
TUGBOAT

Volume 33, Number 1 / 2012

General Delivery 2 TUG 2012 announcement

3 Ab epistulis / Steve Peter

3 Editorial comments / Barbara Beeton

Don Knuth, reprise; An alternate view of CTAN; Linotype: The Film;

Barriers to effective communication: Jean-luc Doumont; Kern it!;

A wonderful use of old books; The Plantin-Moretus Museum in Antwerp

5 Hyphenation exception log / Barbara Beeton

7 In memoriam: Tony Siegman, 1931–2011 / Bruce Armbruster

and Jeannie Howard Siegman

Typography 8 Typographers’ Inn / Peter Flynn

Fonts 11 Lucida OpenType fonts available from TUG / Karl Berry

12 The Amiri typeface / Khaled Hosny

Bibliographies 13 Biber— the next generation backend processor for BibLATEX / Philip Kime

Electronic Documents 16 X ELATEX and the PDF archivable format / Claudio Beccari

LATEX 21 Avoid eqnarray! / Lars Madsen

26 The unknown picture environment / Claudio Beccari

33 The apa6 LATEX class: Challenges encountered updating to new requirements /

Brian Beitzel

39 Glisterings: Timelines; Parsing a filename / Peter Wilson

43 Some LATEX2ε tricks and tips (V) / Luca Merciadri

46 LATEX3 news, issues 6–7 / LATEX Project Team

Software & Tools 48 User-friendly web utilities for generating LATEX output and MetaPost graphics /

Troy Henderson

53 TEX on Windows: MiKTEX or TEX Live? / Joseph Wright

54 Generating barcodes with LuaTEX / Patrick Gundlach

59 OpenType fonts in LuaTEX / Paul Isambert

ConTEXt 86 ConTEXt: Updating the code base / Hans Hagen

Graphics 98 Computing the area and winding number for a Bézier curve / Bogusław Jackowski

102 Three-dimensional graphics with PGF/TikZ / Keith Wolcott

Book Reviews 114 Book review: Trees, maps, and theorems / Pavneet Arora

116 Book review: Design for Hackers / Boris Veytsman

118 Book review: Companion to the Papers of Donald Knuth / David Walden

Hints & Tricks 119 The treasure chest / Karl Berry

Abstracts 121 Eutypon: Contents of issue 26–27 (October 2011)

121 Die TEXnische Komödie: Contents of issues 4/2011–1/2012

122 Asian Journal of TEX : Contents of Volumes 4–5 (2010–2011)

Advertisements 124 TEX consulting and production services

TUG Business 126 TUG institutional members

126 TUG financial statements for 2011 / Karl Berry

News 128 Calendar



TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2012 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $65.

The discounted rate of $65 is also available to citi-
zens of countries with modest economies, as detailed
on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The follow-
ing trademarks which commonly appear in TUG-

boat should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: April 2012]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Jonathan Fine
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Philip Taylor
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Copyright c© 2012 TEX Users Group.

Copyright to individual articles within this publication re-

mains with their authors, so the articles may not be repro-

duced, distributed or translated without the authors’ permis-

sion.

For the editorial and other material not ascribed to a par-

ticular author, permission is granted to make and distribute

verbatim copies without royalty, in any medium, provided the

copyright notice and this permission notice are preserved.

Permission is also granted to make, copy and distribute trans-

lations of such editorial material into another language, ex-

cept that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.



[. . .] clay possesses one considerable advantage: it is
resistant to fire, water, and magnetic disturbances. In [. . .]
a few thousand years, our photographs, books, and hard
disks will no doubt have disappeared, but our collections
of cuneiform tablets will still be there.

Dominique Charpin, Reading and

Writing in Babylon (2010)

translated by Jane Marie Todd

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 33, NUMBER 1 • 2012
PORTLAND • OREGON • U.S.A.



TUG 2012
The 33rd Annual Meeting of the TEX Users Group

Presentations covering the TEX world

July 16–18, 2012 Boston, Massachusetts, USA

http://tug.org/tug2012 tug2012@tug.org

April 30, 2012—bursary application deadline

May 1, 2012—presentation proposal deadline

May 15, 2012—early bird registration deadline

June 1, 2012—preprint submission deadline

July 16, 2012—LATEX workshop (concurrent)

July 16–18, 2012—conference

July 30, 2012—deadline for final papers

Sponsored by the TEX Users Group and DANTE e.V.



TUGboat, Volume 33 (2012), No. 1 3

Ab Epistulis

Steve Peter

Hello from the TEX world headquarters! I’m pleased
to be able to share with you the following information
from the TEX Users Group, my first as president.
(And I’m pining for the days when Karl Berry wrote
these messages.)

Group membership category

This year, TUG is offering a new membership cat-
egory, called group membership. It includes up to
four individual memberships for $200 (thus provid-
ing a discount), with electronic access for all four
members and one physical copy of TUGboat and
software, as well as an acknowledgment online. This
is perfect for small departments or research groups.
http://tug.org/join.html has all the info.

If you haven’t joined TUG yet for this year, it’s
not too late. Individual memberships are just $95
and joining TUG helps to support and promote the
use of TEX, LATEX, ConTEXt, METAFONT, META-
POST, and related systems worldwide.

Software

No major changes in the software delivery are ex-
pected this year. Work toward the TEX Live 2012
release is well underway. We will begin trial builds
soon and are aiming to freeze updates in May (a time-
line is on http://tug.org/texlive/). The editors
of the MacTEX, proTEXt, and CTAN components of
the overall TEX Collection software are also preparing
their respective releases.

Conferences

TUG 2012 will be held in Boston, Massachusetts,
USA, from July 16 through July 18 at the Omni
Parker House. The deadline for presentation ab-
stracts is May 1, 2012, and early bird registration
is available through May 15. Registration includes
breakfast, lunch, and coffee breaks as well as all the
cutting edge TEX information that will fit in your
brain. The discount code for our group’s hotel reser-
vations is available on the conference web site at
http://tug.org/tug2012/.

Outside of North America, GUST is celebrat-
ing its 20th anniversary with a special BachoTEX
from April 29 through May 3. For all the informa-
tion, see the website at http://www.gust.org.pl/
bachotex/2012/.

TEXperience 2012 (CSTUG) will be held August
23–26 in Morávka, Czech Republic. See the website
at http://katedry.osu.cz/kma/TeXperience2012
for all the details.

EuroTEX 2012 and the Sixth ConTEXt User
Meeting will be October 8–12 in Breskens, The
Netherlands. See http://meeting.contextgarden.
net/2012/.

Book reviews

The TUG website has a section for book reviews,
and you should definitely visit if you haven’t yet had
the chance. Recently, we’ve added reviews of David
Kadavy’s Design for hackers: Reverse-engineering

beauty (reviewed by Boris Veytsman) and Jean-luc
Doumont’s Trees, maps, and theorems (by Pavneet
Arora). These and other reviews are at http://

tug.org/books/#reviews. Many thanks to Boris
Veytsman for organizing the reviews.

And speaking of books, RIT Press/RIT Cary
Graphic Arts Press is offering 10% off to TUG mem-
bers for a limited time. The code may be used on one
order and is valid through May 31, 2012. The exclu-
sive members-only discount code is available in the
members area at https://www.tug.org/members.

⋄ Steve Peter

president (at) tug dot org

http://tug.org/TUGboat/Pres/

Editorial comments

Barbara Beeton

Don Knuth, reprise

To cap off his publications so far, and leave his time
free to work on TAOCP, Don has created one final
volume, a Companion to his collected works, which
is reviewed elsewhere in this issue.

An addition to Don’s online biographical en-
tries now appears on the new Turing Award web
site: http://amturing.acm.org/award_winners/

knuth_1013846.cfm. The information was compiled
and the entry written by Dave Walden, ringleader of
the TUG Interview Corner.

An alternate view of CTAN

The “Automated Mercurial Repositories of CTAN”
web site http://ctanhg.scharrer-online.de pro-
vides an archive of old versions of CTAN packages.
As well as allowing (LA)TEX historians to follow the
development of packages, it provides an emergency
backup in case a package change prevents an old
document from being processed properly.

Linotype: The Film

The Linotype, invented by Ottmar Mergenthaler in
the late 1800s, was the machine that, for all practical



4 TUGboat, Volume 33 (2012), No. 1

purposes, put hand compositors out of business. On
it were composed uncounted books, magazines, job
work, and newspapers through the mid-20th century.
Then “cold type” and photocomposition came into
existence, followed by digital print and the desktop
revolution, and the world’s Linotypes fell silent.

This fascinating machine has now been memo-
rialized in a film. Released early this year, the film
premiered in New York, and a screening followed
soon after at the Rhode Island School of Design,
which I was privileged to attend. It’s an engaging
story, told well with great empathy and appreciation.

More screenings will continue, and a DVD is
expected in early summer. Visit the web site (http:
//www.linotypefilm.com), view the trailer, check
the schedule, and see it if you can.

Barriers to effective communication:

Jean-luc Doumont

As an extension to his presentation at TUG 2011,
Jean-luc Doumont has prepared a booklet setting
forth the many reasons that authors hesitate, even
actively resist, enhancing the presentation of their
work—“we can’t do it this way,” . . . . This tale of
woe is followed by Jean-luc’s reasons why it can be
done, and how to persuade the powers that be to
allow it to happen.

The booklet can be downloaded from http://

www.treesmapsandtheorems.com/barriers.

Kern it!

An interactive game, “KERNTYPE” (http://type.
method.ac), instructs a visitor to “kern me”, and
invites one to drag letters around horizontally to see
how well the results compare with a typographer’s
solution. It provides both amusement and good
feedback in tuning one’s sensitivity to this nicety.

On the other hand, overly sensitive attention to
this detail can provide both puzzlement and frustra-
tion, as illustrated by this cartoon.1

1 Source: http://xkcd.com/1015/; posted there under

Creative Commons Attribution-NonCommercial 2.5 License,

and used with thanks and hilarious appreciation.

An advertising circular caught my eye. In the
headline was the first instance I can remember where
the kerning of “AY” looked too tight. All caps, the
phrase “DOLLAR DAYS” presents significant kerning
problems.

Granted, it’s not the most elegant font, but it’s an
ad, after all. At least it’s possible to tell that it’s
two words. . .

One last word on the subject: http://school.
failblog.org/2012/03/27/ (but not the first word
on the page. . . ).

A wonderful use of old books

As much as I hate to see a book destroyed, evi-
dence of inspired artistic license merits forgiveness.
Throughout most of 2011, the “library phantom”
made the rounds of Edinburgh libraries and similar
venues, leaving behind the most enchanting paper
sculptures—all anonymous—“. . . in support of li-
braries, books, words, ideas . . . ”. Here is a report
by Robert Krulwich on the National Public Radio
web site: http://www.npr.org/blogs/krulwich/

2011/10/28/141795907. Follow the links— all of
them!

The Plantin-Moretus Museum in Antwerp

The Plantin-Moretus Museum (a wonderful place!
Both the city and the museum) now has an English
language web site: http://museum.antwerpen.be/
plantin_moretus/index_eng.html.

The oldest part of the buildings that now house
the museum was established by Christoffel Plantin as
a printing house in 1555. It remained in continuous
operation, managed by the Moretus family (the first
of whom was Plantin’s son-in-law), until the 1820s.
In 1876, after several unsuccessful attempts to revive
the business, Edward Moretus sold the buildings and
their entire contents to the city of Antwerp; in 1877
both the living quarters and the printing office were
opened to the public as a museum. The collection
includes publications from the earliest days of the
firm, as well as two of the oldest printing presses in
the world, and much of the original type, still used to
develop authoritative digitized versions. Definitely
worth a visit!

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org



Hyphenation exception log

Barbara Beeton

This is the periodic update of the list of words that
TEX fails to hyphenate properly. The full list last
appeared in TUGboat 16:1, starting on page 12,
with updates in TUGboat 22:1/2, pp. 31–32; 23:3/4,
pp. 247–248; 26:1, pp. 5–6; 29:2, p. 239, and 31:3,
p. 160.

In the list below, the first column gives results
from plain TEX’s \showhyphens{...}. The entries
in the second column are suitable for inclusion in a
\hyphenation{...} list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{...} list if they occur
in your document. The full list of exceptions, as a
TEX-readable file, appears at http://mirror.ctan
.org/info/digests/tugboat/ushyphex.tex. (It’s
created by Werner Lemberg’s scripts, available in
the subdirectory hyphenex.)

Like the full list, this update is in two parts:
English words, and names and non-English words
(including transliterations from Cyrillic and other
non-Latin scripts) that occur in English texts.

Thanks to all who have submitted entries to
the list. Here is a short reminder of the relevant
idiosyncrasies of TEX’s hyphenation. Hyphens will
not be inserted before the number of letters specified
by \lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454.) This
particular rule is violated in some of the words listed;
however, if a word is hyphenated correctly by TEX
except for “missing” hyphens at the beginning or
end, it has not been included here.

Some other permissible hyphens have been omit-
ted for reasons of style or clarity. While this is at
least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated in
the same way regardless of usage.

TUGboat, Volume 33 (2012), No. 1 5

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
unabridged.

Hyphenation for languages

other than U.S. English

Patterns now exist for many languages other than
U.S. English, including languages using accented and
non-Latin alphabets. CTAN holds an extensive col-
lection of patterns: see language/hyphenation and
its subdirectories.

A group of volunteers led by Mojca Miklavec
and Manuel Pégourié-Gonnard have created a com-
prehensive package of hyphenation patterns, called
hyph-utf8; see http://tug.org/tex-hyphen.

The list—English words

acronym acro-nym
anachro-nism(tic) anach-ro-nism(-tic)
anal-y-sis analy-sis
ap-pen-dices ap-pen-di-ces
ap-pendix ap-pen-dix
au-tore-gres-sion auto-re-gres-sion
au-tore-gres-sive auto-re-gres-sive
bedrag-gle be-drag-gle

bedrock bed-rock
bed-warf be-dwarf
bib-li-o-graph-i-cal bib-lio-graph-i-cal
bi-bunits bib-units
bioweapon(s,ry) bio-weap-ons(-ry)
bungee bun-gee

cochlea(s,r) coch-leas(r)
code-signer co-designer

con-geries con-ge-ries
cosemisim-ple co-semi-sim-ple
cy-bervirus(es) cy-ber-virus(es)
cy-ber-weapon cy-ber-wea-pon
dis-tributable dis-trib-ut-able
dis-tribu-tive dis-trib-u-tive
ecosys-tem eco-sys-tem
economies econ-o-mies
en-do-scopies en-dos-copies

en-doscopy en-dos-copy
eu-stachian eu-sta-chian

flu-o-ro-scopies fluor-os-copies
flu-o-roscopy fluor-os-copy
geode-tic ge-o-det-ic
grou-p-like group-like
halflife(ves) half-life(ves)
he-liopause he-lio-pause
he-liotrope he-lio-trope
holodeck holo-deck
hound-steeth hounds-teeth
hound-stooth hounds-tooth
hy-per-e-las-tic-ity hy-per-elas-tic-ity
hy-poe-las-tic-ity hy-po-elas-tic-ity

illiq-uid(ity) il-li-quid(-ity)
let-terspace(s,d) let-ter-spaces(d)



liq-uid-ity li-quid-ity
looka-head look-ahead
macroe-con-omy macro-econ-omy
megafauna(l) mega-fau-na(l)
metasta-bil-ity meta-sta-bil-ity
metastable meta-stable

meta-table meta-table
meta-tables meta-tables
method meth-od
mi-croe-con-omy micro-econ-omy
mi-croen-ter-prise micro-en-ter-prise

mi-crostruc-ture mi-cro-struc-ture
monospac-ing mono-spacing

pager-ank page-rank
plateau pla-teau
purges pur-ges
reed-u-cate re-edu-cate
refugee ref-u-gee
satel-lite sat-el-lite
sha-pable shap-able

sin-glespace(d) single-space(d)
sin-glespac-ing single-spacing

sl-nuni-code sln-uni-code

spokesman spokes-man

spokesper-son spokes-per-son
sub-tables sub-tables
su-perderiva-tion super-deri-va-tion
surgery sur-gery
surg-eries sur-ge-ries
surges sur-ges
takeover take-over

topoi-so-merase topo-iso-mer-ase
weapon(s,ry) weap-ons(-ry)

6 TUGboat, Volume 33 (2012), No. 1

Names and non-English words

Apol-lodorus Apol-lo-dorus
Be-bchuk Beb-chuk
Bur-ck-hardt Burck-hardt
Chester Ches-ter
Chi-ang Chiang
Chich-ester Chich-es-ter
Co-hen Cohen

Dor-fleit-ner Dorf-leit-ner
Drech-sler Drechs-ler

Ei-jkhout Eijk-hout
En-gle Engle
En-gel Engel

Gesellschaft Ge-sell-schaft
Got-tlieb Gott-lieb

Hu-ber Huber
Jun-gian Jung-ian
Key-ne-sian Keynes-ian
Kro-necker Kron-ecker
Lu-cas Lucas
Mac-Beth MacBeth
Mag-el-lan Ma-gel-lan

Methodist Meth-od-ist
Method-ism Meth-od-ism

No-towidigdo Noto-wi-digdo
Ob-st-feld Obst-feld

Ore-opou-los Oreo-pou-los
Raviku-mar Ravi-kumar
Re-ich-lin Reich-lin
Schim-melpfen-nig Schim-mel-pfen-nig

Schw-ert Schwert
Thiru-vanan-da-pu-ram Thiruv-ananda-puram

Toy-ota Toyo-ta
We-in-stein Wein-stein
William(s) Will-iam(s)
Wolf-fian Wolff-ian

TUGboat editorial information

This regular issue (Vol. 33, No. 1) is the first issue of the
2012 volume year. No. 2 will contain papers from the
TUG 2012 conference in Boston, Massachusetts, USA,
and no. 3 will be a regular issue.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(http://tug.org/store), and online at the TUGboat

web site, http://tug.org/TUGboat. Online publication
to non-members is delayed up to one year after print
publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are still assumed to be the experts.
Questions regarding content or accuracy should there-
fore be directed to the authors, with an information copy
to the Editor.

Submitting items for publication

The deadline for receipt of final papers for the next issue
is July 30, and for the one after, October 1.

Suggestions and proposals for TUGboat articles are
gratefully accepted. Please submit contributions by elec-
tronic mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX

and LATEX, are available from CTAN and the TUGboat

web site. We also accept submissions using ConTEXt.
More information and tips for authors are at:
http://tug.org/TUGboat/location.html

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make special arrangements.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html



TUGboat, Volume 33 (2012), No. 1 7

In memoriam: Tony Siegman, 1931–2011

Bruce Armbruster and
Jeannie Howard Siegman

Anthony E. Siegman, laser pioneer and professor
emeritus of electrical engineering and applied physics
at Stanford, died at home on October 7, 2011. His
1,283 page text, Lasers, published in 1986, was one
of the first major science textbooks published from
start to finish using TEX and instantly became a clas-
sic. Its acceptance and success established that TEX
was capable of producing books that were just as
elegant and attractive as traditionally typeset books,
at a fraction of the cost, and free of errors introduced
by conventional production processes. The publica-
tion of Lasers helped change forever the way that
scientific and technical books are published and Tony
Siegman played a critical role in that revolution.

A Michigan native, Tony completed his AB de-
gree Summa Cum Laude in three years as a National
Merit Scholar at Harvard, where he played the clar-
inet in the Harvard Marching Band. After two years
on a cooperative plan with UCLA and the Hughes
Research Labs in Culver City, California, he moved
north to Stanford. There he was appointed to the

Stanford faculty on an acting basis in 1956, and
received his PhD degree in Electrical Engineering
in 1957 with a dissertation on microwave noise in
electron beams and traveling-wave tubes.

Tony was part of the program committee and an
active participant in the historic first Quantum Elec-
tronics symposium at Shawanga Lodge, New York,
in 1959. That marked the start of serious research
into lasers. Thereafter, he rapidly began to move
his research from microwaves and masers to optics
and lasers. After 1960, his work evolved into a long
research and teaching career in lasers and optics, dur-
ing which he supervised some 40 PhD dissertations
and published numerous scientific articles and three
textbooks: Microwave Solid-State Masers (McGraw-
Hill, 1964), An Introduction to Lasers and Masers

(McGraw-Hill, 1972), and Lasers (University Science
Books, 1986).

Tony’s foremost technical contribution is proba-
bly his invention of the unstable resonator—a con-
ceptual advance that made possible high-power lasers
with high beam quality. He directed the Ginzton Lab-
oratory at Stanford from 1978 to 1983 and again in
1998–99, and served on numerous academic commit-
tees and as a member of the Stanford Faculty Senate
and its Steering Committee. He spent sabbaticals as
Visiting Professor of Applied Physics at Harvard in
1965, Guggenheim Fellow at the IBM Research Labs
in Zurich in 1969–70, and Humboldt Senior Scientist
at the Max Planck Institute for Quantum Optics in
Garching, Germany, in 1984–85.

He was regarded by many as a true patriarch
in his field, and remembered with warmth and ad-
miration by his students and colleagues alike. His
professional colleagues have initiated an endowment
fund to carry on, and now named in his honor, the
Siegman International Summer Session on Lasers
and Their Applications. The prototype in 2011 was
the last of his life-long professional volunteer activ-
ities. For more about the project, or to make a
contribution in his memory, please see http://www.
osa-foundation.org/Siegman.

⋄ Bruce Armbruster

University Science Books

⋄ Jeannie Howard Siegman

Stanford University Staff Emerita



8 TUGboat, Volume 33 (2012), No. 1

Typographers’ Inn

Peter Flynn

1 Titling and centering

I forget who first pointed it out, but one of the
earliest pieces of advice I remember was to break title
lines according to sense when they are set centered.
Anyone who wants to glance at their organization’s
noticeboards can see the effect of not knowing this:
how often do you see isolated words on lines by
themselves, as if they were an afterthought.

Breaking according to sense means reading the
title and seeing where the natural pauses in rhythm
and meaning occur, and making breaks there. Failing
to do this not only means the title is harder to
read, because the brain has to struggle to join back
together phrases or words which should not have
been split up, but also, depending on the way it has
been broken, you can sometimes even end up with a
humorous misinterpretation.

Many people will be familiar with this phrase

PARIS
IN THE

THE SPRING

in which ‘the’ is duplicated. That is deliberate, as
was the poster a colleague at the London College of
Printing designed for an exhibition called ‘Things
aren’t what they seem to be’. The opportunity was
too good to pass up (Figure 1).

THINGS AREN’T

WHAT THEY

THEY SEEM

TO BE

An exbihition fo desgin chocies

Lodnon Collage of Pritning

Effluent & Castile

Lodnon SF1

Figure 1: Student poster, c.1975, author’s
reconstruction from memory

Alas, I can only reconstruct a rudimentary copy
here. For those unfamiliar with London, the Elephant
and Castle was then a rather run-down district on
the south bank, still showing the scars of WWII
bombing and the ghastly New Barbarism of the 50s
and 60s reconstruction.

More recently my local convenience store was
advertising

HALF-PRICE
DESSERTS FROM
OUR IN-STORE

BAKERY

It’s only ephemeral, but it would have been more
readable, especially to passers-by, if it had read

HALF-PRICE DESSERTS
FROM OUR

IN-STORE BAKERY

Closely related to this is a combination of unfortunate
circumstances which I first saw on the spine of a book.
The front cover used the same face for author and
title, but in different colors: a mauve for the author
and a washed-denim for the title (Figure 2).

SHEILA
KITZINGER
PREGNANCY
AND
CHILDBIRTH

SHEILA PREGNANCY
KITZINGERANDCHILDBIRTH

Figure 2: Front cover and spine (reconstruction,
omitting detail)

The spine used the same colors and typeface,
but arranged with the author name to the left, two
lines flushright, hard up against the title to the right,
two lines flushleft. The unfortunate combination of
the close spacing and the fading of the colors over

Peter Flynn



TUGboat, Volume 33 (2012), No. 1 9

time leaves one with the impression that this was
Sheila Pregnancy’s Kitzinger and Childbirth.

A close contender is the copy of Stieg Larsson’s
The Girl with the Dragon Tattoo which I was given
for Yuletide. The spine almost leaves you with the
impression that is it THE GIRL WITH THE STIEG

by DRAGON TATTOO LARSSON.

2 Beaten into submission

Some years ago I signed up to do a late-life part-time
PhD. It’s been a long time a-growing, but it’s getting
somewhere near fruition. Which is all well and good,
and nothing to do with this column, except that as
a by-product, I was obviously going to produce the
thing using LATEX. My university didn’t even have a
Word template for theses, let alone a thesis document
class for LATEX, so it equally obviously behove me to
write one.

I made a start, initially for my own benefit, but
as this was a part-time task slaved off another part-
time task slaved off a full-time task, it tended to get
quietly ignored while I fiddled with more burning
issues like research and a day job. My patient and
long-suffering co-students were repeatedly told ‘it’s
on its way’, but it took until last summer for some-
thing usable to appear. I started with the crufty
and encrusted code that I had been working with,
chipped off the barnacles, oiled the insides, fixed
the broken bits, added the requisite bells and whis-
tles, polished the outsides—and then had to start
thinking about appearances.

The university’s regulations are simple to the
point of being simplistic: one-sided; a 4cm left-hand
(binding) margin, 3cm everywhere else; a ‘plain’ type-
face (that is, not ornamental or decorated); the text
double-spaced or 1 1

2
-line-spaced; some specific items

on the (centred) title page; a table of contents, Dec-
laration, and 200–word Abstract. That’s about it, so
the detail was basically up for grabs by each student.
The Graduate Studies Office, which deals with thesis
submission and reception, do in fact impose other
rules, but these are so obvious and so rarely broken
that they are not usually mentioned (like it has to
be printed in black on white paper).

I’m not a graphic designer nor a professional
typographer nor even a typographic designer, but
I am aware that working to a very loose brief is in
some ways harder than working to one too tight. It’s
also axiomatic that simplicity is best when dealing
with a functional document whose primary purposes
are to act as a record of your findings and to con-
vince your Extern that you are safe to let loose on
the world of research. However, the more I looked
at the largely pragmatic and temporary choices I

had made for my drafts, the more I realised the
dangers of allowing the technology to dominate the
design: just because LATEX (or whatever system) can

do something, doesn’t mean that you have to do it.
One of the pitfalls of having spent a lifetime work-
ing with computer documentation is that there is a
tendency for all document content to end up looking
like The TEXbook, regardless of the page layout and
the typeface.

As it turned out, I made a lot of cuts and very
few additions. I had in fact just been experimenting
with different layouts for floats before deciding that
the marginal improvement in balance between float
and the surrounding text wasn’t worth the additional
weight of code, so I carried this principle over to the
rest of the class.

The document class loads the default report
with the options oneside,11pt,a4paper, thus the
only variations are those required by the regulations,
and a few which I have seen fit to impose on myself.
There are discussions about printing two-sided to
save trees, but with electronic submission imminent,
the argument appears to be moot.

Layout: a separate title page and one-sided impo-
sition are mandated; A4 is the only paper size,
although it will allow Letter, in case students
with US funding agencies or sponsors need a
copy to fit their filing system. It was not hard
to fix the text area so that it works acceptably
if not optimally on both sizes of paper.

Type size: currently fixed at 11pt— I would have
preferred 12pt, because the important people
reading it (supervisor, Prof, Extern) tend to be
much older than the student, and therefore have
suboptimal eyesight, but 12pt does increase the
page count significantly. I need to experiment
with the balance between line-spacing and type
size for this exact line-length.

Line-spacing: double-spacing makes the thesis far
too many pages, although it has a legitimate
purpose for drafts, where readers appreciate
having the space to scribble comments. Line-
and-a-half looks about right, but there’s nothing
to stop the student overriding this. A 10pt
setting is clearly too small for the length of lines
on an office-size sheet of paper with the given
margins without resorting to double line-spacing
or more.

Typeface: for those including a significant amount
of mathematics, the scope is very limited, and I
suspect most will stick to CM or Times. Other-
wise it’s up to the author, within the confines of
the regulations. I used Charter, because I find
it reads easily in very long documents.

Typographers’ Inn



10 TUGboat, Volume 33 (2012), No. 1

Justification: I made the whole document default
to \raggedright for several reasons: a PhD
thesis is not a book for printing to publishers’
standards; it’s not good for an author to spend a
lot of time fiddling with manual reformatting to
‘make things fit’; and the line-length is already
too wide for comfortable reading. It’s not an
ideal choice, so I am providing an option to
switch back to justified setting for those who
feel they can deal with it. I posted about this
on comp.text.tex while writing this column,
so I’m still open to suggestions.

Paragraph spacing: The default uses the parskip

package, so there is no indentation, and about
one baseline’s space between paragraphs. I did
provide an option to switch back to indented,
unspaced paragraphs at the insistence of some
users who wanted a more book-like layout.

The bulk of the class file is taken up with options
for the preselection of the School or Department and
the class of Degree using abbreviations as options,
so that the title page can be composed correctly.
The code list is refreshed annually from the Regis-
trar’s database of the graduate courses on offer, so
authors still finishing degrees in disciplines no longer
on offer to new students, or in schools or departments
no longer operating solo, have to be catered for by
preserving the validity of old options.

The design of the title page is straightforward,
and largely mandated by the prescribed contents:
title, author, department, degree, supervisor, date,
and so on, in varying sizes, and centred.

Some things in the text body, however, I did
change, simply because the default LATEX layout
naturally reflects the typographic habits of US book
design of the 1970s and 80s, and I feel it is time to
move on.

Front matter: Apart from providing environments
for the Dedication and Acknowledgments, there
is a generic \prelim command for optional pre-
liminary sections like admonishments, standards
certification, and terminologies, not part of the
thesis proper. It is basically a \section* com-
mand, except that it also adds itself to the ToC.

For the ToC, LoF, LoT, Bibliography (and
Index, if anyone wants one), the heading is at
section level, starting a new page, not (by de-
fault) at chapter level. These are not divisions
of chapter status, perhaps excepting the Bibli-
ography, and it is usually wrong to accord them
that format.

The presence of a LoF and LoT is automated,
using a Boolean switch added to the .aux file at

the end if either the figure or table counter is
non-zero. This can be overridden if, for example,
an author has only a very few figures or tables.

Description lists: LATEX’s default, as with this list,
is to format the topic heading run-in to the text.
This is idiosyncratic, and nowadays unusual out-
side the dictionary format. The separate-line
format, as exemplified in HTML’s <dt> element
type seems to be expected by readers and writ-
ers alike, so I changed the \descriptionlabel

to use a \parbox to give the topic heading a
line or lines to itself. This also overcomes the
standing bug in LATEX whereby very long labels
fail to break correctly at the end of a line.

Quotations: The quotation environment now has
an optional argument for the key value for the ci-
tation of the quote, which is printed flush right
after the text. A similarly-implemented epi-
graph environment does the same for authors
wanting introductory quotes for their chapters.

So all in all, I hope it stays a commonplace and
unobtrusive layout, which is how a thesis design
should be: it’s the student’s arguments that should
stand out, not the typography. It’s available within
the university on pilot, and will be released into the
wild once I’m satisfied that it’s as student-proof as
needed.

Currently I am still recommending BibTEX to
users: we have a lot of them still depending on old
.bst files, and until I can get to deal with these, I’m
holding back on recommending biblatex.

Afterthought

I need to update my online book, Formatting In-

formation to reflect TEX Live 2011 and a lot of
package updates. There are also some substantial
parts that have been superseded by technology — it
doesn’t need a whole chapter on how to print from
a DVI or PS file any more.

If you have read or used it in teaching, I’d be
grateful for suggestions for improvement (http://
latex.silmaril.ie/formattinginformation).

And just as we go to press, I have started to see
badly-broken display lines in flush-left text, not just
in centred text. Grrr.

⋄ Peter Flynn
Textual Therapy Division, Silmaril

Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

Peter Flynn



TUGboat, Volume 33 (2012), No. 1 11

Lucida OpenType fonts available from TUG

Karl Berry

The TEX Users Group is happy to announce the
availability of a new incarnation of the Lucida type-
face family: Lucida OpenType. The web pages with
ordering information, samples, documentation, and
more are at http://tug.org/lucida. The previous
Lucida Type 1 distribution is still available as well.

Usage

The Lucida OpenType fonts can be used with the
TEX engines that support OpenType, namely X ETEX
and LuaTEX, and with any other OpenType-aware
application or system, such as LibreOffice/Open-
Office and Microsoft Word.

The Lucida OpenType distribution contains the
following text fonts:

• LucidaBrightOT in the usual four variants: reg-
ular, italic, bold, bold italic;

• LucidaSansTypewriterOT (same four variants);
• LucidaSansOT (same four variants);
• and three special fonts: LucidaBlackletterOT,

LucidaCalligraphyOT, LucidaHandwritingOT.

The first three of these font sets have been
considerably extended and revised compared to the
Type 1 distribution; for example, eastern European
languages are generally supported now, and the math
font includes a newly-designed script alphabet. The
special fonts in the last item have simply been carried
over from the Type 1 distribution.

In addition, there are two math fonts:

• LucidaBrightMathOT, a full OpenType math
font, also extended and revised compared to
the Type 1 Lucida math support. OpenType
features are available to switch between some
alternative glyph designs.

• LucidaBrightMathOT-Demi, a variant with bold
letters in the normal positions, to be used for
typesetting math within bold text, such as sec-
tion headings. This is distinct from the math
characters which are specified as bold in Uni-
code for specific semantics; those are bold in
both math fonts.

A previous article [1] describes the context, history,
and some technical aspects of the project.

Availability

The online order form for both Lucida OpenType
and Lucida Type 1 is at http://tug.org/lucida.
The pricing is the same for both distributions. Both
individual and site licenses are available. There is a

substantial discount for members of TUG (and other
TEX user groups).

The Lucida distributions are released over the In-
ternet only; there are no physical CDs. Lucida Open-
Type is available in either of two zip files: one has sub-
directories arranged according to the TEX Directory
Structure (http://tug.org/tds), the other is a sim-
ple flat archive for those who have no need of TEX
directories. Both contain exactly the same files.

The Type 1 fonts are frozen and will not be de-
veloped further, while the OpenType fonts continue
to be actively maintained and developed.

Credits

TUG gratefully acknowledges Charles Bigelow and
Kris Holmes for their enthusiasm in enhancing their
magnum opus, and Khaled Hosny for doing the tech-
nical work. Mojca Miklavec and Hans Hagen origi-
nally promulgated the project. Thanks to them and
to additional volunteers for testing, suggestions, and
advice: Taco Hoekwater, Bogus law Jackowski, Will
Robertson, Michael Sharpe, and Ulrik Vieth. And
many thanks to our stalwart beta testers and review-
ers: Barbara Beeton and Stephen Moye at the AMS,
Axel Retif, and Steve Peter.

Samples

ABC xyz ˉˊˋ 0248 LucidaBrightOT

ABC xyz 0248 LucidaBrightOT-Italic

ABC xyz ƥƦƧ 0248 LucidaBrightOT-Demi

ABC xyz 0248 LucidaBrightOT-DemiItalic

ABC xyz LucidaSansTypewriterOT

ABC xyz LucidaSansTypewriterOT-Oblique

ABC xyz LucidaSansTypewriterOT-Bold

ABC xyz LucidaSansTypewriterOT-BoldOblique

ABC xyz LucidaSansOT

ABC xyz LucidaSansOT-Italic

ABC xyz LucidaSansOT-Demi

ABC xyz LucidaSansOT-DemiItalic

ABC xyz LucidaBlackletterOT

ABC xyz LucidaCalligraphyOT
ABC xyz LucidaHandwritingOT

�
��

+ 1 = 0 LucidaBrightMathOT

�
��

+1 = 0 LucidaBrightMathOT-Demi

References

[1] Ulrik Vieth and Mojca Miklavec, Another
incarnation of Lucida: Towards Lucida
OpenType. TUGboat 32:2, pp. 169–176, 2011.
tug.org/TUGboat/32-2/tb101vieth.pdf.

⋄ Karl Berry

http://tug.org/lucida

Lucida OpenType fonts available from TUG



12 TUGboat, Volume 33 (2012), No. 1

The Amiri typeface

Khaled Hosny

In 1905, the famous Bulaq printing press in Cairo
(also known as al-Amiriya, the royal press) issued
a new Arabic typeface as part of reviving the then
moribund printing press. This typeface later came to
be one of the most widely used and highly regarded
Arabic typefaces, even in the digital era.

Arabic has strong calligraphic traditions with
many styles, and Naskh (“to copy”) is the most
commonly used style in typesetting. One of the most
novel features of the Bulaq typeface is maintaining
the æsthetics of Naskh calligraphy while meeting
the requirements (and limitations) of typesetting, a
balance that is not easily achieved.

Amiri is a revival of that typeface, and though it
is not the first one, I believe it is the most elaborate
and most complete, as all other revivals omit many
of the letter forms in the metal type either for sim-
plicity or limitations of early digital systems. On the
other hand, features that are merely a result of the
limitations of metal typesetting are not reproduced
in Amiri, when appropriate.

Work on the Amiri typeface started slowly in
late 2008, with the first alpha release in November
2010 and the first beta in December 2011. Though
formally still in beta stage, it is now considered to
be mature enough for general use. It will not be
marked stable until there are no metric-incompatible
changes planned.

The Amiri family includes regular, bold, slanted
and bold slanted fonts. Though slanted type is not
a particularly Arabic concept, it is provided because
of widespread use in contemporary typesetting, es-
pecially on the web, and right-leaning fake-slanted
Arabic is very unnatural. The bold font is not as pol-
ished as the regular one, and still needs more work.

Amiri fully covers the “Arabic” and “Arabic
Supplement” blocks in version 6.0 of Unicode, and
thus it supports any language written in Arabic that
is supported by Unicode. This includes, for exam-
ple, Arabic, Fula, Hausa, Jawi, Kashmiri, Kurdish,
Ottoman Turkish, Pashto, Persian, Punjabi, Sindhi,
Swahili, Urdu, Uyghur and Wolof. Work on new Ara-
bic additions to version 6.1 of the standard is under
way. “Arabic Presentation Forms–A” and “Arabic
Presentation Forms–B” blocks are also covered for
the sake of completeness, though they are composed
mostly of compatibility characters.

Great care has been taken to make sure Amiri
can be used to typeset the Qur’an (the book of Islam)

Sample from Kalilah wa Dimnah, Bulaq, 1938.

٪٠١٢٣٤٥٦٧٨٩غظضذخثتشرقصفعسنملكيطحزوهدجبأ
٪٠١٢٣٤٥٦٧٨٩غظضذخثتشرقصفعسنملكيطحزوهدجبأ
٪٠١٢٣٤٥٦٧٨٩غظضذخثتشرقصفعسنملكيطحزوهدجبأ
٪٠١٢٣٤٥٦٧٨٩غظضذخثتشرقصفعسنملكيطحزوهدجبأ

The four styles in the Amiri family.

تَْغَزَبذْإِسِمْشَّلٱلِْثِمَكدٍْوخَقَْلَخفْصِ
ِراَطْعِمَءاَلْجنَاَهِبعُيجِضَّلٱىَٰظْحيَ

Arabic pangram set in Amiri.

by providing the needed glyphs and shaping rules,
sometimes working around the shortcomings of Uni-
code.

Amiri is free software, available under the terms
of the SIL Open Font License (OFL) v1.1. Additional
free licenses will be considered if the need arises (e.g.,
to remix it with another free typeface).

The development of the Amiri typeface has been
supported by the TUG development fund and Google
Web Fonts, as well as generous donations from enthu-
siastic users. Amiri also owes much of its existence
to the great help offered by its users reporting bugs,
testing on platforms and configurations to which I do
not have access, and offering great insight on various
aspects of typesetting and language support.

Short to medium-term plans for Amiri include
coverage of recently added Arabic characters to Uni-
code, polishing the bold font, and spinning off spe-
cialized fonts, e.g., a font for Qur’an typesetting with
defaults that are more suitable for Qur’an than regu-
lar text. Longer-term plans include math and display
companions.

Amiri has been developed exclusively using free
software, mainly FontForge, Inkscape, Python and
VIM.

⋄ Khaled Hosny

http://amirifont.org

Khaled Hosny



TUGboat, Volume 33 (2012), No. 1 13

Biber—the next generation

backend processor for BibLATEX

Philip L. Kime

Abstract

For many, particularly those writing in the humani-
ties, Philipp Lehman’s BibLATEX package has been
a much welcomed innovation in LATEX bibliography
preparation. The ability to avoid the BibTEX stack
language and to be able to write sophisticated bibli-
ography styles using a very rich set of LATEX macros
is a considerable advantage. Up until 2009 however,
BibLATEX still relied on BibTEX to sort the bibliog-
raphy, construct labels and to create the .bbl. The
requirement for a dedicated backend processor to
do such tasks was not going to go away as doing
complex, fast sorting in TEX is not a particularly
amusing task. It was clear that in the future, the
BibLATEX backend processor needed to be able to
handle full Unicode and many feature requests were
being raised for things which the backend had to
do and which were either impossible or nightmarish
to do with BibTEX. Biber was created to address
these issues and this article is about how it works
and the many rather nice things it can do. Biber is
the recommended backend processor for BibLATEX,
replacing BibTEX. There will come a time (proba-
bly around BibLATEX 2) when BibTEX is no longer
supported for use with BibLATEX, so read on . . .

1 History

François Charette originally started to write Biber
in 2008 and after I realised that an APA style I was
writing for BibLATEX required some fundamental
changes to the backend processor and that BibTEX
wasn’t going to be it (for why, see below), I had a
look at the early Biber. I played with it for a while,
found a small bug and submitted it. Things esca-
lated and development entered a very rapid period
where François and I knocked Biber into a releasable
shape quite quickly. After a year or so, the vicis-
situdes of life pulled François away and I was left
to my own devices with Biber gaining users rapidly,
particularly in Germany, probably due to Philipp
Lehman’s involvement with the development as we
soon realised we had to coordinate BibLATEX and
Biber releases. This continues and BibLATEX and
Biber are now so closely linked, it is fair to say that
they are essentially one product. As we approach
the BibLATEX 2.0 release, the plan is to drop BibTEX
support altogether as there are so many features now
which are marked “Biber only” in the BibLATEX man-
ual. It’s those features which I will describe below.

François says that the name comes from the
national animal of the last country he lived in, trans-
lated into the language of the country he currently
lives in. It also sounds a bit bibliographical.

2 What Biber does

Biber is used just as you would BibTEX. It’s designed
to be a drop-in replacement for BibLATEX users. It
uses a BibTEX compatible C library called “btparse”
and so existing .bib files should work as-is. When
BibLATEX is told that it’s using Biber instead of
BibTEX as the backend processor, it outputs a special
.bcf file. This is nothing more than a fancy .aux file
in XML which describes all of the necessary options,
citation keys and data sources which Biber uses to
construct the .bbl. XML was a natural choice as
the options can get quite complex (particularly for
sorting). Biber reads the .bcf file, looks for the
required data sources, reads them and looks for the
citation keys also mentioned in the .bcf. Then it
constructs a .bbl and writes it. Sounds simple? It’s
not. Biber is about 20,000 lines of mostly object-
oriented Perl and some of the things it does are quite
tricky.

3 Distributing Biber

Biber is written in Perl. This is an ideal language for
such a task, as Perl 5.14 (which is what Biber uses
now) has full Unicode 6.0 support and some really su-
perb modules for collating UTF-8 which have CLDR1

support, allowing sorting to be tailored automatically
to the idiosyncrasies of particular languages. The
Text::BibTeX module makes parsing BibTEX files
easy but I had to change the underlying btparse C
library a little bit to make it deal with UTF-8 when
forming initials out of names and to address a few
other things which are the inevitable consequences
of a library written probably fifteen years ago; other
than that, the library has proven to be a solid foun-
dational element of Biber. I have to thank Alberto
Manuel Brandõ Simões, the current Text::BibTeX
maintainer for being so flexible and releasing new
versions so quickly after my hacks.

Distributing Perl programs with such module
dependencies is not easy and was a major stumbling
block to early adoption of Biber. Then I came across
the marvellous PAR::Packer module which allows
one to package an entire Perl tree with all dependen-
cies into one executable which is indistinguishable
from a “real” executable. One virtualised build farm
later and Biber had an automated build procedure
for most major platforms and was swiftly put into
TEX Live. Now all users have to do is to update their

1 Common Locale Data Repository

Biber— the next generation backend processor for BibLATEX



14 TUGboat, Volume 33 (2012), No. 1

TL installation and type “biber”. SourceForge2 is
home to regular updates of the development binaries
and github3 is home to the Perl source which can be
used instead of the binary versions if you don’t mind
installing some Perl modules (in fact, I only ever use
the Perl source version myself).

4 Unicode and sorting

One of the main issues with the original BibTEX
is that it is ASCII only. There is an 8-bit version
bibtex8 but that’s not really enough these days.
There is also a newish Unicode version bibtexu but
that doesn’t help BibLATEX’s myriad of other needs
for its backend and it doesn’t help with CLDR and
the hard problem of complex sorting.

Biber is Unicode 6.0 compliant throughout, even
the file names it reads and the citation keys them-
selves. This means that your data sources can be
pure UTF-8 which is particularly nice if you are using
a UTF-8 engine like X ETEX or LuaTEX. In fact, Biber
will look at the locale settings passed by BibLATEX
(or those found in the environment or passed on the
command line) and automatically (re)encode things
to output a .bbl in whatever encoding you want. It
will even automatically convert UTF-8 to and from
LATEX character macros/symbols in case you are us-
ing a not-quite-Unicode engine like pdfTEX.

Sorting is one of the most important things that
Biber does. Sorting the bibliography is done by de-
fault using the UCA (Unicode Collation Algorithm)
via the excellent Unicode::Collate module. This
is CLDR aware and so it will take notice of the locale
from various sources and tailor the sort accordingly.
Swedes hate it when ä sorts before å and CLDR sup-
port avoids upsetting Swedes. Sorting a bibliography
means dealing with sorting requirements such as:

“Sort first by name (or editor if there is no
name or translator if there is no editor) and
then descending by year and month (or by
original year and month of publication if there
is no year) and then by just the last two digits
of the volume and then by title (but case
insensitive for title). Oh, and if there is a
special shorthand for the entry, sort by that
instead and ignore everything else.”

Biber does this in complete generality using a multi-
field sorting algorithm allowing case sensitivity, direc-
tion and substrings to be specified on a per-field ba-
sis. BibLATEX defines many common sorting schemes
(such as name/year/title, etc.) but you are free to
define your own using a nice LATEX macro interface.

2 https://sourceforge.net/projects/biblatex-biber
3 https://github.com/plk/biber

This interface makes BibLATEX write a section in the
XML .bcf which Biber reads to construct the sort-
ing scheme it uses to sort the entries before writing
the .bbl. I am not aware of any bibliography sys-
tem that has better sorting but that may be wishful
thinking born of spending so much time getting it to
work . . .

5 Data sources and output

It may have struck readers as strange that I refer to
their .bib files as “data sources”. This is because
Biber can read more than just BibTEX format files.
It has a modular data source reading/writing archi-
tecture and so new drivers can be written relatively
easily to implement the ability to read new data
sources and write new output formats. Data sources
are read and internal entry objects constructed so
that the data is processed in a source-neutral format
internally. Currently, Biber can also read files in RIS

format, Zotero XML/RDF format and Endnote XML

format but support for these formats is experimental,
partly due to weaknesses in the formats themselves,
it has to be said. There is support for remote data
sources for all formats by specifying a URL that re-
turns a file in the format. This is quite useful with
services such as CiteuLike which has a .bib gateway.

Biber normally outputs a .bbl file but it can
also output a GraphViz .dot file which allows you
to visualise your data. This is mainly useful for
checking complex cross-reference inheritance and
other entry-linking semantics. Biber can also output
BibLATEXML which is an experimental XML data
format specially tuned for BibLATEX (of course it can
read this too).

A very nice feature of Biber is the “sourcemap”
option. It is often the case that users would like to
massage their data sources but they have no control
over the actual source. Biber allows you to specify
data mapping rules which are applied to the data as
it is read, effectively altering the data stream which
it sees, but without changing the source itself. For
example, you can:

• Drop all ABSTRACT fields as the entries are
read so that their strange formatting doesn’t
break LATEX.

• Add or modify a KEYWORD field in all BOOK

or INBOOK entries which come from a data
source called “references.bib” whose TITLE

field matches “Collected Works” so that you can
split your bibliography using BibLATEX filters.

• Use full Perl regular expressions to match/re-
place in any field in the entry to regularise messy
variants of a name so that the same-author dis-
ambiguation features of BibLATEX work nicely.

Philip L. Kime



TUGboat, Volume 33 (2012), No. 1 15

The “sourcemap” option is quite general and provides
a linear mapping interface where you can specify a
chain of rules to apply to each entry as it is read
from the data source. The Biber PDF manual has
many examples.

6 Uniqueness

A major feature is the automated disambiguation
system. Depending on the options which you set
in BibLATEX, Biber will automatically disambiguate
names by using either initials or, if necessary, full
names. Even better, it can, if you like, disambiguate
lists of names which have been truncated using “et
al.” by expanding them past the “et al.” to the point
of minimal unambiguity. (This is a requirement for
APA style and the very feature I needed when I
started looking at Biber. It took two years to get
this implemented.) This is fairly deep magic as it
interacts with name disambiguation in an unbounded
loop sort of way.

The disambiguation system can be asked to do
more subtle types of work too, such as disambiguat-
ing citations just enough to make them unambiguous
pointers into the bibliography but not enough to
make every single individual author unambiguous,
etc. These are quite fine points and make sense when
you read the section of the BibLATEX manual which
covers this, with examples. Again, I don’t know of
any other bibliography system that has automated
this.

7 Other features

The following features are all due to feature re-
quests by BibLATEX users and some were quite com-
plex to implement. Some of them are waiting until
BibLATEX 2.x for a macro interface to expose them
to users as this is when it is planned to retire BibTEX
support from BibLATEX.

• Many BibLATEX options can be set on a per-
entrytype basis so you can, for example, choose
to truncate names lists of five or more authors
with “et al.” for BOOK entries and choose a
different limit for ARTICLE entries.

• Biber only needs one run to do everything, in-
cluding processing multiple sections.

• You can create an entry “set” (a group of en-
tries which are referenced/cited together) dy-
namically, just using BibLATEX macros. With
BibTEX, this requires changes to the data source.

• “Syntactic” inheritance via a new XDATA entry-
type and field. This can be thought of as a field-
based generalisation of the BibTEX @STRING

functionality (which is also supported). XDATA

entries can cascade so you can inherit specific
fields defining a particular publisher or journal,
for example.

• “Semantic” inheritance via a generalisation of
the BibTEX cross-reference mechanism using the
CROSSREF field. This is highly customisable by
the user— it is possible to choose which fields
to inherit for which entrytypes and to inherit
fields under different names etc. Nested cross-
references are also supported.

• Support for related entries, to enable generic
treatment of things like “translated as”, “reprint-
ed as”, “reprint of” etc. (BibLATEX 2.x)

• Customisable bibliography labels for styles which
use labels (BibLATEX 2.x)

• Multiple bibliography lists in the same section
with different sorting and filtering.
(BibLATEX 2.x)

• No more restriction to a static data model of
specific fields and entrytypes. (BibLATEX 2.x)

• Structural validation of the data against the
data model with a customisable validation model
(BibLATEX 2.x)

Feature requests and bug reports are always welcome
via the SourceForge tracker.

⋄ Philip L. Kime
Zürich, Switzerland
Philip (at) kime dot org dot uk

http://biblatex-biber.sourceforge.net

Biber— the next generation backend processor for BibLATEX



16 TUGboat, Volume 33 (2012), No. 1

X ELATEX and the PDF archivable format

Claudio Beccari

Abstract

At this time, X ELATEX produces a final PDF output
file but it gets this output by means of the trans-
formation of a XDV (extended DVI) intermediate
file. This excludes most of the possibilities offered by
pdfLATEX that, since version 1.40.9 and with the help
of an extension file pdfx.sty, can directly produce
a PDF/A-1b compliant output. This paper explains
how to overcome this by resorting to the ubiquitous
Ghostscript program.

1 Introduction

Several papers have been already published in TEX-
related journals, ArsTEXnica and TUGboat included,
about producing PDF/A-compliant archivable files.
Almost all of these papers focused on the various
caveats that are necessary to observe in order to
avoid the many pitfalls of this format. Some papers
also discussed the fact that the color profiles are not
so clearly defined, so sometimes a non-compliant file
is obtained just because an unsuitable color profile
file has been employed. Some papers pointed out
that sometimes the Preflight program, the most au-
thoritative one included in the Adobe Acrobat Pro
suite, fails to recognize file compliance with the ISO

standard labelled PDF/A-1a or PDF/A-1b. But to
the best of my knowledge, no paper has dealt with
producing a PDF/A-compliant file from a source in-
tended to be composed with X ELATEX.

Let us recall some pieces of information. The
PDF/A ISO standard was devised in 2005, and reg-
ulated with the ISO-19005-1:2005 document. This
standardizes two sub-formats, labelled 1a and 1b,
with the latter being less stringent than the former;
it requires that the level of the PDF language used
in the PDF file is level 4; it requires the fonts to
be outlines and that they be subset-embedded in
the document file; it requires that the color profiles
are clearly defined, and it requires the presence of
certain metadata, in a non-encrypted form, so that
library searches can be performed. The purpose is
to have files that fulfill specific limitations, but that
will be readable from now on for an unlimited length
of time, in spite of the fact that in, say, fifty years
the fonts and the programs available today may not
exist any more. The former sub-format, 1a, is more
stringent in the sense that the fonts must be com-

Editor’s note: First published in ArsTEXnica #11, April

2011. Reprinted with permission, in slightly different form.

pletely embedded and also the document structure
must be included in the file.

As far as I am aware, archivable files in the 1b
subformat are generally sufficient for the purpose
of long-term reproduction on screen of the archived
documents, exactly as the authors intended them
to be. Therefore I will concentrate on this “simpler”
format; besides, as a practical matter, I did not find
any means for producing the 1a format except the
Preflight program of Adobe Acrobat Pro, to which I
have no direct access.

Finally it must be noticed that a new standard
has been issued in 2011, ISO 19005-2:2011, that
slightly extends the previous PDF/A standard; with
this new standard, PDF language level 6 may be
used and JPEG2000 images may be included in the
archivable documents. Although these are important
enhancements in certain areas, I will not deal with
them and just stick with the previous standard, for
no other reason than that the Ghostscript program,
which is needed for the task, is not yet capable of
satisfying the new standard. I hope that in a short
time Ghostscript will be updated and its documen-
tation will show the small modifications that need
to be introduced into the necessary scripts.

2 PDF/A requirements

2.1 The metadata

Any PDF/A compliant file must contain some meta-
data that describe some features of the document,
from the color profile and the document title and au-
thor, to the keywords that ease library searches of the
archived document. Some metadata are compulsory,
some are optional.

As for the compulsory metadata, I show below
how to prepare a suitable auxiliary file that contains
all the necessary information in the PostScript lan-
guage; Ghostscript will translate such information
into the XML language and will insert this XML code
into the output file.

In some sense this is the simplest part of the
whole procedure; the problem consists of knowing
what information to supply and in which form.

2.2 The color profile

One of the most mysterious pieces of information is
the one that describes the color profile; Luigi Scarso
already wrote a paper [9] where he discusses this
problem in connection with the typesetting program
ConTEXt MkIV. But the main problem is not the
particular typesetting program, but rather the very
concept of color profile. I won’t go any deeper into
this question, but rather redirect the reader to [9],
where the question is thoroughly discussed. Here, I

Claudio Beccari



TUGboat, Volume 33 (2012), No. 1 17

remark that I have obtained satisfactory results by
downloading the color profile file ECI-RGB.V1.0.icc,
freely downloaded from the www.eci.org. This file
may be saved anywhere that Ghostscript can find it,
but I suggest saving the file in a system-wide folder
and to specify an absolute path when dealing with
this file.

This color profile is generic, and yields satis-
factory results in most circumstances; it deals only
with the RGB (red, green, blue) additive color model
(used by, for instance, TV and computer screens) and
the images inserted into the document file should
be consistent with this color model. Therefore, no
image in the CMYK (cyan, magenta, yellow, black)
subtractive color model should be used in a PDF/A-
compliant file when the color profile refers to the
RGB color model.

2.3 Hyperlinks

PDF/A-compliant files may use internal hyperlinks
in order to ease the document navigation. “Internal”
links means that link targets are internal to the
document, so the reader may use the bookmark pane
of a PDF reader to jump from one point to another in
the document. This possibility is particularly useful
in a reference document.

External links are prohibited in PDF/A; external
links refer to other documents on the same computer,
or to targets in the Internet. It is evident that a long
term archiving process cannot have links between
objects that may exist today, but most likely will not
exist in fifty years. Therefore, when archiving is a
requirement, any document should be self contained;
if one needs to refer to another document, include
either a complete reference in the document bibli-
ography, or the referenced document in its entirety.
The choice depends on the author, but we must keep
in mind the requirement that the archived document
must be self contained.

This is not a trivial constraint; after all, it’s our
daily experience, for anyone using the Internet, that
many Internet addresses valid yesterday are not valid
today, not to mention fifty years from now!

In order to be sure to have the hyperlinks behave
as they should with PDF/A-compliant documents, it
is sufficient to specify the pdfa option either to the
class itself, or to the hyperref package directly, or to
the \hypersetup command with which the package
may be customized.

2.4 Fonts

The default fonts of any TEX distribution are pretty
good for most purposes, but they fail in some other
instances. I already wrote a short paper on this

subject [2] in order to find a patch to “heal” the
cmsy* fonts that use some zero-width glyphs. This
happened with the math family three fonts, the one
that contains the math symbols, because some sym-
bols, such as 7→ and all the negated relation oper-
ators 6=, 6∈, etc., resorted to the superposition of a
zero-width glyph over, or beside, another symbol.
Zero-width glyphs are not PDF/A compliant.

With X ELATEX the font choice is much wider,
although where math typesetting is concerned, at
this time there are only a few suitable OpenType
fonts; but, as Unicode-encoded fonts, they are (or
should be) safe under the point of view of compliance
with the PDF/A requirements. I confess that I did
not test for this conformity the recently available
OpenType Latin Modern Math fonts, but I tested
the XITS math fonts (with the widest choice of math
glyphs) and I did not find any glitch.

On the other hand, I found out something that
either I neglected in the past or that more modern
checking programs can spot: some problems with
the use of accents in the “normal” Type 1 Computer
Modern OT1-encoded fonts.

Evidently if you use X ELATEX you have no prob-
lem in avoiding the traditional Computer Modern
fonts; if you like their shape, you’d rather use the
OpenType CM-Unicode fonts (which contain the full
accented set of Latin letters, Cyrillic letters, and
Greek letters, suitable for the Greek polytonic or-
thography), and there would not be any problem.
But the problem might show up when you include
in your document PDF files or pages extracted from
other documents, where the latter were typeset with
the default CM fonts.

I may have overlooked this problem in the past,
because I never use OT1-encoded fonts for typesetting
my documents; moreover, in principle nobody should
use the OT1-encoded fonts if the document they type-
set contains even a single accented word. The poor
performance of the OT1-encoded fonts depends on the
fact that accents are superimposed on any letter that
has to be accented by an overlay mechanism that
is visually acceptable when a document is printed,
but in effect is a poor patch that does not follow the
best practice used by the OpenType fonts and the
T1 encoded “normal” TEX fonts: OpenType fonts
use accented letters and T1 encoded fonts translate
the accenting process into a glyph substitution so
that no overlay process is involved.

