
TUGBOAT

Volume 31, Number 1 / 2010

General Delivery 3 From the president / Karl Berry

4 Editorial comments / Barbara Beeton

TEX at 25; Pi Day; The @ sign as a design icon;
Amusements on the Web; Videos of typography talks on the Web;
Alphabet soup

6 An argument for learning LATEX: The benefits of typesetting and beyond /

Evan Wessler

Publishing 9 A computer scientist self-publishing in the humanities / Nicolaas Mars

Typography 12 Strategies against widows / Paul Isambert

18 Theses and other beautiful documents with classicthesis / André Miede

21 Typographers’ Inn / Peter Flynn

Fonts 23 Minimal setup for a (cyrillic) TrueType font / Oleg Parashchenko

26 LuaTEX: Microtypography for plain fonts / Hans Hagen

27 Mathematical typefaces in TEX documents / Amit Raj Dhawan

Software & Tools 32 LuaTEX: Deeply nested notes / Hans Hagen

Graphics 36 Plotting experimental data using pgfplots / Joseph Wright

50 The current state of the PSTricks project / Herbert Voß

59 From Logo to MetaPost / Mateusz Kmiecik

LATEX 64 LATEX news, issue 19 / LATEX Project Team

65 Talbot packages: An overview / Nicola Talbot

68 Tuning LATEX to one’s own needs / Jacek Kmiecik

76 Some misunderstood or unknown LATEX2ε tricks / Luca Merciadri

LATEX3 79 LATEX3 news, issue 3 / LATEX Project Team

80 Beyond \newcommand with xparse / Joseph Wright

83 Programming key–value in expl3 / Joseph Wright

ConTEXt 88 ConTEXt basics for users: Conditional processing / Aditya Mahajan

Hints & Tricks 90 Glisterings: Counting; Changing the layout / Peter Wilson

94 The exact placement of superscripts and subscripts / Timothy Hall

96 The treasure chest / Karl Berry

Abstracts 99 ArsTEXnica: Contents of issue 8 (October 2009)

100 Die TEXnische Komödie: Contents of issues 2009/4–2010/2

101 Asian Journal of TEX : Contents of Volume 3 (2009)

102 Les Cahiers GUTenberg : Contents of issues 48–53 (2006–2009)

104 Eutypon: Contents of issue 22–23 (2009)

105 MAPS: Contents of issue 38–39 (2009)

105 Baskerville: Contents of issue 10.2 (2009)

106 Zpravodaj : Contents of issue 16(1), 19(3)–19(4) (2006, 2009)

TUG Business 109 TUG financial statements for 2009 / David Walden

110 TUG institutional members

News 111 Calendar

Advertisements 112 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2010 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $55.

The discounted rate of $55 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2010 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Jonathan Fine
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Steve Peter
Cheryl Ponchin
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: May 2010]

Printed in U.S.A.

Consistency in spelling is difficult when two alphabets are
involved. . .

Ali Ahmad Jalali and Lester W. Grau
The Other Side of the Mountain:

Mujahideen Tactics in

the Soviet-Afghan War (1995)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 31, NUMBER 1 • 2010
PORTLAND • OREGON • U.S.A.

TUGboat

This regular issue (Vol. 31, No. 1) is the first issue of
the 2010 volume year. No. 2 will contain the TUG

2010 (San Francisco) proceedings and No. 3 will
contain papers from the EuroTEX 2010 conference
in Pisa, Italy.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting items for publication

The deadline for receipt of final papers for the
upcoming TUG 2010 proceedings issue is July 19,
and for regular material for the third issue is
September 1.

As always, suggestions and proposals for TUG-

boat articles are gratefully accepted and processed
as received. Please submit contributions by elec-
tronic mail to TUGboat@tug.org.

The TUGboat style files, for use with plain

TEX and LATEX, are available from CTAN and the
TUGboat web site. We also accept submissions
using ConTEXt. More details and tips for authors
are at http://tug.org/TUGboat/location.html.

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site,
as well as in print. Thus, the physical address
you provide in the manuscript will also be available
online. If you have any reservations about posting
online, please notify the editors at the time of
submission and we will be happy to make special
arrangements.

2 TUGboat, Volume 31 (2010), No. 1

TUGboat editorial board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Christina Thiele, Associate Editor,

Topics in the Humanities

Production team
William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns,
Robin Laakso, Steve Peter, Yuri Robbers,
Michael Sofka, Christina Thiele

Other TUG publications

TUG is interested in considering additional manu-
scripts for publication, such as manuals, instruc-
tional materials, documentation, or works on any
other topic that might be useful to the TEX com-
munity in general.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGboat advertising

For information about advertising rates and options,
including consultant listings, write or call the TUG

office, or see our web pages:
http://tug.org/TUGboat/advertising.html

http://tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 31 (2010), No. 1 3

From the President

Karl Berry

Conferences

TUG 2010 (http://tug.org/tug2010) takes place
at the end of June. We are especially excited about
this year’s conference, as the 25 anniversary of TEX78.
Donald Knuth and most of his Stanford colleagues
from the early days of TEX development have indi-
cated they will attend, and we have planned several
events in their honor. Its proceedings will be the
second TUGboat issue for 2010.

EuroTEX 2010 (http://www.guit.sssup.it/
eurotex2010) will take place in Pisa, Italy; that
proceedings will account for (at least) most of the
third issue.

Another upcoming conference is the fourth Con-
TEXt user meeting, this year in Brejlov (Prague),
Czech Republic, from September 13–18, 2010 (http:
//meeting.contextgarden.net/2010).

Looking ahead to 2011, the TUG meeting will
be held in Cairo, Egypt, from November 28 through
December 1. Hossam Fahmy, long-time TUG sup-
porter and TUGboat contributor, is the chief orga-
nizer. http://tug.org/tug2011 will be updated as
planning proceeds.

http://tug.org/meetings has information on
most TEX meetings, past, present, and future.

Interviews

In keeping with the anniversary celebration, Dave
Walden, coordinator of the Interview Corner (http:
//tug.org/interviews), has interviewed several of
the early Stanford participants: Luis Trabb Pardo,
Howard Trickey, John Hobby, and Michael Plass,
as well as Tom Rokicki and David Fuchs earlier,
with others in progress. Other interviewees since
my last column are Ulrike Fischer, Idris Hamid, and
Joseph Wright.

TEX Collection 2010

We have hopes that the software release for 2010 will
be finished rather earlier than the past few years. By
the time this issue reaches mailboxes, online updates
of TEX Live 2009 will have been frozen so that we
can finalize the changes for 2010.

Although nothing is certain, we expect some of
the most notable changes in TEX Live to be (not an
exhaustive list):

• Automatic conversion of EPS graphics to PDF

when running under pdfTEX.

• pdfTEX will output PDF version 1.5 by default,
enabling better-compressed PDF output.

• Inclusion of the Japanese TEX suite, pTEX.

• Oren Patashnik has released the first new version
of BibTEX in many years, with one small bug fix
to avoid breaking .bbl output lines anywhere
except at whitespace.

We expect the 2010 collection to contain the
same major items as in the past few years: TEX
Live, MacTEX, proTEXt, and a CTAN snapshot. See
http://tug.org/texcollection for more.

We welcome anyone’s participation, from testing
the final candidate release to core development. And
thanks to all the many, many, people involved already
at every level.

TEX journals

Careful readers of TUGboat will have noticed that
the list of active TEX journals is growing. TUGboat

reprints abstracts, in English translation where nec-
essary, from all TEX journals. Some notable events
in the journal world:

• The UK-TUG journal Baskerville was revived in
2009, with new editor Jonathan Webley, and is
available both online and in print.

• The longstanding GUTenberg journal Cahiers,
with new editor Thierry Bouche, is once again
very active, having caught up on all back issues.

• The Korean TEX Society started publication of
The Asian Journal of TEX in 2007, with articles
in several languages.

• As this issue of TUGboat went to press, The
PracTEX Journal published a new issue, num-
bered 2008-4, with a collection of selected arti-
cles since its founding in 2005.

Some journals make all articles available online
immediately, such as Eutypon (Greek TEX Friends),
Baskerville, The Asian Journal of TEX, and The

PracTEX Journal. Other journals, such as Cahiers,
MAPS (NTG), Die TEXnische Komödie (DANTE

e.V.), Zpravodaj (CSTUG), and TUGboat itself, all
have approximately the same policy, of making arti-
cles available to user group members and subscribers
for a year before posting them publicly.

For links and other information about all ex-
tant TEX journals, see http://tug.org/pubs.html.
And let us know if we missed one.

⋄ Karl Berry
president (at) tug dot org

http://tug.org/TUGboat/Pres/

4 TUGboat, Volume 31 (2010), No. 1

Editorial comments

Barbara Beeton

TEX at 25

I don’t know about anybody else, but I’m looking
forward eagerly to this year’s TUG meeting in San
Francisco. While it won’t be on the Stanford campus,
where it all started, and where quite a few of the
early meetings took place, it’s close enough, and an
important enough anniversary, that Don Knuth has
been persuaded to share some of his precious time
with us. A substantial number of Don’s students
who worked on the TEX project will also be there,
if only in anticipation of a good party, since all of
them have gone off in other directions. Since 26 is
32 years away, it’s unlikely we’ll all be around to
celebrate that anniversary together, though it might
be interesting to place wagers on whether TEX itself
will still be around.

Speaking of Don, he has received yet another
prize — one of the Katayanagi Prizes in Computer
Science, awarded annually by Carnegie Mellon Uni-
versity in cooperation with the Tokyo University of
Technology. The announcement can be found here:
http://cacm.acm.org/magazines/2010/3/

76269-katayanagi-prizes-and-other-cs-awards

(thanks to Nelson Beebe for spotting this).

Pi Day

March 14 marked Pi Day; more precisely, it should
have beem marked at 1:59 (local time, of course).
Stephen Hicks (whose acquaintance I’ve not had the
pleasure of making) sent the following offering to
texhax, to introduce himself and celebrate the day.
Try it for yourself. It requires plain TEX.

\let~\catcode
~‘z0~‘’1~‘,2~‘q13~‘z#

14~‘46zdefq41’~‘4113zgdef,q
QQ41’~‘4113zlet,qBB415425’41-P#

7427,QPPzexpandafterqAA414243’H#H
42434341542415,qCC41742743’41i-D42#
434343,qww’,zedefw’PPPCPBAyap!,qEE’,q

6641’~‘4113zcountdef,QNNzifnum6RR1R20E6
YY2QAAzadvanceY-RAY1QMMzmultiply6XX3EqS
S’Ezhskip0.5em,EQJJzjobnameEQmmwE6TT5qj
j4142x’41zgdefm’42,,EQGGzglobalE6CC7Eqr
r41’T41MT41ACT,qHH’C0rXrYC-CrR,qOO’zifx
mEPjwxEzelsePjmxzfi,qcc’NX<RHNC<0Szelse
OEzfiAX1PczelseEGAY2zfi,EzedefzJ’J,qv
v’@,zifxzJvQOO*zfiEqll’NY<RX-Rzhbox
’c,Plzfi,zttlzbye3.14159265358979
3238462643383279502884197169399
375105820974944592307816406

286208998628034825342
1170679821...

The @ sign as a design icon

In the March 21 issue of the New York Times is
an announcement that the Museum of Modern Art
(MoMA) in New York has admitted the @ sign into
its permanent architecture and design collection.
(www.nytimes.com/2010/03/22/arts/design/
22iht-design22.html)

The rationale is that the use of this sign in e-mail
addresses excels “in terms of form and function[.]
Does it embody the values of clarity, honesty and
simplicity that MoMA considers essential to good
design? Has it made an impact on our lives? Is
it innovative?” The senior curator of architecture
and design at MoMA, Paola Antonelli, asks “If this
object had never been designed or manufactured,
would the world miss out?” Absolutely!

The use of the @ to indicate a destination in
an e-mail address was instigated by Ray Tomlinson,
then at Bolt, Beranek & Newman.

I was able to ask Ray some questions about his
choice.

bb: Were there any other candidates?
RT: Not really. I wanted to avoid characters that
appeared in the login names on various operating
systems. This eliminated letters, numerals, comma,
period, square brackets and parentheses. Others
such as curly braces, tilde, back quote were in the
lower case set of characters and didn’t appear on all
terminals. Of the remainder, the at-sign leaped out
as the obvious choice. It satisfied the criteria and
just made sense. Later, I discovered that the at-sign
was the line erase character on the 2741 terminal
used by Multics. Dave probably remembers the grief
that Multics users suffered every time they typed
the at-sign. In order to type in an at-sign, you had
to type it twice in a row. After the first one, the
terminal controller locked the keyboard so you had
to wait a second or two before the keyboard would
unlock so you could type the second at-sign.

bb: I don’t remember when computer keyboards
finally recognized the difference between upper- and
lowercase letters, but they did have punctuation and
a few symbols (though not necessarily the same set
as available on standard typewriters).
RT: There were computer terminals around that
had both upper and lower case characters. The
aforementioned 2741 was one such terminal and more
expensive models of Teletype terminals also had lower
case characters. But there were many that were
restricted to upper case.

bb: How much of the “full” current format of Internet
addresses was part of the original design? Was it
sufficient to have just <user name> @ <host>, or

Barbara Beeton

TUGboat, Volume 31 (2010), No. 1 5

was there a need to provide for something more
elaborate?

RT: Email addresses have always been
<user>@<host>,

what has changed is <user> and <host>. At first,
user names varied. For example, some were nu-
meric. As time went by user names shifted towards
being word-like if not actually words. Host names
had little structure and certainly did not have .com,
.org, or .edu at the end. The namespace was flat
and typically started with the name or abbreviation
of a company or university followed by something
to distinguish one computer from another at that
site. So, BBN-TENEXA was our main computer system.
BBN-TENEXB was the development and test machine.
Later the Domain Name System (DNS) came along to
make computer name assignment more manageable.

bb: I’m delighted to have this opportunity, and want
to extend a big ”thank you” for helping to create
this beast that we sometimes love, and sometimes
hate, but on which we have certainly grown totally
dependent.

RT: You are welcome.

Amusements on the Web

Do you need something typographical to decorate
your wall? The Periodic Table of Typefaces might
be just the thing. Check out www.squidspot.com/

Periodic_Table_of_Typefaces/Periodic_Table_

of_Typefaces_large.jpg.
Other “periodic tables” can be found with a bit

of help from Google. This one, illustrating visualiza-
tion methods, might come in handy when preparing
a beamer presentation: www.visual-literacy.org/
periodic_table/periodic_table.html.

Another site about visual communication is
www.citrinitas.com/history_of_viscom/. Sadly,
I found the text rather difficult to read, as it’s white
sans serif on a black background, but the illustrations
are splendid.

For a really spectacular introduction to a book,
the New Zealand Book Council has destroyed the
book they’re inviting you to read, to make a stop-
motion animation, but with results that are haunt-
ingly beautiful. This book is on my reading list, and
I’ve bookmarked the video: www.creativepro.com/
article/stop-motion-animation-book-lovers.

