TUGDboat, Volume 32 (2011), No. 1

16 years of ConTEXt
Hans Hagen

1 Introduction

When Karl Berry asked me to wrap up something
for the 100" issue of TUGboat I didn’t hesitate too
long to agree. Of course you then end up with the
dilemma of what to write down and what to omit,
but it’s worth a try.

When you’re asked to look back it is sort of
unavoidable to also look forward. In this article I
will reflect on some of ConTEXt’s history and spend
a few words on its future. First I will try to describe
the landscape in which we have ended up.

2 Perceptions

After being present for some 16 years, about half the
lifespan of the TEX community and its TUGboat,
there has been enough published about ConTEXt to
give the reader at least an impression of what it is
about. However, to some it might (still) be confusing,
especially because for a long time in TEX publicity,
‘TEX’ was viewed as nearly equivalent to IMTEX. In
itself this is somewhat troublesome, because TEX
is a generic system but such is the situation. On
the other hand, nowadays banners for conferences,
cartoons and other promotional material mention
multiple engines, MetaPost, I TEX and ConTgEXt,
fonts and more, so the landscape is definitely more
varied.

Over the past decades I have run into descrip-
tions of ConTEXt that are somewhat curious and
they give a good impression of what ConTEXt users
run into when they have to defend their choice.

e “It is a package that can be loaded in ATEX.”
This perception is natural for IXTEX users as
packages are part of their concept. On the other
hand, for ConTEXt users, the package concept is
alien as we have an integrated system. A quick
look at the way ConTEXt is embedded in the
TEX directory structure will learn that it does
not relate to IMTEX and I’'m sure that a simple
test will show that loading it as a style will fail.

e “It is a variant of plain TEX and has similar
concepts, capabilities and limitations.” For sure
there are a couple of commands that have the
same name and similar functionality but there
it stops. We used to load plain TEX as a base
because it provides some infrastructure, but even
there most was overloaded. On the other hand,
we feel that when a user reads The TEXbook, he
or she should not get an error on each command
that is tried, especially not math.

e “It is meant for and depends on pdfTEX.” Ac-
tually, we started out using DVI and when we
switched to using outline fonts we used DVIPS-
ONE. Other DVI backends were also supported,
but when pdfTEX came around it was pretty con-
venient to have all functionality in one program.
Maybe because we were involved in pdfTEX de-
velopment, or maybe because ConTEXt always
supported the latest PDF tricks, this myth arose,
but all functionality was always available for all
backends.

e “It is best used for presentations.” It is a fact
that at user group meetings, the presentation
aspect was quite present, if only because I like
making new styles as part of preparing a talk.
However, it is just a matter of styling. On the
other hand, it has drawn some users to ConTEXt.

e “I don’t see you using math and you’re dis-
cussing features that I never needed, so why
use TEX at all?” This comment was given af-
ter I gave a presentation about ConTEXt doing
MathML where I explained that I liked content
markup more than presentational markup.

e “TI've been present at talks but only recently re-
alized that you were talking about an integrated
macro package that is independent of other pack-
ages.” This kind of remark is of course an indi-
cation that I’d forgotten to explain something.
It also says something about TEX marketing in
general.

e Some comments are baffling, like “I saw you
talking to Frank. Isn’t that competition?” As
far as I know there is no competition, maybe
different audiences at most. The community is
large enough for multiple solutions. And most
of all, we don’t sell anything and I always try
to keep my own (commercial) work separated
from presenting ConTEXt.

e “We don’t need this, we're satisfied with the way
we do it now.” Remarks like that occasionally
come up when someone presents something new.
I don’t care too much about it myself because in
most cases I know that I can achieve more with
TEX than the person making such a remark, but
it can be very demotivating for those doing their
first presentation.

I’'m sure that ConTEXt is not alone in getting
such comments. I remember that there have been
discussions about embedding the PDF backend into
the TEX engine and strong argument for keeping it
separated. Especially when arguments come up like
“We should keep TEX as it is”, which boils down to
“We should not change Don’s work”, it gets nasty. It

16 years of ConTEXt



10

is a fact that the DVI backend is just an example of
a backend and there can be many others. The same
is true for the \pdfsomecommand extensions: deep
down they use whatsits and these are definitely meant
for extensions. Any argument for using specials
exclusively is wrong as specials themselves are an
extension.

