68

Tuning KTEX to one’s own needs

Jacek Kmiecik

Abstract

I will not conceal that the topic brought up in the
article has been discussed many times over, especially
on mailing lists—but it continues to come back.
There are numerous methods of adjusting KTEX to
particular typographic needs.

I am not going to advocate for a particular, the
only proper, way of tackling low-level modifications
of XTEX macros, but will be suggesting several ways
of handling such situations. As usual, there are many
ways. The choice depends on how well one masters
the tools. Also, T will restrict myself to selected
areas of typesetting, those where adjustments are
most often needed.

1 Introduction

TEX is for many the first form of contact with a
TEX environment. In many cases, it remains so and
KTEX becomes the only set of macros (classes, styles,
packages) which a user is able to work with and which
he trusts. His own macro-creation is limited to tiny
modifications of basic definitions as described either
in textbooks, or in easily accessible documentation.

A more demanding necessity might make a user
search for an appropriate macro package in the cav-
ernous CTAN archives. According to various “omni-
scient” authorities and mailing lists, these packages
are supposed to provide — magically — a wonderful
automatic mechanism of improving everything simul-
taneously. If it is not a single package of macros,
then, unfortunately, other packages — supplementing
successive missing elements of the typesetting — are
being added to the BTEX preamble.

However, sooner or later it turns out that adding
one more package breaks the compilation, changes
the hitherto acceptable typesetting in impermissible
places, or warns with announcements about some
incompatibility.

Thanks to such situations, we can often en-
counter statements similar to the following: “I don’t
use BKTEX, because once something didn’t work as I
wanted (...) and that’s why I use Plain TEX”.

That’s right! This should be the next step
in one’s TEX education. Nevertheless, writing all
macros for a voluminous publication may become
a spectacular challenge—some functionalities can

This is a translation of the article “Dostosowanie IATEX-a
do konkretnych potrzeb”, which first appeared in Biuletyn
GUST 25 (2008), pp. 44-52. Reprinted with permission.
Translation by Jerzy Ludwichowski and the author.

Jacek Kmiecik

TUGDboat, Volume 31 (2010), No. 1

be programmed quickly and easily (e.g., headings,
imprints, footnotes), others demand advanced knowl-
edge of TEX (the contents, preparation of a hyper-
linked PDF file, multiple runs, etc.). Undisputed
educational and cognitive values do not often go
hand in hand with the hurry with which we have
to cope with difficult cases, hence there is an irre-
sistible temptation to use ITEX as it seems to be an
easier and friendlier environment. At least, it was
the assumption of its creator, Leslie Lamport.

And if we ... let’s say ... “marry” Plain TEX
with IMTEX? In principle, all IXTEX macros are more
or less extended plain macro definitions. Instead of
being exposed to limitations of ready-made packages,
it suffices to redefine the most necessary EXTEX com-
mands for our own local use. Any way we look at
it, the majority of packages originated in this way —
locally needed definitions, modified canonic KTEX
macros—all have been compiled into a separate
package and adjusted to be used with the contem-
porary IATEX 2¢ format. The issue of maintaining
compatibility is a different topic, which we are not
going to elaborate on. Nonetheless, we should be
aware of the existing dangers.

The purpose of this article is to suggest ways of
modifying of some basic, canonical ITEX definitions,
starting from their source code.

2 What should we start from?

From the documentation! The KTEX 2¢ standard
distribution contains quite well-documented source
code—in your basic installation you can find for
sure the source directory, and in it a file entitled
source2e.tex. Its compilation gives ~ 600 pages of
documentation of the IATEX 2¢ format source code —
makes for good bedtime reading! Very instructive!
And how “plain” it is! Almost everything is written
with the conventions of primary plain macros.

3 And what’s next?

Apply the method of small steps. If your document
requires the use of colors and the desired destina-
tion format of the publication is PDF—1I do not
recommend that anyone write a whole colourful PDF
machinery from scratch. We have verified and tested
packages color.sty or xcolor.sty, so we do not have
to reinvent the wheel. Likewise for the graphics
embedding macros or building tabular setups.