Videos of typography talks on the Web

For several years, Kaveh Bazargan has been recording
talks at various conferences on TEX, typography,
publishing, and other topics. The River Valley TV

site (river-valley.tv) is home to this collection
of videos. The full schedules of TUG 2007–2009 are
included. This is an invaluable resource, and we are
most grateful to Kaveh for his generous contribution
of time and resources.

One non-TEX video well worth searching out is a
talk by John Hudson of Tiro Typeworks on scholarly
types, presented at the Type[&]Design 2009 confer-
ence organized by DTL in the Hague. One of the top-
ics covered by the talk is the Cambria Math font, de-
veloped by Tiro Typeworks for Microsoft. (This font
is at least partially supported by X ETEX.) The video
is at river-valley.tv/scholarly-types/ and the
accompanying slides are at www.fonttools.org/

downloads/TD_2009/Scholarly_Types.pdf.
Other talks from Type[&]Design 2009 may also

be of interest. On the main page at River Valley
for this conference is a link to the conference site.
At the top of the conference home page is a “Stop
Press!” announcement — the Dr. Peter Karow Award
for Thomas Milo. The citation for the award rec-
ognizes “the development of the ACE layout engine
(the heart of the Tasmeem plugin for InDesign ME)
for Arabic text setting.” Attendees at EuroTEX 2003
may remember Thomas Milo’s talk “ALI-BABA and
the 4.0 Unicode characters — Towards the ideal Ara-
bic working environment” (TUGboat 24:3, pp. 502-
511).

Alphabet soup

Another web site . . . This one describes a project that
“attempts to determine a number of things about the
shapes of letters in several different writing systems.”
The building blocks discovered by examining various
alphabets are operated on by a set of rules, “a gram-
mar or syntax”, to combine into recognizable letters
that are nevertheless not of the “standard” form.

The program is written in Python, is download-
able from the site, and experimentation is encour-
aged. Find it at www.theory.org/artprojects/

alphabetsoup/main.html.

⋄ Barbara Beeton
American Mathematical Society
201 Charles Street
Providence, RI 02904 USA
tugboat (at) tug dot org

Editorial comments

6 TUGboat, Volume 31 (2010), No. 1

An argument for learning LATEX:

The benefits of typesetting and beyond

Evan Wessler

Abstract

I discovered LATEX more or less by accident, and
I could not have estimated the benefits learning
the typesetting system would confer. Here, I ar-
gue for the merits of LATEX from perspectives apart
from/stemming out of typesetting.

Introduction

As an undergraduate biology major, I had little rea-
son and no impetus to leave the world of the WYSI-

WYG word processor for an advanced typesetting
system. After all, the documents I was producing
featured almost exclusively text, with an occasional
chemical formula (e.g. CaCl2) or simple mathemati-
cal equation (e.g. for linear regression analyses) for
use in laboratory reports. It was by chance that I
was introduced to LATEX during my sophomore year
of college, when a friend who had used it to typeset a
bioengineering paper happened to send me his source
and output. I became interested in the typesetting
system immediately, because I had recognized the
appearance of the output (i.e. the Computer Modern
font and the well-formatted mathematics) as similar
to that which I had seen on my calculus exams and
homework sets. (Admittedly, I was always impressed
with the aesthetics of these documents, and had [in
retrospect, rather embarrassingly] tried to replicate
their style in Microsoft Word, to no avail.) I quickly
learned the ins and outs of the typesetting system,
and ever since have been a regular user, enthusiast,
and unabashed proponent of LATEX versus conven-
tional word processing and presentation software.

Over the past three years, I have used LATEX to
produce an array of documents: analytical chemistry
laboratory reports, formal business letters, physics
equation sheets, charts, a symposium presentation. . .
the list goes on. All of them were higher in quality—
in terms of aesthetics— than comparable documents
produced by my peers (most of whom used Microsoft
Office or OpenOffice) for the same purposes. How-
ever, in looking back on my experience with type-
setting, I realize that there are many benefits of a
non-aesthetic nature to learning and using LATEX.
In the remainder of this article, I will present and
assess these advantages, and explain how learning
the typesetting system has developed my skills, both
in typesetting and beyond.

Problem solving

All users of the LATEX typesetting system—experi-
enced or not—are intimately familiar with LATEX
error messages. These notifications appear when
errors in the source are encountered during typeset-
ting. An experienced user knows they can be due
to a number of things, among which are incorrectly-
spelled commands, missing or extraneous brackets,
failure to close environments, and other errantly
typed and/or conceived text in the source. However,
a new user—that is, one who is new to LATEX and
has no experience in dealing with code-based, debug-
gable source entry (e.g. in computer programming)—
will be unfamiliar with the presentation and interpre-
tation of errors, as well as with the proper action(s)
that must be taken to correct them. This process
is often non-trivial, because it is potentially not as
straightforward as the new user might assume. For
example, a message may indicate that there is some-
thing wrong at a certain line, whereas the incorrect
element may actually be present several lines before
the stated location. In addition, the very syntax of
error messages may be puzzling (bewilderment with
errors during creation of complex tables comes to
mind). It is also the case that some commands and
environments cannot be used in tandem (e.g. the
\verb command, I found, cannot be used as-is inside
\section{} commands). Incompatible environments
and non-global commands may be unknown to the
author; the consequent errors are often the source
of frustrating problems that require an advanced
solution.

Thus, to be able to produce a correctly type-
set document using LATEX, one must become pro-
ficient at troubleshooting. The process may be as
simple as searching a few lines for errant symbols,
or trying different commands. However, a particu-
larly perplexing error message containing ambiguous
and unhelpful language may demand more creative
solutions. An especially useful approach that I dis-
covered at some point early on is what I will call the
“incremental comment-out” strategy. This involves
systematically commenting-out (i.e. marking lines
with the “%” symbol, so that they are ignored by
the typesetting engine) different short segments of
the source in succession, and attempting to typeset
each time. For an error message that reveals little to
no information about the true location of the error,
this tactic is invaluable; one sees that the document
fails to typeset every time except for when the region
in which the error is contained is commented-out. In
this way, the error is pinpointed and can be corrected.
This method may be dismissed as inefficient by those

Evan Wessler

TUGboat, Volume 31 (2010), No. 1 7

users who produce very large documents (intermit-
tent typesetting is always advisable) and those who
are more experienced and highly-versed in the nu-
ances of LATEX warnings; however, to the novice, this
is a good way to learn about error syntax, typical
problems encountered, and the methods behind lo-
cating and fixing mistakes. Of course, once an error
is found, solving the problem is usually a matter of
referencing any decent LATEX manual; but in order
to get to this point, the significant work of finding
and understanding the error must be performed by
the user. Any exercise of this nature is bound to
increase one’s capacity and ability to problem solve.

Taking command of the command line

Before I started using LATEX, the command-line in-
terface was largely unknown to me; its seemingly
obscure commands and cold, intimidating appear-
ance (its operations, after all, are executed using just

text, which was difficult for someone like myself—
who started using computers when graphical user
interfaces had already become the norm—to accept)
made it esoteric at best. I had previously dabbled
in the Windows “Command Prompt” program, but
had no real idea of what I was doing. (Fortunately,
this did not lead to any catastrophes.) Upon my first
introduction to LATEX, I edited and typeset my doc-
uments in the way that most new users probably do;
I wrote the source in a user-friendly GUI front-end
program (in my case, Richard Koch’s “TeXShop”)
and hit the “Typeset” button. It was only when I
started reading up on LATEX that I discovered that
editing, typesetting, previewing and printing could
be accomplished within a terminal (via the use of
editors such as Emacs and Vim, and by issuing com-
mands such as latex and xdvi). This discovery led
me to utilize the terminal more often, and in turn
to start experimenting with its other uses.

Since then, I have become fairly proficient at
the command line. But this is not just for the sake
of using it as a neat or exhibitionist alternative to
the GUI (I have become convinced that anyone unfa-
miliar with the terminal who sees me using it thinks
I am either up to no good, or that I am performing
operations too sophisticated to be relevant to the
“normal” computer user); I regularly use it to per-
form necessary functions (e.g. secure shell, efficient
exploration, creation, copying and moving of direc-
tories and their contents, elementary programming,
etc.). In this way, LATEX served as a sort of “gateway”
into learning to use my computer to its maximum
potential. I would argue that this kind of exploration
would serve as a similar boon to other users, and
that it is always positive when one learns more about

the workings of the technology he/she depends on
and uses frequently.

An appreciation for formatting

As a student of science, I have read countless papers
and borne witness to a host of presentations that
suffered from a major deficit: lack of logical format-
ting. It has become evident to me that this often
has a significant, negative impact on the content of a
scientific message. Blatantly incorrectly constructed
outlines, disordered talking points, and poorly for-
matted section labels often turn what would be great
papers and presentations into travesties of communi-
cation. Anyone who has tried to understand science
knows that if ideas and data are not presented in an
organized, logical fashion, they can be lost in a swirl
of seemingly incomprehensible babble. The same can
be said for material in other fields; it is a universal
fact that ignoring logical structure can be disastrous.

That said, it is quite obvious that formatting
is given little credence by most people who produce
documents and give presentations. Much of the
problem—as cited in so many pro-LATEX pieces of
literature— is that authors often make bad choices
when detailing the aesthetic layout of their media.
The consensus solution is to remove this task from the
author’s responsibility; this is successfully achieved
by LATEX.

Of course, an inanimate typesetting system can-
not absolve one from focusing on how to organize
content. But at least for me, something interest-
ing happened upon learning LATEX and using it for a
period of time: I began not only to realize the crucial-
ity of logical formatting, but also to think carefully

about it. In other words, when I use LATEX, I know
I don’t have to worry about the boldness or the size
of my section headers; in turn, I am empowered to
dedicate more of my focus toward what I want to
say, and where I want to say it. The side effects
of this have transcended my use of the typesetting
system. For example, when I take notes in my labo-
ratory notebook, I notice a greater attention toward
organized and systematized record-keeping; when I
create a presentation, I find myself conscious of my
outline, how each slide fits into it, and the efficiency
with which I move between points. Thus, LATEX has
helped me gain an appreciation for logical formatting
that has extended into activities which are essential
for the dissemination of information.

Synthesis

The widespread use of LATEX has obvious explicit util-
itarian impact; it has made possible the creation of

An argument for learning LATEX: The benefits of typesetting and beyond

8 TUGboat, Volume 31 (2010), No. 1

well-formatted documents, whether they have signif-
icant mathematical content or otherwise. Numerous
proponents of the typesetting system seem to enjoy
focusing their efforts on berating conventional pro-
ductivity software programs for their inefficiency, and
for the aesthetic inferiority of the documents they
produce. However, it is not often the case that the
learning of LATEX is the topic of discussion. (There
are a few pieces that deal with the learning curve
of LATEX, but without considering the process and
consequences themselves.) Here, I have attempted to
make this my focus. I have proposed that there is sig-
nificant weight to the argument that learning LATEX
not only allows you to produce great-looking docu-
ments, but also confers benefits that may not directly
relate to typesetting, such as extension of problem

solving skills, learning more about the technology in
use, and culturing of logical planning skills.

There exists of course the potential for addi-
tional benefits to arise. Indeed, “learning” LATEX is
not a one-shot deal; rather, it is a continuous process,
in which the user constantly develops his/her skills in
typesetting, and as a result discovers new and better
ways to produce high-quality, well-formatted docu-
ments. As a high-level typesetting system, LATEX de-
mands curiosity, encourages tinkering, and promotes
careful thinking, leading to positive developments in
typesetting and beyond.

⋄ Evan Wessler

evan.wessler (at) gmail dot com

Evan Wessler

TUGboat, Volume 31 (2010), No. 1 9

A computer scientist self-publishing in
the humanities

Nicolaas J.I. Mars

Abstract

An experiment in self-publishing a book in the hu-
manities by an author only having experience using
TEX in science is described.

1 Introduction

I have been working in computer science for a number
of years, using TEX (since 1982) and LATEX in the
preparation of articles in my field, and therefore
I thought of myself as a reasonably skilled LATEX
user. However, when I decided to try my hand on
using LATEX outside my own field, to self-publish a
book in the humanities, I discovered I still had a
lot to learn. This article describes my experience in
typesetting and publishing an annotated edition of a
large fraction of the work of the Polish-born British
author Stefan Themerson (1910–1988).

Themerson, who was born in P lock in what
then was Russia, was a remarkable writer. He stud-
ied physics and architecture for a while, but soon
discovered that philosophy and the arts were more
to his liking. This was helped by his encounter with
Franciszka Weinles, an art student whom he married
in 1931. The couple would start an intense life-long
artistic collaboration that was so close that for most
of their products it is hard to assign credit to either
of them. While in Poland, they became involved in
avant-garde film making. In addition, Stefan wrote a
number of children’s books. Around 1938 they moved
to Paris, then the centre of the world in the arts. The
start of World War II saw Stefan volunteering for the
Polish Army in France, and Franciszka moving to
London. The Polish Army was soon dissolved, and
Stefan found himself stranded in France. He began
to write in French, mainly poetry. In 1942, he suc-
ceeded in getting to England and was reunited with
Franciszka. Undeterred, he started to write in En-
glish. The couple also started a publishing company,
the Gaberbocchus Press, that published a number of
avant-garde books. Stefan himself wrote a number
of quite idiosyncratic books; in form they are novels,
but in content they are philosophical discussions.

Themerson has a small but loyal group of ad-
mirers, especially in Poland, The Netherlands, and
Britain. Possibly because of his background, it ap-
pears that especially people with a background in
mathematics (or neighbouring fields: computer sci-
ence, logic, linguistics) appreciate his style and top-
ics. Nevertheless, I found that not enough of my

friends and colleagues liked his work as well as I did
and do. Arguing that this may be caused by the
rather generous amount of background knowledge
that Themerson assumes his readers have (on topics
as dissimilar as the dogmas of the Roman Catholic
Church, the history of Poland and Lithuania, and
the mating habits of termites), I decided to com-
pile an annotated edition of his eight best works, in
which this assumed background knowledge would be
provided through my annotations. I also decided
that — as the market for this book was not going to
be large — that I would design and typeset the book
myself and make use of a print-on-demand supplier.

Having experience in using LATEX for scientific
papers, my obvious choice was to use LATEX for this
book as well. That turned out to be less straightfor-
ward than expected.

2 Design of the book

Typesetting a book yourself is a great joy, but it also
requires you to make many detailed decisions. The
minimum size of the pages in my case was determined
by the requirement to imitate the highly idiosyncratic
typography Themerson used in some of his books.

I followed the recommendations on text width
and height, margins, and paper size in the (Dutch) ty-
pography bible by Huib van Krimpen (van Krimpen,
1986). I like the frugal, minimal style he recom-
mends and thought it did not deviate too much from
Themerson’s own preference.

Dividing the text of my book into pages posed
unexpected difficulties. Normally TEX does an excel-
lent job, but as I had to follow closely the originals
of the eight books I included, I could not follow
Don Knuth’s recommendation:

Therefore if you are fussy about the appear-
ance of pages, you can expect to do some
rewriting of the manuscript until you achieve
an appropriate balance [. . .] ((Knuth, 1984),
p. 109).

