
TUGboat, Volume 31 (2010), No. 3 213

illumino: An XML document production
system with a TEX core

Matteo Centonza and Vito Piserchia

Abstract
XML is the state of the art in publishing technology.
Publishers, through the “one source, multiple out-
put” paradigm, are able to publish the same content
to multiple media without much effort. In this pa-
per we’ll investigate current scenarios for publishers
adopting a LATEX workflow and introduce illumino,
our fulltext XML production system built around
TEX.

1 Introduction
XML publishing in scholarly publications is nothing
new. Publishers, through content/format separation,
can leverage the many benefits of XML:
• Publish the same content to multiple media
• Store production data in a neutral format, the
“lingua franca” of Internet applications
• Use XML as a neutral format for long-term
archival of content
• Disseminate content through syndication
• Have content ready for data harvesting/mining
(discussed in sect. 4.3)
With the term “XML publishing”, we are re-

ferring to procedures and methods generating final
output media from XML sources. XML sources are
authored to produce final output, ready to be pub-
lished. On the other hand, XML publishing is a
complex task since content should be structured to
be valid XML, i.e.:
• Encoded with correct metadata granularity
• Follow an XML grammar

XML publishing tools are often complex content man-
agement systems (CMS). Users need to perform
content authoring according to tool specifications.
Import tools may be provided, but imported content
needs to be reviewed. This is a time-consuming task.

Publishers interested in XML publishing and
adopting a LATEX based workflow, are either sup-
posed to develop complex in-house solutions or out-
source most of the publishing chain. There are many
outsource facilities more or less ready to do the job
but the price to pay is losing control of the work.

In this paper we’d like to present illumino, our
fulltext XML production system that is trying to
change this scenario. We’ll present the ideas be-
hind this technology, system capabilities and discuss
future development.

1.1 illumino

illumino is a fulltext XML production system, built
around (LA)TEX, which integrates international stan-
dards such as:
• DocBook 5.0
• MathML 2.0
• SVG Tiny 1.2
• Unicode 5.0

illumino converts LATEX sources to its internal
XML format (DocBook) and the publishing chain,
starts from XML sources.

The process is similar to the one described in
the seminal article by E. Gurari and S. Rahtz [3]
but uses different XML technologies. For a graphical
representation of the full process, please see figure 1.

illumino is a multiplatform application built
around TEX (TEX Live and the embedded TEX4ht),
XSLT 2.0, Java, git (as SCM) and once configured,
has native support for publisher LATEX classes and
generates publishers’ native production files as out-
put. It is able to run unmodified in the old LATEX
workflow.

illumino aims to integrate as smoothly as possi-
ble with any LATEX workflow, minimizing production
changes to obtain fulltext XML publishing.

To achieve this goal, illumino performs auto-
matic metadata enrichment through heuristic meth-
ods to match content granularity needed by a given
XML grammar. In order to guarantee content safety
while heuristically enriching unstructured informa-
tion, illumino has been designed to produce output
that perfectly matches that of the LATEX production
source file the system is processing: we test for equal
checksums of source and production output (cur-
rently PostScript output) to ensure this. When this
perfect match (“equivalence”) applies we are sure
that the system has not introduced any modification
to document content, so there’s no need to review
the article content.

illumino has embedded content checking (via
SHA checksums) and the user is warned when the
system outcome is not the perfect equivalence; in
those cases, illumino is able to visually highlight
differences found, so that visual validation can take
place.

illumino is an incremental (à la Apache ant),
client/server application and is able to run through
the network with speed similar to that of a conven-
tional LATEX workflow. By integrating SCM technolo-
gies, illumino can be used concurrently in a safe
way. The complete list of features is given on the
main illumino web page.

illumino: An XML document production system with a TEX core

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http:/http://git-scm.com
http://www.metatype.it/illumino.html
http://www.metatype.it/illumino.html


214 TUGboat, Volume 31 (2010), No. 3

Figure 1: The illumino architecture

2 illumino architecture
Figure 1 shows current illumino client/server in-
teraction. illumino uses standard components and
implements standard and open protocols.

illumino has its foundations on just two main
components: TEX Live and Java.

From a technical point of view, illumino is
based on Apache ant and is implemented as several
custom ant tasks, through our illuminant library
(antlib). By using ant, illumino is an incremental
(through dependencies and timestamps calculations)
and multithreaded application (Java).