Right from the start Don Knuth made clear
that extending TEX and friends was part of creating
solutions. When Volker Schaa and I presented the
Latin Modern fonts to Don Knuth, one of his first
comments was “Why didn’t you fix the mu?”. He
could not do it himself because Computer Modern
is as frozen as pure TEX, but that does not mean
that it cannot be done elsewhere! It’s interesting
to hear users defend a status quo while those they
think they are defending definitely keep moving on.
I'm sure that I don’t speak for myself alone when I
say that Don Knuth is one of the main reasons why
I've chosen the TEX route and keep following it. It
makes TEX and its community special in many ways.

The reason for mentioning this is that when
you are part of the flow of developments around
TEX, you also have to deal with conservatism. In
itself this is understandable as TEX is a tool that
you will use forever once you’ve typeset more than a
few documents with it. And there is a nice aspect
worth mentioning here: as pure TEX will always
be there, and as derived engines are as closely as
possible downward compatible, you can stick to 25-
year-old methods and customs as long as you keep
your macros and fonts around! No one is forcing you
to update or switch to another engine or use another
macro package. And you can still produce the same
perfect output as years ago. The best proof of that is
the author of TEX himself, and you can bet that he
knows pretty well what developments happen around
TEX and friends.

In the following story I will mention some of the
design decisions and reasons for going the ConTEXt
route. I will use two qualifications there: ConTEXt
MEKII, the version meant for pdfTEX and XH{TEX, and
ConTEXt MkVI, the new version for LuaTEX. (More
about these in the last section.) The MkVI variant
is a complete rewrite and as part of the process I
threw away lots of code that I had always before
considered to be final. Code that I spent weeks or
more perfecting, and that evolved along with getting
more experienced in the macro language, code that
has been optimized to the max, code that I got
emotionally attached to because I know for what
occasion I wrote it. It gets frozen into MKII and is
never used again by myself, but it can be run forever
anyway. That’s what TEX is about: accumulating

Hans Hagen

TUGDboat, Volume 32 (2011), No. 1

experiences. In a few weeks I will travel to BachoTEX
again. There, among TEX friends, it will be clear
once more that we're still moving forward, that a
30-year-old TEX is not yet ready for retirement, even
if some of its first time users are getting close to that.

3 Running into TEX

I always take 1996 as the year that ConTEXt showed
up in public. That year sits between the two first
international TEX conferences that I attended: Euro-
TEX 1995 in Arnhem and TUG 1997 in San Francisco.
That means that this year ConTEXt is about 16 years
old and as a consequence only half of all TUGboat
publications can contain articles that refer to it.

We started using TEX a bit earlier. T still re-
member the bookshelves in the store where I first saw
volumes A to E and because at that time I was pro-
gramming in Pascal and Modula the content looked
quite familiar. However, as I was neither involved
in typesetting nor a mathematician it did look in-
triguing. Nevertheless I bought The TEXbook, and
reading something without the ability to run the
related program is somewhat special. In successive
years, whenever I picked up the The TEXbook 1 was
able to understand more of the neat tricks described
in there.

4 The first experiments

The real reason for using TEX came when I was
involved in a project where we had to get some
advanced math on paper. The customer used a
special typewriter for this but I remembered TEX
and considered it a better tool for the job. We
bought a copy of the program from Addison Wesley
and got ourselves a decent printer only to find out
that our customer preferred the typewriter method
over typesetting.

This didn’t stop us, and we decided to use TEX
for typesetting our own reports and the courses that
we developed along with experts in the field. I did
an inventory of alternatives but they were either
too expensive or closed (and obsolete within years
after that moment) so in retrospect the choice for
TEX was not that bad. Using TEX at that time
definitely made our budgets for hardware rise: faster
computers, larger disks, better and faster printers,
suitable connections between them, etc.!

