
OpenType fonts in LuaTEX

Paul Isambert

1 Introduction

As is well-known, LuaTEX can handle standard font
formats, notably including OpenType. That’s a wel-
come development because modern font designs use
those formats almost exclusively, and whatever the
merits of METAFONT, for modern typographic soft-
ware to stick to it would be suicidal. Lesser known
perhaps is that, unlike X ETEX, which opened the
way, LuaTEX is completely unable to load such a
font if you don’t feed it a non-negligible amount
of code beforehand. Otherwise it only understands
your old TFMs (it actually embeds Type 1 fonts in
PDF documents, a behavior inherited from PDFTEX,
but only because a mapping exists between the TFM

and Type 1 fonts; the latter can’t be read directly).
The reason is not that LuaTEX isn’t so capable af-
ter all and you have to rely on some work-around;
rather, LuaTEX is consistent with its philosophy (as
I see it): it provides tools, not solutions. So you
have to do most of the work to make it understand
OpenType fonts, and that’s no simple work, but in
the process you gain freedom.

In this paper I’ll try to describe such code. I
won’t give an entire implementation, and in many
places I’ll just go with “This or that should be done”,
because as already mentioned it would be extremely
long (and tedious). ConTEXt’s fontloader, available
for plain TEX and LATEX as luaotfload, is more
than 10, 000 lines long, and my own code, which
doesn’t even try to address non-Latin typography,
is 2, 000 lines. In other words, I’ll give a map of
the area to the reader, but nothing can replace the
actual exploration.

Also, this paper has limitations: first, all my
examples will use the Latin alphabet, even though
some features would have been better illustrated
with other scripts; I apologize to users of other writ-
ing systems, but I thought it better not to pretend I
was competent in them. This extends to maths, so
OpenType maths aren’t covered at all; [2,7] should
help the interested reader. The omission of maths
is even more significant than for non-Latin writing

Author’s note: I am not a member of the LuaTEX team, nor
should this article be considered an official introduction to
fonts in LuaTEX. However, Taco Hoekwater has answered
myriad questions, both for this paper and when I was inves-
tigating fonts for myself, and many details here would have
been obscure or altogether missing if not for his help. All re-
maining inaccuracies and outright errors are of course mine.

TUGboat, Volume 33 (2012), No. 1 59

systems, since the latter at least rely on the mecha-
nisms described here, whereas OpenType maths are
an entirely distinct area.

Second, I will have nothing to say about AAT

fonts. I have never used them, let alone figured out
how they work, and anyway that would have pushed
the length of this paper beyond reasonable limits. I
hereby invite the courageous reader to tackle the
issue and write a companion paper.

Third, this article is an introduction to how
LuaTEX sees OpenType fonts, not to the OpenType
format itself. Of course, the two are closely related,
and after reading this, the Microsoft documenta-
tion [5] or a general introduction like [1] will look
familiar; but there are significant differences too.

Fourth, this explains how LuaTEX sees such
fonts at the present time. That is bound to evolve,
and some of what is said here will become obso-
lete. Nonetheless, the knowledge gained in Open-
Type fonts themselves will not, I hope, be wasted.

Fifth, although I hope the reader will feel com-
fortable with the subject after reading this paper—
or, at least, the reader will feel s/he could be com-
fortable with the subject after reading the paper
thoroughly a few times—nothing replaces experi-
menting with fonts directly. Fortunately, LuaTEX’s
fontloader is based on George Williams’s FontForge,
so there exists a GUI counterpart to all the Lua ta-
bles we will explore (modulo the previous point). I
strongly recommend playing around in FontForge,
tweaking fonts to see what changes in LuaTEX, etc.;
also reading the FontForge documentation [8].

I will use a single font as illustration. It is a
modified version of Philipp H. Poll’s Linux Liber-
tine (italic) [6], renamed Test Libertine. The file
is available from tug.org/TUGboat/tb33-1, along
with a README listing all the changes made to the
original font. In the course of the article, when I
write that “Libertine has such and such feature”, I
always mean the modified Libertine: the feature at
stake may not be present in the original. None of the
modifications improves Linux Libertine in any way,
nor do they have much value by themselves, either
typographically or technically; I’ve added each and
every one of them with a single purpose in mind: to
serve as an illustration for this paper.

2 The define_font callback

Loading an OpenType font requires that we inter-
cept the user’s font request and replace LuaTEX’s
default behavior with code of our own. As usual
this is done thanks to a callback: define_font. It is
called whenever the \font control sequence is used,

OpenType fonts in LuaTEX

with three arguments: name, size and id. The first
two arguments have direct equivalents in the syntax
of \font:

\font\myfont=〈name〉 at|scaled 〈size〉
where 〈name〉 is anything between braces or dou-
ble quotes or a string of non-blank characters. The
〈size〉 part is passed to the function registered in
the callback as follows: if positive, it represents at
〈size〉 in scaled points, e.g. at 10pt becomes 655360.
If negative, it represents scaled 〈size〉, e.g. scaled
500 becomes -500. What if no at or scaled infor-
mation is given? Then 〈size〉 is set to -1000, as if
scaled 1000 had been specified, which is equiva-
lent to no scaling at all, since TEX scales fonts by a
factor of one-thousandth of the given value.

The id argument is the numerical representa-
tion of the font. Indeed, TEX internally records fonts
as numbers, not names. This can be seen in LuaTEX
when you query a glyph node’s font field: it returns
a number. For us, it will be useful when applying
OpenType features: characters whose font is one
we’ve loaded ourselves and containing special fea-
tures will require our attention. But we’ll see that
in due time.

The function registered in define_font must
return a table of the type which LuaTEX under-
stands.1 To do so, it reads the appropriate font
file. I’ve said earlier that LuaTEX can’t load Open-
Type fonts. That is not exactly true: it can load
such a font (otherwise the remark above about its
fontloader being based on FontForge wouldn’t make
sense), it just doesn’t know what to do with it.
LuaTEX reads an OpenType font file, creates a Lua
table with it, and your job is to turn it into another
table that the engine can use. In essence, given a
table as described in section 4.4.5 of the LuaTEX
reference manual [4], you have to produce a table as
described in chapter 7 of the same document. Most
of this paper deals with such a transformation. (If
you truly have nothing else to do, you can also pro-
duce the latter table directly from the font file, not
relying on LuaTEX’s interpretation.)

We’ll name our function the same as the call-
back itself: define_font. That means that ulti-
mately something like the following must occur, af-
ter our function is properly defined:

callback.register("define_font", define_font)

Also, since managing fonts is a matter of (sometimes
quite complex) tables, it’ll help to have a function
that prints the contents of a table in a readable fash-

1 Actually, a number can also be returned, which will be
interpreted as the id of another, already defined font. This
possibility won’t interest us much, of course.

60 TUGboat, Volume 33 (2012), No. 1

ion. Here it is (all Lua code in this paper is supposed
to be written in a .lua file, not in \directlua, un-
less catcodes are properly set):

local rep, write = string.rep, texio.write_nl
function ExploreTable (tab, offset)
offset = offset or ""
for k, v in pairs(tab) do

local newoffset = offset .. " "
k = offset .. k .. " = "
if type(v) == "table" then
write(k .. "{")
ExploreTable(v, newoffset)
write(newoffset .. "}")

else
write(k .. tostring(v))

end
end

end

This function browses entries in no particular or-
der; however, in this paper, I will often rearrange its
output (sometimes adding commas) to impose some
organization. Thus the reader shouldn’t worry if
what s/he gets at home looks slightly different.2

3 From names to files

TEX traditionally loads fonts by reference to the file-
name, e.g.:

\font\tenrm=cmr10

loads the font contained in cmr10.tfm. However,
X ETEX has made popular another way of referring
to fonts, namely by their internal names:

\font\myfont="Linux Libertine O /I: +smcp"

This convenient syntax has been taken over in
ConTEXt, thus also in luaotfload. The part before
the colon denotes a font proper, i.e. a font file: the
file containing the italic font of the Linux Libertine
O family3 (i.e. LinLibertine_RI.otf, or fxlri.otf
in TEX Live). After the colon are the tags denoting
features to be applied to that font. With such a font
call, our function will be executed as:

define_font("Linux Libertine O /I: +smcp",
-1000, 51)

(provided we are defining the 51st font, which is
the case if this is the first font call after loading
plain TEX). Now, if we ask LuaTEX to load a font
named “Linux Libertine O /I: +smcp”, or even,
since we’re not so näıve, “Linux Libertine O /I”,
it will never find it. Instead, it must be given a file-
name and nothing else, so you have to link names
to files. To do so, we have to open all the font

2 Also, although the resulting table looks like a Lua table,
it is not (and thus shouldn’t be reused as such in Lua code).
I leave it as an exercise to the reader to list the differences.

3 The O in the family name is for OpenType.

Paul Isambert

files available to LuaTEX, as specified by the return
value of kpse.show_path("opentype fonts"), and
check their names. That takes quite a while, so it’s
not something we want to do on each compilation.
Thus we build a database as a Lua table to match
names with files, e.g. (Biolinum is the sans-serif com-
panion to Libertine):

database = { ...
["Linux Libertine O"] = {

Regular = "LinLibertine_R.otf",
Italic = "LinLibertine_RI.otf",
... },

["Linux Biolinum O"] = {
Regular = "LinBiolinum_R.otf",
Italic = "LinBiolinum_RI.otf",
... },

... }

The first time the fontloader is used, it will cre-
ate the database and write it to an external file.
After that, linking names to files will be fast. Given
e.g. Linux Libertine O /I, it can easily find that
LinLibertine_RI.otf is required, since by conven-
tion /I means italics. To emphasize, this is just a
convention, and you could decide to use /Italic in-
stead, or even to allow the user to specify anything
between I and Italic (then you check whether it is
the prefix of a tag). The latter solution is convenient
for fonts which have both Bold and Black variants
(the /B tag is ambiguous). Also, nothing prevents
the database from being written as something more
readable and/or modifiable. I use a file with a very
simple syntax that I can customize by hand, so that
I can for instance simplify family names: “Linux
Libertine O” becomes simply “Libertine”, “Pro” is
removed in the names of many Adobe fonts . . . or
I can lump unrelated files into a single family. An
imaginary but familiar example would be:

Centaur:
Regular = "Centaur.otf"
Italic = "Arrighi.otf"

Finally, the database can be used to retrieve TFM

fonts by name too.
Fine: we know what the database should or

could look like, but how are we supposed to create
it? The answer has already been hinted at above:
we browse all directories where OpenType fonts are
supposed to be, open all files, retrieve information
and store it in a table. In short, we do the following:

local open = fontloader.open
database = {}
local storeinfo
function explorefonts (dir)
if not lfs.isdir(dir) then

return
end
for name in lfs.dir(dir) do

TUGboat, Volume 33 (2012), No. 1 61

if name ~= "." and name ~= ".." then
local file = dir .. "/" .. name
local attr = lfs.attributes(file)
if attr then
if attr.mode == "file" and
name:lower():match("%.[to]tf$") then
storeinfo(file, name)

elseif attr.mode == "directory" then
explorefonts(file)

end
end

end
end

end

function storeinfo (file, name)
local i = open(file)
if not i then

return
end
local fam, mod
for _, lang in ipairs(i.names) do

local n = lang.names
fam = n.preffamilyname or n.family
if fam then
mod = n.prefmodifiers or n.subfamily
database[fam] = database[fam] or {}
database[fam][mod or "default"] = name
break

end
end

end

Before studying what this code does, a few words on
programming details. I won’t be necessarily consis-
tent with regard to local variables; in production
code, most declarations would be local (including
define_font, since there’s no problem with regis-
tering a local function in a callback). Here, however,
variables will be local if, in a given code snippet,
they are used in other functions only; if they are top-
level with respect to the current snippet, they will be
defined globally. Hence storeinfo is local because
we won’t be using it directly, whereas explorefonts
is global, as is the database table. With respect
to the locality of storeinfo, the reader might no-
tice that it is declared before explorefonts (so it is
available to the latter function) but defined (with-
out local) after it (so we read its definition only
when we know where it is supposed to work); this is
a convenient way to organize code in this situation
(in other situations, e.g. with two local functions
calling each other, it is the only way). Finally, both
functions use:

if 〈something〉 then
return

end
〈code〉
instead of

OpenType fonts in LuaTEX

if 〈something〉 then
return

else
〈code〉

end

Both forms achieve the same result; in general, I
use the second style, because I find it clearer, but
in some cases, as in here with TUGboat’s narrow
columns, the first style saves precious space (and
avoids a lonely end whose role might be obscure).

Back to the code itself. We can use it like this:

local fontpath = kpse.show_path("opentype fonts")
fontpath = fontpath:match(":")

and fontpath:explode(":")
or fontpath:explode(";")

for _, dir in ipairs(fontpath) do
dir = dir:gsub("^!!", "")
explorefonts(dir)

end

We ask kpathsea where OpenType fonts live, and
it returns a string of paths separated by colons or
semi-colons (the latter case on Windows); we re-
move exclamation marks that might prefix a path for
reasons that won’t concern us here, and launch our
function explorefonts: using the lfs (LuaFileSys-
tem) library, we browse the contents of a directory
(making sure it is a directory, because kpathsea

stores possible paths); for each element, if it is a
file and it has the proper otf or ttf extension, we
pass it to our storeinfo; if it is a directory, we
browse it recursively. The reader may be surprised
that we take ttf files into account; but there are
two breeds of OpenType fonts: OpenType C[om-
pact] F[ont] F[ormat] files have the otf extension,
whereas OpenType TrueType files have the ttf ex-
tension. However, the kpse library sees the latter
as TrueType fonts (because of the extension), and
when searching for a font in that format we need to
specify "truetype fonts" as the type.

With storeinfo comes our real taste of Open-
Type fonts with LuaTEX. We use the fontloader.
open function to import a file into a readable format
(albeit not terribly readable, as we’ll learn later),
and if it worked (this might not be the case, e.g. if
permission is denied) we retrieve the information we
need. Before turning to that, though, I should men-
tion that there exists fontloader.info, a function
that extracts exactly the information we’ll need, and
which is much faster than fontloader.open. How-
ever, fontloader.info also regularly gets things
wrong, not due to a defect in LuaTEX but because
fonts often are badly organized. For instance, in
the table returned by fontloader.info, the field
familyname for Robert Slimbach’s Minion Pro bold
is set to Minion Pro, but it is Minion Pro SmBd

62 TUGboat, Volume 33 (2012), No. 1

for the semibold version (and the reverse holds for
Adobe Caslon, Carol Twombly’s adaptation of Will-
iam Caslon’s famous design), as if they belonged to
different families. Also, the only information about
the ‘italic-ness’ of a font is the italicangle field,
which might have a non-zero value even if a font is
not italic in the sense of being related to a roman
alternative (see for instance calligraphic fonts).4

Anyway, we have our font loaded in the table-
like (technically: userdata) variable i, which has a
field names, an array of subtables with information
about the font in different languages, as follows:5

names = {
1 = {

lang = English (US)
names = {
family = Test Libertine
subfamily = Italic
fullname = Test Libertine Italic
postscriptname = TestLibertine
uniqueid = FontForge 2.0 : Test ...
version = Version 5.1.1
designer = Philipp H. Poll
manufacturer = Philipp H. Poll
designerurl = http://www. ...
vendorurl = http://www.tug.org
licenseurl = http://www.fsf.org/...
copyright = Test Libertine by ...
license = GPL ... } }

2 = { lang = German German
names = { subfamily = Kursiv } }

...
}

There is often only one such subtable (the first shown
here), but sometimes there are several, containing
some information in various languages.

