecv,
are introduced. Both allow typesetting CVs following
the European europass template.

UWE ZIEGENHAGEN, Briefumschlége beschriften
und frankieren mit XTEX [Printing and stamping
envelopes with WTEX]; pp. 50-54

Letters can be stamped not only using common
stamps but also via stamps bought on the Internet.
Even with “mobile stamps”, letters can be sent. In
this article it is shown how envelopes can be stamped
using digital stamps bought online.

RoLF NIEPRASCHK, Randnotizen im
Literaturverzeichnis [Marginal notes in
bibliographies|; pp.55-59

Examples and motivation for occasional type-
setting of marginal notes in a bibliography.

RALF MEYER, Meine ersten Schritte mit LuaTEX
[My first steps with LuaTEX]; pp.60-67

I will explain how I used LuaTEX to analyse and
print results from external tables in an appealing way.
I will describe a few issues with LuaTEX concerning
special characters and locales that I encountered. In
particular, I will mention an issue with a recently
published article by Herbert Vobk.

PATRICK GUNDLACH, Worttrennungen iiberpriifen
mit Lual#TEX [Checking hyphenation with
Lual¥TEX]; pp.68-70

For Lual&TEX there are two packages which help
the author to check the hyphenation of his or her
text. Using these packages one can avoid bad or
faulty hyphenations.

HERBERT Vo0ss, TEX Gyre Pagella Math;
pp. 71-72

Sample output and usage of the TEX Gyre Pag-
ella OpenType math fonts.

[Received from Herbert Vof.|

TUGboat, Volume 33 (2012), No. 2

ArsTgXnica #13 (April 2012)

ArsTgXnica is the journal of GJT, the Italian TEX
user group (http://www.guit.sssup.it/).

GIANLUCA PIGNALBERI, Editoriale [From the
editor]; p.3

CrAuDIO FIANDRINO, Graphviz e TikZ [Graphviz
and TikZ]; pp.4-10

Graphviz is a very powerful tool for drawing
graphs. This article tries to explain how to export
such graphs as a TikZ picture in a very simple way.

GIANLUCA PIGNALBERI, SALVATORE SCHIRONE,
JERONIMO LEAL, Ancora sugli strumenti per
grecisti classici [Again on tools for hellenists];
pp. 11-16

This paper inspects two topics left unsolved
in our previous article, namely the transliteration
of Greek texts with XqI4TEX and the composition
and the translation with parallel text into another
language. One or more solutions to both topics will
be given.

CLAUDIO BECCARI, KTEX e le lingue romanze
alpine [BMTEX and Romance Alpine languages|;
pp. 17-24

KTEX is used to typeset in a variety of languages:
at the time of writing, it can handle 74 different
languages (plus many variants), some of them used
by very few people, some by millions. At the moment,
there are no facilities for typesetting documents in
the various more or less official Alpine Romance
languages. This paper would be a first step in order
to extend the ITEX language capabilities to the
various romance languages that are being used by
large communities in the European Alps.

ENRICO GREGORIO, Scrivere un pacchetto per
KTEX3. 1l pacchetto kantlipsum [Writing a
package for BWTEX3. The package kantlipsuml;
pp- 24-29

The kantlipsum package is used as an example
to illustrate some programming techniques with the

KTEX3 language.

FonT E TEX, Fonts and TEX; pp.30-31
Italian translation of http://tug.org/fonts.

[Received from Gianluca Pignalberi.]

TUGboat, Volume 33 (2012), No. 2

MAPS 42 (2011)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

TAcO HOEKWATER, Redactioneel [From the
editor]; p.1
Overview.

TUG 2011 announcement; p.2
http://tug.org/meetings.