Let’s suppose we have to deal with a voluminous
publication. As a first step I would suggest divid-
ing the document into logically smaller parts, e.g.,
chapters, and place them in separate files attached
to the main document file. In this file, in the pream-
ble, we can put the additional essential commands,

TUGDboat, Volume 31 (2010), No. 1

or—what seems to me the most appropriate solu-
tion —we can create our own package or even a class.
Building our own local macro package seems to be
decidedly easier for a TEX beginner, so we will choose
this particular solution. Our own file mystyle.sty
should be incorporated into the preamble as follows:

\usepackage{mystyle}

Such a solution allows the use of any plain or
ITEX primary commands, on the condition that
we know what we are doing. It also allows the use
of the @ sign when naming macros. The @ sign is
used by the inner WTEX constructs (the commands
\makeatletter and \makeatother will then need to
appear in the preamble of the main document). This
gives us quite some power, but be forewarned that
without good working knowledge of the INTEX docu-
mentation and its inner workings, we may — by our
own efforts— accomplish more damage than good.
This is why I recommend only minimal modifications.
As our TEX skills reach higher levels, we may try
more challenging things ... but for the time being
let’s stick to the small steps method ...

4 Page layout

Let’s begin with the page layout — column size, mar-
gins, indents, side notes, headings ... how can we
see the invisible? Where are the document elements
such as the main column, side notes, captions or
footer being placed? For DVI output:
\RequirePackage{showframe}
or when PDF is the output format:
\input{pdf-trans.tex}
\def\boxsh{\boxshow

{0 .7 .1 RG .2 w})

{0 0 .8 RG [2 2]1 d}{}}
\let\shb\boxsh

The showframe.sty package is a part of a bigger
macro package eso-pic.sty —it helps to illustrate
the physical placement of the page contour, that
is, the locations of fixed elements of the column
exposition, such as heading, column, footer or side
notes (fig. 1).

What are the \RequirePackage and all the rest
being used for? Well, without delving into techni-
cal details of I'TEX and the packages being used,
more serious tasks can hardly be approached. At
first it should suffice to say that we are defining low-
level plain TEX macros to suit our own needs. The
inquisitive user should consult the package documen-
tation or be happy with a terse: It is easier that
way! 1T would like to add that the pdf-trans pack-
age [3] by Pawetl Jackowski, is written in low-level
TEX so cleanly that it can be directly incorporated

69

IDla kogo jet

Przyjeta kofjwencja notacyjna

Figure 1: See with your own eyes what the composed
page looks like

Figure 2: \shb depicts the boxes ...

into IXTEX 2¢. So far, T have not come across any
conflict of those macros with any I#TEX macros. The
\boxsh definition, or its abbreviation \shb (show-
bozx) placed directly before boxes like \vbox and
\hbox will, when typeset, show their contours and
baselines (fig. 2). We need only remember to exclude
the “helpers” from the final typesetting, e.g.,

\let\shb\relax

Now we can move on to the next activity, i.e.,
setting of the page parameters as seen in the printout.
The default page sizes defined in XTEX classes usually
do not conform to the Polish typography tradition or
the requirements of our publishing houses. Nothing
stands in the way of adjusting them to our needs.
Already in the standard format, there are about
15 parameters which define the characteristic page
dimensions, and to which we have direct access. Not
everything needs to be “touched” —if we do not use
marginal notes in our document, then there is no
need to manipulate their dimensions.

Let us for example do the following:
\setlength{\paperwidth} {165mm}
\setlength{\paperheight}{238mm}
\special{papersize=\the\paperwidth,

\the\paperheight}

Tuning BTEX to one’s own needs

70

It doesn’t seem like much ... but if at a later
stage the document will be further processed at pre-
press or converted to the PDF format, its pages
should have proper outer dimensions (including mar-
gins, etc.). Without that magic “spell” the paper
size information will be missing from the DVI file
and most drivers (e.g., dvips) will in such a case
assume the default letter page size (11in x 8.1in
or 279 mm X 216 mm). Those who like minimizing
chances for trouble in the future may readily remem-
ber and appreciate this little hint.