The information we’re looking for is family

and subfamily or, if they exist, preffamilyname
and prefmodifiers; they correspond to the font
name and slash-prefixed tags in a \font call with
X ETEX syntax. Some modifiers should be filtered

4 Actually, it should be possible to do a meaningful analy-
sis of the table returned by fontloader.info, but it is just
simpler to use fontloader.open. It is indeed much slower,
but then the database isn’t built on every compilation, so it’s
not so bad if it takes a little time.

Still, there is one case where we need fontloader.info:
TrueType Collection files. This format puts several fonts in
one file (with the ttc extension, so not taken into account
here); fontloader.info returns an array of tables similar to
the single one it returns for other files; to load a particular
font in a collection with fontloader.open, we must pass a
second argument to the function, the fontname found in one
of the tables returned by fontloader.info.

5 This shows names for Test Libertine, because that’s the
font we’ll be looking at in detail, but since I’ve modified only
one font it doesn’t really belong to a family, and the origi-
nal Linux Libertine is used as an example elsewhere in this
discussion of the font database.

Paul Isambert

out, namely Regular, Book and others, because they
denote the “default” font, i.e. roman with normal
weight, and we don’t want to have to specify such a
font as:

\font\myfont="Linux Libertine O /Regular"

Also, a modifier isn’t always as expected. For in-
stance, William A. Dwiggins’s Electra in italics is
called Cursive; you probably want to normalize that
to Italic, so it can be called like other italic fonts.

Now, building the database is a simple mat-
ter: it will be a table with family names as en-
tries whose values are subtables with 〈modifier(s)〉
= 〈filename〉 subentries. The database is cached,
and when the user specifies:

\font\myfont="Linux Libertine O /I : +smcp"

we retrieve the value of the Italic subentry of the
“Linux Libertine O” entry and, lo, we are magi-
cally directed to the proper file! Admittedly, this
requires a bit of string manipulation (left as an ex-
ercise to the reader), and we don’t know what to
do with +smcp yet, and in fact we don’t even know
what to do with the font file itself, but let’s shout
triumphantly anyway, it’s good for morale, and we’ll
need some because this paper won’t get any easier.

4 Basic entries in a font table

The fontloader.open function loads a font, but
it’s not usable by itself; the result should be turned
into a table with fontloader.to_table, as follows.
(The close operation simply discards the userdata
from which the table is extracted and requires no
further comment.)

local f = fontloader.open
("/your/font/dir/TestLibertine.otf")

fonttable = fontloader.to_table(f)
fontloader.close(f)

We shall turn this table into another, as said be-
fore. However, all those operations take time, so
we’ll want to perform them as seldom as possible.
That is why the font table should be cached: once
a font has been analyzed, relevant information is
stored in a file that future compilations will retrieve
instead of starting from scratch again. However, the
result of some operations can’t be cached: e.g. those
related to dimensions (sizes of glyphs, etc.) must be
performed anew each time the font is loaded, be-
cause they depend on the size at which the font is
loaded; in the cache file, only “abstract” dimensions
are stored, with an arbitrary unit, and they must be
converted to fit the real size. Unfortunately, set-
ting kerning pairs (i.e. the—typically negative—
amount of space added between pairs of glyphs that
don’t look good when set next to each other) is one

TUGboat, Volume 33 (2012), No. 1 63

of those operations, and kerning pairs come by the
thousands in some fonts (e.g. Minion Pro). Another
operation that obviously can’t be done in advance
and cached is applying features.6

Another important remark about size. With
TFM fonts, when you call e.g.:

\font\myfont=cmr10

you’re requesting a font with a given size (here 10pt),
because that information is part of the font file. But
at what size should our Libertine font be loaded?
Some fonts have a design_size field (expressed in
tenths of a point—PostScript point, big point to
TEX; we shall ignore that subtlety here); e.g. with
fonttable above, fonttable.design_size returns
110, meaning 11pt. So we could load the font at
11pt; the problem is that the design size may vary
from font to font, so by default you’ll be loading
Libertine at 11pt and Electra at 12pt; worse still,
some fonts don’t have a specified design size (the
field returns 0). So it’s better to have a default size
at which a font will be loaded regardless of its design
size; of course the problem vanishes if an at 〈size〉
clause is used in the font call.7

Let’s get back to loading our font. The opera-
tions described in this paper assume we’re reading
from the original font file, and that nothing is cached
(or at best what is cached is the table returned by
fontloader.open/to_table, i.e. the original font
file translated to Lua, so to speak). So we have
our original table, which I’ll call fonttable, and we

6 One could cache a font at a given size, e.g. 10pt, so that
at least when loaded at that size (preferably the most often
used, of course), the operations on dimensions are already
done. Another option is to cache fully specified fonts, i.e. with
size and features applied, for a given job or set of jobs, so that
all compilations but the first are faster (under the assumption
that the user doesn’t change fonts or font specifications on
each compilation, of course). Those cache files can then be
deleted once the job is done, like auxiliary files in general.
Of course the features mentioned here are only those that
LuaTEX can handle by itself, as will become clear later.

7 Actually, an intelligent fontloader, unless instructed oth-
erwise, will try to return the font that best fits the at-size;
in many cases there will be one font only that matches the
font call, whatever the size; in other cases, though, there
will be several, and the right one should be chosen. That
happens when a font is drawn at different sizes, as with
many Adobe fonts and Latin Modern (by Bogus law Jackowski
and Janusz M. Nowacki — and Donald E. Knuth). Of course
the font database should reflect the fact that those fonts
vary only with respect to size (which shouldn’t be thought
of as a modifier on a par with those we’ve been dealing
with), something that the database created above didn’t do.
I won’t pursue this matter here, except to mention that not
only should design_size be taken into account, but also
design_range_bottom and design_range_top, which speci-
fies the (exclusive) lower and (inclusive) upper bounds of the
range of sizes for which the font is optimal.

OpenType fonts in LuaTEX

must return another, which I’ll call metrics. A few
fields can be readily set:

metrics = {
name = fonttable.fontname,
fullname = fonttable.fontname .. 〈id〉,
psname = fonttable.fontname,
type = "real",
filename = 〈filename〉,
format = 〈fonttype〉,
embedding = "subset",
size = 〈size〉,
designsize = fonttable.design_size*6553.6
}

First we specify some names: the name field is
used internally by LuaTEX, e.g. in error messages;
fullname is suffixed with 〈id〉 (the third argument
to define_font) because, in rare cases, fonts with
identical names (extracted from the same font file
but with different features, e.g. with and without
small caps) can cause problems: indeed, if two fonts
are sufficiently similar, LuaTEX will merge them in
the PDF output; adding 〈id〉 avoids the merging; as
for psname, it is relevant to the PDF file. The type

distinguishes real from virtual fonts as TEX has
always done, but I won’t address virtual fonts here.

LuaTEX uses info in a font to know what glyph
to place where; but the PDF file must contain the
file to render the glyphs, and that’s the meaning
of the following entries: the filename field must
contain the full path to the original font file, i.e.
/your/font/dir/TestLibertine.otf in our exam-
ple, so that LuaTEX can embed it. The formatmust
be one of type1, type2, truetype and opentype

(the latter in our case; note that TrueType-based
OpenType fonts, i.e. with the ttf extension, should
use the truetype format). Finally, the embedding

field specifies what the PDF file should contain of
the original font file: if the value is no, the font
won’t be embedded at all, and the PDF viewer will
try to find it on the disk8 or, failing that, it will
use a default font (but the glyphs will be placed
according to what LuaTEX will have read from the
original font, so the result, quite obviously, will be
a mess); the value subset means that only those
glyphs that are used in the document are described
in the PDF file; finally, full means that the PDF

document contains the entire font file. What to em-
bed is a matter of size and license; commercial font
vendors generally allow subset embedding, which
is the best solution anyway, but strictly speaking
that should be checked beforehand. (E.g., via the
license and/or licenseurl fields in the names ta-

8 For this, psname is crucial; if psname is missing, LuaTEX
will use fullname which, when suffixed with 〈id〉 as is the
case here, will not be a name that is findable on disk.

64 TUGboat, Volume 33 (2012), No. 1

ble as shown above, and more precisely, the field
fonttable.pfminfo.fstype, corresponding to the
fsType entry of the OS/2 table in the original font
file; that is a 16-bit number each bit of which is a
boolean. Suffice it to say for us that subset embed-
ding is perfectly ok if the number is 0 or 8.)

We now turn to the matter of size. The value
of 〈size〉 depends on the font call and the contents
of the at-size clause (recall our earlier discussion);
if the called font contained an explicit at 〈size〉,
then that is the value of the variable; otherwise,
it contained a scaled 〈factor〉 clause, perhaps im-
plicit (i.e. no clause was given, which is equivalent
to scaled 1000); then -〈factor〉 was passed to de-

fine_font, and we have to agree on a default size to
do the scaling. Suppose that default is d and we de-
note 〈factor〉 with f ; then 〈size〉 is − f×d

1000 . (This
obviously yields d if the font was called without
scaled.) LuaTEX internally treats all dimensions in
scaled points: we should never try to pass it 10pt,
and 655360 should be used instead (since there are
65, 536 scaled points per TEX point). The tex.sp

function can be used: when passed a dimension (as
a string), it returns its value in scaled points. In
short, a snippet from define_font would be (given
a default size of 10pt):

function define_font (name, size, id)
...
if size < 0 then

size = size * tex.sp("10pt") / -1000
end
...

end

(The observant reader can infer from this code and
the discussion above that size, if positive, has al-
ready been converted to scaled points when passed
to the function.)

So, the size field is set to the result of that
tediously explained computation. It is used not by
LuaTEX, which relies on the glyphs’ sizes themselves,
but by PDF viewers, which will draw glyphs at that
size. A mismatch between this value and the real
size at which the font was loaded will thus result in
a mismatch between the drawn glyphs and the space
they occupy (letterspacing can be bluntly imple-
mented this way). As for the designsize value, it
is used by LuaTEX when reporting information with
\fontname, for instance, in which case at 〈size〉 will
be mentioned if it differs from designsize (if the
original fonttable.design_size is 0, i.e. unspeci-
fied, it’s better just to set designsize to size).

Now that we have learned about 〈size〉 we can
turn to another important field of metrics: namely
parameters, a table with seven entries. This num-

Paul Isambert

ber might remind the seasoned TEX user of some-
thing with which s/he is familiar: the \fontdimen

primitive. Indeed, that’s where those dimensions are
set: \fontdimenn is the entry at index n in param-

eters. However, parameters 1–7 have been given
friendlier names: LuaTEX will use entries with those
names as keys if they exist, and fall back to the num-
bered entries otherwise. Here’s a brief description of
those parameters (math fonts have entries at index
8 and higher, but we won’t investigate those here);
more complete descriptions can be found in your fa-
vorite reference:

1. slant Slant per point, for accent positioning.
2. space Interword space.
3. space_stretch Interword stretch, i.e. the space

that can be added to the interword space when
a line is justified by stretching.

4. space_shrink Interword shrink, i.e. the space
that can be subtracted from the interword space
when a line is justified by shrinking.

5. x_height Value of the unit ex.
6. quad Value of the unit em.
7. extra_space Space added when \spacefactor

≥ 2000.

A few of these parameters can be set from infor-
mation found in OpenType fonts: x_height can
be read in fonttable.pfminfo.os2_xheight or de-
rived from the height of the letter x in the font (a
better solution), but that requires a conversion we’ll
turn to presently; thus the value given below for that
parameter is arbitrary. The interword space should
be the width of the space character, but again we
don’t know how to retrieve that yet. Finally, slant
can be derived from fonttable.italicangle if the
latter is given. Here I have specified interword space
and associates as in Computer Modern (10pt):9

9 The computation for slant is not complicated, but it
might not be very readable as expressed here. So here are
the steps:

1. slant is the horizontal displacement for one point of
vertical displacement. Hence it can be expressed as
1 / tanα, where α is the angle between the x-axis and
the font’s axis.

2. fonttable.italicangle measures the angle between the
y-axis and the font’s axis (which is why it is negative for
fonts leaning on the right, as most slanted fonts do); α
is thus: −(90−fonttable.italicangle), i.e. 90+font-

table.italicangle.
3. α is expressed here in degrees, but Lua’s math.tan func-

tion expects radians, hence the use of math.rad to do
the conversion.

4. The result is expressed in points; we multiply it by
65, 536 to convert it to scaled points.

For fonts with proper information for diacritic positioning,
slant is useless; we’ll use OpenType features instead. But
setting it correctly does no harm.

TUGboat, Volume 33 (2012), No. 1 65

local T, R = math.tan, math.rad
metrics.parameters = {
slant = 65536/T(R(90 + fonttable.italicangle)),
space = 〈size〉 / 3,
space_stretch = 〈size〉 / 6,
space_shrink = 〈size〉 / 9,
x_height = 0.4 * 〈size〉,
quad = 〈size〉,
extra_space = 〈size〉 / 9
}

Those fields could also get their values from the
font call; remember that, in keeping with the X ETEX
syntax, whatever comes after the colon (if any) will
be interpreted as features to be applied to the font
(e.g. ligatures, kerning, etc.). We could also allow
additional information to be given, so the user could
ask for something like this:

\font\myfont="Test Libertine /I: stretch=.2;..."

to mean that space_stretch should be set to a fifth
of the loading size (among other features); of course,
such a parameter could also be set by hand with
\fontdimen, but this is a nicer interface.

Before extracting the marrow from OpenType
fonts, I shall say that there are many other fields
in fonttable that we won’t explore here because
they’re not crucial, even though we could make use
of them. Interesting information on the font can for
instance be found in the fonttable.pfminfo table,
which lumps together fields from (mostly) the hhea
and OS/2 table of the original font file. Similarly,
some other fields in metrics could be set that we
won’t consider here.

5 Glyphs, at last!

Now that we’ve gone through all the preliminary
steps we can turn to the crux of the matter: glyphs.
In fonttable, there is a glyphs subtable which con-
tains them all, and we shall use them to populate
the characters entry in metrics.10 However, en-
tries in the fonttable.glyphs table are arbitrary,
whereas metrics.characters indices are Unicode
codepoints; for instance, a in Libertine (italic or not)
is at index 66 in fonttable.glyphs, even though
its codepoint is 97, which is also the index where it
must appear in metrics.characters (unless we’re
implementing substitutions, but we won’t be doing
that now).

So, we need to know: a) the characters the font
contains and b) the glyph number of each character.