The positioning of the illustrations in some of the
books posed additional constraints. In the end, I
had to use more explicit \pagebreaks than I liked.

For the font I used Lucida Bright, TEX support
available through CTAN.

3 Foreign characters

Themerson uses a large number of quotations in his
books. In my annotations, I identify the sources of
these, and, if the quotation was originally in another
language, I provide the original version. In addition,
following Don Knuth’s example in The Art of Com-

puter Programming, I tried to give the name of each
person mentioned in my annotations in the original

A computer scientist self-publishing in the humanities

10 TUGboat, Volume 31 (2010), No. 1

script as well. This required some limited use of
Cyrillic, Greek, Hebrew, and Chinese characters. (I
should have used some Arabic too, but the manual
of ArabTEX was sufficiently abhorrent to scare me
away from that. Maybe in the next edition of my
book. . .)

For Chinese, I used the CJK package and, as for
music (see below), I kept the Chinese text in a sepa-
rate LATEX document, to be processed independently
with the result included in my book as a picture.

The Internet proved to be very helpful to get
this to work. Actually, far too much help is available
on the topic of getting LATEX to output Chinese
characters. The final, simple, authoritative Guide to

typesetting a few Chinese characters in your LATEX

document still has to be written.
In retrospect, I wish I had used X ETEX with Uni-

code uniformly, rather than the mixture of encodings
I have now.

4 Special symbols

Themerson introduced a number of symbols of his
own invention whenever he felt the need. In his
book factor T, he argued that it would be conve-
nient if we could attach an indicator for time to
nouns, similar to the way we can have verb forms
indicating past, present, and future. He invented a
set of small clock-like symbols to indicate the time
of validity of the noun, leading to expressions like

My dog barked.
to indicate that my dog barked a number of times
in the past.

As these non-standard symbols are not in any
font I could find, I used METAPOST to recreate them.
This turned out to be relatively easy. The symbol,
enlarged

was defined in the file factor.mp as:

prologues:=2;

beginfig(2);

r=10mm;

thick:=r/5;

thin:=r/8;

deel:=1/3;

cos30:=sqrt(3/4);

z0=(0,0);

z1=-z3=(r,0);

z2=-z4=(0,r);

z7=z0+(-cos30*r, 0.5*r);

z8=z0+(-cos30*r,-0.5*r);

z9=z0+(-0.5*r,-cos30*r);

pickup pencircle scaled thick;

draw z1..z2..z3..z4..cycle;

pickup pencircle scaled thin;

draw z0--z7;

draw z3..deel[z3,z0];

draw z8..deel[z8,z0];

draw z9..deel[z9,z0];

endfig;

end

Running METAPOST on this file creates an out-
put file factor.2 which can be used in LATEX by
\includegraphics simply by renaming the file into
factor2.mps. (This, by the way, is an example of
hocus-pocus which I largely discovered by trial and
error, and for which the documentation I have seen
is quite insufficient.)

5 Music

Themerson included a few bars of music in his books,
and having read about MusiXTEX (Taupin, Mitchell,
and Egler, 2000), I decided to give it a try. The
manual of this package is quite detailed, and not
knowing much of the terminology of musical scores,
it was not easy to understand what I had to do to
get something like:

but after several experiments I succeeded. The code
\begin{music}

\parindent0mm

\instrumentnumber{1}%

\smallmusicsize

\setstaffs1{1}%

\generalsignature{-1}\relax

\generalmeter{\meterfrac34}%

\nobarnumbers

\startextract

\notes\ibu0h0\qb0 f\qb0 f\qb0 g\tbu0\qb0 g\en

\bar

\notes\ibl1i0\qb1 h\qb1 h\qb1 i\tbl1\qb1 g\en

\bar

\notes\ibl2i0\qb2 h\tbbl2\qb2 g\qb2 k\tbl2\qb2 g\en

\bar

\notes\ibl3i0\qb3 h\tbbl3\qb3 h\qb3 j\tbl3\qb3 h\en

\bar

\notes\ibu4h0\qb4 f\qb4 f\qb4 h\tbu4\qb4 h\en

\bar

\notes\ibl5i0\qb5 i\qb5 j\qb5 l\tbl5\qb5 j\en

\bar

\notes\ibl0i0\qb0 i\qb0 i\qb0 l\tbl0\qb0 i\en

\bar

\notes\ibl1i0\qb1 j\tbl1\qb1 j\ql j\en

\endextract

\end{music}

resulted in the (in my view) quite acceptable result
above.

I also found out that by now running LATEX
on my book at every iteration was somewhat time-
consuming, so I decided to keep runs of MusiXTEX
outside my main document. I ran LATEX on a small

Nicolaas J.I. Mars

TUGboat, Volume 31 (2010), No. 1 11

document, containing just the lines above (plus the
standard \documentclass, \begin{document}, etc.
to make it work), saved the result as a separate
PDF-file, cropped it using Gimp, and included this
in my main document. This route also solved some
problems I had with interference between the various
macro packages I used. Again, to get this to work,
I went through several iterations, uttered many un-
printable words, and deplored the lack of a simple
How to. . . guide.

6 Cross references

One area where LATEX really shone in my project was
in allowing cross-referencing. To distract as little as
possible from the original text of Themerson’s books,
I decided early on to place my annotations at the end
of each book included in my edition, and to refer the
reader to these end notes by small marginal numbers.
To realize this, I wrote a simple macro, including
a counter to keep track of the note number, and
outputting the text of my annotation to a temporary
file, which I read in after the text of each book was
completed. As the number of notes is quite large (≈
1250) and their distribution very uneven, I thought
it useful to include a back-reference from each note
to the page where it is being referred to. That was
easy!

A slight difficulty arose in that the LATEX stan-
dard marginpar did not always select the correct
margin. The replacement of marginpar by the pack-
age marginnote solved that problem.

I did not find a solution to having an annotation
(by me) associated with a footnote in Themerson’s
original text. For now, the hack I used is to have
the reference number located in the text where the
footnote is referred to.

The standard index facilities of LATEX were suffi-
cient to create an index to all 750 persons mentioned
in my annotations.

7 Print-on-demand

As I did not expect my book to become a best-seller,
I decided to become my own publisher and use on-
demand printing. Having no wish to take care of
distributing copies of my book myself (including
handling credit cards, etc.), I selected Amazon.com’s
daughter CreateSpace as printer.

This has proved to be a good choice. Create-
Space has a reasonably clear web site, explaining the
requirements for having them print a book and dis-
tributing it through Amazon. All I had to do was to
create one PDF-file with the full text of my book, and
a separate PDF-file with the cover. Recommended
sizes are given on the web site. My final book is
170 × 255 mm, and 804 pages. This is close to the
maximum of 820 pages allowed by the production
process.

Upon uploading the two files, I was sent a hard
copy proof of my book which reached me 10 days
after submitting my file. After giving approval to this
proof through the web site, my book (Themerson and
Mars, 2010) became available for sale at Amazon.com
a day later! No initial investment is required, apart
from the cost of ordering the proof copy. I am quite
happy with my choice.

The CreateSpace route is eminently suitable for
publishing books set using LATEX. After taking some
time off to recover from my Themerson book, I will
certainly try my hand again on a book on a different
topic.

References

Knuth, Donald E. The TEXbook. Addison-Wesley,
Reading, MA, 1984.

Taupin, Daniel, R. Mitchell, and A. Egler.
MusiXTEX. Using TEX to write polyphonic or

instrumental music, 2000.

Themerson, Stefan, and N. J. Mars. Stefan

Themerson Selected Prose. Centennial Edition.

Annotated by Nicolaas J.I. Mars. Expressis
Verbis, Marum, 2010.

van Krimpen, Huib. Boek over het maken van

boeken [Dutch ≈ Book about making books].
Gaade Uitgevers, Veenendaal, 1986.

⋄ Nicolaas J.I. Mars
University of Groningen
Nijenborgh 4
9747 AG Groningen
The Netherlands
N.J.I.Mars (at) alumnus dot

utwente dot nl

A computer scientist self-publishing in the humanities

Strategies against widows

Paul Isambert

Introduction

A widow line is the last line of a paragraph appear-
ing as the first line of a page. Most typesetters try
to avoid them when designing books (though some
do not), whereas orphans (first line of a paragraph
at the bottom of a page) and hyphenated bottom
lines are often left untouched.

There are, to my knowledge, four different
approaches to make widows enjoy marital life again.

1. The TEX approach. TEX avoids widows by
assigning a penalty to them; when calculating the
cost of a page, this penalty is taken into account
and if there is a cheaper alternative, TEX will take
it. This alternative in general involves stretching or
shrinking space between paragraphs. This approach
upsets any attempt at grid typesetting: the lines of
a text might appear anywhere on the page, whereas
a grid is normally used to display the flow of text.

This approach has two other drawbacks: first,
it leads to ugly and unpredictable space between
paragraphs (which is redundant); second, it is not
sound: if breaking at a widow line is the cheapest
alternative, then it won’t be avoided. In a document
made of text only, no widow is likely to be avoided,
because there won’t be enough stretchability.

2. Extra leading between lines. Another strat-
egy is to increase the space between lines. Then
the page has one line less than usual, which is
given to the next page to accompany the widow.
This is a very common practice in French books,
and it upsets grid typesetting just like the previous
approach. But at least it is less visible to the naked
eye, and it cannot fail.

This approach is easily implemented in TEX.
To make things work properly, let’s first set the
following:

\parskip=0pt

\clubpenalty=0 \brokenpenalty=0

\interlinepenalty=0

\vsize=31\baselineskip

\advance\vsize by \topskip

The first line removes any extra stretchability be-
tween paragraphs. The next two lines remove
penalties associated with page breaking at an or-
phan, a hyphenated line, and a simple line (the
latter is generally 0 by default anyway; it is used
to invite TEX to break between rather than within

12 TUGboat, Volume 31 (2010), No. 1

paragraphs). The last part of the code sets the
height of the textblock as a number of lines, instead
of as an arbitrary length. The height of a line is
\baselineskip, except the first line, whose height
is \topskip. So here I’ve set a 32-line page. We’ll
use these values for all examples.

Extra leading between lines can be done in TEX
because \baselineskip, as its name indicates, is
a glue, not a dimension, hence it has stretchability
and shrinkability. The idea is to set its stretchable
part so that all interline glues can increase and fill
the space left by the line moved to the next page.
Suppose you have a page whose length is n lines.
Then, in case there’s a widow, you remove a line
from the page, so that it contains n− 1 lines, hence
n − 2 interline glues. The space to fill is one line,
i.e. \baselineskip, so every glue should stretch by
\baselineskip/(n − 2). Given our 32-line page,
and assuming a baseline distance of 12pt, then:

\baselineskip=12pt plus .4pt

since 0.4× (32− 2) = 12.
(Note: \baselineskip might be confusing; its

first part is not a glue at all, but the distance at
which consecutive lines should be set; to do so, TEX
inserts a glue item whose natural size depends on
the depth of the line before and the height of the
one after, but whose stretch and shrink components
are the ones given to \baselineskip.)

Now, if \widowpenalty is larger than 100, then
TEX will always increase space between lines to
avoid a widow. This should also interact nicely
with other rubber glues in the document. The
value of 100 is no magical number; it’s the badness
of the page if TEX uses all the available stretch,
which is the case at worst if there is just text on
the page. Setting \widowpenalty to a larger value
makes breaking at a widow an option with a higher
cost, which therefore won’t be taken.

A variant of this strategy decreases the space
between lines in order to leave room for the widow.
In our example, this makes a 33-line page, hence
32 interline glues, and the reader can check that it
will be achieved with \baselineskip=12pt minus

.375pt.

3. Lengthening or shortening the paragraph.
The third approach, favored by French publishing
houses with a typographic conscience, but which
can lead to ugly results if done with a blind hand,
redraws the offending paragraph so that it is one
line longer or shorter. This strategy preserves
the grid, but it can lead to paragraphs with large
interword spacing in difficult cases.

In TEX this can be done automatically with
the \looseness parameter. However this can easily
fail, because the paragraph might not be lengthened
or shortened. The following code inspects every
paragraph, and tries to add or remove a line to
paragraphs that would otherwise lead to a widow
line. If it is impossible, an error message should
be issued at output time, and the widow should be
fixed by trying the same approach on a previous
paragraph, this time by hand.

The idea is to build all paragraphs in a tem-
porary box and check whether they have one more
line than available on the page, leading to a widow.
If so, redraw the paragraph with \looseness=1 or
\looseness=-1. Here are our tools:

\chardef\linesperpage=32 \newbox\tempbox

\newcount\parheight \newcount\linesleft

\newcount\loosening

Note that we’re interested in the number of
lines of a paragraph modulo the number of lines
per page. Indeed, if a paragraph is 45 lines long,
and 12 lines remain on the current page, then it
will fill that page and the next and leave a widow
on the following one, just as a 13-line paragraph
would. Thus we must consider a 45-line paragraph
as a 13-line one. Hence the following macro, where
\parheight is the height in lines of the paragraph
under investigation:

\def\pagemodulo{%

\ifnum\parheight>\linesperpage

\advance\parheight by -\linesperpage

\pagemodulo

\fi}

We will proceed as follows. The \everypar
token list contains a macro that stores the incoming
paragraph. Meanwhile we also measure the remain-
ing space on the page by subtracting \pagetotal
(the length of the material already accumulated
on the current page) from \pagegoal (the normal
length of a page). However, there’s a subtlety we
must take into account. We’d assume that if, say,
there are already three lines on the current page,
then \pagetotal is \topskip (the height of the
first line on any page) plus twice \baselineskip
(the height of a normal line). But that is not the
case, because the \parskip glue has been added
(even though it is set to 0pt) between the previ-
ous paragraph and the current one, and TEX then
considers that the material accumulated thus far
has no depth, i.e. the depth of the last line (which
would otherwise be recorded in \pagedepth) has
been added to \pagetotal. Thus if three lines
have been gathered, \pagetotal is \topskip plus
twice \baselineskip plus the depth of the last line,
which is fortunately recorded in \prevdepth. Hence

TUGboat, Volume 31 (2010), No. 1 13

the formula to compute the remaining number of
lines on the page is:

\pagegoal− \pagetotal+ \prevdepth

\baselineskip

The reader might ask, where has \topskip gone?
It is neutralized when subtracting \pagetotal from
\pagegoal. In case \pagegoal is null (and thus
\topskip should be taken into account), then we
don’t need to compute anything; we know that the
number of lines is \linesperpage.