The modern production cycle of compiling doc-
uments directly to PDF from TEX sources, with
pdfTEX, also requires these sizes to be set, this time
like so:

\pdfpagewidth 165mm
\pdfpageheight 238mm

Other default size values will surely require cor-
rections. For example:

\setlength{\textheight} {190mm}
\setlength{\textwidth} {130mm}
\setlength{\hoffset} { Omm}
\setlength{\voffset} {-11mm}

\setlength{\oddsidemargin} { -5mm}
\setlength{\evensidemargin}{ -5mm}

\newlength\g@parindent
\setlength\g@parindent{20bp}

\setlength{\parskip} {Opt}
\setlength{\parindent} {\g@parindent}
\setlength{\leftmargini}{\g@parindent}
\setlength{\topskip} {8bp}

The auxiliary variable \g@parindent we define
above (something like a global-parindent) helps other
macros to come, where we will define distances being
multiples of the paragraph indent. Therefore, it
seems sensible to define that particular length unit
in one place. This “fixed” variable allows us to not
to worry, for example, about some lengths changing
with a change of the current font size.

What alternatives exist? One is the geometry
package — calling it with appropriate parameters al-
lows setting of all necessary dimensions of the typeset
page [6]:

\RequirePackage [pdftex,
papersize={185mm,235mm},
textwidth= 123mm,

textheight= 181imm,

inner= 42mm,
headheight= 9pt,
headsep= 8mm,

top= 14mm,

footskip= 10mm,
marginparwidth= 21mm,

Jacek Kmiecik

TUGDboat, Volume 31 (2010), No. 1

marginparsep= imm,
includehead,
asymmetric,
1%
{geometry}
(Note: the above examples are for two different pub-
lications).
We should also mention:
\sloppy
\widowpenalty 10000
\clubpenalty 10000
\flushbottom

The \sloppy parameter forces I TEX to set quite
liberal demerit values thus allowing for sub-optimal
line breaks and page breaks. The following two
parameters, \widowpenalty and \clubpenalty, set
for the maximum demerit value of 10000, forbid
page breaks leaving “widows” or “orphans”. The
\flushbottom parameter (a possibly overzealous set-
ting) asks for the following pages to be set to exactly
the same height. Some packages may confuse the
typesetting with respect to page height.

5 Not only Computer Modern

There is nothing to prevent replacing the “core” TEX
fonts with fonts of the typographer’s choosing. We
will not go here into the problems related to using
outline fonts with TEX as they have been discussed
many times elsewhere. However, when typesetting
math texts, especially with “tough” or “heavy” math,
one should bear in mind that only the CM fonts offer
the most comprehensive set of sophisticated math
signs and symbols.

Recently the free fonts of high TEXnical quality
were joined by the TEX Gyre family of fonts. They
complement the collection of other freely available
computer fonts of Polish origin (Antykwa Péttawski-
ego, Antykwa Toruniska, Kurier, Iwona, Cyklop) [10].

Lets assume that our model document will use
Pagella (previously QuasiPalatino) as the base font
(the current, serif font), the sans serif Heros font
(in some installations it might lie around as Quasi-
Swiss) — for typesetting of headings or sometimes to
emphasize portions of text, and Cursor (ex-Quasi-
Courier) as the typewriter font (e.g., for program
code snippets). To achieve that one need only give
the following commands:

\RequirePackage{pxfonts}
\RequirePackage{tgheros}
\RequirePackage{tgpagella}
\RequirePackage [QX]{fontenc}

The pxfonts.sty macro package enables the use
of math symbols available with the Pagella font (the
pxfonts package in TEX distributions). Inclusion

TUGDboat, Volume 31 (2010), No. 1

of fontenc.sty with the QX option allows for easy
access to the complete set of glyphs available in the
font — for more on the (Polish) QX encoding see [9].

