
104 TUGboat, Volume 32 (2011), No. 1

Some misunderstood or unknown LATEX2ε
tricks (III)

Luca Merciadri

1 Introduction

After two other TUGboat articles, here is a third
installment with more tips. We shall see:

1. how to print, in an easy way, a monochrome
version of a document,

2. how to draw rightmost braces,
3. how to draw watermarks,
4. a plagiarism discussion and the related compu-

tational solutions.

2 Printing monochrome

When writing a ‘screen-version’ of some book, one
often uses colors. However, if this screen-version
needs to be printed in black and white, it is better
to give it as a monochrome document. This can
be achieved easily by simply adding monochrome to
color and xcolor’s options. For example, if you
called these packages without any options, it means
that you might put

\usepackage[monochrome]{color}

\usepackage[monochrome]{xcolor}

in your preamble. Thanks to Enrico Gregorio [3] for
this.

Herbert Voß gave me [3] a more technical Post-
Script version:

\AtBeginDocument{%

\special{ps:

/setcmykcolor {

exch 0.11 mul add

exch 0.59 mul add

exch 0.3 mul add

dup 1 gt { pop 1 } if neg 1 add setgray } def

/setrgbcolor {

0.11 mul

exch 0.59 mul add

exch 0.3 mul add setgray } def

/sethsbcolor {

/b exch def /s exch def 6 mul dup cvi dup

/i exch def sub /f exch def

/F [[0 1 f sub 1] [f 0 1] [1 0 1 f sub]

[1 f 0] [1 f sub 1 0] [0 1 f]

[0 1 1]] def

F i get { s mul neg 1 add b mul} forall

0.11 mul

exch 0.59 mul add

exch 0.3 mul add setgray } def

}}

Thanks to him too.

3 Drawing rightmost braces

It is common to synthesize some theorems’ ideas by
using a right brace, or simply to write such kinds of
systems to define e.g. a function:

−1 x ≤ 0

1 x > 0

}

def

= f(x). (1)

This can be achieved by using various tricks, such as
those which were proposed by Eduardo Kalinowski
and Dan Luecking [2]:

• \left.

\begin{array}

...\\

... \\

...

\end{array}

\right\}

• Use the aligned, gathered, or alignedat en-
vironments,

but one can also

• define a ‘revert cases’ environment, say sesac:

\usepackage{amsmath}

\makeatletter

\newenvironment{sesac}{%

\let\@ifnextchar\new@ifnextchar

\left.%

\def\arraystretch{1.2}%

% One might prefer aligns other than left,

% depending on the use to which it is put:

\array{@{}l@{\quad}l@{}}%

}{\endarray\right\}}

\makeatother

in the preamble, the amsmath package evidently
being mandatory. One can then use sesac the
way cases is used:

\begin{equation}

\begin{sesac}

-1 & x \leq 0\\

1 & x > 0

\end{sesac} = f(x)

\end{equation}

Thanks to Dan Luecking for this [2]. The advan-
tage of this definition is that its call is similar
to the one which is used for the cases envi-
ronment. Note that the rcases equivalent of
sesac will be available in the mathtools pack-
age (from June, 2010), together with variants.

4 Using watermarks

There is sometimes a need for watermarks, either for
security reasons, or simply for indicating important
information along with the document.

Luca Merciadri

TUGboat, Volume 32 (2011), No. 1 105

There are basically three different ways to put
watermarks in your LATEX2ε documents:

1. The xwatermark package,

2. The TikZ package,

3. The draftcopy package.

We shall discuss these different options separately
now. We assume that the user wants to watermark
all the pages. (Modifications to make only some
pages be watermarked are easy.)

4.1 The xwatermark option

To watermark the current tex document, you can
simply put [4]

\usepackage[printwatermark=true,

allpages=true,fontfamily=pag,

color=gray,grayness=0.9,

mark=Draft,angle=45,

fontsize=5cm,

markwidth=\paperwidth,

fontseries=b,scale=0.8,

xcoord=0,ycoord=0]{xwatermark}

in your preamble, where parameters are modified in
the obvious way.

4.2 The TikZ way

You can also use TikZ ([5]):

\begin{tikzpicture}[remember picture,overlay]

\node[rotate=0,scale=15,text opacity=0.1]

at (current page.center) {Draft};

\end{tikzpicture}

writes the ‘Draft’ message in the center of the page,
and

\begin{tikzpicture}[remember picture,overlay]

\node [xshift=1cm,yshift=1cm]

at (current page.south west)

[text width=7cm,fill=red!20,rounded corners,

above right]

{

This is a draft!

};

\end{tikzpicture}

puts ‘This is a draft!’ in a box, at the desired place.
Both might be put outside of the preamble. In both
cases, you evidently need to load the tikz package.
There are many other options (please check the pack-
age’s manual).

The advantage of this approach is that you can
call TikZ after or before some text to watermark the
relative page, without knowing its number.