So back to \everypar. Here’s how it goes:

\everypar={%

\ifdim\pagetotal=0pt

\linesleft=\linesperpage

\else

\ifdim\pagetotal=\pagegoal

\linesleft=\linesperpage

\else

\advance\linesleft by \pagegoal

\advance\linesleft by -\pagetotal

\divide\linesleft by \baselineskip

\fi

\fi

\testpar}

The first part of the conditional is: if there’s no
material on the page, then there remains the full
number of lines. The last part of the conditional is
the computation described above. Since \everypar

is inserted in horizontal mode, \prevdepth is not
available any more; it was thus requested at the
end of the previous paragraph (see below). Here,
then, when we advance \linesleft, you should
be aware that it’s already \prevdepth in length.
The middle part of the conditional might seem
surprising. If \pagetotal is equal to \pagegoal,
then the page is full, so we should be on a new page
with \pagetotal set to 0pt, shouldn’t we? No; if a
page is full, then TEX has not decided yet that it
is good; it takes an overfull page for TEX to decide
that the page is filled, and reset \pagetotal.

Finally, \everypar launches \testpar, which
first records in \parheight the number of lines of
the paragraph and applies \pagemodulo. We also
reset the value of \loosening, used below.

\def\testpar#1\par{%

\setbox\tempbox=\vbox{%

\everypar={}#1\endgraf

\global\parheight=\prevgraf}%

\pagemodulo \loosening=0

% definition continues ...

Then we test whether the height of the paragraph is
just one line more than \linesleft, which means
a widow is going to happen. In this case, we rebuild
the paragraph with \looseness set to −1 or 1, so as
to remove or add a line. If the operation succeeds,

we set \loosening to the successful value; if not,
we may send an error message (but it’s simpler to
leave this to the output routine).

\advance\linesleft by 1

\ifnum\parheight=\linesleft

\setbox\tempbox=\vbox{%

\everypar={}%

\looseness=-1 #1\endgraf

\ifnum\prevgraf<\parheight

\global\loosening=-1

\else

\looseness=1 #1\endgraf

\ifnum\prevgraf>\parheight

\global\loosening=1

\fi

\fi}%

\ifnum\loosening=0

\errmessage{There’ll be a widow!}%

\fi

\fi

Finally, we release the paragraph with \looseness

set to \loosening and record its depth in the
\linesleft register for the next one:

\looseness=\loosening

#1\endgraf\linesleft=\prevdepth

} % end \testpar

This approach is very far from perfect. Above
all, it isn’t automatically successful. Or it may
succeed, but not be the best solution. Indeed, it
might sometimes be better to lengthen or shorten
a previous paragraph, long enough so the operation
is invisible. This strategy should be used with
care anyway, and maybe care and automation are
incompatible in this case.

(With less care still, one could manipulate the
\tolerance value, or even interword space directly,
so as to always succeed. But I won’t spell it out,
because this approach is already problematic enough
if assignments are made within the paragraph —
most of which could have been neutralized with the
\globaldefs parameter, however — , so let’s not
trade typographic beauty any further.)

4. Adding or removing a line on the page.
The final strategy is, according to Robert Bringhurst
in his Elements of Typographic Style, used ‘in most,
if not all, the world’s typographic cultures.’ It
consists in lengthening or shortening the page or
pair of pages (the spread) by one line, so that the
widow ends on the previous page or is given another
line. I’ve never seen it done in French books, but
all the American books I’ve inspected indeed do so.

Before going any further, I want to clarify the
terminology. If a widow appears on page n, then we
must be concerned with page n− 1, and that’s a bit

14 TUGboat, Volume 31 (2010), No. 1

1 2 3

Fig. 1: A difficult case.

confusing. So I will not talk about ‘the widow on
page 3’ but rather ‘the widow from page 2’, because
we have not the slightest interest in page 3. And I
will say that page 2 produces a widow.

Adding or removing a line on a single page is
quite simple. Victor Eijkhout gives example code
on page 217 of TEX by Topic. However, books have
a strong tendency to come in double pages, and
treating pages one by one would ruin the design,
because facing pages should have the same number
of lines (except when one is the end of a chapter, of
course). This means that we might redraw the left
page to avoid a widow from the right one, and thus
pages can’t be shipped out at once even though
they seem good. This also means that this approach
won’t always work. First, mending a page might
make the other produce a widow. Second, when
we try to avoid a widow from the right page, this
might lead to another widow from the same page;
indeed, if you add or remove lines on facing pages,
the left page is affected by one line, but the right
page suffers a two-line shift: one line because of
the modification itself, and one line that went to or
from the left page. And whereas a one-line change
always fixes a widow, a two-line shift might produce
one, if we’re dealing with two-line paragraphs.

Figure 1 shows a spread and the left page
overleaf that will lead to trouble. Supposing the
road taken here is adding a line on facing pages,
then removing a widow from the second page will
make the left page produce one, and anyway since
the second page will take two more lines from the
following, as you can see another widow will appear.
In this case, previous pages should be modified too,
as we’ll see at the end of the paper.

I’ve been talking about adding or removing
lines as if both approaches could be used when
needed, but you should stick to one or the other,
otherwise differences between modified pages could
be too easily spotted. However, Robert Bringhurst,
for instance, consistently removes lines in the bulk
of his book, but adds them in the appendix on
foundries and in the bibliography (in both cases it
also prevents last pages with only a few lines). But
those two sections are distinct enough from the rest
of the book to allow this strategic change: they
aren’t read like the main text to begin with. The

code below illustrates the removal approach, but
adding lines would be the same thing with a couple
of signs reversed here and there.

The strategy is a three-pass process in the
output routine, where pass 3 only ships out the
pages. If everything is ok in pass 1, we rebuild
the pages with pass 3. Otherwise we rebuild them
with pass 2, where \vsize has been decreased by
\baselineskip; if it works here, we rebuild them
with pass 3; if not, we also rebuild them with
pass 3, but first reset \vsize to its normal value,
and with an error message to signal that manual
intervention is needed. Indeed, if the modification
leads to nothing better, it is simpler to ship out
the pages in an unmodified form so as to ease the
appreciation of a modification on previous pages, to
be done by hand.

Why can’t we ship out the pages as soon as
they are built in passes 1 or 2, provided they’re
good? Because of insertions, such as footnotes.
For instance, suppose we’re in pass 1, and the left
page is ok; we can’t ship it out, because we haven’t
examined the right page yet, and so we store it.
Then comes the right page, which is assumed to be
good too. So we could ship the pages, but what
about footnotes? If there are any, it is impossible
now to say what should appear on the left page
and what on the right. Besides, if pages are bad,
insertions should be put back in the stream with
the pages themselves, because their splitting and/or
position might change, and this is possible if and
only if they aren’t put in their boxes at output time,
and thus can’t be shipped either. I won’t investigate
this technical matter any further; to us it simply
means that the \holdinginserts parameter should
be set to a positive value for the first two passes
and to 0 for pass 3.

Here we go. First, our tools:

\holdinginserts=1

\newbox\leftpage \newif\ifleftpage

\newif\iffirstpage \firstpagetrue

\newcount\passcount \passcount=1

Now, the redefinition of the output routine (in
this and the following macros, all assignments are
\global, because the output routine is executed in
an implicit group):

\output{%

\ifnum\passcount<3

\ifnum\outputpenalty=\widowpenalty

\global\advance\vsize by

\ifnum\passcount=1 -\fi \baselineskip

\global\advance\passcount by 1

\ifnum\passcount=3

\global\holdinginserts=0

TUGboat, Volume 31 (2010), No. 1 15

\fi

\unboxpages

\else

\storepage

\fi

\else

\ifnum\outputpenalty=\widowpenalty

\errmessage{%

Page \the\pageno\space produced a widow}%

\fi

\makeshipout

\fi}

which reads as follows: if we’re in pass 1 or 2
(i.e. \passcount < 3), and there is a widow (i.e.
\outputpenalty = \widowpenalty), then we mod-
ify \vsize by one baselineskip, either positively or
negatively, depending on the pass we’re in; in pass 1,
we remove one \baselineskip, and in pass 2 we
add it, thus returning to the default value of \vsize.
Then we increase \passcount to prepare for the
next pass, set \holdinginserts to 0 if we go to the
last pass and put the page(s) constructed thus far
back into the main vertical list with \unboxpages,
explained below. If there was no widow, we simply
store the current page with \storepage, which is
also in charge of going to pass 3 for the shipout if
both pages are built. Finally, if we are in pass 3,
widows simply trigger an error message, and the
page is shipped out anyway, with \makeshipout.

Next, the macros involved. First, \unboxpages:

\def\unboxpages{%

\ifleftpage\else

\iffirstpage\else

\global\leftpagetrue

\dimen0=\dp\leftpage

\unvbox\leftpage

\vskip\baselineskip

\vskip-\topskip

\vskip-\dimen0

\fi \fi

\unvbox255

\ifnum\outputpenalty=10000 \penalty0

\else \penalty\outputpenalty \fi}

This macro always puts box 255 back in the stream,
because it’s the current page; but if box 255 is
the right page (i.e. \ifleftpage is false), then we
must first release the left one, which was stored
in the \leftpage box. However, there’s one case
when we’re on a right page without a left page:
if the page is the very first page of the document
or chapter (\iffirstpage is true). In this case,
we should simply release the current page. Now
suppose that there is in fact a stored left page.
Then we can’t simply release it to in the stream,
for the following reason: the interline glue that
was first inserted between the last line of this

page and the first line of the next, so that their
baselines are 12pt apart, has been discarded when
the latter found its way to the top of box 255,
where another glue was added, to match \topskip.
Finally, TEX doesn’t adjust interline spacing when
lines are stacked with \unvbox, nor does it update
\prevdepth. So we must do it by hand. The
distance between the baseline of the bottom line
of \leftpage and the baseline of the top line of
box 255 should be \baselineskip. Part of this
length is already filled by the depth of the bottom
line, which is also the depth of the \leftpage

box, and the height of the top line, which is
\topskip. So we need a \vskip whose value is
\baselineskip− \dp\leftpage− \topskip. Note
that \dp\leftpage must be retrieved before the
\unvbox, because the box is emptied there.

The unboxing of box 255 is much simpler.
The insertion of a penalty is meant to balance the
penalty of 10, 000 that TEX always inserts in the
main vertical list where it has broken a page. Thus
this place again becomes an admissible breakpoint,
which will be reused if pass 2 doesn’t lead to better
results and we rebuild the pages as they are now.
We use the original penalty if there was one, because
its exact value might be important (for instance for
pass 3 to signal a widow).

The \storepage macro is very simple. Recall
that it’s executed by passes 1 and 2 when no widow
is encountered. The left page is stored, whereas the
completed right page launches pass 3.

\def\storepage{%

\ifleftpage

\global\leftpagefalse

\global\setbox\leftpage=\box255

\else

\global\passcount=3 \global\holdinginserts=0

{\setbox0=\vbox{\unvcopy255}%

\ifdim\ht0=\topskip

\ifnum\outputpenalty=-20000 \else

\setbox0=\box255 \fi

\fi}%

\unboxpages

\fi}

The part between braces deals with the end
of the job, in case it happens on a left page. To
put it simply, TEX is not happy because we have
kept the left page in store when the job is supposed
to terminate; so it adds an empty line to force
the processing of the page, and this line might
sometimes ends up at the top of the right page,
thus creating a blank page. So we always analyze
the right page, and if it’s one line high and doesn’t
have the signature of a well-ended page (i.e. the
\supereject penalty), then we delete it.

16 TUGboat, Volume 31 (2010), No. 1

Finally, here is \makeshipout where headers,
footers, and any other attributes of the final page
should be added, and insertions placed; and, of
course, the pages are shipped out. Here I show
a simple page which contains only a page number.
A very important point is that this page number
can’t be placed relative to the main text in box 255,
because box 255 has a variable height whereas the
page number should always be at the same place
(if it were to go up and down, this approach would
be a disaster). So suppose we want a default page
(i.e. with an unmodified number of lines) where the
page number is separated from the main text by a
blank line; then we can’t say

\shipout\vbox{%

\box255 \vskip\baselineskip \pagenumber}

(where \pagenumber is supposed to produce the
folio) for the reason above. Instead we must say:

\shipout\vbox to\totalpage{%

\box255 \vfil \pagenumber}

where \totalpage = \vsize + 2 \baselineskip.
So, here’s how it goes. We redundantly set

\firstpagefalse on all shipouts, even though it
matters only on the first one:

\newdimen\totalpage \totalpage=\vsize

\advance\totalpage by 2\baselineskip

\def\makeshipout{%

\global\firstpagefalse

\shipout\vbox to\totalpage{%

\box255 \vfil

\hbox to\hsize{%

\ifleftpage \the\pageno\hfil

\else \hfil\the\pageno \fi}%

}%

\advancepageno

The \advancepageno macro and \pageno counter
are of course defined in plain TEX. In this example,
the position of the page number depends on the
evenness or oddness of the page, and is completely
immaterial to what is at stake here (but it reminds
us that we’re doing all this because of facing pages).

Now, if we’ve just shipped out the right page,
then pass 3 is over and we prepare for pass 1 again.
We reset \vsize with \totalpage, so we don’t
have to store its original value anywhere. \csname

page:\the\pageno\endcsname is a placeholder to
be explained presently.

\ifleftpage \global\leftpagefalse

\else

\global\leftpagetrue \global\passcount=1

\global\holdinginserts=1 \vsize=\totalpage

\global\advance\vsize by -2\baselineskip

\csname page:\the\pageno\endcsname

\fi

} % end \makeshipout

With this code, TEX will automatically remove
widows whenever possible and flag them otherwise.
In the latter case, we must be able to make a
manual intervention on previous pages. Besides,
this strategy is useful for page balancing in general.
For instance, suppose (still on a 32-line page) that
the left page is filled with 31 lines, and then comes a
new section, which is separated from the preceding
text by a blank line. Then the section title will
end up on the right page and the left page will
have only 31 lines. Suppose furthermore that the
right page is completely filled, i.e. it has 32 lines.
Then, even though the blank at the bottom of the
left page is perfectly logical, it is generally better
to remove a line from the right page so that the
spread is balanced. This operation could be made
automatically, but I will not investigate it here. I
simply mention it as another case where the manual
intervention can be used independently of widows.

The manual intervention is as follows: suppose
that, say, page 35 produces a widow, and the
automatic intervention fixes it, but creates a new
one from page 34. Then the solution consists in
removing lines on the previous spread instead, i.e.
on pages 32 and 33. Then page 34 will shift by
two lines instead of one, just like page 35, thus
avoiding the widow (I leave it to the reader to check
that this is indeed what happens). Of course, we
might encounter harder situations, where we must
modify both spreads, or still other spreads before,
and so on and so forth. But the general idea
remains the same: we must be able to indicate
spreads where lines are to be removed. This is
the meaning of the \removeline{〈pageno〉} macro.
What \removeline does is to make the spread
where 〈pageno〉 appears one line shorter, and go
directly to pass 3 for this spread. If 〈pageno〉 is 1,
then things are quite simple:

\def\removeline#1{%

\bgroup \count0=#1

\ifnum\count0=1

\global\advance\vsize by -\baselineskip

\global\passcount=3

\global\holdinginserts=0

Otherwise, we build a macro with the number of
the left page of the spread in its name. Its function
is the same as above, i.e. prepare for pass 3 directly.
And it is launched at the end of \makeshipout

when page 〈pageno〉 − 1 has been shipped.