There is one thing that keeps coming back when
I think about those times: we were acting in complete

1 Before free versions of TEX came to desktops we had to
actually buy TEX and friends. Interestingly I’'m quite sure
that it still accumulates to the largest amount of money we
ever spent on software, but competing systems ran into five
digit numbers so it was no big deal at that time.



TUGDboat, Volume 32 (2011), No. 1

isolation. There was no Internet the way there is
now, and when it came our way, using it as a resource
was no option with slow modems. We had no email
and were unaware of user groups. The university
that I had attended, and especially our department
had top of the line equipment but TEX was simply
unknown. We used ASCII terminals and I had written
a formatter for the mainframe that helped making
reports and could paginate documents: poor man’s
styling, pseudo-floats, tables of contents. I think that
I still have the source somewhere. However, no one
ever bothered to tell the students that there were
formatters already. And so, when we moved on with
our business we were quite unaware of the fact that
something like TEX was part of a bigger whole: the

TEX community.

5 Personal usage

In fact this is also the reason why the first steps to-
wards a macro package was made. The floppies that
we bought carried BTEX but the rendered output
was so totally un-Dutch that I had to change files
that I didn’t understand at all. Of course some local-
ization had to happen as well and when we bought
an update I had to do all that again. After a while I
figured out how to wrap code and overload macros
in a more permanent way. Itemizations were the first
to be wrapped as we used lots of them and the fact
that they got numbered automatically saved us a lot
of time.

Because we were involved in writing course mate-
rial, we had workflows that boiled down to investigat-
ing learning objectives, writing proposals, collecting
and editing content, and eventually delivering a set
of related materials. It is therefore no surprise that
after a while we had a bunch of tools that helped us
to do that efficiently. It was only around that time
that we ourselves actually profited from a TEX-based
workflow. We had our own editor? that provided
project support based on parsing structure, syntax
highlighting, as well as a decent edit—view cycle.

In my job I could chair a session, drive home,
sit down and wrap up the progress in a document
highlighting the most recent changes and the partici-
pants would have a print on their desk next morning.
The time spent on writing new macros was nicely
compensated by efficiency.

We’re speaking of the beginning of the nineties
now. We already had dropped KTEX after a few doc-
uments and via the more easily configurable IAAS-
TEX moved on to INRSTEX which was even more
configurable. The fact that these variants never

2 The editor was called texedit and was written in Modula,
while its follow-up, called texwork, was written in Perl/TK.

11

caught on is somewhat sad, as it indicates that in
spite of TEX being so flexible only a few macro pack-
ages are available.> Around 1995 we had a decent
shell around INRSTEX and much code was our own.
I didn’t understand at all what alignments were all
about, so for tables we used Wichura’s TAB[E pack-
age and as output routines were also beyond me, we
stuck to the INRSTEX page builder for quite a while.
We called the beast pragmaTEX simply because we
needed a name and it didn’t occur to us that anybody
else could be interested.

6 A larger audience

It was around that time that I became aware of user
groups and we also joined the Internet. Because we
had to do a lot of chemical typesetting, in particular
courses for molding latex and plastic, I had written
a macro set for typesetting chemical structure for-
mulas for my colleague (who coincidentally had a
background in chemistry). As there was interest for
this from Germany, represented by Tobias Burnus,
it was the first piece of code that went public and
because we used macros with Dutch names, I had to
come up with a multilingual interface. Tobias was
the first international user of ConTEXt.

In the meantime I had become a member of the
NTG as well as of TUG. Around that time the 4TEX
project was active and it carried the first version of
the renamed macro set: ConTEXt. It is at that time
that Taco Hoekwater and I started teaming up our
TEX efforts.

We started publishing in MAPS and TUGboat
and after being introduced to the Polish and German
user groups also in their journals. So, around 2000
we were better aware of what was happening in the
larger community.