All those packages can also be included “whole-
sale”, with the following single command:
\RequirePackage{pxfonts,tgheros,tgpagella}
\RequirePackage [QX]{fontenc}

6 Typesetting of headings

The fundamental IXTEX commands \part, \chapter,

\section, \subsection, \subsubsection, \paragraph,

and \subparagraph are responsible for the formatting

of the titles of the sectioning units of the document.

Of course, the commands do much more but for now

we are only going to discuss the formatting of their

parameter text.

First, to make it easier to set the size of the font
and line spacing, let’s define some font manipulation
utility macros:

\def\h@fam{qhv}

\def\font@def #1#2{%
\usefont{\encodingdefault},
{\hefam}{#1}{#2}}

\def\font@set #1#2#3#4{},

\font@def{#1}{#2}/,

\fontsize{#3pt}{#4pt}\selectfont}

\def\foo@chp@num{\font@set{bx}{n} {32}{16}}
\def\foo@chp@txt{\font@set{b} {n} {18}{16}}

\def\foo@sec {\font@set{b} {n} {14}{163}}
\def\foo@sse {\font@set{m} {n} {12}{14}}
\def\foo@sss {\font@set{b} {n} {11}{13}}
\def\foo@par {\font@set{m} {n} {11}{13}}
\def\foo@spa {\font@set{m} {it}{10}{12}}

Why these fancy macro names? Well, indeed,
the naming is the writer’s choice ... we tried to
make them intuitive (font for the headings, chapter
text, chapter number and so on) — there is no ideal,
unambiguous recipe. Here we only suggest a solu-
tion —one can define macros with almost any name.
What one should look out for, however, are names
previously used inside the format, classes or packages
used with our document.

Now we will move on to redefining the original
IXTEX macros — the use of \renewcommand or \def
is crucial. The \def command is to some degree
dangerous: as a purely Plain TEX construct, it does
not control name conflicts, thus one may uninten-
tionally create quite some havoc. The \newcommand
command detects possible name conflicts and so if
we really want to redefine an already existing macro,
we should use the \renewcommand command. Let’s
start with \chapter:

\renewcommand\chapter{%
\if@openright\clearemptydoublepage

71

Przedmowa

Figure 3: The beginning of an unnumbered chapter

\else\clearpage\fi

\thispagestyle{openl}’

\global\@topnum\z@

\@afterindentfalse

\secdef\@chapter\@schapter}
— here we call the \clearemptydoublepage com-
mand with the objective to output, if necessary, an
empty left (even numbered) page (with head and foot
empty), just before the chapter’s title page. This
command does not exist in the canonical set of KTEX
macros, so we have to define it ourselves [2]:
\newcommand{\clearemptydoublepage}{%

\newpage{\thispagestyle{empty}}/

\cleardoublepage}

The use of a nonstandard style for the current
page \thispagestyle{open} may also have caught the
reader’s attention — we will discuss this in section 7.

The following changes reach deeper into the
source code —they cannot be explained without a
detailed analysis of the original ITEX code — those
interested are referred to the documentation. One
might also see this as an antidote for sleeplessness.
We will cut corners and go directly to the the macro
code. The macros modify the headings in the way
presented with figures 3 and 4.