\else

\ifodd\count0 \advance\count0 by -1\fi

\expandafter\gdef

\csname page:\the\count0\endcsname{%

\global\advance\vsize by -\baselineskip

TUGboat, Volume 31 (2010), No. 1 17

\global\passcount=3

\global\holdinginserts=0

}%

\fi

\egroup

} % end \removeline

Now we can specify, say, \removeline{54} or
\removeline{55} at the beginning of the document
so that the corresponding spread is made one line
shorter, and this can be used for difficult widows,
page balancing, and also to avoid short final pages
by giving them additional lines (pages with only
two or three lines of text are notoriously ugly).

Conclusion

The reader might have guessed that those four
approaches have been ranked by order of (my)
preference (even though approach 3 can lead to
very good results when done very carefully). One
may be surprised that TEX’s default behavior is
the worst . . . but actually this behavior is just an
algorithm. In itself it is very good, but I believe
it should be just a starting point, because it is
unable to make meaningful decisions. For instance,
although I’m not very fond of approach 2, I find
it better than stretching space between paragraphs,
because such space should be used to mark a
logical pause, whereas extra leading between lines
is unnoticeable (on a single page of course). And
the difference between approaches 1 and 2 merely
consists in moving the stretchable component from
\parskip to \baselineskip, nothing fancier.

The third and fourth methods are harder but
also lead to results not only better, but simply good.
They investigate areas of TEX that are unfortunately
not commonly studied, in part because the necessary
underlying functionality (\everypar, \output) is
appropriated by formats (which can’t really do
otherwise) and because they’re supposed to be
complex subjects. But the output routine is not
harder to understand than \expandafter, quite the
contrary, and it is worth it. Building a page is
a process too important to be left to computer
software, even TEX.

⋄ Paul Isambert
Université de la Sorbonne Nouvelle
Paris 3
France
zappathustra (at) free dot fr

18 TUGboat, Volume 31 (2010), No. 1

Theses and other beautiful documents
with classicthesis

André Miede

Abstract

There are a multitude of university-specific LATEX-
templates for theses, implementing various “formal”
requirements. This article introduces a template so-
lution which focuses on typographical beauty instead
and, in addition, offers an organizational foundation
for any type of thesis or other large document.

1 Introduction

Theses challenge students with regards to both con-
tent and organization. Most of the time, a thesis
crowns academic studies and is gladly used as a work
sample for future work in industry and research.

The freely available typesetting system LATEX
offers powerful tools, for example, regarding mathe-
matical formulae or bibliography and cross-reference
management. Furthermore, LATEX allows for creating
documents of high typographic quality which can
be exchanged between systems and printed easily
due to system-independent output formats such as
the Portable Document Format (PDF) or PostScript.
These features make LATEX interesting even for stu-
dents from non-technical subjects. Easy-to-install
distributions like MiKTEX [5] and TEX Live [7] and
a plethora of useful manuals enable even people with-
out a great technical affinity a comfortable start with
a quick feeling of success.

2 Challenges

Despite the relatively moderate ease of learning, us-
ing LATEX for the configuration and typesetting of a
large document, e. g., a complete thesis, is somewhat
challenging. Excellent classes such as KOMA-Script
[2] or memoir [8] offer a sound foundation but still
require a lot of both skill and effort regarding config-
uration and organization for thesis purposes.

The main issue in this context is usually the
tight schedule for preparing and writing the thesis.
Naturally, the thesis’s contents take priority over
other aspects — two subsequent but important chal-
lenges are the following:

1. Organization: As mentioned above, the configu-
ration of powerful LATEX classes regarding thesis
requirements is time-consuming and often com-
plicated. Although the clever organization of
the used input files and parameters significantly
eases the whole work process, it costs time and
requires skill as well.

2. Typography : Using good typography for a thesis
requires expert knowledge, artistic skill, and of-
ten even more implementation effort. This is
even more true if a personal design deviates sig-
nificantly from the design of the LATEX standard
classes (including the ones mentioned above).

Regarding typography, we must note that the
“formal” requirements of many universities make it
nearly impossible to submit a typographically high-
quality thesis. Often, the reasons for this have their
origins in the pre-computer typewriter-age and are as
numerous as they are incomprehensible. Arbitrarily
defined margins, font specifications and sizes, 1.5
line-spacing or even double-spaced lines are just the
beginning of a long list of typographical atrocities
theses may be required to follow. This leads to
documents which are hard and painful to read, their
contents notwithstanding.

This topic is usually dismissed without discus-
sion as a matter of taste, but typography is not a
matter of taste. As Robert Bringhurst [1] puts it:

“Typography exists to honour content. [. . .]
It is a craft by which the meaning of a text (or
its absence of meaning) can be clarified, hon-
oured and shared, or knowingly disguised.”

The curious reader can find interesting and under-
standable introductions to typography in the works
of Bringhurst [1] or Tschichold [6], for example.

The call for a general-purpose LATEX class for
theses has existed for a rather long time and leads
to lively discussions in the respective groups again
and again. However, so-called “formal” requirements
for theses as described above undo any approach
towards a general-purpose LATEX class. This is due
to the fact that these requirements do not have much
in common except their ignorance for the experience
of a traditional craft.

3 A solution

Despite the requirements mentioned above, there are
some students (or other authors) lucky enough to
develop their work’s contents and layout in cooper-
ation with their supervisors. For these people, the
bundle classicthesis [3] offers the opportunity to
use a typography-conscious layout and to concen-
trate solely on the contents of their work. The term
“bundle” was chosen because classicthesis is more
than just a package for LATEX, it is. . .

• . . . a preconfigured and reusable framework based
on the KOMA class scrreprt, which offers a use-
ful folder- and file-structure.

• . . . a LATEX package, that provides a classic and
high-quality typographic design based on Robert

André Miede

TUGboat, Volume 31 (2010), No. 1 19

Bringhurst’s book “The Elements of Typographic

Style” [1]. This design can also be used outside
the bundle, e. g., for letters, résumés, and so on.
Examples for the look-and-feel of the design are
shown in Figure 1.

Apart from minor adaptations to the user’s needs,
classicthesis can be used right away, as the ac-
companying manual serves both as an example and
foundation for the user’s own document.

The standard font used in classicthesis is
Hermann Zapf’s classic Palatino. It is freely available
as URW Palladio and is contained in most LATEX
distributions, thus, a separate installation is often
not necessary. Furthermore, this font is one of the
few free ones featuring suitable math fonts, real small
caps, and old style figures, which all work towards
a high typographical quality. Thus, every font that
comes with real small caps and old style figures can
be used for classicthesis, for example Libertine

[4] as another free font or Robert Slimbach’s popular
Minion as a commercial alternative. Fonts without
these features are not suitable as they do not support
important design elements of classicthesis.

A common source of skepticism of people en-
countering classicthesis for the first time is the
setup of the text body due to its narrow appearance.
However, the line length was calculated based on
typographical formulae which are a compromise be-
tween the amount of text per line and the reader’s
comfort — long lines lead to some kind of uneasiness,
because the eye has to jump a long way back at
the end of the line. Supervisors and other skeptics
can be assured that this layout does not hold fewer
characters per page than the typical university de-
sign featuring 1.5 line-spacing or worse. In addition,
increasing the font size to 11 pt or 12 pt allows for
increasing the line length; precalculated widths and
heights can be found in the classicthesis style
files and are easily applied using a single line of code.
Last but not least, the broad margins can be used
either by supervisors for review comments or by the
document’s author for informative “graffiti”, e. g.,
short summaries.

Since the beginning of 2006, classicthesis is
freely available via CTAN under the GNU General
Public License. It has been used worldwide for nu-
merous theses and other kinds of documents and
was subsequently enhanced and stabilized. More de-
tailed information can be found in the short manual
and example document. In addition, the source files
are commented and both organized and named in a
helpful manner.

4 Conclusions

Theses and other large documents pose challenges
not only in regard to their contents, but also in terms
of organization and typography. Especially the latter
two challenges are often neglected due to serious time
constraints of the whole endeavor.

The bundle classicthesis offers authors a pre-
defined framework for the typesetting system LATEX
featuring both an organizational and typographi-
cal template, which “just” has to be filled with the
auhtor’s contents. This improves both the creation
process and the layout quality of the finished work
significantly.

5 Acknowledgments

Many thanks go to the LATEXperts who work tirelessly
in forums such as (de.)comp.text.tex and who
help to solve nearly every LATEX problem.

I am also very grateful to those people all over
the world who sent me bug fixes, feedback, or post-
cards for classicthesis.

References

[1] Robert Bringhurst. The Elements of

Typographic Style. Version 3. Hartley & Marks,
Publishers, Point Roberts, WA, USA, 2004.

[2] Markus Kohm. KOMA-Script, 2010.
mirror.ctan.org/macros/latex/contrib/

koma-script.

[3] André Miede. classicthesis, 2010. mirror.ctan.
org/macros/latex/contrib/classicthesis.

[4] Philipp Poll. Libertine Open Fonts Project
(LOFP), 2009. mirror.ctan.org/fonts/

libertine/.

[5] Christian Schenk. MiKTEX, 2010. www.miktex.
org.

[6] Jan Tschichold. The New Typography.
University of California Press, 2006.

[7] TEX Users Group (TUG). TEX Live, 2010.
www.tug.org/texlive.

[8] Peter Wilson. Memoir, 2010. mirror.ctan.

org/macros/latex/contrib/memoir.

⋄ André Miede
Detmolder Straße 32
31737 Rinteln
Germany
miede (at) web dot de

http://www.miede.de

Theses and other beautiful documents with classicthesis

20
T

U
G

b
oa

t,
V

ol
u

m
e

31
(2

01
0)

,
N

o
.

1

2
E X A M P L E S

Ei choro aeterno antiopam mea, labitur bonorum pri no Dueck

[4]. His no decore nemore graecis. In eos meis nominavi, liber

soluta vim cu. Sea commune suavitate interpretaris eu, vix eu

libris efficiantur.

2.1 a new section

Illo principalmente su nos. Non message occidental angloromanic

da. Debitas effortio simplificate sia se, auxiliar summarios da que,

se avantiate publicationes via. Pan in terra summarios, capital

interlingua se que. Al via multo esser specimen, campo responder

que da. Le usate medical addresses pro, europa origine sanctifi-

cate nos se.

Examples: Italics, A L L C A P S, Small Caps, low small

caps.

2.1.1 Test for a Subsection

Note: The content of

this chapter is just

some dummy text. It

is not a real

language.

Lorem ipsum at nusquam appellantur his, ut eos erant homero

concludaturque. Albucius appellantur deterruisset id eam, viven-

dum partiendo dissentiet ei ius. Vis melius facilisis ea, sea id

convenire referrentur, takimata adolescens ex duo. Ei harum

argumentum per. Eam vidit exerci appetere ad, ut vel zzril intel-

legam interpretaris.

Errem omnium ea per, pro Unified Modeling Language (UML)

congue populo ornatus cu, ex qui dicant nemore melius. No

pri diam iriure euismod. Graecis eleifend appellantur quo id. Id

corpora inimicus nam, facer nonummy ne pro, kasd repudiandae

ei mei. Mea menandri mediocrem dissentiet cu, ex nominati

imperdiet nec, sea odio duis vocent ei. Tempor everti appareat cu

ius, ridens audiam an qui, aliquid admodum conceptam ne qui.

Vis ea melius nostrum, mel alienum euripidis eu.

Ei choro aeterno antiopam mea, labitur bonorum pri no. His

no decore nemore graecis. In eos meis nominavi, liber soluta vim

cu.

2.1.2 Autem Timeam

Nulla fastidii ea ius, exerci suscipit instructior te nam, in ullum

postulant quo. Congue quaestio philosophia his at, sea odio

autem vulputate ex. Cu usu mucius iisque voluptua. Sit maiorum

13

14 examples

propriae at, ea cum Application Programming Interface (API)

primis intellegat. Hinc cotidieque reprehendunt eu nec. Autem

timeam deleniti usu id, in nec nibh altera.

2.2 another section in this chapter

Non vices medical da. Se qui peano distinguer demonstrate, per-

sonas internet in nos. Con ma presenta instruction initialmente,

non le toto gymnasios, clave effortio primarimente su del.1

Sia ma sine svedese americas. Asia Bentley [1] representantes

un nos, un altere membros qui.2 Medical representantes al uso,

con lo unic vocabulos, tu peano essentialmente qui. Lo malo

laborava anteriormente uso.

description-label test: Illo secundo continentes sia il, sia

russo distinguer se. Contos resultato preparation que se,

uno national historiettas lo, ma sed etiam parolas latente.

Ma unic quales sia. Pan in patre altere summario, le pro

latino resultato.

basate americano sia: Lo vista ample programma pro, uno

europee addresses ma, abstracte intention al pan. Nos duce

infra publicava le. Es que historia encyclopedia, sed terra

celos avantiate in. Su pro effortio appellate, o.

Tu uno veni americano sanctificate. Pan e union linguistic Cormen

et al. [3] simplificate, traducite linguistic del le, del un apprende

denomination.

2.2.1 Personas Initialmente

Uno pote summario methodicamente al, uso debe nomina hered-

itage ma. Iala rapide ha del, ma nos esser parlar. Maximo dictio-

nario sed al.

2.2.1.1 A Subsubsection

Deler utilitate methodicamente con se. Technic scriber uso in, via

appellate instruite sanctificate da, sed le texto inter encyclopedia.

Ha iste americas que, qui ma tempore capital.

a paragraph example Uno de membros summario prepa-

ration, es inter disuso qualcunque que. Del hodie philologos

occidental al, como publicate litteratura in web. Veni americano

Knuth [6] es con, non internet millennios secundarimente ha.

1 Uno il nomine integre, lo tote tempore anglo-romanic per, ma sed practic

philologos historiettas.
2 De web nostre historia angloromanic.

Figure 1: classicthesis example pages (reduced size)

A
n

d
ré

M
ie

d
e

TUGboat, Volume 31 (2010), No. 1 21

Typographers’ Inn

Peter Flynn

1 Indenting

Funny how a small change to a layout can have such
a large effect. A former colleague who did freelance
bookwork once told me he had found that plain
TEX’s default indentation of 20pt was considered too
small by his US publishers and too big by the Eu-
ropeans. Both of them claimed this was one reason
they didn’t use TEX. Another reason they gave was
that ‘TEX only has one font’ !

Both ‘reasons’ were utterly spurious, of course,
and more in the nature of excuses, but they were
precisely the kind of ill-informed myth that poisoned
TEX’s author–publisher–typesetter relationship for
years. In the days of LATEX 2.09, setting up a whole
new typeface was a royal pain in the arsenic, but
had these publishers never even considered changing
\parindent (which is only 15pt in LATEX anyway)?

It’s straightforward enough when you’re work-
ing to a publisher’s compositor’s specification: it will
say ‘para indent 9pt’ or something obvious, or give
an example you can measure. At least, it should —
recently I have noticed that designers seem to be
getting sloppy about how they specify layouts, some-
times failing to give some quite basic settings.