KoEN WYBO, Review of Typesetting tables with
BTEX by Herbert Voss.; pp.3—4

NicoraAs J.I. MARs, Review of Typesetting
mathematics with EETEX by Herbert Voss; pp.5-6

WILLI EGGER, A personal organizer: PocketDiary;
pp. 7-14

Sometimes, a cheap personal organizer on paper
can come in handy. This solution prepared in Con-
TEXt MKIV provides a range of options to set up such
a personal organizer. A PocketDiary is printed on a
single sided A4 landscape sheet of paper and then
folded into a pocket size booklet thereby prevent-
ing unprinted/empty pages from being seen. The
PocketDiary is easy to make and after one week it
is simply replaced with a subsequent booklet. A
detailed description is given of the system and how
to set up a production file. At the end of the article
instructions are included how to fold the booklet.

HaNs HAGEN, Tagged PDF; pp.15-23
[Published in TUGboat 31:3.]

HANS HAGEN, Inter-character spacing and
ligatures; pp.24—26

Support for selective spacing of ligatures in Con-
TEXt MKIV.

KEES VAN DER LAAN, 8th March; pp.27-33

An OTF with Cyrillic—keyboard and glyphs—
is used in PostScript for an 8th March congratula-
tions. The wired-in ASCII code table in TEX inhibits
keyboarding Cyrillic.

Luict ScARsO, Extending ConTEXt with
PARI/GP; pp. 34-42

This paper shows how to build a binding to
PARI/GP, the well-known computer algebra system,
for ConTEXt MKIV, with some examples on how to
solve some common basic algebraic problems.

229

GRAHAM DoucLAs, Customised IATEX page
layout with LuaTEX; pp.43-54

The relationship between KTEX’s page layout
parameters and the conventional desktop publishing
(DTP) model of a page are explored and formulae
to map between them are presented. A sample im-
plementation of those formulae in Lua is provided,
showing how to achieve customised page layouts in
LuaTgX. The placement of crop marks is addressed,
and a technique for preparing and adding them to
typeset pages is discussed.

TAacO HOEKWATER, LuaTEX Lua modules on
Linux; pp.55-56

How to use the dynamic Lua module loading
abilities in LuaTEX under Linux or similar systems.

THOMAS SCHMITZ, Using ConTEXt with databases;
pp. 5768

Extensive example of using ConTEXt MkKIV to
typeset material (exercises) from a database.

KEES VAN DER LAAN, Gabo’s Torsion — and some
more; pp.69-110

Gabo’s Torsion is emulated in EPSF, Encapsu-
lated PostScript File format. Gabo’s constructive art,
math, computer graphics and the use of PostScript
are touched upon. Whether PostScript is a suitable
language for projection and drawing 3D objects on
paper is discussed. An introduction to PostScript
aimed at EPSF use, in a nutshell, is included. How
to obtain cropped pictures along with the conversion
to .pdf is mentioned.

An interesting observation is made: Bézier cu-
bics, specified by begin point, the control points
and the end point, are invariant under (oblique par-
allel) projection, which allows to project B-cubics
efficiently. The efficient projection of (approximated)
circles and ellipses has been addressed. For the eval-
uation of B-cubics de Casteljau’s algorithm is used.

Emulations in EPSF of Gabo’s Linear Construc-
tion in Space No 1 and 2, of one of his Spheric
Themes, and his Linear Construction Suspended, are
also included. For Metafont aficionados my interac-
tive version of old is also included.

[Received from Wybo Dekker.]

230

%@’ The Treasure Chest

This is a list of selected new packages posted to CTAN
(http://ctan.org) from April to August 2012, with
descriptions based on the announcements and edited
for brevity.

Entries are listed alphabetically within CTAN
directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

¢ Karl Berry
http://tug.org/ctan.html

fonts

adobecaslon in fonts/psfonts/adobe

Metric support for Adobe Caslon.
bguq in fonts

The Begriffsschrift quantifier character.
countriesofeurope in fonts

Support for the Countries of Europe font.
imprintmtshadow in fonts

Support for the Monotype Imprint Shadow fonts.
lsabon in fonts

Support for the Linotype Sabon fonts.
minion2newtx in fonts

Add-on for newtx: metrics for MinionPro v2.
*newtx in fonts

Improved metrics and options for txfonts.
sansmathaccent in fonts

Correct accent placement in beamer and sfmath.