10 My use of the words character and glyph doesn’t reflect
the common distinction between an element of a writing sys-
tem and its representation (so that the character a can be
represented by various glyphs, e.g. from different fonts); in-
stead I will use glyph for an element of fonttable.glyphs and
character for an element of metrics.characters.

OpenType fonts in LuaTEX

Fortunately, we have fonttable.map.map: it is an
array with Unicode codepoints as indices and glyph
numbers as values, e.g. 97 = 66, meaning that the
character with Unicode codepoint 97 has its glyph in
fonttable.glyphs[66]. Let’s give a shorter name
to this table and use it to look at the glyph f :

map = fonttable.map.map
ExploreTable(fonttable.glyphs[map[102]])

And the result is (somewhat shortened):

name = f
unicode = 102
class = base
width = 314
boundingbox = { 1 = -78

2 = -238
3 = 523
4 = 698 }

kerns = { ... }
lookups = { ... }
anchors = { ... }

I have elided the kerns, lookups and anchors table
since we aren’t able to do much with them for the
time being. The first two fields are quite obvious, I
suppose; name will be of use later, exactly when we’ll
examine the contents of kerns and lookups. We’ll
ignore the class field until we start discussing look-
ups. The width field is, unsurprisingly, the width
of the glyph. The values in the boundingbox ta-
ble are the position of the glyph’s extrema: 1 and
3 are the minimum and maximum x-values respec-
tively, while 2 and 4 are the minimum and maxi-
mum y-values; the former are expressed relative to
the y-axis (i.e. the left side of the glyph’s bounding
box proper, where x = 0), and the latter relative to
the x-axis (the glyph’s baseline). Thus bounding-

box[4] is its height, -boundingbox[2], provided
boundingbox[2] is negative, i.e. the lowest point
is below the baseline, is the glyph’s depth, but the
glyph’s width is width, and nothing else! Indeed,
a glyph as drawn may be larger than its declared
width, and it may extend outside its bounding box,
and that’s perfectly normal. Figure 1 illustrates that
with the glyph we’re investigating (the image is from
FontForge): the glyph’s width is the area between
the two vertical lines; the extenders aren’t contained
between those lines, which means that, for instance,
an i before the f will stand above the f ’s tail, while
an o after will stand below its arm: ifo. That’s wel-
come behavior, otherwise spurious gaps would occur
between letters.

Now, the only fields LuaTEX requires for a char-
acter are width, height, depth and index, the lat-
ter being the glyph’s index in fonttable.glyphs.
In fact, LuaTEX is directly interested in the first
three fields only: they are the basic data it requires

66 TUGboat, Volume 33 (2012), No. 1

Fig. 1: f in Libertine Italic

to do its job properly. On the other hand, index is
used to denote the glyph in the PDF file.11 So, that’s
it, we can transfer glyphs in fonttable to charac-
ters in metrics! Oh, no, we can’t: we know f ’s
width is 271, but 271 what? Scaled points? No, that
would be too easy.12 The unit in which dimensions
are expressed in font files is a relative unit, which
makes sense since the font may be loaded at what-
ever size. The value of that unit is recorded in font-

table.units_per_em, generally 1, 000 or 2, 048, but
the real value is of little importance: what counts is
that, given 〈size〉 as computed above, we are able
to derive a (this time absolute) unit for interpreting
glyph dimensions. Since by definition 〈size〉 is one
em, then the value of the unit is obviously s

u with s
= 〈size〉 and u = fonttable.units_per_em. Let’s
record it in a variable:

unit = 〈size〉 / fonttable.units_per_em

and here we go, let’s translate fonttable’s glyphs
into metrics’s characters (recall how map was de-
fined above):

for ch, idx in pairs(map) do
local glyph = fonttable.glyphs[idx]
metrics.characters[ch] = {

index = idx,
width = glyph.width * unit,
height = glyph.boundingbox[4] * unit,
depth = glyph.boundingbox[2] < 0 and

(-glyph.boundingbox[2] * unit) or 0 }
end

This time, that’s it, we’re done! The define_font

function can return metrics and LuaTEX will be
able to use it. No kidding: extracting the glyphs is
child’s play by comparison.

11 Indeed, TeX will be written 〈003500460039 〉 in the PDF

file, instructing the viewer to fetch glyphs at position 0x35,
0x46 and 0x39 in the current font (assuming the current font
is Libertine). Actually, things are a bit more complicated
than that, but we definitely don’t want to dwell on PDF.

12 Not to mention that a glyph with a width of 271 scaled
points would be a billboard for atoms but not exactly for us.

Paul Isambert

6 Some easy-to-implement niceties

Okay, well, we’re done, but let’s face it: our font
isn’t that exciting. If this is all we can do with
OpenType, that’s rather disappointing. The font
isn’t even being respected, since kerning information
has been ignored.

Of course, we will be doing much, much more.
But we’ll postpone that as long as there are simpler
areas to investigate. For instance, the letter f wasn’t
randomly selected to illustrate the previous section:
I chose it because it is the letter that requires italic
correction par excellence. To wit: “arf” must be ut-
tered by an uneducated dog, whereas “arf ” is from
a dog with manners. As the reader certainly knows,
it’s the difference between

‘‘{\it arf}’’ and ‘‘{\it arf\/}’’

where \/ denotes italic correction, a small amount
of space to be added after the letter. The prob-
lem is that italic correction was born with TFM for-
mat and didn’t prosper. In other words, there is
no such thing in OpenType fonts. However, we can
mimic it: we’ll define italic correction as the dif-
ference between a glyph’s rightmost point and its
width. Given that LuaTEX stores the italic cor-
rection in a character table’s italic field, we can
thus enhance the char table defined above as fol-
lows (where glyph is as before):

char.italic = (glyph.boundingbox[3] - glyph.width)
* unit

The results might be more or less felicitous, since
italic correction was meant to be specified for each
glyph by the designer, not automatically computed,
but I find this much better than no italic correction
at all.13

Other things can be easily implemented, this
time properly, because they’re just the Lua version
of existing operations. For instance, the extend field
in metrics corresponds to the ExtendFont keyword
in a PDFTEX map file: it lets you stretch or shrink
the glyphs. The value ranges between −5, 000 and
5, 000; glyphs are then horizontally distorted by a
thousandth of the given value (so that with 1, 000
the font is untouched); a negative value reverses the
glyphs. The glyphs’ widths are not actually mod-
ified; extension takes place in the PDF. In other
words, LuaTEX sees and positions them with their
original size, thus proper extension should also mod-

13 One could also use an external file to store italic correc-
tions for a given set of glyphs from a given font, and retrieve
the values and apply them when the font is loaded. This
might seem like overkill, but it’s no more tedious than check-
ing kerning pairs. Also, LuaTEX is of little use if not for such
subtleties.

TUGboat, Volume 33 (2012), No. 1 67

ify the glyphs’ horizontal dimensions (something not
possible in PDFTEX).

The slant entry in metrics14 corresponds to
the SlantFont keyword in a map file and allows cre-
ation of artificially obliqued versions of a font (or ar-
tificially upright versions of a slanted font). It ranges
between −2, 000 and 2, 000 with 0 meaning no slant
(other than the font’s native slant, of course). The
calculation is as follows: given a value of s for slant,
the resulting angle between the y-axis and the (mod-
ified) font’s axis is − arctan s

1000 (under the assump-
tion than the font is originally unslanted; otherwise,
add that to the font’s angle). For instance, if slant
is 1, 000, then the font will make an angle of −45◦

(or 45◦ clockwise) with the y-axis. Again, LuaTEX
doesn’t take that value into account when position-
ing glyphs, and artificial slant should be paired with
increased italic correction.

Let’s stop disfiguring fonts with electronic sur-
gery and turn instead to something definitely useful:
character protrusion and font expansion (a.k.a. HZ

for Hermann Zapf). Both have TEX interfaces, but
we can define them here at once when loading the
font: instead of using \lpcode and \rpcode for pro-
trusion and \pdffontexpand and \efcode for ex-
pansion, we can specify those values in Lua. For
each character, we can set the left_protruding

and right_protruding fields, which correspond to
\lpcode and \rpcode respectively (the values are
thousandths of ems).15 As for expansion, the \pdf-
fontexpand primitive is reflected as follows in Lua.
To the statement

\pdffontexpand\myfont
〈stretch〉 〈shrink〉 〈step〉 [autoexpand]

corresponds to the following settings in metrics:

metrics.stretch = 〈stretch〉
metrics.shrink = 〈shrink〉
metrics.step = 〈step〉
metrics.auto_expand = 〈boolean〉
where specifying true for 〈boolean〉 is equivalent to
using the autoexpand keyword (which is highly rec-
ommended, otherwise you need several versions of
the same font). Finally, each character can have a
field expansion_factor corresponding to \efcode.

As noted above, both protrusion and expansion
can be set in TEX;16 however, the Lua way can be

14 Not to be confused with the previously-discussed entry
of the same name in metrics.parameters.

15 Character protrusion in LuaTEX is still buggy as I write
this (with v0.71); negative protrusion isn’t properly obeyed.

16 Also, one must set the parameters \pdfprotrudechars

and \pdfadjustspacing to 1 or 2 if protrusion and expansion
are to be performed, or use the Lua formulations tex.pdfad-
justspacing and tex.pdfprotrudechars. Perhaps even set

OpenType fonts in LuaTEX

the basis for a nice interface in the X ETEX-like syn-
tax of the font call, e.g.:

\font\myfont="Test Libertine /I:
expansion = 30 20 5;
expansion_factor = 〈whatever〉"

where 〈whatever〉, as the name indicates, could point
to an external file or previously-defined Lua table or,
well, whatever contains the individual glyph expan-
sion factors.

Before turning to the implementation of ad-
vanced typographic features,17 we can have an easy
first taste of such operations. The studious reader
who has followed this paper with a computer next to
him/her and experimented with each step will have
seen some strange behavior: the line of code

‘‘I’m going to be interrupted---’’

comes out as

``I'm going to be interrupted---''
instead of

“I’m going to be interrupted—”
The reason for this apparent misbehavior is that
OpenType fonts don’t follow a well-known conven-
tion in TEX: namely, that TFM fonts have (single)
quotation marks in lieu of the “grave accent” and
“apostrophe” characters (hence ‘ instead of `); that
two quotation marks in a row are replaced by double
quotation marks (hence “ instead of ‘‘, but the lat-
ter can’t be seen here because of the previous point);
that two hyphens in a row form an en-dash (-- be-
comes –); and that an en dash followed by a hyphen
turns into an em dash (–- becomes —).18

The quotation marks could be easily substi-
tuted for the grave accent and apostrophe:

metrics.characters[96] = metrics.characters[8216]
metrics.characters[39] = metrics.characters[8217]

This is not a good idea, however! It upsets the char-
acter/glyph correspondence, and that should never
be done lightly (i.e. without keeping track of what-
ever substitution has been performed).

them automatically when loading a font with protrusion and/
or expansion enabled.

17 I mean advanced from a software point of view; substi-
tutions and positioning are of course as old as writing.

18 There are a few other substitutions/ligatures, e.g. !‘

gives ¡. Those substitutions/ligatures aren’t exactly that, if
we define “substitution” as the replacement of a glyph with
another denoting the same character (here a character is re-
placed with another character: the grave accent and the left
quote aren’t the same thing) and “ligature” as the merging
of two or more glyphs into a new one for æsthetic reasons
(hyphens aren’t supposed to happen in a row, and even if
they would, there’s no typographic convention to the effect
that they should be merged into an en-dash). Rather, these
are convenient abbreviations.

68 TUGboat, Volume 33 (2012), No. 1

On the other hand, the “TEX ligatures” can in-
stead be implemented as follows. Characters in met-

ricsmay have a ligatures table which is organized
like this:

ligatures = {
[〈nextidx1 〉] = { char=〈ligidx1 〉, type=〈type〉 },
[〈nextidx2 〉] = { char=〈ligidx2 〉, type=〈type〉 },
... }

where each 〈nextidx n〉 is the index of a character in
metrics and 〈ligidx n〉 is the character being sub-
stituted if the current character and 〈nextidx n〉 are
found next to the other. As for 〈type〉, it is either a
number or a string denoting the result of the liga-
ture: either the new character or the new character
with one or the other or both of the old characters;
〈type〉 also specifies where TEX should resume scan-
ning. We will content ourselves with type 0.

So, given that the codepoint of hyphen is 45,
en-dash is 8, 211 and em-dash is 8, 212, we can create
our convenient ligatures like this:

metrics.characters[45].ligatures = {
[45] = { char = 8211, type = 0 } }

metrics.characters[8211].ligatures = {
[45] = { char = 8212, type = 0 } }

Although we could start implementing f-liga-
tures and the like this way also, we’d rather do
things properly. So let’s turn to the reason why
OpenType fonts exist in the first place.

* * *

As we now dive into the core of OpenType fonts,
the reader should recall the warning issued in the
introduction to this paper: LuaTEX’s fontloader will
evolve, the organization of fonttable will change;
thus we should observe one field in particular, not
mentioned before: table_version. Here I describe
a fonttable whose version is 0.3.

7 A first look at features

It’s simpler to approach features with a real example
than with an abstract definition. If we explore again
the table for f (102) in Libertine,19 but this time
retain the lookups, kerns and anchors tables only,
and in each only the first entry, we see:

lookups = {
ss_l_0_s = {

1 = { type = substitution
specification = { variant = f.short }

} }
... }

19 From now on when exploring a particular character, I’ll
mention the character itself or its name followed by the Uni-
code codepoint between parentheses; the resulting table is
thus produced with
ExploreTable(fonttable.glyphs[map[〈codepoint〉]]).

Paul Isambert

kerns = {
1 = { char = o

off = -11
lookup = { 1 = pp_l_2_g_0,

2 = pp_l_2_k_1 } }
... }

anchors = {
basechar = {

Anchor-3 = { x = 136, y = 215,
lig_index = 0 }

... } }

This tells us a few things: first, f should be replaced
by f.short (f becomes ) if lookup ss_l_0_s is ac-
tive. Also, the distance between f and o should be
decreased by 11 units (with units defined as above)
if pp_l_2_g_0 is active.20 Finally, anchors are spec-
ified in case a mark is placed relative to the glyph.

One absolutely crucial point: the f.short and
o glyphs aren’t denoted by their Unicode codepoints,
nor by their positions in fonttable.glyphs, but by
their names. When we first looked at f we could
see that it had a name field. This is the case for all
glyphs (even if sometimes the name is as uninfor-
mative as uni0358), and all typographic operations
denote glyphs in that way. On the other hand, in
metrics names are useless and only codepoints mat-
ter. That means that we badly need a table linking
names to codepoints; here it is:

name_to_unicode = {}
for ch, gl in pairs(map) do
name_to_unicode[fonttable.glyph[gl].name] = ch

end

Now, name_to_unicode["f.short"] nicely returns
57, 568,21 and the reader who has followed the pre-
vious instructions to load Libertine can check that
\char57568 indeed yields . And if we were to rush
into the kerning of f, we could do:

metrics.characters.f.kerns = {
[name_to_unicode.o] = -11 * units }

But let’s not do that. Instead, let’s conscientiously
study how features and lookups work, and first of
all, how to know whether a lookup is active or not.