Therefore it is most important to check the type
and quality of the fonts embedded into a PDF file to
be included, be it a technical diagram or a stretch
of text. For this purpose I find the free program
Adobe Reader X (any recent version will do the

X ELATEX and the PDF archivable format



18 TUGboat, Volume 33 (2012), No. 1

task) extremely useful, where pressing ctrl+D (or
cmd+D on Mac computers) opens a dialog pane
where the user can select the “Fonts” tag and get
the full list of the fonts contained in the document.
In particular, the user can require that no Type 3
(bitmapped) fonts are used and, if any CM font is
used, the user may examine the document to find
out if any accented letters have been used. In the
latter case the user should process the document to
be included by following the procedure shown in the
next section.

2.5 Included documents and files

If the documents are in PDF format, the Adobe
Reader procedure above may be used also for check-
ing other document characteristics. This or other
programs should be used also for controlling the color
model of the documents or images to be included.

The user must distinguish between bitmap and
vector images. The former may contain anything,
from photographs to text and line art; they must be
controlled only to determine the color model. Should
it be a “wrong” model, almost any image processing
program can be used to open the file and save it
again with a different color model. Remember the
only color model usable for PDF/A-compliant images
is RGB, though the “gray” model is also admissible,
since the RGB model can render gray nuances very
well. But while bitmap format may be acceptable for
photographs with a pixel density of at least 300 dpi,
in general it is not valid for line art and textual files.
The compression method used by the JPEG format
(.jpg) is not lossless, therefore the reproduced image
may exhibit unwanted artifacts, often very visible if
the image contains periodic patterns. The Portable
Network Graphics format (.png) uses a lossless com-
pression method, and in general is more suited for
line art. Vector graphics, in any case, are the best
suited for line art, but sometimes it’s not possible to
have every line art picture available in such a format.

But stretches of text and vector graphics lose
all quality in a terrible way if they are converted to
bitmapped form; therefore the user should pay much
attention to what s/he does with files to be included
that do not comply with the PDF/A standard.

Concerning .eps vector files, it’s easy to convert
them to .pdf, but it’s necessary to pay attention
that every possible font glyph is embedded into the
transformed file.

One way to correct the font problems of a PDF

file is to open it with the free program inkscape

and save it back to PDF format. In this process the
vector fonts are converted into vector drawings that
reproduce the same glyphs, but do not exploit or

exhibit any font property. In this way, for example,
it is possible to draw the glyphs of the fonts that
were not embedded into the file, and it is possible to
redraw the poor accent overlay of the CM fonts. I
confess I myself have never tried this procedure, but
it was suggested by Hàn Thé̂ Thành [4].

3 The metadata auxiliary file

We are almost ready to produce a PDF/A-compliant
file from a file typeset with X ELATEX. I assume that
X ELATEX has been run the sufficient number of times
so as to be sure that the final PDF document does
not require any further adjustment. Of course we
can repeat the transformation, but it’s better to wait
until the document is substantially stable. We are
going to use Ghostscript; it must be at version 8.60
or higher; the more recent the better. At writing
time I am using version 9.02.

As already mentioned, we need an auxiliary file
to specify the metadata and to set up some special
PostScript commands necessary for this task. The
Ghostscript distribution contains a file named PDFA_

def.ps contained in the sub-tree .../ghostscript/
〈version〉/lib/; where this sub-tree is grafted into
your general system tree depends on your platform
and your operating system, but you can execute a
search command and find out where all this resides
if need be.

Copy the above-mentioned file PDFA_def.ps to
the folder where you saved your document master
file. Suppose this master file is named mydoc.tex;
copy the above .ps file to mydoc-def.ps (notice I
changed the underscore into a normal “hyphen sign”
or “short dash”).

Now open this file with an ASCII editor; since it
is a .ps file you might right-click the file name, but
you have to choose the editor name yourself, since
you cannot use the default application for .ps files.
On a Windows platform you might use Wordpad; on
GNU/Linux, you might use vim, emacs, gedit; on a
Mac, you might use Textedit.app or TextWrangler.
app or TeXworks.app, but avoid using TeXShop.app,
since TeXShop is capable of “distilling” a .dvi or
.ps file into PDF format, which generally is a very
useful feature—but not in this case!

The newly created mydoc-def.ps contains a few
lines commented with a % Customize comment; you
should edit these lines in the way that is best suited
to introduce the necessary metadata information. To
insert the metadata suitable for this article, I would
use the file as shown on page 19.

As you can see, there are three sets of data that
can be customized:

1. The /ICCProfile; I changed the default to the

Claudio Beccari



TUGboat, Volume 33 (2012), No. 1 19

The auxiliary .ps file

%!

% $Id: PDFA_def.ps 8284 2007-10-10 17:40:38Z giles $

% This is a sample prefix file for creating a PDF/A document.

% Feel free to modify entries marked with "Customize".

% This assumes an ICC profile to reside in the file (ISO Coated sb.icc),

% unless the user modifies the corresponding line below.

systemdict /ProcessColorModel known {

...

} if

% Define entries to the document Info dictionary:

/ICCProfile (/Users/claudio/icc/ECI-RGB.V1.0.icc) def % Customize

[ /Title (XeLaTeX and the PDF archivable format) % Customize.

/Author (Claudio Beccari) % Customize.

/Subject (How to produce a PDF/A compliant document typeset with XeLaTeX) % Customize.

/DOCINFO pdfmark

% Define an ICC profile :

[/_objdef {icc_PDFA} /type /stream /OBJ pdfmark

[{icc_PDFA} <</N systemdict /ProcessColorModel get

/DeviceGray eq {1} {4} ifelse >> /PUT pdfmark

[{icc_PDFA} ICCProfile (r) file /PUT pdfmark

% Define the output intent dictionary :

[/_objdef {OutputIntent_PDFA} /type /dict /OBJ pdfmark

[{OutputIntent_PDFA} <<

/Type /OutputIntent % Must be so (the standard requires).

/S /GTS_PDFA1 % Must be so (the standard requires).

/DestOutputProfile {icc_PDFA} % Must be so (see above).

/OutputConditionIdentifier (CGATS TR001) % Customize

>> /PUT pdfmark

[{Catalog} <</OutputIntents [ {OutputIntent_PDFA} ]>> /PUT pdfmark

The shell script

#!/bin/bash

file1=$1.pdf

file2=$1-a.pdf

file3=$1-def.ps

# WHAT FOLLOWS MUST BE WRITTEN ON JUST ONE LINE:

gs -dPDFA -dNOOUTERSAVE -dUseCIEColor -dCompatibilityLevel=1.4 -sDEVICE=pdfwrite

-sProcessColorModel=DeviceCMYK -sPDFACompatibilityPolicy=1 -o "$file2" "./$file3" "$file1"

above-mentioned file ECI-RGB.V1.0.icc, giving
the full path from the root of my disk to the
file; probably I could have abbreviated my home
folder with ~, but the full path is more easily
changeable on those Windows platforms that do
not have the notion of “home”.

2. The document /Title, /Author and /Subject;
other similar metadata may be added in a sim-
ilar way, but remember: these metadata have
nothing to do with those you can specify in the

input files to be processed with pdfLaTeX by
means of specific \pdf... commands; some of
those commands may have a meaning also for
X ELATEX, but their contents do not migrate to
the proper PDF/A file section where metadata
should be.

3. The /OutputConditionIdentifier; I did not
modify it at all.

Now the fact that we named this auxiliary file
with relation to the main document comes in handy,

X ELATEX and the PDF archivable format



20 TUGboat, Volume 33 (2012), No. 1

because it is clear that every document needs its
own auxiliary file. We thus avoid the possibility of
fiddling with a myriad of PDFA_def.ps files, all with
the same name, even if they are in different folders,
and with Ghostscript looking for it starting with its
own sub-tree; otherwise, you may get very frustrated
trying to figure out why Ghostscript does not fetch
your newly-created .ps file.

4 The script

Ghostscript requires a long series of specifications for
doing its job; shell scripts (for Unix-like systems) or
bat files (for Windows) are good for specifying the
whole command string without errors and without
the risk of forgetting some terms.

The shell script on page 19 may be copied for use;
the only attention that must be paid is to eliminate
the end-of-lines in the last long command; it must
consist of just one line. The shell script may be
changed into a bat file by using the Windows name for
the Ghostscript executable (gswin32c in place of gs),
using %1 in place of $1, and changing the comment
character # to the string REM. The first three file

assignments are not really necessary; one might avoid
them and use only one symbolic parameter, but they
might be used for testing the presence of the files
that are required and to issue the necessary messages
in case they were missing. The bash file might be
saved with the name pdf2pdfa (or pdf2pdfa.bat)
without forgetting to give it the proper mode bits,
for example, chmod 755 pdf2pdfa.

Now the user may simply issue on the terminal
the command:

pdf2pdfa mydoc

and Ghostscript will do the work.
Of course the last step is to check PDF/A com-

pliance with a reliable program, such as Preflight.
Please do not trust the information issued by Adobe
Reader X when it opens a PDF file that pretends to
be PDF/A-compliant. The information is a wish, in
the sense that the statement might be true, but the
document has not been really tested in every remote
corner of its compliance. So the real message should
not be: “This file is PDF/A compliant”, but: “This
file might be PDF/A compliant”.

5 Conclusion

I have converted a number of PDF documents pro-
duced with X ELATEX using the procedure described
in the previous sections. Of course I have observed
all the caveats I listed above; in fact, they are the
result of my failing efforts. I had to find out at every

failure the cause, but eventually I could put together
a reasonable list of caveats.

There is another thing that might be done: to
write an extension file to be read by the main doc-
ument file, that accepts LATEX style commands in
order to specify the metadata and write the aux-
iliary file without any specific intervention by the
user; this extension could also run Ghostscript by
means of a suitable “shell escape” command at the
end of the processing by X ELATEX, as the last task of
the \end{document} statement. Apparently there
already exist the necessary hooks, but I must leave
this further task for another moment.

References

[1] Adobe. XMP toolkit SDK. http://www.adobe.
com/devnet/xmp/sdk/eula.html, 2010.

[2] Claudio Beccari. Some PDF/A tricks. The
PracTEX Journal, 2010. http://tug.org/

pracjourn/2010-1/beccari.

[3] Olaf Drümmer, Alexandra Oettler, and
Dietrich von Seggern. PDF/A in a
Nutshell: Long Term Archiving with
PDF. 2008. http://www.pdfa.org/download/
pdfa-in-a-nutshell.

[4] Hàn Thé̂ Thành. Generating PDF/A
compliant PDFs from pdfTEX. http:

//support.river-valley.com/wiki/index.

php?title=Generating_PDF/A_compliant_

PDFs_from_pdftex, 2008.

[5] Donald E. Knuth. The TEXbook, volume A of
Computers and Typesetting. Addison-Wesley,
Reading, Massachusetts, 1990.

[6] Emanuela Martini. Lo standard PDF/A:
Sperimentazione di software per la verifica di
conformità allo standard ISO 19005:2005, 2007.

[7] PDF/A. Technical notes. http://www.pdfa.

org/publications, 2005–2010.

[8] CV Radhakrishnan and Hàn Thé̂ Thành.
Generation of PDF/X-1a and PDF/A-1b
compliant PDF’s with pdfTEX— pdfx.sty.
http://mirror.ctan.org/macros/latex/

contrib/pdfx, 2009.

[9] Luigi Scarso. Introduction to colours in
ConTEXt MkIV. TUGboat, 31(3):203–207, 2010.

⋄ Claudio Beccari
Villarbasse (TO), Italy
claudio dot beccari (at) gmail

dot com

Claudio Beccari



TUGboat, Volume 33 (2012), No. 1 21

Avoid eqnarray!

Lars Madsen

Abstract

Whenever the eqnarray environment appears in a
question or example of a problem on comp.text.

tex, tex.stackexchange.com or other fora there is
a high probability that someone will tell the poster
not to use eqnarray. This article will provide some
examples of why many of us consider eqnarray to
be harmful and why it should not be used.

Introduction

When someone asks a question on comp.text.tex,
tex.stackexchange.com or other fora about the
eqnarray environment or shows an example using
it, there will always be someone that instructs the
poster to stop using eqnarray and use something
better instead. This article provides an example-
based overview of some of the reasons why many
people consider eqnarray to be obsolete. Thus, this
article can be used as a reference when a poster asks
for an explanation.

The prerequisites for this article are a basic
knowledge of LATEX and knowledge of the syntax
used by eqnarray. Experience with the environ-
ments from the amsmath package is a plus but not
mandatory.

1 The basics

In plain LATEX, the eqnarray environment is basi-
cally the only construction available for numbered
multi-line equations. The eqnarray environment is
similar to

\begin{array}{rcl}

...

\end{array}

with the difference being that the first and last cell
in each row are automatically typeset as display
style mathematics, and not as text style math as it
would be in the array environment; also, eqnarray
supports automatic equation numbers.

The principal eqnarray usage is similar to this
example:

\begin{eqnarray}

y &=& (x+1)^2 \\ &=& x^2+2x+1

\end{eqnarray}

which results in (without the box):

Copyright c© 2006, 2012 Lars Madsen

Permission is granted to distribute verbatim or modified

copies of this document provided this notice remains intact.

Originally published in The PracTEX Journal 2006-4.

y = (x+ 1)2 (1)

= x2 + 2x+ 1 (2)

In the examples that follow, we use the command
\dbx instead of writing some meaningless arbitrary
mathematical formula. \dbx is a simple macro, de-
fined by the author, that writes a box to simulate
some random mathematical material. Using an op-
tional argument we can adjust the width of the box
created by \dbx.

The reason for using simulated math instead
of actually writing something is that removing the
actual text makes the reader more aware of the ac-
tual problem, which is not the text but rather the
construction/surroundings themselves. The example
above will be shown like this instead:

\begin{eqnarray*}

\dbx &=& \dbx[5cm] \\ &=& \dbx

\end{eqnarray*}

which results in:

=

=

2 Behold the problems

2.1 The primary problem:

Spacing inconsistency

Most commonly, eqnarray-users write their displayed
equations by mixing eqnarray and eqnarray* with
equation, \[...\], or $$...$$ constructions. Some
even mix it with environments from the amsmath

package (though this is mostly seen when a docu-
ment has been written by more than one author).

This mixing results in the primary problem with
eqnarray— spacing inconsistency. In the following
example we consider a single line equation versus a
multi-line eqnarray equation.

\[ \dbx = \dbx \]

whereas

\begin{eqnarray*}

\dbx &=& \dbx[3cm] \\ &=& \dbx

\end{eqnarray*}

which results in

=

whereas

=

=

Can you spot the problem?

Avoid eqnarray!



22 TUGboat, Volume 33 (2012), No. 1

It is even more obvious when we place the same
code using eqnarray and equation next to each
other:

\begin{eqnarray} \dbx &=& \dbx[3cm]

\end{eqnarray}

versus

\begin{equation} \dbx = \dbx[3cm]

\end{equation}

which results in

= (3)

versus

= (4)

Can you see the difference?

We notice how the spacings around the =’s are incon-
sistent, i.e., not equal. Consistency being one of the
key values in any good document design, the spacing
around the = signs should be equal on both sides
(not counting stretch), no matter which construction
is used.

Since eqnarray is (naively) built on top of the
array environment we still have the \arraycolsep

space between columns, which then affects the spac-
ing around the =’s in our case. We could change the
value of \arraycolsep:

\setlength\arraycolsep{1.4pt}% some length

\[ \dbx = \dbx \]

\begin{eqnarray*}

\dbx & = & \dbx \\ &= & \dbx

\end{eqnarray*}

Resulting in:

=

=

=

Changing the value of \arraycolsep, however, will
also change the appearance of any other construction
that might be using array, so this does not suffice;
see the following example.

Before the change:

\begin{eqnarray*}

A &=& \left(\begin{array}{cc}\dbx&\dbx\\

\dbx&\dbx\end{array}\right)

\end{eqnarray*}

after the change:

\setlength\arraycolsep{1.4pt}% some length

\begin{eqnarray*}

A &=& \left(\begin{array}{cc}\dbx&\dbx\\

\dbx&\dbx\end{array}\right)

\end{eqnarray*}

Resulting in:

Before the change:

A =

( )

after the change:

A =

( )

Some people argue that this larger spacing is a good
thing, that it helps understanding the equations in
question. For that to be true the author should do
this with every single equation, whether the equation
was written using eqnarray or not. Consistency
above all. We can plainly see that eqnarray does
not follow the spacing conventions Knuth set out in
TEX, whereas both equation and \[. . . \] do.

Here is another example from a set of notes
I have been editing (actual code from the original
unedited notes).

\begin{eqnarray*}

{\cal C}_{0} &\subseteq& {\cal C}\subseteq

\sigma ({\cal C}_{0},{\cal N}) ,

\end{eqnarray*}

C0 ⊆ C ⊆ σ(C0,N ),

Which makes one wonder if LATEX authors even no-
tice the difference in spacing, or do they just accept
it as a fact of life?

Even though eqnarray might not be recom-
mended for one-liners, they do still appear quite
a lot in the ‘wild’.

As eqnarray is the only multi-line construction
for plain LATEX, what should be used instead? Short
answer: Use the environments from the amsmath

package, in particular the align environment.
Longer answer: There are a few packages that

can help including nath, mathenv and amsmath. Us-
ing amsmath is highly recommended since it is already
included as part of every LATEX installation.

For those not familiar with the amsmath package
we present a few useful constructions in Appendix A.

2.2 Problem #2: eqnarray can overwrite

equation numbers

Given a long formula which happens to fit within one
line were it not for the equation number, eqnarray
will happily just ignore the equation number, without
any warnings.

\begin{eqnarray}

\dbx &=& \dbx[5cm]

\end{eqnarray}

Lars Madsen



TUGboat, Volume 33 (2012), No. 1 23

= (5)

It can get even worse. Assume we are using the
leqno class option, i.e. equation numbers on the left.
Then assume we have a math line that is slightly
longer than the text width:1

Left text edge \hfill right text edge%

\begin{eqnarray}

\dbx &=& \dbx[5.7cm]

\end{eqnarray}

Left text edge right text edge

=(6)

No offence, but why on earth is eqnarray moving
the equation number? Let us see what happens if we
take the same example and switch back to equation
numbers on the right:

Left text edge \hfill right text edge%

\begin{eqnarray}

\dbx &=& \dbx[5.7cm]

\end{eqnarray}

Left text edge right text edge

= (7)

Sigh. . .

Well, at least that will teach authors to remem-
ber to break their equations properly.

At least the environments from the amsmath bundle
take the equation number into consideration. Here
is an example using align:

\begin{align}

\dbx &= \dbx[5.7cm]

\end{align}

=
(8)

2.3 Problem #3: Silence of the labels

Part of my job is to process a preprint series pub-
lished by my department. This brings me into con-
tact with many different styles of LATEX writing and
usage. One thing that I frequently do (as part of my
visual improvement procedures) is convert eqnarray
environments into align environments (or similar).
This is where one starts to find the hidden label
errors. Most often these occur when two or more
people have been writing/editing the same file.

Here is the first example:

1 Example provided by Barbara Beeton.

\begin{eqnarray}

\dbx & = & \dbx \\

\dbx & = & \dbx \label{eq:2} \nonumber

\end{eqnarray}

From equation (\ref{eq:2}) we conclude

\begin{equation}

\dbx=42.

\end{equation}

So the author had an equation which he or she
no longer wanted to have numbered (\nonumber).
Which is perfectly reasonable, but the author ne-
glected to check whether the now-dead label (eq:2)
was referred to. The result is as follows:

= (9)

=

From equation (10) we conclude

= 42. (10)

Huh? This might end up as an interesting form of
argumentation. It seems as if eqnarray actually
steps up the equation counter at the start of every
line (hence \label catches something) and when it
encounters \nonumber it does not write any equation
number and steps the equation counter one down
again. On a side note, equation has the same prob-
lem if one mixes it with \nonumber (something which
is not fixed by using amsmath).

The worst thing here is that eqnarray does
this silently, without warnings, so if you do not know
that this might happen you will never notice it unless
someone carefully reads the article.

As it happens, I recently received an article
which showed exactly the same problem in eqnarray*.
Here one only has to place a label inside a non-
numbering eqnarray* (we use \theequation to show
the current value of the equation number):

Current equation number: \theequation

\begin{eqnarray*}

\label{eq:4}

\theequation & = & \dbx

\end{eqnarray*}

The reference is (\ref{eq:4}).

Current equation number: \theequation

Resulting in:

Current equation number: 10

11 =

The reference is (11). Current equation number: 10

Who smells a rat? So, even in eqnarray* the equa-
tion counter is stepped up, and later stepped down
at the end of each line. As we have seen, this is a
problematic approach.

Avoid eqnarray!



24 TUGboat, Volume 33 (2012), No. 1

2.4 Problem #4: The amsthm package vs.

the eqnarray environment

If one uses the amsthm package, and its proof en-
vironment, then you will get automatic placement
of an “end of proof ” marker. Sometimes one ends
a proof with a displayed formula and may want to
place the end marker near the equation number. This
may be achieved by simply issuing \qedhere on the
last line of the formula.

\begin{proof}

\dots

\begin{equation*}

a=0. \qedhere

\end{equation*}

\end{proof}

Proof. . . .
a = 0.

This handy little feature, as one might guess by now,
does not work with eqnarray!

3 Solution

The best solution is to not use the eqnarray envi-
ronment at all. Use the environments from amsmath

instead. If in some case that will not do, the mathenv
package reimplements eqnarray to work more ratio-
nally. It also removes the restraint on the number of
columns in an eqnarray. (Unfortunately, mathenv is
not compatible with certain useful modern packages,
notably siunitx.)

Sadly we see many journals and publishers who
still recommend (or at least mention) the use of
eqnarray in their guides for authors.

A The amsmath package

For more information about amsmath see [2], [1] and
[4] (in order of recommended reading). This ap-
pendix gives a few interesting constructions, mainly
showing replacements for common eqnarray usage.

All of the following examples require amsmath,
hence the document preamble must include:

\usepackage{amsmath}

One thing to note about amsmath is that every

environment from amsmath that provides equation
numbers also has a *-version which does not. The
package also includes an equation* environment
which is missing from plain LATEX.

Now the first thing we need is a replacement for
eqnarray. We choose align, which has a slightly
different syntax than eqnarray:

\begin{eqnarray*}

\dbx &=& \dbx[1.5cm]\\

&=& \dbx

\end{eqnarray*}

=

=

\begin{align*}

\dbx &= \dbx[1.5cm]\\

&= \dbx

\end{align*}

=

=

Note the reduced number of &’s.

Here is another common eqnarray construction
and its align counterpart:
\begin{eqnarray*}

\dbx &=& \dbx[1cm]\\

& & + \dbx \\

&=& \dbx

\end{eqnarray*}

=

+

=

\begin{align*}

\dbx = {} & \dbx[1cm]\\

& + \dbx \\

= {} & \dbx

\end{align*}

=

+

=

Notice the use of {} when the & is placed to the right

of a relational symbol. Also note that the spacing
around the + is correct in the align case but not
when using eqnarray.

One construction not easily achieved with base
LATEX is a formula spread over several lines but
with only one equation number for the entire for-
mula. Again, this is easy using constructions from
the amsmath package:

\begin{equation}

\begin{split}

\dbx & =\dbx[3cm] \\

& =\dbx

\end{split}

\end{equation}

=

=
(11)

Notice how the equation number is vertically centred.
The syntax for split is otherwise more or less the
same as for align*.

amsmath also provides the aligned environment,
which is basically the full align environment, but
for inner use. (Like eqnarray, split can only have
one so-called alignment column, while align and
aligned can have several.)

\begin{equation}

\begin{aligned}

Lars Madsen



TUGboat, Volume 33 (2012), No. 1 25

\dbx & =\dbx &\qquad \dbx & =\dbx \\

& =\dbx & & =\dbx

\end{aligned}

\end{equation}

= =

= =
(12)

A.1 What about \lefteqn?

amsmath has no direct equivalent to \lefteqn, but
the idea is still useful. To recap, using the \lefteqn

macro inside eqnarray, one can force that particular
line to be moved to the left:

\begin{eqnarray*}

\lefteqn{\dbx[2cm] = \dbx[2cm]} \\

&& = \dbx[2cm] \\

&& = \dbx[2cm]

\end{eqnarray*}

=

=

=

One usually uses this to mark the first line, and then
give the impression of the rest of the lines being
indented.

The mathtools package does provide an alter-
native, namely \MoveEqLeft:

\begin{align*}

\MoveEqLeft \dbx[3cm] = \dbx[2cm] \\

& = \dbx[3cm] \\

& = \dbx[3cm]

\end{align*}

=

=

=

The idea is that the \MoveEqLeft marks an align-
ment point (which is what the ampersands follow),
and then pulls the line backwards in a suitable fash-
ion. It does not take any required arguments, unlike
\lefteqn.

Acknowledgements

Special thanks to Barbara Beeton from the AMS for
comments and suggestions for this revised version.
Also many thanks to the various people who provided
examples for the original version of the article.

References

[1] American Mathematical Society, User’s Guide

for the amsmath Package, 2002. Normally
included in every LATEX installation as
amsldoc; also available via http://mirror.

ctan.org/macros/latex/required/amslatex/

math.

[2] Michael Downes, Short Math Guide, 2002.
Short introduction to the amsmath and
amssymb packages. ftp://ftp.ams.org/pub/
tex/doc/amsmath/short-math-guide.pdf

[3] Morten Høgholm, Lars Madsen, Will
Robertson and Joseph Wright (maintainers),
The mathtools package, 2011. Various
extensions to amsmath and others. http://
mirror.ctan.org/macros/latex/contrib/mh.

[4] Herbert Voß, Math mode, 2006. Extensive
summary describing various mathematical
constructions, both with and without the
amsmath package. http://mirror.ctan.org/
info/math/voss/mathmode/Mathmode.pdf.

⋄ Lars Madsen

Department of Mathematics

Aarhus University

Denmark

daleif (at) imf dot au dot dk

Avoid eqnarray!



26 TUGboat, Volume 33 (2012), No. 1

The unknown picture environment

Claudio Beccari

Abstract

The old picture environment, introduced by Leslie
Lamport into the LATEX kernel almost 20 years ago,
appears to be neglected in favor of more modern and
powerful LATEX packages that eliminate all drawbacks
of the original environment. Nevertheless it is still
being used behind the scenes by a number of other
packages. Lamport announced an extension in 1994
that should have removed all the limitations of the
original environment; in 2003 the first version of this
extension appeared; in 2004 the first stable version
was released; in 2009 it was actually expanded with
new functionality. Nowadays the picture environment
can perform like most simple drawing programs, but
it has special features that make it invaluable.

1 Introduction

Plain TEX, as described in The TEXbook [5], con-
tained a simple way to draw simple graphics with
tex. When LATEX was first published in 1984, it
contained an environment suitable for relatively com-
plex graphics; Lamport’s handbook [6] described its
workings and commands. But all this seems to have
fallen into complete oblivion.

Many users of LATEX related forums keep ask-
ing questions such as “How can I produce such and
such a symbol”; I keep answering “Use the picture

environment”. Apparently nobody follows my sug-
gestions, which of course they are free to avoid; but
they would save time if they spent no more than
15 minutes in reading the environment description
in Lamport’s handbook [6]. The second edition of
this handbook announces the extensions and dis-
cusses the eliminated drawbacks; these extensions
were eventually realized only in 2003 by Gäßlein and
Niepraschk [4]. In 2004 the same authors released
a stable version. In 2009, with the contribution of
the third author Tkadlec, they released an enhanced
version that added quite a few new commands that
substantially extend the picture environment func-
tionality. But, except for those very latest additions
in 2009, everything else was already documented by
Lamport in his second edition.

Not longer than a few days ago a forum partici-
pant asked how he could draw a square wave and a
saw tooth wave of suitable size for setting them in
line with his text: and .

Editor’s note: First published in ArsTEXnica #11, April
2011. Reprinted with permission, in slightly different form.

Here is the whole thing required to produce
the two simple commands, using the recent pict2e

extension package’s new commands:

\newcommand*\sqwave[1][0.125ex]{{%

\unitlength=#1\relax

\picture(20,10)

\polyline(0,0)(6.5,0)(6.5,15)(13,15)%

(13,0)(19.5,0)

\endpicture}}

\newcommand*\sawtooth[1][0.125ex]{{%

\unitlength=#1\relax

\picture(20,10)

\polyline(0,0)(6.5,0)(6.5,15)(13,0)%

(19.5,0)

\endpicture}}

Most of the time suggestions are given by and
to the forum participants to use external drawing
programs, or to use the sophisticated PSTricks [12] or
TikZ [11] packages. The former solution is generally
to be avoided, because if some lettering is needed, it
requires extra work to use the same fonts as those
used in the document. The latter two packages are
certainly capable of doing marvelous and complicated
drawings, but require considerable time with the
documentation and a steep learning curve.

Also, the picture environment has a unique fea-
ture: it can produce drawings of zero width and/or
height. This special feature makes them valuable for
packages such as eso-pic [9], crop [3], layout [8],
layouts [15], and others. These packages draw
things on the page that do not require any external
package, and therefore don’t have any dependency.
These drawings occupy no space, although they have
a specific position on the page; their contents reach
whatever point on the page, as background images
or marks that do not interfere with the positioning
of other page elements.

In particular eso-pic (and similar packages for
setting watermarks) and crop exploit this function-
ality specifically for setting a background picture
or the crop marks in the correct positions without
interfering with the other elements of the page.

At the same time within the picture environ-
ment it is possible to use cubic Bézier curves and
to draw polygons, arches and sectors, oval frames
whose corner curvature can be freely specified, white
or filled circles of any dimension. The \polyline

macro used in the above example makes it very easy
to draw polylines with any number of corners and
any segment slope, to the point that if the nodes
are sufficiently close, it is possible to draw “smooth”
curves whose points may be calculated with any
number-crunching personal or mainframe computer.

Claudio Beccari



TUGboat, Volume 33 (2012), No. 1 27

2 In detail

Everybody can agree that the original picture en-
vironment, created by Lamport with the very first
version of LATEX, was pretty rudimentary, but there
was practically nothing else to use in its place. The
straight lines could have slopes that were ratios of
relatively prime integer numbers not exceeding 6 in
absolute value. For vectors the limitation was even
stricter; the slopes could not be specified with integer
numbers larger than 4 in absolute value. Why were
there such strange limitations? Because straight lines
were made up through the juxtaposition of small seg-
ments 10 pt (≈ 3 mm) long taken from a special font;
this same special font contained also the vector arrow
tips that occupied a large part of the available posi-
tions; and, remember, at that time the typesetting
engine could deal only with 128-glyph fonts, so that
the available short segments and arrow tips, plus
a selection of closed and filled circles and/or quar-
ter circles placed strict limitations on the drawing
performance.

Patient programmers created extension pack-
ages such as curves [7], that could overcome such
limitations by drawing lines of any slope and cir-
cles of any diameter by juxtaposing an “infinity” of
small dots. For plain TEX there existed another
package, PiCTEX [14], that with a suitable interface
could work also with LATEX. It performed well on
large mainframes with large memory capabilities,
but worked very poorly on the desktops of that age,
the eighties, when a 20 MiB hard disk was a luxury
and 640 KiB RAM was almost the maximum avail-
able. These packages mostly saturated the RAM

and drawing was virtually impossible on personal
computers.

Some progress was made when the PostScript
format became available; some drawing packages
(again curves) exploited TEX’s \special to write
raw PostScript drawing commands in the output, so
that the actual action of drawing was demanded of
the screen or printer driver. Nevertheless powerful
extensions in this directions, such as PSTricks, ap-
peared much later. Drawing with external programs
and importing the resulting artwork was therefore a
necessity, but not an easy task.

Things evolved in the right direction when per-
sonal computers, having become the universal com-
plement of any person needing to write anything,
started having a more user friendly interface, more
RAM, larger hard disks, and better programs, the
TEX system included. The nineties, besides the
important passage from TEX 2.x to TEX 3.0, gave
us LATEX 2ε, PostScript fonts, and the drawing in-

strument METAPOST. This program used more or
less the same philosophy that led Knuth to develop
METAFONT, in order to draw the TEX system de-
fault fonts; METAPOST produced a simplified output
PostScript code that was understood also by the new-
born typesetting program pdftex. METAPOST was,
and still is, fully compatible with the rest of the
TEX system typesetting engines, so that all the TEX
and LATEX features could be used for putting any
lettering on the METAPOST output files.

Meanwhile LATEX went on with its small drawing
environment, without exploiting the new possibilities
with the PostScript format and the PDF portable doc-
ument format, until Gäßlein and Niepraschk wrote
the picture extension announced by Lamport some
ten years before.

2.1 2009 extensions to picture

Let us now discuss the enhancements introduced by
the extension realized by Gäßlein and Niepraschk.
Since these changes are so recent, some commands
are not described in [6].

1. First of all, the enhancements rely on the drivers
that are being used to display or to print the
document. More precisely, when the latex pro-
gram is used, the \special commands to the
driver contain only PostScript language com-
mands; this implies a transformation of the re-
sulting DVI file into a PostScript one by means
of dvips, and possibly a second transformation
to the PDF format by means of (for example)
ps2pdf. On the other hand, if the document
is processed with pdflatex, then the \special

commands contain only the PDF language com-
mands. Therefore the extension is fully compat-
ible with the typical output formats provided
by the most popular typesetting engines, and
this is fully automatic so users need not bother
about the details.

2. The output file size very often is smaller since
the actual drawing computations are performed
by the suitable drivers.

3. One of the limitations of the original environ-
ment was the slope of lines and vectors. In
the first implementation of the extension the
slope coefficients had to be integers not higher
than 1000 in absolute value, thus implement-
ing Lamport’s description of 1994. The 2009
enhancements, however, remove even this lim-
itation, and the slope coefficients can be any
fractional decimal number (well, yes, not too
large, not higher than 16 383.999 98 which cor-
responds to the the largest dimension in points
that any TEX system typesetting engine can

The unknown picture environment



28 TUGboat, Volume 33 (2012), No. 1

handle). Now line and vector slopes should not
have any detectable limitation.

4. The above is valid also for vectors; even better,
now it’s possible to pass an option to the pack-
age so that it can draw the arrow tips in “LATEX
style” or in “PostScript style”. In LATEX style
the joining sides to the arrow tip are slightly
concave, and the arrow shaft is straight; in Post-
Script style they form a polygon that resembles
a stealth aircraft.

5. Circles and quarter circles were available in a
limited set; now they can be drawn in any size,
both filled and unfilled.

6. Line thicknesses could previously be specified
only as \thinlines (default) and \thicklines

(twice as thick as \thinlines), and only verti-
cal and horizontal lines used the thickness spec-
ified with \linethickness 〈dimension〉. Now
\linethickness can modify the thickness of all
sorts of lines, Bézier splines included.

7. “Ovals”, frames with rounded corners, could
have the corner quarter circle with an automatic
setting of its radius, in any case not larger than
about 15 pt (about 5 mm), and they could not
use a radius dimension specified by the docu-
ment. Of course this radius should not exceed
the half length of the shorter frame sides (that
is, half of the distance of the longer straight
lines that form the longer sides of the frame)
but the radius can now be specified as an op-
tional argument to the \oval command so that
the created frame can have a very different look
when a smaller radius is chosen compared to the
same-sized frame with a larger corner radius.

8. Quadratic and cubic Bézier splines are now gen-
erated with the driver commands and they result
in smooth curves, not lines with a rough con-
tour due to the juxtaposition of many small
dots. The possibility of specifying the number
of dots is available even now, but it is mostly
for backwards compatibility — although, even
now, dotted splines might be used for special
purposes. In any case they do not suffer any
magnification when seen on the screen; they are
scalable vector strokes. The previous command
\bezier is maintained with its compulsory spec-
ification of the number of points to use, but
two new commands, with an optional specifi-
cation of the number of points, are introduced,
\qbezier for tracing quadratic Bézier splines,
and \cbezier for tracing cubic Bézier splines;
this last command was not described in [6], and
is a completely new command to the package.

9. Up to this point the traditional commands have
been discussed and the differences with the orig-
inal environment described. The last extension
of pict2e, published in the second half of 2009,
adds some other commands that draw other lines
but in general don’t require the use of \put to
place these lines in a special position. Of course
they may be shifted with \put, which might
come in handy when fine-tuning the picture,
but the \put is not necessary.

10. A first exception to the above statement is
the new macro \arc that is a generalization of
\circle (both starred and non-starred forms;
in both cases the starred form produces a filled
contour) which requires putting the arc center
in a specific position, so that the whole com-
mand must be set as an argument to \put. The
\circle command is used like this:

\put(〈x〉,〈y〉){\circle〈*〉{〈diameter〉}}

and similarly with the \arc command:

\put(〈x〉,〈y〉){\arc〈*〉[〈ang1 〉,〈ang2 〉]{〈radius〉}}

The arc has its center at point (〈x〉,〈y〉), and
it will go from the angle 〈ang1 〉 to the angle
〈ang2 〉; angles are in sexagesimal degrees and
are positive in the anticlockwise direction; if the
optional angles are not specified, the full circle is
drawn. The arc is drawn from the smaller angle
to the larger one, so that the order in which
〈ang1 〉 and 〈ang2 〉 is not important.

11. The following commands do not require \put:

\Line(〈x1 〉,〈y1 〉)(〈x2 〉,〈y2 〉)
\polyline(〈x1 〉,〈y1 〉)(〈x2 〉,〈y2 〉). . . (〈xN 〉,〈yN 〉)
\polygon(〈x1 〉,〈y1 〉)(〈x2 〉,〈y2 〉). . . (〈xN 〉,〈yN 〉)
\polygon*(〈x1 〉,〈y1 〉)(〈x2 〉,〈y2 〉). . . (〈xN 〉,〈yN 〉)

The first command is simply the segment that
joins the two points identified by the two pairs of
coordinates. The second command is a sequence
of segments that join with one another in the
order of the N specified pairs of coordinates;
we have seen it at work in the example shown
in the introduction. The third command is a
closed polygon whose vertices are sequentially
shown by the N pairs of coordinates. The fourth
command is similar but draws a filled polygon.

12. In order to draw the various lines and curves,
the internal commands make use of the “turtle
graphics” commands used within both the Post-
Script and PDF languages. These elementary
commands are available to the user also through
package pict2e; they are:

\moveto(〈x〉,〈y〉)
\lineto(〈x〉,〈y〉)
\curveto(〈x2 〉,〈y2 〉)(〈x3 〉,〈y3 〉)(〈x4 〉,〈y4 〉)

Claudio Beccari



TUGboat, Volume 33 (2012), No. 1 29

\buttcap

\roundcap

\squarecap

Figure 1: Ending styles for line segments (of equal
width)

\miterjoin

\roundjoin

\beveljoin

Figure 2: Join styles for line segments

and a few more that the reader may find in the
documentation [4]. These commands may be
used in any order, except \moveto that must fix
the first position of the drawing pen. In order to
finish the path it is optional to use \closepath

in order to draw a line from the last point to the
initial one, but then it is necessary to use either
\strokepath to draw the path or \fillpath in
order to fill the path with the default color.

13. The initial and final points of an open path
may be controlled with the commands \buttcap

(cut the path at the end points), or \roundcap

(adjust the end points with a filled semicircle),
or \squarecap (adjust the end points with a
filled half square); in general with line art the
\roundcap should be preferable, but sometimes
it’s better to use one of the other two kinds of
end point finishing. See figure 1.

14. Similarly the joins between adjacent segments
of a polyline or a polygon may be adjusted with
the three commands \miterjoin,1 \roundjoin,
and \beveljoin, as shown in figure 2.

3 Examples

There are dozens of examples in the guIt documen-
tation [2], where every line art picture has a small
legend containing the author name and the program
used for producing it. This book is a collective effort
of the Italian TEX users group, and is downloadable
from the guIt site http://www.guitex.org/home/

images/doc/guidaguit.pdf. There, the interested
reader can find plenty of ideas and useful “tricks”.

1 In the documentation, [4], this command is erroneously
spelled \mitterjoin.

Figure 3: A heptagon with seven vertices and
inscribed star

Here we present a few examples, sometimes with
their source code, in order to see the modern picture

environment at work.

A heptagon We compute the vertices of a hep-
tagon inscribed into a circle with a diameter of 6 cm
by means of a pocket calculator:

v1 = (1.3017, −2.7029) v5 = (−2.3455, 1.8705)

v2 = (2.9248, −0.6676) v6 = (−2.9248, −0.6676)

v3 = (2.3455, 1.8705) v7 = (−1.3017, −2.7029)

v4 = (0, 3)

Then we set up the picture environment (within
a figure environment, so we don’t need to do anything
to limit the scope of the \unitlength assignment)
with the following code:

\unitlength=5mm

\begin{picture}(6,6)(-3,-3)

\polygon(1.3017,-2.7029)(2.9248,-0.6676)%

(2.3455,1.8705)(0,3)(-2.3455,1.8705)%

(-2.9248,-0.6676)(-1.3017,-2.7029)

\polyline(1.3017,-2.7029)(0,3)%

(-1.3017,-2.7029)(2.3455,1.8705)%

(-2.9248,-0.6676)(2.9248,-0.6676)%

(-2.3455,1.8705)(1.3017,-2.7029)

\end{picture}

Figure 3 contains also the seven pointed star in-
scribed in the heptagon.

Splines We draw some splines inside a square with
sides 6 cm long; a quadratic spline has its two nodes
at the square base vertices, and the control node at
the center of the upper side. A cubic spline uses the
four square vertices as end and control nodes:

\unitlength=6.5mm

\begin{picture}(6,6)(-3,-3)

\put(-3,-3){\framebox(6,6){}}

\polyline(-3,-3)(0,3)(3,-3)

\polyline(-3,3)(3,3)(-3,-3)(3,-3)

\linethickness{1.5pt}

\qbezier(-3,-3)(0,3)(3,-3)

\cbezier(-3,3)(3,3)(-3,-3)(3,-3)

\end{picture}

The unknown picture environment



30 TUGboat, Volume 33 (2012), No. 1

Figure 4: Quadratic and cubic splines

Figure 4 displays the result; observe the effect of the
\linethickness assignment on the splines them-
selves. If you can read this document on the screen,
you can magnify the picture and check the vector
nature of the splines. Figure 4 contains also the
polylines that join the nodes and control points, so
that it’s easier to see the effect of these “control
segments”.

An electric circuit Many years ago, at the end of
the 1980s, when I had available only the picture envi-
ronment, I needed to draw circuit diagrams. In fact,
I had so many circuit diagrams to insert in my book
that I needed to create suitable macros for drawing
the circuit components and their connections to the
various circuit nodes; of course every component had
to be identified with a symbol and optionally should
be assigned a value with the proper units.

Nowadays there are modular packages that work
with TikZ (circuitikz [10]) and PSTricks (pst-circ

[13]), but at that time there was nothing, or at least
nothing I was aware of.

In my department there was a very good expert
of technical drawing, and for my previous books I
had asked him to draw my circuits; these drawings
had to be glued to the camera ready copy, because at
that time it was very difficult to insert graphical files
into a document; not impossible, but difficult. The
publisher, in any case, did not want any kind of file;
he wanted only the camera ready copy. This proce-
dure was pretty lengthy: draw my circuits by hand,
pass them to the technician with suitable descrip-
tions about dimensions, lettering, line thicknesses,
and the like; after the drawings were done, careful
checking of the correctness, the proper position of
the labels and indices, and any possible typos; start
again with the second draft, and so on.

Therefore I decided to write a personal package
containing all the circuit macros, to work as an inter-
face between the user and the picture environment
with its internal macros. It took about two weeks;
afterwards, I had an almost complete circuit-drawing

TEX program. At that time, of course, arbitrary
sloped lines were done by juxtaposing a multitude
of little dots, as well as quarter, half and full circles
of any diameter. Single-port components were auto-
matically drawn as vertical or horizontal elements;
connections automatically made the necessary bends
in order to reach the destination nodes; two-port and
four-pole devices were set in the proper orientation
in order to avoid crossing their connections; oper-
ational amplifiers, nullators, norators and nullors
were correctly designed; block diagrams with their
signal flows, their branching nodes, their summing
points, and so on, were at hand. The unit length
was parametrized to the current font ‘ex’ unit, so
that the circuit diagram would scale together with
the size of the surrounding text font.

I saved much time using my macros and the
technical expert eventually congratulated me, admit-
ting that my drawings were more consistent than his
own.

When the important pict2e package became
available in 2003, I started to eliminate all references
to the old tiny-point-overlay technique, and promptly
switched to the new technology.

I eventually added logical components as well, so
that this private package is almost complete. What
is provided by circuitikz is much more complete,
and this is the main reason why my package remains
private. I keep using it for no other reason than
compatibility with the past book files I wrote long
ago, from which I often pick up some parts in order
to assemble short tutorials for students who ask me
for explanations.

The package is too large to publish here; there-
fore, I will not show how the user commands are
realized with the internal modern picture environ-
ment ones. I show just the user-level code for drawing
the circuit diagram of a band elimination filter:

\begin{circuito}(75,35)

\hconnect(0,0)(19,0)\HPolo(20,0)(65,0)

\polo(20,25)[30,25]\polo(65,25)[75,25]

\hconnect(66,0)(75,0)

\R(75,0)(75,25){R\ped{L}}

\E(0,0)(0,25){E}

\R(0,25)(19,25){R\ped{G}}

\serie*(30,0)(21,25)C{C_1}-L{L_1}

\parallelo(30,25)(55,25)L{L_2}-C{C_2}

\serie(55,0)(64,25)C{C_3}-L{L_3}

\nodi(55,0)(55,25)(30,25)(30,0)

\end{circuito}

and you can see the result in figure 5. As you can see
the component and connection macros are very user
friendly and the total amount of code for drawing

Claudio Beccari



TUGboat, Volume 33 (2012), No. 1 31

RL

+

E

RG

C1

L1

L2

C2

C3

L3

Figure 5: A band elimination filter

a complicated circuit diagram2 is very limited. If
you are reading this file on screen you can magnify
the image of figure 5 and again verify that the whole
drawing is made of scalable vectors. You can also
recognise that the resistors are drawn by means of
the \polyline command with the \miterjoin spec-
ification for the connection of the various segments.

A Cartesian diagram While teaching the syn-
thesis of electrical circuits I often needed Cartesian
diagrams of their performance; in figure 6 the squared
magnitude of a fifth order elliptical filter characteris-
tic function is plotted. The name “elliptical” derives
from the use of elliptical integrals and functions of
the first and second kinds. The diagram is only qual-
itative; although it would not have been a problem
to compute the actual points by means of a suit-
able program, for a qualitative diagram the extreme
points and the peaks and zeros should be sufficient.
The whole diagram had to be also shown as a slide,
therefore a beamer presentation was made containing
the same code:

\unitlength=0.9mm

\begin{picture}(80,60)(-40,-5)

\VECTOR(-40,0)(40,0)

\Zbox(40,-2)[tr]{\omega}

\VECTOR(0,-1)(0,55)

\Zbox(-1,55)[tr]{|F|^2}

\multiput(-35,5)(4,0){18}%

{\line(1,0){2}}

\Zbox(2,7)[bl]{1}

\multiput(-35,45)(4,0){18}%

{\line(1,0){2}}

\Zbox(1,46)[bl]{H^2}

\multiput(-2,15)(4,0){4}%

{\line(1,0){2}}

\Zbox(1,16)[bl]{H}

\LINE(-10,0)(-10,-1)\Zbox(0,-2)[t]{0}

\Zbox(-10,-2)[t]{-1}

\LINE(10,0)(10,-1)\Zbox(10,-2)[t]{1}

2 Actually the circuit diagram is not complicated at all;
the complication is hidden behind the user macros, especially
those for inductors, where the various Bézier cubic splines are
properly described and connected to one another.

!

jF j2

1

H2

H

0`1 1

p
!s = !c

!s

Figure 6: The squared magnitude of the
characteristic function of an elliptical filter

{\linethickness{1.5pt}%

\cbezier(-12.5,55)(-12,40)(-12,40)%

(-10,5)

\cbezier(-10,5)(-10.1,0)(-9.75,0)%

(-9.5,0)

\cbezier(-9.5,0)(-9,0)(-9,5)(-8.5,5)

\cbezier(-8.5,5)(-7.75,5)(-7.75,0)%

(-7,0)

\cbezier(-7,0)(-5.5,0)(-5.5,5)(-4,5)

\cbezier(-4,5)(-2,5)(-2,0)(0,0)

\cbezier(-13,55)(-13.75,45)(-13.75,45)%

(-14.5,45)

\cbezier(-14.5,45)(-15.75,45)%

(-15.75,45)(-17,55)

\cbezier(-21,55)(-26,45)(-28,45)%

(-35,45)

%

\cbezier(12.5,55)(12,40)(12,40)(10,5)

\cbezier(10,5)(10.1,0)(9.75,0)(9.5,0)

\cbezier(9.5,0)(9,0)(9,5)(8.5,5)

\cbezier(8.5,5)(7.75,5)(7.75,0)(7,0)

\cbezier(7,0)(5.5,0)(5.5,5)(4,5)

\cbezier(4,5)(2,5)(2,0)(0,0)

\cbezier(13,55)(13.75,45)(13.75,45)%

(14.5,45)

\cbezier(14.5,45)(15.75,45)(15.75,45)%

(17,55)

\cbezier(21,55)(26,45)(28,45)(35,45)

}%

\put(10.6,15){\circle*{1.5}}

\put(12.2,45){\circle*{1.5}}

\put(10,5){\circle*{1.5}}

\multiput(12.2,0)(0,4){11}%

{\line(0,1){2}}

\multiput(10.7,0)(0,4){4}%

{\line(0,1){2}}

\VECTOR(25,20)(10.7,0)

\VECTOR(30,10)(12.2,0)

\Zbox(25,21)[b]%

The unknown picture environment



32 TUGboat, Volume 33 (2012), No. 1

{\sqrt{\omega\ped{s}}=\omega\ped{c}}

\Zbox(31,10)[lc]{\omega\ped{s}}

\end{picture}

Two custom commands, \Zbox and \VECTOR,
were defined in order to speed up data input. The
former is short for inserting a zero dimension box
at the proper coordinate, and the latter is similar
to the standard \Line command but applied to vec-
tors. The other unusual macro \LINE is completely
equivalent to \Line; I had merely defined it before
the 2009 enhancement of the pict2e package.

Figure 6 displays the whole diagram as scalable
vector graphics, and as you can see the important
messages about the filter characteristic function prop-
erties are fully and clearly expressed. This is just one
example among the many such diagrams I used in
my books and presentations. It was well worth the
little time spent in defining the service macros. Of
course I could have used the plothandlers module
of the TikZ library, or the tikz-3dplot TikZ exten-
sion package, not to mention the modules associated
with PSTricks. However, I saved myself the study
of the 700-plus pages of TikZ documentation or a
similar amount for PSTricks. The fonts in figure 6
are just the ones I designed myself for presentations;
they were fully described in [1], and are available on
any complete recent distribution of the TEX system.

4 Conclusion

As mentioned in the introduction, the picture en-
vironment is a very simple one, with but few and
specific drawing commands; the documentation is so
simple that less than 10 pages are sufficient. At the
same time these simple commands may be used to
create more complex macros and eventually result
in professional drawings. Certainly this environment
cannot compete with more elaborate ones, such as
those provided by the packages TikZ and PSTricks;
but the latter require a steep learning curve, while the
former can be mastered in a few minutes. Very often
the results obtained with the picture environment,
completed by the recent enhancements provided by
the pict2e package, are fully acceptable: it’s possi-
ble to create complicated diagrams as well as simple
symbols; it’s possible to use this environment to
place background or foreground images or symbols
“wherever” on the page, even outside the margins;
in [2] it is shown also how to make strange and un-
usual tables, Cartesian diagrams, and any sort of mix
between line art and included pictures. In any case,
if any lettering is placed in the drawing, it surely
uses the same fonts as those used for the text, thus
eliminating the usual risk that occurs when using
external drawing software.

I believe that beginners would find this enhanced
environment the right first step for programmed
drawings; with minimum effort they can reach very
good results.

References

[1] Claudio Beccari. lxfonts: LATEX slide fonts
revived. TUGboat, 29(2), 2008. Reprinted
from ArsTEXnica #4, 2007.

[2] Claudio Beccari, editor. Introduzione all’arte

della composizione tipografica con LATEX. guIt,
2011.

[3] Melchior Franz. The crop package, 2003.
http://mirror.ctan.org/macros/latex/

contrib/crop.

[4] H. Gäßlein, R. Niepraschk, and J. Tkadlec.
The pict2e package, 2011. http://mirror.

ctan.org/macros/latex/contrib/pict2e.

[5] Donald E. Knuth. The TEXbook. Addison-
Wesley, Reading, Massachusetts, 1990.

[6] Leslie Lamport. LATEX: A Document

Preparation System. Addison-Wesley, Reading,
Massachusetts, 2nd edition, 1994.

[7] Ian Maclaine-cross. The curves package, 2009.
http://mirror.ctan.org/macros/latex/

contrib/curves.

[8] Kent McPherson. The layout package (part
of the tools bundle), 2000. http://mirror.

ctan.org/macros/latex/required/tools.

[9] R. Niepraschk. The eso-pic package, 2010.
http://mirror.ctan.org/macros/latex/

contrib/eso-pic.

[10] M. A. Redaelli. CircuiTikZ, 2011. http:

//mirror.ctan.org/graphics/pgf/contrib/

circuitikz.

[11] Till Tantau. The TikZ and PGF packages,
2010. http://mirror.ctan.org/graphics/

pgf/base/doc.

[12] Timothy van Zandt. PSTricks: PostScript
macros for generic TEX, 2011. http://mirror.

ctan.org/graphics/pstricks/base/doc.

[13] Herbert Voß. The pst-circ PSTricks package,
2011. http://mirror.ctan.org/graphics/

pstricks/contrib/pst-circ.

[14] Michael Wichura. PiCTEX. Department of
Statistics, University of Chicago, 1987.

[15] Peter Wilson and Will Robertson. The
layouts package, 2009. http://mirror.ctan.

org/macros/latex/contrib/layouts.

⋄ Claudio Beccari
Villarbasse (TO), Italy
claudio dot beccari (at) gmail

dot com

Claudio Beccari



TUGboat, Volume 33 (2012), No. 1 33

The apa6 LATEX class: Challenges

encountered updating to new requirements

Brian D. Beitzel

Abstract

The apa6 LATEX class implements the document-
formatting requirements of the American Psycholog-
ical Association’s Publication Manual (6th Edition).
The apa6 class is an update of the outdated (and no
longer maintained) apa class. This article highlights
the changes and new features introduced in apa6 and
describes the major obstacles I encountered during
the process. Additionally, test results are presented
from comparing the leading bibliographic packages
for APA style.

1 Background

Social scientists are well acquainted with “APA style”
(the document-formatting specifications detailed in
the American Psychological Association’s Publication
Manual). Nearly all journals in the social sciences
require manuscripts to be submitted in compliance
with APA’s Manual. These specifications are revised
periodically, sometimes radically altering the format-
ting requirements—as was the case with the most
recent edition.

The apa6 class is an update of the older apa

class, which is no longer being maintained. The apa

class formats LATEX documents in compliance with
the 5th Edition of the Manual. With the changes
introduced in the 6th Edition of the Manual, the
apa class was no longer adequate to meet APA spec-
ifications. Most of the changes are very welcome;
however, they require significant re-adjustment from
years of old habits. Users of Microsoft Word must
repeatedly consult their already well-worn copies of
the Manual while they format each successive man-
uscript they write. Happily for the LATEX user, the
changes simply require switching from using the apa

class to using the apa6 class; but the development
process entailed more than adding a “6” to the class
name! This article discusses the major changes from
the apa class as I updated the code to conform to
6th-Edition standards.

Like apa, apa6 has three modes that generate a
different visual result when the document is compiled:
jou mode (the default), which has a two-column,
printed-journal appearance; man mode, which follows
APA’s requirements for formatting manuscripts for
publication; and doc mode, which has a standard
LATEX-document appearance. Although some of the
6th-Edition changes (e.g., format of section headings)
apply equally to jou and doc modes, in this article

I will be discussing the much-more-detailed specifi-
cations from the Manual pertaining to man mode.

I will come clean here and now: I am a relatively
new LATEX user, having taught myself LATEX and
released apa6 within less than eight months. So you
see, I still have a lot to learn.

2 Section headings

Probably the most sweeping change in the 6th Edi-
tion is how section headings are formatted. In the
5th and prior editions of the Manual, the formatting
of any given heading level depended upon how many
heading levels existed in the entire document. For
example, in a document using five levels of headings
(think of Roman-numeral outline levels) the top-level
heading was formatted differently than the top-level
heading in a document with only two heading lev-
els. But the 6th Edition finally changed all that;
the top-level heading is now centered, upper- and
lower-cased, and boldfaced—regardless of how many
heading levels the document contains. The other four
heading levels have similarly specific requirements.

This change allows for simpler programming
code to typeset section headings; but it also meant
that I had to figure out how to format section head-
ings using LATEX. Fortunately, Nathaniel Smith had
already done it quite well in the apa6e class, which
is a limited implementation of APA style for double-
spaced manuscripts. With his permission, I adopted
his sectioning code and made only minimal changes.

2.1 Non-boldfaced headings

Although APA simplified the format of headings, the
new requirements are still not entirely consistent:
the Abstract, References, and Appendix top-level
headings must not be boldfaced! So I had to figure
out how to provide for these exceptions.

The Abstract title was rather easily taken care
of by inserting \normalfont in the \maketitle defi-
nition. The Appendix titles were similarly dealt with
in the \appendix definition.

The References heading was more of a challenge.
Because apa6 allows for integration with three dif-
ferent bibliographic packages (biblatex, apacite, and
natbib), the References heading needed to be com-
patible with all three. The biblatex package uses the
command \defbibheading to specify the text for
this heading; but to avoid compiling errors for docu-
ments not using biblatex, I had to check whether bibla-
tex was loaded before issuing the \defbibheading

command. I ended up using the etoolbox package’s
\AtEndPreamble hook to check whether the biblatex

package had been loaded. Also, in man mode (but
not jou or doc modes), the bibliography must begin

The apa6 LATEX class: Challenges encountered updating to new requirements



34 TUGboat, Volume 33 (2012), No. 1

a new page, so there’s another \if statement waiting
to happen. Adding the \normalfont specification
was a piece of cake after all that was figured out.

Similarly, apacite uses \st@rtbibsection to
identify the References heading, and natbib uses
\bibsection. Fortunately, defining these two com-
mands does not throw an error if their respective
packages are not loaded. The code to implement the
non-boldface aspect of this heading for apacite and
natbib was another gift from apa6e.

3 Author note

With the 6th Edition, APA kindly moved the Author
Note (which contains contact information and ac-
knowledgments) to the title page of the manuscript.
This information used to be near the end of the
manuscript where nobody noticed it.

Implementing this change mostly meant mod-
ifying the \maketitle definition, but my biggest
hurdle (aside from ensuring proper paragraph in-
dentation, handled with \indent) was figuring out
the vertical placement of the Author Note heading
(non-boldfaced!) and its subsequent text. I finally
happened on the \vfill command which suited the
situation perfectly.

4 Figure captions

Another welcome change in the 6th Edition is the
placement of figure captions. In previous editions,
figure captions (but not table captions) had to be
presented on a separate page from their figures. The
6th Edition specifies that the captions are to be
placed underneath their corresponding figures.