But to get back to my colleague’s comment,
how many of you change the indentation setting in
your own work? Do you have a favorite value, or do
you consider it to derive from the page design, or a
feature which drives your page design, or do you just
leave it at the default? I would say 20pt is probably
acceptable for the relatively long line-length of the
default plain TEX document; The TEXbook is set
with 36pt indentation [2, p. 86], but there are spe-
cial reasons for that (the ‘dangerous-bend’ sign, for
example). The same reasoning would indicate that
15pt was chosen for the rather shorter line-lengths
in the default LATEX document classes, but I would
agree that it is probably a little too much for the
even shorter lines of a paperback novel.

For special effect,
it is possible to set \parindent to something like
0.666\columnwidth, as I have done here; setting it
to the length of the last line of the previous para-
graph is left as an exercise to the reader.
Skinny indentation, by which I mean 1em or less,

always looks like a mistake, as if the text was im-
ported from copy whose typist just used two spaces.
Last comes the extreme case of no indentation at
all, which is usually used with increased space be-
tween paragraphs, otherwise you can’t see where one

paragraph stops and the next one starts, as with
this one. It’s probably the default office document
layout, simply because it’s the default in most word-
processors, which is no excuse whatsoever.

If your indentation is non-zero, how do you han-
dle the paragraphs which follow other indented ma-
terial such as lists, block quotations, and floats (ta-
bles and figures)? These are probably indented by
some value other than \parindent. Should they
start unindented because the page looks cleaner that
way (especially when a paragraph happens to start
right after a float); or should they start unindented
because the new paragraph is a continuation of the
same thought, rather than a complete break; or per-
haps they should always be indented regardless?

In LATEX, if you start the text of the new para-
graph straight after an \end{...} command, with-
out a blank line, the indentation is suppressed. And
it’s also suppressed by LATEX after a section heading,
which is the Anglo-American default, and which is
changed in the cultural settings of some babel lan-
guages.

More perversely, what do you do with a para-
graph so small that it is just a short line, when it
occurs between two independently indented environ-
ments like theorems? Unindent it or indent it? This
question was raised on comp.text.tex recently, and
parallels a much older question on text conversion
from the days of fixed-width unenhanced type in
wordprocessing: how do you tell programmatically
if this line:

The overall effect of indentation.

is a very small paragraph or a centred subheading?
If \parindent isn’t something you’ve played

around with, try resetting it in your next document.
I think you might be as surprised as I was at the
effect a few points of white-space can have on the
whole page.

2 Where have all the flowers gone?

Printers have always made use of decorations, either
to fill up a little blank space, or as part of the page
design. LATEX can of course use any font of signs
or symbols —what used to be known as ‘printer’s
flowers’ but now appear under the generic name of
‘dingbats’ (a word once reserved for people who had
spent too much time on recreational pharmaceuti-
cals).

A vast number of the freely-available ones are in
Scott Pakin’s wonderful Comprehensive LATEX Sym-

bol List [3], but probably few people have the time
to browse through the range of symbols available.

The pifont package ‘provides a LATEX interface
to the Zapf Dingbats font’, available with all modern

Typographers’ Inn

22 TUGboat, Volume 31 (2010), No. 1

LATEX installations. These are useful but sadly over-
worked symbols, having been studiously supplied
with every text-handling program on the planet, and
they are not really ‘flowers’ in the decorative sense,
although with the graphicx package you can rotate,
reflect, scale, and distort them to your heart’s con-
tent.

The bbding package provides many more sym-
bols useful for item labels in lists, like pointing fin-
gers and little pencils, but it also has a good selec-
tion of crosses and plusses such as ✹ and nearly 40
forms of flowers ❙ snowflakes ❫ and stars ❁.

True ornaments can be found in the fourier-orns

package, which provides left-hand and right-hand
versions of several flowers, including Y curlicuesZ
and g leavesh

The nice thing about the symbols list is that
you’re not restricted to the purely decorative: why
not adapt the functional and use a dove f or a
tunny-fish g from the phaistos package, or a bat
ý or a bicycle® from the marvosym package?

Swelled rules, a popular device in 19th century
typesetting, tend not to be found in many font pack-
ages, as they are best constructed programmatically
so that they can adapt to the width they are re-
quired for. There is an swrule package by Tobias
Dussa [1] which builds a geometric lozenge from
very fine lines, and there is a paper by Steve Pe-
ter [4] which describes a more extensible method
using METAPOST for ConTEXt. But it is also pos-
sible to produce one using just a character from a
font, and some looping in a macro with careful po-
sitioning and kerning. The following example was
constructed from the swung dash (\sim) character
in math mode, in a mirror-image. The example
is also at http://latex.silmaril.ie/packages/

decorule.sty, and any suggestions for improving
and extending it are welcome.

∼
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

∼

In fact, with a little bit of practice, you can
create a variety of rules and decorations built up
from the symbols already available. Here’s another
rule, done with the left-hand and right-hand leaves
mentioned earlier, rotated and arranged at intervals
either side of a plain \rule:

g g g g g

h h h h h

Decoration is sometimes seen as gratuitous, as
mere prettification. Certainly it sometimes is, but

it can be much more than that. It can provide re-
lief to the eye; conversely it can be used to attract
the eye, or to divert it; it can be used to create an
atmosphere or a theme; and it can even be used as
a joke —early printers’ ‘devices’ (logos) often con-
tained visual puns on their names. So don’t be
afraid to decorate where it contributes to the de-
sign: there is plenty to choose from.

Apology

In TUGboat 25:1 (2004) I mentioned the automa-
tion of formatting XML using XSLT and LATEX. I
referred to two files I had used in an illustration, and
said they were on my web server. Either I lied, or I
forgot, or my ISP messed up when they ‘upgraded’
my server and my control panel and reorganised all
my directories and subdomains for me.

One way or another the files went missing, and
I am grateful to Vincent Douzal for pointing this
out. The files have now been restored to their home
at http://silmaril.ie/xml/noaa.xml and .xsl.

Afterthought

In fact, zero indentation isn’t the edge case it
seems. ¶For a long period of history, documents
didn’t have any concept of line-breaking at a
paragraph boundary, because there weren’t any
paragraph boundaries as such. ¶ Instead, they
used the pilcrow to delimit arguments or trains of
thought.

References

[1] Tobias Dussa. swrule.sty. http://mirror.

ctan.org/macros/generic/misc/swrule.sty,
Oct 2001.

[2] Donald Erwin Knuth. The TEXbook. Addison
Wesley, Reading, MA, Jun 1986.

[3] Scott Pakin. Comprehensive LATEX Symbol
List, Nov 2009.

[4] Steve Peter. Swelled rules and METAPOST.
TUGboat, 26(3):193–195, 2005.

⋄ Peter Flynn

Textual Therapy Division, Silmaril

Consultants

Cork, Ireland

Phone: +353 86 824 5333

peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

Peter Flynn

TUGboat, Volume 31 (2010), No. 1 23

Minimal setup for a (cyrillic) TrueType font

Oleg Parashchenko

Abstract

Our goal is to describe font installation in small
steps. First, we typeset plain TEX text in the right
encoding. Then, we describe the minimal setup to
get the correct result in PDF using both the chain
tex+dvips+ps2pdf and the direct pdftex, with
notes on encodings and TrueType to Type 1 font
conversion. One final step for LATEX is then given.
The examples are based on a cyrillic font, but useful
also for other scripts as well.

1 Introduction

Several sets of instructions on how to install fonts
have already been written, among them: The LATEX

Companion [6], The LATEX Graphics Companion [3],
and fontinst documentation [2].

However, I didn’t have luck with them. The
first problem is that the installation process, as usu-
ally described, is “atomic”: after magic spells, you
get the font installed, with all the required entries
in config files, all in one step. If something goes
wrong, an inexperienced user doesn’t have control
points to check what is ok, and what went awry.

The second problem is that the tutorials use
Type 1 fonts as the starting point. But when we are
starting with a TrueType font, it is a good idea is to
skip over that starting point, and use only a part of
the standard PostScript way. Otherwise the process
seems unclear and superfluous.

Recently I needed a cyrillic Helvetica for a doc-
ument, the build system for which used the dvips

chain. Facing the choice of re-implementing the sys-
tem using X ETEX or finding a way to install the font,
I decided to try the latter once more.

My new approach was to throw away all the
tutorials and instead move step by step on my own.
First, typeset a text in the right encoding for plain
TEX. Then get the text in DVI and its viewer xdvi.
The next steps are PostScript and PDF. Finally, the
font is integrated to LATEX’s NFSS.

In this guide, all the font, config and test files
are located in one directory. Putting them into the
right places in the texmf tree is left as an exercise for
the reader. One hint on that: To trace which files
TEX is truly using, I found that instead of kpathsea
debug options, it is more reliable and convenient to
use the system utility strace.

As the font, I use here Helvetica Cyrillic from
Linotype (font name HelveticaLTCYR-Roman, file
name LT_51680.ttf). It is a proprietary font, but

that doesn’t matter for our purposes: there is noth-
ing font-specific in this guide except the names.

2 Plain TEX source

Let’s typeset the word привет (“hello” in Russian).
The question is: which encoding to use? It’s not
important as long as both the text and the font use
the same encoding. In the LATEX world, cyrillic is
associated with T2A, so let’s use it here too.

The next question is: what is the T2A encod-
ing? I couldn’t find a reference, therefore I copied
the file t2a.enc from my texmf tree and studied
it. The cyrillic letters are hidden behind the names
afiiNNNNN. I didn’t see any logic in the numbers,
and therefore searched for documentation and found
the “Adobe Standard Cyrillic Font Specification” [1].

Our word is encoded as afii10081 afii10082

afii10074 afii10067 afii10070 afii10084. Af-
ter calculating the positions in the encoding vector
(it turns out that the T2A codes are the same as in
the Windows-1251 encoding, except for the letters
Ё and ё), we are ready to typeset a test document
plaintest.tex:

\font\f=lhcr8z % error: unknown font

\f ^^ef^^f0^^e8^^e2^^e5^^f2\par

\bye

This file doesn’t compile yet because TEX does not
know the font lhcr8z (the name is explained later).

3 Font metrics

To compile a file, TEX doesn’t need the fonts them-
selves, but only their metrics, which are stored in
.tfm files. One way to get a .tfm from our TTF:

ttf2tfm LT_51680.ttf -T t2a.enc lhcr8z.tfm

The tool displays a number of warnings like
“Cannot find character ‘circumflex’ specified in in-
put encoding.” Indeed, the font doesn’t have a glyph
named circumflex, but rather asciicircum. It is
possible to define aliases, but for now I just ignored
the warnings. The naming issue is a big topic, and
an article [4] by Hàn Thế Thành explains it in detail
and suggests a general solution. An alternative is to
use fontforge instead of ttf2tfm.

Now running tex creates a .dvi file, and the
log file is free of warnings: tex plaintest.tex.

4 xdvi and .pk font

However, running xdvi is not successful: xdvi re-
quests the font, kpathsea finds no font and asks
mktexpk to generate one, but mktexpk doesn’t know
how to create it. As the font lhcr8z is not found,
xdvi uses the font cmr10 instead, but complains that
the characters are not defined in it and displays an

Minimal setup for a (cyrillic) TrueType font

24 TUGboat, Volume 31 (2010), No. 1

empty page. After consulting the documentation of
mktexpk, I created a map file ttfonts.map:

lhcr8z LT_51680.ttf Encoding=t2a.enc

Now running xdvi automatically creates a .pk

file, but it is stored in some cache directory. There-
fore, I prefer to create lhcr8z.600pk explicitly (the
resolution 600 came from the output of mktexpk):

ttf2pk lhcr8z 600

Now this works well and shows привет:

xdvi plaintest.dvi

5 testfont

As an optional step, it’s useful to get the font table,
which is also the encoding table. Process the file
testfont.tex (TEX finds it automatically):

tex testfont.tex

It first asks for a font name (answer is lhcr8z)
and then for commands. There are a number of
them, but for our needs it is enough to say:

\table\bye

Look at the result: xdvi testfont.dvi.
To avoid font issues due to further experiments,

convert the current result to a bitmap image:

dvipng -o testfont.png testfont.dvi

Check that the glyphs are located as expected
and save the table for later reference. It will be
interesting to compare the result with future output
from dvips and pdftex.

6 From DVI to PostScript to PDF

The classical way to create PDF from TEX is to use
dvips and ps2pdf. This already works for us, but
the font inside is bitmap, not vector. To get the vec-
tor version, create a local psfonts.map, the default
map file for dvips:

lhcr8z HelveticaLTCYR-Roman <lhcr8z.pfa

The font lhcr8z.pfa can be also used in its
binary form, lhcr8z.pfb. In the next sections we
will see how to convert from TTF to Type 1. After
doing that, we are ready to produce the PDF:

dvips -o plaintest.ps plaintest.dvi

ps2pdf plaintest.ps plaintest.pdf

Now running pdffonts (from the xpdf pack-
age) reports that the font HelveticaLTCYR-Roman

is embedded and its type is 1C. A PDF viewer should
welcome us with привет.

7 pdftex instead of tex+dvips+ps2pdf

One more tool, pdftex, one more map file is re-
quired. This time it is named pdftex.map. The
content is one line (the line break here is editorial):

lhcr8z HelveticaLTCYR-Roman <t2a.enc

<LT_51680.ttf

That’s all we need; pdftex is ready to run:

pdftex plaintest.tex

8 Encodings: TTF to Type 1 conversion

After reading different font installation instructions,
I was lost in details. What are all these files and do
I really need them? Extensions tfm, afm, pfa, pfb,
vf, fd, enc, map, the suffixes 8a and 8r for versions
of fonts. Font re-encoding instructions in config files.
For a cyrillic font, what are the equivalents for 8a,
8r and the magic spells?

Thanks to the step-by-step approach, the mess
was soon localized into two questions: 1) how to
convert a TrueType font to PostScript, and 2) how
to name it for NFSS.

The first initially looked simple. A quick search
pointed to the tool ttf2pt1 [5], which supports dif-
ferent encodings, including cyrillic. But then there
was a fight with technical troubles. First, due to
some copyright protection trick, the result was un-
usable without the option -a (include all glyphs,
even those not in the encoding table). Second, I
falsely concluded that dvips required a virtual font
to use the PostScript version. Third, I didn’t specify
font embedding in ttfonts.map (using the charac-
ter <) and had to teach HelveticaLTCYR-Roman to
gs/ps2pdf. But finally I got привет in PDF.

The naming issue was more tricky. The begin-
ing is obvious: l for Linotype, hc for Helvetica Cyril-
lic, r for regular. But what about the rest: 8a, 8r
or something else? And meanwhile, for latin fonts,
isn’t only one of 8a and 8r required? (Answer: 8r

is enough.) The help came from an informal note in
some tutorial: 8a fonts should be re-encoded for use
in TEX, 8r fonts are ready to use in TEX.

Finally, the whole picture was clear for me. If a
Type 1 font is made available to TEX as is, the NFSS

name uses the suffix 8a. After converting the font
to TEX encoding, the suffix becomes 8r. Further
observations:

• PostScript fonts are not physically converted.
Instead, they are re-encoded on the fly during
PostScript execution. The corresponding com-
mands are given through map files.