At some point I had ordered copies of TUGboats
but I have to admit that at that time most of it
simply made no sense to me so I never really read
that backlog, although at some moment I did read
all Don’s articles. It might be fun actually going
back in time once I retire from writing macros. But
the fact that there were journals at least gave me a
sound feeling that there was an active community.
I do realize that much of what I write down myself
will not make sense either to readers who are not at
that moment dealing with such issues. But at least
I hope that by skimming them a user will get the
impression that there is an active crowd out there
and that TEX keeps going.

3 Of course TEX is not unique in this: why should billions
of users use only a few operating systems, editors, drawing
programs or whatever?

16 years of ConTEXt



12

7 How ConTgXt evolved

For this reflective article, I spent some time hunting
up the past before actually sitting down to write
... here we go. The first version of ConTEXt was
just a few files. There was some distinction between
support macros and those providing a more abstract
interface to typesetting. Right from the start consis-
tency was part of the game:

e there were define, setup, and start-stop mecha-
nisms

e keywords and uniform values were used for con-
sistent control

e layout definitions were separated from content

e there were projects, products, components and
environments

e the syntax was such that highlighting in an
editor could be done consistently

e we had support for section numbering, descrip-
tions and of course items

e content could be reused (selectively) and no
data or definition was keyed in more than once
(buffers, blocks, etc.)

As a consequence of the structure, it was rela-
tively easy to provide multiple user interfaces. We
started out with Dutch, English (the first translation
was by Sebastian Rahtz), and German (by Tobias
Burnus). Because Petr Sojka gave students the op-
portunity to do TEX-related projects, Czech followed
soon (David Antos). Currently we have a few more
user interfaces with Persian being the latest.

There is an interesting technical note to make
here. Because ConTEXt is keyword-driven and uses
inheritance all over the place it put some burden on
memory. Just in time we got huge emTEX and I
think in general it cannot be underestimated what
impact its availability had: it permitted running a
decent set of macros on relatively powerless personal
computers. Nevertheless, we ran out of string space
especially but since the hash was large, we could store
keys and values in macros. This was not only space-
efficient but also faster than having them as strings
in the source. It is because of this property that
we could relatively easily provide multiple interfaces.
Already in an early stage a more abstract description
in XML format of the interface was added to the
distribution, which means that one can easily create
syntax highlighting files for editors, create helpers
and include descriptions in manuals.

Right from the start I didn’t want users to even
think about the fact that a TEX job is in most cases a
multipass activity: tables of contents, references, in-
dexes and multipass optimization means that unless
the situation didn’t change, an extra run is needed.

Hans Hagen

TUGDboat, Volume 32 (2011), No. 1

It is for this reason that a ConTEXt run always is
managed by a wrapper. When I realized that Con-
TEXt was used on multiple platforms I converted
the Modula version of texexec into Perl and later
into Ruby. The latest version of ConTEXt uses a
wrapper written in Lua.* I think that the fact that
ConTEXt came with a command line utility to drive
it for quite a while set it apart. It also created some
myths, such as ConTEXt being dependent on this or
that language. Another myth was that ConTEXt is
just a little more than plain TEX, which probably
was a side effect of the fact that we kept most of the
plain commands around as a bonus.

It was long after using BTEX that I understood
that one of its design decisions was that one should
write styles by patching and overloading existing
code. In ConTEX? it has always been a starting point
that control over layout is driven by configuration
and not by programming. If something special is
needed, there are hooks. For instance, for a very
special section title users can hook in macros. Ideally
a user will not need to use the macro language, unless
for instance he or she wants some special section
header or title page, but even then, using for instance
layers can hide a lot of gory details.

I think that switching from one to the other
macro package is complicated by the fact that there
are such fundamental differences, even if they provide
similar functionality (if only because publications
have so much appearance in common). My impres-
sion is that where M TEX draws users because they
want (for instance) to submit a paper in a standard
format, the ConTEXt users come to TEX because
they want to control their document layout. The
popularity of for instance MetaPost among ConTEXt
users is an indication that they like to add some
personal touch and want to go beyond pure text.