Let us begin with some utility definitions (only
those which have been used to change the look of
the chapters’ titles):

\definecolor {xxv@gray} {cmyk}{0,0,0,.25}
\newlength\begin@skip
\setlength\begin@skip {46mm}
\newsavebox{\chpt@box}
\def\@stempel{\vphantom

{\foo@chp@num 0123456789}}

Tuning BTEX to one’s own needs

72

Wprowadzenie

11, 142), 175, [76]

Figure 4: The beginning of a numbered chapter

\def\foo@chp@num{%
\font@set{qtm}{m}{n}{48}{48}}

\def\foo@chp@txt{%
\font@set{qhv}{m}{n}{26}{28}2}

3

And now to “more serious” code snippets:

\newcommand\@make@chapterhead [2] {%
\nointerlineskip
\vspace*{-\topskip}/

\shb\vbox to\begin@skip{/
\vspace*{-.5mm}%
\parindent \z@
\language 255
\raggedright
\color{xxvQ@gray}’
\ifx|#2]
\sbox{\chpt@box}%
{\normalfont\foo@chp@txt
\textcolor{black}{#1}}/
\else
\sbox{\chpt@box}/,
{\normalfont\foo@chp@uum#1\@stempell}y,
\fi
\chap@dinks
\rlap{\raisebox{10pt} [Opt] [Opt]%
{\usebox{\chpt@box}}}%
\color{black}/
\rule{\linewidth}{.5ptl}%
\hfill\endgraf
\par\vspace{-8pt}/
\interlinepenalty\@M
\foo@chp@txt#2\par
\vspace{\stretch{1}}
Fnointerlineskip \vskip-6pt}

That parameterized macro deals with two cases—
numbered and unnumbered chapters. Doing it that

Jacek Kmiecik

TUGDboat, Volume 31 (2010), No. 1

way seems to facilitate future changes. Usage of this

definition is trivial:

% for numbered:

\renewcommand\@makechapterhead [1]{%
\@make@chapterhead

{\thechapter}/,

{#1}}%

% for unnumbered:
\renewcommand\@makeschapterhead [1]{%
\@make@chapterhead

{#1}%

{3}

Any questions? \@stempel? What are the dig-
its 0-9 for? They are not needed in the presented
case. The font we use does not require it because all
digits have the same height.But let’s imagine that
the designer employed in that place an unusual, e.g.,
handwriting font —each digit has its own height and
depth ... and the headings must be aligned “in one
line”. This definition is the easiest way to obtain the
maximal dimensions.

Now, let’s remind ourselves of how to modify
the appearance of the lower level headings — there
is little of pure plain but nonetheless:

\renewcommand\section{\@startsection

{section}y, name
{1}% level
{\za}/ indent

{-3.5ex \@plus -lex \@minus -.2ex}), above skip
{2.3ex \@plus.2ex}), below skip
{\normalfont\foo@sec}’ font

}

Similarly for the titles of the lower levels down
to \subparagraph, if need be. What is left is to
insert the period sign after the section number in
the numbered titles. The most convenient way is to
redefine the proper macro:

\def\@seccntformat#1{
\csname the#1\endcsname.\quad}

Low-level, as in ... plain!

7 Changing headers and footers

The default page headers are usually not satisfying.
The same applies to footers, where page numbers are
usually placed. However, nothing stands in our way
of changing that appearance! The manipulations
of the content of these page elements can be done
according to the following pattern:
\def\ps@myheadings{/

\def\@evenhead{ ...left head... }%

\def\Q@oddhead { ...right head... }%

\let\@oddfoot { ...left foot... }%

\let\@evenfoot{ ...right foot... }%

\let\@mkboth\markboth

}

TUGDboat, Volume 31 (2010), No. 1

73

10 2. Struktura sieci

Jezeli zbiory wezléw i tuk6w grafu G sq zbiorami skoriczonymi, o graf G nazy-
wamy grafem skoriczonym. .

Graf jest Sciej przeds y W postaci wykresu, ktéry sklada
si¢ z punkt6éw reprezentujgcych elementy zbioru V oraz strzalek reprezentujacych

2.1. Grafy ski 1

Definicja 2.2. Graf skierowany G = (VA.y) nazywamy grafem etykictowanym nad zbiorem ety-
kiet L, jezeli luki grafu G maja przypisane etykiety ze zbioru L. .