graphics

hf-tikz in graphics/pgf/contrib

TikZ highlighting of formulas, in part or completely.
pgf-blur in graphics/pgf/contrib

TikZ support for blurred/faded/fuzzy shadows.
pst-ode in graphics/pstricks/contrib

PSTricks support for solving initial value problems

for sets of ordinary differential equations.

info

latexfileinfo-pkgs in info
Comparison of packages for file version information.

fonts/psfonts/adobe/adobecaslon

TUGDboat, Volume 33 (2012), No. 2

macros/generic

dowith in macros/latex/generic
Apply a command to elements of a list.

macros/latex/contrib

articleingud in macros/latex/contrib
Support for articles in Ingenieria Review.

* autonum in macros/latex/contrib
Automatically number only those equations which
are referenced.

basque-book in macros/latex/contrib
Document class for books in Basque.

basque-date in macros/latex/contrib
Current date in Basque, handling declination issues.

calculator in macros/latex/contrib
Handle algebraic operations and evaluate elementary
functions and derivatives.

cellwise in macros/latex/contrib
Build tables cellwise with freely formatted individual
cells.

codicefiscaleitaliano in macros/latex/contrib
Test consistency of the Italian personal fiscal code.

embrac in macros/latex/contrib
Upright parentheses and brackets within italic text.

enotez in macros/latex/contrib
Support for endnotes, possibly nested.

famt in macros/latex/contrib
Support for FAMT Institute reports and notices.

fitr in macros/latex/contrib
Support for the PDF FitR destination type.

fixmetodonotes in macros/latex/contrib
Highlight and manage FIXME-like notations.

fnpct in macros/latex/contrib
Footnote kerning.

footnotebackref in macros/latex/contrib
Hyperlink from a footnote to its occurrence in the
main text.

foreign in macros/latex/contrib
Typeset foreign words in different typefaces.

frege in macros/latex/contrib
Support for Frege’s Begriffsschrift notation.

GS1 in macros/latex/contrib
Support for the GS1 codes and some barcodes.

harnon-cv in macros/latex/contrib
CV class with support for a vertical timeline of
experience.

ifthenx in macros/latex/contrib
Define conditionals such as \isinteger, \isnumber,
\fileexists, \classloaded, and many others.
incgraph in macros/latex/contrib

Including graphics on the full paper size, including
bookmarking.

TUGboat, Volume 33 (2012), No. 2

lastbib in macros/latex/contrib
Provide \LastBib for the total count of references.

lgrx in macros/latex/contrib
Typesetting Greek in the LGR encoding.

lmac in macros/latex/contrib
Including support files.

lstaddons in macros/latex/contrib
Add-ons for 1istings.

multienv in macros/latex/contrib
Multiple environments using a key—value syntax.

mwe in macros/latex/contrib
Support for creating minimal working examples.

mycv in macros/latex/contrib
Curriculum vitae with many layouts and decorations.

pgfkeyx in macros/latex/contrib
Handle active characters in pgfkeys, and more.

poetrytex in macros/latex/contrib
Typesetting anthologies of poetry.

python in macros/latex/contrib

Embed Python code and output in a BTEX document.

*regexpatch in macros/latex/contrib

Generalized macro patching, based on 13regex.
shadowtext in macros/latex/contrib

Produce customizable drop shadow for text.
showcharinbox in macros/latex/contrib

Show characters inside a box.
statrep in macros/latex/contrib

Display SAS code and its results together.
substitutefont in macros/latex/contrib

Combine font families.
typeface in macros/latex/contrib

Generalized setup of default Type 1 fonts.
xpinyin in macros/latex/contrib

Automatically add pinyin to Chinese characters.
xpunctuate in macros/latex/contrib

Insert punctuation only if necessary, as with xspace.
zhnumber in macros/latex/contrib

Expandable printing of Chinese representations of
numbers, using [ATEX3.

macros/latex/contrib/babel-contrib
friulan in m/1/c/babel-contrib
Babel support for Friulan.

romansh in m/1/c/babel-contrib
Babel support for Romansh (Rumantsch Grischun).