As a consequence of consistency ConTEXt is
a monolithic system. However, special areas are
dealt with in modules, and they themselves are also
monolithic: chemistry, MathML, presentations, etc.
For a long time being such a big system had some
consequence for runtime or at least loading time.
Nowadays this is less an issue and with the latest
and greatest MKIV we even seem to get the job done
faster, in spite of MKIV supporting Unicode and
OpenType. Of course it helps that after all these
years I know how to avoid bottlenecks and optimize
TEX code.

As I'm somewhat handicapped by the fact that
in order to understand something very well I need to

4 One can argue that this is a drawback but the fact that
we use TEX as a Lua interpreter means that there are no
dependencies.



TUGDboat, Volume 32 (2011), No. 1

write it myself, I have probably wasted much time
by (re)inventing wheels. On the other hand, finding
your own solution for problems that one deals with
can be very rewarding. A nice side effect is that after
a while you can ‘think’ in the language at hand and
know intuitively if and how something can be solved.
I must say that TEX never let me down but with
LuaTEX I can sometimes reimplement solutions in
a fraction of the time I would have needed with the

pure TEX way.

8 Fonts and encodings

When we started with TEX a matrix printer was
used but soon we decided to buy a decent laser
printer (duplex). It was a real surprise to see that
the Computer Modern Fonts were not that bold. Our
first really large printer was an OCE office printer that
was normally sold to universities: it was marketed
as a native DVI printer. However, when we tried
to get it running, we quickly ran into problems. By
the time the machine was delivered it had become
a PostScript printer for which we had to use some
special driver software. Its successor has already
been serving us for over a decade and is still hard
to beat. I think that the ability to print the typeset
result properly was definitely a reason to stick to
TEX. The same is true for displays: using TEX with
its font related capabilities is much more fun with
more pixels.

At the time of the switch to OCE printers we
still used bitmaps (and were not even aware of Post-
Script). First of all, we needed to tweak some pa-
rameters in the generation of bitmap fonts. Then we
ran into caching problems due to the fact that each
DVI file relates id’s differently to fonts. It took the
support people some time to figure that out and it
tricked me into writing a DVI parser in Lisp (after
all, I wanted to try that language at least once in my
lifetime). We decided to switch to the Y&Y previewer
and PostScript backend combined with outline fonts,
a decision that we never regretted. It was also the
first time that I really had to get into fonts, especially
because they used the texnansi encoding and not the
usual 7-bit TEX encoding. It must be said: that
encoding never let us down. Of course when more
language support was added, also more encodings
had to be supported. Support for languages is part
of the core so users don’t have to load specific code
and font loading had to fit into that approach.

In traditional ConTEXt the user can mix all
kind of fonts and input encodings in one document.
The user can also mix collections of fonts and have
several math font setups in parallel and can have
different math encodings active at the same time. For

13

instance the Lucida fonts had a different setup than
Computer Modern. The pattern files that TEX uses
for hyphenation are closely related to font encodings.
In ConTEXt for languages that demand different font
encodings in the same document we therefore load
patterns in several encodings as well.> Because we
mostly used commercial fonts as part of MKII we
provide some tools to generate the right font metrics
and manipulate patterns.

The reason for mentioning all this is that a font
subsystem in a TEX macro package always looks
quite complex: it has to deal with math and due
to the 8-bit limitations of traditional TEX this au-
tomatically leads to code that is not always easy to
understand, especially because it has to suit limita-
tions in memory, be efficient in usage and behave
flexibly with respect to weird fonts. In MkIV we’re
using Unicode, OpenType, and wide Type 1 fonts so
much of the complexity is gone. However, font fea-
tures introduce new complexities if only because they
can be buggy or because users want to go beyond
what fonts provide.

As a side note here, I want to mention the font
projects. The real reason why Volker Schaa and I
took the first initiative for such a project (currently
Jerzy Ludwichowski is leading the project team) is
that we came to the conclusion that it made no sense
at all that macro packages were complicated by the
fact that for instance in order to get guillemets in
French, one has to load fonts in an encoding most
suitable for Polish just for these glyphs. Because in
ConTEXt by default all languages are loaded and no
additional special language packages are needed, this
was quite noticeable in the code. What started out
as a normalization of Computer Modern into Latin
Modern Type 1 fonts and later OpenType variants,
moved on to the Gyre collection and currently is
focusing on OpenType math fonts (all substantially
funded by TEX user groups). The ConTEXt users
were the first to adopt these fonts, not only because
they were more or less enforced upon them, but also
because the beta releases of those fonts are part of the
so called ConTEXt-minimals distribution, a subset of

TEX Live.