So, I found the part of the apa code that gen-
erated the Figure Captions page and suppressed it.
Then, I ended up using the caption package to format
figure captions.

5 Float placement

An additional wrinkle brought about by the 6th
Edition was a change in the sequence of pages in
the manuscript. Specifically, appendices are now
required to be placed after tables and figures. This
gives rise to the perplexing situation of what to do
with tables and figures that are eventually to be
typeset within an appendix. Does one place these
floats along with the other floats from the main
part of the manuscript? Or in an additional float
section that follows the appendices? Or within the
appendices themselves? The Manual is completely
silent on this issue.

An APA representative acknowledged the gap in
an email to me, and said that it doesn’t matter which
of these three solutions is followed since the Manual

isn’t clear on this point. So apa6 places appendix
floats within the body of the appendix. This isn’t
a simple matter, however, because it means that
the floats from the main part of the manuscript are
delayed until a float section toward the end of the
manuscript, and appendix floats are displayed at the
point where they are mentioned. In other words, not
all floats can be processed in the same way.

To implement this differentiation, at the be-
ginning of the \appendix definition I inserted the
\processdelayedfloats command (from the end-

float package) to flush all delayed floats prior to
the appendices. Then I modified the \figure and
\table definitions to delay non-appendix floats and
immediately output appendix floats.

6 Floats integrated with text

When reading through a manuscript, it is a hassle
to run across a reference to a table or figure and
not have that table or figure handy for inspection.
Prior to the 6th Edition, one only needed to look
at the very end of the manuscript. But the search
became more complicated with the 6th Edition be-
cause appendices now follow the tables and figures.
Consequently, if there are appendices attached to a
manuscript, the reader must leaf backward through
the appendices to find the desired table or figure. The
difficulties associated with navigating back and forth
in an electronic copy of a manuscript to find tables
or figures are so obvious as to need no explanation.

The floatsintext option in apa6 places all
floats near the point where they are mentioned in
the manuscript. Of course, such rearrangement of the
manuscript violates APA guidelines and should not
be used for submission to journals; but this feature
can make one’s own (or a colleague’s) reading of
drafts much more efficient.

Basically, the floatsintext option directs apa6
to handle all floats using the float package. My
implementation of this feature was significantly aided
by a post which Guillaume Jourjon contributed to
the LATEX Community Forum.

7 Reference masking

I did this one to myself. I was using the apa class to
write a conference proposal and I thought how nice it
would be to automagically suppress all the references
to myself when submitting a paper for masked peer
review.

So I chipped away at some code, did a lot of on-
line searching and experimenting, and finally cobbled
together something that seems to work. My solution
was to write a series of new citation commands, which
are redefinitions of the basic citation commands from

Brian D. Beitzel



TUGboat, Volume 33 (2012), No. 1 35

the three bibliographic packages that apa6 supports.
The output of these commands replaces citations
with text such as “2 citations removed for masked
review” (in the case of two masked sources). This
allows the user to specify which citations will be
masked and which will not—without having to go
back and edit the citation commands when the time
comes to bare all.

I have yet to find a good explanation of some of
the concepts operating in these functions that I wrote,
but I have to say there is a sense of accomplishment
in obtaining the outcome I was seeking.

8 User-selected font size

Another self-imposed difficulty was figuring out how
to modify the font size of an apa6 document. I wanted
to be able to provide the capability of specifying any
of the standard font sizes (10pt, 11pt, 12pt) that
LATEX provides.

After several unsuccessful attempts, I gave up.
Then I tried again and gave up. But it kept nagging
at me. Ultimately I solved it by defining a command
\apaSix@ptsize{} to hold the selected font size,
and a comparison command, \apaSix@noptsize{}
that was always empty. Then, with the appropri-
ate \DeclareOption commands to capture the 10pt,
11pt, and 12pt options, I used \ifx as follows for
the man mode:

\ifx\apaSix@ptsize\apaSix@noptsize

\LoadClass[12pt]{article}

\else

\LoadClass[\apaSix@ptsize]{article}

\fi

This provides a default font size of 12pt, which can
be overridden by the user if desired. Code similar
to the above establishes 10pt as the default for jou
mode and 11pt for doc mode.

9 Watermark

As I began to use my development version of apa6,
new features kept creeping up on me and begged
to be implemented. One of these was prominently
displaying that a document was a draft version. Con-
sequently, apa6 can now automatically load the draft-
watermark package to display a “DRAFT” watermark
on either the first page or on all pages of a document.
This watermark can be customized with different
text or font size (using the options documented with
the draftwatermark package).

An unexpected situation arose, however; via the
feedback of a faithful user of apa6, I discovered that
when the lmodern package is not loaded, the water-
mark is very small. The draftwatermark documenta-
tion makes no indication of this, so I’m mentioning

it here for others who may have seen similar odd
renderings of this watermark package.

10 Conversion to Word

The major disadvantage of using LATEX in the social
sciences is that almost no one else does. Our jour-
nals purportedly don’t accept LATEX files (much less
provide formatting classes), and they don’t typically
list PDF files as acceptable formats for manuscripts
being submitted for review. This sparse usage of
LATEX provides challenges for (a) collaboration and
(b) submission of manuscripts for publication.

This situation brings us to the need to have
a way of converting a LATEX document to a more
commonly used word-processing format. I have en-
countered recommendations for both htlatex and
tth. I have tried both and (probably because of my
naivete) have been utterly unsuccessful at obtaining
anything close to the PDF output produced by apa6.

Having seen a sentence online claiming that
Chikrii Softlab’s TeX2Word software (http://www.
chikrii.com/products/tex2word/) was customiz-
able in how it translated the TEX code into a Mi-
crosoft Word document, I gave it a try. Essentially,
TeX2Word uses a proprietary TEX engine (thus not
requiring a TEX installation) with a limited command
set that closely resembles TEX. After several lengthy
interchanges with their technical support, the result
is an apa6.ptex file, included with apa6, that comes
very close to replicating the PDF output of apa6.
The title page, abstract page, section headings, fig-
ure and table captions, and bold and italic text are
all formatted with very little need for modification
(running heads are an exception). Floats must be
moved from their default points within the document
to their appropriate places after the reference list.
The most notable exception at present is a near-total
lack of bibliographic support.

11 Using apa6 with bibliography packages

Three major bibliography packages are compatible
with apa6: apacite, natbib, and biblatex. I tested each
of these packages against the requirements of the 6th
Edition of the Manual. This section compares the
output of these packages, highlighting inaccuracies of
which authors should be aware. For details on how
to use each of these packages with the apa6 class,
please refer to the apa6 documentation.

11.1 Citation tests

The test cases for bibliography formatting come from
the file bibliography.bib, which is included in the
“samples” subfolder of the apa6 installation. There
are several situations to examine in order to see how

The apa6 LATEX class: Challenges encountered updating to new requirements



36 TUGboat, Volume 33 (2012), No. 1

Table 1: Citation test results

Test Expected apacitea apacite-natbibb biblatex-bibtexc biblatex-biberd

1 Herbst-Damm and Kulik (2005) pass pass pass pass
2 (Herbst-Damm & Kulik, 2005) pass pass pass pass
3 (Haybron, 2008; Mayer, 2008a) fail pass pass pass
4a Lassen, Steele, and Sailor (2006) pass pass pass pass
4b Lassen et al. (2006) pass pass pass pass
5 Gilbert et al. (2004) pass pass pass pass
6a Mayer (2008a) pass pass pass pass
6b Mayer (2008b) pass pass pass pass
7 Mayer (in press-a, in press-b) pass pass pass pass
8 (Mayer, 2008a, 2008b) pass pass pass pass
9a J. R. Levin and O’Donnell (2000) pass pass fail pass
9b M. E. Levin and Levin (1990) pass pass fail fail
10a (Borst, Kosslyn, et al., 2011) pass pass fail pass
10b (Borst, Kievit, et al., 2011) pass pass fail pass
10c (Borst, Thompson, & Kosslyn, 2011) pass pass fail pass
11 Franklin and Adams (2010) pass pass pass pass
12 De Waal and Grosser (2009) fail pass pass pass

a apacite version 6.01 (2012/02/25) b natbib version 8.31b (2010/09/13)
c biblatex version 1.7 (2011/11/13), biblatex-apa version 4.6 (2012/02/08), BibTEX version 0.99d
d biblatex version 1.7 (2011/11/13), biblatex-apa version 4.6 (2012/02/08), biber version 0.9 (2012/02/17)

well we are complying with APA requirements. The
following tests are not intended to be comprehen-
sive tests of APA citation style; rather, they cover
some of the more rigorous APA-style challenges for
bibliographic citation software. The number of each
test corresponds to a line in Table 1 (which also
summarizes the results).

1. Joining multiple author names outside parenthe-
ses. With a multiple-author source and when
all authors are required to be listed (as opposed
to the situations in Tests #4 and #5 below),
the word “and” must be written out prior to
the last author’s name if the authors are named
outside parentheses.

2. Joining multiple author names within parenthe-
ses. In the same situation as above, but when
the authors’ names are cited inside parentheses,
the symbol “&” must be used in place of the
word “and”.

3. Order citations alphabetically. When multiple
sources are cited within parentheses, they must
be sorted in the same order in which they appear
in the reference list at the end of the manuscript.
For this test, citations were purposely entered
in reverse alphabetical order.

4. Truncating 3–5 author names. When there are
3–5 authors, all authors’ names are listed for
the first citation; subsequent citations list only
the first author’s name followed by “et al.”

5. Truncating six or more author names. When
there are more than six authors, only the first
author should ever be listed, followed by “et al.”.

6. Same author(s), same year. When different
articles have the identical author(s) in the same
year, the year must be followed by “a”, “b”, etc.

7. Same author(s), in press. When different in-
press articles have identical author(s), the year
must be given as “in press-a”, “in press-b”, etc.

8. Same author(s), different articles. When cit-
ing two or more articles by the same author(s)
within parentheses, the author name(s) need not
be repeated.

9. Different first authors, same last name. When
two first authors have the same last name, their
initials must be given to clarify which one is
being cited.

10. Multiple authors, same year. When two or more
articles have a subset of the same authors in
the same order, all citations must give as many
author names as necessary to make the citation
unique. Note that the “al.” in “et al.” is plural
and therefore must replace at least two names.

11. Suppress name suffixes. The suffix of author
names (e.g., “Jr.”) should not be included when
citing their work in the body of the text.

12. Capitalizing initial lower-case names. If the first
word in a sentence is an author name that begins

Brian D. Beitzel



TUGboat, Volume 33 (2012), No. 1 37

with a lower-case letter (e.g., “de Waal”), the
name should nonetheless be capitalized.

11.2 Results of citation tests

The results of these citation tests are shown in Ta-
ble 1. First, it should be noted that most of these
packages handle basic citations very well. Only one
of them passed all 12 tests, but two others did very
well. Additionally, not all failures in Table 1 are
equally egregious; for example, the single biblatex-

biber failure (Test #9b) will never cause confusion
as to which source is being cited.

Before we look at the results, I wish to applaud
the developers of apacite and biblatex-apa for respond-
ing to my initial citation test results and modifying
their packages to better comply with 6th Edition
requirements. There are now many fewer failed tests
in this series than there were when I first ran these
tests with then-current versions of these packages
only a few months ago.

The results for each package are summarized
next. No reviewer or journal editor will ever remark
on “the amazing accuracy of your citations”; but
comments to the opposite effect may be encountered.
Unfortunately, we therefore need to focus on the
non-compliance here rather than what each package
does right.

11.2.1 apacite

The apacite package was loaded using the apacite

option when loading the apa6 class, like this:
\documentclass[jou,apacite]{apa6}

There were two apacite errors: (a) in Test #3,
the references were not sorted alphabetically within
the parentheses; and (b) in Test #12, the prefix “De”
could not be capitalized because apacite does not
provide any capitalization command.

To overcome the failures of Test #3, one must
manually sequence the parenthetical citations; this
is entirely feasible but does require a certain level
of alertness on the part of the author. There is no
cure for the failure of Test #12 without adding on
the natbib package (see next section).

11.2.2 apacite-natbib

Both the apacite package and the natbib package
were loaded implicitly using the natbib option when
calling the apa6 class:
\documentclass[jou,natbib]{apa6}

There were no apacite-natbib errors, thanks to
some clever programming by the apacite developer,
Erik Meijer. The natbib package does not contain
a bibliographic style; therefore, apacite is required
when using natbib with apa6. The apacite package

contains directives that load natbib and appropriately
modify natbib commands to conform to 6th Edition
requirements. The apa6 user simply needs to specify
the natbib option to load and configure both of these
packages properly.

11.2.3 biblatex with bibtex

The biblatex package was loaded with the following
options specified:
\usepackage[style=apa,sortcites=true,

sorting=nyt]{biblatex}

There were five biblatex (with bibtex) errors:
(a) in Test #9a, the first author’s initials were not
given; this is a serious error, explicitly violating
APA requirements because another author has the
same surname; (b) in Test #9b, the same problem
was encountered; (c–e) in Tests #10a, #10b, and
#10c, the references were identified as “(Borst et
al., 2011a),” “(Borst et al., 2011b),” and “(Borst et
al., 2011c).” Although the Test #10 results do not
cause confusion in identifying the intended source,
this format does not conform to APA requirements.

11.2.4 biblatex with biber

The biblatex package was loaded with the following
options specified:
\usepackage[style=apa,sortcites=true,

sorting=nyt,backend=biber]{biblatex}

There was only one minor biblatex (with biber)
error: In Test #9b, the second author’s initials were
given (only first authors’ initials are required when
there are multiple authors with the same surname).

11.3 Conclusions from citation tests

For APA-style citations, the apacite-natbib and the
biblatex-biber solutions are clearly the most compe-
tent; the only error was relatively minor and would
never cause confusion as to which source is being
cited (biblatex-bibtex).

Time for a personal admission: For several
months after learning about biber I was daunted
by using it because for some reason I thought that
once I converted to biber I was more or less commit-
ting myself to it for life. However, that is not so;
to use biber, there are no changes required in the
.bib file (although some advantages can be gained
from a few label changes). All it takes is including
the backend=biber option when loading the biblatex
package. It could hardly be simpler!

11.4 Reference tests

The in-text citations are only part of the battle;
formatting the reference list correctly is the other
critical test for a bibliography package. I checked

The apa6 LATEX class: Challenges encountered updating to new requirements



38 TUGboat, Volume 33 (2012), No. 1

the reference list output from each package against
6th Edition requirements and found no errors that
could not have been predicted by the results of the
citation tests already described.

11.4.1 apacite

The apacite package produced a perfect reference list
for my sample sources.

11.4.2 apacite-natbib

The apacite-natbib solution also had no errors in the
reference list.

11.4.3 biblatex with bibtex

Strangely, biblatex (with bibtex) erred in sorting two
of the references: Borst, Kosslyn, et al., 2011 was
listed prior to Borst, Kievit, et al., 2011. I don’t
have a clue as to why this would be; I even tried
switching the BibTEX keys but the sorting remained
unchanged.

Additionally there is the problem of the three
Borst references having “a”, “b”, and “c” (respec-
tively) appended to their publication dates. This is
not necessary because the author lists for these three
references are unique.

11.4.4 biblatex with biber

The biblatex-biber solution also produced a perfect
reference list.

11.4.5 Attention to the details

To conclude, let’s show off a 6th Edition format-
ting requirement that all four of these bibliography
solutions can now do. D. Gilbert and eight other
individuals published an article in 2004. Check out
the reference below and you will see that the first six

authors are listed, followed by an ellipsis, followed
by the final author. This way of handling more than
six authors in the reference list is a new stipulation
in the 6th Edition.

Gilbert, D., McClernon, J., Rabinovich, N., Sugai,
C., Plath, L., Asgaard, G., . . . Botros,
N. (2004). Effects of quitting smoking
on EEG activation and attention last for
more than 31 days and are more severe
with stress, dependence, DRD2 A1 allele,
and depressive traits. Nicotine & Tobacco

Research, 6 (2), 249–267.
doi:10.1080/14622200410001676305

11.5 EndNote results

For comparison with a leading commercial biblio-
graphic manager, I also subjected the latest version
of EndNote (X5.0.1) to each of these tests. EndNote
failed citation tests #10c (substituting “et al.” in
place of only one author name, the same error as
biblatex) and #12 (with no capitalization available
for a lower-case name, the same flaw as apacite).
There were no errors on the reference list.

12 Conclusion

Although I didn’t know exactly what I was getting
myself into when I began tinkering with the apa code,
I’m glad I tackled this project. I’ve learned a lot,
and with the help of others in the TEX community,
apa6 can be even better in the future.

⋄ Brian D. Beitzel
129 Fitzelle
SUNY Oneonta
Oneonta, NY 13820 USA
brian (at) edpsych dot net

http://www.edpsych.net/brian/

Brian D. Beitzel



TUGboat, Volume 33 (2012), No. 1 39

Glisterings

Peter Wilson

Sound like bels, and shine like lanternes.

Thunder in words and glister in works.

School of Abuse, Stephen Gosson

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Something old, something new,

Something borrowed, something blue.

Traditional: Advice to the Bride

This issue’s column reiterates two items from
the electronic TEXMAG journal, years ago.

I didn’t go to the moon, I went much

further — for time is the longest distance

between two places.

The Glass Menagerie,

Tennessee Williams

1 Timelines

This is a slightly edited version of an article that
Don Hosek wrote for TEXMAG, titled Timelines with

plain TEX and LATEX [1].

&@!)

In one issue of TUGboat (Vol. 8, No. 2), there was
a query for a macro to draw timelines in TEX. At
the time, I had just finished writing DVIview and
was waiting for bugs to surface and my paycheck to
arrive with little else to do, so I decided to tackle
the problem.

To make the problem more interesting, I decided
to make the macro work in both LATEX and plain
TEX. A sample input file should look something like:

%%% LaTeX sample

\documentclass{article}

\usepackage{timeline}

\def\TeXMaG{\TeX

M\kern-.1667em\lower.5ex\hbox{A}%

\kern-.2267emG}

\begin{document}

This is a timeline of the history of

the first year of \TeXMaG.

\begin{timeline}{2in}(0,180)

\optrule

\item[12]{Jan. 24}{No. 1}

\item[33]{Mar. 6}{No. 2}

\item[43]{Mar. 25}{No. 3}

\item[81]{May. 13}{No. 4}

\item[102]{Jun. 25}{No. 5}

\item[132]{Aug. 24}{No. 6}

\item[160]{Oct. 10}{No. 7}

\item[179]{Dec. 31}{To be}

\end{timeline}%% Must be a comment here!!!

If text immediately follows the end of the

timeline then a comment is required

otherwise there is an extraneous space at the

start of the text. A blank line following the

end acts normally, whether or not there has

been a comment.

\end{document}

And something similar in plain TEX. In the
example above, I used sort keys to control the spacing
between entries. I also could have had a timeline
whose entries looked like this:

\begin{timeline}{1.5in}(1750,1900)

\optrule

\item{1773}{The Tea Party}

\item{1812}{War of 1812}

\item{1849}{Gold rush of ’49}

\item[1862]{1862--5}{Civil War}

\item{1876}{Little Big Horn} % added by PW

\end{timeline}

where the dates themselves control the placement.
Note that the entry for the Civil War uses a sort key
to allow the year to be 1862–5. This was a pretty
big problem. The comments in the code below give
a fair idea of how to use the macro; the remainder of
this section will deal with how the macros themselves
work.

First of all, it helps to have some idea of how
\begin{...} and \end{...} work in LATEX. To
view it in a simplified form, when the command
\begin{FOO} is invoked, LATEX issues the commands
\begingroup followed by \FOO; similarly, \end{FOO}

issues the commands \endFOO followed by \endgroup.
Therefore, to allow an environment to function in
plain TEX, all we need to do is include an extra
grouping with \FOO...\endFOO and provide copies
of any LATEX internal macros used by the environ-
ment. Both of these tasks are fairly simple, and in
the timeline macros, the only LATEX internal macro
called is \@ifnextchar (this is a very handy macro
for many reasons, and gives some insight into the
mysteries of LATEX).

\@ifnextchar is called with the general form:

\@ifnextchar X{YES}{NO}

The timeline macros use this for \item to check to see
if the optional argument (enclosed in []s) is present.
If the next character after \@ifnextchar matches X

(X cannot be a space) then YES is executed, otherwise
NO is executed. In the specific case here, this is done
with the call:

\@ifnextchar[\@item\@itemnosrtkey

Glisterings



40 TUGboat, Volume 33 (2012), No. 1

This calls \@item if the optional argument is present,
and \@itemnosrtkey if it isn’t. In addition, the
character that is tested remains in the input stream,
so \@item has a parameter list that looks like
\@item[#1]#2#3

rather than
\@item#1]#2#3.

The definition of \item for the timeline macros
is kept local so it won’t interfere with other uses of
that control sequence name by either plain or LATEX.
The main work of this is done by \@item, which
takes three arguments: the first argument is used to
determine the vertical placement of the timeline item,
the second argument is the nominal date and the
third a description. \@itemnosrtkey calls \@item

using the nominal date as the first argument as well.
The placement of the item on the timeline is de-

termined by taking the date number (first parameter)
and converting to a number between 0 and the length
of the timeline as specified with the arguments to the
\timeline (\begin{timeline}) macro. This num-
ber is then multiplied by 1/65536 times the length of
the timeline as specified by the user. The factor of
1/65536 prevents an arithmetic overflow from occur-
ing at the cost of reducing accuracy (measurements
are only kept accurate to one point). Finally, this
number is divided by the length of the range of date
number values and then multiplied by 65536 which
gives a dimension specifying how far down from the
top of the timeline the entry should be placed.

The actual placement is accomplished with the
\dlap macro from the toolbox of TEXMAG Vol. 1
No. 3 [by Barbara Beeton]. By placing the neces-
sary text after a vertical \kern, inside a vertical
lap, we are able to print information anywhere on
the timeline without changing our vertical position.
This does have the disadvantage of using a lot of
box memory and may run into problems with very
complicated timelines, but it seemed like a good idea
at the time.

The final interesting facet of the macros is the
(simple) way that two entries that are close together
are resolved. After an entry is printed, the vertical
dimension specifying its placement is stored in the
dimen register \itwashere. When the next entry
is to be printed, the current vertical placement is
compared to \itwashere; if the difference is less
than 12pt, and the entry would normally be placed
on the left, then the entry is printed on the right.
Otherwise it is printed on the left. This algorithim
works well for two closely placed entries but fails for
three closely placed entries (the two on the left will
likely overlap).

This is a timeline of the history of the first year of
TEXMAG.

Jan. 24 No. 1 •

Mar. 6 No. 2 •

• Mar. 25 No. 3

May. 13 No. 4 •

Jun. 25 No. 5 •

Aug. 24 No. 6 •

Oct. 10 No. 7 •

Dec. 31 To be •

If text immediately follows the end of the timeline
then a comment is required otherwise there is an
extraneous space at the start of the text. A blank
line following the end acts normally, whether or not
there has been a comment.

Figure 1: First timeline

The macros presented work for simple timelines,
but probably will be deficient for more complex time-
lines. Hopefully, this explanation of the macros will
help in customizing them for your own purpose, or
in writing a timeline macro of your own.

%%% File: timeline.sty

%%% Works with either LaTeX or plain TeX

%%%

%%% In LaTeX:

%%% \begin{timeline}{length}(start,stop)

%%% . . .

%%% \end{timeline}

%%%

%%% in plain TeX

%%% \timeline{length}(start,stop)

%%% . . .

%%% \endtimeline

%%% in between the two, we may have:

%%% \item{date}{description}

%%% \item[sortkey]{date}{description}

%%% \optrule

%%%

%%% the options to timeline are:

%%% length --- The amount of vertical space

%%% that the timeline should use.

%%% (start,stop) --- indicate the range of

%%% the timeline. All dates or sortkeys

%%% should lie in the range [start,stop]

%%%

%%% \item without the sort key expects date to

%%% be a number (such as a year).

%%% \item with the sort key expects the sort

%%% key to be a number; date can be

%%% anything. This can be used for log

%%% scale timelines or dates that

%%% include months or days.

Peter Wilson



TUGboat, Volume 33 (2012), No. 1 41

%%% putting \optrule inside of the timeline

%%% environment will cause a vertical

%%% rule to be drawn down the center

%%% of the timeline.

\catcode‘\@=11 % Pretend @ is a letter

\newcount\startat \newcount\tllength

\newdimen\putithere \newdimen\itwasthere

\newcount\scr@tchi \newdimen\scr@tchii

% A vertically centered lap

\long\def\ylap#1{\vbox to \z@{\vss#1\vss}}

% Vertical ‘laps’; cf. \llap and \rlap

\long\def\ulap#1{\vbox to \z@{\vss#1}}

\long\def\dlap#1{\vbox to \z@{#1\vss}}

\def\timeline#1(#2,#3){%

\ifvmode\else\par\fi$$\vbox to#1\bgroup

% The \vbox command is

% surrounded by $$..$$ to make it

% fit in well with paragraphs.

\offinterlineskip

\startat=#2\tllength=#3

\advance\tllength by-\startat

% \tllength should be the total length of

% the timeline.

\def\item{\@ifnextchar[\@item\@itemnosrtkey}

\def\@item[##1]##2##3{\scr@tchi=##1

\advance\scr@tchi by-\startat

\putithere=#1

\divide\putithere by 65536 % avoid overflow

% only remain accurate to 1pt in the

% next set of calculations

\multiply\putithere by \scr@tchi

\divide\putithere by\tllength

\multiply\putithere by 65536

% Now \putithere has how far

% down we should go for this item.

\scr@tchii=\putithere

\advance\scr@tchii by -\itwasthere

\ifdim\scr@tchii<12pt

\ifx\lrswitch L

\@putright{\putithere}{##2}{##3}

\else

\@putleft{\putithere}{##2}{##3}

\fi

\else

\@putleft{\putithere}{##2}{##3}

\fi

\itwasthere=\putithere}

\def\@itemnosrtkey##1##2{%

\@item[##1]{##1}{##2}}

\def\@putright##1##2##3{\dlap

{\kern##1\centerline

{\rlap

{\ $\bullet$\hskip1.5em{\bf ##2}

\ ##3}}}

\let\lrswitch=R}

\def\@putleft##1##2##3{\dlap

{\kern##1\centerline

{\llap

{{\bf ##2} \ ##3\hskip1.5em$\bullet$

\ }}}

\let\lrswitch=L}

\def\optrule{\dlap

{\centerline

% This calculation is kept local

{\dimen0=#1 \advance\dimen0 by 6pt

\vrule depth \dimen0 height-6pt}}}}

% Put the extra \vskip in a \vbox to hide

% it from the math gods.

\def\endtimeline{%

\vfill\egroup\vbox{\vskip\baselineskip}$$}

\ifx\@latexerr\undefined

\def\@ifnextchar#1#2#3{%

\let\@tempe #1

\def\@tempa{#2}\def\@tempb{#3}

\futurelet\@tempc\@ifnch}

\def\@ifnch{%

\ifx \@tempc \@sptoken

\let\@tempd\@xifnch

\else

\ifx \@tempc \@tempe

\let\@tempd\@tempa

\else

\let\@tempd\@tempb

\fi

\fi \@tempd}

% NOTE: the following hacking must precede

% the definition of \: as math medium

% space.

% make \@sptoken a space token

\def\:{\let\@sptoken= } \:

\def\:{\@xifnch}

\expandafter\def\: {\futurelet\@tempc\@ifnch}

\catcode‘\@=12 % Stop pretending @ is a letter

\fi

\endinput

($#*

Using the above code, the result of the initial
example is in Figure 1 and the second is in Figure 2.

1773 The Tea Party •

1812 War of 1812 •

1849 Gold rush •

• 1862–5 Civil War
1876 Little Big Horn •

Figure 2: Second timeline

Glisterings



42 TUGboat, Volume 33 (2012), No. 1

Gaul as a whole is divided into three parts.

De Bello Gallico, Julius Caesar

2 Parsing a filename

This is another (slightly edited) article from a later
issue of TEXMAG [2].

&@!)

Sometimes it is nice to be able to use the information
in a filename.tex as information in a particular
document. For example, suppose I wanted to typeset
TEXMAG on real paper, and be able to have the
volume and issue numbers read from the title of
the file that TEX was processing, and subsequently
assigned to tokens for use in the document, perhaps
in a header. Say my file was named TEXMAG-5-1.TEX.
The following would isolate the 5 and the 1 for use
within the TEX document:

% This particular idea was developed by our

% chief consultant Dr. John McClain

\newtoks \volumenumber

\newtoks \issuenumber

\def\parse#1-#2-#3-{\global\volumenumber={#2}

\global\issuenumber={#3}}

\expandafter\parse\jobname-

%%% for a TeX headline

\headline={Volume \the\volumenumber,

Number \the\issuenumber

\hfil page \folio}

% end of macro

Notice the \jobname contains the name of the
file (without any extension, see The TEXbook, p. 213).
The \expandafter allows you to piece apart this
token into its volume and number. We also had
to chose a special delimiter which would conform to
filename standards and be a legal parameter delimiter
in TEX. A space would not have worked as a legal
file name. A hyphen was our best choice. When you
test this, remember that the filename must conform
to the parameter specs of \parse (in this case, two
hyphens, i.e., XXXX-N-N.TEX).

($#*

The essence of the code in the TEXMAG article
is the \parse macro. The \jobname of the document
you are now reading is ‘tb103glister’, which does
not match the requirements of \parse. The following
code demonstrates that macros based on \parse can
work with names other than \jobname, provided that
they expand into the expected format.

For instance:

\newcommand*{\jname}{glisten-n16-v3.tex}

\newtoks \pwfirstsub

\newtoks \pwsecondsub

\def\parse#1-#2-#3.#4-{%

\global\pwfirstsub={#2}

\global\pwsecondsub={#3}}

\newcommand*{\parsit}[1]{\expandafter\parse#1-}

\verb?\parsit{\jname}? \parsit{\jname}

File \jname\ with: \\

Number \the\pwfirstsub,

and Version \the\pwsecondsub.

And the result of the above code is:

\parsit{\jname} File glisten-n16-v3.tex with:
Number n16, and Version v3.

The basic idea of \parse can be applied to
any multipart string that has well-defined delimiters
between the parts.

References

[1] Don Hosek. Timelines with plain TEX and
LATEX. TEXMAG, 1(7), October 1987. http:

//mirror.ctan.org/digests/tex-mag/v1.n7.

[2] John McClain. The toolbox. TEXMAG. http:

//mirror.ctan.org/digests/tex-mag/v5.n1.

⋄ Peter Wilson

12 Sovereign Close

Kenilworth, CV8 1SQ

UK

herries dot press (at)

earthlink dot net

Peter Wilson



TUGboat, Volume 33 (2012), No. 1 43

Some LATEX2ε tips and tricks (V)

Luca Merciadri

1 Introduction

This time, as usual, we shall see some LATEX hints
(numbered according to the following sections):

2. Numbering paragraphs,

3. Incorporating MATLAB graphics,

4. Incorporating MATLAB code,

5. Customizing an index.

2 Numbering paragraphs

2.1 Example

Here is an example of numbering paragraphs:

The Title
1 One line of text that is long enough to wrap as
a paragraph that is long enough to wrap
2 Second batch of text that is long enough to wrap
as a paragraph that is long enough to wrap as a
paragraph.
3 Still more lines of text that are long enough to
wrap as a paragraph that is long enough to wrap
as a paragraph.

2.2 Code

This can be done with the following code:
\newcounter{vcount}

\def\Header#1{\medskip%

\hbox{\bfseries #1}%

\setcounter{vcount}{1}%

\everypar{\arabic{vcount}%

\stepcounter{vcount}\ }%

}

You can then use

\Header{The Title}

First paragraph.

Second paragraph. [...]

3 Incorporating MATLAB graphics

MATLAB can output graphics, and of course one
may want to incorporate them into a LATEX docu-
ment. This can be achieved easily, and it produces
a better-looking document, because of a more coher-
ent presentation. There are two essentially different
approaches: laprint and TikZ/PGF-related ones—
Matfig2PGF and matlab2tikz. Thanks to Marc van
Dongen for telling me about the second of these. We
will describe each separately.

3.1 LaPrint

For this, you need laprint.m. According to [9],
once LaPrint has been launched into MATLAB, it
can perform the following tasks:

• Replace all occurrences of text in the MATLAB

figure by tags,

• Save the modified figure in PostScript format
(eps file),

• Create a tex file with commands from the LATEX
psfrag package to replace the tags by the orig-
inal text and to call the PostScript file.

Let’s assume you have typed

>> set(0,’defaulttextinterpreter’,’none’)

>> figure(1),clf

>> plot([1 2])

>> ylabel(’A straight line’)

where “>>” denotes MATLAB’s prompt. Let’s then
type (assuming laprint.m is in your current MAT-

LAB working directory)

>> laprint

LaPrint thus asks you the “Number of Figure to
be Saved” and “Basename of Files to be Created”.
You can modify several options, then click on “Go!.”
The laprint script will then create two files: an eps

one and a tex one.
The tex file can be included into LATEX doc-

uments using the packages graphicx, color and
psfrag. Thus, if you let “Basename of Files to be
Created” to “unnamed”, a simple tex file showing
your graphics will be generated, and will have con-
tent like this:

\documentclass{article}

\usepackage{graphicx,color,psfrag}

\begin{document}

\input{unnamed}

\end{document}

For other pieces of information (such as how to give
a predetermined size to your graphics, . . . ), do not
hesitate to read [9].

3.2 Matfig2PGF

matfig2pgf converts a MATLAB figure to the Port-
able Graphics Format (PGF). This PGF file can be
included in a LATEX document. Once matfig2pgf

has been launched in MATLAB, you just need to
generate your plot in MATLAB, and then invoke
matfig2pgf using

>> matfig2pgf(’myfile.pgf’)

where >> is MATLAB’s prompt and myfile.pgf is
the output file. You can now write your .tex docu-
ment according to the following minimal structure:

Some LATEX2ε tips and tricks (V)



44 TUGboat, Volume 33 (2012), No. 1

\documentclass{article}

\usepackage{pgf}

\usepackage{pgffor}

\usepgflibrary{plothandlers}

% Or, for older PGF versions (<= 1.01)

%\usepackage{pgf}

%\usepackage{pgffor}

%\usepackage{pgflibraryplothandlers}

\begin{document}

\begin{figure}

\centering

\input{myfile.pgf}

\caption{Figure created by Matfig2PGF}

\end{figure}

\end{document}

This is an easy way to put a MATLAB figure into a
LATEX document. For more information, try typing

>> help matfig2pgf

in MATLAB.

3.3 Matlab2Tikz

A third way to achieve this is to use matlab2tikz.
Once matlab2tikz has been launched in MATLAB,
again you just need to generate your plot in MAT-

LAB, and then invoke matlab2tikz using

>> matlab2tikz(’myfile.tikz’);

where >> is MATLAB’s prompt and myfile.tikz is
the output file. You can now write your .tex docu-
ment according to the following minimal structure:

\documentclass{article}

\usepackage{tikz}

\usepackage{pgfplots}

\begin{document}

\input{myfile.tikz}

\end{document}

For more information, please have a look at [1].
You may note that you can do all these things

by using SageTEX, but it is a little bit less straight-
forward. It is also possible that you might have
to use more than one approach (especially coupling
laprint with the two other approaches). For exam-
ple, the plot resultig from a spectrogram command
in MATLAB can only be included in a LATEX docu-
ment with laprint.

4 Incorporating MATLAB code

To typeset MATLAB code ([8, 10]), one good ap-
proach is to use the listings package together with
mcode.1 Thus, you may put

1 Note that this package may be downloaded at http://
files.myopera.com/locksley90/blog/mcode.sty, at

\usepackage{listings}

\usepackage[bw,numbered,framed,final]{mcode}

in the preamble of your document. The following
options are available for mcode:

• bw is useful if you intend to print the document,

• numbered is useful if you want line numbers to
be written before each line of code,

• framed is useful if you want a frame around the
source code blocks,

• final is useful if you have “globally” set the
draft option, as listings will not, in such a
case, output the code at all. That forces it to
do so anyway.

You can then include a MATLAB source file using

\lstinputlisting{/path/to/yourmfile.m}

or placing snippets of source code in a lstlisting

environment. For example, you would then do

\begin{lstlisting}

% Example of Matlab code for calculating

% hypotenuse

% § $c=\sqrt{a^{2}+b^{2}$ §

a = 3;

b = 4;

c = sqrt(a^2+b^2);

\end{lstlisting}

Note that “§” allow you to “escape” from LATEX
mode. As a result, you are not obliged to pass lots
of parameters to listings using lstset.

This will give a better presentation than using
lstlisting together with a declaration like

\lstset{language=MATLAB,basicstyle=\small%

\ttfamily,showstringspaces=false,%

numbers=left,commentstyle=\itshape,%

backgroundcolor=\color{white},%

stepnumber=2,numbersep=5pt,%

escapeinside={(*@}{@*)}}

5 Customizing an index

5.1 Standard customizations

When generating an index with makeindex, one can
create a perso.ist file with “customizations”. For
example:

heading_prefix "{\\bfseries\\hfil "

heading_suffix "\\hfil}\\nopagebreak\n"

headings_flag 1

delim_0 "\\dotfill"

delim_1 "\\dotfill"

delim_2 "\\dotfill"

http://web.mit.edu/~paul_s/www/14.170/matlab/mcode.

sty or even at [8].

Luca Merciadri



TUGboat, Volume 33 (2012), No. 1 45

This writes the first alphabet symbol in bold font,
and uses dots as delimiters. This file is generally
used jointly with makeindex using

makeindex -s perso.ist filename.idx

where filename.idx has been created by executing
latex on filename.tex.

5.2 French tricks

If your document is in French, you could ask for
“Symboles” at the place of “Symbols” and “Nom-
bres” at the place of “Numbers.” This is achieved
by appending

symhead_positive "Symboles"

symhead_negative "symboles"

numhead_positive "Nombres"

numhead_negative "nombres"

to the previous code.

5.3 Insensitive letter sort

If you want, for example, an insensitive letter sort
for letter A, you may use, according to [3]:

sort_rule "A" "a"

You can then repeat this rule for every letter.

5.4 Special letter sort

For TEX-style umlaut-macros, you may use, accord-
ing to [2]:

sort_rule "\\\"A" "ae"

sort_rule "\\\"a" "ae"

sort_rule "\\\"O" "oe"

sort_rule "\\\"o" "oe"

sort_rule "\\\"U" "ue"

sort_rule "\\\"u" "ue"

sort_rule "\\ss({})?" "ss"

5.5 Math formulae sort

If you use fancy constructs such as

\index{log@\texttt{log}}

you may use, according to [5]:

% first remove enclosing ’$’-characters

*merge_rule "\$(.*)\$" "\1"

% function-name macros will be sorted like

% the function they stand for

merge_rule "\\log" "log"

merge_rule "\\lim" "lim"

% etc.

5.6 Greek letter sort

For Greek letters, you may use, according to [5]:

% the pronounciation of Greek letters

% decides their sort order

merge_rule "\\alpha" "alpha"

merge_rule "\\beta" "beta"

merge_rule "\\gamma" "gamma"

% etc.

5.7 Special characters sort

According to [6], you may use

% special characters come first

sort_rule "\." "\b\."

sort_rule "\:" "\b\:"

sort_rule "\," "\b\,"

% etc.

to handle special characters correctly.

5.8 Last refinements

If the commands \LaTeX and \TeX are not correctly
handled by your makeindex, you may use, according
to [4, 7]:

merge_rule "\\LaTeX" "LaTeX"

merge_rule "\\TeX" "TeX"

References

[1] Universiteit Antwerpen. matlab2tikz, 2009.
http://win.ua.ac.be/~nschloe/content/

matlab2tikz.

[2] Gabor Herr. din.ist, 1991. http://mirror.ctan.
org/indexing/makeindex/ist/din.ist.

[3] Gabor Herr. icase.ist, 1991. http://mirror.

ctan.org/indexing/makeindex/ist/icase.ist.

[4] Gabor Herr. latex.ist, 1991. http://mirror.

ctan.org/indexing/makeindex/ist/latex.ist.

[5] Gabor Herr. math.ist, 1991. http://mirror.

ctan.org/indexing/makeindex/ist/math.ist.

[6] Gabor Herr. puncts.ist, 1991. http://mirror.

ctan.org/indexing/makeindex/ist/puncts.ist.

[7] Gabor Herr. tex.ist, 1991. http://mirror.ctan.
org/indexing/makeindex/ist/tex.ist.

[8] Florian Knorn. M-code LATEX Package, 2009.
http://www.mathworks.com/matlabcentral/

fileexchange/8015-m-code-latex-package.

[9] Arno Linnemann. LaPrint Users Guide (LaPrint
Version 3.16), 2004. http://www.uni-kassel.de/
fb16/rat/matlab/laprint/laprintdoc.ps.

[10] Locksley. How to include MATLAB source
code in a LATEX document, 2009. http://my.

opera.com/locksley90/blog/2008/02/25/

how-to-include-matlab-source-code-in-

a-latex-document.

⋄ Luca Merciadri
University of Liège
Luca.Merciadri (at) student dot ulg dot

ac dot be

http://www.student.montefiore.ulg.ac.be/

~merciadri/

Some LATEX2ε tips and tricks (V)



46 TUGboat, Volume 33 (2012), No. 1

LATEX News
Issue 6, June 2011

A key aim of releasing ‘stable’ LATEX3 material to CTAN

is to allow users to benefit from new ideas now, and also
to raise the profile of usable LATEX3 ideas. This is
clearly being successful, with xparse being of particular
utility to end users. This increase in interest has been
particularly notable on the new TeX.SX Q&A site.

The LATEX3 Team expands

Raising interest in LATEX3 developments has inevitably
led to feedback on cases where the code base has
required attention. It has also attracted new
programmers to using LATEX3 ideas, some more than
others! Bruno Le Floch has over the past few months
made many useful contributions to LATEX3, and we are
very pleased that he has recently joined the LATEX3
Project.
Bruno has taken a particular interest in improving

the performance and reliability of the expl3 language.
This has already resulted in new implementations for
the prop and seq data types. At the same time, he has
identified and fixed several edge-case issues in core expl3

macros.

The ‘Big Bang’

In parallel to Bruno’s improvements, Joseph Wright
initiated a series of ‘Big Bang’ improvements to LATEX3.
The aim of the Big Bang was to address a number of
long-standing issues with the LATEX3 code base.
Development has taken place over many years, with the
status of some of the resulting code being less than
clear, even to members of The LATEX3 Project! At the
same time, different conventions had been applied to
different parts of the code, which made reading some of
the code rather ‘interesting’. A key part of the Big
Bang has been to address these issues, cleaning up the
existing code and ensuring that the status of each part
is clear.
The arrangement of LATEX3 code is now the same in

the development repository and on CTAN, and splits
the code into three parts.

l3kernel The core of LATEX3, code which is expected to
be used in a LATEX3 kernel in more or less the current
form. Currently, this part is made up of the LATEX3
programming layer, expl3.

l3packages LATEX2ε packages making use of LATEX3
concepts and with stable interfaces. The xparse and
xtemplate packages are the core of this area. While
many of the ideas explored here may eventually appear
in a LATEX3 kernel, the interfaces here are tied to
LATEX2ε.

l3experimental LATEX2ε packages which explore more
experimental LATEX3 ideas, and which may see interface

changes as development continues. Over time, we
expect code to move from this area to either l3kernel or
l3packages, as appropriate.

In addition to these release areas, the development
code also features a l3trial section for exploring code
ideas. Code in l3trial may be used to improve or replace
other parts of LATEX3, or may simply be dropped!

As well as these improvements to the code used in
LATEX3, much of the documentation for expl3 has been
made more precise as part of the Big Bang. This means
that source3.pdf is now rather longer than it was
previously, but also should mean that many of the
inaccuracies in earlier versions have been removed. Of
course, we are very pleased to receive suggestions for
further improvement.

LATEX3 on GitHub

The core development repository for LATEX3 is held in
an SVN repository, which is publicly viewable via the
Project website. However, this interface misses out on
some of the ‘bells and whistles’ of newer code-hosting
sites such as GitHub and BitBucket. We have therefore
established a mirror of the master repository on
GitHub.1 This is kept in synchronisation with the main
SVN repository by Will Robertson (or at least by his
laptop!).

The GitHub mirror offers several useful features for
people who wish to follow the LATEX3 code changes.
GitHub offers facilities such as highlighted differences
and notification of changes. It also makes it possible for
non-Team members to submit patches for LATEX3 as
‘pull requests’ on GitHub.

As well as offering a convenient interface to the
LATEX3 code, the GitHub site also includes an issue
database.2 Given the very active nature of LATEX3
development, and the transitory nature of many of the
issues, this provides a better approach to tracking issues
than the main LATEX bug database.3 Developers and
users are therefore asked to report any issues with
LATEX3 code via the GitHub database, rather than on
the main Project homepage. Discussion on the LaTeX-L
mailing list is also encouraged.

Next steps

The ‘Big Bang’ involves making a number of changes to
expl3 function names, and is likely to break at least
some third-party code. As a result, the updates will not
appear on the TEX Live 2011 DVD release, but will
instead be added to TEX Live once regular updates
restart (probably August).

Bruno is working on a significant overhaul of the l3fp

floating-point unit for LATEX3. He has developed an
approach which allows expandable parsing of

1http://github.com/latex3/svn-mirror
2http://github.com/latex3/svn-mirror/issues
3http://www.latex-project.org/bugs.html

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2011–2012, all rights reserved.



TUGboat, Volume 33 (2012), No. 1 47

floating-point expressions, which will eventually allow
syntax such as

\fp_parse:n { 3 * 4 ( ln(5) + 1 ) }

This will result in some changes in the interface for
floating-point numbers, but we feel that the long-term
benefit is worth a small amount of recoding in other
areas.
Joseph has completed documentation of the xgalley

module, and this is currently being discussed. Joseph is
hoping to move on to implement other more visible
ideas based on the xtemplate concept over the next few
months.

LATEX News
Issue 7, February 2012

After the ‘Big Bang’

The last LATEX3 News gave details of the ‘Big Bang’, in
which the team have revised the layout and coverage of
the LATEX3 codebase. This process has made the status
of different modules clearer, so that both the team
themselves and everyone else know what is going on.
The ‘Big Bang’ changes were not shipped to CTAN

until after the TEX Live 2011 freeze, as we did not want
to end up with a DVD containing badly broken code.
The update went to CTAN soon after TEX Live 2011
shipped, and has now propagated around the world.
The new package naming (l3kernel, l3packages and
l3experimental) has caused some surprises for a small
number of users, but there have not been any major
issues with the changes at the code level.
The ‘Big Bang’ has attracted attention from

programmers outside of the LATEX3 team, with useful
feedback arriving on the LaTeX-L list and TeX.SX, in
particular. One area that this has highlighted is the
need to document carefully when changes to the ‘stable’
parts of the LATEX3 codebase occur. All changes to
l3kernel now come with an explicit date for the change
in the documentation, which means that programmers
can check exactly when the features they want were
introduced.
Another key part of supporting LATEX3 use beyond

the team is making it easy to check on the version of
LATEX3 installed. To support that, the file date of the
main expl3 package is now set each time there is a
release of the LATEX3 material to CTAN. This means
that the LATEX2ε \@ifpackagelater test can be used
reliably to detect if the installed version of LATEX3 is
going to supply the functions that a programmer is
using.

Deforming boxes

Additions to both the LATEX3 stable material and more
experimental modules continue. Joseph Wright has

been working on adding ‘native’ drivers for LATEX3 to
support box transformations. These allow box rotation,
clipping and scaling with the drivers dvips, xdvipdfmx
and direct PDF output.
The development of clipping support for the

xdvipdfmx driver has also allowed us to suggest
improvements to the LATEX2ε graphics drivers, enabling
clipping with the X ETEX engine.

A TeX-based regex engine

Bruno Le Floch has been improving the efficiency and
robustness of a number of LATEX3 functions. Most
notably, he has created a purely TEX-based regular
expression (regex) system for LATEX3. This is currently
experimental, but is already proving useful and will
hopefully stabilise over the coming months.

Bruno’s regex system works with all of the supported
engines (pdfTEX, X ETEX and LuaTEX). He has
implemented the core ideas of standard regex systems,
along with some TEX-specifics to allow matching and
replacing the content of token lists by category code.

xparse improves

The xparse module has been overhauled, making the
internal code more efficient and adding additional
argument types. This has also allowed us to deal with a
number of internal bugs, meaning that argument
grabbing is now more reliable.

The argument grabbers themselves have been
reworked so that in the event of an error, the user will
normally get a meaningful message from TEX rather
than one pointing to xparse internal function names.
This should help in tracking down erroneous input in
real documents.

The galley

As detailed in the last issue, work on the galley module
has been continuing. Discussion of Joseph’s
reimplementation of the galley concepts highlighted
some important areas to work on, with the nature of
the template concept being particularly significant.

More work is still needed to finalise the galley
concepts, but it is clear that some of this will require
feedback from other areas. Joseph therefore hopes to
finish work on the current round of galley improvements
by the end of February, and to return to them once
some other areas have been addressed.

Relationships between document items

The TUG 2011 meeting took place in October in India.
Frank Mittelbach spoke there about ideas for describing
the design relationship between document elements.
These ideas allow a document designer to specify the
design of a document element based on its context
within a document, and progress in this area will likely
lead to an extension in the xtemplate system.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2011–2012, all rights reserved.



48 TUGboat, Volume 33 (2012), No. 1

User-friendly web utilities for generating

LATEX output and METAPOST graphics

Troy Henderson

Abstract

There are several facets of the creation of LATEX doc-
uments and METAPOST graphics that deter users
from initially trying both LATEX and METAPOST.
These include the basic structure of the source files,
the compilation of the source files, and the conversion
of the output to a desired format. Furthermore, many
TEX users often desire to create 2D and 3D graphs of
functions for inclusion into their documents. Many
of these types of graphs require considerable amounts
of source code to create professional quality graphics,
and this is yet another deterrent for those who might
otherwise consider using METAPOST. This article
introduces several free web utilities that aim to elim-
inate each of these obstacles and describes the usage
and methods of these utilities.

1 LATEX Previewer

LATEX is a powerful typesetting system, but there are
several reasons that discourage document preparers
from using (in fact, even trying) LATEX. Probably
the most common reason is the fact that LATEX is not
a WYSIWYG word processor such as most document
preparers are accustomed to using. As a result, these
preparers might be interested in trying LATEX while
at the same time they might also be overwhelmed
by LATEX due to some of its characteristics. Several
of these characteristics could include, for example,
LATEX’s large installation size, relatively complex
(source) document structure for beginners, compi-
lation process, and lack of real-time previewing of
LATEX output.

Several years ago, the LATEX Previewer was cre-
ated to address these issues and provide beginners
with a user-friendly interface to LATEX that did not
require users to download and install LATEX and did
not require any knowledge of the LATEX document
structure or compilation process. The LATEX Pre-
viewer can be (freely) used by visiting

http://www.tlhiv.org/ltxpreview

Figure 1 shows the initial display for the Pre-
viewer. Beginners simply type source code and
preview the corresponding output by selecting the
Preview button. If a user requires the inclusion of
particular LATEX packages, then the Packages button
can be used to accesses a user-friendly interface for
adding and removing different packages. If the de-
sired package is not listed, then the user is advised to
send an email (and is provided a link) to request ad-

Figure 1: LATEX Previewer Initial Display

Figure 2: LATEX Previewer Example Run

ditional packages. Figure 2 illustrates an example of
how the source code is rendered. If the user makes a
mistake in typing the LATEX source code and if a com-
pilation error occurs, the user is informed of this error
and is encouraged to view the compilation output
log using the Log button. If compilation is success-
ful, the (cropped) output can be downloaded in a
variety of different formats including LATEX source,
Encapsulated PostScript (EPS), Portable Document
Format (PDF), Portable Network Graphics (PNG),
Scalable Vector Graphic (SVG), and Adobe Shock-
Wave Flash (SWF).

There is also a PasteBin button for sharing the
source code with others as well as a Popup button
for opening a larger window to view the output.
Finally, the user’s web browser is detected and it
is automatically determined if proper SVG support
is available, and if so, the default rendered output
format is SVG. If the user’s browser does not have
proper SVG support, then the failsafe PNG rendered
output is used. Furthermore, the user can override
the automatic output rendering format by manually
selecting either the SVG or PNG radio button.

Troy Henderson



TUGboat, Volume 33 (2012), No. 1 49

2 METAPOST Previewer

METAPOST, like LATEX, can be unwelcoming to be-
ginners who wish to create professional quality graph-
ics. These beginners, when first witnessing META-
POST examples, often wish to start creating their
own graphics by typing source code. A typical META-
POST source file often needs prologues set appro-
priately to ensure that fonts used throughout the
graphic are embedded in the resulting output. Fur-
thermore, since many METAPOST beginners are ex-
perienced in LATEX, they typically would like to type-
set labels in METAPOST using LATEX. In order to
accomplish this, several commands are required in
the METAPOST source. Since a METAPOST source
file can accommodate multiple figures, the output
naming scheme can be quite confusing to beginners,
and it may also be unclear that each output is in
fact an EPS file (even though each output filename
extension may not be .eps).

These issues, as well as several others, were the
primary motivation for creating the METAPOST Pre-
viewer. The METAPOST Previewer was introduced
in TUGboat [2] in 2007, but it has since been given
more features and made more user-friendly. Like
the LATEX Previewer, the goal was to provide a user-
friendly interface to METAPOST that makes these
issues transparent to beginners. Also, like the LATEX
Previewer, the METAPOST Previewer can be (freely)
used by visiting

http://www.tlhiv.org/mppreview

The user interface for the METAPOST Previewer is
virtually identical to that of the LATEX Previewer,
and an example is shown in Figure 3. The only
noticeable difference between the two Previewers is
that the Packages button for the METAPOST Pre-
viewer provides the user with the ability to select
both LATEX and METAPOST packages. For exam-
ple, the user can choose the LATEX package arev to
have labels typeset in the Arev Sans (a derivative
of Bitstream Vera Sans) font and also choose the
METAPOST package boxes (for drawing a variety of
boxes in METAPOST).

3 Previewer framework

Both Previewers have a user interface that is written
in HTML (the main markup language for web pages)
and CSS (a style sheet language for adjusting the
appearance of web pages). This user interface pro-
vides dynamic interaction using JavaScript (a client-
side scripting language used to enhance websites).
When users enter source code into the Previewer
and select Preview, the source code is posted to a
CGI script (a standard method for processing HTML

Figure 3: METAPOST Previewer Example

LATEX
latex

DVI
dvips

EPS
epstopdf

PDF
pdf2svg

SVG

convert
PNG

pdf2swf
SWFMETAPOST

mpost

Figure 4: Previewer Conversion Process

form data) written in Perl. The CGI script creates
a LATEX/METAPOST source file that contains the
preamble presented on the Previewer’s page, any
user-selected packages to be included in the pream-
ble, as well as the user-provided source code. The
CGI script then compiles the source file with latex

or mpost using a halt on error interaction method in
order to determine whether compilation errors occur.
If no errors occur, the LATEX/METAPOST output
(DVI/EPS) is converted to the on-screen display for-
mat, returned to the Previewer, and the output is
then available for conversion to the downloadable
formats listed above. Figure 4 illustrates the steps
used to convert the source to each available format.

The first few commands, namely latex, dvips,
mpost, and epstopdf are included in most TEX dis-
tributions, and these sequential commands provide
PDF output which is used as the basis for all other
downloadable formats. The convert command is
provided by ImageMagick [3] which (quoting from its
website) “is a software suite to create, edit, compose,
or convert bitmap images”. Furthermore, pdf2svg is
a utility by David Barton [1] which uses Poppler and
Cairo to convert PDF documents/graphics to SVG

format. Finally, pdf2swf is part of the SWFTools [5]
suite and is a PDF to SWF converter.

4 Function Grapher

A standard type of graphic that TEX users often
include in their documents are graphs of functions,
curves, and surfaces. There are a variety of commer-
cial applications available that can generate these

User-friendly web utilities for generating LATEX output and METAPOST graphics



50 TUGboat, Volume 33 (2012), No. 1

graphs, and each of these applications requires at
least a moderate level of expertise in not only gen-
erating the graph but also exporting the graph to
a TEX-friendly format. Furthermore, these graphs
often appear out of place in TEX documents since the
fonts may not be consistent with the document font
and the line widths of the curves may not be con-
sistent with default TEX document rules (lines). Of
course, these issues can be addressed, but typically
even more expertise is needed to accomplish this
consistency. Finally, these commercial applications
can cost anywhere between $100 to $2,500 (USD)
which may be impractical for many users. There is
an abundance of free (many open-source) applica-
tions which can produce these graphs as well, but,
typically, an even greater level of expertise than for
the commercial applications is needed to produce
high-quality graphs.

The primary reason for creating the Function
Grapher was to provide a free utility that produces
publication-quality graphs with a user-friendly inter-
face. The user interface of the Function Grapher is
similar to that of the Previewers, and its output is
designed to mimic MATLAB’s [4] graphs with several
personal preferences incorporated. Like the Preview-
ers, the Function Grapher can be (freely) used by
visiting

http://www.tlhiv.org/mpgraph

Figure 5 illustrates a preview of the Function Gra-
pher, and shows the polar plot of r(t) = sin(8t/5)
with 0 ≤ t ≤ 10π.

Currently, the Function Grapher can graph (up
to) three functions of a single variable simultaneously,
parametric plane curves of a single variable, polar
curves, contour plots of a function of two variables,
slope fields of first order ordinary differential equa-
tions, parametric space curves, surface plots of (up
to) three functions of two variables simultaneously,
and parametric surfaces. Each type of graph has two
predefined examples (accessed using the correspond-
ing Example button) that can be used to illustrate
syntax and output quality. The Options button pro-
vides users with the ability to adjust the appearance
of each graph. Users can adjust the graph’s aspect ra-
tio, color scheme, axis labels, axis and grid visibility
for each type of graph and can adjust mesh visibility
for 3D surfaces. The output can be downloaded in
a variety of formats for stand-alone graphics or for
insertion into TEX documents.

5 Function Grapher framework

Like the Previewers, the user interface for the Func-
tion Grapher is written in HTML and CSS, and dy-
namic interaction is accomplished using JavaScript.

Figure 5: Function Grapher Example

Also, like the Previewers, when users enter functions
to graph and select Preview, the function informa-
tion is posted to a (Perl) CGI script which processes
the HTML form data. The CGI script creates a uni-
form partition of each independent variable’s interval
and then evaluates the function(s) at the nodes of
this partition. The density of the partition is chosen
to balance quality with computation time, and the
extreme values of each function are determined from
these evaluations.

The tick marks for both the independent and
the dependent variables are then computed using
Wilkinson’s algorithm [6], and clipping of the curve
or surface is performed if the user specifies a range
on the dependent variable(s) which is more narrow
than the computed extreme values. The 3D graph-
ics are represented using an orthographic projection
of the xyz-space in which the uv-projection plane
is orthogonal to a viewpoint vector w on the unit
sphere. That is, w = 〈cos θ cosφ, sin θ cosφ, sinφ〉
where −π ≤ θ < π and −π

2 ≤ φ ≤ π

2 . The uv-
projection plane is chosen so that the z-axis is pro-
jected to the v-axis (i.e., the z-direction is always
drawn vertically). Both θ and φ can be specified
using the Options button, and have default values
of θ = −127.5◦ and φ = 20◦. These values can
be changed manually by editing the corresponding
HTML form fields or semi-automatically by click-
ing the rotation arrows overlaid on the previewed
graphic. The final steps in creating each graph are
accomplished by the CGI script writing a META-
POST source file and then generating output using
the process described in Figure 4.