231

macros/latex/contrib/beamer-contrib

dynblocks in m/1l/c/beamer-contrib
Customize aspect ratios and dimensions of blocks
in a presentation.

hobete in m/1/c/beamer-contrib
Unofficial beamer theme for the Univ. of Hohenheim.

macros/latex/contrib/biblatex-contrib
biblatex-bwl in m/1/c/biblatex-contrib
biblatex support for FU-Berlin.
biblatex-phys in m/1/c/biblatex-contrib
biblatex support for the AIP and APS styles.

biblatex-swiss-legal in m/1/c/biblatex-contrib
biblatex support for Swiss legal citation standards.

macros/luatex

chickenize in macros/luatex/generic
Manipulate input or output tokens of any Lua(I4)TEX
document.

lua-check-hyphen in macros/luatex/latex
Make it easy to spot incorrect hyphenations.

luatexja in macros/luatex/generic
Plain and ETEX 2¢ support for typesetting Japanese
with Lua(I2)TEX.

luaxml in macros/luatex/generic
Reading and serializing XML files.

odsfile in macros/luatex/latex
Typeset OpenDocument Spreadsheet (.ods) files as
tables.

macros/xetex

imscls in macros/xetex/latex
Iranian Mathematical Society proceedings support.

support

csvtolatex in support

Visual Basic script converting CSV data to ETEX.
eitl in support/texlive

Install current TEX Live and add-ons over the net.

systems

bakoma-mac in systems/mac
New TgEX distribution supporting Mac OS X.

systems/mac/bakoma-mac

232

Book review: About more alphabets:
The types of Hermann Zapf

Boris Veytsman

Jerry Kelly, About more alphabets: The types of
Hermann Zapf. Preface by Robert Bringhurst. The
Typophiles. 2011. 112 pp., 4.5” x 7. Hardcover,
US$35.00. ISBN 9780984274406.

/]
(A bout more alphabets

B|C|D|E|
F GHE
J K LM
N|O|P|Q
R|S|T|U]
VW X\ T

The types of | lcmuumj;ﬂ}i'

AILCIEFGHIFRLM
AOPORITUIWXYF
nbedefahijRImnopgLs

19345 tUDIONYF 67890

Wikl Kingsp

ABCDEFBHTIR
REMAOVQARSG
TULWXY3 &
abeoefabiftimmopgfstuviw
3 fiffilleepe

LLLLLLLL by asmann Zip 193848

The name of Hermann Zapf, the Wizard of
Fonts and permanent honorary member of the Board
of TUG, is well known in our community. This
small book describes his life and work, and is a
very welcome addition to the Wizard’s Alphabet Sto-
ries, which was reviewed by Hans Hagen and Taco
Hoekwater in 2007 (TUGboat 28:2, p. 174). The
book is written by Jerry Kelly, and, like Kelly’s other
books, has a very interesting text accompanied by
well-chosen illustrations.

Kelly divides Zapf’s work into three periods: the
early period during the metal type era, the middle
period, when new technologies like photocomposition
were dominating, and the later period when digital
technologies became ubiquitous. For each period

Boris Veytsman

TUGhboat, Volume 33 (2012), No. 2

Kelly selects Zapf’s fonts that best show the evolu-
tion of the master, from the early but already elegant
Gilgengart to the breathtaking in its innovation and
beauty Zapfino. The examples are meticulously cho-
sen and illustrate the main qualities of Zapf’s talent:
the deep understanding of technology, the attention
to details and the striving for perfection.

Usually the font design field tends to be con-
servative (after all we call the fonts designed in the
late 18" century ‘Modern’). The more amazing is
the way Hermann Zapf has always been open to new
ideas. He saw the growth of the major typographic
technologies of the last and current centuries, and
actively participated in it, contributing ideas that
shaped the industry. Kelly shows examples of this
throughout Zapf’s career.

A TgX user would be interested in the parts
of the book describing Zapf’s work with DEK on
Euler fonts and his contributions to the typesetting
algorithms (some of them are implemented in the
modern TEX engines).