8 Lookups, tags, scripts and languages

A lookup is activated if the right combination of
script, language and tag obtains; again, a concrete

20 The second entry pp_l_2_k_1 must be ignored; in fact,
it shouldn’t be there at all and the lookup field should be a
string, not a table.

21 What, the reader might exclaim, a glyph variant has
a place in Unicode? Not really, no: 57, 568, i.e. 0xE0E0, is
in the “private use area”, where font designers are free to
put whatever they wish, and which generally contains alter-
nate forms. Nevertheless, Unicode does contain some vari-
ants, such as the f-ligatures.

TUGboat, Volume 33 (2012), No. 1 69

Fig. 2: ls_l_18 as seen by FontForge.

example will be easier to understand. Substitution
lookups are stored in fonttable.gsub, which is an
array where each entry is a table describing a fea-
ture.22 If we explore entry 19 in Libertine’s gsub,
we get the following:23

name = ls_l_18
type = gsub_ligature
flags = { }
subtables = { 1 = { name = ls_l_18_s } }
features = {
1 = {
tag = liga
scripts = {
1 = { script = DFLT, langs = { 1 = dflt } }
2 = { script = cyrl, langs = { 1 = dflt } }
3 = { script = grek, langs = { 1 = dflt } }
4 = { script = latn,

langs = { 1 = "DEU ", 2 = "MOL ",
3 = "ROM ", 4 = dflt } } } } }

(Compare this to Figure 2, which shows the same
lookup as seen by FontForge.) Let’s focus on the
features field, which is what we are interested in.
It is an array of tables (here there is only one), each
containing a possible combination of tag, scripts and
languages activating the lookup. We can see that
some ligatures (since we’re looking at such a feature,
as the type indicates) will be activated if a) liga is
on and b) no script and language is specified (i.e.
both are defaults) or the script is Cyrillic and the
language is unspecified, and so on and so forth. (In
the rest of this paper, I will often write that “this tag
activates that lookup”; the reader should mentally
add: “if script and language do not say otherwise”.)
There might be several such subtables in features,
one per tag, since a feature might be implemented

22 The reader may have noticed that I use the word feature
somewhat freely, indeed eschewing any technical definition,
denoting vaguely but conveniently a typographic manipula-
tion on the font.

23 The table entry is at index 19 even though the lookup
has 18 in its name (and lookups are indeed numbered con-
secutively), because lookup numbering starts at 0, whereas
Lua tables prefer 1 as the first index (table length and the
ipairs function are sensitive to that). So, whenever I men-
tion lookup ab_c_x, the reader should look at index x + 1 in
the gsub or gpos tables.

OpenType fonts in LuaTEX

by several tags: for instance, in Minion, “oldstyle”
numbers (e.g.  instead of 123) are activated by
the onum tag, but also by smcp (small caps) and
c2sc (capitals to small caps, i.e. turning uppercase
letters to small caps, whereas smcp affects lowercase
letters), because those kinds of numbers are deemed
mandatory with small caps by the designer. In such
a case of multiple subtables, only one tag/script/
language combination suffices for the lookup to be
activated. It might also happen that no features

table is present (for instance, the first two lookups
in Libertine); that is the case for lookups that aren’t
tied to a tag but instead are called by other (con-
textual) lookups. We shall come back to that later.

One important yet easily missed property of
language tags is that they are four-character strings
(which is why I added unusual quotes around a few
strings in the table), the last character being a space
(except for dflt). On the other hand, you’re not go-
ing to demand that users specify the language they
want to use with a space at the end, so you have to
add it yourself.

That tags interact with scripts and languages
to activate (or not) lookups is an important feature
in OpenType, allowing for a flexible interface. For
instance, the locl tag can be activated in all cir-
cumstances, to activate variants only for the speci-
fied scripts and languages: given n sets of localized
forms, there is thus no need for n tags. Another well-
known example is the fi ligature, which shouldn’t be
used in Turkish, since this language distinguishes be-
tween i and ı, and the i ’s dot is generally gobbled in
the ligature.24,25 Consequently, liga often points to
two lookups: one with the (f)fi ligature(s) only, in
which Turkish is excluded, and another implement-
ing all other standard ligatures. That is exactly how
the lookup shown here works: the reader may have
noticed that for the Latin script, TRK is missing; and
indeed that lookup controls the (f)fi ligature(s).26

One might think that tags are only pointers to
lookups, which implement a feature, so that tags

24 Dotless i notes the close back unrounded vowel, which
means it’s at the back of the throat (like the Castle of Aaaaar-
rrgh), the mouth is only slightly open (unlike said Castle),
and the lips are at rest; you can pronounce it more or less as
follows: hold “oooooo” as in boot and stop pouting.

25 The fi ligature does not always gobble the i ’s dot; for
instance it doesn’t in Kris Holmes and Charles Bigelow’s Lu-
cida; accordingly, the ligature is applied even in Turkish.

26 Another way to avoid the ligature in Turkish is illus-
trated in Minion: it has only one set of ligatures (containing
fi) defined for all languages; however, it also has a special
substitution activated by locl only if the language is Turkish
(and similar), which replaces i with an identical glyph whose
only difference is precisely not forming fi when preceded by f.

70 TUGboat, Volume 33 (2012), No. 1

can be somewhat overlooked as simply being a user-
friendly way to activate lookups, furthered by the
fact that tags can be freely made up by font design-
ers whereas there is only a finite number of lookup
types. Although that is true in general, in some
cases tags have some additional content. For one
thing, some tags should be active by default (e.g.
liga, standard ligatures) whereas others are op-
tional (e.g. hlig, historical ligatures); this means
that the former should be applied unless the user
specifies otherwise.27 Another, more important way
in which tags have semantics is when the lookup
they point to doesn’t suffice to implement a fea-
ture properly. For instance, the init, medi and
fina tags denote the initial, medial and final let-
terforms in (mostly) Arabic scripts; the feature is
implemented by a simple substitution, not a con-
textual substitution (on which, see below). This
means that if the user selects init, a given vari-
ant should be used for letters at the beginning of a
word only, even though the lookup implementing it
doesn’t mention contexts; in other words, manipu-
lations shouldn’t rely on the lookup type only and
should keep in mind the tag that activated it. A
list of registered tags, along with their meaning, is
available at [5].

Finally, we must note that the user’s choice of
script and/or language should be obeyed if and only
if the font knows about them. Indeed, fonts do
not specify all possible scripts and languages, but
only those which make a difference; for instance,
French isn’t mentioned anywhere in Libertine, but
this doesn’t mean that no features should be applied
if the font is loaded with FRA as the value of lang
(and, of course, latn as the value of script). In-
stead, it means that the font knows nothing of that
language and will treat it like the dflt language
in the latn script. How do we know which scripts
and languages a font is designed to handle? It is
given nowhere in fonttable; instead, we must scan
all lookups in gsub and gpos and collect all scripts
and languages (actually, gsub and gpos should be
treated independently of each other, but that often
makes little difference). Only then can the user’s
request be interpreted correctly.

27 What counts as a standard ligature (or any other fea-
ture) is up to the font designer; for instance, some fonts do
not have the fi or ff ligatures (for the latter, see e.g. Adrian
Frutiger’s Frutiger), because they don’t need it, whereas some
less common ligatures are sometimes required: Libertine, for
instance, has ,  and others.

Paul Isambert

9 Applying lookups

When several lookups are active, the order in which
they are applied is crucial; for instance, if both smcp

(small caps) and liga (ligatures) are active, the for-
mer should generally be executed before the latter,
otherwise the sequence f + i will be replaced with
the ligature fi, which has no counterpart in small
caps: and that’s definitely ugly.28

Fortunately, the order in which lookups should
be applied is easily read from the font file and doesn’t
depend on any additional knowledge, as the previ-
ous example might imply. It works as follows (here
“lookup” means “active lookup”): substitution look-
ups, i.e. those in the gsub table, are applied be-
fore the positioning lookups in gpos; in each cat-
egory, lookups are applied in the order in which
they are declared, i.e. according to their indices in
fonttable.gsub/gpos. A lookup is applied to all
glyphs in a node list before moving on to the next
lookup (although “all glyphs” will be explicated be-
low). Applying a lookup to one or more glyph(s)
means that each subtable in the lookup is tried un-
til one matches or no subtable remains (in which
case the lookup simply does not apply).

These subtables are found (not so surprisingly)
in the subtables entry. They generally contain only
a single name, rather than what the subtable actu-
ally does: the latter is to be found in the glyph ta-
bles, where that information is associated with name

(recall what was said above about the substitution
of f.short for f and the kerning with o; we said that
the substitution should occur if ss_l_0_s is active:
ss_l_0_s is the name of a subtable in the ss_l_0

lookup).
To sum up: the user specifies a script (or we

use DFLT), a language (or dflt), and some tags (to
which we add those activated by default). This com-
bination activates lookups in gsub and gpos; with
the names of those lookups’ subtables, we retrieve
what should be done by browsing the rest of the font
(mostly, the glyphs); then, well, we do it. What
should be done and how to do it is explained in the
two sections below about lookup types.

For instance, let’s suppose the user has selected
liga, kern (kerning) and mark (mark positioning)
in Libertine, and no script or language is specified.
Further suppose that the input node list is:

fie ̀re che ̀vre

28 Hermann Zapf’s Palatino does have an fi (and others)
to fi lookup. But since smcp is applied before liga anyway,
it is useful only when the ligature has been entered by hand,
e.g. as \char"FB01. The substitution is also in Test Libertine.

TUGboat, Volume 33 (2012), No. 1 71

a French phrase (fière chèvre) meaning “proud goat”
and interesting only to the extent that it lets us test
our lookup-application skills. Here, ̀ is the char-
acter whose codepoint is 768, i.e. the “combining
grave accent”, not the “grave accent” at position 96.
So, we begin with the gsub lookups, and liga acti-
vates two of them: ls_l_18 (the one shown above)
and ls_l_19; ls_l_18 is applied to the beginning
of the string, i.e. we test whether its only subtable
matches, and since that subtable is supposed to turn
f + i into fi , indeed it does match: the first two
glyphs are replaced by a single one representing the
ligature; ls_l_18 then moves to the third glyph,29

obviously it doesn’t match, so it moves to the fourth,
which doesn’t match either, and so on until the list
has been scanned to the end. Enter ls_l_19: it is
in charge of all remaining ligatures, and it matches
on ch (see footnote 27) and only there.

Next come the gpos features; kern activates
lookup 2, pp_l_2, and mark lookup 3, mb_l_3. The
former is applied first, and has two subtables: thus,
on each glyph, if the first matches, the second isn’t
applied, even though it might well have matched
too. The first subtable deals with individual glyph
pairs; the second with more general but less precise
kerning tables (more details on this below). One
could say that the second subtable defines default
kerning, while the first deals with special cases. The
order of their application thus makes sense.

So, for each glyph, pp_l_2 will add some kern-
ing if necessary. An interesting situation arises with
our node list: there should be some kerning between
e and v ; however, the intervening accent, which the
next lookup will properly place on the preceding let-
ter, hides the fact that the two glyphs are next to
each other. Or does it? No, it doesn’t, for the precise
reason that pp_l_2 was instructed to ignore marks,
and as we’ll see later this accent belongs to that cat-
egory; thus, when looking for an e + v sequence, the
lookup will operate as if the mark were not there.
Finally, mb_l_3 is applied, which has no less than
seven subtables, one for each of the possible places
where diacritics might be positioned relative to a
base mark. In our case the fourth subtable will do
the job, since it defines an anchor common to both
e and the accent.

Applying lookups doesn’t seem too complicated,

29 Since fi has been processed, it can’t be used as input
any more for the current lookup. If the font defined a lig-
ature between fi and e, then it should be implemented in
a subsequent lookup, but the font is more likely to define a
three-component ligature (f + i + e), which ls_l_18 would
have tried before fi because it is longer. More details in the
subsection on ligatures below.

OpenType fonts in LuaTEX

and indeed in many cases it isn’t. Sometimes things
are more difficult, though. For instance, given the
node list “ç h”, we want it to form ̧, i.e. we want
the ligature with the cedilla on the first letter.30 The
ligaturing lookup is clever and ignores marks, so the
ligature is properly formed; the mark positioning
lookup is clever too and knows how to set a mark
relative to one component of a ligature (e.g. a mark
on c won’t be placed like a mark on h). But the
problem is that once the ligature is formed, and the
mark has been put after it so that the positioning
lookup can find it, how do we know where in the
ligature the cedilla is to be positioned? Before liga-
turing, it was clear: the cedilla was to be positioned
on the first glyph; afterwards, that information was
lost. Thus, you are in charge of passing this infor-
mation from the ligaturing lookup to the positioning
lookup; attributes can be used for this.

I’ve mentioned lookups ignoring marks. Indeed,
glyphs in an OpenType font belong to one of four
classes: base, mark, ligature, and component (of a
ligature); glyphs also may have no class. Lookups
can be instructed to ignore some of these classes (ex-
cept the “component” class), in which case, when
looking for possible input, they act as if glyphs of
those classes were not present, so that ABC is seen
as AC if B belongs to an ignored class. The class of
a glyph is stored in the class entry of the glyph’s ta-
ble in fonttable, as we saw when inspecting f above.

A lookup’s ignoring of some glyph classes is in-
dicated in its flags subtable; for instance, ls_l_19
in gsub has:

flags = { ignorecombiningmarks = true }

Thus that lookup, responsible for forming some lig-
atures, is blind to mark glyphs. Indeed, as we’ve
seen, in “ç h” the ligature will be created as ex-
pected. Besides ignorecombiningmarks, there are
ignorebaseglyphs and ignoreligatures to ignore
other classes. A lookup may also have another entry,
mark_class, a string holding a mark class’s name; in
that case, the lookup ignores all marks except those
in that class. To know which mark belongs to which
class, we can inspect fonttable.mark_classes:

MarkClass-1 = gravecomb acutecomb uni0302
MarkClass-2 = cedilla dotbelowcomb uni0325

Thus, if flags above was:

flags = { mark_class = MarkClass-1 }

then the lookup would ignore all marks except the

30 A ç can occur before an h in Manx, spoken (infrequently
nowadays) on the Isle of Man. Nicolas Beauzée, a French
grammarian of the XVIIIth century (often with modern in-
sights) and contributor to Diderot and d’Alembert’s Ency-
clopédie, suggested çh also be used in French orthography.

72 TUGboat, Volume 33 (2012), No. 1

grave, acute and circumflex accents.
A lookup can have one last flag, r2l (“right

to left”), which we will discuss briefly along with
cursive positioning, since it is significant only with
that lookup type.