6 Function Grapher examples

This section gives several example graphs generated
by the Function Grapher. Figure 6 is the graph of

Troy Henderson



TUGboat, Volume 33 (2012), No. 1 51

three functions of a single variable, namely

f(x) = sin(2πx)

g(x) = sin
(

2πx− 2π
3

)

h(x) = sin
(

2πx+ 2π
3

)

representing three phase power.

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

Phase

A
m
p
li
tu
d
e

Figure 6: Three Phase Power

Figure 7 shows several contours (level curves) of the
function

f(x, y) = 3(1− x)2e−x
2
−(y+1)2

−10(x5 − x3 − y5)e−x
2
−y

2

− 1
3e

−(x+1)2−y
2

.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x-axis

y
-a
x
is

Figure 7: Contour (Level Curve) Plot

Figure 8 is the slope field plot of the ordinary differ-
ential equation







dy

dx
= x+ y

y(0) = 0

where the numerical solution is approximated using
a fourth order Runge-Kutta method, and Figure 9
is the surface plot of the function

f(x, y) = e−x
2
−y

2

.

−2 −1 0 1 2

−2

−1

0

1

2

x-axis

y
-a
x
is

Figure 8: ODE Slope Field Plot

−2
−1

0
1

2

x-axi
s−2

−1

0

1

2

y-axis

0

0.25

0.5

0.75

1

z
-a
x
is

Figure 9: Surface Plot of Function of Two Variables

Figure 10 is the graph of the parametric (torus)
surface parameterized by

x(s, t) = (3 + cos s) cos t
y(s, t) = (3 + cos s) sin t
z(s, t) = sin s,

Figure 10: Surface Plot of Torus

User-friendly web utilities for generating LATEX output and METAPOST graphics



52 TUGboat, Volume 33 (2012), No. 1

Figure 11 is the graph of the parametric (heart)
surface parameterized by

x(s, t) = 1338
557 r(t) cos(t) cos(s)

y(s, t) = 2 sin(s)

z(s, t) = 1338
557

[

r(t) sin(t) + 970
557

]

cos(s)

where

r(t) = 2− 2 sin(t) +
sin(t)

√

| cos(t)|

sin(t) + 7
5

with −π

2 ≤ s ≤ π

2 and −π ≤ t < π.

Figure 11: Surface Plot of a 3D Heart

Finally, Figure 12 is the graph of the parametric
space curve parameterized by

x(t) = cos(6t)
y(t) = sin(6t)
z(t) = t.

−1
−0.5

0
0.5

1

x-a
xis−1−0.5

00.5
1

y-axis

0

2

4

6

z
-a
x
is

Figure 12: Plot of a Helix Space Curve

7 Conclusion

It is the author’s desire that these web-based utilities
will simplify the introduction to LATEX and META-
POST and, as a consequence, help users prepare
professional-quality manuscripts (both text layout
and graphics). These utilities will continue to be
available for free, and users are encouraged to direct
feature requests and any other type of feedback to
the addresses below.

References

[1] David Barton. http://www.cityinthesky.co.
uk/opensource/pdf2svg.

[2] Troy Henderson. A beginner’s guide to
MetaPost for creating high-quality graphics.
TUGboat, 28(1):85–90, 2007.

[3] ImageMagick. http://www.imagemagick.org.

[4] Mathworks. http://www.mathworks.com/

products/matlab.

[5] SWFTools. http://www.swftools.org.

[6] Leland Wilkinson. The Grammar of Graphics.
Springer-Verlag New York, Inc., 2005.

⋄ Troy Henderson
Department of Mathematics
University of Mobile
5735 College Parkway
Mobile, AL 36613 USA
thenderson (at) umobile dot edu

http://www.tlhiv.org

Troy Henderson



TUGboat, Volume 33 (2012), No. 1 53

TEX on Windows: MiKTEX or TEX Live?

Joseph Wright

On Windows, there are two actively-developed free
TEX systems with similar coverage: MiKTEX (Schenk,
2011) and TEX Live (TEX Users Group, 2011). The
good news is that there is a lot of similarity between
the two systems, so for most users both systems
are equally usable, and (LA)TEX documents are port-
able between them. However, there are differences
and depending on what you need these might be
important.

• The default settings install everything for TEX
Live, but only a minimal set of packages for
MiKTEX. MiKTEX will then install extra pack-
ages ‘on the fly’, while TEX Live does not (there
is a package to do that in TEX Live, but it is
aimed at GNU/Linux users). Install-on-the-fly
is useful if space is limited, but is more prob-
lematic on server setups. So this is very much
a feature whose usefulness depends on your cir-
cumstances. Of course, there is nothing to stop
you from installing everything with MiKTEX.

• The xindy program (Schrod, 2010) is available
only in TEX Live. For those of you not familiar
with it, xindy is an index processor, and is much
more capable of dealing with multi-lingual situ-
ations than MakeIndex. If you need xindy, TEX
Live is the way to go.

• MiKTEX is very much a Windows tool set, while
TEX Live comes from a Unix background. This
shows up from time to time in the way TEX Live
is administered, and the fact that the TEX Live
GUI is written based on Perl rather than as a
‘native’ Windows application.

• As TEX Live is the basis of MacTEX, and is the
TEX system for Unix, if you work cross-platform
and want an identical system on all of your
machines, then TEX Live is the way to go.

A reminder that MiKTEX and TEX Live are not
the only choices. W32TEX (Kakuto, 2012) is popular
in the far east. As well as being a TEX system in
its own right, it is the source of the Windows binar-
ies for TEX Live, and TEX Live acquires more CJK

support from it every year. For users focussed on
ConTEXt, ConTEXt standalone (Pragma ADE, 2012)
is probably the best way to go (it uses the W32TEX
binaries on Windows). There are also the commer-
cial options, for example BaKoMa TEX (BaKoMa
Soft., 2011) or PCTEX (Personal TEX, Inc., 2011).
However, for most users it comes down to a choice
between the ‘big two’.

References

BaKoMa Soft. “BaKoMa TEX 9.77”.
http://www.bakoma-tex.com/, 2011.

Kakuto, A. “W32TEX”.
http://w32tex.org/, 2012.

Personal TEX, Inc. “PCTEX 6”.
http://www.pctex.com/, 2011.

Pragma ADE. “ConTEXt standalone”.
http://wiki.contextgarden.net/ConTeXt_

Standalone, 2012.

Schenk, C. “MiKTEX 2.9”.
http://www.miktex.org/, 2011.

Schrod, J. “xindy 2.4”.
http://xindy.sourceforge.net/, 2010.

TEX Users Group. “TEX Live 2011”.
http://www.tug.org/texlive/, 2011.

⋄ Joseph Wright

Morning Star

2, Dowthorpe End

Earls Barton

Northampton NN6 0NH

United Kingdom

joseph.wright (at)

morningstar2.co.uk

TEX on Windows: MiKTEX or TEX Live?



54 TUGboat, Volume 33 (2012), No. 1

Generating barcodes with LuaTEX

Patrick Gundlach

Abstract

TEX is great at typesetting, Lua is great with cal-
culations. When we combine those two, we can
do complex typesetting tasks easily. In this article,
I present a way to create GTIN-13 barcodes (also
known as EAN 13) with LuaTEX. The aim of this
article is to present how to call Lua from TEX, some
basic Lua programming and two ways in which Lua
and TEX can interact.

1 Introduction

There are several ways to generate barcodes from
TEX: one is the PSTricks barcode package; a few
packages rely on special fonts; and one I found gen-
erates barcodes with vertical rules, but the source is
not suitable for beginners and therefore rather hard
to extend. The Lua solution I present is supposed to
be easier to understand for non-TEX programmers,
but this is subjective, of course. For the purpose
of this demonstration, only EAN 13 barcodes are
handled, optionally calculating the checksum (the
last digit) if the requested barcode has only twelve
digits. This is an example output of our program:

4 242002 518169

The LATEX interface should be as simple as this:

\documentclass{article}

\usepackage{ltxbarcode}

\begin{document}

\barcode{424200251816}

% or -- with checksum:

\barcode{4242002518169}

\end{document}

The “glue” style file ltxbarcode.sty is short
as well. You can place it in the same directory as
the main LATEX file above:

\ProvidesPackage{ltxbarcode}

\directlua{require("ltxbarcode")}

\newcommand\barcode[1]{%

\directlua{

ltxbarcode.generate_barcode("#1")

}}

The package loads the file ltxbarcode.lua, which
is given and explained in full detail below. require

appends the extension .lua by itself. Then it de-
fines the command \barcode, whose sole task is to
jump into Lua mode (\directlua) and call the Lua
function generate_barcode(), passing along the ar-
gument given to the LATEX command. The prefixed
namespace ltxbarcode is automatically created with
require() at the beginning.

There is a small pitfall here. You would normally
write this code as:

\newcommand\barcode[1]{%

\directlua{

ltxbarcode.generate_barcode(

"\luatexluaescapestring{#1}"

)}}

to protect the Lua string from the first macro argu-
ment (#1) containing characters that might possibly
break the Lua parser. If the macro argument con-
tains, for example, a double quote character, Lua
will see it as the end of the quoted string and choke
on the rest of the argument. Since we are only pass-
ing ordinary digits, the string is safe in our code
above. (Protection is a good idea, though.) The long
name from above (\luatexluaescapestring) is the
command \luaescapestring found in the reference
manual prefixed with luatex to avoid name clashes.
The only command from LuaTEX not prefixed is
\directlua. This is only valid for TEXLive’s current
LuaLATEX format. The plain LuaTEX format in TEX
Live has all commands unprefixed. I fervently hope
that other distributions behave exactly the same.

Before we have a close look at our Lua module
(the file we load in our LATEX package), let’s take an
excursion on how to communicate between the Lua
mode and LuaTEX.

2 From Lua to TEX

Passing arguments from TEX to Lua is easy, as seen
above; e.g., the call to generate_barcode(). But
the other way is a bit more interesting, as one has
to keep in mind when the code gets executed. The
Lua code in \directlua gets executed the moment
LuaTEX finds the closing brace of that command. It
will then be replaced by the special buffers that this
command fills. Example:

\directlua{

tex.sprint("\\hbox{%")

tex.sprint("hello world%")

tex.sprint("}")

}

and the TEX code

\hbox{%

hello world%

}

Patrick Gundlach



TUGboat, Volume 33 (2012), No. 1 55

are more or less equivalent. Thus, strings can be split
into smaller chunks and automatically concatenated
(with line endings as separators) automatically at the
end of the \directlua call. What is not possible,
though, is the following:

\directlua{

tex.sprint("\\setbox0\\hbox{hello world!}")

% does NOT work because box 0 is not set yet:

tex.sprint(

string.format(

"The width of box 0 is now \%d",

tex.box[0].width ))

}

Inside \directlua it is not possible to mix TEX
and Lua calculations like this, because the TEX value
is not known until the end of the \directlua call.
So you cannot operate on the box dimensions before
TEX typesets that box. Keep this in mind as we
compare the two approaches I will show now.

3 Solution one: tex.sprint()

The first approach is to calculate the barcode it-
self (this is a simple routine) and construct a set
of \hbox, \vrule and \kern commands with the
Lua function tex.sprint(). Before we dive into the
main function, we start with the head of the Lua file
(named ltxbarcode.lua). Most Lua modules start
with a call to module(). We make all but the main
functions local, meaning that they are only visible
inside the module.

module(...,package.seeall)

local add_checksum_if_necessary, mkpattern,

split_number, calculate_unit, pattern_to_wd_dp

Now comes the heart of the module. We use
the method described above to generate a sequence
of TEX commands that get executed right after the
\directlua call. The idea is to draw the barcode
with vrules and kerns and add the digits below in a
separate box.

function generate_barcode( str )

−− If we only pass 12 digits, the 13th will be added.
str = add_checksum_if_necessary(str)

−− The smallest bar/gap is 1/7th the width of a digit.

−− It is font dependent.
local u = calculate_unit()

−− We start with the hbox for the bars:
tex.sprint(

[[\newbox\barcodebox\setbox\barcodebox\hbox{%]]

)

−− The pattern is a string of digits that represent
−− the width of a bar or a gap. 0 is a special marker
−− for a longer bar of width 1. The widths are
−− multiplied by 1/7th of the width of a digit , because

−− the sum of the widths for a single digit add up to 7.

−− A sample pattern starts with:

−− 80103211112312132113231132111010132...
−− See function mkpattern() for a detailed explanation.
local pattern = mkpattern(str)

−− For each element in the pattern we generate a gap or

−− a bar of the width denoted by that element. A depth
−− >0 is used for the bars in the middle and both sides.
−− This is technically not necessary, but added to have
−− visually pleasing barcodes.
local wd,dp −− width and depth of a bar
for i=1,string.len(pattern) do

wd,dp = pattern_to_wd_dp(pattern,i)

−− The even elements are the vertical bars (vrules),
−− the odd ones are the gaps (kerns).

if i % 2 == 0 then

tex.sprint(string.format(

[[\vrule width %dsp height 2cm depth %s]],

wd * u,dp))

else

tex.sprint(string.format(

[[\kern %dsp]],wd * u))

end

end

−− We now have the hbox with the bars and
−− add the hbox with the digits.

tex.sprint([[}\vbox{\hsize\wd\barcodebox \box\

barcodebox\kern -1.7mm\hbox{%]])

−− The digits below the barcode are split into three
−− groups: one in front of the first bar, the first
−− half of the other digits are left of the center
−− bar, and the remaining digits are to the right
−− of the center bar.
local first,second,third = split_number(str)

tex.sprint(string.format(

[[%s\kern %dsp %s\kern %dsp%s}}]],

first, 5 * u, second, 4 * u, third ))

end

The main function uses several helper functions.
One of them calculates the width of the smallest
bar and the smallest gap, which is exactly 1/7th
the width of a digit. We make use of LuaTEX’s font
library where we can get access to the current font.
The glyph number 48 is the digit zero; theoretically,
this is encoding-dependent, but in practice it works
in all cases.

function calculate_unit()

−− The relative widths of a digit represented by the
−− barcode add up to 7.
local currentfont = font.fonts[font.current()]

local digit_zero = currentfont.characters[48]

return digit_zero.width / 7

end

The next function determines the width and the
depth of a vertical rule. The height is fixed (we could
have made that customizable, but the reader should
be left with some task to do).

function pattern_to_wd_dp( pattern,pos )

local wd,dp

Generating barcodes with LuaTEX



56 TUGboat, Volume 33 (2012), No. 1

wd = tonumber(string.sub(pattern,pos,pos))

if wd == 0 then

dp = "2mm"

wd = 1

else

dp = "0mm"

end

return wd,dp

end

The calculation of the checksum is straightfor-
ward. We sum up all the digits, every other digit
is multiplied by 3 (counted from the last digit back-
wards) and the checksum is the amount you need to
add to get to the next multiple of 10. The sum is
only calculated if not given by the user. (A future
version could check a user-supplied value.)

function add_checksum_if_necessary( str )

if string.len(str) == 13 then

return str

end

local sum = 0

local len = string.len(str)

for i=len,1,-1 do

if (len - i ) % 2 == 0 then

sum = sum + tonumber(string.sub(str,i,i)) * 3

else

sum = sum + tonumber(string.sub(str,i,i))

end

end

local checksum = (10 - sum % 10) % 10

return str .. tostring(checksum)

end

The following pattern generation is the heart of
the algorithm. The barcode is divided into smaller
parts where two bars and two gaps represent a sin-
gle digit. The widths of these vary between “one”
and “four”, multiplied by any sensible width. The
widths for a single digit add up to 7 of these units
and are expressed by a simple pattern such as 2221
for the digit 1. The first digit in a barcode is not
represented by a bar–gap pair, but rather encoded
in the representation of the next six digits. If, for ex-
ample, the first digit is a 1, the third, fifth and sixth
“digits” have to be reversed. See the array mirror_t

in the code below. In the example above the reversed
pattern is 1222. We add some space to the left of
the barcode for the first digit and also mark the left
and right edge with the special mandatory pattern
111. Actually it is 010 which we recognize later to
increase the length of these bars.

function mkpattern( str )

−− These are the digits represented by the bars.
−− 3211 for example means a gap of three units,
−− a bar two units wide, another gap of width one

−− and a bar of width one.

local digits_t = {"3211","2221","2122","1411",

"1132","1231","1114","1312","1213","3112"

}

−− The first digit is encoded by the appearance of the
−− next six digits . A value of 1 means that the

−− generated gaps/bars are to be inverted.
local mirror_t = {"------","--1-11","--11-1",

"--111-","-1--11","-11--1","-111--",

"-1-1-1","-1-11-","-11-1-"}

−− Convert the digit string into an array.
local number = {}

for i=1,string.len(str) do

number[i] = tonumber(string.sub(str,i,i))

end

−− The first digit in a barcode determines how the
−− next six digit patterns are displayed .
local prefix = table.remove(number,1)

local mirror_str = mirror_t[prefix + 1]

−− The variable pattern will hold the constructed
−− pattern. We start with a gap that is wide enough
−− for the first digit in the barcode and the special
−− code 111, here written as 010 as a signal to

−− create longer rules later .
local pattern = "8010"

local digits_str

for i=1,#number do

digits_str = digits_t[number[i] + 1]

if string.sub(mirror_str,i,i) == "1" then

digits_str = string.reverse(digits_str)

end

pattern = pattern .. digits_str

−− The middle two bars.

if i==6 then pattern = pattern .. "10101" end

end

−− Append the right 111 pattern as above.
return pattern .. "010"

end

The last function splits the barcode into three
parts so we can display the digits below the barcode
with some gaps in between.

function split_number( str )

return string.match(

str,"(%d)(%d%d%d%d%d%d)(%d%d%d%d%d%d)"

)

end

The net result of this code is a TEX string like
this:

\newbox\barcodebox\setbox\barcodebox\hbox{%

\kern 374492sp

\vrule width 46811sp height 2cm depth 2mm

\kern 46811sp

...

\vrule width 46811sp height 2cm depth 2mm

}\vbox{\hsize\wd\barcodebox\box\barcodebox\kern -1.7

mm\hbox{%

8\kern 234057sp 008940\kern 187246sp027004}}

Patrick Gundlach



TUGboat, Volume 33 (2012), No. 1 57

This is what TEX sees after the closing brace
of \directlua. While this solution works fine in
our small example, it can get a bit tedious, because
of the string passing and the necessity to escape all
occurrences of the well-known funny TEX chars such
as % and others. Luckily with LuaTEX, our new
swiss army knife in the TEX world, we have another
approach to that problem.

4 Solution two: direct typesetting

with low-level nodes

The other approach to that problem looks like using a
sledge-hammer to crack a nut. But once one becomes
used to it and some helper functions defined, this
solution is well-suited for many tasks when we are
using Lua for program logic. The idea is to create
the fundamental data structures TEX uses internally
for representing the typeset material: a node. A node
can represent a glyph, a rule, a glue, a whatsit and
all other items we know from The TEXbook. The
typeset digit ‘0’ for example could be represented by
a table with these entries:

entry value

id 37
char 48
font 15
lang 0

There are other optional entries in that table,
but only the prev and the next entries are necessary
for building a more complex data structure. The
table above can be constructed from Lua like this:

n = node.new("glyph") −− internal id: 37
n.char = 48

n.font = 15

n.lang = 0

To construct a horizontal box with the digit
created above a call to node.hpack() is sufficient:

hbox = node.hpack(n)

Which is the same as \hbox{0} except that the
box is only kept in TEX’s memory and not put into
the PDF. It gets more complex when you want more
than one item to be placed in a box. You then need
to create the nodes and chain them together into
a list. Every node has prev and next table entries
which are to be set to the predecessor and successor
nodes. So in the case of the two digits 0 and 1 placed
in a horizontal box, it would look like:

digit_0 = node.new("glyph")

digit_1 = node.new("glyph")

−− not shown: fill the tables as above
digit_0.next = digit_1

digit_1.prev = digit_0

hbox = node.hpack(digit_0)

The result is a data structure that can be visu-
alized by the following graphic:

char: 48
lang: 0
font: 15

node: glyph

   prev    next
char: 49
lang: 0
font: 15

node: glyph

   prev    next

list:

node: hlist

   prev    next

The list entry of the hlist (hbox) points to the
node list starting with the digit 0. The idea for
our second approach is to create a node list that
represents the vertical bars and gaps (rule and kern
nodes) and digits. We create a few more helper
functions as well as the new main function:

local add_to_nodelist, mkrule, mkkern, mkglyph

function generate_barcode_lua( str )

str = add_checksum_if_necessary(str)

local u = calculate_unit()

local nodelist

−− The even elements are the rules,
−− the odd ones are the gaps.
local pattern = mkpattern(str)

local wd,dp

for i=1,string.len(pattern) do

wd,dp = pattern_to_wd_dp(pattern,i)

if i % 2 == 0 then

nodelist = add_to_nodelist(

nodelist,mkrule(

wd * u,tex.sp("2cm"),tex.sp(dp)))

else

nodelist = add_to_nodelist(

nodelist,mkkern(wd * u))

end

end

−− barcode top will become the vbox as in the
−− first solution .
local barcode_top = node.hpack(nodelist)

barcode_top = add_to_nodelist(

barcode_top,mkkern(tex.sp("-1.7mm")))

−− The following list holds the displayed digits.
nodelist = nil

for i,v in ipairs({split_number(str)}) do

for j=1,string.len(v) do

nodelist = add_to_nodelist(

nodelist,mkglyph(string.sub(v,j,j)))

end

if i == 1 then

nodelist = add_to_nodelist(

nodelist,mkkern(5 * u))

elseif i == 2 then

nodelist = add_to_nodelist(

nodelist,mkkern(4 * u))

Generating barcodes with LuaTEX



58 TUGboat, Volume 33 (2012), No. 1

end

end

local barcode_bottom = node.hpack(nodelist)

−− barcode top now has three elements: the hbox
−− from the rules and kerns, the kern of −1.7mm
−− and the hbox with the digits below the bars.

barcode_top = add_to_nodelist(

barcode_top,barcode_bottom)

local bc = node.vpack(barcode_top)

−− node.write() puts a vbox into the output.
node.write(bc)

end

The overall structure is exactly the same as in
the previous section. The main difference is the
use of the helper functions mkrule(), mkkern() and
mkglyph() to create rules, kerns and glyphs and
the call to add_to_nodelist(). The constructed
node list is written to the PDF with the Lua call
node.write().

function add_to_nodelist( head,entry )

if head then

−− Add the entry to the end of the nodelist
−− and adjust prev/next pointers.
local tail = node.tail(head)

tail.next = entry

entry.prev = tail

else

−− No nodelist yet, so just return the new entry.
head = entry

end

return head

end

If the node list exists, the new entry is appended
to the last node of that list. We could get to the
end of the list by following successive pointers until
we reach the one with the “empty” pointer nil, but
we use the LuaTEX function node.tail() instead.
Then we adjust the next and prev pointers of the
tail and the new entry and return the head of the
node list.

function mkrule( wd,ht,dp )

local r = node.new("rule")

r.width = wd

r.height = ht

r.depth = dp

return r

end

function mkkern( wd )

local k = node.new("kern")

k.kern = wd

return k

end

function mkglyph( char )

local g = node.new("glyph")

g.char = string.byte(char)

g.font = font.current()

g.lang = tex.language

return g

end

These three functions don’t need much expla-
nation. They generate the nodes of the requested
types. It might surprise at first glance that the
glyph node needs a language and a font entry, be-
cause in ordinary TEX we usually don’t care about
this. But remember that the nodes are the low-level
data structures created when all of TEX’s input is
already processed, except for the hyphenation and
justification of the paragraph.

As a final note on the source, the Lua file de-
scribed here can be downloaded from https://gist.

github.com/1513746.

5 Conclusion

There are two ways to pass typesetting informa-
tion from Lua to TEX: first, with a collection of
tex.sprint() calls, and second, with a set of nodes.

Once you are in the Lua world, it feels wrong to
pass information to TEX with tex.sprint() calls.
You still have to deal with category codes, with
grouping and with all the headaches that character
escaping brings.

In the procedural world of Lua, the right way to
do typesetting is to construct the input with low-level
data structures and helper functions and let TEX’s
algorithms do the rest. Once you start thinking
in terms of nodes and node lists, you can focus on
arranging items on the page and not let TEX’s input
language get in your way.

These days, TEX’s input language seems anachro-
nistic to many people, while procedural languages
like Lua are familiar. TEX’s algorithms are still un-
surpassed, so when you combine Lua’s power with
TEX’s typesetting capabilities, a whole new genera-
tion of applications become possible.

References

[1] Patrick Gundlach. TEX without TEX.
http://wiki.luatex.org/index.php/TeX_

without_TeX, 2011.

[2] Taco Hoekwater. LuaTEX reference manual.
http://mirror.ctan.org/systems/luatex/

base/manual, 2011.

[3] Herbert Voß. The current state of the PSTricks
project. TUGboat, 31(1), 2010.

⋄ Patrick Gundlach

Eisenacher Straße 101

10781 Berlin

Germany

patrick (at) gundla dot ch

Patrick Gundlach



OpenType fonts in LuaTEX

Paul Isambert

1 Introduction

As is well-known, LuaTEX can handle standard font
formats, notably including OpenType. That’s a wel-
come development because modern font designs use
those formats almost exclusively, and whatever the
merits of METAFONT, for modern typographic soft-
ware to stick to it would be suicidal. Lesser known
perhaps is that, unlike X ETEX, which opened the
way, LuaTEX is completely unable to load such a
font if you don’t feed it a non-negligible amount
of code beforehand. Otherwise it only understands
your old TFMs (it actually embeds Type 1 fonts in
PDF documents, a behavior inherited from PDFTEX,
but only because a mapping exists between the TFM

and Type 1 fonts; the latter can’t be read directly).
The reason is not that LuaTEX isn’t so capable af-
ter all and you have to rely on some work-around;
rather, LuaTEX is consistent with its philosophy (as
I see it): it provides tools, not solutions. So you
have to do most of the work to make it understand
OpenType fonts, and that’s no simple work, but in
the process you gain freedom.

In this paper I’ll try to describe such code. I
won’t give an entire implementation, and in many
places I’ll just go with “This or that should be done”,
because as already mentioned it would be extremely
long (and tedious). ConTEXt’s fontloader, available
for plain TEX and LATEX as luaotfload, is more
than 10, 000 lines long, and my own code, which
doesn’t even try to address non-Latin typography,
is 2, 000 lines. In other words, I’ll give a map of
the area to the reader, but nothing can replace the
actual exploration.

Also, this paper has limitations: first, all my
examples will use the Latin alphabet, even though
some features would have been better illustrated
with other scripts; I apologize to users of other writ-
ing systems, but I thought it better not to pretend I
was competent in them. This extends to maths, so
OpenType maths aren’t covered at all; [2,7] should
help the interested reader. The omission of maths
is even more significant than for non-Latin writing

Author’s note: I am not a member of the LuaTEX team, nor
should this article be considered an official introduction to
fonts in LuaTEX. However, Taco Hoekwater has answered
myriad questions, both for this paper and when I was inves-
tigating fonts for myself, and many details here would have
been obscure or altogether missing if not for his help. All re-
maining inaccuracies and outright errors are of course mine.

TUGboat, Volume 33 (2012), No. 1 59

systems, since the latter at least rely on the mecha-
nisms described here, whereas OpenType maths are
an entirely distinct area.

Second, I will have nothing to say about AAT

fonts. I have never used them, let alone figured out
how they work, and anyway that would have pushed
the length of this paper beyond reasonable limits. I
hereby invite the courageous reader to tackle the
issue and write a companion paper.

Third, this article is an introduction to how
LuaTEX sees OpenType fonts, not to the OpenType
format itself. Of course, the two are closely related,
and after reading this, the Microsoft documenta-
tion [5] or a general introduction like [1] will look
familiar; but there are significant differences too.

Fourth, this explains how LuaTEX sees such
fonts at the present time. That is bound to evolve,
and some of what is said here will become obso-
lete. Nonetheless, the knowledge gained in Open-
Type fonts themselves will not, I hope, be wasted.

Fifth, although I hope the reader will feel com-
fortable with the subject after reading this paper—
or, at least, the reader will feel s/he could be com-
fortable with the subject after reading the paper
thoroughly a few times—nothing replaces experi-
menting with fonts directly. Fortunately, LuaTEX’s
fontloader is based on George Williams’s FontForge,
so there exists a GUI counterpart to all the Lua ta-
bles we will explore (modulo the previous point). I
strongly recommend playing around in FontForge,
tweaking fonts to see what changes in LuaTEX, etc.;
also reading the FontForge documentation [8].

I will use a single font as illustration. It is a
modified version of Philipp H. Poll’s Linux Liber-
tine (italic) [6], renamed Test Libertine. The file
is available from tug.org/TUGboat/tb33-1, along
with a README listing all the changes made to the
original font. In the course of the article, when I
write that “Libertine has such and such feature”, I
always mean the modified Libertine: the feature at
stake may not be present in the original. None of the
modifications improves Linux Libertine in any way,
nor do they have much value by themselves, either
typographically or technically; I’ve added each and
every one of them with a single purpose in mind: to
serve as an illustration for this paper.

2 The define_font callback

Loading an OpenType font requires that we inter-
cept the user’s font request and replace LuaTEX’s
default behavior with code of our own. As usual
this is done thanks to a callback: define_font. It is
called whenever the \font control sequence is used,

OpenType fonts in LuaTEX



with three arguments: name, size and id. The first
two arguments have direct equivalents in the syntax
of \font:
\font\myfont=〈name〉 at|scaled 〈size〉

where 〈name〉 is anything between braces or dou-
ble quotes or a string of non-blank characters. The
〈size〉 part is passed to the function registered in
the callback as follows: if positive, it represents at
〈size〉 in scaled points, e.g. at 10pt becomes 655360.
If negative, it represents scaled 〈size〉, e.g. scaled
500 becomes -500. What if no at or scaled infor-
mation is given? Then 〈size〉 is set to -1000, as if
scaled 1000 had been specified, which is equiva-
lent to no scaling at all, since TEX scales fonts by a
factor of one-thousandth of the given value.

The id argument is the numerical representa-
tion of the font. Indeed, TEX internally records fonts
as numbers, not names. This can be seen in LuaTEX
when you query a glyph node’s font field: it returns
a number. For us, it will be useful when applying
OpenType features: characters whose font is one
we’ve loaded ourselves and containing special fea-
tures will require our attention. But we’ll see that
in due time.

The function registered in define_font must
return a table of the type which LuaTEX under-
stands.1 To do so, it reads the appropriate font
file. I’ve said earlier that LuaTEX can’t load Open-
Type fonts. That is not exactly true: it can load
such a font (otherwise the remark above about its
fontloader being based on FontForge wouldn’t make
sense), it just doesn’t know what to do with it.
LuaTEX reads an OpenType font file, creates a Lua
table with it, and your job is to turn it into another
table that the engine can use. In essence, given a
table as described in section 4.4.5 of the LuaTEX
reference manual [4], you have to produce a table as
described in chapter 7 of the same document. Most
of this paper deals with such a transformation. (If
you truly have nothing else to do, you can also pro-
duce the latter table directly from the font file, not
relying on LuaTEX’s interpretation.)

We’ll name our function the same as the call-
back itself: define_font. That means that ulti-
mately something like the following must occur, af-
ter our function is properly defined:
callback.register("define_font", define_font)

Also, since managing fonts is a matter of (sometimes
quite complex) tables, it’ll help to have a function
that prints the contents of a table in a readable fash-

1 Actually, a number can also be returned, which will be
interpreted as the id of another, already defined font. This
possibility won’t interest us much, of course.

60 TUGboat, Volume 33 (2012), No. 1

ion. Here it is (all Lua code in this paper is supposed
to be written in a .lua file, not in \directlua, un-
less catcodes are properly set):
local rep, write = string.rep, texio.write_nl
function ExploreTable (tab, offset)

offset = offset or ""
for k, v in pairs(tab) do
local newoffset = offset .. " "
k = offset .. k .. " = "
if type(v) == "table" then
write(k .. "{")
ExploreTable(v, newoffset)
write(newoffset .. "}")

else
write(k .. tostring(v))

end
end

end

This function browses entries in no particular or-
der; however, in this paper, I will often rearrange its
output (sometimes adding commas) to impose some
organization. Thus the reader shouldn’t worry if
what s/he gets at home looks slightly different.2

3 From names to files

TEX traditionally loads fonts by reference to the file-
name, e.g.:

\font\tenrm=cmr10

loads the font contained in cmr10.tfm. However,
X ETEX has made popular another way of referring
to fonts, namely by their internal names:

\font\myfont="Linux Libertine O /I: +smcp"

This convenient syntax has been taken over in
ConTEXt, thus also in luaotfload. The part before
the colon denotes a font proper, i.e. a font file: the
file containing the italic font of the Linux Libertine
O family3 (i.e. LinLibertine_RI.otf, or fxlri.otf
in TEX Live). After the colon are the tags denoting
features to be applied to that font. With such a font
call, our function will be executed as:

define_font("Linux Libertine O /I: +smcp",
-1000, 51)

(provided we are defining the 51st font, which is
the case if this is the first font call after loading
plain TEX). Now, if we ask LuaTEX to load a font
named “Linux Libertine O /I: +smcp”, or even,
since we’re not so näıve, “Linux Libertine O /I”,
it will never find it. Instead, it must be given a file-
name and nothing else, so you have to link names
to files. To do so, we have to open all the font

2 Also, although the resulting table looks like a Lua table,
it is not (and thus shouldn’t be reused as such in Lua code).
I leave it as an exercise to the reader to list the differences.

3 The O in the family name is for OpenType.

Paul Isambert



files available to LuaTEX, as specified by the return
value of kpse.show_path("opentype fonts"), and
check their names. That takes quite a while, so it’s
not something we want to do on each compilation.
Thus we build a database as a Lua table to match
names with files, e.g. (Biolinum is the sans-serif com-
panion to Libertine):

database = { ...
["Linux Libertine O"] = {

Regular = "LinLibertine_R.otf",
Italic = "LinLibertine_RI.otf",
... },

["Linux Biolinum O"] = {
Regular = "LinBiolinum_R.otf",
Italic = "LinBiolinum_RI.otf",
... },

... }

The first time the fontloader is used, it will cre-
ate the database and write it to an external file.
After that, linking names to files will be fast. Given
e.g. Linux Libertine O /I, it can easily find that
LinLibertine_RI.otf is required, since by conven-
tion /I means italics. To emphasize, this is just a
convention, and you could decide to use /Italic in-
stead, or even to allow the user to specify anything
between I and Italic (then you check whether it is
the prefix of a tag). The latter solution is convenient
for fonts which have both Bold and Black variants
(the /B tag is ambiguous). Also, nothing prevents
the database from being written as something more
readable and/or modifiable. I use a file with a very
simple syntax that I can customize by hand, so that
I can for instance simplify family names: “Linux
Libertine O” becomes simply “Libertine”, “Pro” is
removed in the names of many Adobe fonts . . . or
I can lump unrelated files into a single family. An
imaginary but familiar example would be:
Centaur:
Regular = "Centaur.otf"
Italic = "Arrighi.otf"

Finally, the database can be used to retrieve TFM

fonts by name too.
Fine: we know what the database should or

could look like, but how are we supposed to create
it? The answer has already been hinted at above:
we browse all directories where OpenType fonts are
supposed to be, open all files, retrieve information
and store it in a table. In short, we do the following:

local open = fontloader.open
database = {}
local storeinfo
function explorefonts (dir)
if not lfs.isdir(dir) then

return
end
for name in lfs.dir(dir) do

TUGboat, Volume 33 (2012), No. 1 61

if name ~= "." and name ~= ".." then
local file = dir .. "/" .. name
local attr = lfs.attributes(file)
if attr then

if attr.mode == "file" and
name:lower():match("%.[to]tf$") then
storeinfo(file, name)

elseif attr.mode == "directory" then
explorefonts(file)

end
end

end
end

end

function storeinfo (file, name)
local i = open(file)
if not i then
return

end
local fam, mod
for _, lang in ipairs(i.names) do
local n = lang.names
fam = n.preffamilyname or n.family
if fam then
mod = n.prefmodifiers or n.subfamily
database[fam] = database[fam] or {}
database[fam][mod or "default"] = name
break

end
end

end

Before studying what this code does, a few words on
programming details. I won’t be necessarily consis-
tent with regard to local variables; in production
code, most declarations would be local (including
define_font, since there’s no problem with regis-
tering a local function in a callback). Here, however,
variables will be local if, in a given code snippet,
they are used in other functions only; if they are top-
level with respect to the current snippet, they will be
defined globally. Hence storeinfo is local because
we won’t be using it directly, whereas explorefonts
is global, as is the database table. With respect
to the locality of storeinfo, the reader might no-
tice that it is declared before explorefonts (so it is
available to the latter function) but defined (with-
out local) after it (so we read its definition only
when we know where it is supposed to work); this is
a convenient way to organize code in this situation
(in other situations, e.g. with two local functions
calling each other, it is the only way). Finally, both
functions use:

if 〈something〉 then
return

end
〈code〉

instead of

OpenType fonts in LuaTEX



if 〈something〉 then
return

else
〈code〉

end

Both forms achieve the same result; in general, I
use the second style, because I find it clearer, but
in some cases, as in here with TUGboat’s narrow
columns, the first style saves precious space (and
avoids a lonely end whose role might be obscure).

Back to the code itself. We can use it like this:

local fontpath = kpse.show_path("opentype fonts")
fontpath = fontpath:match(":")

and fontpath:explode(":")
or fontpath:explode(";")

for _, dir in ipairs(fontpath) do
dir = dir:gsub("^!!", "")
explorefonts(dir)

end

We ask kpathsea where OpenType fonts live, and
it returns a string of paths separated by colons or
semi-colons (the latter case on Windows); we re-
move exclamation marks that might prefix a path for
reasons that won’t concern us here, and launch our
function explorefonts: using the lfs (LuaFileSys-
tem) library, we browse the contents of a directory
(making sure it is a directory, because kpathsea

stores possible paths); for each element, if it is a
file and it has the proper otf or ttf extension, we
pass it to our storeinfo; if it is a directory, we
browse it recursively. The reader may be surprised
that we take ttf files into account; but there are
two breeds of OpenType fonts: OpenType C[om-
pact] F[ont] F[ormat] files have the otf extension,
whereas OpenType TrueType files have the ttf ex-
tension. However, the kpse library sees the latter
as TrueType fonts (because of the extension), and
when searching for a font in that format we need to
specify "truetype fonts" as the type.

With storeinfo comes our real taste of Open-
Type fonts with LuaTEX. We use the fontloader.
open function to import a file into a readable format
(albeit not terribly readable, as we’ll learn later),
and if it worked (this might not be the case, e.g. if
permission is denied) we retrieve the information we
need. Before turning to that, though, I should men-
tion that there exists fontloader.info, a function
that extracts exactly the information we’ll need, and
which is much faster than fontloader.open. How-
ever, fontloader.info also regularly gets things
wrong, not due to a defect in LuaTEX but because
fonts often are badly organized. For instance, in
the table returned by fontloader.info, the field
familyname for Robert Slimbach’s Minion Pro bold
is set to Minion Pro, but it is Minion Pro SmBd

62 TUGboat, Volume 33 (2012), No. 1

for the semibold version (and the reverse holds for
Adobe Caslon, Carol Twombly’s adaptation of Will-
iam Caslon’s famous design), as if they belonged to
different families. Also, the only information about
the ‘italic-ness’ of a font is the italicangle field,
which might have a non-zero value even if a font is
not italic in the sense of being related to a roman
alternative (see for instance calligraphic fonts).4

Anyway, we have our font loaded in the table-
like (technically: userdata) variable i, which has a
field names, an array of subtables with information
about the font in different languages, as follows:5

names = {
1 = {
lang = English (US)
names = {
family = Test Libertine
subfamily = Italic
fullname = Test Libertine Italic
postscriptname = TestLibertine
uniqueid = FontForge 2.0 : Test ...
version = Version 5.1.1
designer = Philipp H. Poll
manufacturer = Philipp H. Poll
designerurl = http://www. ...
vendorurl = http://www.tug.org
licenseurl = http://www.fsf.org/...
copyright = Test Libertine by ...
license = GPL ... } }

2 = { lang = German German
names = { subfamily = Kursiv } }

...
}

There is often only one such subtable (the first shown
here), but sometimes there are several, containing
some information in various languages.

The information we’re looking for is family

and subfamily or, if they exist, preffamilyname
and prefmodifiers; they correspond to the font
name and slash-prefixed tags in a \font call with
X ETEX syntax. Some modifiers should be filtered

4 Actually, it should be possible to do a meaningful analy-
sis of the table returned by fontloader.info, but it is just
simpler to use fontloader.open. It is indeed much slower,
but then the database isn’t built on every compilation, so it’s
not so bad if it takes a little time.

Still, there is one case where we need fontloader.info:
TrueType Collection files. This format puts several fonts in
one file (with the ttc extension, so not taken into account
here); fontloader.info returns an array of tables similar to
the single one it returns for other files; to load a particular
font in a collection with fontloader.open, we must pass a
second argument to the function, the fontname found in one
of the tables returned by fontloader.info.

5 This shows names for Test Libertine, because that’s the
font we’ll be looking at in detail, but since I’ve modified only
one font it doesn’t really belong to a family, and the origi-
nal Linux Libertine is used as an example elsewhere in this
discussion of the font database.

Paul Isambert



out, namely Regular, Book and others, because they
denote the “default” font, i.e. roman with normal
weight, and we don’t want to have to specify such a
font as:

\font\myfont="Linux Libertine O /Regular"

Also, a modifier isn’t always as expected. For in-
stance, William A. Dwiggins’s Electra in italics is
called Cursive; you probably want to normalize that
to Italic, so it can be called like other italic fonts.

Now, building the database is a simple mat-
ter: it will be a table with family names as en-
tries whose values are subtables with 〈modifier(s)〉
= 〈filename〉 subentries. The database is cached,
and when the user specifies:

\font\myfont="Linux Libertine O /I : +smcp"

we retrieve the value of the Italic subentry of the
“Linux Libertine O” entry and, lo, we are magi-
cally directed to the proper file! Admittedly, this
requires a bit of string manipulation (left as an ex-
ercise to the reader), and we don’t know what to
do with +smcp yet, and in fact we don’t even know
what to do with the font file itself, but let’s shout
triumphantly anyway, it’s good for morale, and we’ll
need some because this paper won’t get any easier.

4 Basic entries in a font table

The fontloader.open function loads a font, but
it’s not usable by itself; the result should be turned
into a table with fontloader.to_table, as follows.
(The close operation simply discards the userdata
from which the table is extracted and requires no
further comment.)

local f = fontloader.open
("/your/font/dir/TestLibertine.otf")

fonttable = fontloader.to_table(f)
fontloader.close(f)

We shall turn this table into another, as said be-
fore. However, all those operations take time, so
we’ll want to perform them as seldom as possible.
That is why the font table should be cached: once
a font has been analyzed, relevant information is
stored in a file that future compilations will retrieve
instead of starting from scratch again. However, the
result of some operations can’t be cached: e.g. those
related to dimensions (sizes of glyphs, etc.) must be
performed anew each time the font is loaded, be-
cause they depend on the size at which the font is
loaded; in the cache file, only “abstract” dimensions
are stored, with an arbitrary unit, and they must be
converted to fit the real size. Unfortunately, set-
ting kerning pairs (i.e. the— typically negative—
amount of space added between pairs of glyphs that
don’t look good when set next to each other) is one

TUGboat, Volume 33 (2012), No. 1 63

of those operations, and kerning pairs come by the
thousands in some fonts (e.g. Minion Pro). Another
operation that obviously can’t be done in advance
and cached is applying features.6

Another important remark about size. With
TFM fonts, when you call e.g.:

\font\myfont=cmr10

you’re requesting a font with a given size (here 10pt),
because that information is part of the font file. But
at what size should our Libertine font be loaded?
Some fonts have a design_size field (expressed in
tenths of a point—PostScript point, big point to
TEX; we shall ignore that subtlety here); e.g. with
fonttable above, fonttable.design_size returns
110, meaning 11pt. So we could load the font at
11pt; the problem is that the design size may vary
from font to font, so by default you’ll be loading
Libertine at 11pt and Electra at 12pt; worse still,
some fonts don’t have a specified design size (the
field returns 0). So it’s better to have a default size
at which a font will be loaded regardless of its design
size; of course the problem vanishes if an at 〈size〉
clause is used in the font call.7

Let’s get back to loading our font. The opera-
tions described in this paper assume we’re reading
from the original font file, and that nothing is cached
(or at best what is cached is the table returned by
fontloader.open/to_table, i.e. the original font
file translated to Lua, so to speak). So we have
our original table, which I’ll call fonttable, and we

6 One could cache a font at a given size, e.g. 10pt, so that
at least when loaded at that size (preferably the most often
used, of course), the operations on dimensions are already
done. Another option is to cache fully specified fonts, i.e. with
size and features applied, for a given job or set of jobs, so that
all compilations but the first are faster (under the assumption
that the user doesn’t change fonts or font specifications on
each compilation, of course). Those cache files can then be
deleted once the job is done, like auxiliary files in general.
Of course the features mentioned here are only those that
LuaTEX can handle by itself, as will become clear later.

7 Actually, an intelligent fontloader, unless instructed oth-
erwise, will try to return the font that best fits the at-size;
in many cases there will be one font only that matches the
font call, whatever the size; in other cases, though, there
will be several, and the right one should be chosen. That
happens when a font is drawn at different sizes, as with
many Adobe fonts and Latin Modern (by Bogus law Jackowski
and Janusz M. Nowacki — and Donald E. Knuth). Of course
the font database should reflect the fact that those fonts
vary only with respect to size (which shouldn’t be thought
of as a modifier on a par with those we’ve been dealing
with), something that the database created above didn’t do.
I won’t pursue this matter here, except to mention that not
only should design_size be taken into account, but also
design_range_bottom and design_range_top, which speci-
fies the (exclusive) lower and (inclusive) upper bounds of the
range of sizes for which the font is optimal.

OpenType fonts in LuaTEX



must return another, which I’ll call metrics. A few
fields can be readily set:
metrics = {
name = fonttable.fontname,
fullname = fonttable.fontname .. 〈id〉,
psname = fonttable.fontname,
type = "real",
filename = 〈filename〉,
format = 〈fonttype〉,
embedding = "subset",
size = 〈size〉,
designsize = fonttable.design_size*6553.6
}

First we specify some names: the name field is
used internally by LuaTEX, e.g. in error messages;
fullname is suffixed with 〈id〉 (the third argument
to define_font) because, in rare cases, fonts with
identical names (extracted from the same font file
but with different features, e.g. with and without
small caps) can cause problems: indeed, if two fonts
are sufficiently similar, LuaTEX will merge them in
the PDF output; adding 〈id〉 avoids the merging; as
for psname, it is relevant to the PDF file. The type

distinguishes real from virtual fonts as TEX has
always done, but I won’t address virtual fonts here.

LuaTEX uses info in a font to know what glyph
to place where; but the PDF file must contain the
file to render the glyphs, and that’s the meaning
of the following entries: the filename field must
contain the full path to the original font file, i.e.
/your/font/dir/TestLibertine.otf in our exam-
ple, so that LuaTEX can embed it. The formatmust
be one of type1, type2, truetype and opentype

(the latter in our case; note that TrueType-based
OpenType fonts, i.e. with the ttf extension, should
use the truetype format). Finally, the embedding

field specifies what the PDF file should contain of
the original font file: if the value is no, the font
won’t be embedded at all, and the PDF viewer will
try to find it on the disk8 or, failing that, it will
use a default font (but the glyphs will be placed
according to what LuaTEX will have read from the
original font, so the result, quite obviously, will be
a mess); the value subset means that only those
glyphs that are used in the document are described
in the PDF file; finally, full means that the PDF

document contains the entire font file. What to em-
bed is a matter of size and license; commercial font
vendors generally allow subset embedding, which
is the best solution anyway, but strictly speaking
that should be checked beforehand. (E.g., via the
license and/or licenseurl fields in the names ta-

8 For this, psname is crucial; if psname is missing, LuaTEX
will use fullname which, when suffixed with 〈id〉 as is the
case here, will not be a name that is findable on disk.

64 TUGboat, Volume 33 (2012), No. 1

ble as shown above, and more precisely, the field
fonttable.pfminfo.fstype, corresponding to the
fsType entry of the OS/2 table in the original font
file; that is a 16-bit number each bit of which is a
boolean. Suffice it to say for us that subset embed-
ding is perfectly ok if the number is 0 or 8.)

We now turn to the matter of size. The value
of 〈size〉 depends on the font call and the contents
of the at-size clause (recall our earlier discussion);
if the called font contained an explicit at 〈size〉,
then that is the value of the variable; otherwise,
it contained a scaled 〈factor〉 clause, perhaps im-
plicit (i.e. no clause was given, which is equivalent
to scaled 1000); then -〈factor〉 was passed to de-

fine_font, and we have to agree on a default size to
do the scaling. Suppose that default is d and we de-
note 〈factor〉 with f ; then 〈size〉 is − f×d

1000 . (This
obviously yields d if the font was called without
scaled.) LuaTEX internally treats all dimensions in
scaled points: we should never try to pass it 10pt,
and 655360 should be used instead (since there are
65, 536 scaled points per TEX point). The tex.sp

function can be used: when passed a dimension (as
a string), it returns its value in scaled points. In
short, a snippet from define_font would be (given
a default size of 10pt):

function define_font (name, size, id)
...
if size < 0 then
size = size * tex.sp("10pt") / -1000

end
...

end

(The observant reader can infer from this code and
the discussion above that size, if positive, has al-
ready been converted to scaled points when passed
to the function.)

So, the size field is set to the result of that
tediously explained computation. It is used not by
LuaTEX, which relies on the glyphs’ sizes themselves,
but by PDF viewers, which will draw glyphs at that
size. A mismatch between this value and the real
size at which the font was loaded will thus result in
a mismatch between the drawn glyphs and the space
they occupy (letterspacing can be bluntly imple-
mented this way). As for the designsize value, it
is used by LuaTEX when reporting information with
\fontname, for instance, in which case at 〈size〉 will
be mentioned if it differs from designsize (if the
original fonttable.design_size is 0, i.e. unspeci-
fied, it’s better just to set designsize to size).

Now that we have learned about 〈size〉 we can
turn to another important field of metrics: namely
parameters, a table with seven entries. This num-

Paul Isambert



ber might remind the seasoned TEX user of some-
thing with which s/he is familiar: the \fontdimen

primitive. Indeed, that’s where those dimensions are
set: \fontdimenn is the entry at index n in param-

eters. However, parameters 1–7 have been given
friendlier names: LuaTEX will use entries with those
names as keys if they exist, and fall back to the num-
bered entries otherwise. Here’s a brief description of
those parameters (math fonts have entries at index
8 and higher, but we won’t investigate those here);
more complete descriptions can be found in your fa-
vorite reference:

1. slant Slant per point, for accent positioning.
2. space Interword space.
3. space_stretch Interword stretch, i.e. the space

that can be added to the interword space when
a line is justified by stretching.

4. space_shrink Interword shrink, i.e. the space
that can be subtracted from the interword space
when a line is justified by shrinking.

5. x_height Value of the unit ex.
6. quad Value of the unit em.
7. extra_space Space added when \spacefactor

≥ 2000.

A few of these parameters can be set from infor-
mation found in OpenType fonts: x_height can
be read in fonttable.pfminfo.os2_xheight or de-
rived from the height of the letter x in the font (a
better solution), but that requires a conversion we’ll
turn to presently; thus the value given below for that
parameter is arbitrary. The interword space should
be the width of the space character, but again we
don’t know how to retrieve that yet. Finally, slant
can be derived from fonttable.italicangle if the
latter is given. Here I have specified interword space
and associates as in Computer Modern (10pt):9

9 The computation for slant is not complicated, but it
might not be very readable as expressed here. So here are
the steps:

1. slant is the horizontal displacement for one point of
vertical displacement. Hence it can be expressed as
1 / tanα, where α is the angle between the x-axis and
the font’s axis.

2. fonttable.italicangle measures the angle between the
y-axis and the font’s axis (which is why it is negative for
fonts leaning on the right, as most slanted fonts do); α
is thus: −(90−fonttable.italicangle), i.e. 90+font-

table.italicangle.
3. α is expressed here in degrees, but Lua’s math.tan func-

tion expects radians, hence the use of math.rad to do
the conversion.

4. The result is expressed in points; we multiply it by
65, 536 to convert it to scaled points.

For fonts with proper information for diacritic positioning,
slant is useless; we’ll use OpenType features instead. But
setting it correctly does no harm.

TUGboat, Volume 33 (2012), No. 1 65

local T, R = math.tan, math.rad
metrics.parameters = {

slant = 65536/T(R(90 + fonttable.italicangle)),
space = 〈size〉 / 3,
space_stretch = 〈size〉 / 6,
space_shrink = 〈size〉 / 9,
x_height = 0.4 * 〈size〉,
quad = 〈size〉,
extra_space = 〈size〉 / 9
}

Those fields could also get their values from the
font call; remember that, in keeping with the X ETEX
syntax, whatever comes after the colon (if any) will
be interpreted as features to be applied to the font
(e.g. ligatures, kerning, etc.). We could also allow
additional information to be given, so the user could
ask for something like this:

\font\myfont="Test Libertine /I: stretch=.2;..."

to mean that space_stretch should be set to a fifth
of the loading size (among other features); of course,
such a parameter could also be set by hand with
\fontdimen, but this is a nicer interface.

Before extracting the marrow from OpenType
fonts, I shall say that there are many other fields
in fonttable that we won’t explore here because
they’re not crucial, even though we could make use
of them. Interesting information on the font can for
instance be found in the fonttable.pfminfo table,
which lumps together fields from (mostly) the hhea
and OS/2 table of the original font file. Similarly,
some other fields in metrics could be set that we
won’t consider here.

5 Glyphs, at last!

Now that we’ve gone through all the preliminary
steps we can turn to the crux of the matter: glyphs.
In fonttable, there is a glyphs subtable which con-
tains them all, and we shall use them to populate
the characters entry in metrics.10 However, en-
tries in the fonttable.glyphs table are arbitrary,
whereas metrics.characters indices are Unicode
codepoints; for instance, a in Libertine (italic or not)
is at index 66 in fonttable.glyphs, even though
its codepoint is 97, which is also the index where it
must appear in metrics.characters (unless we’re
implementing substitutions, but we won’t be doing
that now).

So, we need to know: a) the characters the font
contains and b) the glyph number of each character.

10 My use of the words character and glyph doesn’t reflect
the common distinction between an element of a writing sys-
tem and its representation (so that the character a can be
represented by various glyphs, e.g. from different fonts); in-
stead I will use glyph for an element of fonttable.glyphs and
character for an element of metrics.characters.

OpenType fonts in LuaTEX



Fortunately, we have fonttable.map.map: it is an
array with Unicode codepoints as indices and glyph
numbers as values, e.g. 97 = 66, meaning that the
character with Unicode codepoint 97 has its glyph in
fonttable.glyphs[66]. Let’s give a shorter name
to this table and use it to look at the glyph f :
map = fonttable.map.map
ExploreTable(fonttable.glyphs[map[102]])

And the result is (somewhat shortened):

name = f
unicode = 102
class = base
width = 314
boundingbox = { 1 = -78

2 = -238
3 = 523
4 = 698 }

kerns = { ... }
lookups = { ... }
anchors = { ... }

I have elided the kerns, lookups and anchors table
since we aren’t able to do much with them for the
time being. The first two fields are quite obvious, I
suppose; name will be of use later, exactly when we’ll
examine the contents of kerns and lookups. We’ll
ignore the class field until we start discussing look-
ups. The width field is, unsurprisingly, the width
of the glyph. The values in the boundingbox ta-
ble are the position of the glyph’s extrema: 1 and
3 are the minimum and maximum x-values respec-
tively, while 2 and 4 are the minimum and maxi-
mum y-values; the former are expressed relative to
the y-axis (i.e. the left side of the glyph’s bounding
box proper, where x = 0), and the latter relative to
the x-axis (the glyph’s baseline). Thus bounding-

box[4] is its height, -boundingbox[2], provided
boundingbox[2] is negative, i.e. the lowest point
is below the baseline, is the glyph’s depth, but the
glyph’s width is width, and nothing else! Indeed,
a glyph as drawn may be larger than its declared
width, and it may extend outside its bounding box,
and that’s perfectly normal. Figure 1 illustrates that
with the glyph we’re investigating (the image is from
FontForge): the glyph’s width is the area between
the two vertical lines; the extenders aren’t contained
between those lines, which means that, for instance,
an i before the f will stand above the f ’s tail, while
an o after will stand below its arm: ifo. That’s wel-
come behavior, otherwise spurious gaps would occur
between letters.

Now, the only fields LuaTEX requires for a char-
acter are width, height, depth and index, the lat-
ter being the glyph’s index in fonttable.glyphs.
In fact, LuaTEX is directly interested in the first
three fields only: they are the basic data it requires

66 TUGboat, Volume 33 (2012), No. 1

Fig. 1: f in Libertine Italic

to do its job properly. On the other hand, index is
used to denote the glyph in the PDF file.11 So, that’s
it, we can transfer glyphs in fonttable to charac-
ters in metrics! Oh, no, we can’t: we know f ’s
width is 271, but 271 what? Scaled points? No, that
would be too easy.12 The unit in which dimensions
are expressed in font files is a relative unit, which
makes sense since the font may be loaded at what-
ever size. The value of that unit is recorded in font-

table.units_per_em, generally 1, 000 or 2, 048, but
the real value is of little importance: what counts is
that, given 〈size〉 as computed above, we are able
to derive a (this time absolute) unit for interpreting
glyph dimensions. Since by definition 〈size〉 is one
em, then the value of the unit is obviously s

u
with s

= 〈size〉 and u = fonttable.units_per_em. Let’s
record it in a variable:

unit = 〈size〉 / fonttable.units_per_em

and here we go, let’s translate fonttable’s glyphs
into metrics’s characters (recall how map was de-
fined above):
for ch, idx in pairs(map) do

local glyph = fonttable.glyphs[idx]
metrics.characters[ch] = {
index = idx,
width = glyph.width * unit,
height = glyph.boundingbox[4] * unit,
depth = glyph.boundingbox[2] < 0 and

(-glyph.boundingbox[2] * unit) or 0 }
end

This time, that’s it, we’re done! The define_font

function can return metrics and LuaTEX will be
able to use it. No kidding: extracting the glyphs is
child’s play by comparison.

11 Indeed, TeX will be written 〈003500460039 〉 in the PDF

file, instructing the viewer to fetch glyphs at position 0x35,
0x46 and 0x39 in the current font (assuming the current font
is Libertine). Actually, things are a bit more complicated
than that, but we definitely don’t want to dwell on PDF.

12 Not to mention that a glyph with a width of 271 scaled
points would be a billboard for atoms but not exactly for us.

Paul Isambert



6 Some easy-to-implement niceties

Okay, well, we’re done, but let’s face it: our font
isn’t that exciting. If this is all we can do with
OpenType, that’s rather disappointing. The font
isn’t even being respected, since kerning information
has been ignored.