About more alphabets is beautifully illustrated
and accompanied by type specimens of more than two
dozen of Zapf’s fonts. It is well typeset in Comenius,
a great and rare font (of course, designed by Zapf).
There are a thousand copies of this book printed,
plus seventy-five additional copies specially bound
and signed by the author. I am sure each copy of
both editions will become a prized rarity.

The book has a well-written foreword by an-
other great figure of modern typography, Robert
Bringhurst. It is noted there, “We evidently think
(in defiance of all logic) that what we read or write
matters far more than how it’s read or written, and
that letterforms are just a way to get there, as a
door knob is a way to open a door. At their best,
though, letterforms are more like sailboats and cellos.
They are works of art that beg to be used as well as
admired.” These words, like the sound of a tuning
fork, set the tone of the book. About more alphabets
is a fitting tribute to the art of letterforms and to its
master, Hermann Zapf. I must note that the book
itself is a piece of art, splendidly produced by Jerry
Kelly. I would recommend it to anybody interested
in letterforms, typography and book design — or just
being able to appreciate and enjoy beautiful books.

¢ Boris Veytsman
Computational Materials Science
Center, MS 6A2
George Mason University
Fairfax, VA 22030
USA
borisv (at) lk dot net
http://borisv.lk.net

TUGboat, Volume 33 (2012), No. 2

233

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you'd like to
be listed, please see that web page.

Aicart Martinez, Merce

Tarragona 102 4° 2¢

08015 Barcelona, Spain

+34 932267827

Email: m.aicart (at) ono.com

Web: http://www.edilatex.com
We provide, at reasonable low cost, INTEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our web
site.

Dangerous Curve

PO Box 532281

Los Angeles, CA 90053

+1 213-617-8483

Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html
We are your macro specialists for TEX or IATEX fine
typography specs beyond those of the average IATEX
macro package. If you use X{IEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and IATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a

TEX book.

Hendrickson, Amy

Brookline, MA, USA

Email: amyh (at) texnology.com

Web: http://www.texnology.com
TATEX macro writing our speciality for more than
25 years: macro packages for major publishing
companies, author support; journal macros for
American Geophysical Union, Proceedings of the
National Academy of Sciences, and many more.

Scientific journal and e-journal design and
production.

Hendrickson, Amy (cont’d)

IATEX training, at MIT, Harvard, many more
venues. Customized on site training available.

Please visit our site for samples, and get in touch.
We are particularly glad to take on adventurous
new uses for IANTEX, for instance, web based report
generation including graphics, for bioinformatics or
other applications.

Latchman, David

4113 Planz Road Apt. C

Bakersfield, CA 93309-5935

+1 518-951-8786

Email: texnical.designs (at) gmail.com

Web: http://www.elance.com/s/dlatchman
Proficient and experienced IATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

Moody, Trent

1981 Montecito Ave.

Mountain View, CA 94043

+1 650-283-7042

Email: trent.moody (at) ymail.com
Construction of technical documents with
mathematical content from hand written (or partially
formatted) sources. Delivered documents will be .tex
and .pdf files produced with TEX or/and IATEX.
Delivered documents can be publication ready
manuscripts, macro libraries for modular document
development, or mathematical libraries for document
reuse.

I am an independent contractor with a PhD
in mathematical physics from the University of
California, Santa Cruz.

Peter, Steve

295 N Bridge St.

Somerville, NJ 08876

+1 732 306-6309

Email: speter (at) mac.com
Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I've helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

234

Shanmugam, R.

No.38/1 (New No.65), Veerapandian Nagar, Ist St.

Choolaimedu, Chennai-600094, Tamilnadu, India

+91 9841061058

Email: rshanmugam92 (at) yahoo.com
As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
IATEX 2¢, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sharma, Ganesh Kumar

A - 251 / 1, Opposite Primary School,

Shastri Nagar, Delhi 110052, India

+91 9810748682, 9013121611

Email: ganeshsharma (at) yahoo.com
I am a Master of Computer Applications (MCA)
degree holder. I am well versed with MetaPost, HTML,
MathML, Java, CSS, PHP, Unix shell scripting, C++,
TikZ, Gnuplot and PostScript etc.