• With a TrueType font as the starting point, I
don’t see any reason to first convert TTF to
Type 1 with the Adobe encoding, and then re-
encode the font for use in TEX. Instead, I prefer
to convert directly to TEX encoding.

• It seems there is a strong association between
the suffix 8r and T1 encoding, therefore for the
cyrillic font I selected some other suffix, 8z.

Oleg Parashchenko

TUGboat, Volume 31 (2010), No. 1 25

This idea of avoiding 8a is obvious, but I was
misguided by the help text of ttf2pt1. Among
the supported encodings there is adobestd, which
is commented as “Adobe Standard, expected by

TeX” (wrong). Meanwhile, the encoding cyrillic

seems to be windows-1251, not T2A. Investiga-
tions show that it is possible to get the correct re-
sult using map files (the option -L) and that the
source code tarball of ttf2pt1 contains maps for
T1 and T2A, but these maps are not installed on
my Linux. Therefore, currently it’s inconvenient to
use ttf2pt1. I’ll submit a report to the developers,
and hope they will improve the situation.

The alternative is the tool fontforge [8]. Ini-
tially I failed to convert the font correctly, but while
fighting with ttf2pt1, I stumbled upon the docu-
mentation of the comicsans package [7], which de-
scribed how to use fontforge. After adaptation to
the current version, here are the instructions.

• First, teach fontforge about the T2A encod-
ing. Click Encoding→Load Encoding, select the
file t2a.enc.

• Select Encoding→Reencode→T2AAdobeEncod-

ing. The glyphs are rearranged to the correct
(for T2A) positions.

• Select File→Generate Fonts. You need to select
options: PS Type 1 Ascii or Binary, No Bitmap
Fonts, activate output of TFM and set Force
glyph names to Adobe Glyph List.

9 LATEX

The real problems are already solved. To integrate
the font to LATEX NFSS, one more config file is re-
quired, t2alhc.fd (the file name is font encoding
name plus family name):

\ProvidesFile{t2alhc.fd}

\DeclareFontFamily{T2A}{lhc}{}

\DeclareFontShape{T2A}{lhc}{m}{n}

{ <-> lhcr8z}{}

A sample LATEX document is shown next. Here
utf8 is used as the input encoding, conversion to
T2A is done by LATEX, thanks to the inputenc pack-
age. The package fontenc, among other useful ac-
tions, sets the default encoding for fonts to T2A, so
fontencoding before selectfont is redundant and
can be safely removed.

\documentclass{article}

\usepackage[T2A]{fontenc}

\usepackage[utf8]{inputenc}

\begin{document}

\fontencoding{T2A}\fontfamily{lhc}\selectfont

^^d0^^bf^^d1^^80^^d0^^b8^^d0^^b2^^d0^^b5^^d1^^82

\end{document}

Both latex+dvips+ps2pdf and pdflatex should
produce the desired PDF.

10 Summary

A .tfm file is always required. Create it using either
ttf2tfm or fontforge.

An encoding file is also always required. It can
be found in your texmf tree.

Each tool consults its own map file for more in-
formation about the fonts. You need to provide the
details (such as encoding) to get the correct result.

pdfTEX can use a TTF file directly.
xdvi and dvips use either .pk bitmaps or Type 1

outlines. A .pk font is created using ttf2pk.
A Type 1 font (and the corresponding .tfm)

can be created using fontforge. The font ought to
be created in TEX encoding. Do not use ttf2pt1

yet, unless you understand what are you doing.
For integration in LATEX NFSS, a .fd font de-

scription file is needed.

References

[1] Adobe Systems Incorporated. Adobe
standard cyrillic font specification. See
http://www.adobe.com/devnet/font/pdfs/

5013.Cyrillic_Font_Spec.pdf.

[2] The fontinst home page. See http://www.tug.

org/applications/fontinst/.

[3] Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach. The LATEX Graphics Companion.
Addison-Wesley, 1997.

[4] Hàn Thế Thành. A closer look at True Type
fonts and pdfTEX. TUGboat, 30(1):32–34,
November 2009.

[5] Mark Heath. TrueType font to PostScript
Type 1 converter. See http://ttf2pt1.

sourceforge.net/.

[6] Frank Mittelbach and Michel Goossens. The

LATEX Companion. Addison-Wesley, 2004.

[7] Scott Pakin. The comicsans package. See
http://www.ctan.org/macros/latex/

contrib/comicsans/comicsans.pdf.

[8] George Williams. Fontforge. See http:

//fontforge.sourceforge.net/.

⋄ Oleg Parashchenko

bitplant.de GmbH

Fabrikstr. 15

89520 Heidenheim, Germany

olpa (at) uucode dot com

Minimal setup for a (cyrillic) TrueType font

26 TUGboat, Volume 31 (2010), No. 1

LuaTEX: Microtypography for plain fonts

Hans Hagen

In a previous article we discussed plain support for
OpenType fonts [1]. The latest versions now also
support font extending, slanting, protrusion and ex-
pansion, the “microtypography” TEX users know
from pdfTEX [2]. Here are a few examples:

\pdfprotrudechars2

\pdfadjustspacing2

\font\test =

file:lmroman12-regular:+liga;extend=1.5

\test\input tufte\par

\font\test =

file:lmroman12-regular:+liga;slant=0.8

\test\input tufte\par

\font\test =

file:lmroman12-regular:+liga;protrusion=default

\test\input tufte\par

\font\test =

file:lmroman12-regular:+liga;expansion=default

\test\input tufte\par

The extend and slant options are similar to
those used in map files. The value of extend is
limited to being within the range [−10, 10] and slant

to [−1, 1].
In the protrusion and expansion specification

the keyword default is an entry in a definition ta-
ble. You can find an example at the end of the file
font-dum.lua.

A setup for expansion looks like this:

fonts.expansions.setups[’default’] = {

stretch = 2, shrink = 2, step = .5,

factor = 1,

[byte(’A’)] = 0.5, [byte(’B’)] = 0.7,

...........

[byte(’8’)] = 0.7, [byte(’9’)] = 0.7,

}

The stretch, shrink and steps become font prop-
erties and characters get a value assigned. In pseudo-
code, it looks like:

chr(A).expansion_factor = 0.5 * factor

The protrusion table has left and right protru-
sion factors for each relevant character.

fonts.protrusions.setups[’default’] = {

factor = 1, left = 1, right = 1,

[0x002C] = { 0, 1 }, -- comma

[0x002E] = { 0, 1 }, -- period

[0x003A] = { 0, 1 }, -- colon

........

[0x061B] = { 0, 1 }, -- arabic semicolon

[0x06D4] = { 0, 1 }, -- arabic full stop

}

So, the comma will stick out in the right margin:

chr(comma).right_protruding

= right * 1 * factor * (width/quad)

We prefer measures relative to the width (per-
centages), as this allows, for example, a simple 100%

to give a full protrusion.
You can add additional tables and access them

by keyword in the font specification.
The model used in the plain variant is a simplifi-

cation of the ConTEXt model; ConTEXt users should
not take this as a starting point.

⋄ Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

References

[1] Hans Hagen. Plain TEX and OpenType.
http://tug.org/TUGboat/Articles/tb30-2/

tb95hagen-opentype.pdf.

[2] Hàn Thé̂ Thành. Micro-typographic

extensions to the TEX typesetting system,
Ph.D. thesis, 2000. http://tug.org/TUGboat/

Articles/tb21-4/tb69thanh.pdf and
http://pdftex.org.

Hans Hagen

Mathematical typefaces in TEX documents

Amit Raj Dhawan

Abstract

This paper discusses free math fonts that can
be used by TEX to harmonize with desired text
typefaces. It has been written with a user of plain
TEX in mind but the pivotal issues discussed are
common to other friends of TEX, e.g., LATEX. A
technique for changing text and math fonts in TEX
is given. Then the paper discusses the lack of math
fonts compared to text fonts in TEX. It is followed
by some deliberation on some aspects of complete
sets of math fonts. The term “math mode” includes
both TEX’s in-line and display math modes, unless
stated otherwise.

1. Changing math fonts

Changing the text font in TEX is quite simple. For
example, the command \font\myfont=cmss10 will
assign the font cmss10 to the control word \myfont.
However, this does not work when assigning fonts
to be used in math mode. TEX uses fonts from
one or more of the sixteen font families to typeset
mathematical characters. Each font family consists
of three fonts — textfont, scriptfont, and scriptscriptfont.

In plain TEX, by default, most of the math-
ematical characters come from family 0 (roman),
family 1 (math italic), family 2 (math symbol),
and family 3 (math extension); TEX expects these
families to be fixed. There are characters in math
mode that come from other font families, e.g., x in
f(x) is from family 6 (\bffam). In all, plain TEX
uses 8 families (0–7). To thoroughly change the
typeface/type family of a document generated by
plain TEX, it is required to change the fonts in 7 of
those font families; one of the eight families is for
the typewriter typeface.

The following code changes the type family in
a TEX document from Computer Modern (default)
to Charter. The fonts used in the code are free and
included in most TEX distributions. This method
works well with other formats based on plain TEX,
e.g., AMS-TEX, X ETEX (not X ELATEX), Eplain, etc.
With LATEX, the given method does not work.

% Family 0 (Roman)

\font\tenrm=mdbchr7t at10pt

\font\sevenrm=mdbchr7t at7pt

\font\fiverm=mdbchr7t at5pt

\textfont0=\tenrm

\scriptfont0=\sevenrm

TUGboat, Volume 31 (2010), No. 1 27

\scriptscriptfont0=\fiverm

\def\rm{\fam=0 \tenrm}

%

% Family 1 (Math italic)

\font\teni=mdbchri7m at10pt

\font\seveni=mdbchri7m at7pt

\font\fivei=mdbchri7m at5pt

\textfont1=\teni

\scriptfont1=\seveni

\scriptscriptfont1=\fivei

\def\mit{\fam=1}

%

% Family 2 (Math symbols)

\font\tensy=md-chr7y at10pt

\font\sevensy=md-chr7y at7pt

\font\fivesy=md-chr7y at5pt

\textfont2=\tensy

\scriptfont2=\sevensy

\scriptscriptfont2=\fivesy

\def\cal{\fam=2}

%

% Family 3 (Math extension)

\font\tenex=mdbchr7v at10pt

\font\sevenex=mdbchr7v at7pt

\font\fiveex=mdbchr7v at5pt

\textfont3=\tenex

\scriptfont3=\sevenex

\scriptscriptfont3=\fiveex

%

% Family 4 (Italic text)

\font\tenit=mdbchri7t at10pt

\font\sevenit=mdbchri7t at7pt

\font\fiveit=mdbchri7t at5pt

\textfont\itfam=\tenit

\scriptfont\itfam=\sevenit

\scriptscriptfont\itfam=\fiveit

\def\it{\fam=\itfam \tenit}

%

% Family 5 (Slanted text)

\font\tensl=mdbchro7t at10pt

\font\sevensl=mdbchro7t at7pt

\font\fivesl=mdbchro7t at5pt

\textfont\slfam=\tensl

\scriptfont\slfam=\sevensl

\scriptscriptfont\slfam=\fivesl

\def\sl{\fam=\slfam \tensl}

%

% Family 6 (Bold text)

\font\tenbf=mdbchb7t at10pt

\font\sevenbf=mdbchb7t at7pt

\font\fivebf=mdbchb7t at5pt

\textfont\bffam=\tenbf

\scriptfont\bffam=\sevenbf

\scriptscriptfont\bffam=\fivebf

\def\bf{\fam=\bffam \tenbf}

%

% Family 7 (Typewriter)

\font\tentt=cmtt10

\font\seventt=cmtt10 at7pt

\font\fivett=cmtt10 at5pt

\textfont\ttfam=\tentt

\scriptfont\ttfam=\seventt

\scriptscriptfont\ttfam=\fivett

\def\tt{\fam=\ttfam \tentt}

%

\rm % Sets normal roman font

Another way to change the fonts is to use the
control word \newfam [1]. The technique is similar
to the one illustrated above. The macro \newfam

allows the user to form new font families under new
assigned names.

2. Available math fonts

TEX can change the math typefaces only if the fonts
to do that are available. Today’s TEX distributions
include hundreds of fonts to change the typeface
for text, but this is not the case with math.
We can find hundreds of readily available free
fonts offering the roman, italic, slanted, and bold
typeface variants, but the fonts for creating specific
math typefaces are not even in tens. The problem is
the lack of fonts that are included in font families 1,
2, and 3 —math italic, math symbol, and math

extension fonts. Given below is some math and
text in different typefaces, typeset using free fonts
available in major TEX distributions like TEX Live
2009 and MiKTEX 2.8.

Computer Modern

f(x, y) = (x + y)(2x)
yx+2y3

lim
k→∞

1

2π

∫

T

σnk
(t)e−ijtdt = lim

k→∞

(

1−
|j|

nk + 1

)

cj

Charter

f (x, y) = (x + y)(2x)y
x+2y3

lim
k→∞

1

2π

∫

T

σnk
(t)e−i j t dt = lim

k→∞

�

1−
| j|

nk + 1

�

c j

28 TUGboat, Volume 31 (2010), No. 1

Utopia

f (x, y) = (x + y)(2x)y
x+2y3

lim
k→∞

1

2π

∫

T

σnk
(t)e−i j t dt = lim

k→∞

�

1 −
| j |

nk + 1

�

c j

Century

f (x, y) = (x + y)(2x)yx+2y3

lim
k→∞

1

2π

∫

T

σnk
(t)e−i jtdt = lim

k→∞

(

1 −
| j|

nk + 1

)

c j

Palatino

f (x, y) = (x + y)(2x)yx+2y3

lim
k→∞

1

2π

∫

T

σnk
(t)e−i jtdt = lim

k→∞

(

1 −
| j|

nk + 1

)

c j

Times

f (x, y) = (x + y)(2x)yx+2y3

lim
k→∞

1

2π

∫

T

σnk
(t)e−i jtdt = lim

k→∞

(

1 −
| j|

nk + 1

)

c j

Bookman

f (x, y) = (x + y)
(2x)y

x+2y3

lim
k→∞

1

2π

∫

T

σnk
(t)e−ijtdt = lim

k→∞

(

1 −
|j|

nk + 1

)

cj

Antykwa Toruńska

f (x, y) = (x + y)(2x)yx+2y3

lim
k→∞

1
2π

∫

T

σnk
(t)e−ijtdt = lim

k→∞

(
1 −

|j|

nk + 1

)

cj

Iwona

f(x, y) = (x + y)(2x)yx+2y3

lim
k→∞

1
2π

∫

T

σnk
(t)e−ijtdt = lim

k→∞

(
1 −

|j|

nk + 1

)
cj

Kurier

f(x, y) = (x + y)(2x)yx+2y3

lim
k→∞

1
2π

∫

T

σnk
(t)e−ijtdt = lim

k→∞

(
1 −

|j|

nk + 1

)
cj

Arev

ƒ (, y) = (+ y)(2)
y+2y

3

lim
k→∞

1

2π

∫

T

σnk (t)e
−jtdt = lim

k→∞

(
1−

|j|

nk + 1

)
cj

Computer Modern Bright

f (x, y) = (x + y)(2x)
yx+2y

3

lim
k→∞

1

2π

∫

T

σnk (t)e
−i j tdt = lim

k→∞

(
1−

|j |

nk + 1

)
cj

Concrete

f (x ; y) = (x + y)(2x)y x +2y 3

lim
k→∞

1

2ß

∫

T

œnk
(t)e−i j t d t = lim

k→∞

(

1−
|j |

nk + 1

)

cj

Kepler

f (x, y) = (x + y)(2x)
yx+2y

3

lim
k→∞

1

2π

∫

T

σnk (t)e
−ijtdt = lim

k→∞

(

1 −
|j |

nk + 1

)

cj

TUGboat, Volume 31 (2010), No. 1 29

Euler

f(x, y) = (x + y)(2x)
yx+2y3

lim
k→∞

1

2π

∫
T

σnk
(t)e−ijtdt = lim

k→∞

(

1−
|j|

nk + 1

)

cj

Mathematical typesetting in TEX is more complex
than text typesetting, and so is the making of math
fonts compared to text fonts. Though aesthetic
appreciation is subjective, most of us would agree
that inter-character spacing, kerning, scripts and
scriptscripts look better in Computer Modern and
Euler. Here we are not talking about the design
features like the contours that shape the characters
or the lightness of a type family, but the fine tuning
that the font offers. All the fonts used above are
vector fonts, and only Computer Modern and Euler
offer separate math italic and math symbol fonts at
10pt, 7pt, and 5pt. The math italic of Computer
Modern is different than the normal italic of the
same, the former being a bit extended. The 5pt size
of Computer Modern is not 10pt scaled to 5pt; it
is a separate font designed specifically for 5pt size,
and this feature enhances math typesetting.