Of course, we will be doing much, much more.
But we’ll postpone that as long as there are simpler
areas to investigate. For instance, the letter f wasn’t
randomly selected to illustrate the previous section:
I chose it because it is the letter that requires italic
correction par excellence. To wit: “arf” must be ut-
tered by an uneducated dog, whereas “arf ” is from
a dog with manners. As the reader certainly knows,
it’s the difference between

‘‘{\it arf}’’ and ‘‘{\it arf\/}’’

where \/ denotes italic correction, a small amount
of space to be added after the letter. The prob-
lem is that italic correction was born with TFM for-
mat and didn’t prosper. In other words, there is
no such thing in OpenType fonts. However, we can
mimic it: we’ll define italic correction as the dif-
ference between a glyph’s rightmost point and its
width. Given that LuaTEX stores the italic cor-
rection in a character table’s italic field, we can
thus enhance the char table defined above as fol-
lows (where glyph is as before):

char.italic = (glyph.boundingbox[3] - glyph.width)
* unit

The results might be more or less felicitous, since
italic correction was meant to be specified for each
glyph by the designer, not automatically computed,
but I find this much better than no italic correction
at all.13

Other things can be easily implemented, this
time properly, because they’re just the Lua version
of existing operations. For instance, the extend field
in metrics corresponds to the ExtendFont keyword
in a PDFTEX map file: it lets you stretch or shrink
the glyphs. The value ranges between −5, 000 and
5, 000; glyphs are then horizontally distorted by a
thousandth of the given value (so that with 1, 000
the font is untouched); a negative value reverses the
glyphs. The glyphs’ widths are not actually mod-
ified; extension takes place in the PDF. In other
words, LuaTEX sees and positions them with their
original size, thus proper extension should also mod-

13 One could also use an external file to store italic correc-
tions for a given set of glyphs from a given font, and retrieve
the values and apply them when the font is loaded. This
might seem like overkill, but it’s no more tedious than check-
ing kerning pairs. Also, LuaTEX is of little use if not for such
subtleties.

TUGboat, Volume 33 (2012), No. 1 67

ify the glyphs’ horizontal dimensions (something not
possible in PDFTEX).

The slant entry in metrics14 corresponds to
the SlantFont keyword in a map file and allows cre-
ation of artificially obliqued versions of a font (or ar-
tificially upright versions of a slanted font). It ranges
between −2, 000 and 2, 000 with 0 meaning no slant
(other than the font’s native slant, of course). The
calculation is as follows: given a value of s for slant,
the resulting angle between the y-axis and the (mod-
ified) font’s axis is − arctan s

1000 (under the assump-
tion than the font is originally unslanted; otherwise,
add that to the font’s angle). For instance, if slant
is 1, 000, then the font will make an angle of −45◦

(or 45◦ clockwise) with the y-axis. Again, LuaTEX
doesn’t take that value into account when position-
ing glyphs, and artificial slant should be paired with
increased italic correction.

Let’s stop disfiguring fonts with electronic sur-
gery and turn instead to something definitely useful:
character protrusion and font expansion (a.k.a. HZ

for Hermann Zapf). Both have TEX interfaces, but
we can define them here at once when loading the
font: instead of using \lpcode and \rpcode for pro-
trusion and \pdffontexpand and \efcode for ex-
pansion, we can specify those values in Lua. For
each character, we can set the left_protruding

and right_protruding fields, which correspond to
\lpcode and \rpcode respectively (the values are
thousandths of ems).15 As for expansion, the \pdf-
fontexpand primitive is reflected as follows in Lua.
To the statement
\pdffontexpand\myfont

〈stretch〉 〈shrink〉 〈step〉 [autoexpand]

corresponds to the following settings in metrics:

metrics.stretch = 〈stretch〉
metrics.shrink = 〈shrink〉
metrics.step = 〈step〉
metrics.auto_expand = 〈boolean〉

where specifying true for 〈boolean〉 is equivalent to
using the autoexpand keyword (which is highly rec-
ommended, otherwise you need several versions of
the same font). Finally, each character can have a
field expansion_factor corresponding to \efcode.

As noted above, both protrusion and expansion
can be set in TEX;16 however, the Lua way can be

14 Not to be confused with the previously-discussed entry
of the same name in metrics.parameters.

15 Character protrusion in LuaTEX is still buggy as I write
this (with v0.71); negative protrusion isn’t properly obeyed.

16 Also, one must set the parameters \pdfprotrudechars

and \pdfadjustspacing to 1 or 2 if protrusion and expansion
are to be performed, or use the Lua formulations tex.pdfad-
justspacing and tex.pdfprotrudechars. Perhaps even set

OpenType fonts in LuaTEX



the basis for a nice interface in the X ETEX-like syn-
tax of the font call, e.g.:
\font\myfont="Test Libertine /I:
expansion = 30 20 5;
expansion_factor = 〈whatever〉"

where 〈whatever〉, as the name indicates, could point
to an external file or previously-defined Lua table or,
well, whatever contains the individual glyph expan-
sion factors.

Before turning to the implementation of ad-
vanced typographic features,17 we can have an easy
first taste of such operations. The studious reader
who has followed this paper with a computer next to
him/her and experimented with each step will have
seen some strange behavior: the line of code
‘‘I’m going to be interrupted---’’

comes out as

``I'm going to be interrupted---''

instead of

I’mڦ going to be interrupted—ڧ

The reason for this apparent misbehavior is that
OpenType fonts don’t follow a well-known conven-
tion in TEX: namely, that TFM fonts have (single)
quotation marks in lieu of the “grave accent” and
“apostrophe” characters (hence ‘ instead of `); that
two quotation marks in a row are replaced by double
quotation marks (hence “ instead of ‘‘, but the lat-
ter can’t be seen here because of the previous point);
that two hyphens in a row form an en-dash (-- be-
comes –); and that an en dash followed by a hyphen
turns into an em dash (–- becomes —).18

The quotation marks could be easily substi-
tuted for the grave accent and apostrophe:

metrics.characters[96] = metrics.characters[8216]
metrics.characters[39] = metrics.characters[8217]

This is not a good idea, however! It upsets the char-
acter/glyph correspondence, and that should never
be done lightly (i.e. without keeping track of what-
ever substitution has been performed).

them automatically when loading a font with protrusion and/
or expansion enabled.

17 I mean advanced from a software point of view; substi-
tutions and positioning are of course as old as writing.

18 There are a few other substitutions/ligatures, e.g. !‘

gives ¡. Those substitutions/ligatures aren’t exactly that, if
we define “substitution” as the replacement of a glyph with
another denoting the same character (here a character is re-
placed with another character: the grave accent and the left
quote aren’t the same thing) and “ligature” as the merging
of two or more glyphs into a new one for æsthetic reasons
(hyphens aren’t supposed to happen in a row, and even if
they would, there’s no typographic convention to the effect
that they should be merged into an en-dash). Rather, these
are convenient abbreviations.

68 TUGboat, Volume 33 (2012), No. 1

On the other hand, the “TEX ligatures” can in-
stead be implemented as follows. Characters in met-

ricsmay have a ligatures table which is organized
like this:

ligatures = {
[〈nextidx1 〉] = { char=〈ligidx1 〉, type=〈type〉 },
[〈nextidx2 〉] = { char=〈ligidx2 〉, type=〈type〉 },
... }

where each 〈nextidx n〉 is the index of a character in
metrics and 〈ligidx n〉 is the character being sub-
stituted if the current character and 〈nextidx n〉 are
found next to the other. As for 〈type〉, it is either a
number or a string denoting the result of the liga-
ture: either the new character or the new character
with one or the other or both of the old characters;
〈type〉 also specifies where TEX should resume scan-
ning. We will content ourselves with type 0.

So, given that the codepoint of hyphen is 45,
en-dash is 8, 211 and em-dash is 8, 212, we can create
our convenient ligatures like this:

metrics.characters[45].ligatures = {
[45] = { char = 8211, type = 0 } }

metrics.characters[8211].ligatures = {
[45] = { char = 8212, type = 0 } }

Although we could start implementing f-liga-
tures and the like this way also, we’d rather do
things properly. So let’s turn to the reason why
OpenType fonts exist in the first place.

* * *

As we now dive into the core of OpenType fonts,
the reader should recall the warning issued in the
introduction to this paper: LuaTEX’s fontloader will
evolve, the organization of fonttable will change;
thus we should observe one field in particular, not
mentioned before: table_version. Here I describe
a fonttable whose version is 0.3.

7 A first look at features

It’s simpler to approach features with a real example
than with an abstract definition. If we explore again
the table for f (102) in Libertine,19 but this time
retain the lookups, kerns and anchors tables only,
and in each only the first entry, we see:
lookups = {

ss_l_0_s = {
1 = { type = substitution

specification = { variant = f.short }
} }

... }

19 From now on when exploring a particular character, I’ll
mention the character itself or its name followed by the Uni-
code codepoint between parentheses; the resulting table is
thus produced with
ExploreTable(fonttable.glyphs[map[〈codepoint〉]]).

Paul Isambert



kerns = {
1 = { char = o

off = -11
lookup = { 1 = pp_l_2_g_0,

2 = pp_l_2_k_1 } }
... }

anchors = {
basechar = {

Anchor-3 = { x = 136, y = 215,
lig_index = 0 }

... } }

This tells us a few things: first, f should be replaced
by f.short (f becomes  ) if lookup ss_l_0_s is ac-
tive. Also, the distance between f and o should be
decreased by 11 units (with units defined as above)
if pp_l_2_g_0 is active.20 Finally, anchors are spec-
ified in case a mark is placed relative to the glyph.

One absolutely crucial point: the f.short and
o glyphs aren’t denoted by their Unicode codepoints,
nor by their positions in fonttable.glyphs, but by
their names. When we first looked at f we could
see that it had a name field. This is the case for all
glyphs (even if sometimes the name is as uninfor-
mative as uni0358), and all typographic operations
denote glyphs in that way. On the other hand, in
metrics names are useless and only codepoints mat-
ter. That means that we badly need a table linking
names to codepoints; here it is:

name_to_unicode = {}
for ch, gl in pairs(map) do
name_to_unicode[fonttable.glyph[gl].name] = ch

end

Now, name_to_unicode["f.short"] nicely returns
57, 568,21 and the reader who has followed the pre-
vious instructions to load Libertine can check that
\char57568 indeed yields . And if we were to rush
into the kerning of f, we could do:

metrics.characters.f.kerns = {
[name_to_unicode.o] = -11 * units }

But let’s not do that. Instead, let’s conscientiously
study how features and lookups work, and first of
all, how to know whether a lookup is active or not.

8 Lookups, tags, scripts and languages

A lookup is activated if the right combination of
script, language and tag obtains; again, a concrete

20 The second entry pp_l_2_k_1 must be ignored; in fact,
it shouldn’t be there at all and the lookup field should be a
string, not a table.

21 What, the reader might exclaim, a glyph variant has
a place in Unicode? Not really, no: 57, 568, i.e. 0xE0E0, is
in the “private use area”, where font designers are free to
put whatever they wish, and which generally contains alter-
nate forms. Nevertheless, Unicode does contain some vari-
ants, such as the f-ligatures.

TUGboat, Volume 33 (2012), No. 1 69

Fig. 2: ls_l_18 as seen by FontForge.

example will be easier to understand. Substitution
lookups are stored in fonttable.gsub, which is an
array where each entry is a table describing a fea-
ture.22 If we explore entry 19 in Libertine’s gsub,
we get the following:23

name = ls_l_18
type = gsub_ligature
flags = { }
subtables = { 1 = { name = ls_l_18_s } }
features = {
1 = {
tag = liga
scripts = {
1 = { script = DFLT, langs = { 1 = dflt } }
2 = { script = cyrl, langs = { 1 = dflt } }
3 = { script = grek, langs = { 1 = dflt } }
4 = { script = latn,

langs = { 1 = "DEU ", 2 = "MOL ",
3 = "ROM ", 4 = dflt } } } } }

(Compare this to Figure 2, which shows the same
lookup as seen by FontForge.) Let’s focus on the
features field, which is what we are interested in.
It is an array of tables (here there is only one), each
containing a possible combination of tag, scripts and
languages activating the lookup. We can see that
some ligatures (since we’re looking at such a feature,
as the type indicates) will be activated if a) liga is
on and b) no script and language is specified (i.e.
both are defaults) or the script is Cyrillic and the
language is unspecified, and so on and so forth. (In
the rest of this paper, I will often write that “this tag
activates that lookup”; the reader should mentally
add: “if script and language do not say otherwise”.)
There might be several such subtables in features,
one per tag, since a feature might be implemented

22 The reader may have noticed that I use the word feature
somewhat freely, indeed eschewing any technical definition,
denoting vaguely but conveniently a typographic manipula-
tion on the font.

23 The table entry is at index 19 even though the lookup
has 18 in its name (and lookups are indeed numbered con-
secutively), because lookup numbering starts at 0, whereas
Lua tables prefer 1 as the first index (table length and the
ipairs function are sensitive to that). So, whenever I men-
tion lookup ab_c_x, the reader should look at index x + 1 in
the gsub or gpos tables.

OpenType fonts in LuaTEX



by several tags: for instance, in Minion, “oldstyle”
numbers (e.g.  instead of 123) are activated by
the onum tag, but also by smcp (small caps) and
c2sc (capitals to small caps, i.e. turning uppercase
letters to small caps, whereas smcp affects lowercase
letters), because those kinds of numbers are deemed
mandatory with small caps by the designer. In such
a case of multiple subtables, only one tag/script/
language combination suffices for the lookup to be
activated. It might also happen that no features

table is present (for instance, the first two lookups
in Libertine); that is the case for lookups that aren’t
tied to a tag but instead are called by other (con-
textual) lookups. We shall come back to that later.

One important yet easily missed property of
language tags is that they are four-character strings
(which is why I added unusual quotes around a few
strings in the table), the last character being a space
(except for dflt). On the other hand, you’re not go-
ing to demand that users specify the language they
want to use with a space at the end, so you have to
add it yourself.

That tags interact with scripts and languages
to activate (or not) lookups is an important feature
in OpenType, allowing for a flexible interface. For
instance, the locl tag can be activated in all cir-
cumstances, to activate variants only for the speci-
fied scripts and languages: given n sets of localized
forms, there is thus no need for n tags. Another well-
known example is the fi ligature, which shouldn’t be
used in Turkish, since this language distinguishes be-
tween i and ı, and the i ’s dot is generally gobbled in
the ligature.24,25 Consequently, liga often points to
two lookups: one with the (f)fi ligature(s) only, in
which Turkish is excluded, and another implement-
ing all other standard ligatures. That is exactly how
the lookup shown here works: the reader may have
noticed that for the Latin script, TRK is missing; and
indeed that lookup controls the (f)fi ligature(s).26

One might think that tags are only pointers to
lookups, which implement a feature, so that tags

24 Dotless i notes the close back unrounded vowel, which
means it’s at the back of the throat (like the Castle of Aaaaar-
rrgh), the mouth is only slightly open (unlike said Castle),
and the lips are at rest; you can pronounce it more or less as
follows: hold “oooooo” as in boot and stop pouting.

25 The fi ligature does not always gobble the i ’s dot; for
instance it doesn’t in Kris Holmes and Charles Bigelow’s Lu-
cida; accordingly, the ligature is applied even in Turkish.

26 Another way to avoid the ligature in Turkish is illus-
trated in Minion: it has only one set of ligatures (containing
fi) defined for all languages; however, it also has a special
substitution activated by locl only if the language is Turkish
(and similar), which replaces i with an identical glyph whose
only difference is precisely not forming fi when preceded by f.

70 TUGboat, Volume 33 (2012), No. 1

can be somewhat overlooked as simply being a user-
friendly way to activate lookups, furthered by the
fact that tags can be freely made up by font design-
ers whereas there is only a finite number of lookup
types. Although that is true in general, in some
cases tags have some additional content. For one
thing, some tags should be active by default (e.g.
liga, standard ligatures) whereas others are op-
tional (e.g. hlig, historical ligatures); this means
that the former should be applied unless the user
specifies otherwise.27 Another, more important way
in which tags have semantics is when the lookup
they point to doesn’t suffice to implement a fea-
ture properly. For instance, the init, medi and
fina tags denote the initial, medial and final let-
terforms in (mostly) Arabic scripts; the feature is
implemented by a simple substitution, not a con-
textual substitution (on which, see below). This
means that if the user selects init, a given vari-
ant should be used for letters at the beginning of a
word only, even though the lookup implementing it
doesn’t mention contexts; in other words, manipu-
lations shouldn’t rely on the lookup type only and
should keep in mind the tag that activated it. A
list of registered tags, along with their meaning, is
available at [5].

Finally, we must note that the user’s choice of
script and/or language should be obeyed if and only
if the font knows about them. Indeed, fonts do
not specify all possible scripts and languages, but
only those which make a difference; for instance,
French isn’t mentioned anywhere in Libertine, but
this doesn’t mean that no features should be applied
if the font is loaded with FRA as the value of lang
(and, of course, latn as the value of script). In-
stead, it means that the font knows nothing of that
language and will treat it like the dflt language
in the latn script. How do we know which scripts
and languages a font is designed to handle? It is
given nowhere in fonttable; instead, we must scan
all lookups in gsub and gpos and collect all scripts
and languages (actually, gsub and gpos should be
treated independently of each other, but that often
makes little difference). Only then can the user’s
request be interpreted correctly.

27 What counts as a standard ligature (or any other fea-
ture) is up to the font designer; for instance, some fonts do
not have the fi or ff ligatures (for the latter, see e.g. Adrian
Frutiger’s Frutiger), because they don’t need it, whereas some
less common ligatures are sometimes required: Libertine, for
instance, has ,  and others.

Paul Isambert



9 Applying lookups

When several lookups are active, the order in which
they are applied is crucial; for instance, if both smcp

(small caps) and liga (ligatures) are active, the for-
mer should generally be executed before the latter,
otherwise the sequence f + i will be replaced with
the ligature fi, which has no counterpart in small
caps: and that’s definitely ugly.28

Fortunately, the order in which lookups should
be applied is easily read from the font file and doesn’t
depend on any additional knowledge, as the previ-
ous example might imply. It works as follows (here
“lookup” means “active lookup”): substitution look-
ups, i.e. those in the gsub table, are applied be-
fore the positioning lookups in gpos; in each cat-
egory, lookups are applied in the order in which
they are declared, i.e. according to their indices in
fonttable.gsub/gpos. A lookup is applied to all
glyphs in a node list before moving on to the next
lookup (although “all glyphs” will be explicated be-
low). Applying a lookup to one or more glyph(s)
means that each subtable in the lookup is tried un-
til one matches or no subtable remains (in which
case the lookup simply does not apply).

These subtables are found (not so surprisingly)
in the subtables entry. They generally contain only
a single name, rather than what the subtable actu-
ally does: the latter is to be found in the glyph ta-
bles, where that information is associated with name

(recall what was said above about the substitution
of f.short for f and the kerning with o; we said that
the substitution should occur if ss_l_0_s is active:
ss_l_0_s is the name of a subtable in the ss_l_0

lookup).
To sum up: the user specifies a script (or we

use DFLT), a language (or dflt), and some tags (to
which we add those activated by default). This com-
bination activates lookups in gsub and gpos; with
the names of those lookups’ subtables, we retrieve
what should be done by browsing the rest of the font
(mostly, the glyphs); then, well, we do it. What
should be done and how to do it is explained in the
two sections below about lookup types.

For instance, let’s suppose the user has selected
liga, kern (kerning) and mark (mark positioning)
in Libertine, and no script or language is specified.
Further suppose that the input node list is:

fie ̀re che ̀vre

28 Hermann Zapf’s Palatino does have an fi (and others)
to fi lookup. But since smcp is applied before liga anyway,
it is useful only when the ligature has been entered by hand,
e.g. as \char"FB01. The substitution is also in Test Libertine.

TUGboat, Volume 33 (2012), No. 1 71

a French phrase (fière chèvre) meaning “proud goat”
and interesting only to the extent that it lets us test
our lookup-application skills. Here, ̀ is the char-
acter whose codepoint is 768, i.e. the “combining
grave accent”, not the “grave accent” at position 96.
So, we begin with the gsub lookups, and liga acti-
vates two of them: ls_l_18 (the one shown above)
and ls_l_19; ls_l_18 is applied to the beginning
of the string, i.e. we test whether its only subtable
matches, and since that subtable is supposed to turn
f + i into fi , indeed it does match: the first two
glyphs are replaced by a single one representing the
ligature; ls_l_18 then moves to the third glyph,29

obviously it doesn’t match, so it moves to the fourth,
which doesn’t match either, and so on until the list
has been scanned to the end. Enter ls_l_19: it is
in charge of all remaining ligatures, and it matches
on ch (see footnote 27) and only there.

Next come the gpos features; kern activates
lookup 2, pp_l_2, and mark lookup 3, mb_l_3. The
former is applied first, and has two subtables: thus,
on each glyph, if the first matches, the second isn’t
applied, even though it might well have matched
too. The first subtable deals with individual glyph
pairs; the second with more general but less precise
kerning tables (more details on this below). One
could say that the second subtable defines default
kerning, while the first deals with special cases. The
order of their application thus makes sense.

So, for each glyph, pp_l_2 will add some kern-
ing if necessary. An interesting situation arises with
our node list: there should be some kerning between
e and v ; however, the intervening accent, which the
next lookup will properly place on the preceding let-
ter, hides the fact that the two glyphs are next to
each other. Or does it? No, it doesn’t, for the precise
reason that pp_l_2 was instructed to ignore marks,
and as we’ll see later this accent belongs to that cat-
egory; thus, when looking for an e + v sequence, the
lookup will operate as if the mark were not there.
Finally, mb_l_3 is applied, which has no less than
seven subtables, one for each of the possible places
where diacritics might be positioned relative to a
base mark. In our case the fourth subtable will do
the job, since it defines an anchor common to both
e and the accent.

Applying lookups doesn’t seem too complicated,

29 Since fi has been processed, it can’t be used as input
any more for the current lookup. If the font defined a lig-
ature between fi and e, then it should be implemented in
a subsequent lookup, but the font is more likely to define a
three-component ligature (f + i + e), which ls_l_18 would
have tried before fi because it is longer. More details in the
subsection on ligatures below.

OpenType fonts in LuaTEX



and indeed in many cases it isn’t. Sometimes things
are more difficult, though. For instance, given the
node list “ç h”, we want it to form ̧, i.e. we want
the ligature with the cedilla on the first letter.30 The
ligaturing lookup is clever and ignores marks, so the
ligature is properly formed; the mark positioning
lookup is clever too and knows how to set a mark
relative to one component of a ligature (e.g. a mark
on c won’t be placed like a mark on h). But the
problem is that once the ligature is formed, and the
mark has been put after it so that the positioning
lookup can find it, how do we know where in the
ligature the cedilla is to be positioned? Before liga-
turing, it was clear: the cedilla was to be positioned
on the first glyph; afterwards, that information was
lost. Thus, you are in charge of passing this infor-
mation from the ligaturing lookup to the positioning
lookup; attributes can be used for this.

I’ve mentioned lookups ignoring marks. Indeed,
glyphs in an OpenType font belong to one of four
classes: base, mark, ligature, and component (of a
ligature); glyphs also may have no class. Lookups
can be instructed to ignore some of these classes (ex-
cept the “component” class), in which case, when
looking for possible input, they act as if glyphs of
those classes were not present, so that ABC is seen
as AC if B belongs to an ignored class. The class of
a glyph is stored in the class entry of the glyph’s ta-
ble in fonttable, as we saw when inspecting f above.

A lookup’s ignoring of some glyph classes is in-
dicated in its flags subtable; for instance, ls_l_19
in gsub has:
flags = { ignorecombiningmarks = true }

Thus that lookup, responsible for forming some lig-
atures, is blind to mark glyphs. Indeed, as we’ve
seen, in “ç h” the ligature will be created as ex-
pected. Besides ignorecombiningmarks, there are
ignorebaseglyphs and ignoreligatures to ignore
other classes. A lookup may also have another entry,
mark_class, a string holding a mark class’s name; in
that case, the lookup ignores all marks except those
in that class. To know which mark belongs to which
class, we can inspect fonttable.mark_classes:

MarkClass-1 = gravecomb acutecomb uni0302
MarkClass-2 = cedilla dotbelowcomb uni0325

Thus, if flags above was:

flags = { mark_class = MarkClass-1 }

then the lookup would ignore all marks except the

30 A ç can occur before an h in Manx, spoken (infrequently
nowadays) on the Isle of Man. Nicolas Beauzée, a French
grammarian of the XVIIIth century (often with modern in-
sights) and contributor to Diderot and d’Alembert’s Ency-
clopédie, suggested çh also be used in French orthography.

72 TUGboat, Volume 33 (2012), No. 1

grave, acute and circumflex accents.
A lookup can have one last flag, r2l (“right

to left”), which we will discuss briefly along with
cursive positioning, since it is significant only with
that lookup type.

10 Implementing lookups

There are several kinds of lookups, each specify-
ing a particular implementation (modulo the remark
above about tags that must also be taken into ac-
count). Most of them cannot be handled by LuaTEX
by itself, meaning that we can’t simply return a met-
rics table containing the information for perform-
ing the necessary operations. What LuaTEX im-
plements natively is: non-contextual kerning, non-
contextual two-glyph ligatures (although we’ll later
see a trick to create ligatures involving more than
two glyphs), and non-contextual substitution (e.g.
f in small caps; actually LuaTEX doesn’t substitute
anything, we simply return metrics with small-cap
f at index 102). Other features must be done by
hand in one of the pre-paragraph-building callbacks,
i.e. hyphenate, ligaturing, kerning or pre_line-
break_filter31 (see [3] for an introduction to what
those callbacks do by default).

But even what LuaTEX can do is better done
by hand; suppose that you have a contextual sub-
stitution (which LuaTEX can’t handle) and a non-
contextual substitution (which you can ask LuaTEX
to perform by itself simply by returning metrics

with the replacement glyphs at the position of the
glyphs they replace); and further suppose that the
former should happen before the latter (because it
has a lower index in fonttable.gsub). You can
never get that right, because LuaTEX will map char-
acters to glyph nodes well before any of the above-
mentioned callbacks are executed; in effect, the sec-
ond substitution will have already occurred when
the first is performed, thus reversing the desired or-
der. Nonetheless, with e.g. the Latin script, non-
contextual kerning and ligatures, and simple, across-
the-board substitutions (like small caps), LuaTEX
can be trusted, and you don’t have to do anything
by hand— in particular, you don’t have to worry
about hyphenation, a thorny issue as we’ll see be-
low; that’s why I’ll describe how some lookups can

31 The linebreak_filter (the paragraph builder proper)
and post_linebreak_filter callbacks can be considered too
for features related to justification, but I will not pursue that
complex subject here. In addition, if anything is done in
pre_linebreak_filter, it should be done in hpack_filter

too, since the latter, but not the former, is called when ma-
terial is processed in a horizontal box.

Paul Isambert



be implemented without extra work, even though
I’ll also give the bigger, callback-based picture.

In what follows, when explaining implementa-
tions with those callbacks, I will rely on the follow-
ing assumption: that it is possible, given a font id
(remember the third argument to define_font), to
determine what should be done for each character
in that font. It means that when a font is loaded,
features to be implemented via callbacks should be
stored somewhere. Also, applying lookups makes
sense only for a sequence of glyphs sharing the same
font; thus a paragraph made of

\myfont This is {\myotherfont very} special

would be processed in three independent steps, as
if there were three paragraphs. A simple solution is
to break the node list into sublists each with glyphs
from the same font.

OpenType in general assumes that a text-pro-
cessing application takes an input string, maps the
characters to glyph positions in the font, and then
manipulates those glyphs according to active look-
ups. the first part (characters to glyphs) is done au-
tomatically by LuaTEX, provided that at index m

in metrics.characters there is the glyph at posi-
tion n in fonttable.glyphs, with n being the value
of entry m in fonttable.map.map. We’ve already
done that, but there is an exception: TEX doesn’t
map a space character to a glyph, but creates a glue
node instead.32 Also, the list we’ll be working on
is interspersed with nodes which have absolutely no
relation to characters, like penalties, whatsits, etc.,
so that we don’t deal with a simple string of char-
acters as assumed by the OpenType model. Finally,
some of those non-glyph nodes are discretionaries,
which require special treatment.

We solve the first problem by considering a glue
node to be a character whose glyph is fonttable.
map.map[32] (since 32 is the space’s codepoint); this
might seem like overkill, but it is not: lookups do
take spaces into account, and Libertine has kerning
pairs with space as either the first or the second
member. Compare:

How Terrible!
How Terrible!

In the first line the space has its default width,
whereas in the second line (negative) kern is added
after w and before T (while that kerning is not ap-
plied between other letters). In Minion, space is
subject in some circumstances to substitution (be-

32 Of course TEX does this only because space has cat-
code 10; give it catcode 12, and it will be treated as a glyph.
But you don’t want to do that, do you?

TUGboat, Volume 33 (2012), No. 1 73

ing replaced with a narrower space glyph).33 How-
ever, some lookups (or rather, tags, such as init

above) require that a “word” be a well-defined en-
tity, because position in the word is important; in
that case, spaces should be considered boundaries.

The second problem, non-glyph nodes, is solved
just by ignoring those nodes. Thus, in this node list:

〈glyph node 1 〉 〈non-glyph node〉 〈glyph node 2 〉

a function asked to retrieve the glyph following the
first one should return the third node. Things might
get a little bit more complicated, but one shouldn’t
worry too much; special circumstances may simply
demand special solutions.

The third problem is harder, because we def-
initely can’t ignore discretionary nodes. Suppose
you have the string X{a}{b}{c}Y, where X and Y

can be anything, a is the pre field of a discretionary
(i.e. the part typeset before the break if hyphen-
ation occurs at this point; typically, a hyphen), b
is the post field (the part typeset at the beginning
of the following line if hyphenation occurs; typically
empty) and c the replace field (what is typeset if
the hyphenation point is not chosen; also typically
empty). (See [3] for a slightly more detailed descrip-
tion of discretionary nodes.) You may have lookups
acting on the strings Xa, bY and XcY, so that each
lookup should be applied three times, and the result-
ing material should be {a’}{b’}{c’}, where a’, b’
and c’ are respectively Xa, bY and XcY after look-
ups have been applied. Then any common part at
the beginning of a’ and c’ can be moved out of and
before the discretionary; likewise, common material
at the end of b’ and c’ can be moved after. Con-
sider the following extremely hypothetical, not to

33 What shall we do in this case? We’ll see below that we
implement substitution between glyph nodes; shall we replace
the glue node here with a glyph node? If the replacement is a
real glyph, then yes, we can’t do otherwise; but if it is another
space glyph, we will adjust the original glue node’s width
(stretch and shrink are of course irrelevant to OpenType and
should be dealt with as best seen fit). A space glyph can be
spotted quite easily: all its boundingbox values are 0. This
does not prevent it from having a positive width field, though,
since a glyph’s width does not depend on its shape.

Another problem is that not all glue nodes come from
space characters (as I write this, LuaTEX does not distin-
guish between glue from a space character and glue from an
\hskip), and kerns should also be considered as space char-
acters. But lookups on space glyphs crucially depend on the
space’s shape, i.e. its width; such lookups are generally kern-
ing pairs (even Minion’s case is kerning in disguise) meant
to yield a homogenous space between all pairs of letters —
especially important in flowery script fonts — but what if two
letters are already separated by an important glue or kern?
Should additional kerning be performed? In other words, how
to solve the mismatch between what the user wants and what
the font requires? I have no answer to that.

OpenType fonts in LuaTEX



mention extremely dumb, example:
V{a-}{T}{o}e

This gives Voe if no hyphenation occurs, and Va-Te

otherwise. Provided it is typeset with Computer
Modern, there should be some kerning between V

and a or o, T and e, and o and e, i.e. using 〈k〉
to denote a kern node, without hyphenation we get
V〈k〉o〈k〉e, and with hyphenation V〈k〉a-T〈k〉e. So
our string first becomes:

{Va-}{Te}{Voe}

Then, after applying the kerning lookup:

{V〈k〉a-}{T〈k〉e}{V〈k〉o〈k〉e}

And now, moving out common parts:

V{〈k〉a-}{T〈k〉}{〈k〉o〈k〉}e

The kerns have not been moved, because they’re
different in each part.34

Now, this is all easier said than done (and it
wasn’t that easy to say). And it still doesn’t solve
some problems, for one, what X and Y actually are
depends on the lookup under investigation; e.g. a
typical ligature would set X as f and Y as fi in
of{-}{}{}fice, resulting in o{f-}{〈fi〉}{〈ffi〉}ce.
Worse, this does not even begin to consider what
happens if a lookup spans several discretionaries (as
in of{-}{}{}f{-}{}{}ice), in which case LuaTEX
becomes really perverted. We’ll leave the issue at
that—and as an exercise to the most courageous
readers only; suffice it to say here that you might
have to “flatten” a few discretionaries, i.e. simply
remove them and put their replace fields in their
place.

11 Lookup types: substitutions

There are two main families of lookups: those re-
lated to substitutions, and those related to position-
ing. The conditions for the former, as illustrated in
the preceding section (i.e. the tag/script/language
combination), are found in the fonttable.gsub ta-
ble, and those for the latter in fonttable.gpos.
What a lookup does is generally found in the affected
glyph(s), with some exceptions. I will review both
lookup types: first substitutions, then positioning.

Single substitution. This kind of lookup replaces
one glyph with another glyph: e.g. small caps, “old-
style” numerals, etc. As an example, Libertine re-
places Ş with Ș 35 if the locl feature is on and the

34 The user can check that the last code snippet is what
LuaTEX returns when left to its own devices by scanning the
node list in the pre_linebreak_filter callback for a para-
graph made of V\discretionary{a-}{T}{o}e.

35 Denoting a voiceless postalveolar fricative commonly
used to shush people. Put your tongue against the back of

74 TUGboat, Volume 33 (2012), No. 1

language is Romanian or Moldavian (and the script,
of course, is Latin):
name = ss_latn_l_7
type = gsub_single
flags = { }
subtables = { 1 = { name = ss_latn_l_7_s } }
features = {

1 = { tag = locl
scripts = { 1 = {

script = latn
langs = { 1 = MOL

2 = ROM } } } } }

And indeed if we look at some selected portion of
the lookups table in Ş (350), we’ll see:

ss_latn_l_7_s = {
1 = { type = substitution

specification = {
variant = Scommaaccent } } }

In both tables, the type tells us we’re dealing with
a single substitution; the specification subtable
will occur in many different types of lookups, but
the entries it contains will be different. Here it’s
quite straightforward: the variant entry points to
the replacement.

Implementing a single substitution is easy: you
just change the char field of the node under in-
vestigation, and its dimensions (width, height and
depth) follow suit. If we want to let LuaTEX do
that by itself, though, we can do the following when
loading the font:
metrics.characters[350] = metrics.characters[536]
name_to_unicode["Scommaaccent"] = 350

But this is only the tip of the iceberg. Suppose
for instance that we’re implementing small caps this
way: at position 104, letter h, we’ll put small-cap h.
Now, both T and c form a ligature with h in Liber-
tine; c will be replaced with its small-cap counter-
part, so the ligature will vanish; but T (under the
assumption that ligatures are handled by LuaTEX
too) will be instructed to form a ligature with char-
acter 104 (since metrics is only interested in code-
points), the result being: . To avoid that, each
time something refers to h in the original metrics,
it should be made to refer to small-cap h instead.
That is not particularly difficult if name_to_unicode
is properly kept up to date. But single substitutions
aren’t so innocent anyway; beside the ordering prob-
lem mentioned above, single substitutions can be
difficult because, as already said, they may requiring
analyzing the context, as is the case with init and
associates, which replaces glyphs in some positions

your upper teeth; move it a bit toward your palate, you’ll feel
a ridge there; move it again: that’s your postalveolar region
(the ridge itself is the alveolar region). A fricative is a con-
sonant whose sound is the air going through an opening so
narrow that it generates turbulence.

Paul Isambert



only. Also, I’ve said that a tag may be associated
with more than one lookup; what I’ve not said is
that those lookups can very well belong to different
types, and they do not even need to be all substitu-
tions or positioning; for instance, onum in Libertine
points to a single substitution (see ss_l_25) but also
to a positioning lookup in gpos (sp_l_1) that low-
ers mathematical operators. So you can leave the
substitution to LuaTEX, but you’ll still apply the
second lookup yourself.

Ligatures. A ligature is the replacement of two or
more glyphs with a single one. In TEX, such a re-
placement is implemented as information in the first
character in the ligature, more precisely in its lig-
atures table; for instance f (102) in Don Knuth’s
Computer Modern has the following:36

ligatures = {
102 = { char = 11, type = 0 }
105 = { char = 12, type = 0 }
108 = { char = 13, type = 0 } }

We’re looking at the ff, fi and fl ligatures respec-
tively; if TEX does ligaturing by itself, whenever a
node with char 102 (f ) precedes a node with char

105 (i), it will replace them with a node whose char
is 12, and at position 12 in cmr10 is fi. The type we
shall ignore.37

But where are the ffi and ffl ligatures? They
are stored in the ff character (11). Indeed, for TEX,
those two ligatures are formed by ff + i/l, not by
f + f + i/l,38 because a ligature always involves
two characters. OpenType fonts, on the other hand,
have no upper limit on the number of components of
a ligature, and even though ffi might be (and some-
times is) described as a ligature between ff and i, it

36 We are seeing the equivalent of metrics for cmr10 here.
Recall that our job is to turn fonttable into metrics and
return it to LuaTEX; but all fonts are implemented with such
a table, even if they were loaded automatically, i.e. nothing
was registered in define_font and a TFM font was used. The
table is returned by the font.getfont function, which takes
as its single argument a font id. Font id’s themselves are given
by font.id, which is passed the control sequence (without the
escape character) associated with the font. So what is shown
here is font.getfont(font.id("tenrm")).characters[102].
ligatures (with plain TEX, where cmr10 was loaded with
\font\tenrm=cmr10).

37 But let’s explain briefly: it specifies what the output of
the ligature should be. 0 means that only the ligature glyph is
returned, but one of the original nodes, or both, could also be
retained (e.g. f + i would produce fii); type also determines
where TEX should continue its ligaturing.

38 I said in note 29 that once the initial fi has been formed,
it can’t be reused to form another ligature with the following
character. I was then talking about the rules for OpenType
lookups. TEX, on the other hand, does restart ligaturing at
the newly formed ligature itself (unless type says otherwise),
and ff is available to form a ligature with what follows.

TUGboat, Volume 33 (2012), No. 1 75

can also (and generally is) implemented as involving
three glyphs. So what? Can’t we just write a few
lines of code so that f + f + i = ffi in fonttable is
split into f + f = ff and ff + i = ffi in metrics? We
can do that; more generally, we could turn a ligature
L with n components into n − 1 ligatures with two
components as follows:
l1 = c1 + c2
l2 = l1 + c3
. . .

ln−1 = ln−2 + cn = L

The problem is: what if li doesn’t exist as an inde-
pendent glyph? The ffi ligature is misleading, be-
cause there does exist an ff ligature. But that is not
always the case, quite the contrary. As an example,
the frac tag in Libertine defines ½ as 1 + / + 2, and
there is obviously no 1/ glyph. If we proceed care-
fully, we could define “phantom” characters such as
1/, whose only purpose in life is to form a ligature
with the subsequent character; but then we’ll run
into trouble if there is no such character, as in:

An enumeration:
1/ First ...;
2/ then ...;

So the method might work for standard ligatures in
a Latin script, where the ligatures with three compo-
nents are the ones described above, but apart from
that it’s better to use callbacks.

But let’s get back to fonttable for a while; I’ve
already shown a ligature lookup above (ls_l_18).
The only thing we haven’t remarked upon yet is
the type, which is, not surprisingly, gsub_ligature.
Ligatures themselves are to be found in the replace-
ment glyphs, not in the first glyph as in TEX; thus
f + f + i is stored in ffi (64, 259):
name = f_f_i
unicode = 64259
class = ligature
width = 819
boundingbox = { ... }
lookups = {

1 = { type = lcaret
specification = { 1 = 266, 2 = 538 } } }

ls_l_18 = {
1 = { type = ligature

specification = {
char = f_f_i,
components = f f i } } }

The class says ligature but it may very well be
absent; glyph classes aren’t mandatory. Hence, what
informs us unambiguously that we’re dealing with
a ligature is the ls_l_18_s lookup and its type.
As with single substitutions, the relevant informa-
tion is stored in specification, and what we’re
really looking for is components, a string of glyph

OpenType fonts in LuaTEX



names separated by space (glyph names themselves
can never contain space).

While we’re at it, the first subtable in look-

ups is not really a lookup; its index isn’t a lookup
name (a string) but a simple number, and it spec-
ifies where the caret should be placed to highlight
individual components in the ligature. Since PDF

has no support for this anyway, we shall ignore it.
Implementing ligatures in LuaTEX can be done

as follows: we store all (active) ligatures into cate-
gories headed by the first component. Then, when
scanning a node list, we check whether any ligature
begins with the character of the node under inves-
tigation, and if so, whether the following nodes also
match the other components. In doing so, it is cru-
cial that ligatures be ordered by length (i.e. number
of components) and that longer ligatures be tried
before shorter one; otherwise, f + f + i might be
turned into ff + i and stop there.

Identifying a string of nodes might require skip-
ping over other nodes, if only because the lookups
are instructed to ignore some glyph classes; the lig-
aturing lookup ls_l_19_s, for instance, should ig-
nore marks, as discussed above. Once component
nodes are properly identified, there are two ways
to proceed. The easy way is: delete all component
nodes except the first, whose char field you set to
the ligature’s codepoint, as in a single substitution.
The best way is (though it makes a difference only
when TEX reports information): remove all com-
ponent nodes, replacing the first with a new glyph
node with subtype 2 (ligature); arrange the removed
nodes in a proper list (i.e. node i has prev set to
node i − 1 and next to node i + 1, except the first
node’s prev field and the last node’s next are both
nil), and set the new node’s components field to
the first removed node. For instance, given three
component nodes n1, n2 and n3 in list head:

local lig = node.new("glyph", 2)
lig.font, lig.attr = n1.font, n1.attr
lig.lang, lig.uchyph = n1.lang, n1.uchyph
lig.char = 〈ligature codepoint〉
head = node.insert_before(head, n1, lig)
node.remove(head, n1)
node.remove(head, n2)
node.remove(head, n3)
n1.prev, n1.next = nil, n2
n2.prev, n2.next = n1, n3
n3.prev, n3.next = n2, nil
lig.components = n1

We set the ligature node’s font (of course), attr
(for attributes), lang and uchyph (both for hyphen-
ation) fields to the original node’s values, because
they store important information.

If nodes were skipped, they will now occur after

76 TUGboat, Volume 33 (2012), No. 1

the ligature node. If those nodes were mark glyphs,
then they should be marked (no pun intended) with
an attribute so that they can later be placed on the
correct component of the ligature (a subject we ad-
dress more thoroughly below).

Multiple substitution. This type of lookup is the
inverse of the previous one: one glyph is replaced
with several glyphs.39 In the gsub table, this lookup
has type set to gsub_multiple; in the affected glyph,
type is multiple, and specification has a single
components entry similar to that of a ligature, i.e.
a list of glyphs separated by spaces.

What should be done on the TEX side is just
the reverse of the previous lookup type; since there
is nothing particularly instructive in that, I leave
it as an exercise to the reader. The f -ligatures in
Libertine all have multiple substitution when smcp

is on (see ms_l_12).

Alternate substitution. This maps a single glyph
to one or more variants (often, but not always, used
in other features); for instance, R (82) in Libertine
is mapped to a stylistic alternative (otherwise tied
to the ss02 tag) and a small capital (from c2sc).
In gsub, the lookup has type gsub_alternate; in
the glyph, type is alternate and specification

contains a single components entry, a string with
one or more glyph names separated by space.

This kind of lookup is typically activated with
the aalt (Access All Alternates) tag, through which
the user may choose a variant for a glyph, even
though the conditions required for this variant to
occur aren’t met (e.g. you want the medial form of
a glyph even though you’re not in the middle of a
word). A graphical interface with a drop-down list
is obviously better fitted than TEX to do that, al-
though one can easily design a \usevariant{〈num-
ber〉}{〈glyph〉} command.

But alternate substitutions can be put to better
effect with another tag, rand, for selecting a glyph
variant at random. Given the components list, one
can decide which variant to use via Lua’s math.ran-
dom function. Once this is done, the replacement is
identical to a single substitution. This feature can
be found in the Punk Nova font by Hans Hagen and
Taco Hoekwater (after Don Knuth).

39 I’ve been telling a white lie: “ligatures” can take a single
glyph as input, and “multiple substitutions” can output a sin-
gle glyph too. In both case, they’re equivalent to single sub-
stitutions. So those lookup types are better described as re-
spectively “n glyph(s) to 1 glyph” and “1 glyph to n glyph(s)”
replacements, with n ≥ 1. That doesn’t change the import
of what is described in the main text. See the slash (47) in
Libertine for an example of a “one-glyph ligature”.

Paul Isambert



Contextual substitution. Those last couple of
lookup types weren’t very exciting. But now, fasten
your seat-belt, we’re in for the real thing: contextual
substitution, and chaining contextual substitution,
and finally reverse chaining contextual single substi-
tution, all that possibly expressed in three different
formats . . . Alas, the terribly-named reverse chain-
ing contextual single substitution isn’t supported in
LuaTEX (or virtually anywhere else), so we won’t be
studying it.40

Up to now, we’ve seen lookups identifying input
and replacing it with some output. Contextual look-
ups also identify input, but then they call other look-
ups on parts of that input to do the substitutions.
For instance, given input ABCD, A may be turned to a
small cap, BC may form a ligature, whereas nothing
happens to D but its being there is still crucial to
identify the proper input, i.e. otherwise the former
two substitutions wouldn’t have been performed.

As alluded to above, contextual lookups may be
expressed in three formats. For contextual substitu-
tions proper, we’ll see the glyph-based format; in the
subsection below about chaining contextual substi-
tution, class-based and coverage-based formats will
be investigated; but all three formats can be used
with both types of lookup.

Libertine has a tag called gtex (for Greek TEX )
which turns the input sequence TeX into τεχ (with
lowercase tau and chi so they won’t be confused with
T and X ). Of course, you don’t want to change every
T , e and X to tau, epsilon and chi respectively;
rather, you want the substitution to be performed
only when the three letters are ordered as in TeX; in
other words, you want a contextual substitution.

If we look into cs_l_4—the lookups associated
with gtex—in fonttable.gsub, we won’t learn any-
thing we don’t already know, except that it has type
gsub_context. While we’re at it, we can retrieve
the name of its only subtable: cs_l_4_s. We won’t
find what this subtable does among the glyphs, as
with the previous lookup types; instead, contextual
lookups live in their own table, fonttable.lookups,
where they are indexed by name. So, let’s look at
fonttable.lookups.cs_l_4_s:

40 The main difference between reverse [. . . ] substitution
and the others is that it processes the node list starting at
the end; e.g. given ABC, first it deals with C, then B, then A.
This has nothing to do with the direction of writing, though
it was meant for Arabic calligraphy, where a glyph variant
may be determined by the shape of the following glyph (as
in the Nasta‘l̄ıq style), so that the latter should be set before
the former. Nonetheless, none of the Arabic fonts I’ve seen
use reverse [. . . ] substitution.

TUGboat, Volume 33 (2012), No. 1 77

type = contextsub
format = glyphs
rules = {

1 = { glyphs = { names = T e X }
lookups = { 1 = ss_l_2

2 = ss_l_2
3 = ss_l_2 } } }

The important information is contained in the rules
subtable; it describes the context and what to do
with it. But in order to understand that subtable,
the value of format is crucial: it tells us how the
context will be defined. The rules table is made
of subtables at consecutive indices, each defining a
context and what to do with it, somewhat like sub-
tables in a lookup of the types seen before: the first
subtable that matches wins the prize.

The context itself is defined in glyphs, which
contains at least a names subtable, and if it is a
chaining contextual substitution, perhaps also back

and fore fields. Those three fields are strings made
of glyph names that denote an input sequence (space
is used to delimit names only), somewhat like the
components entry of a ligature substitution. Here,
then (it goes without saying but let’s say it anyway),
the relevant input string is TeX.

The lookups table lists what should be done
to the successful input sequence. It is not a simple
array; instead, the indices correspond to positions
in the input sequence. Here the table reads: apply
lookup ss_l_2 to the glyph at position 1; then apply
it again at position 2 and 3. If we explore ss_l_2

in fonttable.gsub, we’ll see that it’s a single sub-
stitution, and in the tables for T (84), e (101) and
X (88), we’ll find that it maps those glyphs to their
Greek counterparts. In other words, ss_l_2 is exe-
cuted like any other lookup, except that, each time
it is called, it inspects only one position in the node
list, not the entire list.41

A crucial point is that each index in lookups

identifies a position in the input sequence after the
previous lookup has been applied. In our example,
this doesn’t make any difference, but suppose a con-
textual lookup is designed to match against ABC, and
suppose the first lookup it calls (at index 1) is a liga-
ture, so that AB is turned into X; then the sequence is
now XC, and if a second lookup is called to act on C,
it will have index 2, not 3, even though C originally
was at position 3.

Also, the lookups table isn’t mandatory: a con-
textual lookup may very well identify a valid input
sequence and do nothing with it. Below we’ll see a

41 More accurately, the lookup inspects input from one
position only, even though it might need to inspect several
glyphs, as in a ligature.

OpenType fonts in LuaTEX



detailed example of that, but here we can say that it
can be used to prevent a subsequent subtable from
matching: for instance, if you want to define con-
text ABX as AB followed by any glyph but, say, z,
then you can define a contextual lookup with a first
subtable matching ABz and doing nothing, and the
second simply as AB, i.e. matching independently of
what follows.

How shall we implement a contextual substitu-
tion? Identifying the input can be done as for a
ligature; then each lookup is applied as usual, albeit
on a particular node (according to the lookup’s in-
dex), which can be ensured simply by counting glyph
nodes. The only subtlety is that lookups should be
applied in order, i.e. lookup at index m should be
executed before lookup at index n, with m < n.
In our example, since indices in lookups are con-
secutive, a simple ipairs will respect the ordering;
however, there might not be a lookup at each in-
dex, and lookups could have entries at indices 1, 2
and 4, for instance, in which case ipairs will stop at
2 whereas pairs won’t iterate in any particular or-
der. Thus one should create another table reflecting
the original order but also retaining the positions:
local t = {}
for i, l in pairs(lookups) do
table.insert(t, {position = i, lookup = l})

end
table.sort(t, function (a,b)

return a.position < b.position end)

Now we can traverse t with ipairs and apply the
lookups in order.

Chaining contextual substitution. Contextual
substitutions, like other substitutions, completely
consume their inputs, even if lookups are applied
at some positions only. For instance, a contextual
substitution acting on TeX and simply turning e to
epsilon will nonetheless consider X as processed; the
next iteration of the current lookup will begin at the
next character. Also, since what came before the
current position is considered processed too, con-
textual substitutions can’t take that into account
either. In other words, substitutions of that type
(and of all the types seen up to now) have no mem-
ory, and they can’t foresee the future.

A chaining contextual substitution, on the other
hand, is precisely that: a contextual substitution
with memory and foresight. In other words, it can
take into account already-processed glyphs and fu-
ture glyphs without consuming the latter. Chaining
contextual substitutions are so useful that virtually
all fonts use them even when simple contextual sub-
stitutions would do.

78 TUGboat, Volume 33 (2012), No. 1

In essence, a chaining contextual substitution
works like a simple contextual substitution: it iden-
tifies a sequence of glyphs and calls other lookups at
some positions in this sequence. But it can also iden-
tify preceding glyphs, called the backtrack sequence,
and/or subsequent glyphs, called the lookahead se-
quence.

An important point to keep in mind is that,
whatever the format, the backtrack sequence is al-
ways set in reverse order of the direction of writing;
for instance, to identify abc[xyz]def, where abc

and def are the backtrack and lookahead sequences
respectively, and xyz the input sequence proper, a
lookup in the glyphs format (as in the previous sec-
tion) would have the glyphs table organized as:

back = c b a
names = x y z
fore = d e f

Note how the backtrack sequence is displayed.
In Libertine, the ccmp tag (Glyph Composition/

Decomposition, a somewhat all-purpose tag) acti-
vates a lookup, ks_l_32, with two subtables. Af-
ter noting the lookup’s type (gsub_contextchain),
let’s look at ks_l_32_c_0, the first of those two sub-
tables, in fonttable.lookups:

type = chainsub
format = coverage
rules = {

1 = {
lookups = { 1 = ss_l_0 }
coverage = {
current = { 1 = f f_f }
after = {

1 = parenright question T ... } } } }

This subtable uses the coverage format, which spec-
ifies a set of glyphs for each position in the input,
backtrack, and lookahead sequences, denoted respec-
tively by subtables called current, before (missing
here) and after, whose indices are the position in
the sequences (starting from the end in before) and
the values at those indices are strings representing
the glyphs. In this example, the input sequence is
made of one glyph, either f or ff, and the lookahead
sequence also contains one glyph, which can be a
question mark, a right parenthesis, T, and many
others elided here. So, f?, f), fT, ff? . . . will all be
identified by this single rule. This works a bit like a
regular expression (with f_f denoting the ligature):
[ff_f][?)T...]. If one of the three sequences had
contained more than one glyph, it would have had
an equal number of entries.

The lookups table should be read as in a simple
contextual substitution, with indices denoting posi-
tions in current. Here, ss_l_0 should be applied
at position one; this lookup replaces f (both on its

Paul Isambert



own and in the ligature) with a variant whose arm
is shorter, so it doesn’t touch the next glyph: f?
becomes ? . 42

One last remark about our example: although
the relevant context here is described at entry 1 in
rules, there can be no other entries in that table,
since the coverage format allows only one context
per subtable. Hence another context would be de-
fined in another subtable. That is not true of the
other two formats, glyphs and class.

Let’s turn to an example of the latter. Liber-
tine can turn etc. to &c. thanks to the etca tag
(ET CAetera, or ETC. with Ampersand, or ETC. Al-
ternate, or ETC. with a dummy letter only because
tags should be made of four characters; I did not
spend hours trying to find a meaningful name). The
core of the feature is a simple ligature (e + t to &),
but performed if and only if the two letters are at
the beginning of a word (to exclude text like fetch),
and followed by c and a period (so etch is also ex-
cluded).43

The etca tag points to lookup ks_l_5, whose
only subtable ks_l_5_s is (in fonttable.lookups):

type = chainsub
format = class
before_class = { 1 = space parenleft bracketleft }
current_class = { 1 = e, 2 = t }
after_class = { 1 = c, 2 = period }
rules = {
1 = { class = {

before = { 1 = 0 }
current = { 1 = 1, 2 = 2 } } }

2 = { class = {
current = { 1 = 1, 2 = 2 }
after = { 1 = 1, 2 = 2 } }

lookups = { 1 = ls_l_3 } } }

As expected, format is class; but what is a class?
First, it has absolutely nothing to do with the glyph
classes mentioned above. Here a class is simply a set
of glyphs created especially for a lookup. More pre-
cisely, classes are defined separately for the input,
backtrack and lookahead sequences in (respectively)
current_class, before_class and after_class.
In each of those tables, a class is denoted by its in-
dex, and its content is a string of space-separated
glyph names. For instance, class 1 for the back-
track sequence here contains space (recall that we
said that space is a glyph in OpenType fonts), left
parenthesis and left bracket, while the classes in the
other sequences are singletons. In each subtable of
rules, the context is described analogously to the

42 The second subtable in ks_l_32 substitutes ı and  for i
and j before accents, which will then be properly positioned.

43 No word in English ends with etc, so the second condi-
tion would be enough; but you never know.

TUGboat, Volume 33 (2012), No. 1 79

coverage format: indices in the current, before
and after subtables denote positions, but here the
values point to classes (one class per position); for
instance, at position 1 in the input sequence for the
first rule, there should be a member of class 1 for
that sequence, i.e. an e. This is, again, a bit like reg-
ular expressions, except that sets [...] are assigned
to variables beforehand and the regexp is defined
with those variables.

Classes are a bit special in that they do not
intersect, i.e. a glyph belongs to one and only one
class (for each sequence, that is). This fact is of little
value to us (though quite important to the font de-
signer), except when paired with another one: that
there exists a default class, which need not be de-
fined and whose index is 0; this class contains all
glyphs, except those present in other classes. Thus,
class 0 in before_class contains everything but
space, left parenthesis and left bracket, class 0 in
current_class contains everything but e and t ,
and class 0 in after_class contains everything but
c and period.

Class 0 is put to good use in rule 1; this rule
matches any sequence Xet where X is anything but
(, [ or a space, since class 0 contains all glyphs
but them. For instance, if we’re inspecting fetch,
rule 1 will match, preventing rule 2 from being ap-
plied at the same position—and that’s the only rea-
son why rule 1 exists at all: to prevent rule 2 from
being applied in most circumstances; accordingly,
rule 1 has no lookups table. However, rule 1 will
not match with (et or [et  et (no matter what
follows), since the initial glyph in each case doesn’t
belong to class 0, and rule 2 will perhaps match if
the right sequence follows.

The implementation of a chaining contextual
substitution is similar to that of a simple contextual
substitution, except that we may request surround-
ing glyphs to identify themselves. No matter how
many nodes we scan to compare them to the look-
ahead sequence, they do not count as processed, and
the next iteration of the lookup starts at the glyph
to the immediate right of the input sequence; in our
example, provided the right context has been found,
the lookup will start again at c.44

At this point, the reader might have a ques-
tion nagging at the back of his or her mind, namely:

44 Of course here it is impossible for the lookup to match
on c, and it could have been skipped (i.e. the following c
and period could very well have been parts of the input —
not lookahead — sequence). However, the ampersand substi-
tution could have been part of a much more general lookup
implementing a wide range of stylistic variants, one of which
might take c as its input.

OpenType fonts in LuaTEX



what is the difference between a contextual lookup
(chaining or not) with n subtables containing one
rule each, as illustrated by ccmp above, and the same
lookup with one subtable containing n rules, as etca
here? As far as what the lookup does is concerned,
the answer is: none, since a subtable matches when
one of its rules matches, and a successful subtable
or rule prevents the other ones from being applied.
But there are some technical differences which may
dictate why one implementation is chosen over the
other: first, as already mentioned, only one rule per
subtable is allowed in the coverage format, so a
lookup will necessarily use several subtables; sec-
ond, all rules in a subtable are in the same format
(as witnessed by the fact that the format entry is
on the same level as the rules table, and thus holds
for all the rules contained in the latter), whereas
different subtables in the same lookup may be ex-
pressed in different formats; if two contexts are bet-
ter expressed in two different formats, then different
subtables can be used.

12 Lookup types: positioning

At this point, we’re done with substitutions (since
reverse substitution is in limbo for the present). We
turn to positioning lookups, held in the fonttable.
gpos table.

Single positioning. This kind of feature moves
a glyph horizontally and/or vertically and modifies
its horizontal and/or vertical advance. Typographi-
cally, that means modifying the glyph’s sidebearings
(moving a glyph left/right increases/decreases the
left sidebearing, and increasing/decreasing its width
does the same for the right sidebearing). For in-
stance, capital spacing in Libertine (activated by the
cpsp tag) is implemented by lookup sp_l_0 (with
type gpos_single), whose only subtable sp_l_0_s

is detailed in each uppercase glyph’s lookups table,
e.g. A (65):

sp_l_0_s = { 1 = {
type = position
specification = { x = 2, h = 5 } } }

As usual, what should be done is detailed in the
specification subtable. For single positioning, the
table may have up to four values: x is the horizontal
displacement of the glyph; h is its width correction;
y and v are the same things in the vertical direction.