As a consultant and service provider, I am handling
TATEX and XHIATEX composition to technical
illustration, editorial services for: project management
of conference proceedings; class/style files creation for
TATEX publications; a full management service for
journals including correspondence with authors and
issue make-up, including manuscript Preparation
(pagination / composition, copy editing and proof
reading), scanning and graphics designing, origination
from handwritten manuscript or use of author-supplied
code (TEX or word processor), and author support; the
supply of HTML, PDF files (including hyperlinks
and bookmarks) and other coding for electronic
publication. I can typeset the books in Sanskrit and
Hindi languages using IATEX very well.

Currently, I am giving editorial services to many
universities, reputed publishers and multinational
companies, research groups etc.

TUGboat, Volume 33 (2012), No. 2

Sievers, Martin

Im Treff 8, 54296 Trier, Germany

+49 651 4936567-0

Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com
As a mathematician with ten years of typesetting
experience I offer TEX and IATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BIBTEX, biblatex) to typesetting your
math, tables or graphics — just contact me with
information on your project.

Sofka, Michael

8 Providence St.

Albany, NY 12203

+1 518 331-3457

Email: michael.sofka (at) gmail.com
Skilled, personalized TEX and I#TEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,
newsletters, and theses in TEXand IATEX: Automated
document conversion; Programming in Perl, C, C++
and other languages; Writing and customizing macro
packages in TEX or IATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or IATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch PL

Sterling, VA 20164

+1 703 915-2406

Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and IATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom IATEX packages, conversions and
much more. I have about seventeen years of experience
in TEX and thirty years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and

conducted several workshops on TEX and related subjects.

TUGboat, Volume 33 (2012), No. 2

TUG
Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc.,
Midland Park, New Jersey

Banca d’Italia,
Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario, Canada

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

LAMFA CNRS UMR 6140,

Amiens, France

MacKichan Software, Inc.,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,

235

Springer-Verlag Heidelberg,
Heidelberg, Germany

StackExchange,
New York City, New York

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

Université Laval,
Ste-Foy, Québec, Canada

University of Ontario,
Institute of Technology,
Oshawa, Ontario, Canada

CSTUG, Praha, Czech Republic

diacriTech, Chennai, India

Copenhagen, Denmark University of Oslo,

Institute of Informatics,
Blindern, Oslo, Norway

New York University,
Academic Computing Facility,
New York, New York

Florida State University,

School of Computational Science
and Information Technology,
Tallahassee, Florida

ASTEX (French) @ http://www.tug.org/texcollection @ 2012
CervanTgX (Spanish) proTEXt: an easy to install TEX system for MS Windows: based on I X ‘ I I °

MiKTEX, with the TEXstudio editor front-end. O e C l O n

TeX Live: a rich TEX system to be installed on hard disk or a portable E

device such as a USB stick. Comes with support for most modern

systems, including GNU/Linux, Mac OS X, and Windows.

DANTE (German) MacTEgX: an easy to install TEX system for Mac OS X: the full TgX Live

DK-TUG (Danish) distribution, with the TeXShop front-end and other Mac tools. DVD
Estonian User Group CTAN: a snapshot of the Comprehensive TEX Archive Network, a set of

CSTUG
(Czech/Slovak)

CTEX (Chinese)

CyrTUG (Russian)

7 (Greek) servers worldwide making TEX software publically available. June 2012
GulT (ltalian) proTEXt ist ein einfach zu installierendes TEX-System fiir MS Windows,

GUST (Polish) basierend auf MiKTEX, TeXstudio als Oberflache und Ghostscript fiir die

GUTenberg (French) Anzeige von PostScript-Dateien.