The system is completely standalone1 and ant,
used also to build the whole stack, is able to update
and rebuild all upstream dependencies.

What follows is a description of high-level pro-
cesses of which illumino is made.

1 With the exception of the Apache Tomcat servlet con-
tainer (used to implement the caching XSLT engine) and git
SCM program.

2.1 fit4ht
This part of illumino, as its name may suggest, is
responsible for making the initial LATEX source file
“fit” to be run under TEX4ht. This workflow seg-
ment parses LATEX document and by using heuristic
algorithms performs:
• Automatic document cleanup (e.g. standardize
misused TEX primitives and sloppy constructs
to LATEX)

• Enrich document metadata structure (split and
tag content according to information patterns)

• Make some constructs ready to be correctly in-
terpreted by TEX4ht
From a low-level point of view, fit4ht is imple-

mented as an ant filterreader.

2.2 TEX4ht
TEX4ht is the heart of illumino and is the compo-
nent taking care of LATEX to XML transformations.

Matteo Centonza and Vito Piserchia



TUGboat, Volume 31 (2010), No. 3 215

We’ll not delve into TEX4ht internals since this
is out of scope for this article. For a more in-depth
explanation of how TEX4ht works, the reader may
refer to [2, 1].

TEX4ht’s most notable difference with other sim-
ilar technologies is the use of the real thing, the TEX
parser, when converting a TEX file to another format.

For simplicity, we’ll condense the TEX4ht work-
flow to three main steps:
1. Seed configurable (at the control sequence level)

hooks in DVI output
2. Harvest the seeded hooks to generate a given

markup representation
3. Post-process the outcome to undergo validation

We have heavily customized TEX4ht2 mainly to:
• Implement a native backend for DocBook 5.0
output.
• Add support in the TEX4ht core for editorial
fine tuning control sequences (e.g. supporting
all tuning toks, vertical, horizontal, and math
spaces, . . . ) as XML processing instructions.
• Enrich control sequence mapping in order to go
from LATEX→XML and back without degrada-
tion in information quality.
By pre-processing input files and slightly mod-

ifying some TEX4ht internals, we have made the
LATEX→XML conversion a completely automated pro-
cess.

We have developed custom “(LA)TEX4ht com-
pile” ant tasks to have automated compilation of
sources. Compile reruns are handled automatically
(e.g. TEX4ht, for complex tables have to run several
times, and LATEX needs to be rerun when labels are
modified).

Through TEX4ht’s power and flexibility we’ve
been able to have fine-grained content resolution and
exactly remap a LATEX file into its corresponding
DocBook 5.0 counterpart, producing the same out-
put (we call it “equivalence” and their outputs have
identical checksums).

illumino testcases are made of “equivalences”
with research papers in physics from different schol-
arly publications. This approximately 400 pages and
30 articles test suite is illumino’s internal certifi-
cation system and is used to avoid regressions and
to spot inconsistencies in the whole illumino ap-
plication stack (including upstream dependencies).
For every build, illumino must pass these test cases
that are constantly updated as soon as we implement
new features or fix bugs.

At present, illumino has been tested on ap-
proximately 4k pages of content from hard sciences.

2 Thanks to the invaluable help of Eitan Gurari.

2.3 XML transformation phase
illumino uses XSLT to transform the raw XML doc-
ument generated by the previous phase (TEX4ht).

In more detail, illumino’s XML transformation
phase is currently using XSLT 2.0 and takes advan-
tages of its features, e.g. by using xsl:function,
xsl:character-map, regular expressions and pat-
tern matching features extensively.

The XSLT 2.0 phase must be seen as a multi-
stage stack of stylesheets, where every filter accom-
plishes a different task.

XSLT stylesheets are organized in two main sets:
• xtpipes, an XSLT pre-phase, which takes care

of space rearrangement and element positioning,
and produces an enriched and valid DocBook
document;
• Metatype DocBook XSLT, transforming the re-

sulting DocBook document to all supported for-
mats (including LATEX with publisher’s class).

2.3.1 xtpipes stylesheets
In this stage, the filter performs:
• Space rearrangements
• Element reordering and structure enrichment
• Validation fixes

Space rearrangements are strictly related to the
design decision of aiming for full equivalence with
source output. LATEX and XML spaces obey com-
pletely different sets of rules in determining the out-
put. In LATEX spaces can appear almost anywhere in
the source document but may be relevant to output
in only some cases; conversely, an XML grammar
strictly controls the allowed spaces in the document
tree.