9 Interactivity

The abovementioned Y&Y previewer supported hy-
perlinks and we used that in our workflow. We even
used it in projects where large and complex docu-
ments had to be related, like the quality assurance

5 It was one of the reasons why we moved on to patterns
in UTF encoding so that users were free to choose whatever
encoding they liked most. Nowadays UTF encoded patterns
are standard in TEX distributions.

16 years of ConTEXt



14

manuals fashionable at that time. As a result, by the
time that PDF showed up, we already had the whole
machinery in place to support Adobe Acrobat’s inter-
active features. At that time PDF had two different
audiences: prepress (printing) and online viewing
and we were able to provide our contact at Adobe
with advanced examples in the second category.

Unfortunately, with a few exceptions, none of
our customers were much interested in that kind
of documents. I even remember a case where the
IT department of a very large organization refused
to install Acrobat Reader on their network so we
ended up with products being distributed on floppies
using a dedicated (ASCII) hypertext viewer that we
built ourselves.® The few projects that we used it for
were also extremes: hundreds of interlinked highly
interactive documents with hundreds of thousands
of links. Those were the times that one would leave
the machine running all night so that in the morning
there was some result to look at. At that time we set
up the first publishing-on-demand workflows, using
either TEX input or XML.

One of the more interesting projects where inter-
activity came in handy was a project where we had
to identify lots of learning objectives (for some 3000
courses) that needed to be categorized in a special
way so that it became possible to determine overlap.
With TEX we generated cross-linked dictionaries with
normalized descriptors as well as documents describ-
ing the courses. It was a typical example of TEX
doing a lot of work behind the screens.

Personally I use the interactive features mostly
in presentations and writing a (new) style for an
upcoming presentation is often the first step in the
preparation. In my opinion the content and the form
somehow have to match and of course one has to
avoid coming up with the same style every time.”
Maybe ebooks will provide a new opportunity, given
that they get better quality screens. After all, it’s
a pretty trivial and brain-dead activity to produce
ebooks with TEX.

10 XML

There is some magic that surrounds XML, and it is
often part of a hype. I can waste pages on stories
about structure and non-structure and abuse of XML
and friends, but I guess it’s not worth spending too
much energy on it. After all, the challenges can be
interesting and often the solutions come right on

6 In the beginning even the reader cost money so it is no
surprise that it took a while before PDF took off.

7 This is especially true when I know that Volker Schaa,
one of my benchmarks in the TEX community, will be present.

Hans Hagen

TUGDboat, Volume 32 (2011), No. 1

time, although I admit that there is some bias to
using tricks you’ve just implemented.

Currently most of what we do involves XML
one way or the other which is a consequence of the
fact that ConTEXt can process it directly. As TEX
is rather related to math typesetting we supported
MathML as soon as it came around, and although we
use it on projects, I must say that most publishers
don’t really care about it.

Apart from the fact that angle brackets look cool,
advanced reuse of content seldom happens. This is
no real surprise in a time where the content changes
so fast or even becomes obsolete so that reuse is no
option anyway. On the other hand, we manage some
workflows for publishers that need to keep the same
(school) method around for more than a decade, if
only because once a school starts using it, you have
to support it for some five years after the first year.
In that respect it’s hard to find a system that, after
some initial investments, can stay around for so long
and still provide occasional updates as dirt cheap
as a TEX can. Unfortunately this way of thinking
is often not present at publishers and the support
industry happily sells them pages (each time) instead
of workflows (once set up the price per page is close
to zero). It does not help that (driven by investors)
publishers often look at short term profits and accept
paying a similar amount each year instead of paying
a bit more upfront to save money later.