4.3 The draftcopy package

A third approach is to use the draftcopy package.
You can then specify the intensity of the gray, the
range of pages for which the word ‘DRAFT’ is printed

and where it is printed (across the page or at the bot-
tom). The package’s feature are best described in its
manual [6], but, roughly,

\usepackage[english,all,

portrait,draft]{draftcopy}

should suit your needs.

5 LATEX2ε and plagiarism

Plagiarism is a well-known issue. It is defined as
(Random House Compact Unabridged Dictionary,
1995)

The use or close imitation of the language and
thoughts of another author and the represen-
tation of them as one’s own original work.

I will here take a very concrete case: my own. This
year, I had a group project to do, and the two other
students did not contribute at all. As I had to share
my work with them because there was an oral exam
and that the professor wanted it to be shared, I ac-
cepted to share it, but with a big watermark.

I had not realized that this choice would be crit-
ical. Some days later, I realized that one of the
two other students wanted to appropriate the work,
and thereby claim its honesty and investment in the
work. He tried to remove the watermark, but, de-
spite much research, never found out how. However,
he could have done it. I learnt many things thanks
to this situation, which I will explain here from a
TEX point of view.

My first reaction to ensure security was to se-

cure the PDF by using free tools. This was a good
dissuasion, as the two other students were stopped
by this measure. By ‘secure’, I mean that I theo-
retically prevented others from printing, selecting,
or extracting content from the PDF file. However,
such PDF ‘security’ is not widely accepted by PDF

readers. Here is what Jay Berkenbilt (qpdf’s author)
once told me [1]:

The PDF specification allows authors of PDF

files to place various restrictions on what you
can do with them. These include restricting
printing, extracting text and images, reorga-
nizing them, saving form data, or doing var-
ious other operations. These flags are noth-
ing more than just a checklist of allowed op-
erations. The PDF consuming application
(evince, Adobe Reader, etc.) is supposed to
honor those restrictions and prevent you from
doing operations that the author didn’t want
you to do.

The PDF specification also provides a mech-
anism for creating encrypted files. When a
PDF file is encrypted, all the strings and stream

Some misunderstood or unknown LATEX2ε tricks (III)

106 TUGboat, Volume 32 (2011), No. 1

data (such as page content) are encrypted
with a specific encryption key. This makes
it impossible to extract data from without
understanding the PDF encryption methods.
(You couldn’t open it in a text editor and dig
for recognizable strings, for example.) The
whole encryption method is documented in
the specifications and is basically just RC4
for PDF version 1.4 and earlier, which is not a
particularly strong encryption method. PDF

version 1.5 added 128-bit AESv2 with CBC,
which is somewhat stronger. Those details
aren’t really important though. The point is
that you must be able to recover the encryp-
tion key to decrypt the file.

Encrypted PDF files always have both a
user password and an owner password, either
or both of which may be the empty string.
The key used to encrypt the data in the PDF

is always based on the user password. The
owner password is not used at all. In fact, the
only thing the owner password can do is to re-
cover the user password. In other words, the
user password is stored in the file encrypted
by the owner password, and the encryption
key is stored in the file encrypted by the user
password. That means that it is possible to
entirely decrypt a PDF file, and therefore to
bypass any restrictions placed on that file, by
knowing only the user password. PDF read-
ers are supposed to only allow you to bypass
the restrictions if you can correctly supply
the owner password, but there’s nothing in-
herent [in] the way PDF files are structured
that makes this necessary.

If the user password is set to a non-empty
value, neither qpdf nor any other application
can do anything with the PDF file unless that
password is provided. This is because the
data in the PDF file is simply not recoverable
by any method short of using some kind of
brute force attack to discover the encryption
key.

The catch is that you can’t set restric-
tions on a PDF file without also encrypting
it. This is just because of how the restrictions
are stored in the PDF file. (The restrictions
are stored with the encryption parameters
and are used in the computation of the key
from the password.) So if an author wants
to place restrictions on a file but still allow
anyone to read the file, the author assigns an
empty user password and a non-empty owner
password. PDF applications are supposed to

try the empty string to see if it works as a
password, and if it does, not to prompt for
a password. In this case, however, it is up

to the application to voluntarily honor any of

the restrictions imposed on the file. [italics
mine —lm] This is pretty much unavoidable:
the application must be able to fully decrypt
the file in order to display it.

None of this is a secret. It’s all spelled
out in the PDF specification. So encrypting
a PDF file without a password is just like en-
crypting anything else without a password. It
may prevent a casual user from doing some-
thing with the data, but there’s no real se-
curity there. Encrypting a PDF file with a
password provides pretty good security, but
the best security would be provided by just
encrypting the file in some other way not re-
lated to PDF encryption.

Thus, one might not want to rely only on this
PDF feature, especially if the desire is to set at-
tributes without a password (see the slanted sen-
tence in the cited text).

My second idea was to put a watermark on

every page of the document. For this, I used the
xwatermark package, because I had no time to look
for another way to achieve it (I was near the work’s
due date).

I then compiled the tex document, secured it,
and sent it.