In order to achieve “equivalence” between source
and production output, we have handled all corner
situations in which the meaning of spaces from LATEX
and XML differ.

Regarding element reordering and enriching, we
have to face the different nature of semi-structured
and structured data. For example, in LATEX docu-
ments, many commands can change the properties
of the entire group or environment when specified
inside that group. Almost all the alignment com-
mands have this behaviour (e.g. \centering inside
a floating environment). On the other hand, on the
XML side we have to specify this behaviour with
the tag that represents the LATEX environment, with
permitted attributes, if any (i.e. align="center"
inside the CALS table element).

Keeping in mind that seeding of TEX4ht hooks
is sequential and happens when TEX sees the com-
mands, we have two possibilities:

illumino: An XML document production system with a TEX core



216 TUGboat, Volume 31 (2010), No. 3

• using elements and attributes suggested by the
XML schema, when meaningful and close to
LATEX counterparts (e.g. alignment in table en-
vironments)
• using a powerful transclusion and linking tech-
nique
xtpipes stylesheets follows the first approach

where possible and in the remaining cases reverts to
using a built-in xlink/xpointer processor, imple-
mented with XSLT function extensions.

For example, the xpointer scheme can be used
to link other elements in the document and the
xinclude syntax can be used to transclude from
other documents.

We have been able, with our XSLT 2.0 xpointer
implementation, to point to any other element in the
document and e.g. change attribute values. In short,
we have XSLT transformations driven by the XML
content, so in the final analysis governed by TEX4ht.

When the latter method is not applicable, we
resort to bare XML processing instructions to render
the construct.

Validation techniques are discussed in sect. 4.1.

2.3.2 metatype DocBook stylesheets
This phase produces the supported output formats,
starting from valid DocBook 5.0 sources. Leverag-
ing XML’s strengths, we can generate several output
documents (e.g. simple text, HTML, LATEX or doc-
uments in other XML markup languages) from the
same XML source.

2.4 DocBook version 5
DocBook, developed by the OASIS consortium, is a
semantic markup language for technical documenta-
tion. As a semantic language, DocBook is focused
on content and meaning (DocBook has not been
designed to visually format content).

DocBook offers several advantages over compet-
ing markup languages:
• Long history and schema stability
• Wide adoption and great availability of tools

that support authoring of DocBook documents
• Capacity to generate output files in a wide vari-
ety of formats (HTML, XSL-FO and LATEX for
later conversion into PDF or other document
markup languages), lately epub
• Semantic similarities with LATEX commands
• Modular structure including widely adopted

XML grammars (e.g. MathML and SVG)
For a more in-depth explanation of DocBook

concepts, the reader may refer to [5].

2.5 illumino-remote

illumino is a client/server application built upon
open protocols. illumino leverages SCM technolo-
gies, and the backend system exposes git (http:
//git-scm.com/) interfaces.

illumino-remote, the system client, interacts
with the remote illumino server through the git
protocol.

Whenever the git daemon receives new change-
sets (deltas) for a given article from a client, a new
local (server) workflow run will be launched on the
updated sources and results (e.g. XML, PDF deltas)
will be sent back to the client.

Normally git roundtrips are very fast3 in com-
parison to other SCM technologies and we are able,
in combination with ant behind the scenes, to have
illumino processing time be on the same order as a
LATEX workflow run.

illumino-remote is a Java application with
JMS message passing between client and server. We
are waiting for the pure Java git (jgit) implemen-
tation to mature, in order to have a pure Java client.

illumino-remote can control all remote back-
end behaviour such as:
• Repository operations (add, delete article re-
sources)
• Enable/disable output formats
• Choose the PDF output engine (pdfTEX, Adobe
Distiller, ghostscript)
• Show output differences4

• Enforce output equivalence5

• Choose a secondary XML output format

3 Usage caveats
illumino has been designed to integrate as smoothly
as possible into any existing LATEX workflow.

XML publishing, starting from unmodified LATEX
production sources, while a cost-effective way for
publisher to enable a full text XML workflow, is also
a complex software task. Aspects of this complexity
are:
• Automatic enrichment of semi-structured con-
tent to a more structured form
• Proper separation of content from presentational
elements.

What follows is a list of production caveats.
3 Deltas (differences) for storing changesets and fast merg-

ing/indexing algorithms let git compete with some native
filesystem operations.