Now suppose we’re implementing capital spac-
ing. We browse all capitals in a node list, or rather
(and more generally), all glyphs that have this par-
ticular lookup. For each such glyph we add a kern
of x units before if it follows a similar glyph, and a
kern of h units after if it precedes a similar glyph

80 TUGboat, Volume 33 (2012), No. 1

(the if -clauses translate the fact that space adjust-
ment should take place only between capitals). We
could also merge the two kerns for each pair.

A caveat: capital spacing does not replace other
forms of kerning, particularly the default kerning
(denoted by the kern tag). If that kerning is done
automatically by LuaTEX (because the kerning call-
back is left untouched or the node.kerning function
is used), that should occur before capital spacing,
otherwise our additional kerns will prevent it. In
turn, when looking for the preceding or following
glyph, we should ignore intervening kerns (which
have the special subtype 0).

An example of vertical positioning can be found
in sp_l_1 (triggered by onum, whose only subtable
sp_l_1_s lowers mathematical operators so they are
better placed with “oldstyle” numbers). Thus the
specification for this subtable in glyphs =, +, −,
× and ÷ (61, 43, 8722, 215 and 247 respectively)
contains a single entry at y whose value is -100;
then it suffices to assign (or rather, add) −100 units
to the glyph nodes’ yoffset field to implement the
lookup. I leave it at that here, since yoffset is
detailed more thoroughly below, along with its hor-
izontal twin xoffset.

Pair positioning (kerning). This second type of
adjustment is well known: it is the tiny amount of
space (possibly negative) added between two letters
that look badly set when just left next to each other,
for instance between T and o (compare kerned To
with “natural” To).

Kerning pairs go in two formats. First, there
is kerning information for individual pairs, which
is found in the glyph table for the left member of
the pair, more precisely in the kerns (not lookups)
subtable. For instance, looking precisely at this sub-
table for T (84):

kerns = {
1 = { char = udieresis

off = -44
lookup = { 1=pp_l_2_g_0, 2=pp_l_2_k_1 } }

2 = { char = odieresis
off = -44
lookup = { 1=pp_l_2_g_0, 2=pp_l_2_k_1 } }

3 = { char = adieresis
off = -36
lookup = { 1=pp_l_2_g_0, 2=pp_l_2_k_1 } }

... 22 more
}

This means that ü and ö should be brought closer to
a preceding T by 44 units, whereas for ä it should
be 36 units.45

45 The lookup table shouldn’t be a table at all, but a string
identical to the table’s first entry, i.e. pp_l_2_g_0; this hap-

Paul Isambert



However, different pairs often share the same
amount of kerning. Better yet, classes of glyphs on
the left will often have the same kerning when fol-
lowed by classes of glyphs on the right. For instance,
A, À, Á . . . should behave similarly, because here
accents make little difference (this is not true for a
lowercase letter). Accordingly, kern pairs are often
defined in kern tables; for instance, here’s the entry
at index 3 in fonttable.gpos (much abridged):

3 = {
type = gpos_pair
flags = { ignorecombiningmarks = true }
name = pp_l_2
features = { ... }
subtables = {

1 = { name = pp_l_2_g_0 }
2 = {
name = pp_l_2_k_1
kernclass = {
1 = {

firsts = {
2 = r v w y yacute ydieresis ...
3 = a i u ...
... }

seconds = {
2 = a aogonek
3 = c e o q ccedilla
...
11 = exclam parenright ... }

offsets = { 13 = -15
14 = -10
18 = -29
... }

lookup = pp_l_2_k_1 } } } } }

We discover en passant that such kerning is asso-
ciated with the kern tag, which activates both the
per-glyph kerning (see the first subtable with lookup
pp_l_2_g_0—also associated with the individual
kerning pairs for T in the previous code snippet)
we’ve seen above and the kerning by class that we’re
interested in; it is of course crucial that the per-
glyph subtable take precedence over the kerning ta-
ble: the latter is powerful yet indiscriminate, while
the former is limited but accurate. Kerning tables
deal with glyphs massively, and individual kerning
pairs set the exceptions.

The kernclass table has the information we
need, namely a kerning table,46 composed of four en-
tries: firsts is an array of glyph classes on the left;
seconds is an array of glyph classes on the right;

pens quite regularly with similar lookup entries. The correct
information can be reliably retrieved with:

local lk = (type(lookup) == "table" and lookup[1])
or lookup

46 Actually, kernclass is made of subtables, each one be-
ing a kerning table; but only the first is valid, the others are
defined elsewhere and should be ignored when repeated as
the non-first subtables.

TUGboat, Volume 33 (2012), No. 1 81

offset is the amount of kern needed for each pair of
classes; and lookup is just redundant; we can ignore
it and stick to the name field. Let fi, sj , ok stand
for entries firsts[i], seconds[j] and offsets[k]

respectively; then kerning tables can be read as fol-
lows:

s1 s2 . . . sn
f1 o1 o2 . . . on
f2 on+1 on+2 . . . on+n

. . . . . . . . . . . . . . .

fm omn−n+1 omn−n+2 . . . omn

In words, the amount of kerning between classes i

and j is o(i−1)n+j , where n is the length of the table
seconds (i.e. its highest index; do not use the Lua
length operator # here, it will return random val-
ues, since the entry at index 1 is always missing for
reasons explained just below). Thus, between r (in
class f2) and e (in class s3), there should be a kern
whose width is specified in o(2−1)×11+3 = o14 = −10
units—unless, of course, such information is over-
ridden by per-glyph kerning, as seen for T above.

When oi would be 0, i.e. no kerning is speci-
fied between two classes, the entry is omitted in the
offsets table. Another important point is that f1
and s1 are special: like class 0 in contextual substi-
tutions above, they hold all the glyphs that don’t
appear in other classes, and thus aren’t explicitly
defined. Kerning for those classes is seldom, if ever,
specified, for reasons that should be obvious.

LuaTEX is able to handle such kerning by itself;
to do so, we fill the kerns table that each character
may have; e.g. for r it would contain the following
information:

kerns = {
[name_to_unicode.a] = -9830,
[name_to_unicode.aogonek] = -9830,
[name_to_unicode.c] = -6554,
... }

assuming the font has been loaded at 10pt and there
are 1000 units per em, so that the first value is
−15∗10∗65536

1000 = 9830.4 scaled points (rounded, since
there is nothing smaller than a scaled point). How-
ever, LuaTEX won’t insert a kern if anything oc-
curs between two glyph nodes (barring discretionary
nodes, which it will certainly do better than us), and
we have just seen such intervening material in the
previous subsection with capital spacing.47 Also,

47 Capital spacing is a single positioning lookup. But given
that the tag has additional semantics, namely that the po-
sitioning should occur if and only if the uppercase letter is
preceded and/or followed by another capital letter, we can
reinterpret it as kerning with the pairs A/A, A/B . . . Z/Y,

Z/Z. Then, for each glyph m on the left and glyph n on the
right, we can set entry n in kerns, as hm + xn + kmn, where

OpenType fonts in LuaTEX



the kerning lookup here is instructed to ignore marks
(see the flags entry), and LuaTEX can’t do that.

Mark positioning. We turn now to the placement
of diacritics, i.e. glyphs that exist only relative to an-
other. Only the latter should be visible to the justifi-
cation engine afterward; the diacritic itself may only
contribute to the vertical dimension of the resulting
combination.

Since Unicode defines many precomposed char-
acters, independent diacritics can often be avoided.
Yet situations still abound where mark positioning
is crucial— if only because the font has no glyph for
a given precomposed character. As an example, the
International Phonetic Alphabet uses a ring below
a symbol to denote a voiceless sound (when no inde-
pendent symbol exists), e.g.

˚
m.48 If we want to do

phonetics with Libertine, we’ll have to use mark po-
sitioning, because the symbol doesn’t exist in that
font (or in Unicode, for that matter).

At this point, it might be useful to review how
TEX positions diacritics. The \accent primitive,
used as:

\accent 〈number〉 〈char〉

places the character at position 〈number〉 in the font
on the character at position 〈char〉 as follows: first,
if 〈char〉’s height differs from the font’s x-height, i.e.
\fontdimen5 (a.k.a. parameters.x_height), then
the accent is put into a box shifted vertically by:

shift = heightchr − xheight

Then the accent is surrounded by kerns so that it is
centered on the accentee, modulo the declared slant
per point (\fontdimen1 a.k.a. parameters.slant).
If we denote the width of the first kern by k1 and
the second by k2, they can be computed as:

k1 =
widthchr − widthacc

2
+

slant

1pt
× shift

k2 = −(k1 + widthacc)

We can see that the second kern is used only to can-
cel whatever horizontal displacement was caused by
the first kern and the accent. The entire operation
can be justified by saying that TEX expects an ac-

h and x are the corresponding entries in specification for
the single positioning lookup and k is the (real) kern between
the two glyphs. Then we can let LuaTEX do the kerning by
itself, although, of course, this is just a special case.

48 A voiceless consonant is produced with the vocal folds
open, so that the air flows through soundlessly; in a voiced
consonant, the vocal folds are closed and flap under air pres-
sure, producing a vibration. In each of the pairs t/d, p/b
and f/v, both sounds are identical except that the first one is
voiceless while the second is voiced. To produce a voiceless
m, either say m without humming, or say p while expelling
air through the nose, or whisper mama, although technically
whispering isn’t voicelessness.

82 TUGboat, Volume 33 (2012), No. 1

cent to be designed to fit an ascenderless lowercase
letter.

OpenType fonts don’t work this way; instead,
glyphs have anchors, and a diacritic is placed rela-
tive to a base glyph by aligning those anchors. Also,
following Unicode, a diacritic is expected to follow
the character it modifies: e^ denotes ê. What road
shall we follow: TEX’s diacritic–base or Unicode’s
base–diacritic? And does it make any difference?

To see the problem in action, suppose we’re
scanning a node list to perform mark positioning.
If marks were denoted in TEX’s way, then they can
easily be spotted thanks to the kerns used to po-
sition them, which have subtype 2. We can undo
whatever TEX tried to do and reposition the marks.
If we follow Unicode, however, TEX will do nothing
and would-be diacritics will simply stand suspended
in mid-air with nothing to distinguish them.

But OpenType fonts are a little bit more clever
than that: We can rely on glyph classes. When-
ever a “mark” glyph is encountered, it should be
attached to the preceding glyph (if the correspond-
ing feature has been activated). Thus, when scan-
ning a node list, we should check the class of each
glyph node (actually, we’ve been implicitly doing
that all along, since we know some lookups ignore
some glyph classes). Not all fonts have classes and
anchors, however, only those that implement mark
positioning. For the rest (e.g. Latin Modern), one
should rely on TEX’s \accent, because we won’t
be able to do better than that. But otherwise the
OpenType method should be followed because if
we put diacritics before their bases à la TEX, as
in A〈mark〉BC where OpenType expects AB〈mark〉C,
then they might mess with a lookup designed to act
on A and B and not instructed to ignore marks be-
cause there shouldn’t be one to begin with.

Let’s get back to voiceless m (109). If we ex-
plore the letter itself, we’ll see it has an anchors

subtable (also, not shown here is the glyph’s class:
it is base):
anchors = {
basechar = {
Anchor-2 = { x = 522, y = 645, lig_index = 0 }
Anchor-5 = { x = 157, y = 9, lig_index = 0 }
Anchor-6 = { x = 382, y = -105, lig_index = 0 }
} }

The anchors here all belong to the same category,
basechar, meaning that they are the anchors to be
used when a mark is to be attached to the letter.
The ring-below glyph (755), on the other hand, has
the following anchors (and its class is mark):
anchors = {

mark = { Anchor-6 = { x = 92, y = -116,
lig_index = 0 } } }

Paul Isambert



The only anchor here is in the mark category, mean-
ing it should be used when the glyph is moved rela-
tive to another. In both cases, the anchor category
might seem redundant given the glyph’s class, but
we’ll see below that it is not: there might be anchors
with different categories.

Now, if we want to position the ring (the mark)
relative to m (the base), we have to align the anchor
of category basechar in the latter with the corre-
sponding anchor of category mark in the former; in
this case, the anchor is Anchor-6. So, assuming
we’re doing it the Unicode way, i.e. base followed by
mark, we have to align the two glyphs at the origin,
which, in a left-to-right writing system, means that
we must move the mark left by the base’s width,
then shift it horizontally by xbase − xmark and ver-
tically by ybase − ymark. Finally, all this movement
should be invisible, so that after the operation we
end up at the base’s right border. We could use
kerns and an hbox to do that, but LuaTEX offers
a much simpler solution, manipulating the mark’s
xoffset and yoffset fields (which are present in
all glyph nodes). We still need a kern after the mark
to cancel its width, though.

But we’ve moved a bit too fast. Now that we’re
more knowledgeable about lookups, we know that
we should always check their subtables, because they
give us the order of operations; so let’s have a look
at mb_l_3 in gpos (triggered by the mark tag):

name = mb_l_3
type = gpos_mark2base
features = { ... }
flags = { }
subtables = {
1 = { name = mb_l_3_a_0, anchor_classes = 1 }
2 = { name = mb_l_3_a_1, anchor_classes = 1 }
〈. . . five more . . . 〉
}

(We furtively note the lookup’s type.) The sub-
tables have names, as usual; however, we haven’t
seen those names in the glyph’s information for this
lookup, as was the case for other types. That’s be-
cause the link between the lookup in gpos and its
details in affected glyphs is indirect in this case; sub-
tables are tied to anchors (as indicated, somewhat
redundantly, by the anchor_classes field), which
anchors we then find in the glyphs, as we have al-
ready seen. Anchors are enumerated in fonttable.

anchor_classes; here are the first two:

1 = { type = mark
name = Anchor-0
lookup = { 1 = mb_l_3_a_0, ... } }

2 = { type = mark
name = Anchor-1
lookup = { 1 = mb_l_3_a_1, ... } }

TUGboat, Volume 33 (2012), No. 1 83

(Again, lookup is buggy; the correct value is the
first entry.) Now, to retrace our steps: the mb_l_3

lookup has subtables, each associated with one or
more anchor(s), which anchors we then find in some
glyph(s). Thus, to implement mark positioning on a
given mark glyph: for each subtable of the lookup,
and for each anchor in that subtable, we check if the
mark has this anchor in its anchors.mark subtable
and if the nearest preceding base glyph has this an-
chor in its anchors.basechar subtable. If so, we
align the two anchors (and the lookup, as usual, is
considered processed: subsequent anchors and sub-
tables are ignored). Now, the reader can check that
the seventh subtable in mb_l_3 points to Anchor-6,
which is exactly the one we need to, at long last, put
that ring below m.

Now suppose we’re in a node list, with a node
mark to be positioned on the glyph base immedi-
ately on its left. We’ve retrieved the necessary an-
chor for each glyph, which we denote with ma for the
mark’s anchor and ba for the base’s anchor. Then
here’s how the positioning is to be performed:
mark.xoffset = ba.x - ma.x - base.width
mark.yoffset = ba.y - ma.y
local kern = node.new("kern", 2)
kern.kern = -mark.width
head = node.insert_after(head, mark, kern)

The kern has subtype 2, as a reminder that it is
used for accent placement. Note that xoffset is
invisible to TEX, so there is no need to take it into
account in the kern’s width.49 Also, marks often
have no width (i.e. they are drawn entirely to the
left of their bounding boxes), in which case the kern
may be avoided entirely.50

On the other hand, yoffset does have an ef-
fect, but only on height, not depth; this means that
if we’re dealing with a mark placed under the base-
line, and yoffset is non-zero, then the depth of the
horizontal box containing the character might not
be properly computed. Devising an alternate solu-
tion, using kerns and boxes as TEX natively does
and computing depth properly, is left as an exercise
to the reader.51

49 In right-to-left typesetting, we would have to move the
mark right by its width, not the base’s width, since glyphs
are always drawn with the cartesian origin at the bottom
left corner; however, we would still use a negative value for
xoffset, because this field follows the writing direction.

50 Actually, no matter what fonttable says, we could set
the widths of all mark glyphs to 0, given that they are sup-
posed to be non-spacing glyphs. Then we could do without
the kern altogether, thus tinkering less with the nodelist.

51 Said reader may also be glad to learn that LuaTEX
has primitives (inherited from PDFTEX) that set the height
and depth of paragraph lines independently of their contents:

OpenType fonts in LuaTEX



Mark to mark positioning. Positioning a mark
on a base glyph is not the only possibility in dia-
critic placement; we may want to position a mark,
let’s call it mark1, relative to another one, mark2;
this occurs for instance if you want a tone marker
and an accent on the same vowel in Vietnamese:
the first should be placed relative to the second,
not relative to the third.52 The process is similar
to what we’ve just seen, except that: the lookup’s
type in fonttable.gpos is gpos_mark2mark, and
in anchor_classes the type is mkmk; mark2’s an-
chor is to be found in the basemark subtable of
the anchors table (parallel to the basechar sub-
table for a base glyph); and most importantly, since
mark2 itself is very likely to be moved on the nearest
base glyph, this positioning, reflected in the xoffset
and/or yoffset of mark2, should be taken into ac-
count when moving mark1 (actually, we should have
done that with mark-to-base placement too, because
it may well happen that a base glyph is moved, if
only because the end user does so by hand). Liber-
tine contains no lookup of this type.

Mark to ligature positioning. Finally, a mark
may be positioned relative to a component in a liga-
ture. Recall the “ç h” example discussed above: the
ligaturing lookup (which ignores marks) will turn it
into “¸”, and we should position the cedilla so as
to obtain “̧”. This is not simple mark-to-base po-
sitioning, because the mark could (theoretically, at
least) be set on either of the two original compo-
nents. That is why an anchor in a ligature has sev-
eral instances of itself, each associated with one of
the original components (not all components need
to have an anchor, though); so, if a mark should
be placed relative to the first component, the first
instance of the anchor shall be used, while for the
second component the second instance is the right
one, and so on.

Of course, this implies the ligaturing lookup has
stored the necessary information, namely the com-
ponent with which the mark was originally associ-
ated. To do so, we can set an attribute in the mark
node; in our case, we would set this attribute to 1,

\pdfeachlineheight and \pdfeachlinedepth. The wrongly
computed depth can then be ignored, except when building
an independent hbox.

52 Tone is the use of pitch as a lexical device (i.e. to dis-
tinguish between words), just like phonemes do in non-tonal
(and, of course, tonal) languages; that is different from into-
nation, used in all languages, which do not distinguish words:
if you say cat and then repeat it with a raising intonation, as
in a question, it’s still the same word.

A little less off-topic: there exist precomposed charac-
ters for Vietnamese in Unicode, and they have glyphs in Lib-
ertine, so the example is slightly spurious.

84 TUGboat, Volume 33 (2012), No. 1

indicating that the mark is associated with the first
component.

In Libertine, the mklg tag activates the ml_l_4
lookup, whose type is gpos_mark2ligature.53 This
lookup has one subtable associated with Anchor-7

(whose type in anchor_classes is mark, but should
be mklg—no relation to the tag). If we look at the
cedilla (184), we’ll see that it has this anchor in the
mark subtable— so we can at least conclude that,
no matter what X is in “mark-to-X positioning”,
the mark’s anchor always has the same category.
But the anchors table for the ligature (57, 403) is
different:
anchors = {

baselig = {
Anchor-7 = { 1 = { x = 212

y = 2
lig_index = 0 }

2 = { x = 470
y = 2
lig_index = 1 } } } }

Anchors of type baselig are made of subtables, each
specifying one instance of a given anchor. The index
of each subtable correctly identifies the associated
component in the ligature, because subtables aren’t
continuously numbered. If Anchor-7 was defined for
the second component only, the subtable would still
be at index 2, not 1. So the lig_index field can be
done without, all the more as it has the inhuman
habit of starting counting at 0.

As for the implementation, it is identical to
what we’ve already seen: anchors should be aligned.
The only difference is in how to find the right an-
chor.

Cursive attachment. In a script (cursive) font,
letters should be properly attached together. The
Latin alphabet poses no problem: all letters are on
the baseline anyway, so it is up to the font designer
to ensure that exit points and entry points match,
at least vertically (horizontal adjustment can be left
to kerning); in other words, entry and exit points
should be at the same height. However, that is
not true of some Arabic scripts, such as Nasta‘l̄ıq,54

53 Mark to ligature positioning is usually activated with
the mark tag, just like mark to base positioning. Here I’ve
used a different tag just so users can test it independently.

54 Nasta‘l̄ıq is used mostly for Indo-European languages
(especially, Urdu), thus totally unrelated (or rather, to this
day not convincingly — for most linguists — related) to Ara-
bic or the Semitic languages more generally or even the Afro-
Asiatic family, unless one is willing to accept the Nostratic
superfamily or even more remote and controversial linguistic
classifications. But then, languages as unrelated to Latin as
Basque, Mohawk, Vietnamese, Wolof, and many, many more,
are written in the Latin alphabet.

Paul Isambert



where entry points are generally higher than exit
points, and where only the last glyph of a word is
set on the baseline:

cite
htap

si yhpa
rgil

lac

q̄ıl‘
atsa

N
ta tpmetta sihT

The position of each glyph thus depends on the
position of the next in the word. To implement that,
anchors are used again, but this time each anchor is
twofold: there is an entry point and an exit point.
For each pair of consecutive glyphs, the entry point
of the second glyph should be aligned with the exit
point of the first glyph, and a kern and yoffset are
all we need to do so. Although the operation is sim-
ilar to mark positioning, it differs in one important
respect: all glyphs are spacing here, so there is no
kern to compensate for the second glyph’s width.
Libertine has no cursive positioning, but a typical
anchors table in a glyph would look like:

anchors = {
centry = {

Cursive-8 = { x = 〈x1 〉
y = 〈y1 〉
lig_index = 0 } }

cexit = {
Cursive-8 = { x = 〈x2 〉

y = 〈y2 〉
lig_index = 0 } }

〈other anchors〉
}

Thus, anchors for cursive attachment are identical
to other anchors, except that they belong to the
centry and cexit subtables. As for the lookup itself
in gpos, it has the gpos_cursive type, whereas the
anchors’ type in anchor_classes is curs.

As mentioned above, the lookup is mostly used
to attach glyphs in words with the last glyph on the
baseline; that means that positioning should begin
at the end of the word and progress contrary to the
direction of writing. This stipulation is not part of
the lookup type itself; instead, a flag (in the flags

subtable of the lookup in gpos) is used: r2l, mean-
ing “right-to-left”.55 This in turn implies that we
have a definition of a “word”; space will do, as dis-
cussed a few pages ago.

(Chaining) contextual positioning. We’ll omit
discussion of these two lookup types, not because
there is nothing interesting here, but simply because
they are identical to (chaining) contextual substitu-
tions, except that they dispatch to positioning, not

55 Although cursive attachment is mostly used in a right-
to-left writing system, the flag’s name (inherited from Open-
Type files, not made up by LuaTEX or FontForge) assumes a
left-to-right system, since it means “contrary to the writing
direction”.

TUGboat, Volume 33 (2012), No. 1 85

substitution, lookups. I hope the reader has the
buoyant feeling associated with the last-minute can-
cellation of a dreaded two-hour class (each Friday at
5pm). But let’s just say that contextual positioning
can be used e.g. in Wörter (German for words) to
lower the umlaut so that kerning can be increased
with the preceding W (this of course requires that
the o and the accent are separate glyphs, probably
due to a multiple substitution), or to add kerning
between the period and T in S.A.T., the kerning
being actually (visually) with the preceding A.

13 Conclusion

I hope the reader has found the foregoing journey
into the world of OpenType fonts and LuaTEX in-
teresting, informative, and enticing. A larger world
lies beyond, especially regarding non-Latin writing
systems, not to mention maths, and I’ll be satisfied
if the reader now feels confident enough to step into
that world. As with all of LuaTEX, it may seem
intimidating at first but is ultimately extremely re-
warding.

References

[1] Yannis Haralambous. Fonts & Encodings.
O’Reilly, 2007. First edition in French as
Fontes & Codages, O’Reilly, 2004.

[2] Taco Hoekwater. Math in LuaTEX 0.40.
MAPS, 38, 2009. An updated version was
translated in French as “LuaTEX 0.65 et les
mathématiques” in Cahiers Gutenberg, 54–55,
2010.

[3] Paul Isambert. LuaTEX: What it takes to
make a paragraph. TUGboat 32:1, 2011. tug.
org/TUGboat/tb32-1/tb100isambert.pdf.

[4] LuaTEX team. LuaTEX Reference.
www.luatex.org/svn/trunk/manual/

luatexref-t.pdf.

[5] Microsoft OpenType specification.
www.microsoft.com/typography/otspec.

[6] Linux Libertine. www.linuxlibertine.org.

[7] Ulrik Vieth. OpenType math illuminated.
TUGboat 30:1, 2009.
tug.org/TUGboat/tb30-1/tb94vieth.pdf.

[8] George Williams. FontForge documentation.
fontforge.sourceforge.net.

⋄ Paul Isambert

zappathustra (at) free dot fr

OpenType fonts in LuaTEX



86 TUGboat, Volume 33 (2012), No. 1

ConTEXt: Updating the code base

Hans Hagen

1 Introduction

After much experimenting with new code in MkIV
a new stage in ConTEXt development was entered
in the last quarter of 2011. This was triggered by
several more or less independent developments. I
will discuss some of them here since they are a nice
illustration of how ConTEXt evolves.

2 Interfacing

Wolfgang Schuster, Aditya Mahajan and I were ex-
perimenting with an abstraction layer for module
writers. In fact this layer itself was a variant of some
new mechanisms used in the MkIV structure related
code. That code was among the first to be adapted
as it is accompanied by much Lua code and has been
performing rather well for some years now.

In ConTEXt most of the user interface is rather
similar and module writers are supposed to follow
the same route as the core of ConTEXt. For those
who have looked in the source the following code
might look familiar:

\unexpanded\def\mysetupcommand

{\dosingleempty\domysetupcommand}

\def\domysetupcommand[#1]%

{..........

\getparameters[\??my][#1]%

..........}

This implements the command \mysetupcommand

that is used as follows:

\mysetupcommand[color=red,style=bold,...]

The above definition uses three rather low-level
interfacing commands. The \unexpanded makes
sure that the command does not expand in unex-
pected ways in cases where expansion is less desirable.
(Aside: The ConTEXt \unexpanded prefix has a long
history and originally resulted in the indirect defini-
tion of a macro. That way the macro could be part
of testing (expanded) equivalence. When ε-TEX func-
tionality showed up we could use \protected but
we stuck to the name \unexpanded. So, currently
ConTEXt’s \unexpanded is equivalent to ε-TEX’s
\protected. Furthermore, in ConTEXt \expanded
is not the same as the ε-TEX primitive. In order to
use the primitives you need to use their \normal...
synonyms.) The \dosingleempty makes sure that
one argument gets seen by injecting a dummy when
needed. At some point the \getparameters com-
mand will store the values of keys in a namespace
that is determined by \??my. The namespace used

here is actually one of the internal namespaces which
can be deduced from the double question marks.
Module namespaces have four question marks.

There is some magic involved in storing the
values. For instance, keys are translated from the
interface language into the internal language which
happens to be English. This translation is needed
because a new command is generated:

\def\@@mycolor{red}

\def\@@mystyle{bold}

and such a command can be used internally because
in so-called unprotected mode @?! are valid in names.
The Dutch equivalent is:

\mijnsetupcommando[kleur=rood,letter=vet]

and here the kleur has to be converted into color

before the macro is constructed. Of course values
themselves can stay as they are as long as checking
them uses the internal symbolic names that have the
language specific meaning.

\c!style{color}

\k!style{kleur}

\v!bold {vet}

Internally assignments are done with the \c!

variant, translation of the key is done using the \k!
alternative and values are prefixed by \v!.

It will be clear that for the English user interface
no translation is needed and as a result that interface
is somewhat faster. There we only need

\c!style{color}

\v!bold {bold}

Users never see these prefixed versions, unless
they want to define an internationalized style, in
which case the form

\mysetupcommand[\c!style=\v!bold]

has to be used, as it will adapt itself to the user
interface. This leaves the \??my that in fact expands
to \@@my. This is the namespace prefix.

Is this the whole story? Of course it isn’t, as
in ConTEXt we often have a generic instance from
which we can clone specific alternatives; in practice,
the \@@mycolor variant is used in a few cases only.
In that case a setup command can look like:

\mysetupcommand[myinstance][style=bold]

And access to the parameters is done with:

\getvalue{\??my myinstance\c!color}

So far the description holds for MkII as well as
MkIV, but in MkIV we are moving to a variant of this.
At the cost of a bit more runtime and helper macros,
we can get cleaner low-level code. The magic word
here is commandhandler. At some point the new
MkIV code started using an extra abstraction layer,
but the code needed looked rather repetitive despite

Hans Hagen



TUGboat, Volume 33 (2012), No. 1 87

subtle differences. Then Wolfgang suggested that we
should wrap part of that functionality in a definition
macro that could be used to define module setup and
definition code in one go, thereby providing a level
of abstraction that hides some nasty details. The
main reason why code could look cleaner is that the
experimental core code provided a nicer inheritance
model for derived instances and Wolfgang’s letter
module uses that extensively. After doing some per-
formance tests with the code we decided that indeed
such an initializer made sense. Of course, after that
we played with it, some more tricks were added, and
eventually I decided to replace the similar code in
the core as well, that is: use the installer instead of
defining helpers locally.

So, how does one install a new setup mechanism?
We stick to the core code and leave modules aside
for the moment.

\definesystemvariable{my}

\installcommandhandler \??my {whatever} \??my

After this command we have available some new
helper commands of which only a few are mentioned
here (after all, this mechanism is still somewhat
experimental):

\setupwhatever[key=value]

\setupwhatever[instance][key=value]

Now a value is fetched using a helper:

\namedwhateverparameter{instance}{key}

However, more interesting is this one:

\whateverparameter{key}

For this to work, we need to set the instance:

\def\currentwhatever{instance}

Such a current state macro already was used in
many places, so it fits into the existing code quite
well. In addition to \setupwhatever and friends,
another command becomes available:

\definewhatever[instance]

\definewhatever[instance][key=value]

Again, this is not so much a revolution as we can de-
fine such a command easily with helpers, but it pairs
nicely with the setup command. One of the goodies
is that it provides the following feature for free:

\definewhatever[instance][otherinstance]

\definewhatever[instance][otherinstance][key=val]

In some cases this creates more overhead than
needed because not all commands have instances.
On the other hand, some commands that didn’t have
instances yet, now suddenly have them. For cases
where this is not needed, we provide simple variants
of commandhandlers.

Additional commands can be hooked into a
setup or definition so that for instance the current

situation can be updated or extra commands can
be defined for this instance, such as \start... and
\stop... commands.

It should be stressed that the installer itself is
not that special in the sense that we could do without
it, but it saves some coding. More important is that
we no longer have the @@ prefixed containers but
use \whateverparameter commands instead. This
is definitely slower than the direct macro, but as we
often deal with instances, it’s not that much slower
than \getvalue and critical components are rather
well speed-optimized anyway.

There is, however, a slowdown due to the way
inheritance is implemented. That is how this started
out: using a different (but mostly compatible) inheri-
tance model. In the MkII approach (which is okay in
itself) inheritance happens by letting values point to
the parent value. In the new model we have a more
dynamic chain. It saves us macros but can expand
quite wildly depending on the depth of inheritance.
For instance, in sectioning there can easily be five or
more levels of inheritance. So, there we get slower
processing. The same is true for \framed which is a
rather critical command, but there it is nicely com-
pensated by less copying. My personal impression
is that due to the way ConTEXt is set up, the new
mechanism is actually more efficient on an average
job. Also, because many constructs also depend on
the \framed command, that one can easily be part
of the chain, which again speeds up a bit. In any
case, the new mechanisms use much less hash space.

Some mechanisms still look too complex, espe-
cially when they hook into others. Multiple inher-
itance is not trivial to deal with, not only because
the meaning of keys can clash, but also because
supporting it would demand quite complex fully ex-
pandable resolvers. So for the moment we stay away
from it. In case you wonder why we cannot delegate
more to Lua: it’s close to impossible to deal with
TEX’s grouping in efficient ways at the Lua end, and
without grouping available TEX becomes less useful.

Back to the namespace. We already had a spe-
cial one for modules but after many years of ConTEXt
development, we started to run out of two character
combinations and many of them had no relation to
what name they spaced. As the code base is being
overhauled anyway, it makes sense to also provide
a new core namespace mechanism. Again, this is
nothing revolutionary but it reads much more nicely.

\installcorenamespace {whatever}

\installcommandhandler

\??whatever {whatever} \??whatever

This time deep down no @@ is used, but rather
something more obscure. In any case, no one will use

ConTEXt: Updating the code base



88 TUGboat, Volume 33 (2012), No. 1

the meaning of the namespace variables, as all access
to parameters happens indirectly. And of course
there is no speed penalty involved; in fact, we are
more efficient. One reason is that we often used the
prefix as follows:

\setvalue{\??my:option:bla}{foo}

and now we just say:

\installcorenamespace {whateveroption}

\setvalue{\??whateveroption bla}{foo}

The commandhandler does such assignments
slightly differently as it has to prevent clashes be-
tween instances and keywords. A nice example of
such a clash is this:

\setvalue{\??whateveroption sectionnumber}{yes}

In sectioning we have instances named section, but
we also have keys named number and sectionnumber.
So, we end up with something like this:

\setvalue

{\??whateveroption section:sectionnumber}{yes}

\setvalue

{\??whateveroption section:number}{yes}

\setvalue{\??whateveroption :number}{yes}

When I decided to replace code similar to that
generated by the installer a new rewrite stage was
entered. Therefore one reason for explaining this
here is that in the process of adapting the core code
instabilities are introduced and as most users use the
beta version of MkIV, some tolerance and flexibility
is needed and it might help to know why something
suddenly fails.

In itself using the commandhandler is not that
problematic, but wherever I decide to use it, I also
clean up the related code and that is where the typos
creep in. Fortunately Wolfgang keeps an eye on the
changes so problems that users report on the mailing
lists are nailed down relatively fast. Anyway, the
rewrite itself is triggered by another event but that
one is discussed in the next section.

We don’t backport (low-level) improvements and
speedups to MkII, because for what we need TEX
for, we consider pdfTEX and X ETEX rather obsolete.
Recent tests show that at the moment of this writing
a LuaTEXMkIV run is often faster than a comparable
pdfTEX MkII run (using UTF-8 and complex font
setups). When compared to a X ETEX MkII run, a
LuaTEX MkIV run is often faster, but it’s hard to
compare, as we have advanced functionality in MkIV
that is not (or differently) available in MkII.

3 Lexing

The editor that I use, called SciTE, has recently been
extended with an extra external lexer module that
makes more advanced syntax highlighting possible,

using the Lua LPEG library. It is no secret that
the user interface of ConTEXt is also determined
by the way structure, definitions and setups can be
highlighted in an editor.1 When I changed to SciTE
I made sure that we had proper highlighting there.

At Pragma one of the leading principles has
always been: if the document source looks bad, mis-
takes are more easily made and the rendering will
also be affected. Or phrased differently: if we cannot
make the source look nice, the content is probably
not structured that well either. The same is true for
TEX source, although to a large extent there one must
deal with the specific properties of the language.

So, syntax highlighting, or more impressively:
lexing, has always been part of the development
of ConTEXt and for instance the pretty printers of
verbatim provide similar features. For a long time
we assumed line-based lexing, mostly for reasons of
speed. And surprisingly, that works out quite well
with TEX. We used a simple color scheme suitable for
everyday usage, with not too intrusive coloring. Of
course we made sure that we had runtime spell check-
ing integrated, and that the different user interfaces
were served well.

But then came the LPEG lexer. Suddenly we
could do much more advanced highlighting. Once I
started playing with it, a new color scheme was set
up and more sophisticated lexing was applied. Just
to mention a few properties:

• We distinguish between several classes of macro
names: primitives, helpers, interfacing, and user
macros.

• In addition we highlight constant values and
special registers differently.

• Conditional constructs can be recognized and
are treated as in any regular language (keep in
mind that users can define their own).

• Embedded MetaPost code is lexed independently
using a lexer that knows the language’s prim-
itives, helpers, user macros, constants and of
course specific syntax and drawing operators.
Related commands at the TEX end (for defining
and processing graphics) are also dealt with.

• Embedded Lua is lexed independently using a
lexer that not only deals with the language but
also knows a bit about how it is used in Con-
TEXt. Of course the macros that trigger Lua
code are handled.

• Metastructure and metadata related macros are
colored in a fashion similar to constants (after

1 It all started with wdt, texedit and texwork, editors and

environments written by myself in Modula2 and later in Perl

Tk, but that was in a previous century.

Hans Hagen



TUGboat, Volume 33 (2012), No. 1 89

all, in a document one will not see any constants,
so there is no color clash).

• Some special and often invisible characters get
a special background color so that we can see
when there are for instance non-breakable spaces
sitting there.

• Real-time spell checking is part of the deal and
can optionally be turned on. There we distin-
guish between unknown words, known but po-
tentially misspelled words, and known words.

Of course we also made lexers for MetaPost,
Lua, XML, PDF and text documents so that we have
a consistent look and feel.

When writing the new lexer code, and testing
it on sources, I automatically started adapting the
source to the new lexing where possible. Actually,
as cleaning up code is somewhat boring, the new
lexer is adding some fun to it. I’m not so sure if
I would have started a similar overhaul so easily
otherwise, especially because the rewrite now also
includes speedup and cleanup. At least it helps to
recognize less desirable left-overs of MkII code.

4 Hiding

It is interesting to notice that users seldom define
commands that clash with low level commands. This
is of course a side effect of the fact that one seldom
needs to define a command, but nevertheless. Low-
level commands were protected by prefixing them
by one or more (combinations of) do, re and no’s.
This habit is a direct effect of the early days of
writing macros. For TEX it does not matter how
long a name is, as internally it becomes a pointer
anyway, but memory consumption of editors, loading
time of a format, string space and similar factors
determined the way one codes in TEX for quite a
while. Nowadays there are hardly any limits and
the stress that ConTEXt puts on the TEX engine is
even less than in MkII as we delegate many tasks
to Lua. Memory comes cheap, editors can deal with
large amount of data (keep in mind that the larger
the file gets, the more lexing power can be needed),
and screens are wide enough not to lose part of long
names in the edges.

Another development has been that in LuaTEX
we have lots of registers so that we no longer have
to share temporary variables and such. The rewrite
is a good moment to get rid of that restriction.

This all means that at some point it was decided
to start using longer command names internally and
permit _ in names. As I was never a fan of using
@ for this, underscore made sense. We have been
discussing the use of colons, which is also nice, but
has the disadvantage that colons are also used in the

source, for instance to create a sub-namespace. When
we have replaced all old namespaces, colons might
show up in command names, so another renaming
roundup can happen.

One reason for mentioning this is that users get
to see these names as part of error messages. An
example of a name is:

\page_layouts_this_or_that

The first part of the name is the category of
macros and in most cases is the same as the first
part of the filename. The second part is a namespace.
The rest of the name can differ but we’re approaching
some consistency in this.

In addition we have prefixed names, where pre-
fixes are used as consistently as possible:
t_ token register
d_ dimension register
s_ skip register
u_ muskip register
c_ counter register, constant or conditional
m_ (temporary) macro
p_ (temporary) parameter expansion (value of key)
f_ fractions

This is not that different from other prefixing
in ConTEXt apart from the fact that from now on
those variables (registers) are no longer accessible in
a regular run. We might decide on another scheme
but renaming can easily be scripted. In the process
some of the old prefixes are being removed. The
main reason for changing to this naming scheme is
that it is more convenient to grep for them.

In the process most traditional \ifs get replaced
by ‘conditionals’. The same is true for \chardefs
that store states; these become ‘constants’.

5 Status

We always try to keep the user interface constant, so
most functionality and control stays stable. However,
now that most users use MkIV, commands that no
longer make sense are removed. An interesting obser-
vation is that some users report that low-level macros
or registers are no longer accessible. Fortunately that
is no big deal as we point them to the official ways
to deal with matters. It is also a good opportunity
for users to clean up accumulated hackery.

The systematic (file by file) cleanup started in
the second half of 2011 and as of January 2012 one
third of the core (TEX) modules have to be cleaned
up and the planning is to get most of that done as
soon as possible. However, some modules will be
rewritten (or replaced) and that takes more time. In
any case we hope that rather soon most of the code
is stable enough that we can start working on new

ConTEXt: Updating the code base



90 TUGboat, Volume 33 (2012), No. 1

mechanisms and features. Before that a cleanup of
the Lua code is planned.

Although in many cases there are no fundamen-
tal changes in the user interface and functionality,
I will wrap up some issues that are currently being
dealt with. This is just a snapshot of what is happen-
ing currently and as a consequence it describes what
users can run into due to newly introduced bugs.

The core modules of ConTEXt are loosely or-
ganized in groups. Over time there has been some
reorganization and in MkIV some code has been
moved into new categories. The alphabetical order
does not reflect the loading order or dependency
tree as categories are loaded intermixed. Therefore
the order below is somewhat arbitrary and does not
express importance. Each category has multiple files.

5.1 anch: anchoring and positioning

More than a decade ago we started experimenting
with position tracking. The ability to store positional
information and use that in a second pass permits
for instance adding backgrounds. As this code inter-
acts nicely with (runtime) MetaPost it has always
been quite powerful and flexible on the one hand,
but at the same time it was demanding in terms of
runtime and resources. However, were it not for this
feature, we would probably not be using TEX at all,
as backgrounds and special relative positioning are
needed in nearly all our projects.

In MkIV this mechanism had already been ported
to a hybrid form, but recently much of the code has
been overhauled and its MkII artifacts stripped. As a
consequence the overhead in terms of memory prob-
ably has increased but the impact on runtime has
been considerably reduced. It will probably take
some time to become stable if only because the glue
to MetaPost has changed. There are some new good-
ies, like backgrounds behind parshapes, something
that probably no one uses and is always somewhat
tricky but it was not too hard to support. Also, local
background support has been improved which means
that it’s easier to get them in more column-based
layouts, several table mechanisms, floats and such.
This was always possible but is now more automatic
and hopefully more intuitive.

5.2 attr: attributes

We use attributes (properties of nodes) a lot. The
framework for this had been laid early in MkIV devel-
opment, so not much has changed here. Of course the
code gets cleaner and hopefully better as it is putting
quite a load on the processing. Each new feature
depending on attributes adds some extra overhead
even if we make sure that mechanisms only kick in

when they are used. This is due to the fact that
attributes are linked lists and although unique lists
are shared, they travel with each node. On the other
hand, the cleanup (and de-MkII-ing) of code leads
to better performance so on the average no user will
notice this.

5.3 back: backend code generation

This category wraps backend issues in an abstract
way that is similar to the special drivers in MkII.
So far we have only three backends: PDF, XML,
and XHTML. Such code is always in a state of
maintenance, if only because backends evolve.

5.4 bibl: bibliographies

For a while now, bibliographies have not been an
add-on but part of the core. There are two variants:
traditional BibTEX support derived from a module
by Taco Hoekwater but using MkIV features (the
module hooks into core code), and a variant that
delegates most work to Lua by creating an in-memory
XML tree that gets manipulated. At some point I
will extend the second variant. Going the XML route
also connects better with developments such as Jean-
Michel Hufflen’s MlBibTEX.

5.5 blob: typesetting in Lua

Currently we only ship a few helpers but eventually
this will become a framework for typesetting raw
text in Lua. This might be handy for some projects
that we have where the only input is XML, but I’m
not that sure if it will produce nice results and if the
code will look better. On the other hand, there are
some cases where in a regular TEX run some basic
typesetting in Lua might make sense. Of course I
also need an occasional pet project so this might
qualify as one.

5.6 buff: buffers and verbatim

Traditionally buffers and verbatim have always been
relatives as they share code. The code was among
the first to be adapted to LuaTEX. There is not that
much to gain in adapting it further. Maybe I will
provide more lexers for pretty-printing some day.

5.7 catc: catcodes

Catcodes are a rather TEX-specific feature and we
have organized them in catcode regimes. The most
important recent change has been that some of the
characters with a special meaning in TEX (like am-
persand, underscore, superscript, etc.) are no longer
special except in cases that matter. This somewhat
incompatible change surprisingly didn’t lead to many
problems. Some code that is specific for the MkII

Hans Hagen



TUGboat, Volume 33 (2012), No. 1 91

XML processor has been removed as we no longer
assume it is being used in MkIV.

5.8 char: characters

This important category deals with characters and
their properties. Already from the beginning of MkIV
character properties have been (re)organized in Lua
tables and therefore much code deals with it. The
code is rather stable but occasionally the tables are
updated as they depend on developments in Uni-
code. In order to share as much data as possible
and prevent duplicates there are several inheritance
mechanisms in place but their overhead is negligible.

5.9 chem: chemistry

The external module that deals with typesetting
chemistry was transformed into a MkIV core mod-
ule some time ago. Not much has changed in this
department but some enhancements are pending.

5.10 cldf: ConTEXt Lua documents

These modules are mostly Lua code and are the
interface into ConTEXt as well as providing ways to
code complete documents in Lua. This is one of
those categories that is visited every now and then
to be adapted to improvements in other core code
or in LuaTEX. This is one of my favourite categories
as it exposes most of ConTEXt at the Lua end which
permits writing solutions in Lua while still using the
full power of ConTEXt. A dedicated manual is on its
way.

5.11 colo: colors and transparencies

This is rather old code, and apart from some cleanup
not much has been changed here. Some macros that
were seldom used have been removed. One issue that
is still pending is a better interface to MetaPost as it
has different color models and we have adapted code
at that end. This has a rather low priority because
in practice it is no real problem.

5.12 cont: runtime code

These modules contain code that is loaded at runtime,
such as filename remapping, patches, etc. It does
not make much sense to improve these.

5.13 core: all kinds of core code

Housekeeping is the main target of these modules.
There are still some typesetting-related components
here but these will move to other categories. This
code is cleaned up when there is a need for it. Think
of managing files, document project structure, mod-
ule loading, environments, multipass data, etc.

5.14 data: file and data management

This category hosts only Lua code and hasn’t been
touched for a while. Here we deal with locating files,
caching, accessing remote data, resources, environ-
ments, and the like.

5.15 enco: encodings

Because (font) encodings are gone, there is only one
file in this category and that one deals with weird
(composed or otherwise special) symbols. It also
provides a few traditional TEX macros that users
expect to be present, for instance to put accents over
characters.

5.16 file: files

There is some overlap between this category and core
modules. Loading files is always somewhat special in
TEX as there is the TEX directory structure to deal
with. Sometimes you want to use files in the so-called
tree, but other times you don’t. This category pro-
vides some management code for (selective) loading
of document files, modules and resources. Most of
the code works with accompanying Lua code and has
not been touched for years, apart from some weeding
and low-level renaming. The project structure code
has mostly been moved to Lua and this mechanism
is now more restrictive in the sense that one cannot
misuse products and components in unpredictable
ways. This change permits better automatic loading
of cross references in related documents.

5.17 font: fonts

Without proper font support a macro package is
rather useless. Of course we do support the popular
font formats but nowadays that’s mostly delegated to
Lua code. What remains at the TEX end is code that
loads and triggers a combination of fonts efficiently.
Of course in the process text and math each need to
get the proper amount of attention.

There is no longer shared code between MkII
and MkIV. Both already had rather different low-
level solutions, but recently with MkIV we went a
step further. Of course it made sense to kick out
commands that were only used for pdfTEX Type 1
and X ETEX OpenType support but more important
was the decision to change the way design sizes are
supported.

In ConTEXt we have basic font definition and
loading code and that hasn’t conceptually changed
much over the years. In addition to that we have so-
called bodyfont environments and these have been
made a bit more powerful in recent MkIV. Then
there are typefaces, which are abstract combinations
of fonts and defining them happens in typescripts.

ConTEXt: Updating the code base



92 TUGboat, Volume 33 (2012), No. 1

This layered approach is rather flexible, and was
greatly needed when we had all those font encodings
(to be used in all kinds of combinations within one
document). In MkIV, however, we already had fewer
typescripts as font encodings are gone (also for Type 1
fonts). However, there remained a rather large blob
of definition code dealing with Latin Modern; large
because it comes in design sizes.

As we always fall back on Latin Modern, and
because we don’t preload fonts, there is some over-
head involved in resolving design size related issues
and definitions. But, it happens that this is the only
font that ships with many files related to different
design sizes. In practice no user will change the
defaults. So, although the regular font mechanism
still provides flexible ways to define font file com-
binations per bodyfont size, resolving to the right
best matching size now happens automatically via
a so-called Lua font goodie file which brings down
the number of definitions considerably. The conse-
quence is that ConTEXt starts up faster, not only
in the case of Latin Modern being used, but also
when other designs are in play. The main reason
for this is that we don’t have to parse those large
typescripts anymore, as the presets were always part
of the core set of typescripts. At the same time
loading a specific predefined set has been automated
and optimized. Of course on a run of 30 seconds
this is not that noticeable, but it is on a 5 second
run or when testing something in the editor that
takes less than a second. It also makes a difference
in automated workflows; for instance at Pragma we
run unattended typesetting flows that need to run
as fast as possible. Also, in virtual machines using
network shares, the fewer files consulted the better.

Because math support was already based on
OpenType, where ConTEXt turns Type 1 fonts into
OpenType at runtime, nothing fundamental has
changed here, apart from some speedups (at the
cost of some extra memory). Where the overhead of
math font switching in MkII is definitely a factor, in
MkIV it is close to negligible, even if we mix regular,
bold, and bidirectional math, which we have done
for a while.

The low-level code has been simplified a bit
further by making a better distinction between the
larger sizes (a up to d) and smaller sizes (x and xx).
These now operate independently of each other (i.e.
one can now have a smaller relative x size of a larger
one). This goes at the cost of more resources but it
is worth the effort.

By splitting up the large basic font module into
smaller ones, I hope that it can be maintained more
easily although someone familiar with the older code

will only recognize bits and pieces. This is partly
due to the fact that font code is highly optimized.

5.18 grph: graphic (and widget) inclusion

Graphics inclusion is always work in progress as
new formats have to be dealt with or users want
additional conversions to be done. This code will be
cleaned up later this year. The plug-in mechanisms
will be extended (examples of existing plug-ins are
automatic converters and barcode generation).

5.19 hand: special font handling

As we treat protrusion and hz as features of a font,
there is not much left in this category apart from
some fine-tuning. So, not much has happened here
and eventually the left-overs in this category might
be merged with the font modules.

5.20 java: JavaScript in PDF

This code already has been cleaned up a while ago,
when moving to MkIV, but we occasionally need
to check and patch due to issues with JavaScript
engines in viewers.

5.21 lang: languages and labels

There is not much changed in this department, apart
from additional labels. The way inheritance works
in languages differs too much from other inheritance
code so we keep what we have here. Label definitions
have been moved to Lua tables from which labels at
the TEX end are defined that can then be overloaded
locally. Of course the basic interface has not changed
as this is typically code that users will use in styles.

5.22 luat: housekeeping

This is mostly Lua code needed to get the basic
components and libraries in place. While the data

category implements the connection to the outside
world, this category runs on top of that and feeds
the TEX machinery. For instance conversion of MkVI

files happens here. These files are seldom touched
but might need an update some time (read: prune
obsolete code).

5.23 lpdf: PDF backend

Here we implement all kinds of PDF backend features.
Most are abstracted via the backend interface. So, for
instance, colors are done with a high level command
that goes via the backend interface to the lpdf code.
In fact, there is more such code than in (for instance)
the MkII special drivers, but readability comes at a
price. This category is always work in progress as
insights evolve and users demand more.

Hans Hagen



TUGboat, Volume 33 (2012), No. 1 93

5.24 lxml: XML and lpath

As this category is used by some power users we
cannot change too much here, apart from speedups
and extensions. It’s also the bit of code we use
frequently at Pragma, and as we often have to deal
with rather crappy XML I expect to move some more
helpers into the code. The latest greatest trickery
related to proper typesetting can be seen in the
documents made by Thomas Schmitz. I wonder if
I’d still have fun doing our projects if I hadn’t, in
an early stage of MkIV, written the XML parser and
expression parser used for filtering.

5.25 math: mathematics

Math deserves its own category but compared to
MkII there is much less code, thanks to Unicode.
Since we support Type 1 as virtual OpenType noth-
ing special is needed there (and eventually there will
be proper fonts anyway). When rewriting code I try
to stay away from hacks, which is sometimes possi-
ble by using Lua but it comes with a slight speed
penalty. Much of the Unicode math-related font code
is already rather old but occasionally we add new
features. For instance, because OpenType has no
italic correction we provide an alternative (mostly
automated) solution.

On the agenda is more structural math encoding
(maybe like openmath) but tagging is already part
of the code so we get a reasonable export. Not that
someone is waiting for it, but it’s there for those who
want it. Most math-related character properties are
part of the character database which gets extended
on demand. Of course we keep MathML up-to-date
because we need it in a few projects.

We’re not in a hurry here but this is something
where Aditya and I have to redo some of the code
that provides AMS-like math commands (but as we
have them configurable some work is needed to keep
compatibility). In the process it’s interesting to run
into probably never-used code, so we just remove
those artifacts.

5.26 meta: metapost interfacing

This and the next category deal with MetaPost. This
first category is quite old but already adapted to the
new situation. Sometimes we add extra functionality
but the last few years the situation has become rather
stable with the exception of backgrounds, because
these have been overhauled completely.

5.27 mlib: metapost library

Apart from some obscure macros that provide the in-
terface between front- and backend this is mostly Lua
code that controls the embedded MetaPost library.

So, here we deal with extensions (color, shading, im-
ages, text, etc.) as well as runtime management be-
cause sometimes two runs are needed to get a graphic
right. Some time ago, the MkII-like extension inter-
face was dropped in favor of one more natural to
the library and MetaPost 2. As this code is used
on a daily basis it is quite well debugged and the
performance is pretty good too.

5.28 mult: multi-lingual user interface

Even if most users use the English user interface, we
keep the other ones around as they’re part of the
trademark. Commands, keys, constants, messages
and the like are now managed with Lua tables. Also,
some of the tricky remapping code has been stripped
because the setup definitions files are dealt with.
These are XML files that describe the user interface
that get typeset and shipped with ConTEXt.

These files are being adapted. First of all the
commandhandler code is defined here. As we use
a new namespace model now, most of these name-
spaces are defined in the files where they are used.
This is possible because they are more verbose so
conflicts are less likely (also, some checking is done
to prevent reuse). Originally the namespace prefixes
were defined in this category but eventually all that
code will be gone. This is a typical example where
15-year-old constraints are no longer an issue and
better code can be used.

5.29 node: nodes

This is a somewhat strange category as all typeset
material in TEX becomes nodes so this deals with
everything. One reason for this category is that
new functionality often starts here and is sometimes
shared between several mechanisms. So, for the
moment we keep this category. Think of special
kerning, insert management, low-level referencing
(layer between user code and backend code) and all
kinds of rule and displacement features. Some of this
functionality is described in previously published
documents.

5.30 norm: normalize primitives

We used to initialize the primitives here (because
LuaTEX starts out blank). But after moving that
code this category only has one definition left and
that one will go too. In MkII these files are still used
(and actually generated by MkIV).

5.31 pack: wrapping content in packages

This is quite an important category as in ConTEXt
lots of things get packed. The best example is

ConTEXt: Updating the code base



94 TUGboat, Volume 33 (2012), No. 1

\framed and this macro has been maximally opti-
mized, which is not that trivial since much can be
configured. The code has been adapted to work well
with the new commandhandler code and in future
versions it might use the commandhandler directly.
This is however not that trivial because hooking a
setup of a command into \framed can conflict with
the two commands using keys for different matters.

Layers are also in this category and they prob-
ably will be further optimized. Reimplementing
reusable objects is on the horizon, but for that we
need a more abstract Lua interface, so that will come
first. This has a low priority because it all works well.
This category also hosts some helpers for the page
builder but the builder itself has a separate category.

5.32 page: pages and output routines

Here we have an old category: output routines (try-
ing to make a page), page building, page imposition
and shipout, single and multi column handling, very
special page construction, line numbering, and of
course setting up pages and layouts. All this code
is being redone stepwise and stripped of old hacks.
This is a cumbersome process as these are core com-
ponents where side effects are sometimes hard to
trace because mechanisms (and user demands) can
interfere. Expect some changes for the good here.

5.33 phys: physics

As we have a category for chemistry it made sense
to have one for physics and here is where the unit
module’s code ended up. So, from now on units are
integrated into the core. We took the opportunity
to rewrite most of it from scratch, providing a bit
more control.

5.34 prop: properties

The best-known property in TEX is a font and color
is a close second. Both have their own category of
files. In MkII additional properties like backend lay-
ers and special rendering of text were supported in
this category but in MkIV properties as a generic
feature are gone and replaced by more specific im-
plementations in the attr namespace. We do issue
a warning when any of the old methods are used.

5.35 regi: input encodings

We still support input encoding regimes but hardly
any TEX code is involved now. Only when users
demand more functionality does this code get ex-
tended. For instant, recently a user wanted a conver-
sion function for going from UTF-8 to an encoding
that another program wanted to see.

5.36 scrn: interactivity and widgets

All modules in this category have been overhauled.
On the one hand we lifted some constraints, for in-
stance the delayed initialization of fields no longer
makes sense as we have a more dynamic variable
resolver now (which is somewhat slower but still ac-
ceptable). On the other hand some nice but hard
to maintain features have been simplified (not that
anyone will notice as they were rather special). The
reason for this is that vaguely documented PDF fea-
tures tend to change over time which does not help
portability. Of course there have also been some
extensions, and it is actually less hassle (but still no
fun) to deal with such messy backend related code
in Lua.

5.37 scrp: script-specific tweaks

These are script-specific Lua files that help with get-
ting better results for scripts like CJK. Occasionally
I look at them but how they evolve depends on usage.
I have some very experimental files that are not in
the distribution.

5.38 sort: sorting

As sorting is delegated to Lua there is not much
TEX code here. The Lua code occasionally gets
improved if only because users have demands. For
instance, sorting Korean was an interesting exercise,
as was dealing with multiple languages in one index.
Because sorting can happen on a combination of
Unicode, case, shape, components, etc. the sorting
mechanism is one of the more complex subsystems.

5.39 spac: spacing

This important set of modules is responsible for ver-
tical spacing, strut management, justification, grid
snapping, and all else that relates to spacing and
alignments. Already in an early stage vertical spac-
ing was mostly delegated to Lua so there we’re only
talking of cleaning up now. Although . . . I’m still not
satisfied with the vertical spacing solution because
it is somewhat demanding and an awkward mix of
TEX and Lua which is mostly due to the fact that
we cannot evaluate TEX code in Lua.

Horizontal spacing can be quite demanding when
it comes down to configuration: think of a table with
1000 cells where each cell has to be set up (justifica-
tion, tolerance, spacing, protrusion, etc.). Recently a
more drastic optimization has been done which per-
mits even more options but at the same time is much
more efficient, although not in terms of memory.

Other code, for instance spread-related status in-
formation, special spacing characters, interline spac-
ing and linewise typesetting all falls into this category

Hans Hagen



TUGboat, Volume 33 (2012), No. 1 95

and there is probably room for improvement there.
It’s good to mention that in the process of the cur-
rent cleanup hardly any Lua code gets touched, so
that’s another effort.

5.40 strc: structure

Big things happened here but mostly at the TEX
end as the support code in Lua was already in place.
In this category we collect all code that gets or can
get numbered, moves around and provides visual
structure. So, here we find itemize, descriptions,
notes, sectioning, marks, block moves, etc. This
means that the code here interacts with nearly all
other mechanisms.