10 Implementing lookups

There are several kinds of lookups, each specify-
ing a particular implementation (modulo the remark
above about tags that must also be taken into ac-
count). Most of them cannot be handled by LuaTEX
by itself, meaning that we can’t simply return a met-
rics table containing the information for perform-
ing the necessary operations. What LuaTEX im-
plements natively is: non-contextual kerning, non-
contextual two-glyph ligatures (although we’ll later
see a trick to create ligatures involving more than
two glyphs), and non-contextual substitution (e.g.
f in small caps; actually LuaTEX doesn’t substitute
anything, we simply return metrics with small-cap
f at index 102). Other features must be done by
hand in one of the pre-paragraph-building callbacks,
i.e. hyphenate, ligaturing, kerning or pre_line-
break_filter31 (see [3] for an introduction to what
those callbacks do by default).

But even what LuaTEX can do is better done
by hand; suppose that you have a contextual sub-
stitution (which LuaTEX can’t handle) and a non-
contextual substitution (which you can ask LuaTEX
to perform by itself simply by returning metrics

with the replacement glyphs at the position of the
glyphs they replace); and further suppose that the
former should happen before the latter (because it
has a lower index in fonttable.gsub). You can
never get that right, because LuaTEX will map char-
acters to glyph nodes well before any of the above-
mentioned callbacks are executed; in effect, the sec-
ond substitution will have already occurred when
the first is performed, thus reversing the desired or-
der. Nonetheless, with e.g. the Latin script, non-
contextual kerning and ligatures, and simple, across-
the-board substitutions (like small caps), LuaTEX
can be trusted, and you don’t have to do anything
by hand— in particular, you don’t have to worry
about hyphenation, a thorny issue as we’ll see be-
low; that’s why I’ll describe how some lookups can

31 The linebreak_filter (the paragraph builder proper)
and post_linebreak_filter callbacks can be considered too
for features related to justification, but I will not pursue that
complex subject here. In addition, if anything is done in
pre_linebreak_filter, it should be done in hpack_filter

too, since the latter, but not the former, is called when ma-
terial is processed in a horizontal box.

Paul Isambert

be implemented without extra work, even though
I’ll also give the bigger, callback-based picture.

In what follows, when explaining implementa-
tions with those callbacks, I will rely on the follow-
ing assumption: that it is possible, given a font id
(remember the third argument to define_font), to
determine what should be done for each character
in that font. It means that when a font is loaded,
features to be implemented via callbacks should be
stored somewhere. Also, applying lookups makes
sense only for a sequence of glyphs sharing the same
font; thus a paragraph made of

\myfont This is {\myotherfont very} special

would be processed in three independent steps, as
if there were three paragraphs. A simple solution is
to break the node list into sublists each with glyphs
from the same font.

OpenType in general assumes that a text-pro-
cessing application takes an input string, maps the
characters to glyph positions in the font, and then
manipulates those glyphs according to active look-
ups. the first part (characters to glyphs) is done au-
tomatically by LuaTEX, provided that at index m
in metrics.characters there is the glyph at posi-
tion n in fonttable.glyphs, with n being the value
of entry m in fonttable.map.map. We’ve already
done that, but there is an exception: TEX doesn’t
map a space character to a glyph, but creates a glue
node instead.32 Also, the list we’ll be working on
is interspersed with nodes which have absolutely no
relation to characters, like penalties, whatsits, etc.,
so that we don’t deal with a simple string of char-
acters as assumed by the OpenType model. Finally,
some of those non-glyph nodes are discretionaries,
which require special treatment.

We solve the first problem by considering a glue
node to be a character whose glyph is fonttable.
map.map[32] (since 32 is the space’s codepoint); this
might seem like overkill, but it is not: lookups do
take spaces into account, and Libertine has kerning
pairs with space as either the first or the second
member. Compare:

How Terrible!
How Terrible!
In the first line the space has its default width,
whereas in the second line (negative) kern is added
after w and before T (while that kerning is not ap-
plied between other letters). In Minion, space is
subject in some circumstances to substitution (be-

32 Of course TEX does this only because space has cat-
code 10; give it catcode 12, and it will be treated as a glyph.
But you don’t want to do that, do you?

TUGboat, Volume 33 (2012), No. 1 73

ing replaced with a narrower space glyph).33 How-
ever, some lookups (or rather, tags, such as init

above) require that a “word” be a well-defined en-
tity, because position in the word is important; in
that case, spaces should be considered boundaries.

The second problem, non-glyph nodes, is solved
just by ignoring those nodes. Thus, in this node list:

〈glyph node 1 〉 〈non-glyph node〉 〈glyph node 2 〉
a function asked to retrieve the glyph following the
first one should return the third node. Things might
get a little bit more complicated, but one shouldn’t
worry too much; special circumstances may simply
demand special solutions.

The third problem is harder, because we def-
initely can’t ignore discretionary nodes. Suppose
you have the string X{a}{b}{c}Y, where X and Y

can be anything, a is the pre field of a discretionary
(i.e. the part typeset before the break if hyphen-
ation occurs at this point; typically, a hyphen), b
is the post field (the part typeset at the beginning
of the following line if hyphenation occurs; typically
empty) and c the replace field (what is typeset if
the hyphenation point is not chosen; also typically
empty). (See [3] for a slightly more detailed descrip-
tion of discretionary nodes.) You may have lookups
acting on the strings Xa, bY and XcY, so that each
lookup should be applied three times, and the result-
ing material should be {a’}{b’}{c’}, where a’, b’
and c’ are respectively Xa, bY and XcY after look-
ups have been applied. Then any common part at
the beginning of a’ and c’ can be moved out of and
before the discretionary; likewise, common material
at the end of b’ and c’ can be moved after. Con-
sider the following extremely hypothetical, not to

33 What shall we do in this case? We’ll see below that we
implement substitution between glyph nodes; shall we replace
the glue node here with a glyph node? If the replacement is a
real glyph, then yes, we can’t do otherwise; but if it is another
space glyph, we will adjust the original glue node’s width
(stretch and shrink are of course irrelevant to OpenType and
should be dealt with as best seen fit). A space glyph can be
spotted quite easily: all its boundingbox values are 0. This
does not prevent it from having a positive width field, though,
since a glyph’s width does not depend on its shape.

Another problem is that not all glue nodes come from
space characters (as I write this, LuaTEX does not distin-
guish between glue from a space character and glue from an
\hskip), and kerns should also be considered as space char-
acters. But lookups on space glyphs crucially depend on the
space’s shape, i.e. its width; such lookups are generally kern-
ing pairs (even Minion’s case is kerning in disguise) meant
to yield a homogenous space between all pairs of letters —
especially important in flowery script fonts — but what if two
letters are already separated by an important glue or kern?
Should additional kerning be performed? In other words, how
to solve the mismatch between what the user wants and what
the font requires? I have no answer to that.

OpenType fonts in LuaTEX

mention extremely dumb, example:
V{a-}{T}{o}e

This gives Voe if no hyphenation occurs, and Va-Te

otherwise. Provided it is typeset with Computer
Modern, there should be some kerning between V

and a or o, T and e, and o and e, i.e. using 〈k〉
to denote a kern node, without hyphenation we get
V〈k〉o〈k〉e, and with hyphenation V〈k〉a-T〈k〉e. So
our string first becomes:

{Va-}{Te}{Voe}

Then, after applying the kerning lookup:

{V〈k〉a-}{T〈k〉e}{V〈k〉o〈k〉e}
And now, moving out common parts:

V{〈k〉a-}{T〈k〉}{〈k〉o〈k〉}e
The kerns have not been moved, because they’re
different in each part.34

Now, this is all easier said than done (and it
wasn’t that easy to say). And it still doesn’t solve
some problems, for one, what X and Y actually are
depends on the lookup under investigation; e.g. a
typical ligature would set X as f and Y as fi in
of{-}{}{}fice, resulting in o{f-}{〈fi〉}{〈ffi〉}ce.
Worse, this does not even begin to consider what
happens if a lookup spans several discretionaries (as
in of{-}{}{}f{-}{}{}ice), in which case LuaTEX
becomes really perverted. We’ll leave the issue at
that—and as an exercise to the most courageous
readers only; suffice it to say here that you might
have to “flatten” a few discretionaries, i.e. simply
remove them and put their replace fields in their
place.

11 Lookup types: substitutions

There are two main families of lookups: those re-
lated to substitutions, and those related to position-
ing. The conditions for the former, as illustrated in
the preceding section (i.e. the tag/script/language
combination), are found in the fonttable.gsub ta-
ble, and those for the latter in fonttable.gpos.
What a lookup does is generally found in the affected
glyph(s), with some exceptions. I will review both
lookup types: first substitutions, then positioning.

Single substitution. This kind of lookup replaces
one glyph with another glyph: e.g. small caps, “old-
style” numerals, etc. As an example, Libertine re-
places Ş with Ș 35 if the locl feature is on and the

34 The user can check that the last code snippet is what
LuaTEX returns when left to its own devices by scanning the
node list in the pre_linebreak_filter callback for a para-
graph made of V\discretionary{a-}{T}{o}e.

35 Denoting a voiceless postalveolar fricative commonly
used to shush people. Put your tongue against the back of

74 TUGboat, Volume 33 (2012), No. 1

language is Romanian or Moldavian (and the script,
of course, is Latin):

name = ss_latn_l_7
type = gsub_single
flags = { }
subtables = { 1 = { name = ss_latn_l_7_s } }
features = {
1 = { tag = locl

scripts = { 1 = {
script = latn
langs = { 1 = MOL

2 = ROM } } } } }

And indeed if we look at some selected portion of
the lookups table in Ş (350), we’ll see:

ss_latn_l_7_s = {
1 = { type = substitution

specification = {
variant = Scommaaccent } } }

In both tables, the type tells us we’re dealing with
a single substitution; the specification subtable
will occur in many different types of lookups, but
the entries it contains will be different. Here it’s
quite straightforward: the variant entry points to
the replacement.

Implementing a single substitution is easy: you
just change the char field of the node under in-
vestigation, and its dimensions (width, height and
depth) follow suit. If we want to let LuaTEX do
that by itself, though, we can do the following when
loading the font:

metrics.characters[350] = metrics.characters[536]
name_to_unicode["Scommaaccent"] = 350

But this is only the tip of the iceberg. Suppose
for instance that we’re implementing small caps this
way: at position 104, letter h, we’ll put small-cap h.
Now, both T and c form a ligature with h in Liber-
tine; c will be replaced with its small-cap counter-
part, so the ligature will vanish; but T (under the
assumption that ligatures are handled by LuaTEX
too) will be instructed to form a ligature with char-
acter 104 (since metrics is only interested in code-
points), the result being: . To avoid that, each
time something refers to h in the original metrics,
it should be made to refer to small-cap h instead.
That is not particularly difficult if name_to_unicode
is properly kept up to date. But single substitutions
aren’t so innocent anyway; beside the ordering prob-
lem mentioned above, single substitutions can be
difficult because, as already said, they may requiring
analyzing the context, as is the case with init and
associates, which replaces glyphs in some positions

your upper teeth; move it a bit toward your palate, you’ll feel
a ridge there; move it again: that’s your postalveolar region
(the ridge itself is the alveolar region). A fricative is a con-
sonant whose sound is the air going through an opening so
narrow that it generates turbulence.

Paul Isambert

only. Also, I’ve said that a tag may be associated
with more than one lookup; what I’ve not said is
that those lookups can very well belong to different
types, and they do not even need to be all substitu-
tions or positioning; for instance, onum in Libertine
points to a single substitution (see ss_l_25) but also
to a positioning lookup in gpos (sp_l_1) that low-
ers mathematical operators. So you can leave the
substitution to LuaTEX, but you’ll still apply the
second lookup yourself.

Ligatures. A ligature is the replacement of two or
more glyphs with a single one. In TEX, such a re-
placement is implemented as information in the first
character in the ligature, more precisely in its lig-
atures table; for instance f (102) in Don Knuth’s
Computer Modern has the following:36

ligatures = {
102 = { char = 11, type = 0 }
105 = { char = 12, type = 0 }
108 = { char = 13, type = 0 } }

We’re looking at the ff, fi and fl ligatures respec-
tively; if TEX does ligaturing by itself, whenever a
node with char 102 (f) precedes a node with char

105 (i), it will replace them with a node whose char
is 12, and at position 12 in cmr10 is fi. The type we
shall ignore.37

But where are the ffi and ffl ligatures? They
are stored in the ff character (11). Indeed, for TEX,
those two ligatures are formed by ff + i/l, not by
f + f + i/l,38 because a ligature always involves
two characters. OpenType fonts, on the other hand,
have no upper limit on the number of components of
a ligature, and even though ffi might be (and some-
times is) described as a ligature between ff and i, it

36 We are seeing the equivalent of metrics for cmr10 here.
Recall that our job is to turn fonttable into metrics and
return it to LuaTEX; but all fonts are implemented with such
a table, even if they were loaded automatically, i.e. nothing
was registered in define_font and a TFM font was used. The
table is returned by the font.getfont function, which takes
as its single argument a font id. Font id’s themselves are given
by font.id, which is passed the control sequence (without the
escape character) associated with the font. So what is shown
here is font.getfont(font.id("tenrm")).characters[102].
ligatures (with plain TEX, where cmr10 was loaded with
\font\tenrm=cmr10).

37 But let’s explain briefly: it specifies what the output of
the ligature should be. 0 means that only the ligature glyph is
returned, but one of the original nodes, or both, could also be
retained (e.g. f + i would produce fii); type also determines
where TEX should continue its ligaturing.

38 I said in note 29 that once the initial fi has been formed,
it can’t be reused to form another ligature with the following
character. I was then talking about the rules for OpenType
lookups. TEX, on the other hand, does restart ligaturing at
the newly formed ligature itself (unless type says otherwise),
and ff is available to form a ligature with what follows.

TUGboat, Volume 33 (2012), No. 1 75

can also (and generally is) implemented as involving
three glyphs. So what? Can’t we just write a few
lines of code so that f + f + i = ffi in fonttable is
split into f + f = ff and ff + i = ffi in metrics? We
can do that; more generally, we could turn a ligature
L with n components into n − 1 ligatures with two
components as follows:
l1 = c1 + c2
l2 = l1 + c3
. . .
ln−1 = ln−2 + cn = L
The problem is: what if li doesn’t exist as an inde-
pendent glyph? The ffi ligature is misleading, be-
cause there does exist an ff ligature. But that is not
always the case, quite the contrary. As an example,
the frac tag in Libertine defines ½ as 1 + / + 2, and
there is obviously no 1/ glyph. If we proceed care-
fully, we could define “phantom” characters such as
1/, whose only purpose in life is to form a ligature
with the subsequent character; but then we’ll run
into trouble if there is no such character, as in:

An enumeration:
1/ First ...;
2/ then ...;

So the method might work for standard ligatures in
a Latin script, where the ligatures with three compo-
nents are the ones described above, but apart from
that it’s better to use callbacks.