4 Visual differences are presented when the transformation
does not end with output equivalence.

5 illumino will fail the transformation if the result is not
equivalence.

Matteo Centonza and Vito Piserchia

http://www.docbook.org/
http://www.oasis-open.org/
http://git-scm.com/
http://git-scm.com/


TUGboat, Volume 31 (2010), No. 3 217

3.1 Automated content tagging
Often LATEX sources are not sufficiently structured
to permit a 1:1 mapping with the majority of XML
schemata. To be able to fill all the data structures
provided by an XML schema, we have to properly
resolve pieces of information adhering to specific
patterns. These patterns are able to take care of
most of the production scenarios we have seen during
the heavy test phase our product has undergone.

Out of the box, illumino is able to resolve
correctly and to split various sparse information that
in other semi-automatic systems users tag manually.

This process is by no means perfect since it
is completely heuristic. In some corner cases, this
approach may not be completely satisfactory and
manual tagging is needed. If a new content pattern
is found or highlighted, it will be added to existing
filters.

In other cases, heuristic treatment is simply in-
effective (such as affiliation splitting) and users must
manually tag content to get the needed granularity
(e.g. split into organization name, division, etc.).

Our long-term aim is to integrate illumino with
the UIMA framework and leverage Bayesian annota-
tors to automatically split what currently is done
manually (see sect. 4.2).

3.2 Content/presentation separation
LATEX has a plethora of commands, environments
and class infrastructures which allow for a very high
fraction of content separated from presentation.

Authors strictly adhering to LATEX and class
instructions will provide a very good source base to
transform to XML. Unfortunately this is not always
true, and non-standard environments, low level TEX
code instead of standard LATEX, TEX font primitives,
etc., are easily found.

We have done our best to automatically trans-
form non-standard code to a more conformant form,
preserving its original meaning. This again will prob-
ably not cover all possible cases. In a few cases, users
should manually convert the non-standard code.

3.3 XML validation
A document, to be valid according to an XML gram-
mar, should be checked not only at the structural
level but also at the element content level (i.e. not
only how elements nest but also what elements con-
tain).

This streamlines further processing to other for-
mats and e.g. long term archiving of content (one of
the most interesting parts of an XML workflow).

This (not surprisingly) comes at a cost: content
sometimes should be rearranged in order to adhere to

a given XML schema. The upside is that document
overall quality will be increased.

In most situations, TEX4ht is able to produce
valid XML documents, but some problematic cases
exist. In our experiments, we have found at least
two classes of problems in which validation should
be refined at a later XML post-processing stage.

As already mentioned, this is due to the strict
rules imposed on an XML document when compared
with the weak structure imposed by the LATEX gram-
mar: LATEX to XML transformation can produce
XML chunks that do not fit in the XML structure
(e.g. elements outside allowed parent).

We have solved these validation problems by
using XSL context-aware xpath expressions, rear-
ranging the offending chunk and folding it with the
most appropriate parent element, whenever the XML
schema allows this. With this approach we are able
to solve most validation problems. In some remaining
cases, users must resort to recoding LATEX sources to
solve validation problems; a high fraction of problems
come from offending XML chunks generated from a
sloppy or invalid use of LATEX constructs.

4 “What the future brings”. . .
4.1 XML validation
Currently we validate XML documents through the
Namespace-based Validation Dispatching Language
(NVDL).

NVDL is able to route content coming from a
given namespace in order to be validated by the
correct namespace grammar. In this way, we are able
(by using DocBook) to intermix content validated
through DTD, RelaxNG, and XML Schema.

oNVDL, an open-source NVDL implementation
based on Jing, is our choice.

In the future, we want to explore the opportunity
to take advantages of other XML validation languages.
In particular our attention and future efforts are
focused on the Schematron validation language. By
using Schematron rules we will be able to deal more
easily with current validation constraints.

4.2 Improving unstructured content
parsing through the UIMA framework

In section 2.1 we introduced fit4ht filters taking care
of document metadata structure enrichment, infor-
mation tagging and code cleanup.

fit4ht is a set of specialized modules taking care
of enriching information structure by adding context
metadata. The nature of fit4ht modules is heuris-
tic: whenever document excerpts adhere to a given
pattern, information can be split (safely, since “equiv-
alence” or visual validation comes to help).

illumino: An XML document production system with a TEX core

http://nvdl.org
http://www.schematron.com/


218 TUGboat, Volume 31 (2010), No. 3

Since one of illumino’s tasks is to treat un-
structured/partially structured information to con-
vert into a more structured form, in the long term
we’ll port fit4ht modules to Apache UIMA (http:
//uima.apache.org/).