Maybe I'm exaggerating a bit but most projects
that we run involve someone with vision on the other
end of the table. Some of our customers take real
risks by introducing solutions that go against the flow
of time. The simple fact that TEX-based systems
somehow guarantee a constant result (and at least
some result) makes that succeed. Already several
times we were surprised by the fact that by using
TEX a solution could be provided where all previous
attempts so far had failed: “This is the first auto-
mated publishing project that actually works.” This
might come as a surprise for TEXies who see such
automation daily.

We also support companies that use ConTEXt as
part of a workflow and the nice thing about that is
that you then deal with experts who know how to run,
update and integrate TEX. Of course specific code
written for such customers finally ends up somewhere
in ConTEXt so that maintenance is guaranteed.

11 Design

In the beginning we used TEX mostly in products
where we were responsible for the result: no one
really cared how it looked like in the end (read: no
money could be spent on typesetting) so it was just



TUGDboat, Volume 32 (2011), No. 1

an added value and we had complete freedom in
design. For the last decennium we have dealt only
with the rendering of whatever input we get (often
XML) that no one else can render conforming to the
specs of the customer. We implement the styles we
need and set up workflows that can run for ages
unattended. Of course we do use TEX for everything
we need to get on paper, so there’s also the personal
fun aspect.

In that respect there is an interesting shift in
usage of ConTEXt: for a long time we ourselves were
the ones that drove new functionality, but nowadays
it’s regular TEX users that request specific exten-
sions. So, where for us an efficient XML machinery
is relevant, for users high-end typesetting in their
specific field can be the focus. Of course we can do
what is asked because most functionality has already
been there for a while and often extending boils down
to adding a key and a few lines of code. It is my
impression that ConTEXt users really like to come
up with a personal touch to their documents’ look
and feel, so fun is definitely part of the game.

Currently there are interesting developments
related to the Oriental TEX project which in turn
trigger critical edition support and more modern
follow-ups on that kind of typesetting. Currently
Thomas Schmitz is taking the lead in this area and
I expect interesting challenges in the next few years.

12 The upgrade

A couple of years into this millennium I ran into
a rather neat scripting language called Lua. This
language is used as extension language in the SciTE
editor that I use most of the time and after a while
I wondered how it would be to have something like
that available in TEX. As I don’t touch the engine
myself I asked Hartmut Henkel to patch pdfTEX
into LuaTEX and after some experiments it didn’t
take much to convince Taco to join in: the LuaTgEX
project was born.

While initially just a little bit of access to some
registers as well as a way to print back data to the
TEX input was provided, we quickly started opening
up the whole machinery. Once the potential became
clear it didn’t take much before the decision was
made to make a special version of ConTEXt for Lua-
TEX. It was at the second ConTEXt user meeting that
those present already agreed that it made much sense
to freeze the ConTEXt for pdfTEX and XHTEX and
focus development on the next version for LuaTgX.

Although I have used pdfTEX for a long time
(and was also actively involved in the development)
I must admit that already for some years I only run
it when a user reports a problem. In that respect

15

we have already crossed the point of no return with
ConTEXt. Since I never used X{TEX myself, support
for that engine is limited to additional font support
in the MKII code and I know of some users using it,
if only because they needed Unicode and OpenType
while waiting for MkIV to reach a more stable state.
Of course we will forever support the older engines
with MKIT.

Let me stress that the LuaTEX project is not
about extending TEX but about opening up. Of
course there are some extensions, for instance in the
math engine as we need to support OpenType math,
but the fundamentals are unchanged. Hard coding
more solutions into the core engine makes no sense
to me. First of all it’s quite convenient to use Lua
for that, but most of all it saves endless discussions
and makes maintenance easier.