GUTpt (Portuguese) TeX Live ist ein u.mfangreiches TEX—S){stem, zur Installa.tion a_uf o

STEX (Icelandic) Siisl;plljal;t;;tr:‘lfernels?:?ez;r‘taaﬁl:r.n Medium, z. B. USB-Stick. Binaries fiir dOf\te "

ITALIC (Irish)
KTUG (Korean)
Lietuvos TEX'o
Vartotoju Grupé
(Lithuanian)
MaTgX (Hungarian)
Nordic TEX Group
(Scandinavian)

www.dante.de

QUTenberg

gutenberg.eu.org

MacTgX ist ein einfach zu installierendes TEXSystem fiir Mac OS X, mit
einem vollstandigen TEX Live, sowie TEXShop als Frontend und weitere
Programme.

CTAN ist ein weltweites Netzwerk von ftp-Servern fiir TEX-Software. Auf
der DVD befindet sich ein kompletter Abzug des deutschen
CTAN-Knotens dante.ctan.org.

proTeXE TgX Live

proTEXt : un systéme TEX pour Windows facile a installer, basé sur

NTG (Dutch) MikTEX avec I'éditeur TEXstudio. TeX TE’;SOMHSBXYE‘;ZVS Tex f°'d‘3'asu\5\;—_iﬂ;xv Unix,
TEXCeH (Slovenian) TeX Live : un systeme TEX complet qui peut étre installé sur disque dur USERS E an indows
TEX México ou en mode portable sur une clé USB. Fonctionne sur la plupart des

systémes modernes, dont GNU/Linux, Mac OS X et Windows. GROUP MaCTEX CTA N

Tirant lo TEX (Catalan)
TUG (international)
TUGIndia
TUG-Philippines

MacTEgX : un systéme TEX facile a installer pour Mac OSX. Il comporte www.tug.org
une distribution TEX Live compléte ainsi que I'éditeur TeXShop et

d’autres outils pour Mac.

CTAN : une copie du Comprehensive TEX Archive Network, le réseau de

UKTUG serveurs assurant la distribution publique de TEX et ses amis dans le

ViétTUG (Vietnamese) monde entier.

Comprehensive TEX

TEX for Mac 0S X
Archive Network

including full TEX Live

Editors: Thomas Feuerstack (proTgXt) e Karl Berry (TEX Live)
Richard Koch (MacTEX) e Manfred Lotz (CTAN)

236 TUGDboat, Volume 33 (2012), No. 2
Calendar
2012 Oct 26—-30 ASIS&T 2012, 75" Annual Meeting,
“Information, Interaction, Innovation:
Aug 23-26 TgXperience 2012 (5th TEXperience Celebrating the Past, Constructing the
Conference, organized by CSTUG), Present and Creating the Future”,
Moravka, The Czech Republic. American Society for Information Science
katedry.osu.cz/kma/TeXperience2012 and Technology, Baltimore, Maryland.
Sep 4-7 ACM Symposium on Document www.asis.org/asist2012
Engineering, Paris, France Oct 27 TEX Conference Japan 2012,
doceng2012.wp.institut-telecon.fr Kyoto University, Japan.
Sep 16—21 XML Summer School, St Edmund oku.edu.mie-u.ac.jp/texconf12/
Hall, Oxford University, Oxford, UK. Oct 27 GuIT 9" Annual Meeting 2012,
www.xmlsummerschool.com Conference Center of the University
Oct 1 TUGboat 33:3, submission deadline of Naples Federico II, Ttaly.
(regular issue) www.guitex.org/home/meeting
Oct 5-7 Oak Knoll Fest XVII, and Nov 9-10 13. IBG-Jahrestagung in Miinchen,
Fine Press Book Association “Das E-Book. Herausforderung und
annual meeting, New Castle, Delaware. Chance fiir die Buch- und Verlagswelt”,
www.oakknoll .com/fest Internationalen Buchwissenschaftliche
Oct 8—12 EuroTEX 2012, 6" International ConTEXt Gesellschaf.t, Miinchen, Germany.
user meeting, and DANTE Herbsttagung www . buchwiss.de
and 470 meeting, “Recreational Uses of
TEX”, Breskens, The Netherlands. 2013
meeting.contextgarden.net/2012
Oct 10-14 Association Typographique Jan 15 Conference, “The Design of
Internationale (ATypl) annual Understanding”, St Bride Library,
conference, Theme: “between London, England. stbride.org/events
black and white”, Hong Kong. Mar 11 TUGboat 34:1, submission deadline
www.atypi.org/hong-kong-2012 (regular issue)
Oct 12—-13 American Printing History Association’s Jul 8 TUGboat 34:2, submission deadline
37" annual conference, “At the Crossroads: (regular issue)
Living Letterform Traditions”, Jul 18—-21 SHARP 2013, “Geographies of the
Columbia College, Chicago, Illinois. Book”, Society for the History of
www.printinghistory.org/prograns/ Authorship, Reading & Publishing,
conference/conference_2012.php University of Pennsylvania, Philadelphia.
Oct 18 Beatrice Warde Memorial Lecture, “You www.library.upenn.edu/exhibits/
Can’t Repeat the Past”, by Paul Barnes, lectures/SHARP2013
St Bride Library, London, England. Sep 2627 The Eleventh International Conference on
stbride.org/events the Book, Universitat Regensburg
Oct 19-20 TYPO London, “Social”, Universitéatsbibliothek,
sponsored by FontShop. Regensburg, Germany
www.atypi.org/events/typo-london booksandpublishing.com/the-conference
Oct 20 UK-TUG Annual Meeting, Oxford, UK.