Itemization now uses the new inheritance code
instead of its own specific mechanism but that is
not a fundamental change. More important is that
code has been moved around, stripped, and slightly
extended. For instance, we had introduced proper
\startitem and \stopitem commands which are
somewhat conflicting with \item where a next in-
stance ends a previous one. The code is still not nice,
partly due to the number of options. The code is a
bit more efficient now but functionally the same.

The sectioning code is under reconstruction as is
the code that builds lists. The intention is to have a
better pluggable model and so far it looks promising.
As similar models will be used elsewhere we need to
converge to an acceptable compromise. One thing is
clear: users no longer need to deal with arguments
but variables and no longer with macros but with
setups. Of course providing backward compatibility
is a bit of a pain here.

The code that deals with descriptions, enumer-
ations and notes was already done in a MkIV way,
which means that they run on top of lists as storage
and use the generic numbering mechanism. How-
ever, they had their own inheritance support code
and moving to the generic code was a good reason to
look at them again. So, now we have a new hierarchy:
constructs, descriptions, enumerations and notations
where notations are hooked into the (foot)note mech-
anisms.

These mechanisms share the rendering code but
operate independently (which was the main chal-
lenge). I did explore the possibility of combining
the code with lists as there are some similarities
but the usual rendering is too different as in the
interface (think of enumerations with optional local
titles, multiple notes that get broken over pages, etc.).
However, as they are also stored in lists, users can
treat them as such and reuse the information when
needed (which for instance is just an alternative way
to deal with end notes).

At some point math formula numbering (which
runs on top of enumerations) might get its own con-
struct base. Math will be revised when we consider
the time to be ripe for it anyway.

The reference mechanism is largely untouched as
it was already doing well, but better support has been
added for automatic cross-document referencing. For
instance it is now easier to process components that
make up a product and still get the right numbering
and cross referencing in such an instance.

Float numbering, placement and delaying can
all differ per output routine (single column, multi-
column, columnset, etc.). Some of the management
has moved to Lua but most is just a job for TEX.
The better some support mechanisms become, the
less code we need here.

Registers will get the same treatment as lists:
even more user control than is already possible. Be-
ing a simple module this is a relatively easy task,
something for a hot summer day. General numbering
is already fine as are block moves so they come last.
The XML export and PDF tagging is also controlled
from this category.

5.41 supp: support code

Support modules are similar to system ones (dis-
cussed later) but on a slightly more abstract level.
There are not that many left now so these might
as well become system modules at some time. The
most important one is the one dealing with boxes.
The biggest change there is that we use more private
registers. I’m still not sure what to do with the visual
debugger code. The math-related code might move
to the math category.

5.42 symb: symbols

The symbol mechanisms organizes special characters
in groups. With Unicode-related fonts becoming
more complete we hardly need this mechanism. How-
ever, it is still the abstraction used in converters (for
instance footnote symbols and interactive elements).
The code has been cleaned up a bit but generally
stays as is.

5.43 syst: tex system level code

Here you find all kinds of low-level helpers. Most date
from early times but have been improved stepwise.
We tend to remove obscure helpers (unless someone
complains loudly) and add new ones every now and
then. Even if we would strip down ConTEXt to a
minimum size, these modules would still be there.
Of course the bootstrap code is also in this category:
think of allocators, predefined constants and such.

ConTEXt: Updating the code base



96 TUGboat, Volume 33 (2012), No. 1

5.44 tabl: tables

The oldest table mechanism was a quite seriously
patched version of TABLE and finally the decision
has been made to strip, replace and clean up that
bit. So, we have less code, but more features, such
as colored columns and more.

The (in-stream) tabulate code is mostly un-
changed but has been optimized (again) as it is often
used. The multipass approach stayed but is some-
what more efficient now.

The natural table code was originally meant for
XML processing but is quite popular among users.
The functionality and code is frozen but benefits
from optimizations in other areas. The reason for
the freeze is that it is pretty complex multipass code
and we don’t want to break anything.

As an experiment, a variant of natural tables
was made. Natural tables have a powerful inheri-
tance model where rows and cells (first, last, . . . ) can
be set up as a group but that is rather costly in terms
of runtime. The new table variant treats each col-
umn, row and cell as an instance of \framed where
cells can be grouped arbitrarily. And, because that
is somewhat extreme, these tables are called x-tables.
As much of the logic has been implemented in Lua
and as these tables use buffers (for storing the main
body) one could imagine that there is some penalty
involved in going between TEX and Lua several times,
as we have a two, three or four pass mechanism. How-
ever, this mechanism is surprisingly fast compared
to natural tables. The reason for writing it was not
only speed, but also the fact that in a project we
had tables of 50 pages with lots of spans and such
that simply didn’t fit into TEX’s memory any more,
took ages to process, and could also confuse the float
splitter.

Line tables . . . well, I will look into them when
needed. They are nice in a special way, as they
can split vertically and horizontally, but they are
seldom used. (This table mechanism was written for
a project where large quantities of statistical data
had to be presented.)

5.45 task: lua tasks

Currently this is mostly a place where we collect
all kinds of tasks that are delegated to Lua, often
hooked into callbacks. No user sees this code.

5.46 toks: token lists

This category has some helpers that are handy for
tracing or manuals but no sane user will ever use
them, I expect. However, at some point I will clean
up this old MkIV mess. This code might end up in
a module outside the core.

5.47 trac: tracing

A lot of tracing is possible in the Lua code, which
can be controlled from the TEX end using generic
enable and disable commands. At the macro level
we do have some tracing but this will be replaced
by a similar mechanism. This means that many
\tracewhatevertrue directives will go away and be
replaced. This is of course introducing some incom-
patibility but normally users don’t use this in styles.

5.48 type: typescripts

We already mentioned that typescripts relate to fonts.
Traditionally this is a layer on top of font definitions
and we keep it this way. In this category there are
also the definitions of typefaces: combinations of
fonts. As we split the larger into smaller ones, there
are many more files now. This has the added benefit
that we use less memory as typescripts are loaded
only once and stored permanently.

5.49 typo: typesetting and typography

This category is rather large in MkIV as we move
all code into here that somehow deals with special
typesetting. Here we find all kinds of interesting
new code that uses Lua solutions (slower but more
robust). Much has been discussed in articles as they
are nice examples and often these are rather stable.

The most important new kid on the block is
margin data, which has been moved into this category.
The new mechanism is somewhat more powerful but
the code is also quite complex and still experimental.
The functionality is roughly the same as in MkII
and older MkIV, but there is now more advanced
inheritance, a clear separation between placement
and rendering, slightly more robust stacking, local
anchoring (new). It was a nice challenge but took
a bit more time than other reimplementations due
to all kinds of possible interference. Also, it’s not
always easy to simulate TEX grouping in a script
language. Even if much more code is involved, it
looks like the new implementation is somewhat faster.
I expect to clean up this code a couple of times.

On the agenda is not only further cleanup of all
modules in this category, but also more advanced con-
trol over paragraph building. There is a parbuilder
written in Lua on my machine for years already which
we use for experiments and in the process a more
LuaTEX-ish (and efficient) way of dealing with pro-
trusion has been explored. But for this to become
effective, some of the LuaTEX backend code has to
be reorganized and Hartmut wants do that first. In
fact, we can then backport the new approach to the
built-in builder, which is not only faster but also
more efficient in terms of memory usage.

Hans Hagen



TUGboat, Volume 33 (2012), No. 1 97

5.50 unic: Unicode vectors and helpers

As Unicode support is now native all the MkII code
(mostly vectors and converters) is gone. Only a
few helpers remain and even these might go away.
Consider this category obsolete and replaced by the
char category.

5.51 util: utility functions

These are Lua files that are rather stable. Think
of parsers, format generation, debugging, dimension
helpers, etc. Like the data category, this one is
loaded quite early.

5.52 Other TEX files

Currently there are the above categories which can
be recognized by filename and prefix in macro names.
But there are more files involved. For instance,
user extensions can go into these categories as well
but they need names starting with something like
xxxx-imp- with xxxx being the category.

Then there are modules that can be recognized
by their prefix: m- (basic module), t- (third party
module), x- (XML-specific module), u- (user mod-
ule), p- (private module). Some modules that Wolf-
gang and Aditya are working on might end up in the
core distribution. In a similar fashion some seldom
used core code might get moved to (auto-loaded)
modules.

There are currently many modules that provide
tracing for mechanisms (like font and math) and
these need to be normalized into a consistent inter-
face. Often such modules show up when we work
on an aspect of ConTEXt or LuaTEX and at that
moment integration is not high on the agenda.

5.53 MetaPost files

A rather fundamental change in MetaPost is that it
no longer has a format (mem file). Maybe at some
point it will read .gz files, but all code is loaded at
runtime.

For this reason I decided to split the files for
MkII and MkIV as having version specific code in a
common set no longer makes much sense. This means
that already for a while we have .mpii and .mpiv

files with the latter category being more efficient
because we delegate some backend-related issues to
ConTEXt directly. I might split up the files for MkIV

a bit more so that selective loading is easier. This
gives a slight performance boost when working over
a network connection.

5.54 Lua files

There are some generic helper modules, with names
starting with l-. Then there are the mtx-* scripts
for all kinds of management tasks with the most
important one being mtx-context for managing a
TEX run.

5.55 Generic files

This leaves the bunch of generic files that provides
OpenType support to packages other than ConTEXt.
Much time went into moving ConTEXt-specific code
out of the way and providing a better abstract in-
terface. This means that new ConTEXt code (we
provide more font magic) will be less likely to in-
terfere and integration is easier. Of course there is
a penalty for ConTEXt but it is bearable. And yes,
providing generic code takes quite a lot of time so
I sometimes wonder why I did it in the first place,
but currently the maintenance burden is rather low.
Khaled Hosny is responsible for bridging this code
to LATEX.

6 What next

Here ends this summary of the current state of Con-
TEXt. I expect to spend the rest of the year on
further cleaning up. I’m close to halfway now. What
I really like is that many users upgrade as soon as
there is a new beta, and as in a rewrite typos creep
in, I therefore often get a fast response.

Of course it helps a lot that Wolfgang Schuster,
Aditya Mahajan, and Luigi Scarso know the code
so well that patches show up on the list shortly
after a problem gets reported. Also, for instance
Thomas Schmitz uses the latest betas in academic
book production, presentations, lecture notes and
more, and so provides invaluable fast feedback. And
of course Mojca Miklavec keeps all of it (and us)
in sync. Such a drastic cleanup could not be done
without their help. So let’s end this status report
with . . . a big thank you to all those (unnamed)
patient users and contributors.

⋄ Hans Hagen

http://pragma-ade.com

ConTEXt: Updating the code base



98 TUGboat, Volume 33 (2012), No. 1

Computing the area and winding number

for a Bézier curve

Bogus law Jackowski

1 Introduction

Why would we want to compute the area or winding
number for a given (closed) Bézier curve? The gen-
eral answer is: in computational graphics, various
measures of graphical objects may prove useful.

For example, MetaPost was equipped with a
very important function, missing from Metafont:
arclength, which computes the length of a given
arc. A typical problem that can be easily solved
using this function is placing uniformly spaced text
along a curve.

In my font application, I needed a function that
calculates a distance between two curves — this fea-
ture could be used to compute an approximation of
a multi-node Bézier curve by a single Bézier arc (i.e.,
for simplifying curves). Another operation I needed
is a Boolean function telling whether a given curve
is embedded in another curve.

These operations are missing from both Meta-
font and MetaPost, although they are feasible in
Metafont due to its bitmap operations.

A useful distance between curves a and b can be
computed as the number of pixels that receive a non-
zero value when filling the curve a--b--cycle (for
a given resolution). Also, checking two closed curves
a and b for mutual embedding could be calculated
(again, for a given resolution) by filling the curve a

and unfilling the curve b — if no pixels with a positive
value remain, it means that a is embedded in b.

It should be emphasized that the result depends
on the resolution, which can certainly be considered
a drawback.

In MetaPost, bitmap operations are unavail-
able, hence computing the distance between curves
and checking the mutual embedding of curves can-
not be done simply. However, a distance between
two non-intersecting curves, a and b, can be com-
puted as the absolute value of the area surrounded
by a--b--cycle; if the curves intersect, one has to
find all intersections and compute the area for all
subcycles, which is a fairly complex task (due to
numerical instability).

On the other hand, a winding number — for non-
touching curves — can be used for determining the
mutual position of the two curves (as explained in
the section below).

While bitmap operations are practically insen-
sitive to the tangency of curves, the algorithm for
computing the winding number presented here cru-

cially is. Nevertheless, these MetaPost algorithms
for computing the area and winding number may be
considered counterparts of the relevant bitmap-based
Metafont algorithms. Of course, I would still gladly
welcome building bitmap operations into MetaPost.

2 Area enclosed by a cyclic Bézier spline

The area between the graph of a function x 7→
(x, C(x)) and the x-axis is shown as the hatched
region in this figure:

x

y

x0 x1

y0

y1

y = C(x)

It can be computed as the integral
∫ x1

x0

C(x)dx (1)

If the curve is given parametrically, i.e., t 7→ (Cx(t),
Cy(t)), the integral (1) can be rewritten

(

by sub-
stituting x = Cx(t), x0 = Cx(t0), x1 = Cx(t1),

C(x) = C(Cx(t)) = Cy(t), and dx = dCx(t)
dt

dt
)

as
∫ t1

t0

Cy(t)
dCx(t)

dt
dt (2)

Furthermore, if t0 6= t1 and

(Cx(t0), Cy(t0)) = (Cx(t1), Cy(t1)),

i.e., the curve is cyclic, the integral (2) yields the
area surrounded by the curve.

Assume that the cyclic curve is a spline com-
posed of Bézier arcs B1, B2, . . . , Bn (each defined
for 0 ≤ t ≤ 1). The area of the region surrounded by
the spline shown here:

x

y

B1(t)

B2(t)

B3(t)

is the sum of integrals:
n

∑

i=1

∫ 1

0

By
i (t)

dBx
i (t)

dt
dt

Bogus law Jackowski



TUGboat, Volume 33 (2012), No. 1 99

In the following, I’ll skip the index i, as calculations
are exactly the same for each i; the functions B(t) =
(Bx(t), By(t)) are third-degree polynomials:

B(t) = b0(1 − t)3 + 3b1(1 − t)2 t + 3b2(1 − t) t2 + b3t3

where b0 = (bx
0 , by

0), b1 = (bx
1 , by

1), b2 = (bx
2 , by

2), b3 =
(bx

3 , by
3) are points in the plane; b0, b3 are the nodes

and b1, b2 are the control points of the Bézier arc B.
The computation of the antiderivative of the

function By(t) dBx(t)
dt

(a fifth-degree polynomial) is
an elementary task (actually, it suffices to know that
a derivative of tn is ntn−1 and, thus, the integral of
tn is 1

n+1 tn+1). Skipping tedious calculations, I’ll
present the final formula:

20

∫ 1

0

By(t)
dBx(t)

dt
dt = (bx

1−bx
0)(10by

0+6by
1+3by

2+by
3)

+(bx
2 − bx

1)(4by
0 + 6by

1 + 6by
2 + 4by

3)

+(bx
3 − bx

2)(by
0 + 3by

1 + 6by
2 + 10by

3)

This formula stemmed from the discussion be-
tween Daniel Luecking and Laurent Siebenmann on
the Metafont/MetaPost discussion list (metafont@

ens.fr, 2000; presently the MetaPost discussion
list is hosted by TUG — http://lists.tug.org/

metapost). Luecking made a crucial observation that
three real multiplications per Bézier arc sufficient
to compute the area surrounded by a Bézier spline;
division of the whole sum by 20 is a constant cost
and thus can be neglected. Integer multiplication
can be replaced by operations usually faster than real
multiplication (e.g., 10a = 8a + 2a, 8a = a shifted
left by 3 bits, 2a = a shifted left by 1 bit).

Of course, such an optimization of the arith-
metic operations makes sense only in a “production”
implementation of the algorithm. The implementa-
tion at the level of Metafont/MetaPost macros can
be neither efficient nor precise. Nevertheless, the
following code may sometimes prove useful:

% p is a B\’ezier segment; result = \int y dx

vardef area(expr p) =

save xa, xb, xc, xd, ya, yb, yc, yd;

(xa,20ya) = point 0 of p;

(xb,20yb) = postcontrol 0 of p;

(xc,20yc) = precontrol 1 of p;

(xd,20yd) = point 1 of p;

(xb-xa)*(10ya + 6yb + 3yc + yd)

+(xc-xb)*( 4ya + 6yb + 6yc + 4yd)

+(xd-xc)*( ya + 3yb + 6yc + 10yd)

enddef;

% P is a cyclic path; result = area of interior

vardef Area(expr P) =

area(subpath (0,1) of P)

for t=1 upto length(P)-1:

+ area(subpath (t,t+1) of P) endfor

enddef;

Observe that the macro Area computes a signed
area: negative for counterclockwise-oriented curves,
and positive for clockwise-oriented ones. As a conse-
quence, a non-trivial curve with self-intersection(s)
(e.g., eight-shaped) may surround a region with the
area equal to zero.

Observe also that the calculations can be carried
out with respect to the y-axis, thus the following code

% p is a B\’ezier segment; result = \int y dx

vardef area(expr p) =

save xa, xb, xc, xd, ya, yb, yc, yd;

(-20xa,ya) = point 0 of p;

(-20xb,yb) = postcontrol 0 of p;

(-20xc,yc) = precontrol 1 of p;

(-20xd,yd) = point 1 of p;

(yb-ya)*(10xa + 6xb + 3xc + xd)

+(yc-yb)*( 4xa + 6xb + 6xc + 4xd)

+(yd-yc)*( xa + 3xb + 6xc + 10xd)

enddef;

% P is a cyclic path; result = area of interior

vardef Area(expr P) =

area(subpath (0,1) of P)

for t=1 upto length(P)-1:

+ area(subpath (t,t+1) of P) endfor

enddef;

will yield the same results as the former (within the
accuracy of rounding errors).

3 A winding number for Bézier splines

Assume that we are given a point P in the plane
and the planar curve C(t) defined for t0 ≤ t ≤ t1.
The total angle encircled by the radius P C(t) as t
runs from t0 to t1 we will call the winding angle and
denote by αw:

x

y

P

C(t0)

C(t1)

αw

C(t)

x

y

P

C(t0)

C(t1)

αw

C(t)

This winding angle is insensitive to certain local
properties of the curve C(t) (e.g., local loops): in
the figures above, the winding angle is the same in
both cases (assuming the same points P , C(t0) and
C(t1)).

The winding angle is positive if the point P lies
to the right with respect to the point traversing the
curve, and negative otherwise.

Computing the area and winding number for a Bézier curve



100 TUGboat, Volume 33 (2012), No. 1

Of course, the absolute value of a winding angle
can be larger than 360◦:

x

y

P

αw>360◦
C(t0)

C(t1)

C(t)

For cyclic curves, the winding angle is always a mul-
tiple of 360◦, i.e., αw = 360◦ w, where w is an inte-
ger. This entity w is called the winding number (for
a given point and curve).

w=+2

w=+1

w=−1

w=+1

In the following, we will focus our attention on cyclic
Bézier splines.

The idea of the algorithm computing the wind-

ing number for Bézier splines is due to Laurent
Siebenmann (metafont@ens.fr, 2000; now at http:

//lists.tug.org/metapost). Siebenmann’s solu-
tion, however, was MetaPost-oriented — it exploited
heavily the operation arctime, available in MetaPost
but unavailable in Metafont. Below, I’ll present an
algorithm based on the same idea but referring to
more elementary properties of a Bézier segment.

For a given point P and a Bézier spline C, we
will try to find the winding angle by measuring the
winding angles for a discrete series of time points.
First, we will try to measure the angles between
nodes 0, 1, 2, . . . , n of the spline C. If the relevant
Bézier segments are appropriately short, the sum
of the angles yields the total winding angle. The
problem arises when the Bézier arc is too long — see,
e.g., the leftmost panel of the first figure (the angle
C(t0) P C(t1) equals 360◦ − αw).

The main observation of Siebenmann is as fol-
lows: if the length of the subarc C(t) for t0 ≤ t ≤ t1

is shorter than the length of the longer of the radii
P C(t0) and P C(t1), than we can safely assume that
the (acute) angle between P C(t0) and P C(t1) is the
winding angle. In fact, we do not need to know the

exact length of the arc — an approximation suffices.
If Ba, Bb, Bc, and Bd are the points defining a Bézier
arc B (i.e., Ba and Bd are its nodes, Bb and Bc are
its control points), then

|Ba Bb| + |Bb Bc| + |Bc Bd| ≥ |B|

(with | . . . | denoting the length of an interval and the
length of a Bézier arc). In other words, we can safely
use the left-hand side of the above inequality instead
of the true value of the arc length in the computation
of the winding angle or winding number.

The algorithm can be expressed in pseudo-code
as follows:

input: a point P and a Bézier spline B,
consisting of segments B1, B2, . . . , Bn

output: αw — the winding angle for P and B
procedure windingangle(P, B)

if B is a single segment
let Ba, Bb, Bc, Bd be the consecutive

control nodes of the segment B
if min(|P Ba|, |P Bd|) < assumed minimal dist.

exit (P almost coincides with B,
winding angle incalculable)

fi

if |Ba Bb| + |Bb Bc| + |Bc Bd|
> max(|P Ba|, |P Bd|)

return windingangle(P, B(0, 1//2))
+windingangle(B(1//2, 1))

else

return angle α between the radii P Ba

and P Bd (−90◦ < α < 90◦)
fi

else

return windingangle(P, B1) + . . .
+windingangle(P, Bn)

fi

end

A possible MetaPost/Metafont implementation:

% B is a B\’ezier segment

vardef mock_arclength(expr B) =

% |mock_arclength(B)>=arclength(B)|

length((postcontrol 0 of B)-(point 0 of B))

+ length((precontrol 1 of B)-(postcontrol 0 of B))

+ length((point 1 of B)-(precontrol 1 of B))

enddef;

% P is a point, B is a B\’ezier spline

vardef windingangle(expr P,B) =

if length(B)=1: % single segment

save r,v;

r0=length(P-point 0 of B);

r1=length(P-point 1 of B);

if (r0<2eps) and (r1<2eps):

% MF and MP are rather inaccurate, return 0

errhelp "Not advisable to continue.";

errmessage "windingangle: point almost "

Bogus law Jackowski



TUGboat, Volume 33 (2012), No. 1 101

& "coincides with B\’ezier segment (dist="

& decimal(min(r0,r1)) & ")";

0

else:

% v denotes both length and angle

v := mock_arclength(B);

% possibly too long B\’ezier arc?

if (v>r0) and (v>r1):

windingangle(P, subpath (0, 1/2) of B)

+ windingangle(P, subpath (1/2, 1) of B)

else:

v := angle((point 1 of B)-P) %difference

- angle((point 0 of B)-P);

if v >= 180: v := v-360; fi %normalize

if v < -180: v := v+360; fi

v %return

fi

fi

else: % multisegment spline

windingangle(P,subpath (0,1) of B)

for i:=1 upto length(B)-1:

+ windingangle(P,subpath (i,i+1) of B)

endfor

fi

enddef;

Although the returned angle (line marked ‘%return’
above) is acute, the difference of the component an-
gles (lines at ‘%difference’) can be outside the in-
terval 〈−180◦, 180◦〉 ; hence the normalization (lines
at %normalize).

If the operation windingnumber is needed for
some reason, it can be implemented trivially:

% P is a point, B is a B\’ezier spline

vardef windingnumber (expr P,B) =

windingangle(P,B)/360

enddef;

The operations windingangle or, equivalently, wind-

ingnumber can be used, e.g., for determining the
mutual position of two non-intersecting cyclic curves
(whether one is embedded inside the other or not):

tertiarydef a inside b =

if path a:

% |and path b|; |a| and |b| must be cyclic and

% must not touch each other

begingroup

save a_,b_;

(a_,b_) = (windingnumber(point 0 of a,b),

windingnumber(point 0 of b,a));

(abs(a_ - 1) < eps) and (abs(b_) < eps)

endgroup

else: % |numeric a and pair b|

begingroup

(a>=xpart b) and (a<=ypart b)

endgroup

fi

enddef;

Postscriptum

In some cases, another definition, equivalent to the
one formulated above, may be useful (this formu-
lation, given below without a proof of equivalence,
is a slightly edited excerpt from Siebenmann’s mes-
sage):

Assume that we are given a curve C and point P .
Choose at random a line segment emanating from
the point P to the point W , with W outside the
bounding box of C and P . Inductively examine the
intersection points Q of PQ with C. Supposing these
points Q are all “nondegenerate” intersections, they
are also finite in number, and a sign +1 or −1 is
associated with each. Nondegenerate means that Q
is a smooth point of c and the tangent vector T to C
at Q is not parallel to PQ, and that Q is not a point
where C crosses itself. The sign to use is the sign of
the wedge product ‘(Q − P ) wedge T ’, i.e.,

(Q − P ) · (T rotated −90)

The sum of the signs is the winding number.
It is a probabilistic theorem that degenerate

intersections will rarely be met.

⋄ Bogus law Jackowski

Gdańsk, Poland

b_jackowski (at) gust dot org

dot pl

Computing the area and winding number for a Bézier curve



102 TUGboat, Volume 33 (2012), No. 1

Three-dimensional graphics with PGF/TikZ

Keith Wolcott

Abstract

PGF and TikZ are languages for creating graphics.
These packages are predominantly two-dimensional
graphics packages, so three-dimensional graphing is
more challenging, but still possible. A demonstration
of how to draw surfaces of revolution, satellite orbits,
and intersections of spheres is given. As is typical
with three-dimensional graphics, the technique is to
rotate in three-space and then project to the drawing
surface. The mathematics involved is discussed and
sample code is provided.

1 Introduction

PGF (Portable Graphics Format) is a lower-level
language and TikZ is a set of higher-level macros
that use PGF. TikZ is a recursive acronym for “TikZ
ist kein Zeichenprogramm” or “TikZ is not a drawing
program”. These languages were created by Till
Tantau [1]. PGF and TikZ commands are invoked as
(LA)TEX macros.

TikZ is packed with features for two-dimensional
drawings of lines, circles, ellipses, paths, graphs, etc.
The PGF/TikZ manual [1] has many examples to
facilitate learning these languages. Andrew Mertz
and William Slough [2] have written a very nice
sequence of examples which is an excellent way to
get started using TikZ.

The graph in figure 1 is an example of a function
graphed using PGF and TikZ.

x

y

Figure 1: f(x) = 3x5 − 5x3.

The following code for this figure, and all of the exam-
ples in this paper, can be run by cutting-and-pasting
into a LATEX document of this form (be sure to use
at least a 2011 version since there are compatibility
issues with earlier versions of PGF/TikZ):

\documentclass[12pt]{article}

\usepackage{tikz}

\usepackage{ifthen}\newboolean{color}

\begin{document}

% insert code here

\end{document}

Here is the code to generate figure 1:

\begin{figure}[H]

\centering

% Set the x = a and x = b values of the domain here

% where a <= x <= b.

\def\aDomain{-1.4}

\def\bDomain{1.4}

% Set min and max values of the function

% (c <= f(x) <= d). Used for the y-axis.

\def\cRange{-2.5}

\def\dRange{2.5}

\pgfmathsetmacro\scaleAttempt{2/(\bDomain-\aDomain)}

\begin{tikzpicture}[scale= \scaleAttempt,

domain= \aDomain : \bDomain]

\draw[very thin,color=gray]

(1.1*\aDomain,1.1*\cRange)

grid (1.1*\bDomain, 1.1*\dRange);

\draw[very thick, ->] (1.2*\aDomain, 0) --

(1.2*\bDomain, 0) node[right] {$x$};

\draw[very thick, ->] (0, 1.2*\cRange) --

(0, 1.2*\dRange) node[above] {$y$};

\draw[smooth, very thick]

plot (\x, 3*\x^5 - 5*\x^3);

\end{tikzpicture}

\caption{$f(x) = 3x^5 - 5x^3$.}

\end{figure}

2 Three-dimensional graphing

The graph in figure 2 is rotated about the y-axis.
The code for the figure is given in appendix A.

First we give additional examples, and then an
explanation of the methods used. To create addi-
tional examples, use the eleven parameters that are

y

x

2

4

Figure 2: f(x) = x2 rotated about the y-axis.

Keith Wolcott



TUGboat, Volume 33 (2012), No. 1 103

set at the beginning of the code. They are the do-
main (min and max), function, range (min and max),
back color, front color, shading steps, xGridSteps,
rotationGridSteps, and the viewing angle.

Changing the following four parameters and the
figure title results in figure 3.

\def\bDomain{6.3}

\def\fcn{cos(\x r)} % The r means to use radians.

\def\cRange{-1}

\def\dRange{1}

y

x
6.3

1

Figure 3: f(x) = cosx rotated about the y-axis.

We may not like the back and front colors so
we change them both to lightgray. We also change
the viewing angle from 10 to 15 degrees. To give
some idea of how other changes can be made, we
enlarge it and also comment out the x-axis and the
axis number labels. The altered lines of code for
figure 4 are:

\def\backColor{lightgray}

\def\frontColor{lightgray}

\def\phi{15} % Viewing angle of 15 degrees.

\pgfmathsetmacro\scaleAttempt{6/\bDomain}% 6 was 4.

%\draw[<->] (-\bDomain -.5, 0) -- (\bDomain + .5, 0)

% node[right] {$x$};

%\draw (\bDomain, .1) -- (\bDomain, -.1)

% node[below] {\bDomain};

%\pgfmathsetmacro\yLabel {cos(\phi)* \dRange}

%\draw (-.1, \yLabel) -- (.1, \yLabel)

% node[right] {\dRange};

y

Figure 4: f(x) = cosx rotated about the y-axis.

Figure 5 is another example.

y

Figure 5: f(x) = 2
√
x, from 1 to 4, rotated about the

y-axis.

Figure 6 is figure 5 rotated toward the viewer
by changing the view angle from 7 to 30 degrees.

y

Figure 6: f(x) = 2
√
x, from 1 to 4, rotated about the

y-axis, with a view angle of 30 degrees.

With similar code we rotate about the x-axis.

y

x

3.14159

1

Figure 7: f(x) = sinx rotated about the x-axis.

The code for figure 7 is included in appendix B.

Three-dimensional graphics with PGF/TikZ



104 TUGboat, Volume 33 (2012), No. 1

3 The mathematics behind the scenes

This project began with the goal of drawing two
spheres and their circle of intersection. A Google
search turned up Tomasz M. Trzeciak’s [3] beautiful
spheres (see figure 8). He very effectively draws
spheres, drawing the latitude and longitude curves
by creating a circle, rotating it in three-space, and
then projecting to the xy-plane.

Figure 8: Beautiful sphere created by Tomasz M.
Trzeciak.

We will show how to use these methods to draw the
surface of revolution in figure 2.

The drawing surface is the xy-plane with the x-
axis pointing to the right and the y-axis pointing up.
The z-axis points toward the viewer. The rotation
matrices about the x, y, and z-axes at an angle θ in
the counterclockwise direction are:

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 ,

Ry(θ) =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 ,

and

Rz(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 .

See [4] to learn about rotation matrices.
First we draw the latitude lines, which are circles

with radius x drawn at height f(x). To do this, draw
a circle centered at the origin with radius x, but give
TikZ the transformation of the plane that rotates it to
give the correct viewing angle and shifts it to height
f(x). To find the affine transformation of the plane
that does this, the following matrix rotates three-
space counter-clockwise around the x-axis. Since we
start with a circle in the xy-plane we need to rotate
it 90 + φ degrees.

Rx(φ) =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ





Next, project to the xy-plane by removing the
third row and third column. This gives the two-by-
two matrix

(

1 0
0 cosφ

)

that is the transformation of the xy-plane that we
tell TikZ to apply to our circle.

Remark: On page 253 of the PGF manual [1]
version 2.10, it says that

\tikzset{xyplane/.estyle={cm={

a,b,c,d,(e,f)}}}

uses the transformation
(

a b

c d

)(

x

y

)

+

(

e

f

)

.

For example:

\begin{tikzpicture}

\draw[help lines] (0,0) grid (2,2);

\draw (0,0) -- (1,1);

\draw[cm={1,1,0,1,(0,0)}] (0,0) -- (1,1);

\end{tikzpicture}

The transformation should map the point
(1, 1) to (2, 1) rather than (1, 2) as shown in
the figure. Thus, TikZ (or the underlying PGF)
is in fact using

(x y)
(

a b

c d

)

+

(

e

f

)

.

Since our rotation matrices operate on vec-
tors on the left, this is the same as operating on
the right with the transpose of the matrix. For
a rotation matrix, the transpose of the matrix is
the inverse of the matrix, which means that the
direction of rotation is reversed. Thus, earlier
we said that the rotation matrix Rx(ψ) rotates
counterclockwise, but for this application, it ro-
tates clockwise.

In conclusion, the rotations are clockwise,
and if we wish to do a sequence of rotations, the
first rotation matrix is on the left.

Each circle with radius x needs to be shifted
up to the correct height f(x), but because of the
viewing angle rotation φ, this gets foreshortened to

Keith Wolcott



TUGboat, Volume 33 (2012), No. 1 105

f(x) cosφ. The following code does this for 9 circles
where x is each quarter unit from 0 to 2. (The ninth
is an invisible point at 0.)

\def\fcn{\x^2}

\def\phi{-10}

\foreach \x in {0, .25, ..., 2} {

\pgfmathsetmacro\yshift{(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1, 0, 0, cos(90 + \phi),(0, \yshift)}}}

\draw[xyplane, color=black] (0, 0) circle (\x);

}

Figure 9: f(x) = x2 rotated about the y-axis.

To draw the longitude lines we draw the given
function f(x) from 0 to 2, rotate every 30 degrees,
and then change the viewing angle by φ degrees.
Thus we use Ry(θ)Rx(φ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ









1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 =





cos θ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ



 .

Next, project to the xy-plane by removing the third
row and third column, resulting in the 2× 2 matrix

(

cos θ sin θ sinφ
0 cosφ

)

.

If θ and φ are both negated in the above ma-
trix, it does not change. Thus, we will think of the
rotations as being in the counterclockwise direction
for positive values of θ and φ.

This is the transformation of the xy-plane that
we tell TikZ to apply to the graph of f(x).

\def\fcn{\x^2}

\def\phi{10}

\foreach \theta in {0, 30, ..., 360} {

\tikzset{xyplane/.estyle={cm={

cos(\theta),sin(\theta)*sin(\phi),

0,cos(\phi),(0, 0)}}}

\draw[xyplane, color=black, thin, smooth]

plot (\x, \fcn) ;

}

Figure 10: f(x) = x2 rotated about the y-axis.

Figure 10 gives the wire frame of the surface of
revolution. The remaining code for creating the final
version in figure 2 is more of the same. The coloring
of the front consists of the front half of many latitude
curves (this slows the code down) that typically look
good with opacity set to be less than 1 so that the
wire frame on the back shows through a little.

4 Global Positioning System (GPS) orbits

As another example, let us draw the orbit of a GPS

satellite around the earth. The orbit is inclined 55
degrees from the equator, which is the same as tilted
35 degrees from the north pole. Thus, we can start
with a circle in the xy-plane and tilt it 35 degrees
toward the viewer. Thus, the 35 degree tilt is a
−35 degree clockwise rotation about the x-axis. The
rotation matrix about the x-axis at an angle ψ in
the clockwise direction is

Rx(ψ) =





1 0 0
0 cosψ − sinψ
0 sinψ cosψ



 .

Projecting to the xy-plane (removing the third

row and third column), we have

(

1 0
0 cosψ

)

. This

is the transformation of the xy-plane that we tell
TikZ to apply to our circle as follows. The angle ψ
should be −35 degrees since we are tilting the top of
the circle toward the viewer.

Three-dimensional graphics with PGF/TikZ



106 TUGboat, Volume 33 (2012), No. 1

\begin{tikzpicture}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(-35), (0, 0)}}}

\draw[xyplane, color=black, thin]

(0, 0) circle (2);

\end{tikzpicture}

Now we wish to rotate our tilted orbit θ degrees
around the y-axis. To rotate first ψ degrees about
the x-axis and then θ degrees about the y-axis, we
compute

Rx(ψ)Ry(θ) =




cos θ 0 sin θ
sinψ sin θ cosψ − sinψ cos θ

− cosψ sin θ sinψ cosψ cos θ



 .

Next, project to the xy-plane, which is the transfor-
mation

(

cos θ 0
sinψ sin θ cosψ

)

.

If θ, ψ, and φ are all negated in the above ma-
trix, it does not change. Thus, we will think of the
rotations as being in the counterclockwise direction
for positive values of θ, ψ, and φ.

\begin{tikzpicture}

\tikzset{xyplane/.estyle={cm={

cos(90),0,sin(35)*sin(90),cos(35),(0, 0)}}}

\draw[xyplane] (0, 0) circle (2);

\end{tikzpicture}

Now suppose that we wish to view this from above
and thus rotate some angle φ around the x-axis to tilt
the top of the orbit toward the viewer. This is the
product Rx(ψ)Ry(θ)Rx(φ) that has the projected
matrix

(

cos θ sin θ sinφ
sinψ sin θ cosψ cosφ− sinψ cos θ sinφ

)

.

Again, if θ, ψ, and φ are all negated in the above
matrix, it does not change. Thus, we will think of the
rotations as being in the counterclockwise direction
for positive values of θ, ψ, and φ.

With ψ = 35, θ = 90, and φ = 20, we rotate the
top of the above circle (that looks like a line) toward
the viewer 20 degrees so it looks like an ellipse again.

\begin{tikzpicture}

\tikzset{xyplane/.estyle={cm={

cos(90),sin(90)*sin(20),sin(35)*sin(90),

cos(35)*cos(20)-sin(35)*cos(90)*sin(20),(0,0)}}}

\draw[xyplane] (0, 0) circle (2);

\end{tikzpicture}

As an example of the above rotation and pro-
jection matrix, we draw the U.S. GPS (Global Posi-
tioning System) satellite orbits. There are six orbits,
each tilted ψ = 35 degrees from the north pole and
then rotated to be positioned every 60 degrees (θ)
around the earth. These orbits can then be viewed
from different angles φ. Figure 11 shows a view from
the equator. The code is included in appendix C.

Figure 11: The U.S. GPS system. This view, looking
directly at the equator, shows that the orbits never
pass over the north or south poles. Each orbit has four
satellites spaced 30 degrees, 105 degrees, 120 degrees,
and 105 degrees apart.

By changing the viewing angle \angEl = ψ, we
can get additional views. See figures 12 and 13 for
two such views.

Keith Wolcott



TUGboat, Volume 33 (2012), No. 1 107

Figure 12: Looking down on the earth, 30 degrees
above the equator. Dotted lines are on the back side of
the orbit.

Figure 13: Looking directly down on the north pole.
Pairs of orbits overlap in this view, but the front and
back parts of these orbits are on opposite sides of the
earth.

For comparison, figure 14 is the configuration of
satellites that the European Union is using for the
GPS system that they are currently implementing
that has just three orbits with nine satellites in each.

5 Intersections of spheres

Rotations around an axis other than the coordinate
axes can also be useful. Consider figure 15.

Figure 14: The European Union’s planned GPS has
three orbital planes, 120 degrees apart, inclined at
56 degrees, that divide the earth’s surface into eight
congruent spherical triangles. Each of the three orbits
has nine satellites, equally spaced, 40 degrees apart.

Figure 15: These two spheres intersect in the bold
circle.

The goal was to draw the intersection of the two
spheres. The plane of the circle of intersection is
perpendicular to the vector between the two sphere
centers. Thus to find the circle of intersection we
rotate three-space so that the z-axis (which is perpen-
dicular to the xy-plane) rotates to be parallel to the
vector between the sphere centers. Thus the rotation
axis is perpendicular to both of these vectors and
we compute it by taking the cross product of them.
Then we use the rotation matrix about this vector

Three-dimensional graphics with PGF/TikZ



108 TUGboat, Volume 33 (2012), No. 1

(see [4]), project to the xy-plane, and then shift to
the correct position. This figure needs more work,
since it does not show the overlapping parts of the
spheres correctly, but it is still an example of how to
find and draw the intersection using these techniques.
The code for figure 15 is included in appendix E.

6 Conclusion

The PGF and TikZ languages are predominantly for
two-dimensional graphics, but with an understanding
of a few rotation matrices, some three-dimensional
graphics can be drawn fairly easily.

Appendix A Rotation about the y-axis

Code for figure 2. The function f(x) = x2 is rotated
about the y-axis.

\begin{figure}[h]

\begin{center}

%%%%%%%% Set function values %%%%%%%

% Set the x = a and x = b values of the

% domain here where a <= x <= b.

\def\aDomain{0}

\def\bDomain{2}

% Set the function.

% The variable must be \x, e.g. \x^2.

\def\fcn{\x^2}

% Set min and max values of the function

% (c <= f(x) <= d). Used for the y-axis.

\def\cRange{0}

\def\dRange{4}

% Set the color of the back half.

% This can look good as a different color

% if it looks like the inside.

\def\backColor{brown}

% Set the color of the front half. lightgray looks

% good for both back and front.

\def\frontColor{red}

% Set the number of shading circles to draw.

% More gives a more even color.

% Enter 1 for no shading.

\def\xShadingSteps{300}

% Set the number of x radius grid circles.

\def\xGridSteps{8}

% Set the number of radial grid lines.

\def\rotationGridSteps{12}

% Set the viewing elevation angle,

% which is the angle up from horizontal.

\def\phi{10}

%%%%%%%%%%%%%%%%%%%%%%%%%

\pgfmathsetmacro\scaleAttempt{4/\bDomain}

\begin{tikzpicture}[scale= \scaleAttempt,

domain= \aDomain: \bDomain]

\pgfmathsetmacro\intervalLength{\bDomain - \aDomain}

\pgfmathsetmacro\xGridStepsize{

\intervalLength/\xGridSteps}

\pgfmathsetmacro\xShadingStepsize{

\intervalLength/\xShadingSteps}

\pgfmathsetmacro\rotationGridStepsize{

360/\rotationGridSteps}

% Draw the shading of the back half.

% Top half of a circle, rotated back (around x-axis)

% 90 - \phi degrees and shifted up or down

% to the correct height.

\pgfmathsetmacro\nextShadingStep{

\aDomain + \xShadingStepsize}

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi), (0, \ysh)}}}

\draw[xyplane,\backColor,ultra thick,opacity=1]

(\x, 0) arc (0:180:\x);

}

% Back longitude lines.

% Rotates graph around y-axis, then

% projects to xy-plane.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(-\theta), sin(-\theta)*sin(-\phi),

0, cos(-\phi), (0, 0)}}}

\draw[xyplane, smooth] plot (\x, \fcn);

}

% Back latitude lines.

% Top half of a circle, rotated back

% (around x-axis) 90 - \phi degrees and

% shifted up or down to the correct height.

\pgfmathsetmacro\nextStep{\aDomain + \xGridStepsize}

\foreach \x in {\aDomain,\nextStep, ...,\bDomain} {

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi), (0, \ysh)}}}

\draw[xyplane] (\x, 0) arc (0: 180:\x);

}

% Draw the axis.

\pgfmathsetmacro\yHeight{

\dRange + \bDomain*sin(\phi) + .5}

\draw[->] (0, \cRange - .5) -- (0, \yHeight)

node[above] {$y$};

% Comment out the next four commands

% if you don’t want an x-axis, and labels.

\draw[<->] (-\bDomain -.5, 0) -- (\bDomain + .5, 0)

node[right] {$x$};

\draw (\bDomain, .1) -- (\bDomain, -.1)

node[below] {\bDomain};

\pgfmathsetmacro\yLabel {cos(\phi)* \dRange}

\draw (-.1, \yLabel) -- (.1, \yLabel)

node[right] {\dRange};

% Draw the shading of the front half.

% Top half of a circle, rotated back (around x-axis)

% 90 - \phi degrees and shifted up or down

% to the correct height.

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi), (0, \ysh)}}}

\draw[xyplane,\frontColor,ultra thick,

opacity=.6]

(-\x, 0) arc (-180:0:\x);

}

% Front longitude lines.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(\theta), sin(\theta)*sin(-\phi),

0, cos(-\phi), (0, 0)}}}

\draw[xyplane,smooth] plot (\x, \fcn);

}

% Front latitude lines.

% Bottom half of a circle, rotated back

Keith Wolcott



TUGboat, Volume 33 (2012), No. 1 109

% (around x-axis) 90 - \phi degrees and

% shifted up or down to the correct height.

\foreach \x in {\aDomain, \nextStep, ..., \bDomain}{

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi),(0, \ysh)}}}

\draw[xyplane] (-\x, 0) arc (-180: 0:\x);

}

\end{tikzpicture}

\caption{Rotate $f(x) = x^2$ about the $y$-axis.}

\end{center}

\end{figure}

Remark: Since the back and front shading is drawn
by drawing circles that are rotated in three-space,
and the above code uses 300 such circles, it is slow
(about 3 seconds). Thus, when working with the
document, it is useful to set \xShadingSteps to 1
and then change it to 300 for the final version.

Appendix B Rotation about the x-axis

Code for figure 7. The function sinx is rotated about
the x-axis.
\begin{figure}[h]

\begin{center}

%%%%%%%% Set function values %%%%%%%

% Set the x = a and x = b values of the

% domain here where a <= x <= b.

\def\aDomain{0}

\def\bDomain{3.14159}

% Set the function.

% The variable must be \x, e.g. \x^2.

\def\fcn{sin(\x r)}

%\def\fcn{sqrt(\x)}

% Set min and max values of the function

% (c <= f(x) <= d). Used for the y-axis.

\def\cRange{0}

\def\dRange{1}

% Set the color of the back half.

% This can look good as a different color

% if it looks like the inside.

\def\backColor{red!70!black}

% Set the color of the front half. lightgray looks

% good for both back and front.

\def\frontColor{red!70!black}

% Set the number of shading circles to draw.

% More gives a more even color. Enter 1 for

% no shading; a large number makes it slow.

% Use the following two lines while editing and then

% change the speed to 100 for the final version.

%\def\speed{1}

%\pgfmathsetmacro\xShadingSteps{3* \speed}

\pgfmathsetmacro\xShadingSteps{300}

% Set the number of x radius grid circles.

\def\xGridSteps{8}

% Set the number of radial grid lines.

\def\rotationGridSteps{18}

% Set the viewing elevation angle,

% which is the angle up from horizontal.

\def\phi{15}

%%%%%%%%%%%%%%%%%%%%%%%%%

\pgfmathsetmacro\scaleAttempt{3.4/\dRange}

\begin{tikzpicture}[scale= \scaleAttempt,

domain= \aDomain: \bDomain]

\pgfmathsetmacro\intervalLength{\bDomain - \aDomain}

\pgfmathsetmacro\xGridStepsize{

\intervalLength/\xGridSteps}

\pgfmathsetmacro\xShadingStepsize{

\intervalLength/\xShadingSteps}

\pgfmathsetmacro\rotationGridStepsize{

360/\rotationGridSteps}

% Draw the shading of the back half.

% Left half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\pgfmathsetmacro\nextShadingStep{

\aDomain + \xShadingStepsize}

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi - 90), 0,0,1, (\xsh, 0)}}}

\draw[xyplane,\backColor,ultra thick,opacity=.6]

(0, \rad) arc (90 : 270 : \rad);

}

% Back longitude lines.

% Rotates graph around y-axis,

% then projects to xy-plane.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(\phi), 0, sin(\theta)*sin(\phi),

cos(\theta), (0, 0)}}}

\draw[xyplane,smooth] plot (\x, \fcn) ;

}

% Back latitude lines.

% Left half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\pgfmathsetmacro\nextStep{\aDomain + \xGridStepsize}

\foreach \x in {\aDomain,\nextStep, ...,\bDomain} {

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi - 90), 0,0,1,(\xsh, 0)}}}

\draw[xyplane,black,thin,opacity=1]

(0, \rad) arc (90 : 270 : \rad);

}

% Draw the axis.

\pgfmathsetmacro\xdim{

\bDomain + \dRange*sin(\phi) + .5}

\draw[->] (0, -\dRange - .5) -- (0, \dRange + .5)

node[above] {$y$};

% Comment out the next four commands

% if you don’t want an x-axis, and labels.

\draw[<->] (\aDomain -.5, 0) -- (\xdim, 0)

node[right] {$x$};

\pgfmathsetmacro\xLabel{cos(\phi)*\bDomain}

\draw (\xLabel, .1) -- (\xLabel, -.1)

node[below right] {\bDomain};

\draw (-.1, \dRange) -- (.1, \dRange)

node[right] {\dRange};

% Draw the shading of the front half.

% Right half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi - 90),0,0,1,(\xsh, 0)}}}

Three-dimensional graphics with PGF/TikZ



110 TUGboat, Volume 33 (2012), No. 1

\draw[xyplane,\frontColor,ultra thick,opacity=.6]

(0, -\rad) arc (-90 : 90 : \rad);

}

% Front longitude lines.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(\phi), 0,

sin(\theta)*sin(\phi),cos(\theta),(0, 0)}}}

\draw[xyplane,smooth] plot (\x, \fcn) ;

}

% Front latitude lines.

% Right half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\foreach \x in {\aDomain, \nextStep, ..., \bDomain}{

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi-90),0,0,1, (\xsh, 0)}}}

\draw[xyplane] (0, -\rad) arc (-90 : 90 : \rad);

}

\end{tikzpicture}

\caption{$f(x)=\sin{x}$ rotated about the $x$-axis.}

\label{rot1x}

\end{center}

\end{figure}

Appendix C GPS satellites

Code for figure 11, the U.S. GPS satellite orbits.

% GPS satellite orbits.

\begin{tikzpicture}[scale=.77]

\def\R{1.4} % sphere radius

\def\orbitRadius{3.172*\R}

\def\angEl{1} % elevation angle

\def\x{0} % x coordinate of center

\def\y{0} % y coordinate of center

\def\z{0} % z coordinate of center

% First tilt the orbit from the north

% pole (rotate about the x-axis).

\pgfmathsetmacro\psi{35}

% Second, rotate around the y-axis.

\pgfmathsetmacro\firstTheta{-135}

% Third, rotate about the x-axis.

\pgfmathsetmacro\phi{\angEl}

\draw[color=red, fill=blue, opacity=.15]

(0, 0) circle (\orbitRadius);

% Set the variables, theta, c = color, angVis,

% and \thetaSatShift for each of 6 orbits.

\foreach \theta/\c in{\firstTheta/red,

\firstTheta+60/blue,

\firstTheta+2*60/green,

\firstTheta+3*60/black,

\firstTheta+4*60/cyan,

\firstTheta+5*60/brown}{

% Set the drawing plane affine transformation.

\tikzset{xyplane/.estyle={cm={

cos(\theta),sin(\theta)*sin(\phi),

sin(\theta)*sin(\psi),cos(\psi)*cos(\phi)-

sin(\psi)*cos(\theta)*sin(\phi),(0, 0)}}}

% Draw the back half of the orbit.

\getFrontArcStartPosition\angle\anglex{

\psi}{\theta}{\phi}

\pgfmathtruncatemacro\angleInt{\angle}

\ifthenelse{\angleInt < -180}

{\pgfmathsetmacro\angleInt{\angleInt + 360}}

{}

\draw[xyplane, dashed, color=\c]

(\angleInt -180: \orbitRadius)

arc (\angleInt -180: \angle: \orbitRadius);

}

% Draw the earth.

\tikzset{current plane/.estyle={cm={1,0,0,1,(0,0)}}}

\filldraw[current plane][shift={(\x, \y)}]

[ball color=blue,opacity=.7] (0,0,0) circle (\R);

\foreach \t in {-80,-60,...,80} {

\DrawLatitudeCircle[\R]{\t}{\x}{\y}}

\foreach \t in {-5,-35,...,-175} {

\DrawLongitudeCircle[\R]{\t}{\x}{\y}}

\pgfmathsetmacro\orbitBaseAngle{30}

% Draw the front half of the orbit.

\foreach \theta/\c in {\firstTheta/red,

\firstTheta+60/blue,

\firstTheta+2*60/green,

\firstTheta+3*60/black,

\firstTheta+4*60/cyan,

\firstTheta+5*60/brown}{

% Set the drawing plane affine transformation again.

\tikzset{xyplane/.estyle={cm={cos(\theta),

sin(\theta)*sin(\phi),sin(\theta)*sin(\psi),

cos(\psi)*cos(\phi)-sin(\psi)*cos(\theta)*

sin(\phi),(0,0)}}}

% Draw the front half of the orbit.

\getFrontArcStartPosition\angle\anglex{

\psi}{\theta}{\phi}

\pgfmathtruncatemacro\angleInt{\angle}

\ifthenelse{\angleInt > 180}

{\pgfmathsetmacro\angleInt{\angleInt - 360}}

{}

\draw[xyplane,very thick,color=\c]

(\angleInt:\orbitRadius) arc

(\angleInt:\angleInt+180:\orbitRadius);

% Draw the satellites.

\foreach \thetaSat in {\orbitBaseAngle,

\orbitBaseAngle + 30, \orbitBaseAngle + 135,

\orbitBaseAngle + 255} {

\pgfmathsetmacro\xsh{

(7/1)*\orbitRadius*cos(\thetaSat)}

\pgfmathsetmacro\ysh{

(7/1)*\orbitRadius*sin(\thetaSat)}

\draw[xyplane,color=\c,scale=1/7][shift=

{(\xsh,\ysh)}](-2,-1) grid (2,1);

}

}

\end{tikzpicture}

This code requires some helper functions written by
Tomasz M. Trzeciak [3] for drawing spheres. For
completeness, these functions are listed below. Place
them just before \begin{document}.

\newcommand\pgfmathsinandcos[3]{%

\pgfmathsetmacro#1{sin(#3)}%

\pgfmathsetmacro#2{cos(#3)}%

}

\newcommand\LongitudePlane[3][current plane]{%

\pgfmathsinandcos\sinEl\cosEl{#2} % elevation

\pgfmathsinandcos\sint\cost{#3} % azimuth

\tikzset{#1/.estyle={cm={

\cost,\sint*\sinEl,0,\cosEl,(0,0)}}}

}

\newcommand\LatitudePlane[3][current plane]{%

\pgfmathsinandcos\sinEl\cosEl{#2} % elevation

\pgfmathsinandcos\sint\cost{#3} % latitude

\pgfmathsetmacro\yshift{\cosEl*\sint}

Keith Wolcott



TUGboat, Volume 33 (2012), No. 1 111

\tikzset{#1/.estyle={cm={

\cost,0,0,\cost*\sinEl,(0,\yshift)}}} %

}

\newcommand\DrawLongitudeCircle[4][1]{

\LongitudePlane{\angEl}{#2}

\tikzset{current plane/.prefix style={scale=#1}}

% angle of "visibility"

\pgfmathsetmacro\angVis{

atan(sin(#2)*cos(\angEl)/sin(\angEl))} %

\draw[shift={(#3, #4)}][current plane]

(\angVis:1) arc (\angVis:\angVis+180:1);

\draw[shift={(#3, #4)}][current plane,dashed]

(\angVis-180:1)arc(\angVis-180:\angVis:1);

}

\newcommand\DrawLatitudeCircle[4][1]{

\LatitudePlane{\angEl}{#2}

\tikzset{current plane/.prefix style={scale=#1}}

\pgfmathsetmacro\sinVis{

sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)}

% angle of "visibility"

\pgfmathsetmacro\angVis{

asin(min(1,max(\sinVis,-1)))}

\draw[shift={(#3, #4)}][current plane]

(\angVis:1) arc (\angVis:-\angVis-180:1);

\draw[shift={(#3, #4)}][current plane,dashed]

(180-\angVis:1)arc(180-\angVis:\angVis:1);

}

This uses a macro \getFrontArcStartPosition to
compute which parts of the orbit arcs are on the
front side of the orbit so they can be drawn last and
the back side can be drawn first with dotted lines.
There is likely an easier way to do this, but this
solution involves using the spherical law of sines on
various triangles on the sphere. For completeness,
an explanation of the formulas follows the code.

\newcommand\getFrontArcStartPosition[5]{

% Theta must be between -180 and 180.

\pgfmathtruncatemacro\psiInt{#3}

\pgfmathtruncatemacro\thetaInt{#4}

\pgfmathtruncatemacro\phiInt{#5}

\pgfmathtruncatemacro\psiTemp{\psiInt}

\ifthenelse{\thetaInt < 0}

% Negate theta and negate the results at the end.

{\pgfmathtruncatemacro\thetaTemp{-\thetaInt}}

{\pgfmathtruncatemacro\thetaTemp{\thetaInt}}

\pgfmathtruncatemacro\phiTemp{\phiInt}

\pgfmathsetmacro\anglexTemp{atan(sin(\thetaTemp)/

(cos(\thetaTemp)*sin(\psiTemp)))}

\ifthenelse{\thetaTemp > 90}

{\pgfmathsetmacro\anglexTemp{\anglexTemp + 180}}

{}

\pgfmathsetmacro\result{atan(sin(\thetaTemp)*

cos(\phiTemp)*sin(\anglexTemp)/

(sin(\anglexTemp)*cos(\psiTemp)*sin(\phiTemp)

+cos(\anglexTemp)*cos(\phiTemp)*sin(\thetaTemp)))}

\pgfmathsetmacro\specialAngle{(cos(\phiTemp)*

cos(\phiTemp)-cos(\psiTemp)*cos(\psiTemp))/

(cos(\phiTemp)*cos(\phiTemp)*

sin(\psiTemp)*sin(\psiTemp))}

\ifthenelse{\phiInt < \psiInt}{

\pgfmathparse{sqrt(\specialAngle)}

\pgfmathsetmacro\specialAngle{

asin(-\pgfmathresult)+180}

\ifthenelse{\thetaTemp > \specialAngle}{

\pgfmathsetmacro\result{\result + 180}

\pgfmathsetmacro#1{\result}}

{

\pgfmathsetmacro#1{\result}}}

{}

% Negate the results if theta is negative.

\ifthenelse{\thetaInt < 0}{

\pgfmathsetmacro#1{-\result}

\pgfmathsetmacro#2{-\anglexTemp}}

{

\pgfmathsetmacro#1{\result}

\pgfmathsetmacro#2{\anglexTemp}}

}% End of \getFrontArcStartPosition function.

Appendix D Explanation of formulas
in \getFrontArcStartPosition

The function \getFrontArcStartPosition in ap-
pendix C is used to find which parts of an orbit are
on the front and which on the back, so that we can
draw the back as a dotted line.

Figure 16 shows a red orbit that is tilted ψ de-
grees from the north pole and then rotated θ degrees
with the viewing angle tilted φ degrees as the orbits
are for figure 11. Our goal is to find the length of arc
DC = x′ since that is where the orbit comes around
to the front of the sphere.

The spherical law of sines says that for a triangle
on a sphere

sinA

sin a
=

sinB

sin b
=

sinC

sin c
where a, b, and c are the three angles of the triangle
andA, B, and C are the three corresponding opposite
side lengths (which are measured as an angle from
the center of the sphere).

A

B

C

D

Figure 16: Given the orbit containing points B, C,
and D, find the angular distance from D to C. If this
distance is found, then the orbit is drawn with a solid
arc from that point at C for 180 degrees and then for
another 180 degrees as a dashed line.

Three-dimensional graphics with PGF/TikZ



112 TUGboat, Volume 33 (2012), No. 1

AB

C

D

φ
90− φ

β
180− β

90− ψ

θ

y

x′x

x− x′

Figure 17: Triangles of figure 16 drawn in the plane.