But let’s get back to fonttable for a while; I’ve
already shown a ligature lookup above (ls_l_18).
The only thing we haven’t remarked upon yet is
the type, which is, not surprisingly, gsub_ligature.
Ligatures themselves are to be found in the replace-
ment glyphs, not in the first glyph as in TEX; thus
f + f + i is stored in ffi (64, 259):

name = f_f_i
unicode = 64259
class = ligature
width = 819
boundingbox = { ... }
lookups = {
1 = { type = lcaret

specification = { 1 = 266, 2 = 538 } } }
ls_l_18 = {

1 = { type = ligature
specification = {
char = f_f_i,
components = f f i } } }

The class says ligature but it may very well be
absent; glyph classes aren’t mandatory. Hence, what
informs us unambiguously that we’re dealing with
a ligature is the ls_l_18_s lookup and its type.
As with single substitutions, the relevant informa-
tion is stored in specification, and what we’re
really looking for is components, a string of glyph

OpenType fonts in LuaTEX

names separated by space (glyph names themselves
can never contain space).

While we’re at it, the first subtable in look-

ups is not really a lookup; its index isn’t a lookup
name (a string) but a simple number, and it spec-
ifies where the caret should be placed to highlight
individual components in the ligature. Since PDF

has no support for this anyway, we shall ignore it.
Implementing ligatures in LuaTEX can be done

as follows: we store all (active) ligatures into cate-
gories headed by the first component. Then, when
scanning a node list, we check whether any ligature
begins with the character of the node under inves-
tigation, and if so, whether the following nodes also
match the other components. In doing so, it is cru-
cial that ligatures be ordered by length (i.e. number
of components) and that longer ligatures be tried
before shorter one; otherwise, f + f + i might be
turned into ff + i and stop there.

Identifying a string of nodes might require skip-
ping over other nodes, if only because the lookups
are instructed to ignore some glyph classes; the lig-
aturing lookup ls_l_19_s, for instance, should ig-
nore marks, as discussed above. Once component
nodes are properly identified, there are two ways
to proceed. The easy way is: delete all component
nodes except the first, whose char field you set to
the ligature’s codepoint, as in a single substitution.
The best way is (though it makes a difference only
when TEX reports information): remove all com-
ponent nodes, replacing the first with a new glyph
node with subtype 2 (ligature); arrange the removed
nodes in a proper list (i.e. node i has prev set to
node i − 1 and next to node i + 1, except the first
node’s prev field and the last node’s next are both
nil), and set the new node’s components field to
the first removed node. For instance, given three
component nodes n1, n2 and n3 in list head:

local lig = node.new("glyph", 2)
lig.font, lig.attr = n1.font, n1.attr
lig.lang, lig.uchyph = n1.lang, n1.uchyph
lig.char = 〈ligature codepoint〉
head = node.insert_before(head, n1, lig)
node.remove(head, n1)
node.remove(head, n2)
node.remove(head, n3)
n1.prev, n1.next = nil, n2
n2.prev, n2.next = n1, n3
n3.prev, n3.next = n2, nil
lig.components = n1

We set the ligature node’s font (of course), attr
(for attributes), lang and uchyph (both for hyphen-
ation) fields to the original node’s values, because
they store important information.

If nodes were skipped, they will now occur after

76 TUGboat, Volume 33 (2012), No. 1

the ligature node. If those nodes were mark glyphs,
then they should be marked (no pun intended) with
an attribute so that they can later be placed on the
correct component of the ligature (a subject we ad-
dress more thoroughly below).

Multiple substitution. This type of lookup is the
inverse of the previous one: one glyph is replaced
with several glyphs.39 In the gsub table, this lookup
has type set to gsub_multiple; in the affected glyph,
type is multiple, and specification has a single
components entry similar to that of a ligature, i.e.
a list of glyphs separated by spaces.

What should be done on the TEX side is just
the reverse of the previous lookup type; since there
is nothing particularly instructive in that, I leave
it as an exercise to the reader. The f -ligatures in
Libertine all have multiple substitution when smcp

is on (see ms_l_12).

Alternate substitution. This maps a single glyph
to one or more variants (often, but not always, used
in other features); for instance, R (82) in Libertine
is mapped to a stylistic alternative (otherwise tied
to the ss02 tag) and a small capital (from c2sc).
In gsub, the lookup has type gsub_alternate; in
the glyph, type is alternate and specification

contains a single components entry, a string with
one or more glyph names separated by space.

This kind of lookup is typically activated with
the aalt (Access All Alternates) tag, through which
the user may choose a variant for a glyph, even
though the conditions required for this variant to
occur aren’t met (e.g. you want the medial form of
a glyph even though you’re not in the middle of a
word). A graphical interface with a drop-down list
is obviously better fitted than TEX to do that, al-
though one can easily design a \usevariant{〈num-
ber〉}{〈glyph〉} command.

But alternate substitutions can be put to better
effect with another tag, rand, for selecting a glyph
variant at random. Given the components list, one
can decide which variant to use via Lua’s math.ran-
dom function. Once this is done, the replacement is
identical to a single substitution. This feature can
be found in the Punk Nova font by Hans Hagen and
Taco Hoekwater (after Don Knuth).

39 I’ve been telling a white lie: “ligatures” can take a single
glyph as input, and “multiple substitutions” can output a sin-
gle glyph too. In both case, they’re equivalent to single sub-
stitutions. So those lookup types are better described as re-
spectively “n glyph(s) to 1 glyph” and “1 glyph to n glyph(s)”
replacements, with n ≥ 1. That doesn’t change the import
of what is described in the main text. See the slash (47) in
Libertine for an example of a “one-glyph ligature”.

Paul Isambert

Contextual substitution. Those last couple of
lookup types weren’t very exciting. But now, fasten
your seat-belt, we’re in for the real thing: contextual
substitution, and chaining contextual substitution,
and finally reverse chaining contextual single substi-
tution, all that possibly expressed in three different
formats . . . Alas, the terribly-named reverse chain-
ing contextual single substitution isn’t supported in
LuaTEX (or virtually anywhere else), so we won’t be
studying it.40

Up to now, we’ve seen lookups identifying input
and replacing it with some output. Contextual look-
ups also identify input, but then they call other look-
ups on parts of that input to do the substitutions.
For instance, given input ABCD, A may be turned to a
small cap, BC may form a ligature, whereas nothing
happens to D but its being there is still crucial to
identify the proper input, i.e. otherwise the former
two substitutions wouldn’t have been performed.

As alluded to above, contextual lookups may be
expressed in three formats. For contextual substitu-
tions proper, we’ll see the glyph-based format; in the
subsection below about chaining contextual substi-
tution, class-based and coverage-based formats will
be investigated; but all three formats can be used
with both types of lookup.

Libertine has a tag called gtex (for Greek TEX)
which turns the input sequence TeX into τεχ (with
lowercase tau and chi so they won’t be confused with
T and X). Of course, you don’t want to change every
T , e and X to tau, epsilon and chi respectively;
rather, you want the substitution to be performed
only when the three letters are ordered as in TeX; in
other words, you want a contextual substitution.

If we look into cs_l_4—the lookups associated
with gtex—in fonttable.gsub, we won’t learn any-
thing we don’t already know, except that it has type
gsub_context. While we’re at it, we can retrieve
the name of its only subtable: cs_l_4_s. We won’t
find what this subtable does among the glyphs, as
with the previous lookup types; instead, contextual
lookups live in their own table, fonttable.lookups,
where they are indexed by name. So, let’s look at
fonttable.lookups.cs_l_4_s:

40 The main difference between reverse [. . .] substitution
and the others is that it processes the node list starting at
the end; e.g. given ABC, first it deals with C, then B, then A.
This has nothing to do with the direction of writing, though
it was meant for Arabic calligraphy, where a glyph variant
may be determined by the shape of the following glyph (as
in the Nasta‘l̄ıq style), so that the latter should be set before
the former. Nonetheless, none of the Arabic fonts I’ve seen
use reverse [. . .] substitution.

TUGboat, Volume 33 (2012), No. 1 77

type = contextsub
format = glyphs
rules = {
1 = { glyphs = { names = T e X }

lookups = { 1 = ss_l_2
2 = ss_l_2
3 = ss_l_2 } } }

The important information is contained in the rules
subtable; it describes the context and what to do
with it. But in order to understand that subtable,
the value of format is crucial: it tells us how the
context will be defined. The rules table is made
of subtables at consecutive indices, each defining a
context and what to do with it, somewhat like sub-
tables in a lookup of the types seen before: the first
subtable that matches wins the prize.

The context itself is defined in glyphs, which
contains at least a names subtable, and if it is a
chaining contextual substitution, perhaps also back

and fore fields. Those three fields are strings made
of glyph names that denote an input sequence (space
is used to delimit names only), somewhat like the
components entry of a ligature substitution. Here,
then (it goes without saying but let’s say it anyway),
the relevant input string is TeX.

The lookups table lists what should be done
to the successful input sequence. It is not a simple
array; instead, the indices correspond to positions
in the input sequence. Here the table reads: apply
lookup ss_l_2 to the glyph at position 1; then apply
it again at position 2 and 3. If we explore ss_l_2

in fonttable.gsub, we’ll see that it’s a single sub-
stitution, and in the tables for T (84), e (101) and
X (88), we’ll find that it maps those glyphs to their
Greek counterparts. In other words, ss_l_2 is exe-
cuted like any other lookup, except that, each time
it is called, it inspects only one position in the node
list, not the entire list.41

A crucial point is that each index in lookups

identifies a position in the input sequence after the
previous lookup has been applied. In our example,
this doesn’t make any difference, but suppose a con-
textual lookup is designed to match against ABC, and
suppose the first lookup it calls (at index 1) is a liga-
ture, so that AB is turned into X; then the sequence is
now XC, and if a second lookup is called to act on C,
it will have index 2, not 3, even though C originally
was at position 3.

Also, the lookups table isn’t mandatory: a con-
textual lookup may very well identify a valid input
sequence and do nothing with it. Below we’ll see a

41 More accurately, the lookup inspects input from one
position only, even though it might need to inspect several
glyphs, as in a ligature.

OpenType fonts in LuaTEX

detailed example of that, but here we can say that it
can be used to prevent a subsequent subtable from
matching: for instance, if you want to define con-
text ABX as AB followed by any glyph but, say, z,
then you can define a contextual lookup with a first
subtable matching ABz and doing nothing, and the
second simply as AB, i.e. matching independently of
what follows.

How shall we implement a contextual substitu-
tion? Identifying the input can be done as for a
ligature; then each lookup is applied as usual, albeit
on a particular node (according to the lookup’s in-
dex), which can be ensured simply by counting glyph
nodes. The only subtlety is that lookups should be
applied in order, i.e. lookup at index m should be
executed before lookup at index n, with m < n.
In our example, since indices in lookups are con-
secutive, a simple ipairs will respect the ordering;
however, there might not be a lookup at each in-
dex, and lookups could have entries at indices 1, 2
and 4, for instance, in which case ipairs will stop at
2 whereas pairs won’t iterate in any particular or-
der. Thus one should create another table reflecting
the original order but also retaining the positions:

local t = {}
for i, l in pairs(lookups) do
table.insert(t, {position = i, lookup = l})

end
table.sort(t, function (a,b)

return a.position < b.position end)

Now we can traverse t with ipairs and apply the
lookups in order.

Chaining contextual substitution. Contextual
substitutions, like other substitutions, completely
consume their inputs, even if lookups are applied
at some positions only. For instance, a contextual
substitution acting on TeX and simply turning e to
epsilon will nonetheless consider X as processed; the
next iteration of the current lookup will begin at the
next character. Also, since what came before the
current position is considered processed too, con-
textual substitutions can’t take that into account
either. In other words, substitutions of that type
(and of all the types seen up to now) have no mem-
ory, and they can’t foresee the future.

A chaining contextual substitution, on the other
hand, is precisely that: a contextual substitution
with memory and foresight. In other words, it can
take into account already-processed glyphs and fu-
ture glyphs without consuming the latter. Chaining
contextual substitutions are so useful that virtually
all fonts use them even when simple contextual sub-
stitutions would do.

78 TUGboat, Volume 33 (2012), No. 1

In essence, a chaining contextual substitution
works like a simple contextual substitution: it iden-
tifies a sequence of glyphs and calls other lookups at
some positions in this sequence. But it can also iden-
tify preceding glyphs, called the backtrack sequence,
and/or subsequent glyphs, called the lookahead se-
quence.

An important point to keep in mind is that,
whatever the format, the backtrack sequence is al-
ways set in reverse order of the direction of writing;
for instance, to identify abc[xyz]def, where abc

and def are the backtrack and lookahead sequences
respectively, and xyz the input sequence proper, a
lookup in the glyphs format (as in the previous sec-
tion) would have the glyphs table organized as:

back = c b a
names = x y z
fore = d e f

Note how the backtrack sequence is displayed.
In Libertine, the ccmp tag (Glyph Composition/

Decomposition, a somewhat all-purpose tag) acti-
vates a lookup, ks_l_32, with two subtables. Af-
ter noting the lookup’s type (gsub_contextchain),
let’s look at ks_l_32_c_0, the first of those two sub-
tables, in fonttable.lookups:

type = chainsub
format = coverage
rules = {
1 = {

lookups = { 1 = ss_l_0 }
coverage = {
current = { 1 = f f_f }
after = {
1 = parenright question T ... } } } }

This subtable uses the coverage format, which spec-
ifies a set of glyphs for each position in the input,
backtrack, and lookahead sequences, denoted respec-
tively by subtables called current, before (missing
here) and after, whose indices are the position in
the sequences (starting from the end in before) and
the values at those indices are strings representing
the glyphs. In this example, the input sequence is
made of one glyph, either f or ff, and the lookahead
sequence also contains one glyph, which can be a
question mark, a right parenthesis, T, and many
others elided here. So, f?, f), fT, ff? . . . will all be
identified by this single rule. This works a bit like a
regular expression (with f_f denoting the ligature):
[ff_f][?)T...]. If one of the three sequences had
contained more than one glyph, it would have had
an equal number of entries.

The lookups table should be read as in a simple
contextual substitution, with indices denoting posi-
tions in current. Here, ss_l_0 should be applied
at position one; this lookup replaces f (both on its

Paul Isambert

own and in the ligature) with a variant whose arm
is shorter, so it doesn’t touch the next glyph: f?
becomes ? . 42

One last remark about our example: although
the relevant context here is described at entry 1 in
rules, there can be no other entries in that table,
since the coverage format allows only one context
per subtable. Hence another context would be de-
fined in another subtable. That is not true of the
other two formats, glyphs and class.