I would like to stress that the fact that most
users having already switched to this version helped
a lot. I'm pretty sure that the beta version is more
popular than the regular (current) version. This is
not only a side effect of active development, but also
of the fact that the so-called minimals are quite pop-
ular. The original minimals were our self-contained,
ConTEXt-only subset of TEX Live that we also put on
the website, but at some point Mojca Miklavec and
friends adopted it and already for some years it is the
de facto reference implementation that can easily be
synchronized to your personal workstation. Another
important factor in the support chain is the Wiki,
also known as the ConTEXt garden, an initiative by
Patrick Gundlach. One of its spin-offs is Taco’s ad-
ditional TEX Live package repository. The minimals
and garden also play an important role in providing
up-to-date binaries of LuaTEX and MetaPost.

A for me quite interesting experience was that
a few years ago on the ConTEXt list some users
showed up who know the ConTEXt source pretty
well. For a long time only Taco and I touched
the code, apart from language related issues, where
users sent us corrections of label translations. Most
noticeable is Wolfgang Schuster. Not only is he
posting many solutions on the list and writing nice
modules in a style that perfectly matches the code
base, but he’s also amazingly able to nail down
problems and I can integrate his patches without
checking. Another developer worth mentioning is
Aditya Mahajan. It’s great to have someone in the
team who knows math so well and his website http:
//randomdeterminism.wordpress.com is worth vis-
iting. I could and should mention more, like Luigi
Scarso, who is always exploring the frontiers of what
is possible, or Thomas Schmitz, who not only makes
beautiful presentations but also is a great tester. And

16 years of ConTEXt



16

of course Willi Egger, the master of layout, composi-
tion and binding. And we are lucky to be surrounded
by specialists on fonts and PDF standardization.

13 The future

So, what is the current state of ConTEXt? As we
now have a complete split of the code base between
traditional ConTEXt (MKII) and the new version
(MKIV) we can go further in upgrading. Although one
of the objectives is to be as compatible as possible,
we can try to get rid of some inconsistencies and
remove mechanisms that make no sense in a Unicode
age. Some parts are rewritten in a more modern and
flexible way and there are cases that more Lua code
is used than TEX code (although of course at the Lua
end we also use TEX core functionality). Also, all the
tools that come with ConTEXt have been migrated
to Lua. Eventually the code base will be completely
redone.

In addition to coding in TEX a user can code
in Lua using a user interface similar to the one in
TEX, so if you know the ConTEXt commands, you
can also use Lua and create so-called ConTEXt Lua
Documents. At the TEX end we go a step further.
Apart from some upgraded interface-related macros,
for instance we have a better although somewhat
less efficient inheritance model, we also support some
extensions to the macro coding, like more extensive
namespace support and named parameters. Files
using these features are classified as MkVI. This
numbering scheme is not a ratio scale —although
one can argue that MkIV is twice as good as MKII,
the difference between MKIV and MkVI is mostly
cosmetic. It is an interval scale, so MkVT is definitely
a bit better than MKIV. So for the moment let’s

Hans Hagen

TUGDboat, Volume 32 (2011), No. 1

qualify it as a nominal interval scale of numbering,
one that also works out quite well in file names.

Some of the adventurous module writers (like
Aditya and Wolfgang) have adopted this strategy
and provide useful input to the directions to choose.
It must be noted that at the time of this writing
it is because of the active participation of Aditya,
Luigi, Mojca, Peter, Taco, Thomas, Willi, Wolfgang
and whomever I forget to mention that we can un-
dertake such a major rewrite. On the agenda is a
rewrite of code not yet scrutinized, of output routines
(including various multi-column support) additional
(rewritten or extended) support for tables, better
access to the internal document model, an extension
of the multiple stream model, maybe some CSS and
DOM support, and whatever else comes up. Even-
tually most code will be in MkVI format. As we
proceed, for sure there will be articles about it in
this journal.

Of course I should mention my colleague Ton
Otten, who has always been very supportive and
patient with whatever I came up with. He is respon-
sible for convincing potential customers to follow our
TEX route to solutions and often he is the first to
suffer from updates that for sure come with bugs.
Without him we would not be where we are now.

That leaves me mentioning one person who has
always been extremely supportive and open to new
developments: Karl Berry. Without him you would
not be reading this and I would not even have con-
sidered wrapping this up.

¢ Hans Hagen
http://pragma-ade.com