Przyklad grafu ety

nad zbiorem N pr na rys. 2.2.

Figure 5: Page headers

For example, the headers presented in figure 5
were defined as follows:

\newlength\full@wd
\setlength\full@wd{145mm}
\def\fooGhed@pag{%
\font@set{ghv}{b}{n}{11}{10}}
\def\foo@hed@odd{’
\font@set{qhv}{m}{n} {9}{10}}
\let\foo@hed@eve = \fooGhed@odd

The \foo@hed@pag command defines the font
to be used when typesetting the page numbers in
the header, the \foo@hed@odd and \foo@hed@eve
commands may be used to define different fonts for
the left and right running headings. In the sample
case illustrated with figure 5, the same font and size
were used for both page numbers.

The style definition of the sample page looks as
follows:

\def\ps@MYheadings{/
\def\@evenhead{\0x@line
{\makebox [22mm] [1] {\foo@hed@pag\thepage}’
\foo@hed@eve\leftmark
\hfill}}%
\def\@oddhead {\@x@line
{\hspace*{22mm}\foo@hed@odd\rightmark
\hfill
\makebox [22mm] [r] {\foo@hed@pag\thepage}}}%
\let\@oddfoot\@empty
\let\@evenfoot\Qempty
\let\@mkboth\markboth
}
\def \ps@open{
\let\@evenhead\@empty
\let\@oddhead\@empty
\def\@oddfoot {\makebox[\textwidth] [r]{%
\foo@hed@pag\thepage}}’
\def\@evenfoot{\makebox [\textwidth] [1]1{%
\foo@hed@pag\thepage}}’

Here we see the previously mentioned, private
page style \thispagestyle{open}, applied to the ini-
tial pages of chapters (figure 3 and 4). In a similar
way other needed page styles might be defined.

And now the remaining definitions:
\def\@x@line#1{%

\makebox [\textwidth] [r]%
{\shb\hbexte\fullewd{#1}\ul}}

\newcommand\ul{\unskip
\llap{\rule[-4bp]l{\full@wd}{.5bp}}}

As we see, KTEX and plain commands can be
used alongside. One only needs to remember their
functionality — parametrisation, expandability and
redefinitions.

The periods are still missing after chapter and
section numbers:

\renewcommand\chaptermark [1]{/
\markboth {\thechapter.\space#1}},
{\thechapter.\space#1}}

\renewcommand\sectionmark[1]{%
\markright{\thesection.\space{#1}}}

The default page style declaration is simple:
\pagestyle{MYheadings}

8 Redefining enumeration environments

Our customization zeal will not stop short of stan-
dard enumerations: we feel that some things should
be done about them.

IXTEX enumeration environments have several
variants and applications. However, a set of instruc-
tions similar for all of them determines their ap-
pearance (hanging indents, line spacing, indents).
Unfortunately, we have to consult “the source”, re-
type appropriate parts of the code and modify the
relevant parameters. Let’s do it:
\setlength\leftmargini
\leftmargin\leftmargini
\setlength\leftmarginii {\g@parindent}
\setlength\leftmarginiii{\g@parindent}
\setlength\leftmarginiv {\g@parindent}
\setlength\leftmarginv {lem}
\setlength\leftmarginvi {lem}
\setlength\labelsep {.5em}
\setlength\labelwidth {\leftmargini}
\addtolength\labelwidth {-\labelsep}
\setlength\partopsep{0\p@}

{\g@parindent}

\g@parindent, defined close to the beginning
of our code, has now found its application —now,
independent of their placement within the document,
enumerations will always be indented by the same
amount. Unless we spoil this with a strange macro
or environment.