Let’s turn to an example of the latter. Liber-
tine can turn etc. to &c. thanks to the etca tag
(ET CAetera, or ETC. with Ampersand, or ETC. Al-
ternate, or ETC. with a dummy letter only because
tags should be made of four characters; I did not
spend hours trying to find a meaningful name). The
core of the feature is a simple ligature (e + t to &),
but performed if and only if the two letters are at
the beginning of a word (to exclude text like fetch),
and followed by c and a period (so etch is also ex-
cluded).43

The etca tag points to lookup ks_l_5, whose
only subtable ks_l_5_s is (in fonttable.lookups):

type = chainsub
format = class
before_class = { 1 = space parenleft bracketleft }
current_class = { 1 = e, 2 = t }
after_class = { 1 = c, 2 = period }
rules = {
1 = { class = {

before = { 1 = 0 }
current = { 1 = 1, 2 = 2 } } }

2 = { class = {
current = { 1 = 1, 2 = 2 }

after = { 1 = 1, 2 = 2 } }
lookups = { 1 = ls_l_3 } } }

As expected, format is class; but what is a class?
First, it has absolutely nothing to do with the glyph
classes mentioned above. Here a class is simply a set
of glyphs created especially for a lookup. More pre-
cisely, classes are defined separately for the input,
backtrack and lookahead sequences in (respectively)
current_class, before_class and after_class.
In each of those tables, a class is denoted by its in-
dex, and its content is a string of space-separated
glyph names. For instance, class 1 for the back-
track sequence here contains space (recall that we
said that space is a glyph in OpenType fonts), left
parenthesis and left bracket, while the classes in the
other sequences are singletons. In each subtable of
rules, the context is described analogously to the

42 The second subtable in ks_l_32 substitutes ı and  for i
and j before accents, which will then be properly positioned.

43 No word in English ends with etc, so the second condi-
tion would be enough; but you never know.

TUGboat, Volume 33 (2012), No. 1 79

coverage format: indices in the current, before
and after subtables denote positions, but here the
values point to classes (one class per position); for
instance, at position 1 in the input sequence for the
first rule, there should be a member of class 1 for
that sequence, i.e. an e. This is, again, a bit like reg-
ular expressions, except that sets [...] are assigned
to variables beforehand and the regexp is defined
with those variables.

Classes are a bit special in that they do not
intersect, i.e. a glyph belongs to one and only one
class (for each sequence, that is). This fact is of little
value to us (though quite important to the font de-
signer), except when paired with another one: that
there exists a default class, which need not be de-
fined and whose index is 0; this class contains all
glyphs, except those present in other classes. Thus,
class 0 in before_class contains everything but
space, left parenthesis and left bracket, class 0 in
current_class contains everything but e and t ,
and class 0 in after_class contains everything but
c and period.

Class 0 is put to good use in rule 1; this rule
matches any sequence Xet where X is anything but
(, [or a space, since class 0 contains all glyphs
but them. For instance, if we’re inspecting fetch,
rule 1 will match, preventing rule 2 from being ap-
plied at the same position—and that’s the only rea-
son why rule 1 exists at all: to prevent rule 2 from
being applied in most circumstances; accordingly,
rule 1 has no lookups table. However, rule 1 will
not match with (et or [et et (no matter what
follows), since the initial glyph in each case doesn’t
belong to class 0, and rule 2 will perhaps match if
the right sequence follows.

The implementation of a chaining contextual
substitution is similar to that of a simple contextual
substitution, except that we may request surround-
ing glyphs to identify themselves. No matter how
many nodes we scan to compare them to the look-
ahead sequence, they do not count as processed, and
the next iteration of the lookup starts at the glyph
to the immediate right of the input sequence; in our
example, provided the right context has been found,
the lookup will start again at c.44

At this point, the reader might have a ques-
tion nagging at the back of his or her mind, namely:

44 Of course here it is impossible for the lookup to match
on c, and it could have been skipped (i.e. the following c
and period could very well have been parts of the input —
not lookahead — sequence). However, the ampersand substi-
tution could have been part of a much more general lookup
implementing a wide range of stylistic variants, one of which
might take c as its input.

OpenType fonts in LuaTEX

what is the difference between a contextual lookup
(chaining or not) with n subtables containing one
rule each, as illustrated by ccmp above, and the same
lookup with one subtable containing n rules, as etca
here? As far as what the lookup does is concerned,
the answer is: none, since a subtable matches when
one of its rules matches, and a successful subtable
or rule prevents the other ones from being applied.
But there are some technical differences which may
dictate why one implementation is chosen over the
other: first, as already mentioned, only one rule per
subtable is allowed in the coverage format, so a
lookup will necessarily use several subtables; sec-
ond, all rules in a subtable are in the same format
(as witnessed by the fact that the format entry is
on the same level as the rules table, and thus holds
for all the rules contained in the latter), whereas
different subtables in the same lookup may be ex-
pressed in different formats; if two contexts are bet-
ter expressed in two different formats, then different
subtables can be used.

12 Lookup types: positioning

At this point, we’re done with substitutions (since
reverse substitution is in limbo for the present). We
turn to positioning lookups, held in the fonttable.
gpos table.

Single positioning. This kind of feature moves
a glyph horizontally and/or vertically and modifies
its horizontal and/or vertical advance. Typographi-
cally, that means modifying the glyph’s sidebearings
(moving a glyph left/right increases/decreases the
left sidebearing, and increasing/decreasing its width
does the same for the right sidebearing). For in-
stance, capital spacing in Libertine (activated by the
cpsp tag) is implemented by lookup sp_l_0 (with
type gpos_single), whose only subtable sp_l_0_s

is detailed in each uppercase glyph’s lookups table,
e.g. A (65):

sp_l_0_s = { 1 = {
type = position
specification = { x = 2, h = 5 } } }

As usual, what should be done is detailed in the
specification subtable. For single positioning, the
table may have up to four values: x is the horizontal
displacement of the glyph; h is its width correction;
y and v are the same things in the vertical direction.

Now suppose we’re implementing capital spac-
ing. We browse all capitals in a node list, or rather
(and more generally), all glyphs that have this par-
ticular lookup. For each such glyph we add a kern
of x units before if it follows a similar glyph, and a
kern of h units after if it precedes a similar glyph

80 TUGboat, Volume 33 (2012), No. 1

(the if -clauses translate the fact that space adjust-
ment should take place only between capitals). We
could also merge the two kerns for each pair.

A caveat: capital spacing does not replace other
forms of kerning, particularly the default kerning
(denoted by the kern tag). If that kerning is done
automatically by LuaTEX (because the kerning call-
back is left untouched or the node.kerning function
is used), that should occur before capital spacing,
otherwise our additional kerns will prevent it. In
turn, when looking for the preceding or following
glyph, we should ignore intervening kerns (which
have the special subtype 0).

An example of vertical positioning can be found
in sp_l_1 (triggered by onum, whose only subtable
sp_l_1_s lowers mathematical operators so they are
better placed with “oldstyle” numbers). Thus the
specification for this subtable in glyphs =, +, −,
× and ÷ (61, 43, 8722, 215 and 247 respectively)
contains a single entry at y whose value is -100;
then it suffices to assign (or rather, add) −100 units
to the glyph nodes’ yoffset field to implement the
lookup. I leave it at that here, since yoffset is
detailed more thoroughly below, along with its hor-
izontal twin xoffset.

Pair positioning (kerning). This second type of
adjustment is well known: it is the tiny amount of
space (possibly negative) added between two letters
that look badly set when just left next to each other,
for instance between T and o (compare kerned To
with “natural” To).

Kerning pairs go in two formats. First, there
is kerning information for individual pairs, which
is found in the glyph table for the left member of
the pair, more precisely in the kerns (not lookups)
subtable. For instance, looking precisely at this sub-
table for T (84):

kerns = {
1 = { char = udieresis

off = -44
lookup = { 1=pp_l_2_g_0, 2=pp_l_2_k_1 } }

2 = { char = odieresis
off = -44
lookup = { 1=pp_l_2_g_0, 2=pp_l_2_k_1 } }

3 = { char = adieresis
off = -36
lookup = { 1=pp_l_2_g_0, 2=pp_l_2_k_1 } }

... 22 more
}

This means that ü and ö should be brought closer to
a preceding T by 44 units, whereas for ä it should
be 36 units.45

45 The lookup table shouldn’t be a table at all, but a string
identical to the table’s first entry, i.e. pp_l_2_g_0; this hap-

Paul Isambert

However, different pairs often share the same
amount of kerning. Better yet, classes of glyphs on
the left will often have the same kerning when fol-
lowed by classes of glyphs on the right. For instance,
A, À, Á . . . should behave similarly, because here
accents make little difference (this is not true for a
lowercase letter). Accordingly, kern pairs are often
defined in kern tables; for instance, here’s the entry
at index 3 in fonttable.gpos (much abridged):

3 = {
type = gpos_pair
flags = { ignorecombiningmarks = true }
name = pp_l_2
features = { ... }
subtables = {

1 = { name = pp_l_2_g_0 }
2 = {
name = pp_l_2_k_1
kernclass = {
1 = {
firsts = {

2 = r v w y yacute ydieresis ...
3 = a i u ...
... }

seconds = {
2 = a aogonek
3 = c e o q ccedilla
...
11 = exclam parenright ... }

offsets = { 13 = -15
14 = -10
18 = -29
... }

lookup = pp_l_2_k_1 } } } } }

We discover en passant that such kerning is asso-
ciated with the kern tag, which activates both the
per-glyph kerning (see the first subtable with lookup
pp_l_2_g_0—also associated with the individual
kerning pairs for T in the previous code snippet)
we’ve seen above and the kerning by class that we’re
interested in; it is of course crucial that the per-
glyph subtable take precedence over the kerning ta-
ble: the latter is powerful yet indiscriminate, while
the former is limited but accurate. Kerning tables
deal with glyphs massively, and individual kerning
pairs set the exceptions.

The kernclass table has the information we
need, namely a kerning table,46 composed of four en-
tries: firsts is an array of glyph classes on the left;
seconds is an array of glyph classes on the right;

pens quite regularly with similar lookup entries. The correct
information can be reliably retrieved with:

local lk = (type(lookup) == "table" and lookup[1])
or lookup

46 Actually, kernclass is made of subtables, each one be-
ing a kerning table; but only the first is valid, the others are
defined elsewhere and should be ignored when repeated as
the non-first subtables.

TUGboat, Volume 33 (2012), No. 1 81

offset is the amount of kern needed for each pair of
classes; and lookup is just redundant; we can ignore
it and stick to the name field. Let fi, sj , ok stand
for entries firsts[i], seconds[j] and offsets[k]

respectively; then kerning tables can be read as fol-
lows:

s1 s2 . . . sn
f1 o1 o2 . . . on
f2 on+1 on+2 . . . on+n

.
fm omn−n+1 omn−n+2 . . . omn

In words, the amount of kerning between classes i
and j is o(i−1)n+j , where n is the length of the table
seconds (i.e. its highest index; do not use the Lua
length operator # here, it will return random val-
ues, since the entry at index 1 is always missing for
reasons explained just below). Thus, between r (in
class f2) and e (in class s3), there should be a kern
whose width is specified in o(2−1)×11+3 = o14 = −10
units—unless, of course, such information is over-
ridden by per-glyph kerning, as seen for T above.

When oi would be 0, i.e. no kerning is speci-
fied between two classes, the entry is omitted in the
offsets table. Another important point is that f1
and s1 are special: like class 0 in contextual substi-
tutions above, they hold all the glyphs that don’t
appear in other classes, and thus aren’t explicitly
defined. Kerning for those classes is seldom, if ever,
specified, for reasons that should be obvious.

LuaTEX is able to handle such kerning by itself;
to do so, we fill the kerns table that each character
may have; e.g. for r it would contain the following
information:

kerns = {
[name_to_unicode.a] = -9830,
[name_to_unicode.aogonek] = -9830,
[name_to_unicode.c] = -6554,
... }

assuming the font has been loaded at 10pt and there
are 1000 units per em, so that the first value is
−15∗10∗65536

1000 = 9830.4 scaled points (rounded, since
there is nothing smaller than a scaled point). How-
ever, LuaTEX won’t insert a kern if anything oc-
curs between two glyph nodes (barring discretionary
nodes, which it will certainly do better than us), and
we have just seen such intervening material in the
previous subsection with capital spacing.47 Also,

47 Capital spacing is a single positioning lookup. But given
that the tag has additional semantics, namely that the po-
sitioning should occur if and only if the uppercase letter is
preceded and/or followed by another capital letter, we can
reinterpret it as kerning with the pairs A/A, A/B . . . Z/Y,

Z/Z. Then, for each glyph m on the left and glyph n on the
right, we can set entry n in kerns, as hm + xn + kmn, where

OpenType fonts in LuaTEX

the kerning lookup here is instructed to ignore marks
(see the flags entry), and LuaTEX can’t do that.

Mark positioning. We turn now to the placement
of diacritics, i.e. glyphs that exist only relative to an-
other. Only the latter should be visible to the justifi-
cation engine afterward; the diacritic itself may only
contribute to the vertical dimension of the resulting
combination.

Since Unicode defines many precomposed char-
acters, independent diacritics can often be avoided.
Yet situations still abound where mark positioning
is crucial— if only because the font has no glyph for
a given precomposed character. As an example, the
International Phonetic Alphabet uses a ring below
a symbol to denote a voiceless sound (when no inde-
pendent symbol exists), e.g.

˚
m.48 If we want to do

phonetics with Libertine, we’ll have to use mark po-
sitioning, because the symbol doesn’t exist in that
font (or in Unicode, for that matter).

At this point, it might be useful to review how
TEX positions diacritics. The \accent primitive,
used as:

\accent 〈number〉 〈char〉
places the character at position 〈number〉 in the font
on the character at position 〈char〉 as follows: first,
if 〈char〉’s height differs from the font’s x-height, i.e.
\fontdimen5 (a.k.a. parameters.x_height), then
the accent is put into a box shifted vertically by:

shift = heightchr − xheight

Then the accent is surrounded by kerns so that it is
centered on the accentee, modulo the declared slant
per point (\fontdimen1 a.k.a. parameters.slant).
If we denote the width of the first kern by k1 and
the second by k2, they can be computed as:

k1 =
widthchr − widthacc

2
+

slant

1pt
× shift

k2 = −(k1 + widthacc)

We can see that the second kern is used only to can-
cel whatever horizontal displacement was caused by
the first kern and the accent. The entire operation
can be justified by saying that TEX expects an ac-

h and x are the corresponding entries in specification for
the single positioning lookup and k is the (real) kern between
the two glyphs. Then we can let LuaTEX do the kerning by
itself, although, of course, this is just a special case.

48 A voiceless consonant is produced with the vocal folds
open, so that the air flows through soundlessly; in a voiced
consonant, the vocal folds are closed and flap under air pres-
sure, producing a vibration. In each of the pairs t/d, p/b
and f/v, both sounds are identical except that the first one is
voiceless while the second is voiced. To produce a voiceless
m, either say m without humming, or say p while expelling
air through the nose, or whisper mama, although technically
whispering isn’t voicelessness.

82 TUGboat, Volume 33 (2012), No. 1

cent to be designed to fit an ascenderless lowercase
letter.

OpenType fonts don’t work this way; instead,
glyphs have anchors, and a diacritic is placed rela-
tive to a base glyph by aligning those anchors. Also,
following Unicode, a diacritic is expected to follow
the character it modifies: e^ denotes ê. What road
shall we follow: TEX’s diacritic–base or Unicode’s
base–diacritic? And does it make any difference?

To see the problem in action, suppose we’re
scanning a node list to perform mark positioning.
If marks were denoted in TEX’s way, then they can
easily be spotted thanks to the kerns used to po-
sition them, which have subtype 2. We can undo
whatever TEX tried to do and reposition the marks.
If we follow Unicode, however, TEX will do nothing
and would-be diacritics will simply stand suspended
in mid-air with nothing to distinguish them.