Unstructured Information Management appli-
cations are software systems that analyze large vol-
umes of unstructured information in order to discover
knowledge relevant to an end user. An example
UIM application might ingest plain text and identify
entities, such as persons, places, organizations; or
relations, such as works-for or located-at.

The UIMA frameworks support configuring and
running pipelines of Annotator components. These
components do the actual work of analyzing the un-
structured information. Users can write their own
annotators, or configure and use pre-existing anno-
tators. Some annotators are available as part of
the UIMA project; others are contained in various
repositories on the Internet.

By integrating illumino with the framework
we will be able to leverage the software ecosystem
built around UIMA and e.g. split information based
on Bayesian inference or address other editorial tasks
such as normalization of inflected forms.

4.3 Knowledge mining
Another interesting field for which scientific XML
content is particularly suited is knowledge mining.

Several advances in computer science have been
brought together under the rubric of “data mining”
[4]. Techniques range from simple pattern searching
to advanced data visualisation and neural networks.
Since our aim is to extract comprehensible and com-
municable scientific knowledge, our approach should
be characterised as “knowledge mining”.

Our idea is to create a network of links between
research articles from various fields of science and ac-
celerate research, scientific discovery and innovation.

The key point is that scientific papers, especially
from the hard sciences, encode most of their content
using mathematical expressions. Every mathemati-
cal expression has a unique meaning.

By indexing all occurrences of mathematical
expressions present in research papers, it would be
possible to build a network of links between research
articles. Analyzing links between different fields of

knowledge would make it possible to deduce symme-
tries, patterns, and even similarities that could be
used as research targets.

4.4 illumino GUI

We plan to develop a graphical interface in order to
have a smooth interaction with the system. This
graphical interface should integrate a LATEX editor
and will handle remote interaction with the system.

In our plans, this will be done by developing
an Eclipse plugin, in order to leverage the Eclipse
ecosystem to have advanced functionalities such as:
• Real-time shared editing
• Context sensitive editing
• Seamless remote interaction
• Versioning and change management (à la git).

References
[1] G. Cevolani. Introduzione a TEX4ht,

Proceedings of the 2004 Italian GuIT meeting
(in Italian). http://www.guit.sssup.it/
guitmeeting/2005/articoli/cevolani.pdf

[2] M. Goossens and S. Rahtz with E. Gurari,
R. Moore, and R. Sutor. The LATEX Web
Companion, Addison-Wesley, 1999.

[3] E. Gurari and S. Rahtz. “From LATEX
to MathML and back with TEX4ht and
PassiveTEX”. http://www.cse.ohio-state.
edu/~gurari/docs/mml-00/mml-00.html

[4] P. Langley and H.A. Simon. Applications
of machine learning and rule induction.
Communications of the Association for
Computing Machinery, 38(11), 54–64, 1995.

[5] N. Walsh. DocBook: The Definitive Guide,
O’Reilly & Associates. http://www.docbook.
org/tdg/

� Matteo Centonza
metatype, Via Santacroce 13/5,

I-40122 Bologna, Italy
matteo (at) metatype.it

� Vito Piserchia
metatype, Via Santacroce 13/5,

I-40122 Bologna, Italy
vito (at) metatype.it

Matteo Centonza and Vito Piserchia

http://uima.apache.org/
http://uima.apache.org/
http://www.guit.sssup.it/guitmeeting/2005/articoli/cevolani.pdf
http://www.guit.sssup.it/guitmeeting/2005/articoli/cevolani.pdf
http://www.cse.ohio-state.edu/~gurari/docs/mml-00/mml-00.html
http://www.cse.ohio-state.edu/~gurari/docs/mml-00/mml-00.html
http://www.docbook.org/tdg/
http://www.docbook.org/tdg/

	Introduction
	illumino

	illumino architecture
	fit4ht
	TeX4ht
	XML transformation phase
	xtpipes stylesheets
	metatype DocBook stylesheets

	DocBook version 5
	illumino-remote

	Usage caveats
	Automated content tagging
	Content/presentation separation
	XML validation

	``What the future brings''…
	XML validation
	Improving unstructured content parsing through the UIMA framework
	Knowledge mining
	illumino GUI