Tuning BTEX to one’s own needs

74

In our next move we will change the formatting
parameters for the consecutive enumeration nesting
levels of which standard ETEX allows up to six! Such
deep nesting is not used in practice. One should think
of re-writing the text rather than using very deeply
nested enumerations, which might hinder compre-
hension. Anyway, let’s now deal with the definitions:
\def\@listi{\leftmargin\leftmargini

\parsep \z@

\topsep .5\baselineskip
plus .25\baselineskip
minus .15\baselineskip

\itemsep \z@ plus .5pt}

\let\@listI\@listi

\@listi

And the deeper levels:

\def\@listii {\leftmargin\leftmarginii
\labelwidth\leftmarginii
\advance\labelwidth-\labelsep
\topsep \z@

\parsep \z@

\itemsep \z@}
\def\@listiii{\leftmargin\leftmarginiii

\labelwidth\leftmarginiii

\advance\labelwidth-\labelsep

\itemsep \z@Q}

... enough! Those who grasped the rules of the game
will easily tackle even deeper levels if need be. and, as
demonstrated, that kind of activity requires reading
the source code of classes and styles.

Let’s change the bullets for the consecutive nest-
ing levels (we will skip the last two levels):
\renewcommand\labelitemi {\sq@black}
\renewcommand\labelitemii {\sq@white}
\renewcommand\labelitemiii{\textemdash}
\renewcommand\labelitemiv {\ast}

\def\sq@black{\rulel[.lex]{lex}{lex}}
\def\sq@white{\mbox{%
\fboxsep=0pt
\fboxrule=.5pt
\raisebox{.15ex}{\fbox{%
\phantom{\rule{.8ex}{.8ex}}}}}}

The following command might turn out to be

very useful:

\def\keepitem{\@beginparpenalty\@M}

—we forbid page breaks before the first short item.
It suffices to give it just before that item —this is
the equivalent of eliminating “orphans” in running
text.

For those liking pure IXTEX solutions, the pack-
age enumitem is worth recommending. It allows for
individual tailoring of each enumeration through
proper parameters, or might be applied globally, in
the preamble:

Jacek Kmiecik

TUGDboat, Volume 31 (2010), No. 1

\setenumerate{%
labelsep = 6pt,
leftmargin = \leftmargini,
itemsep = 1pt,
topsep = 6pt,
partopsep = Opt,
parsep = Opt
}
\setitemize{¥
label = \textsquare\hfill,
labelsep = 6pt,

leftmargin = *,
itemsep = 1pt,

topsep = 6pt,
partopsep = Opt,
parsep = Opt

}

The meanings of the parameters are intuitive.
Their names correspond to the various lengths used
to construct enumerations. A more complete descrip-
tion of the package might be found in its documen-
tation [1].

9 Modifying footnotes

Another typesetting element we might want to mod-
ify is footnotes. Let’s assume we’d like the rule
separating the footnote from the text column to be
of full column width:
\renewcommand\footnoterule{’,

\kern-3\p@

\hrule width\linewidth height.5pt

\kern2.5\p@}

That’s the way to gain direct access to the sep-
arating rule: we can modify its length, thickness,
position and even colour!

With the replacement of the default font, need
may arise to correct the positioning of footnote num-
bers both in the running text and the footnotes.
Changes might be needed in the font and size of the
indexes, or the footnote marks.

\def \@makefnmark{\hbox{/
\@textsuperscript{\normalfont\@thefnmark}}}

\renewcommand\@makefntext [1]{/
\parindent\g@parindent,

\noindent
\hb@xt@\parindent{\hss\@makefnmark\space}#1}

10 Positioning floating objects

Figures and tables are amongst the most often used
floating objects. One may also encounter other
objects with distinct typographic properties (algo-
rithms, screen shots) and separate numbering. The
placement of such typesetting elements is controlled
in IMTEX through several parameters which, unfor-
tunately, have their defaults set to rather restrictive

TUGDboat, Volume 31 (2010), No. 1

values. For publications with a large number of tables
and figures, it might be difficult to obtain aestheti-
cally pleasing page breaks and proper placements of
the elements with respect to the running text.
However, again nothing stands in our way to
slightly relax those parameters. For example:

\setcounter {topnumber} {3 wi{2}
\renewcommand{\topfraction} {.9y W{.7F
\setcounter {bottomnumber} {0} %%{1}
\renewcommand{\bottomfraction} {.2} %4{.3}
\setcounter {totalnumber} {3} %%{3}

\renewcommand{\textfraction} {.1} %{. 2}
\renewcommand{\floatpagefraction} {.85}%%{.5}
\setcounter {dbltopnumber} {2} %Wi{2}
\renewcommand{\dbltopfraction} {.8} %WA{.7}
\renewcommand{\dblfloatpagefraction}{.8} %%{.5}

The meaning of the particular counters and pa-
rameters can be found in the BTEX documentation.
The default values offered by the format and stan-
dard IATEX classes are given after the double percent
sign. The modified values will surely cause a better
placement of our floating objects.

11 Smaller fonts for tables et al.

Instead of placing a command changing the current
font size in each and every table environment, we
may achieve the desired result globally:
\def\font@caption{\font@set{qtm}{m}{n}{8}{10}}
\def\@floatboxreset {J

\reset@font

\font@caption

\centering

\@setminipage

}

Isn’t it simple? In a similar way the e.g., verbatim
environment might be modified — a slight decrease
of the typewriter font size without reducing the read-
ability of these fragments. This may be achieved
with a small change to the canonical ATEX format:
\def\verbatim@font{/

\normalfont\ttfamily\small}
However, one should bear in mind that some spe-
cialized packages dealing with verbatim-like environ-
ments will be immune to such machinations. Such
packages might have internal font mechanisms and
offer considerable flexibility.

12 Summary

The topic has by no means been exhausted — but still,
I hope that the examples given here will convince
those less versed in I'TEX that even that format may
be modified to achieve one’s own ends.

Turning such code snippets into styles or classes
is a separate subject and, often, requires more in-

75

depth studies of the subject, e.g., compatibility with
other macro packages. There will be no way around
reading the documentation or, in many cases, analys-
ing the TEX code.

Some examples in this article were taken from
this book by Marcin Szpyrka: Sieci Petriego w mo-
delowaniu i analizie systemow wspotbieznych, War-
saw 2007. The book was typeset for Wydawnictwa
Naukowo-Techniczne using the techniques presented
here.

References

[1] Javier Bezos: Customizing lists with the
enumitem package, mirror.ctan.org/macros/
latex/contrib/enumitem/

[2] Michel Goossens et al.: The HTEX
Companion, Addison-Wesley, 2°¢ edition
(2004)

[3] Pawel Jackowski, Boz Transformations
in pdf-trans.tex, mirror.ctan.org/macros/
generic/pdf-trans/

[4] Helmut Kopka, Patrick W. Daly: Guide to
BMEX 2z, Document Preparation for Beginners
and Advanced Users, Addison-Wesley,
4*™h edition (2003)

[5] Leslie Lamport: KTEX System opracowywania
dokumentow Podrecznik i przewodnik
uzytkownika [BTEX: A Document Preparation
System], Wydawnictwa Naukowo-Techniczne
(2004)

[6] Hideo Umeki: The geometry package, mirror.
ctan.org/macros/latex/contrib/geometry/

[7] Marcin Woliniski: Moje wtasne klasy
dokumentéw [My own document classes],
www.math.upenn.edu/tex_docs/latex/mwcls/
mwclsdoc.pdf

[8] Marcin Woliniski: Ku polskim klasom
dokumentow dla ETEX-a, Biuletyn GUST,
nr 15, 2000

[9] Kodowanie QX [The QX encoding],
www.gust.org.pl/doc/fonts/qx/
[10] Projekty fontowe [Font projects], www.gust.
org.pl/doc/fonts/projects

o Jacek Kmiecik
AGH University of Science and
Technology
University Computer Centre
al. Mickiewicza 30, 30-059 Krakéw
jk (at) agh dot edu dot pl

Tuning BTEX to one’s own needs