Using the law of sines on the large triangle ABD,
we have that

sin y

sin (90− ψ)
=

sinx

sin 90
. (1)

Using the law of sines on the lower small triangle
ABC, we have that

sinβ

sin y
=

sinφ

sin (x− x′)
. (2)

Simplifying and solving (1) for sin y and substi-
tuting into (2) and solving for sinβ, results in

sinβ =
cosψ sinx sinφ

sin (x− x′)
. (3)

Using the law of sines on the upper small triangle
ACD, we have that

sin (180− β)

sin θ
=

sin (90− φ)

sinx′
. (4)

Solving (4) for sinβ and setting equal to the right
side of (3) results in

sin θ cosφ

sinx′
=

cosψ sinx sinφ

sin (x− x′)

or
sin θ cosφ

sinx′
=

cosψ sinx sinφ

sinx cosx′ − cosx sinx′
.

Cross multiplying, dividing by cosx′ and solving for
tanx′ gives

tanx′ =
sin θ cosφ sinx

sin θ cosφ cosx+ cosψ sinφ sinx
.

Thus we can compute x′ in terms of x. In order to
compute x, see figure 18 where we have added points
N and E.

Point E is chosen such that angle NEB is a
right angle. Triangle NED is drawn in figure 19.

A

B

C

D

N

E

Figure 18: This is the same as figure 16 with added
points N and E where segment NE is perpendicular
to both red orbits. Triangle NED is used to find the
value of x which is the arc BD.

DE

N

B

ψα180− α

θ

90− θ

90

ψ
90

x90− x

Figure 19: Triangle NED of figure 18 drawn in the
plane.

The law of sines applied to triangle NBD on
the right gives

sinα =
sin θ

sinx
. (5)

The law of sines applied to triangle NEB on the left
gives sin (180− α) =

sinα =
sinψ sin (90− θ)

sin (90− x)
=

sinψ cos θ

cosx
. (6)

Setting the values of sinα equal from (5) and (6) and
solving for tanx gives

tanx =
tan θ

sinψ
.

Thus we now have x in terms of θ and ψ. This
explains the formulas used for 0 ≤ θ ≤ 90 in the
macro \getFrontArcStartPosition. In the case
that ψ ≤ φ, the same formulas work for when 90 ≤
θ ≤ 180. There are some complications when ψ > φ

and 90 ≤ θ ≤ 180. In this case, when x′ exceeds 90
degrees there is a sign change in the computation.
Some more spherical trigonometry reveals that this

Keith Wolcott



TUGboat, Volume 33 (2012), No. 1 113

happens when

sin2 θ =
cos2 φ− cos2 ψ

cos2 φ sin2 ψ

which we use in \getFrontArcStartPosition to
compute the value of θ where this change occurs.
This allows us to compute x′ for all 0 ≤ θ ≤ 180.
For −180 ≤ θ ≤ 0, we use symmetry and return the
negative of the x′ computed for |θ|.

Appendix E Intersection of two spheres

Code for figure 15.

% The intersection of two spheres.

\begin{tikzpicture}[scale=.8]

% Draw the first sphere.

\def\Rb{3.1} % sphere radius

\def\angEl{30} % elevation angle

\def\xb{3} % x coordinate of center

\def\yb{3} % y coordinate of center

\def\zb{-1} % z coordinate of center

\filldraw[shift={(\xb, \yb)}][ball color= blue]

(0, 0, 0) circle (\Rb);

\foreach \t in {-60,-20,...,80} {

\DrawLatitudeCircle[\Rb]{\t}{\xb}{\yb}}

\foreach \t in {-5,-45,...,-175} {

\DrawLongitudeCircle[\Rb]{\t}{\xb}{\yb}}

% Draw the second sphere.

\def\Rc{2.4} % sphere radius

\def\angEl{30} % elevation angle

\def\xc{0} % x coordinate of center

\def\yc{0} % y coordinate of center

\def\zc{0} % z coordinate of center

\filldraw[shift={(\xc, \yc)}][ball color= red]

(0,0,0) circle (\Rc);

\foreach \t in {-60,-20,...,80} {

\DrawLatitudeCircle[\Rc]{\t}{\xc}{\yc}}

\foreach \t in {-5,-45,...,-175} {

\DrawLongitudeCircle[\Rc]{\t}{\xc}{\yc}}

\drawIntersectionOfSpheres{\xc}{\yc}{\zc}{\xb}

{\yb}{\zb}{\Rc}{\Rb}{yellow}

\end{tikzpicture}

This code also requires the helper functions for draw-
ing spheres, given in appendix C. Place them just
before \begin{document}.

The following are additional helper functions to the
main function that draws the intersection of the two
spheres, \drawIntersectionOfSpheres.

\newcommand\calculateCenterSpan[4]{

\pgfmathsetmacro#1{((#2)^2+(#3)^2+(#4)^2)^(1/2)}}

\newcommand\calculateAngtheta[3]{

\pgfmathsetmacro#1{acos(#2/#3)}}

\newcommand\calculateShiftDistance[4]{

\pgfmathsetmacro#1{((((#2)^2-(#3)^2)/(2*#4)+#4/2))}}

\newcommand\calculateShiftDistancePercent[3]{

\pgfmathsetmacro#1{#2/#3}}

\newcommand\calculateCircleRadius[3]{

\pgfmathsetmacro#1{((#2)^2 - (#3)^2)^(1/2)}

}

% The function below does not use the

% rotation matrices about coordinate axes,

% but instead computes the vector that we

% want to rotate around, then the

% corresponding rotation matrix, and then

% (as before) projects to the xy-plane.

% It also shifts to the correct location.

\newcommand\drawIntersectionOfSpheres[9]{

% Parameters are: CenterSphere1x, CenterSphere1y,

% CenterSphere1z, CenterSphere2x,

% CenterSphere2y, CenterSphere2z,

% RadiusSphere1, RadiusSphere2, DrawColor.

\pgfmathsetmacro\xchange{#4 - #1}

\pgfmathsetmacro\ychange{#5 - #2}

\pgfmathsetmacro\zchange{#6 - #3}

\pgfmathsetmacro\firstSphereCenterx{#1}

\pgfmathsetmacro\firstSphereCentery{#2}

\calculateCenterSpan\centerSpan{

\xchange}{\ychange}{\zchange}

\calculateAngtheta\angtheta{\zchange}{\centerSpan}

\calculateShiftDistance\shiftDistance{

#7}{#8}{\centerSpan}

\calculateShiftDistancePercent\shiftDistancePercent{

\shiftDistance}{\centerSpan}

\calculateCircleRadius\circleRadius{

#7}{\shiftDistance}

\pgfmathsetmacro\ux{\ychange}

\pgfmathsetmacro\uy{-\xchange}

\pgfmathsetmacro\C{1-cos(\angtheta)}

\pgfmathsetmacro\L{((\ux)^2 + (\uy)^2)^(1/2)}

\pgfmathsetmacro\first{

cos(\angtheta) + (\ux)^2*\C/(\L^2)}

\pgfmathsetmacro\second{\ux*\uy*\C/(\L^2)}

\pgfmathsetmacro\third{\ux*\uy*\C/(\L^2)}

\pgfmathsetmacro\fourth{

cos(\angtheta)+(\uy)^2*\C/(\L^2)}

\tikzset{xyplane/.estyle={cm={\first,\second,\third,

\fourth,(\firstSphereCenterx+\shiftDistancePercent

*\xchange,\firstSphereCentery

+\shiftDistancePercent*\ychange)}}}

\pgfmathsetmacro\dAng{atan(\xchange/\ychange)}

\draw[xyplane, color=#9, ultra thick]

(-\dAng: \circleRadius) arc

(-\dAng:-\dAng-180:\circleRadius);

\draw[xyplane, color=#9, ultra thick, dashed]

(-\dAng+180: \circleRadius) arc

(-\dAng+180:-\dAng:\circleRadius);

}

References

[1] Till Tantau. PGF/TikZ manual, version 2.10.
http://mirror.ctan.org/graphics/pgf/base/

doc/generic/pgf/pgfmanual.pdf, 2010.

[2] Andrew Mertz and William Slough. Graphics
with PGF and TikZ. TUGboat 28:1, Proceedings
of the Practical TEX 2006 Conference, http:
//tug.org/TUGboat/tb28-1/tb88mertz.pdf, 2007.

[3] Tomasz M. Trzeciak. http://www.texample.net/
tikz/examples/map-projections/, 2008.

[4] Wikipedia, http://en.wikipedia.org/wiki/
Rotation_matrix.

⋄ Keith Wolcott
Dept. of Mathematics and Computer Science
Eastern Illinois University
Charleston, IL 61920-3099 USA
kwolcott (at) eiu dot edu

Three-dimensional graphics with PGF/TikZ



114 TUGboat, Volume 33 (2012), No. 1

Book review: Trees, maps, and theorems

Pavneet Arora

Jean-luc Doumont, Trees, maps, and theorems.
Principiae, Kraainem, Belgium. 192pp. Hardcover,
$96.00, ISBN 978-90-813677-07.

If a simple sentence is but a message given shape
and cadence by syntax, then what of the larger ves-
sels into which it is poured: reports, presentations,
and graphics? What principles guide these larger
containers of information so that the messages found
within aggregate meaningfully, and are made acces-
sible to the audience? This is the theme of Jean-luc
Doumont’s book Trees, maps, and theorems: Effec-

tive communication for rational minds.
To frame the discussion, Doumont begins with

an unambiguous listing of what he feels to be the
laws which define the responsibilities of any author
of communications material:

1. You, as the author, are responsible for creat-
ing communications which impart a message
effectively to your audience. This is quite dif-
ferent from the common practice where commu-
nications merely showcase a maximal amount
of information, and that quite often in a frac-
tured way—the expectation being that it is the
responsibility of the audience to rise up and
somehow penetrate the author’s erudition.

2. Often, communications must compete with noise
which impedes the message. You, as the author,
must not only anticipate this, but must also

work to ensure that the message in your com-
munications is resilient enough to get through.

3. Use redundancy to ensure that the message does
get through. That is, that even if the message is
made strong, by using redundancy you increase
the chances that it will reach your audience.

The emphasis on adapting the communications’
form to the recipient is particularly useful, and takes
any exposition of design from the abstract and inan-
imate into the realm of a proper use-case. Here one
can test a design by gauging how effectively the mes-
sage reaches the audience. To take a small example,
think of the distinction between a morality play and
judicial judgement comprising its opinions and dis-
sents. Both may concern themselves with ethics, but
the audience for each is quite distinct. Knowing the
audience ensures that the message comes across even
in harsh environments.

Beginning with these fundamentals, the book
then progresses with chapters covering the three
forms of communications it concerns itself with: writ-
ten documents, oral presentations, and graphical dis-
plays. For each of the forms, the discussion is then
broken into sections covering the different phases:
planning, designing, and constructing.

One may dive into a chapter covering a specific
form without losing much by skipping over the dis-
cussions about other forms, but within that chapter
it is advisable to work through the material linearly.
A navigational map, re-introduced with each chap-
ter and updated at each section, makes it easy to
understand where one is within the discussion.

The page design has a consistent layout, used
throughout, which is described at the outset (a sam-
ple spread is at the end of this review). It consists
of four distinct areas on each double-page spread:

• main discussion
• illustrations and comments
• frequently asked questions
• common shortcomings and practical advice

With this consistency comes familiarity as one
makes one’s way through the book. New concepts,
as they are introduced, may readily be plugged into
a mental map prepared to receive them.

The final chapter animates the guidelines set
forth earlier through illustrative examples. Each
example comes replete with common errors that are
excised as the sample communication undergoes a
transformative process and is made better.

So is the book an exemplar of the very principles
it espouses? The simple answer is yes. Its emphasis
on message over raw information permeates the text.

Pavneet Arora



TUGboat, Volume 33 (2012), No. 1 115

Illustrations are used to give context to the dis-
cussion and are used as needed without distraction.

Within the page design, a grid is used to align
elements: textual, tabular, and graphical. The spac-
ing in and around elements makes it easy to navigate,
to move back and forth between different levels of ab-
straction, as well as to return to exceptions without
interrupting the flow of the main message.

An attentive reader will notice a compulsive
adherence to paragraph layout as the last sentence of
each paragraph ends up perfectly aligned at the right
margin. While this is admirable, it does produce a
disconcerting effect in that one can never be sure if,
at the bottom of the page, the paragraph is complete.

As typesetters, both amateur and professional,
we pride ourselves in our precision. Sloppy typeset-
ting is considered to be a contraindicator of precise
thinking. What Doumont does is to raise our sights
higher. While precision is essential in the layout of
information, it is a weak standard when it comes to
assessing the effectiveness of the underlying message.
Giving shape to the message so that it reaches its
audience is that real purpose of all communications.

What Doumont illuminates so effectively is that,
by taking communications from the mere aesthetic
into the realm of signals, we can distill best practises
to ensure these signals reach their destination intact
and with greater frequency.

If there is an omission in this book, it might be
this: I was taught long ago in some sales training
that the most effective form of communications is
a story. Stories are universal, and often resonate

well even across cultures. As such, messages can
be made more effective if woven into a narrative. I
hope that Doumont will consider this as a request
for a follow-up edition which includes this aspect of
enhancing signal strength, or as a book on its own
that might use this as a theme.

So let me end with a story of my own. I have on
my bookshelf a book given to me some decades back
during one of my last visits with my grandfather.
The book is Write Better, Speak Better which was
published in 1973 by Reader’s Digest. In my arro-
gance, a not uncommon crutch to the awkwardness of
youth, I accepted it glibly and promptly put it aside.
By then I had discovered that my affinity was for
things technical, and language seemed like a murky
inkwell. It was only much later that I came to the
realization that it is with the power of language that
we can express our ideas— technical and otherwise—
most effectively. And because of the satisfaction de-
rived when doing so, I have been playing catch up
ever since. Doumont’s book is a most worthy addi-
tion for anyone interested in expressing themselves
to a wider audience, and I recommend it heartily.

⋄ Pavneet Arora

Caledon, Ontario, Canada

pavneet_arora (at) bansisworld dot org

http://blog.bansisworld.org/

Editor’s note: We are happy to note that TEX Users
Group members in good standing enjoy an exclusive
discount on this book. The details can be found at
https://www.tug.org/members.

On what do you base your recommendations?

The guidelines in this book are based mostly

on common sense and experience. They have

been put to the test, not only in my own practice,

but also by thousands of engineers, scientists,

managers, and other professionals worldwide

who took part in some of my training sessions.

I hope the guidelines can be as useful to you

as they apparently are to these professionals.

Moreover, my approach is no doubt influenced

by my education as an engineer and scientist,

and—in ways difficult to trace or to quantify—

by all I have read or heard on communication.

Do you rely on empirical research at all?

Well-conducted research in any scholarly field

is normally thought-provoking at the very least,

so research findings should not be disregarded.

Still, empirical research about communication

suffers from very many confounding factors

and is thus hard to generalize toward practice.

In my experience, far too many people apply

poorly understood research outcomes blindly,

sometimes to the extent of generating myths.

I would rather that they thought for themselves.

Why such a focus on counterexamples?

Remarkably, there is nothing quite remarkable

about instances of effective communication:

they draw one’s attention to the ideas expressed,

not to themselves, so they are hard to learn from

by imitation without the contrasting viewpoint

provided by a counterexample. Also, learning

to pinpoint shortcomings in one’s own practice

is a necessary step toward improving on them.

How to use this book

This book was designed to propose a logical flow

for the discussion while enabling selective reading

of individual parts, chapters, or sections. Feel free,

therefore, to read the complete discussion linearly

or to jump ahead to the themes of interest to you.

Topics are discussed in one double page each time

(or in a small integer number of them), to facilitate

their direct access or out-of-sequence processing.

The pages, too, are formatted for selective reading.

The right page is reserved for the main discussion,

with illustrations, limited examples, or comments

placed left of the text. In relation to this discussion,

the left page answers frequently asked questions

collected at the occasion of lectures and workshops,

set on a gray background. In the remaining space,

it lists typical shortcomings, offers practical advice

on specific subtopics, or broadens the discussion.

Frequently asked

questions

Common shortcomings,

practical advice, etc.

Illustrations,

comments

Main discussion

This book is organized in five parts: first, fundamentals, then

written documents, oral presentations, and graphical displays,

and finally application to five more specific types of document.

It ends with notes and references, as well as an index of topics.

Part one, Fundamentals, introduces the ideas that underpin

the four subsequent parts. Probably the most arduous part

of the book as it lacks the examples that appear further on,

it can be skimmed or perhaps skipped at first by the reader

eager to start work on documents, presentations, or displays.

Still, it answers many a why about further recommendations

and, by offering a minimal set of universal principles, it equips

readers for most challenges of professional communication.

Part two, Effective written documents, offers a methodology

in five steps to proceed from scratch to a complete document,

namely planning, designing, drafting, formatting, and revising

the document to be created. It details each of these five steps.

Part three, Effective oral presentations, proposes a similar

yet distinct approach in five steps: planning the presentation,

designing it, creating the slides, delivering the presentation,

and answering questions. Though meant to stand on its own,

it does not repeat uselessly what has already been discussed

in detail about written documents, in particular planning.

Part four, Effective graphical displays, first classifies pictures

as a way to help readers choose the right representation, then

discusses how to plan, design, and construct optimal graphs,

and finally how to draft a caption that gets the message across.

Part five, Applications, illustrates how the general guidelines

in the previous parts apply to five common types of documents.

Specifically, it examines sets of instructions, electronic mail,

Web sites, meeting reports, and scientific posters, each time

particularizing earlier recommendations or adding new ones.

Book review: Trees, maps, and theorems



116 TUGboat, Volume 33 (2012), No. 1

Book review: Design for Hackers

Boris Veytsman

David Kadavy, Design for Hackers.

Reverse-Engineering Beauty. Wiley &
Sons, 2011. 352 pp., Paperback, US39.99.
ISBN 978-1-119-99895-2.

In the beginning of the book David Kadavy thanks
the Wiley acquisition editor Chris Webb for taking
up this project, which another publisher dismissed as
“ambitious”. After reading the book I could appre-
ciate this story. In 352 pages, the author describes
the principles and history of design—the subject
that usually takes several semesters of college level
courses. If this is not ambitious, then what is?

Of course, the book is not intended for a system-
atic study—rather it is a very popular introduction
to whet the appetite of novices and, as Kadavy says,
to provide you with a new set of eyes through which

you can see the world anew. It is clearly intended
for the “new media creators”: web designers, pro-
grammers, management of high-tech companies and
other people with a good knowledge of computers,
but much less of design and arts. Even if they them-
selves will not become designers after reading the
book, they might better appreciate the job of their
designer departments. This in itself would be a very
good result. Let us see whether Kadavy achieves
this implicit goal.

The book has nine chapters: (1) Why Design
Matters, (2) The Purpose of Design, (3) Medium and
Form in Typography, (4) Technology and Culture,
(5) Fool’s Golden Ratio: Understanding Proportions,

(6) Holding the Eye: Composition and Design Prin-
ciples, (7) Enlivening Information: Establishing a
Visual Hierarchy, (8) Color Science, and (9) Color
Theory. It also includes an unnumbered Introduc-
tion and two appendices: (A) Choosing and Pairing
Fonts, and (B) Typographic Etiquette.

Simply from this list of chapters a reader can
see that the book discusses in detail typography
and fonts. It is not surprising, since David Kadavy
taught a college course on typography, and seems to
be genuinely interested in the subject. Thus TUG

members who share this interest might enjoy and
appreciate the book.

In my reading, the pages about typesetting are
among the best in Design for Hackers; the author
is very knowledgeable and knows how to convey his
knowledge to the reader. Since the book is written
mostly about web design, it talks in length about
suitability of various fonts and font features for screen
rendering. Design for Hackers has several fascinating
asides: why the Romain du Roi letters commissioned
by Louis XIV and designed on a “scientific” grid
inspired many digital fonts, the story behind the
(in)famous Comic Sans, the design principles of the
Georgia family, and many others. These stories alone
make the book worth reading.

The chapters about composition and colors are
also well-written and quite interesting. The author
teaches these subjects by examples: he takes logos,
paintings, web pages and explains why they are suc-
cessful. This exposition is convincing and might be
quite revealing for many novices or even experienced
readers. For example, in Chapter 6 the author ex-
plains how the details of a classical sculpture or a
Seurat painting subtly guide the eye to return to the
center of the piece. Then he takes a modern logo and
shows the same principles in a quite different situa-
tion. Kadavy’s attention to the details and the skill
in revealing these details for the reader are superb.

Kadavy clearly and lucidly explains many rather
difficult topics, such as grid design for books and web
pages, coordinating font sizes, relationship between
colors, color spaces and printing technology, and
many, many others.

I would be happy to stop here and congratulate
the author and his readers with a very good intro-
ductory text on design. Unfortunately, while the
publisher provided a bold and dedicated acquisition
editor for the book, he seemed to forget about the
need for copyediting. Design for Hackers has many
paragraphs which an experienced copyeditor would
delete or demand be rewritten. Following are just a
few examples of such paragraphs.

Boris Veytsman



TUGboat, Volume 33 (2012), No. 1 117

Kadavy twice (p. 3 and p. 46) states that before
Gutenberg made books cheap, literacy rates were
very low, and few people outside the clergy could
read. First, this statement probably does not deserve
repeating, and second, it is not quite true. The
author himself talks at length about wall graffiti in
Pompeii, which demonstrates that in the ancient
Roman empire the literacy level was relatively high.

Talking about technology and culture, the au-
thor spends several pages on the history of Impres-
sionism and Salon des Refusés. The author makes
a connection between the new artistic school and
the growth of the middle class. A box on page 82
summarizes the take-home message as REMEMBER:

In order for a piece of art or design to really be

relevant and important it has to be sensitive to the

technological and cultural factors present within the

world in which the piece is created. Doing otherwise

will result only in the creation of a veneer. Does this
jejune remark really deserve its prominent place?
Immediately after this story Kadavy talks about
Web 2.0. What does the author want to say? Is
Web 2.0 comparable to Impressionism, and if yes,
how? Which social changes are relevant to Web 2.0?
Maybe Web 2.0 is, using the author’s terms, just a
veneer?

One of the most prominent examples of the
lack of copyediting is the section SEO Is Design.
Nowhere in the body of the book does the author
explain what SEO is, and this reviewer was quite
baffled by the passionate pleas in the book about
the importance of this enigmatic entity. Only in the
index is this acronym spelled out as “Search Engine
Optimization”: a series of tricks to make your web
page go to the top of Google search output. A good
editor would likely catch this. A copyeditor could also
tell the author that naming two consecutive chapters
Color Science and Color Theory is probably not a
good idea.

Another thing a good copyeditor could do is
slightly brush up the style of the author. Kadavy’s
writing is generally easy to read. However, sometimes
his colloquial style becomes too flippant, and the
result looks rather artificial. For example, Kadavy
argues that the “golden” ratio is overused and over-
hyped, and some other fractions like 2:3 and 3:4
should be used in the design as well. This is fine,
but should he really name the corresponding section
Fool’s Golden Ratio? Also, sometimes the author
veers into sales speak (The corporations pay big bucks

for . . . ).
Since this book is about design, the design of

the book itself should be mentioned. It seems to
be highly influenced by web pages rather than by
traditional typography: ragged right typesetting,
paragraphs separated by vertical white space, lots of
colored illustrations, etc. Since the author is without
doubt a good designer, the result is surprisingly
clean and brisk. Marginal captions for figures look
excellent, the colors are selected with great care,
and the overall impression is striking. The book is
printed on glossy paper (probably necessary because
of many color illustrations) and is tastefully typeset
in beautiful Adobe Garamond. It is a pleasure to
open and read.

Returning to the question in the beginning of
the review, I can say that Kadavy has written a good
introduction to design, interesting for novices and
giving food for thought to more experienced readers.
I would only wish that he had given the same care
and attention to the details of his text as to the
design and typesetting of the book.

⋄ Boris Veytsman

Computational Materials Science

Center, MS 6A2

George Mason University

Fairfax, VA 22030 USA

borisv (at) lk dot net

http://borisv.lk.net

Book review: Design for Hackers



118 TUGboat, Volume 33 (2012), No. 1

Book review: Companion to the Papers

of Donald Knuth

David Walden

Donald E. Knuth, Companion to the Papers of

Donald Knuth. Center for the Study of Language
and Information, Stanford, 2012. 441+xiii pp.
Paperback, US$35.00, ISBN 978-1575866345.
Hardcover, US$70.00, ISBN 978-1575866352.

Between 1992 and 2011, CSLI Publications published
eight volumes of collected papers by Donald Knuth:

1. Literate Programming

2. Selected Papers on Computer Science

3. Digital Typography

4. Selected Papers on Analysis of Algorithms

5. Selected Papers on Discrete Mathematics

6. Selected Papers on Computer Languages

7. Selected Papers on Design of Algorithms

8. Selected Papers on Fun and Games

Now CSLI has published a ninth and final volume
in the series: Companion to the Papers of Donald

Knuth.
This final volume does not completely stand

alone, as the other books in the series do. Nonethe-
less, it is quite wonderful in its way.

In the Preface, Knuth justifies creation of the
present book and the series and sketches the content
of the present book.

The first chapter contains “six dozen” problems
Knuth has submitted to various publications over
the years. The second chapter contains previously
unpublished solutions to a few of these problems.
The solutions to the rest of the problems have been
previously published, and one can find pointers to
those solutions in chapter 20.

The next four short chapters are small pieces
that did not appear in the first eight volumes. One of
these is Knuth’s well-known note on “Teach Calculus
with a Big O”.

Chapters 7–17 are transcripts of “conversations”
between Knuth and Dikran Karagueuzian (i.e., in-
terviews of Knuth by Karagueuzian). Karagueuzian
is the publisher of the volumes in this series. The
interviews were done in 1996, which was during the
period when Digital Typography was being prepared
for publication and the completion of TEX and META-
FONT was in the not-so-distant past. Thus, there
is a good deal of discussion in the interviews about
Knuth’s efforts with typesetting and font design.
There is also a good bit about Knuth quite person-
ally. The titles of the interviews are:
• Prizes and Choices • Printing • Life
• Printing (Continued) • Travel

• Why Computer Science?
• Work Habits and Problem Solving
• Getting Started
• Programming and Languages
• AI, Students, Retirement
• Accidents, Planning, Naming
Altogether there are 145 pages of these interviews
following the 40 pages of the first six chapters.

In my view, this first part of the book is worth
at least half of the book’s price. The rest of the book
is perhaps more valuable, especially in the domain
of information retrieval for posterity.

The last four chapters are Knuth’s CV; a com-
prehensive list of his books and their translations;
an annotated list of his papers (in three categories:
major journal publications, secondary works such
as reviews and letters to editors, and works of lim-
ited circulation); an alphabetical index of titles of
his papers (mostly included in the nine book series),
and a combined index (names, topics, etc.) covering
the entire nine volume series. The last two of these
chapters take up 220 pages.

These latter four chapters, especially the final
two, are Knuth’s effort to make his collected pa-
pers accessible to future researchers, as well as his
effort for completeness and closure on this series
of books. (He states that he plans to devote full
time to completion of The Art of Computer Pro-

gramming.) Speaking as an owner of the prior eight
books in the series, who spent a lot of time search-
ing through them and their individual indexes while
researching the content of the 2010 publication of
TEX’s 2

5 Anniversary: A Commemorative Collection

(http://tug.org/store/tug10/), this overall index
is a godsend.

Providing as it does accessibility to the other vol-
umes in Knuth’s series of collected papers, I believe
every library featuring books on computing should
have this Companion volume, whether or not they
have the other books in the series. Similarly, I think
every computing history archive should have a copy.
Individuals who already have several of the earlier
volumes in the series will find value in this final vol-
ume in the series. And people who admire Knuth
and have collected a lot of his books will definitely
want a copy of this volume.

As with all Knuth’s writings and edited pre-
sentations and interviews, the non-lists-and-indexes
part of the book is fascinating reading. The lists-
and-indexes part of the book is up to Knuth’s usual
perfectionist standards. I am glad I now have this
volume on my bookshelf.

⋄ David Walden

http://www.walden-family.com/texland

David Walden



TUGboat, Volume 33 (2012), No. 1 119

TheTreasure Chest

This is a list of selected new packages posted to CTAN

(http://ctan.org) from November 2011 to March
2012, with descriptions based on the announcements
and edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
http://tug.org/ctan.html

fonts

amiri in fonts

Classical Arabic typeface, Naskh style, inspired by
the Bulaq Press typeface.

ipaex in fonts

IPA and IPAex fonts, fixed-width Kana and Kanji
and variable-width Western characters.

libertine-legacy in fonts

Last release of Libertine including Type 1 fonts.

mdsymbol in fonts

Mathematical symbol font, especially for Adobe
Myriad Pro.

thaifonts-arundina in fonts/thai

DejaVu-compatible serif, sans serif, and monospaced
Thai fonts.

graphics

pst-pulley in graphics/pstricks/contrib

Plot different pulleys.

pst-solarsystem in graphics/pstricks/contrib

Plot visible planets.

pst-tools in graphics/pstricks/contrib

Helper functions for PSTricks packages.

reotex in graphics/pgf/contrib

Draw Reo channels and circuits with TikZ.

tikzpfeile in graphics/pgf/contrib

Draw all math arrows with TikZ.

vocaltract in graphics/pstricks/contrib

Visualization of the vocal tract.

info

Einfuehrung in info/examples

Examples for the DANTE e.V. book Einführung

in LATEX.

computer-typesetting-using-latex in info/russian

Extensive guide to LATEX in Russian.

language

japanese-otf-uptex in language/japanese

upLATEX support for japanese-otf.

jfontmaps in language/japanese

Font maps and support scripts for handling Kanji
font embedding.

zhmcjk in language/chinese

Set up CJK fonts dynamically via zhmetrics.

macros/generic

gates in macros/generic

Implementing modular and customizable code.

macros/latex/contrib

aeb_mobile in macros/latex/contrib

Format a PDF for a smartphone.

apa6 in macros/latex/contrib

Format documents in 6th Edition APA style.

bchart in macros/latex/contrib

TikZ-based bar charts.

bibleref-lds in macros/latex/contrib

Extended references to the LDS scriptures.

bitelist in macros/latex/contrib

Expandable splitting of token lists.

cookingsymbols in macros/latex/contrib

Symbols for recipes, such as oven and dish glyphs,
made with METAFONT.

copyrightbox in macros/latex/contrib

Put a small amount of text near an image, possibly
rotated.

diagbox in macros/latex/contrib

Making table heads with diagonal lines.

documentation in macros/latex/contrib

Documenting C, Java, assembler source.

droit-fr in macros/latex/contrib

Tools for writing a thesis in French law.

easyfig in macros/latex/contrib

Easy macro to center image with caption and label.

fixltxhyph in macros/latex/contrib

Hyphenating a word with an emphasized substring.

flipbook in macros/latex/contrib

Typeset flipbook animations in corners.

footnoterange in macros/latex/contrib

Support references to ranges of footnotes.

macros/latex/contrib/footnoterange



120 TUGboat, Volume 33 (2012), No. 1

fullwidth in macros/latex/contrib

Set left and right (and other) margins.

gamebook in macros/latex/contrib

Typeset gamebooks and other interactive novels.

gtrcrd in macros/latex/contrib

Adding chords to lyrics.

hausarbeit-jura in macros/latex/contrib

Writing “juristische Hausarbeiten” (legal essays) at
German universities.

hletter in macros/latex/contrib

Produce letters with logos, scanned signatures, etc.

issuulinks in macros/latex/contrib

Produce documents with all links externalized.

kantlipsum in macros/latex/contrib

Random sentences in Kantian style.

kdgdocs in macros/latex/contrib

Course and thesis classes for Karel de Grote Univ.
College.

lmake in macros/latex/contrib

Simplify writing of lists that fit a pattern.

logbox in macros/latex/contrib

Do \showbox without stopping compilation.

longnamefilelist in macros/latex/contrib

Align \listfiles output containing long names.

mattex in macros/latex/contrib

Macros and .m files to import Matlab variables.

media9 in macros/latex/contrib

Embed interactive Flash and many other multimedia
objects in PDF output.

menukeys in macros/latex/contrib

Format menu sequences, paths and keystrokes.

messagebubbles in macros/latex/contrib

Display conversations in message bubbles.

monofill in macros/latex/contrib

Horizontal alignment of plain or monospaced text.

nameauth in macros/latex/contrib

Name authority macros for consistency and flexibility.

nicefilelist in macros/latex/contrib

Improvements for \listfiles.

parnotes in macros/latex/contrib

Notes after every paragraph, or elsewhere.

philosophers-imprint in macros/latex/contrib

Class for the Philosophers’ Imprint journal.

romanbar in macros/latex/contrib

Write Roman numbers, or other text, with bars.

sasnrdisplay in macros/latex/contrib

Typeset SAS or R code and output.

sepfootnotes in macros/latex/contrib

Support footnotes coming from a separate file.

tcolorbox in macros/latex/contrib

Colored and framed text boxes with header, possibly
split, especially for code examples.

title in macros/latex/contrib

Simple headers and footers for pages and floats.

tui in macros/latex/contrib

Thesis style for the University of the Andes, Colombia.
usebib in macros/latex/contrib

Reusing bibliographic data.
xcookybooky in macros/latex/contrib

Typesetting long recipes, with pictures.
xpatch in macros/latex/contrib

Generalize etoolbox.

macros/latex/contrib/beamer-contrib

appendixnumberbeamer in m/l/c/beamer-contrib

Fix frame numbering in beamer with an appendix.

macros/latex/contrib/biblatex-contrib

biblatex-fiwi in m/l/c/biblatex-fiwi

biblatex support for German humanities citations,
especially in film studies.

biblatex-luh-ipw in m/l/c/biblatex-contrib

biblatex support for Leibniz University Hannover
citations.

geschichtsfrkl in m/l/c/geschichtsfrkl

biblatex support for the history department at the
University of Freiburg.

macros/luatex

lvdebug in macros/luatex/latex

Display boxes, glues, kerns and penalties in the PDF

output.

macros/plain

happy4th in macros/plain/contrib

One hundred pages of fireworks.
hanoi in macros/plain/contrib

Solve the Towers of Hanoi (up to 15 discs), and
learn about category codes.

reverxii in macros/plain/contrib

Playing Reversi in 938 characters.

support

check-parens in support

Check for mismatched braces, delimiters, etc.
checkcites in support

Detect undefined or unused references.
dosepsbin in support

Extract PS/WMF/TIFF from DOS EPS binary files.
texlive-dummy in support/texlive

Fulfill dependencies of openSUSE TEX Live packages.
typeoutfileinfo in support

Display information of a LATEX file via readprov.

macros/latex/contrib/fullwidth



TUGboat, Volume 33 (2012), No. 1 121

Eutypon 26–27, October 2011

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

Siep Kroonenberg, External graphics for LATEX;
pp. 1–13

LATEX documents can include many kinds of
graphics, ranging from photographs to illustrations,
diagrams and data plots. Often, the best and sim-
plest choice is to create the graphic with external
software, and save it in or export it to a LATEX-
compatible format. This article surveys available
options. Note: This is an update of a paper pub-
lished originally in MAPS no. 35 (2007), pp. 18–26.
(Article in English.)

Georgios Tsalakos, The drawing package
PSTricks; pp. 15–27

PSTricks and its add-on (“contributed”) pack-
ages make a powerful drawing tool for users of LATEX
and other TEX-based typesetting systems. In this
paper, a summary-through-examples is given of the
basic capacities of PSTricks, and the additional capa-
bilities offered by contributed packages. Also, exam-
ples are shown for the preparation and the embedding
of drawings and images in school reports and other
prints. (Article in Greek with English abstract.)

Dimitrios Filippou, In the age of the typewriter;
pp. 29–59

In 2011, a news item made headlines around
the world: “Last typewriter factory left in the world
closes its doors”. On the occasion of this rather false
piece of news, this article presents a brief history of
the typewriter, from the first mechanical typewriters
to the most modern electronic typewriters, which
also tend to disappear. Special reference is made
to typewriters with Greek keyboards, which reached
their peak of glory in the early 1980s, when university
notes and textbooks were massively produced in
Greece. (Article in Greek with English abstract.)

Apostolos Syropoulos, TEXniques: Looking for
certain glyphs in OpenType fonts; pp. 61–62

In this paper, we present a second, revised ver-
sion of our “Byzantine” music fonts. We also present
a new approach for a more efficient use of these fonts
with LATEX, and its ancestor TEX. (Article in Greek

with English abstract.)

Georgios Tsalakos, Book review: H. Voss,
PSTricks ; pp. 63–64

PSTricks—Graphics and PostScript for TEX

and LATEX, UIT Cambridge, Cambridge, UK, 2011.
(Article in Greek.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

Die TEXnische Komödie 4/2011–1/2012

Die TEXnische Komödie is the journal of DANTE

e.V., the German-language TEX user group (http:
//www.dante.de). [Editorial items are omitted.]

Die TEXnische Komödie 4/2011

Manuel Pégourié-Gonnard, Attribute und
Farben [Attributes and colors]; pp. 24–49

We take a look at attributes, a LuaTEX exten-
sion, and their use for implementing colors. After
explaining the underlying concepts and the TEX and
Lua interfaces we provide a short overview of the
basics behind the classical color implementation in
LATEX and its shortcomings. We then show how these
shortcomings can be solved using attributes. We also
show that attributes can be used for other needs, not
just colors.

Arno Trautmann, Das Paket chickenize – Spaß
mit Node-Manipulationen in LuaTEX [The
chickenize package— fun with node
manipulations in LuaTEX]; pp. 50–57

[Translation published in this issue of TUGboat.]

Dirk Hünniger, Ein Programm zur
Konvertierung von Artikeln der Wikipedia
nach LATEX [Converting Wikipedia articles to
LATEX]; pp. 58–60

For various reasons it would be nice to be able
to generate a LATEX file from a Wikipedia article.
Manual conversion is elaborate and prone to errors.
Therefore a compiler has been developed and made
publicly available for Windows and Linux. Further-
more, the source code has been published under an
open license. The tool is also used for projects such
as Wikibooks.

Petra Rübe-Pugliese, Aktuelle experimentelle
deutsche Trennmuster unter Debian-TEXLive
[Up-to-date experimental German hyphenation
patterns for Debian TEX Live]; pp. 61–65

In this article we explain the installation of the
latest German hyphenation patterns on Debian.

Philipp Lehman, Zu den Nachteilen von BibTEX
[On the disadvantages of BibTEX]; pp. 66–67

When we discuss the disadvantages of BibTEX
there are two main topics:

1. BibTEX and BibTEX8 assume that a charac-
ter is represented by one byte. This however does not
apply to UTF-8 where for certain characters more
than one byte is used.

2. It is not just UTF-8 but Unicode in general as
the comprehensive standard for encoding characters
and many associated topics such as sorting.



122 TUGboat, Volume 33 (2012), No. 1

Joseph Wright, LATEX3 Roadmap; pp. 68–70
One of the questions that comes up from time to

time is what the ‘roadmap’ is for LATEX3 development.
While there is not an official plan, I certainly have
some ideas on what I’d like to see addressed in a
concrete way. This is all rather flexible, but I’ll try
to outline some areas for attention.

Herbert Müller, Berichtigung zu »Von
\pageref zu \hyperpage« [Corrections to
the article “From \pageref to \hyperpage”];
pp. 71–72

[Letter to the editor with corrections.]

Die TEXnische Komödie 1/2012

Agnieszka Okońska, LATEX für Juristen [LATEX
for attorneys]; pp. 6–12

The search for the perfect solution from a user’s
point of view. While LATEX is commonly used for
creating scientific papers in the natural sciences or
in economics its use in other areas of science is still
rare. To members of these disciplines LATEX may
offer advantages as well, especially to attorneys.

Herbert Voß, Datumsfunktionen mit LuaTEX
[Date functions with LuaTEX]; pp. 13–19

With pdfLATEX the current date can be printed
using the macro \today without any problems; for
printing the time, one may use the package datetime
(although this package does not supporting printing
seconds). With LuaTEX or LuaLATEX, however, one
can use the date- and time routines of Lua, which
allow easy formatting of date and time as well.

Herbert Voß, Multilinguale Texte mit
LuaLATEX—ein Versuch [Multilingual texts with
LuaLATEX —An experiment]; pp. 20–27

The TEX flavor Ω (Omega) was developed to
overcome LATEX’s restrictions and to allow using 16-
bit fonts. The successor of Ω was ℵ (Aleph), which
provided a first step to the general use of Unicode.
ℵ is not under development any more since with
LuaTEX there is a successor that allows multilingual
texts in a way that has not been possible with TEX
before. In this article the author describes his ex-
perience concerning writing multilingual documents
with LuaTEX.

Wolfgang Beinert, Typographischer Punkt
[The typographical point]; pp. 28–30

Point typographique, Didot-point, pica point,
PostScript point . . . The “typographical system of
units”, abbreviated as “point”, originally named as
a “Point typographique”. The typographical point
is the smallest unit of a typographical point unit
system. It was named in the mid-18th century in

France for an asymmetrical system of measurement
for uniform sizing of letters, font sizes, and distances.

Heiko Oberdiek and Herbert Voß, Index mit
Fortsetzungsanzeige [Index with “continuation”
signs]; pp. 31–32

Using fancyhdr or scrpage2 one can print the
letter range of the index page in the header. But one
has to invest quite a bit of effort if such a letter is a
continuation from the previous page.

[Received from Herbert Voß.]

The Asian Journal of TEX, Volumes 4–5
(2010–2011)

The Asian Journal of TEX is the publication of the
Korean TEX Society (http://ktug.kr).

AJT Volume 4, Number 1

Dohyun Kim, X ETEX-ko: A X ETEX macro
package for processing Korean documents;
pp. 1–30

X ETEX-ko is a macro package for typesetting Ko-
rean documents, including old Hangul texts as well,
upon the X ETEX engine. X ETEX is a sophisticated
TEX engine which supports full Unicode encoding
and OpenType layout features. Using X ETEX itself,
however, is not fully satisfactory for Korean usage,
especially because of the relatively poor quality of
Latin/Greek/Cyrillic glyphs in many Korean fonts.
For this reason and others, X ETEX-ko has been re-
cently developed, mainly focusing on how to typeset
with different fonts between Western and Korean
characters. This paper presents the current state of
the X ETEX-ko package along with its main features
and usage, including among others how to configure
Korean fonts, how to change character spacing, and
what to be prepared for in typesetting old Hangul
texts. At the end of the paper, some limitations of
the current X ETEX-ko package will also be discussed
as a warning to the users. (Article in Korean.)

Juho Lee, Fontspec: A wing of X ETEX; pp. 31–68
(Article in Korean.)

Hoze Yi, On technical writing of manuals;
pp. 69–80

(Article in Korean.)

AJT Volume 4, Number 2

In-Sung Cho, Understanding and using
coordinates in PSTricks with application to



TUGboat, Volume 33 (2012), No. 1 123

plotting functions from economics models;
pp. 81–100

The article examines the coordinate systems in
PSTricks. Though the default is the Cartesian coor-
dinate system, one can also use the polar coordinate
system once the command \SpecialCoor is declared.
The command \SpecialCoor allows greater variety
of expression of the Cartesian and polar coordinates,
such as PostScript language and predefined nodes.
Understanding the features of the various expres-
sions of coordinates can make a tedious graphing
job interesting or challenging. The article provides
some examples of plotting economics models: mar-
kets, monopoly, and Cournot duopoly. (Article in
Korean.)

Akira Takahashi, SB portable Japanese TEX
environment for Windows; pp. 101–110

This paper describes a method for developing
a Japanese TEX environment on a USB drive for
Windows users. In order to sufficiently support the
Japanese TEX environment, not only W32TEX, which
contains upLATEX and TEXworks, but also Ghost-
script, which can handle TrueType/OpenType CJK

fonts, GSview, and the Perl execution environment
are installed. (Article in English.)

Masataka Kaneko and Setsuo Takato, The
extension of KETpic functions—Meta commands
and their applications; pp. 111–120

Though LATEX has become the standard tool for
editing high-quality mathematical documents, the
use of graphics in LATEX tends to be unsatisfactory.
Also it is desirable that the capability of generating
tables and page layout in the preferred style be added
to LATEX. The authors have developed KETpic, a
computer algebra system (CAS)-based plug-in for
high-quality graphics in LATEX documents. In this
paper, we will show how newly developed functional-
ity in KETpic can easily generate new environments
or graphical commands of LATEX, so that LATEX can
be endowed with additional capabilities. (Article in
English.)

Shin-ichi Todoroki and Tomoya Konishi,
BibTEX-based manuscript writing support system
for researchers; pp. 121–128

A list of publications can help researchers with
their writing if each item on the list includes links
to their manuscript files stored in their personal
computers. That way, they can quickly find their
previous work, figures and photographs from the list

and reduce their writing time by reusing them. We
have developed a system providing such lists on a
web browser by using Ruby scripts and BibTEX bib

files. This system is designed to generate an author’s
list of publications in various formats and to man-
age current manuscripts with the aim of providing
an adequate return on the time spent keeping the
database up to date. (Article in English.)

AJT Volume 5, Number 1

Kangsoo Kim, Typesetting a book with the
oblivoir class; pp. 1–59

(Article in Korean.)

AJT Volume 5, Number 2

Committee of the TEX Conference Japan

2011, Record of the distribution round table;
pp. 61–64

The session “Distribution Round Table” was
held at the TEX Conference Japan 2011 on 22nd
October, 2011. The objective of this session was to
introduce Japanese TEX distributors or packagers
on different platforms, TEX distribution developers,
and TEX engine developers to one another. They
discussed many topics, including clarifying what is
the difference between Japanese localized TEX en-
vironments and the original TEX Live environment.
The topic of the updmap (update font map) script
for mapping Japanese Kanji stood out, and that the
changes in Japanese Kanji mappings of updmap would
be merged in upstream to TEX Live. In other topics,
they discussed how many Japanese TEX users typeset
documents and preview the resulting DVI/PDF files
with or without synchronizing their source TEX files.
They also announced that the TEX Live system has
a local repository system. (Article in Japanese.)

Hironori Kitagawa, Development of the
LuaTEX-ja package; pp. 65–79

LuaTEX-ja is a macro package for typesetting
Japanese documents with LuaTEX. It enjoys the
improved flexibility of LuaTEX in typesetting TEX
documents, so eliminating some unwanted features
of pTEX, the widely-used variant of TEX for the
Japanese language. In this paper, we describe the
specifications, the current status, and some inter-
nal processing methods of LuaTEX-ja. (Article in
English.)

[Received from Jin-Hwan Cho.]



The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our web
site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Hendrickson, Amy

Brookline, MA, USA
Email: amyh (at) texnology.com

Web: http://www.texnology.com

LATEX macro writing our speciality for more than
25 years: macro packages for major publishing
companies, author support; journal macros for
American Geophysical Union, Proceedings of the
National Academy of Sciences, and many more.

Scientific journal and e-journal design and
production.

124 TUGboat, Volume 33 (2012), No. 1

TEXConsultants

Hendrickson, Amy (cont’d)

LATEX training, at MIT, Harvard, many more
venues. Customized on site training available.

Please visit our site for samples, and get in touch.
We are particularly glad to take on adventurous
new uses for LATEX, for instance, web based report
generation including graphics, for bioinformatics or
other applications.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) gmail.com

Web: http://www.elance.com/s/dlatchman

Proficient and experienced LATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

Moody, Trent

1981 Montecito Ave.
Mountain View, CA 94043
+1 650-283-7042
Email: trent.moody (at) ymail.com

Construction of technical documents with
mathematical content from hand written (or partially
formatted) sources. Delivered documents will be .tex

and .pdf files produced with TEX or/and LATEX.
Delivered documents can be publication ready
manuscripts, macro libraries for modular document
development, or mathematical libraries for document
reuse.

I am an independent contractor with a PhD
in mathematical physics from the University of
California, Santa Cruz.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.



Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

TUGboat, Volume 33 (2012), No. 1 125

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,
newsletters, and theses in TEXand LATEX: Automated
document conversion; Programming in Perl, C, C++

and other languages; Writing and customizing macro
packages in TEX or LATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss your
project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about seventeen years of experience
in TEX and thirty years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.



126 TUGboat, Volume 33 (2012), No. 1

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Banca d’Italia,

Roma, Italy

Center for Computing Sciences,

Bowie, Maryland

Certicom Corp.,

Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

diacriTech, Chennai, India

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

LAMFA CNRS UMR 6140,

Amiens, France

MacKichan Software, Inc.,

Washington/New Mexico, USA

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

TUG financial statements for 2011

Karl Berry

The financial statements for 2011 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
http://www.tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was down about 3% in 2011
compared to 2010, while product sales and advertis-
ing were slightly up. Contributions were also up: we
received about $1200 in donations from individuals
just in December, and $3220 from River Valley Tech-
nologies, from the TUG’11 conference. (Thank you
to all!) Overall, 2011 income was down 1%.

Cost of Goods Sold and Expenses highlights,
and the bottom line

Payroll, office expenses, and TUGboat and DVD

production and mailing continue to be the major
expense items. All were nearly as budgeted for 2011;
overall, 2011 expenses were up about 2% from 2010.

Often we have a prior year adjustment that takes
place early in the year to compensate for something
that had to be estimated at the time the books
were closed at year end; in 2011 the total of such
adjustments was positive for the bottom line: $918.

Despite the slight drop in income and slight
increase in expenses, the net result for the year was
still positive: about $4,000.

Balance sheet highlights

TUG’s end-of-year asset level is up around $5,000
(3%) in 2011 compared to 2010.

The Committed Funds are administered by TUG

specifically for designated projects: LATEX3, the TEX
development fund, CTAN, and so forth. Incoming
donations have been allocated accordingly and are
disbursed as the projects progress. TUG charges no
overhead for administering these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the cur-
rent year (and beyond). Most of this liability (the
2012 portion) was converted into regular Membership
Dues in January of 2012.

The payroll liabilities are for 2011 state and
federal taxes due January 15, 2012.

Summary

TUG remains financially solid as we enter 2012. Mem-
bership fees remain unchanged in 2012; the last in-
crease was in 2010.

TUG continues to work closely with the other
TEX user groups and ad hoc committees on many
activities to benefit the TEX community.



TUGboat, Volume 33 (2012), No. 1 127

 TUG 12/31/2011 (vs. 2010) Revenue and Expenses

Jan - Dec 11 Jan - Dec 10

Ordinary Income/Expense

Income

Membership Dues 101,160 104,261

Product Sales 5,056 4,224

Contributions Income 7,206 6,515

Annual Conference 3,220 2,820

Interest Income 882 1,416

Advertising Income 545 265

Total Income 118,069 119,501

Cost of Goods Sold

TUGboat Prod/Mailing 24,774 24,001

Software Production/Mailing 2,710 3,055

Postage/Delivery - Members 1,795 2,149

Lucida Open Type Font Project 1,430

Member Renewal 458 523

Copy/Printing for members 47

Total COGS 31,167 29,775

Gross Profit 86,902 89,726

Expense

Contributions made by TUG 2,000 2,000

Office Overhead 12,219 12,161

Payroll Exp 66,572 65,778

Lucida OpenType Development 1,250 500

Depreciation Expense 260

Total Expense 82,041 80,699

Net Ordinary Income 4,861 9,027

Other Income/Expense

Other Income

Prior year adjust -1,726 1,969

Total Other Income -1,726 1,969

Net Income 3,135 10,996

 TUG 12/31/2011 (vs. 2010) Balance Sheet

Dec 31, 11 Dec 31, 10

ASSETS

Current Assets

Total Checking/Savings 185,696 180,673

Accounts Receivable 345 285

Total Current Assets 186,041 180,958

Fixed Assets 808

TOTAL ASSETS 186,041 181,766

LIABILITIES & EQUITY

Liabilities

Total Committed Funds 43,762 41,405

Total TUG conference -2,650

Total Prepaid member income 4,645 3,160

Total Payroll Liabilities 1,035 1,087

Total Current Liabilities 46,792 45,652

TOTAL LIABILITIES 46,792 45,652

Equity

Unrestricted 136,114 125,117

Net Income 3,135 10,997

Total Equity 139,249 136,114

TOTAL LIABILITIES & EQUITY 186,041 181,766

⋄ Karl Berry

TUG treasurer

http://tug.org/tax-exempt



2012

Apr 5 – 6 TYPO San Francisco, “It’s all
about Connections”, sponsored by
FontShop. www.atypi.org/events/

typo-san-francisco

Apr 14 GUTenberg Journée et Assemblée
Générale, Paris, France.
www.gutenberg.eu.org/

Journee-GUTenberg-2012

Apr 29 –
May 3

BachoTEX2012: 20th BachoTEX
Conference, “Twenty years
after”, Bachotek, Poland.
www.gust.org.pl/bachotex/2012

May 1 TUG2012 presentation proposal
deadline. tug.org/tug2012

May 15 TUG2012 early bird registration
deadline. tug.org/tug2012

Jun 1 TUG2012 preprints deadline.
tug.org/tug2012

Jun 4 –
Jul 27

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on type,
bookmaking, printing, and related topics.
www.rarebookschool.org/schedule

Jun 15 – 18 ISType: Istanbul Typography Seminars,
Istanbul, Turkey. istype.com

Jun 17 Pinting Arts Fair, Museum of Printing,
North Andover, Massachusetts.
www.museumofprinting.org/txp/events2

Jun 19 – 22 Book history workshop, École de
l’institut d’histoire du livre,
Lyon, France. ihl.enssib.fr

Jun 26 – 29 SHARP 2012, “The Battle for Books”,
Society for the History of Authorship,
Reading & Publishing. Dublin, Ireland.
www.sharpweb.org

Jun 30 –
Jul 1

The Tenth International Conference
on the Book, Universidad
Abat Otiba CEU, Barcelona, Spain.
booksandpublishing.com/conference-2012

Jul 8 – 28 Wells College Book Arts Center,
Summer Institute, Aurora, New York.
Three one-week sessions. www.wells.edu/

academics/programs/book-arts

128 TUGboat, Volume 33 (2012), No. 1

Calendar

Jul 9 – 13 “Towards a Digital Mathematics Library”
(DML 2012), Bremen, Germany.
www.fi.muni.cz/~sojka/dml-2012.html

TUG2012

Boston, Massachusetts.

Jul 16 LATEX workshop (concurrent)

Jul 16 – 18 The 33rd annual meeting of the TEX
Users Group. Presentations covering the
TEX world. tug.org/tug2012

Jul 16 – 22 Digital Humanities 2012, Alliance of
Digital Humanities Organizations,
University of Hamburg, Germany.
www.digitalhumanities.org/conference

Jul 30 TUG2012 final papers deadline.

Jul 31 –
Aug 5

TypeCon 2012: “MKE SHFT”, Milwaukee,
Wisconsin. www.typecon.com

Aug 5 – 9 SIGGRAPH 2012, Los Angeles, California.
s2012.siggraph.org

Aug 23 – 26 TEXperience 2012 (5th TEXperience
Conference, organized by CSTUG),
Morávka, The Czech Republic.
katedry.osu.cz/kma/TeXperience2012

Sep 4 – 7 ACM Symposium on Document
Engineering, Paris, France
doceng2012.wp.institut-telecom.fr

Sep 16 – 21 XML Summer School, St Edmund
Hall, Oxford University, Oxford, UK.
www.xmlsummerschool.com

Oct 8 – 12 EuroTEX2012, 6th International
ConTEXt user meeting, and DANTE

Herbsttagung and 47th meeting,
Breskens, The Netherlands.
meeting.contextgarden.net/2012

Oct 10 – 14 Association Typographique Internationale
(ATypI) annual conference, Hong Kong.
www.atypi.org

Oct 12 – 13 American Printing History Association’s

37th annual conference, “At the Crossroads:
Living Letterform Traditions”,
Columbia College Chicago, Illinois.
www.printinghistory.org/about/

calendar.php

Status as of 15 March 2012

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.



TUGBOAT Volume 33 (2012), No. 1

Introductory

3 Barbara Beeton / Editorial comments
• typography and TUGboat news

5 Barbara Beeton / Hyphenation exception log
• update for missed and incorrect U.S. English hyphenations

8 Peter Flynn / Typographers’ Inn
• titling and centering; beaten into submission; afterthought

12 Khaled Hosny / The Amiri typeface
• development and status of this new Arabic typeface, a revival of the Bulaq Press design

46 LATEX Project Team / LATEX3 news, issues 6–7
• LATEX3 team expands; ‘big bang’; LATEX3 on GitHub; deforming boxes; TEX-based regex engine;

xparse improves; galley; relationships between document items
3 Steve Peter / Ab epistulis

• group membership category; software; conferences; book reviews
53 Joseph Wright / TEX on Windows: MiKTEX or TEX Live?

• quick comparison of the two biggest free TEX distributions available for Windows

Intermediate

26 Claudio Beccari / The unknown picture environment
• the original, powerful, and simple drawing environment for LATEX

48 Troy Henderson / User-friendly web utilities for generating LATEX output and MetaPost graphics
• online previewers for LATEX, MetaPost, and function graphing

13 Philip Kime / Biber— the next generation backend processor for BibLATEX
• advanced sorting, name processing, and much more for bibliographies

21 Lars Madsen / Avoid eqnarray!
• reasons for avoiding and alternatives to the eqnarray environment

119 Karl Berry / The treasure chest
• new CTAN packages, November 2011–March 2012

43 Luca Merciadri / Some LATEX2ε tricks and tips (V)
• numbering paragraphs; MATLAB graphics and code; customizing makeindex

Intermediate Plus

16 Claudio Beccari / X ELATEX and the PDF archivable format
• generating PDF/A with X ELATEX and Ghostscript

33 Brian Beitzel / The apa6 LATEX class: Challenges encountered updating to new requirements
• implementing the 6th Edition APA formatting, especially citations

54 Patrick Gundlach / Generating barcodes with LuaTEX
• a worked-out example of Lua-to-TEX communication

39 Peter Wilson / Glisterings
• timelines; parsing a filename

Advanced

86 Hans Hagen / ConTEXt: Updating the code base
• the further evolution of ConTEXt, detailed module by module

59 Paul Isambert / OpenType fonts in LuaTEX
• introduction to and exploration of OpenType internals

98 Bogusław Jackowski / Computing the area and winding number for a Bézier curve
• mathematical derivations and Metafont/MetaPost code for these operations

102 Keith Wolcott / Three-dimensional graphics with PGF/TikZ
• mathematics and code examples for drawing surfaces of revolution, satellite orbits, sphere intersections

Contents of other TEX journals

121 Eutypon: Issue 26–27 (October 2011); Die TEXnische Komödie 4/2011–1/2012;
Asian Journal of TEX 4–5 (2010–2011)

Reports and notices

2 TUG 2012 announcement
7 Bruce Armbruster and Jeannie Howard Siegman / In memoriam: Tony Siegman, 1931–2011

11 Karl Berry / Lucida OpenType fonts available from TUG
• announcement of the new Lucida OpenType font family, including math

114 Pavneet Arora / Book review: Trees, maps, and theorems
• review of this book on effective communication by Jean-luc Doumont

116 Boris Veytsman / Book review: Design for hackers
• review of this modern introduction to design by David Kadavy

118 David Walden / Book review: Companion to the Papers of Donald Knuth
• review of this ninth volume, completing the series of Knuth’s papers

124 TEX consulting and production services
126 Institutional members
126 Karl Berry / TUG financial statements for 2011
128 Calendar