But OpenType fonts are a little bit more clever
than that: We can rely on glyph classes. When-
ever a “mark” glyph is encountered, it should be
attached to the preceding glyph (if the correspond-
ing feature has been activated). Thus, when scan-
ning a node list, we should check the class of each
glyph node (actually, we’ve been implicitly doing
that all along, since we know some lookups ignore
some glyph classes). Not all fonts have classes and
anchors, however, only those that implement mark
positioning. For the rest (e.g. Latin Modern), one
should rely on TEX’s \accent, because we won’t
be able to do better than that. But otherwise the
OpenType method should be followed because if
we put diacritics before their bases à la TEX, as
in A〈mark〉BC where OpenType expects AB〈mark〉C,
then they might mess with a lookup designed to act
on A and B and not instructed to ignore marks be-
cause there shouldn’t be one to begin with.

Let’s get back to voiceless m (109). If we ex-
plore the letter itself, we’ll see it has an anchors

subtable (also, not shown here is the glyph’s class:
it is base):
anchors = {
basechar = {
Anchor-2 = { x = 522, y = 645, lig_index = 0 }
Anchor-5 = { x = 157, y = 9, lig_index = 0 }
Anchor-6 = { x = 382, y = -105, lig_index = 0 }
} }

The anchors here all belong to the same category,
basechar, meaning that they are the anchors to be
used when a mark is to be attached to the letter.
The ring-below glyph (755), on the other hand, has
the following anchors (and its class is mark):
anchors = {
mark = { Anchor-6 = { x = 92, y = -116,

lig_index = 0 } } }

Paul Isambert

The only anchor here is in the mark category, mean-
ing it should be used when the glyph is moved rela-
tive to another. In both cases, the anchor category
might seem redundant given the glyph’s class, but
we’ll see below that it is not: there might be anchors
with different categories.

Now, if we want to position the ring (the mark)
relative to m (the base), we have to align the anchor
of category basechar in the latter with the corre-
sponding anchor of category mark in the former; in
this case, the anchor is Anchor-6. So, assuming
we’re doing it the Unicode way, i.e. base followed by
mark, we have to align the two glyphs at the origin,
which, in a left-to-right writing system, means that
we must move the mark left by the base’s width,
then shift it horizontally by xbase − xmark and ver-
tically by ybase − ymark. Finally, all this movement
should be invisible, so that after the operation we
end up at the base’s right border. We could use
kerns and an hbox to do that, but LuaTEX offers
a much simpler solution, manipulating the mark’s
xoffset and yoffset fields (which are present in
all glyph nodes). We still need a kern after the mark
to cancel its width, though.

But we’ve moved a bit too fast. Now that we’re
more knowledgeable about lookups, we know that
we should always check their subtables, because they
give us the order of operations; so let’s have a look
at mb_l_3 in gpos (triggered by the mark tag):

name = mb_l_3
type = gpos_mark2base
features = { ... }
flags = { }
subtables = {
1 = { name = mb_l_3_a_0, anchor_classes = 1 }
2 = { name = mb_l_3_a_1, anchor_classes = 1 }
〈. . . five more . . . 〉
}

(We furtively note the lookup’s type.) The sub-
tables have names, as usual; however, we haven’t
seen those names in the glyph’s information for this
lookup, as was the case for other types. That’s be-
cause the link between the lookup in gpos and its
details in affected glyphs is indirect in this case; sub-
tables are tied to anchors (as indicated, somewhat
redundantly, by the anchor_classes field), which
anchors we then find in the glyphs, as we have al-
ready seen. Anchors are enumerated in fonttable.

anchor_classes; here are the first two:

1 = { type = mark
name = Anchor-0
lookup = { 1 = mb_l_3_a_0, ... } }

2 = { type = mark
name = Anchor-1
lookup = { 1 = mb_l_3_a_1, ... } }

TUGboat, Volume 33 (2012), No. 1 83

(Again, lookup is buggy; the correct value is the
first entry.) Now, to retrace our steps: the mb_l_3

lookup has subtables, each associated with one or
more anchor(s), which anchors we then find in some
glyph(s). Thus, to implement mark positioning on a
given mark glyph: for each subtable of the lookup,
and for each anchor in that subtable, we check if the
mark has this anchor in its anchors.mark subtable
and if the nearest preceding base glyph has this an-
chor in its anchors.basechar subtable. If so, we
align the two anchors (and the lookup, as usual, is
considered processed: subsequent anchors and sub-
tables are ignored). Now, the reader can check that
the seventh subtable in mb_l_3 points to Anchor-6,
which is exactly the one we need to, at long last, put
that ring below m.

Now suppose we’re in a node list, with a node
mark to be positioned on the glyph base immedi-
ately on its left. We’ve retrieved the necessary an-
chor for each glyph, which we denote with ma for the
mark’s anchor and ba for the base’s anchor. Then
here’s how the positioning is to be performed:
mark.xoffset = ba.x - ma.x - base.width
mark.yoffset = ba.y - ma.y
local kern = node.new("kern", 2)
kern.kern = -mark.width
head = node.insert_after(head, mark, kern)

The kern has subtype 2, as a reminder that it is
used for accent placement. Note that xoffset is
invisible to TEX, so there is no need to take it into
account in the kern’s width.49 Also, marks often
have no width (i.e. they are drawn entirely to the
left of their bounding boxes), in which case the kern
may be avoided entirely.50

On the other hand, yoffset does have an ef-
fect, but only on height, not depth; this means that
if we’re dealing with a mark placed under the base-
line, and yoffset is non-zero, then the depth of the
horizontal box containing the character might not
be properly computed. Devising an alternate solu-
tion, using kerns and boxes as TEX natively does
and computing depth properly, is left as an exercise
to the reader.51

49 In right-to-left typesetting, we would have to move the
mark right by its width, not the base’s width, since glyphs
are always drawn with the cartesian origin at the bottom
left corner; however, we would still use a negative value for
xoffset, because this field follows the writing direction.

50 Actually, no matter what fonttable says, we could set
the widths of all mark glyphs to 0, given that they are sup-
posed to be non-spacing glyphs. Then we could do without
the kern altogether, thus tinkering less with the nodelist.

51 Said reader may also be glad to learn that LuaTEX
has primitives (inherited from PDFTEX) that set the height
and depth of paragraph lines independently of their contents:

OpenType fonts in LuaTEX

Mark to mark positioning. Positioning a mark
on a base glyph is not the only possibility in dia-
critic placement; we may want to position a mark,
let’s call it mark1, relative to another one, mark2;
this occurs for instance if you want a tone marker
and an accent on the same vowel in Vietnamese:
the first should be placed relative to the second,
not relative to the third.52 The process is similar
to what we’ve just seen, except that: the lookup’s
type in fonttable.gpos is gpos_mark2mark, and
in anchor_classes the type is mkmk; mark2’s an-
chor is to be found in the basemark subtable of
the anchors table (parallel to the basechar sub-
table for a base glyph); and most importantly, since
mark2 itself is very likely to be moved on the nearest
base glyph, this positioning, reflected in the xoffset
and/or yoffset of mark2, should be taken into ac-
count when moving mark1 (actually, we should have
done that with mark-to-base placement too, because
it may well happen that a base glyph is moved, if
only because the end user does so by hand). Liber-
tine contains no lookup of this type.

Mark to ligature positioning. Finally, a mark
may be positioned relative to a component in a liga-
ture. Recall the “ç h” example discussed above: the
ligaturing lookup (which ignores marks) will turn it
into “¸”, and we should position the cedilla so as
to obtain “̧”. This is not simple mark-to-base po-
sitioning, because the mark could (theoretically, at
least) be set on either of the two original compo-
nents. That is why an anchor in a ligature has sev-
eral instances of itself, each associated with one of
the original components (not all components need
to have an anchor, though); so, if a mark should
be placed relative to the first component, the first
instance of the anchor shall be used, while for the
second component the second instance is the right
one, and so on.

Of course, this implies the ligaturing lookup has
stored the necessary information, namely the com-
ponent with which the mark was originally associ-
ated. To do so, we can set an attribute in the mark
node; in our case, we would set this attribute to 1,

\pdfeachlineheight and \pdfeachlinedepth. The wrongly
computed depth can then be ignored, except when building
an independent hbox.

52 Tone is the use of pitch as a lexical device (i.e. to dis-
tinguish between words), just like phonemes do in non-tonal
(and, of course, tonal) languages; that is different from into-
nation, used in all languages, which do not distinguish words:
if you say cat and then repeat it with a raising intonation, as
in a question, it’s still the same word.

A little less off-topic: there exist precomposed charac-
ters for Vietnamese in Unicode, and they have glyphs in Lib-
ertine, so the example is slightly spurious.

84 TUGboat, Volume 33 (2012), No. 1

indicating that the mark is associated with the first
component.

In Libertine, the mklg tag activates the ml_l_4
lookup, whose type is gpos_mark2ligature.53 This
lookup has one subtable associated with Anchor-7

(whose type in anchor_classes is mark, but should
be mklg—no relation to the tag). If we look at the
cedilla (184), we’ll see that it has this anchor in the
mark subtable— so we can at least conclude that,
no matter what X is in “mark-to-X positioning”,
the mark’s anchor always has the same category.
But the anchors table for the ligature (57, 403) is
different:

anchors = {
baselig = {

Anchor-7 = { 1 = { x = 212
y = 2
lig_index = 0 }

2 = { x = 470
y = 2
lig_index = 1 } } } }

Anchors of type baselig are made of subtables, each
specifying one instance of a given anchor. The index
of each subtable correctly identifies the associated
component in the ligature, because subtables aren’t
continuously numbered. If Anchor-7 was defined for
the second component only, the subtable would still
be at index 2, not 1. So the lig_index field can be
done without, all the more as it has the inhuman
habit of starting counting at 0.

As for the implementation, it is identical to
what we’ve already seen: anchors should be aligned.
The only difference is in how to find the right an-
chor.

Cursive attachment. In a script (cursive) font,
letters should be properly attached together. The
Latin alphabet poses no problem: all letters are on
the baseline anyway, so it is up to the font designer
to ensure that exit points and entry points match,
at least vertically (horizontal adjustment can be left
to kerning); in other words, entry and exit points
should be at the same height. However, that is
not true of some Arabic scripts, such as Nasta‘l̄ıq,54

53 Mark to ligature positioning is usually activated with
the mark tag, just like mark to base positioning. Here I’ve
used a different tag just so users can test it independently.

54 Nasta‘l̄ıq is used mostly for Indo-European languages
(especially, Urdu), thus totally unrelated (or rather, to this
day not convincingly — for most linguists — related) to Ara-
bic or the Semitic languages more generally or even the Afro-
Asiatic family, unless one is willing to accept the Nostratic
superfamily or even more remote and controversial linguistic
classifications. But then, languages as unrelated to Latin as
Basque, Mohawk, Vietnamese, Wolof, and many, many more,
are written in the Latin alphabet.

Paul Isambert

where entry points are generally higher than exit
points, and where only the last glyph of a word is
set on the baseline:

cite
htap

si yhpa
rgil

lac

q̄ıl‘
atsa

N
ta tpmetta sihT

The position of each glyph thus depends on the
position of the next in the word. To implement that,
anchors are used again, but this time each anchor is
twofold: there is an entry point and an exit point.
For each pair of consecutive glyphs, the entry point
of the second glyph should be aligned with the exit
point of the first glyph, and a kern and yoffset are
all we need to do so. Although the operation is sim-
ilar to mark positioning, it differs in one important
respect: all glyphs are spacing here, so there is no
kern to compensate for the second glyph’s width.
Libertine has no cursive positioning, but a typical
anchors table in a glyph would look like:
anchors = {
centry = {

Cursive-8 = { x = 〈x1 〉
y = 〈y1 〉
lig_index = 0 } }

cexit = {
Cursive-8 = { x = 〈x2 〉

y = 〈y2 〉
lig_index = 0 } }

〈other anchors〉
}

Thus, anchors for cursive attachment are identical
to other anchors, except that they belong to the
centry and cexit subtables. As for the lookup itself
in gpos, it has the gpos_cursive type, whereas the
anchors’ type in anchor_classes is curs.

As mentioned above, the lookup is mostly used
to attach glyphs in words with the last glyph on the
baseline; that means that positioning should begin
at the end of the word and progress contrary to the
direction of writing. This stipulation is not part of
the lookup type itself; instead, a flag (in the flags

subtable of the lookup in gpos) is used: r2l, mean-
ing “right-to-left”.55 This in turn implies that we
have a definition of a “word”; space will do, as dis-
cussed a few pages ago.

(Chaining) contextual positioning. We’ll omit
discussion of these two lookup types, not because
there is nothing interesting here, but simply because
they are identical to (chaining) contextual substitu-
tions, except that they dispatch to positioning, not

55 Although cursive attachment is mostly used in a right-
to-left writing system, the flag’s name (inherited from Open-
Type files, not made up by LuaTEX or FontForge) assumes a
left-to-right system, since it means “contrary to the writing
direction”.

TUGboat, Volume 33 (2012), No. 1 85

substitution, lookups. I hope the reader has the
buoyant feeling associated with the last-minute can-
cellation of a dreaded two-hour class (each Friday at
5pm). But let’s just say that contextual positioning
can be used e.g. in Wörter (German for words) to
lower the umlaut so that kerning can be increased
with the preceding W (this of course requires that
the o and the accent are separate glyphs, probably
due to a multiple substitution), or to add kerning
between the period and T in S.A.T., the kerning
being actually (visually) with the preceding A.

13 Conclusion

I hope the reader has found the foregoing journey
into the world of OpenType fonts and LuaTEX in-
teresting, informative, and enticing. A larger world
lies beyond, especially regarding non-Latin writing
systems, not to mention maths, and I’ll be satisfied
if the reader now feels confident enough to step into
that world. As with all of LuaTEX, it may seem
intimidating at first but is ultimately extremely re-
warding.

References

[1] Yannis Haralambous. Fonts & Encodings.
O’Reilly, 2007. First edition in French as
Fontes & Codages, O’Reilly, 2004.

[2] Taco Hoekwater. Math in LuaTEX 0.40.
MAPS, 38, 2009. An updated version was
translated in French as “LuaTEX 0.65 et les
mathématiques” in Cahiers Gutenberg, 54–55,
2010.

[3] Paul Isambert. LuaTEX: What it takes to
make a paragraph. TUGboat 32:1, 2011. tug.
org/TUGboat/tb32-1/tb100isambert.pdf.

[4] LuaTEX team. LuaTEX Reference.
www.luatex.org/svn/trunk/manual/

luatexref-t.pdf.

[5] Microsoft OpenType specification.
www.microsoft.com/typography/otspec.

[6] Linux Libertine. www.linuxlibertine.org.

[7] Ulrik Vieth. OpenType math illuminated.
TUGboat 30:1, 2009.
tug.org/TUGboat/tb30-1/tb94vieth.pdf.

[8] George Williams. FontForge documentation.
fontforge.sourceforge.net.

� Paul Isambert
zappathustra (at) free dot fr

OpenType fonts in LuaTEX