uk.tug.org

Status as of 20 August 2012

For additional information on TUG-sponsored events listed here, contact the TUG office
(4+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 33 (2012), No. 2

Introductory
138 Roundtable discussion: TEX consulting
165 IATEX Project Team / NTEX3 news, issue 8
» Extended floating point support; regular expressions; separating internal and external code;
continual revolution —the ‘small bang’
156 Boris Veytsman and Leyla Akhmadeeva / Towards evidence-based typography: First results
* no statistically significant difference in reading comprehension found between serif and sans serif fonts
146 David Walden / My Boston: Some printing and publishing history
* Boston-area printing activities from the city’s founding to the present
Intermediate
196 Pavneet Arora / YAWN — A TgX-enabled workflow for project estimation
* discussion of YAML specifications and the MVC approach
230 Karl Berry / The treasure chest
* new CTAN packages, April 2012—-August 2012
178 Bart Childs / ATEX source from word processors
* converting to a maintainable IATEX source with Emacs, OOo, etc.
172 Peter Flynn / A university thesis class: Automation and its pitfalls
* reasons and methods for creating Yet Another Thesis Class
184 Richard Koch / The MacTgX install package for OSX
* current release and past history of MacTEX
167 David Latchman / Preparing your thesis in IANTEX
* step-by-step motivation for commonly used packages
192 Boris Veytsman / TEX and friends on a Pad

 compiling and using the TEX system on an Android tablet

Intermediate Plus

213 Michael Doob and Jim Hefferon / Approaching Asymptote

e 2D and 3D examples of mathematical graphics
158 Federico Garcia / TEX and music: An update on TEXmuse

e musical spelling, musical thinking, musical typesetting
199 Didier Verna / Star TEX: The Next Generation

* proposing a homogenous reimplementation of TEX in Common Lisp
Advanced
219 Amy Hendrickson / The joy of \csname. ..\endcsname

¢ introduction to and many examples using this fundamental TEX primitive
209 Bob Neveln and Bob Alps / Adapting ProofCheck to the author’s needs

e customizing the ProofCheck software for different logics

Contents of publications from other TEX groups

227
228
229

Die TEXnische Komddie: Contents of issues 2-3/2012
ArsTgEXnica: Contents of issue 13 (2012)
MAPS: Contents of issue 42 (2011)

Reports and notices

130
132
225
232

233
235
235
236

TUG 2012 conference information
David Latchman / TUG 2012: A first-time attendee
TUG 2012 abstracts (Cheswick, Garcia, Henderson, Mansour, Mittelbach, Peter, Preining, Robertson, Thiele)

Boris Veytsman / Book review: About more alphabets: The types of Hermann Zapf
« review of this book on Zapf’s life and work by Jerry Kelly

TEX consulting and production services
TEX Users Group institutional members
TEX Collection 2012

Calendar