In this series of practices, I should have real-
ized that these two protections could totally be cir-
cumvented in an easy way. I knew it, partially, but
had not much time to think about it. One needs
to realize that such practices are not infallible: they
are only ways to discourage, not absolutely prevent,
your work from being plagiarized.

Let’s take, for example, the PDF security. One
could simply run pdf2ps, and then ps2pdf on the
resulting PostScript file, to recover exactly the same
PDF without the security attributes (or hyperlinks).
Thus, by using two commands, you can easily re-
move the PDF protection (assuming it was only con-
cerning attributes, not passwords).

Next, there is the watermark that was LATEX2ε-
inserted. There are different programs, especially for
Windows users, that can remove watermarks. I tried
them on my watermark, and none could remove it.
Good point, but that does not mean that there is no
program which is able to remove it. I might have for-
gotten one, or simply, a commercial program might
be capable of this. (I never test commercial pro-
grams.) But I had made an important mistake in
my LATEX2ε watermark. The watermark is written

Luca Merciadri

TUGboat, Volume 32 (2011), No. 1 107

on a different PDF ‘layer’ (one can conceive of a PDF

as being constructed from different layers which are
superimposed in some way) and is thereby not com-
pletely incorporated in the core document. Thus, if
you use a LATEX2ε package to write a watermark
in a document, do not forget to merge layers. This
can be achieved easily. For example, using lpr under
GNU/Linux, you can re-print the original PDF docu-
ment (with the different PDF layers) as another PDF

where the watermark and the text layers are merged
together, thus making differentiating between them
very complicated for a ‘normal’ user. This can be
achieved with a GUI too, evidently. For me, I can
directly choose this virtual printer, and to print to
a file, through GNOME’s printing interface.

But one needs to keep in mind that all these
measures are here only as a method for discourag-
ing. For example, whatever the protection, one can
still take screenshots of the PDF viewer’s window, to
make copies of the PDF content. This is tedious, but
if one wants to, it can be done. If even these screen-
shots were somehow made impossible, he could use
a camera to take pictures of his screen. All the mea-
sures you need to take against such behavior need
to be adapted, and correlated in regards to other’s
motivation to exploit your work. This is a very im-
portant point, as, once the work is sent, you cannot
modify what you gave.

Another point which could be exploited is the
use of a somewhat legal document, constraining the
group’s members to sign.

The best thing is presumably to avoid these
problems by talking together, as we humans are
equipped with an extraordinary ability to share their
feelings and to express themselves; however, commu-
nication problems sometimes arise, and, in this case,
you might think about the aforementioned tricks.
Here is thus what I suggest you to do, if such a
problem arises (the first arrow being to follow if com-
munication is somewhat broken):

Make an official
document, ask-
ing the group’s
members to sign

Watermark the PDF

Secure the PDF

If you notice pla-
giarism, directly
complain to the
relevant authority

⋄ Luca Merciadri

University of Liège

Luca.Merciadri (at) student dot ulg dot

ac dot be

http://www.student.montefiore.ulg.ac.be/

~merciadri/

References

[1] Berkenbilt, Jay. (PDF specification message),
2010. http://www.mail-archive.com/

debian-user@lists.debian.org/msg570956.

html.

[2] Merciadri, Luca, Kalinowski, Eduardo and
Luecking, Dan. ‘cases’ environment for a
brace in the other sense? (comp.text.tex
discussion), 2010.

[3] Merciadri, Luca, Voß, Herbert and Gregorio,
Enrico. dvi, ps, pdf in black and white: how
to do it if I have colors? (comp.text.tex
discussion), 2010.

[4] Musa, Ahmed. The xwatermark Package, 2010.
http://mirror.ctan.org/macros/latex/

contrib/xwatermark/xwatermark-guide.pdf.

[5] Tantau, Till. TikZ, PGF, 2008. http://

mirror.ctan.org/graphics/pgf/base/doc/

generic/pgf/pgfmanual.pdf.

[6] Vollmer, Jürgen. The draftcopy package, 2006.
http://www.ifi.uio.no/it/latex-links/

draftcopy.pdf.

Some misunderstood or unknown LATEX2ε tricks (III)

http://www.mail-archive.com/debian-user@lists.debian.org/msg570956.html
http://www.mail-archive.com/debian-user@lists.debian.org/msg570956.html
http://www.mail-archive.com/debian-user@lists.debian.org/msg570956.html
comp.text.tex
comp.text.tex
http://mirror.ctan.org/macros/latex/contrib/xwatermark/xwatermark-guide.pdf
http://mirror.ctan.org/macros/latex/contrib/xwatermark/xwatermark-guide.pdf
http://mirror.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
http://mirror.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
http://mirror.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
http://www.ifi.uio.no/it/latex-links/draftcopy.pdf
http://www.ifi.uio.no/it/latex-links/draftcopy.pdf

	1 Introduction
	2 Printing monochrome
	3 Drawing rightmost braces
	4 Using watermarks
	4.1 The xwatermark option
	4.2 The TikZ way
	4.3 The draftcopy package

	5 LaTeX2e and plagiarism