In eijt of Bookman, which uses math italic from
Antonis Tsolomitis’ Kerkis package, ij looks like a
‘y with two dots’. This is confusing and in italic text
it is a blemish on the look of words like bijection.
It can be seen that the space setting in Kerkis is
in need of improvement. In |j|, the descender (the
foot of the j) cuts the vertical bar. We can improve
such shortcomings manually but such alterations
will be tedious and font specific — a change of
font might then produce ugly results due to bad
spacing. Another option is to include such tuning
in the font metric information, making the process
of adjustment automatic and transferable. Another
alternative is to have a separate math italic font,
that has its own glyphs which match the normal
italic without being mere copies, which would be
advantageous. After trimming the terminal (leg) of
i of kmath8r (Kerkis math italic) we can get an
individual glyph for math italic, which goes with
the text italic but it is not a duplication. A separate
math italic in Kerkis with well-chosen font metric
parameters would solve most problems without the
need of manual tuning. Nevertheless, some cases will
always exist (especially for diehard typographers)
where some manual fine-tuning would be required
to produce desired results.

In the given examples, some interesting details
to note are:

1. Inter-character spacing, with special attention
to the spacing between scriptsize (7pt) and
scriptscriptsize (5pt) glyphs, respectively.

2. The readability of smaller glyphs — scriptsize
and scriptscriptsize. As discussed earlier, 5pt of
Computer Modern or Euler is not 10pt scaled
to 5pt. Typically, a font at 10pt scaled to
5pt has the same height as the original 5pt
but the latter is wider with thicker strokes.
True or original 5pt is not an extended version
of 10pt scaled to 5pt either. Shown below
are respective typefaces magnified to 40pt for
illustration. Note the difference in the shape
and stroke thickness.

a a a
cmr10 at 5pt cmr5 cmbx5

At smaller sizes it is easier to read wider
and thicker types. This is the philosophy be-
hind designing separate 7pt and 5pt fonts.
These typefaces, when used in scriptsize or
scriptscriptsize, match better in weight with
the main text: compared with the main text,
they do not seem as light as the scaled down
versions.

3. Whether math symbols, Greek letters, and
delimiters go with the type family. Evenness of
typographic color. This (∆ + Γ) blends better
with the main text than (∆ + Γ) or (∆ + Γ).
The glyphs in math symbol and extension fonts
should be in harmony with the text font glyphs.

Typography is an art used by many but valued
by few, and practised by fewer. Moreover, in the
realm of typography, mathematics is underprivi-
leged. There are many reasons for this, the main
cause being that the majority of the world never uses
or only sporadically uses specialized mathematical
typesetting features. Another reason is that most
of the mathematicians, scientists, students, . . . ,
who typeset mathematics, are more focussed on
the content than its presentation — it suffices for
them that at least and at most it works! The
present typesetting algorithms of TEX suggest that
typesetting mathematics is more demanding than
typesetting text. TEX requires text fonts to have
at least 7 \fontdimen parameters, whereas math
symbol fonts should have at least 22 \fontdimen

parameters and math extension fonts require at
least 13 \fontdimen parameters. Availability of a
separate math italic font is an advantage but as it is

30 TUGboat, Volume 31 (2010), No. 1

not usable as a text italic, and text italics are what
most users need, there is not a huge demand for it.

3. Requirements of math fonts

The TEX world would certainly enjoy having more
math fonts that have at least all the features of
the legendary Computer Modern fonts. In the world
of typography, two developments have been very
popular — Unicode and OpenType. Is TEX ready
for it? The development of X ETEX, LuaTEX, Latin
Modern and TEX Gyre fonts is promising. However,
this is only in the field of text typesetting. To my
knowledge, none of the present TEX engines support
Unicode math or any TEX fonts have OpenType
math fonts.

OpenType text fonts from Adobe, like the Pro

series, have set new heights of typographic elegance.
For example, the Warnock Pro font family from
Adobe offers 2 styles: roman and italic, in 4 weights:
light, normal, semibold, and bold, in 4 optical sizes:
caption, normal, subheading, and display. Amongst
many other features, there is support for small caps
and oldstyle figures too. Fake slanted faces, which
are almost as true as real slanted when the slant is
less than 0.2, can be obtained using the OpenType
slant tag. There are some TEX fonts, like Kpfonts,
that have light weight variants.

As Unicode is becoming the de facto encoding
standard, TEX needs to gear up to accept it in
a “standardized” way. Another wonderful addition
would be the wholehearted acceptance of OpenType
format. This would enhance TEX’s communication
with the non-TEX world. Opinions on these two
recommendations might differ and only with time
will we see what the future holds for us. We refrain
from mentioning more on these topics.

At the glyph level, we can reckon a few features
that TEX math fonts should offer. They should have:

1. At least three sizes (5pt, 7pt, 10pt).

2. Separate math italics suited for math and
harmonious with text.

3. A complete set of math symbols and extension
characters that are at least as many as offered
by the AMS fonts collection. Missing glyphs
are a massive disappointment and marks of
unreliability.

4. The symbols and math extension characters
should coordinate with the text and math
letters and numbers. Balance of serifs, stroke
weight, and x-height are a few considerations.

5. Availability of Script, Fraktur (lower and upper
case), Blackboard fonts. It would be nice to

have more than one script glyph per character
to meet special requirements.

6. All glyphs of a type family should complement
each other. With proper spacing, they should
give similar typographic color to text and
math. The use of virtual fonts, though inviting,
should be avoided.

7. All glyphs should have normal and bold vari-
ants. A semibold variant would be welcomed.

8. For slides and posters, some complete sans serif
type families would be appreciated.

This list can be enlarged as refinement has no
limits. It should be kept in mind that font de-
sign is an extremely demanding task. At the user
level it is better to have a few sets of fonts that
are well-designed and complete than having many
which are incomplete. A typeset page should convey
information with clarity and according to context.
Academic book publishing has its own require-
ments, slide display has its own, and so on. Good
typography does justice to all.

We have mentioned earlier in this section that
it is required of TEX to adapt itself to popular
font formats like OpenType. A common font design
platform would allow TEX font designers to reach
even non-TEXnicians — this would make their work
valued by more which means greater effort.

4. Conclusion

The birth of TEX was a revolution in typesetting.
Though in text typesetting today, after decades,
TEX faces competition from some commercial soft-

TUGboat, Volume 31 (2010), No. 1 31

ware applications, in math typesetting it is still
far ahead of the competition. Let’s make our TEX,
which is the best, even better!

TEX users are thankful to TEX font designers
and contributors for their involvement and support.
In this paper some suggestions were given, e.g.,
provision of original 5pt, 7pt, and 10pt sizes. Any
design and effort, no matter how rudimentary,
deserves its due respect. It is hoped that the words
of this paper spoke with and for encouragement.

As TEX is free, so does it call for free fonts.
Though it is feasible, at least in text, to use
almost any font with TEX, free fonts are the real
requirement of TEX. And beautiful free fonts with
complete math support in the best format encoded
with elegance is what TEX deserves.

References

[1] D. E. Knuth. The TEXbook. Addison-Wesley
Pub. Co., Reading, Mass., 1986.

[2] A. R. Dhawan. “Macros to Change Text &
Math fonts in TEX: 19 Beautiful Variants,” CTAN,
August 2009. http://mirror.ctan.org/
macros/plain/contrib/font-change/doc/

[3] R. Bringhurst. The Elements of Typographic

Style. Hartley & Marks, Publishers, 3rd edition,
2004.

⋄ Amit Raj Dhawan
amitrajdhawan (at) gmail dot com

32 TUGboat, Volume 31 (2010), No. 1

LuaTEX: Deeply nested notes

Hans Hagen

1 Introduction

One of the mechanisms that is not on a user’s retina
when he or she starts using TEX is ‘inserts’. An
insert is material that is entered at one point but
will appear somewhere else in the output. Footnotes
for instance can be implemented using inserts. You
create a reference symbol in the running text and put
note text at the bottom of the page or at the end of
a chapter or document. But as you don’t want to do
that moving around of notes yourself TEX provides
macro writers with the inserts mechanism that will
do some of the housekeeping. Inserts are quite clever
in the sense that they are taken into account when
TEX splits off a page. A single insert can even be
split over two or more pages.

Other examples of inserts are floats that move
to the top or bottom of the page depending on re-
quirements and/or available space. Of course the
macro package is responsible for packaging such a
float (for instance an image) but by finally putting it
in an insert TEX itself will attempt to deal with ac-
cumulated floats and help you move kept over floats
to following pages. When the page is finally assem-
bled (in the output routine) the inserts for that page
become available and can be put at the spot where
they belong. In the process TEX has made sure that
we have the right amount of space available.

However, let’s get back to notes. In ConTEXt
we can have many variants of them, each taken care
of by its own class of inserts. This works quite well —
as long as a note is visible for TEX, which more or
less means: ends up in the main page flow. Consider
the following situation:

before \footnote{the note} after

When the text is typeset, a symbol is placed
directly after before and the note itself ends up at
the bottom of the page. It also works when we wrap
the text in an horizontal box:

\hbox{before \footnote{the note} after}

But it fails as soon as we go further:

\hbox{\hbox{before \footnote{the note} after}}

Here we get the reference but no note. This also
fails:

\vbox{before \footnote{the note} after}

Can you imagine what happens if we do the
following? (In this ConTEXt table, \NC separates
columns and \NR separates rows.)

\starttabulate

\NC knuth \NC test \footnote{knuth}

\input knuth \NC \NR

\NC tufte \NC test \footnote{tufte}

\input tufte \NC \NR

\NC ward \NC test \footnote{ward}

\input ward \NC \NR

\stoptabulate

This mechanism uses alignments as well as quite
some boxes. The paragraphs are nicely split over
pages but still appear as boxes to TEX which make
inserts invisible. Only the three reference symbols
would remain visible. But because in ConTEXt we
know when notes tend to disappear, we take some
provisions, and contrary to what you might expect
the notes actually do show up. However, they are
flushed in such a way that they end up on the page
where the table ends. Normally this is no big deal
as we will often use local notes that end up at the
end of the table instead of the bottom of the page,
but still.

The mechanism to deal with notes in ConTEXt
is somewhat complex at the source code level. To
mention a few properties we have to deal with:

• Notes are collected and can be accessed any
time.

• Notes are flushed either directly or delayed.

• Notes can be placed anywhere, any time, per-
haps in subsets.

• Notes can be associated with lines in paragraphs.

• Notes can be placed several times with different
layouts.

So, we have some control over flushing and place-
ment, but real synchronization between for instance
table entries having notes and the note content end-
ing up on the same page is impossible.

Within the LuaTEX team we have been dis-
cussing more control over inserts and we will defi-
nitely deal with that in upcoming releases as more
control is needed for complex multi-column docu-
ment layouts. But as we have some other priorities
these extensions have to wait.

As a prelude to them I experimented a bit with
making these deeply buried inserts visible. Of course
I use Lua for this as TEX itself does not provide the
kind of access we need for this kind of manipulation.

2 Deep down inside

Say that we have the following boxed footnote. How
does it end up in LuaTEX?

\vbox{a\footnote{b}c}

Actually it depends on the macro package but
the principles remain the same. In LuaTEX 0.50 and
the ConTEXt version used at the time of this writing
we get a (nested) linked list that prints as follows:

Hans Hagen

TUGboat, Volume 31 (2010), No. 1 33

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 30 < 611 > 580 : whatsit 6>

<node 611 < 580 > 493 : hlist 0>

<node 580 < 493 > 653 : glyph 256>

<node 493 < 653 > 797 : penalty 0>

<node 653 < 797 > 424 : kern 1>

<node 797 < 424 > 826 : hlist 2>

<node 445 < 563 > nil : hlist 2>

<node 420 < 817 > 821 : whatsit 35>

<node 817 < 821 > nil : glyph 256>

<node 507 < 826 > 1272 : kern 1>

<node 826 < 1272 > 1333 : glyph 256>

<node 1272 < 1333 > 830 : penalty 0>

<node 1333 < 830 > 888 : glue 15>

<node 830 < 888 > nil : glue 9>

<node 838 < 507 > nil : ins 131>

The numbers are internal references to the node
memory pool. Each line represents a node:

<node prev_index < index > next_index : type subtype>

The whatsits carry directional information and
the deeply nested hlist is the note symbol. If we
forget about whatsits, kerns and penalties, we can
simplify the listing to:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 580 < 493 > 653 : glyph 256>

<node 797 < 424 > 826 : hlist 2>

<node 445 < 563 > nil : hlist 2>

<node 817 < 821 > nil : glyph 256>

<node 826 < 1272 > 1333 : glyph 256>

<node 838 < 507 > nil : ins 131>

So, we have a vlist (the \vbox), which has one
line being a hlist. Inside we have a glyph (the ‘a’)
followed by the raised symbol (the ‘1’) and next
comes the second glyph (the ‘b’). But watch how
the insert ends up at the end of the line. Although
the insert will not show up in the document, it sits
there waiting to be used. So we have:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 838 < 507 > nil : ins 131>

but we need:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 838 < 507 > nil : ins 131>

Now, we could use the fact that inserts end up
at the end of the line, but as we need to recursively
identify them anyway, we cannot actually use this
fact to optimize the code.

In case you wonder how multiple inserts look,
here is an example:

\vbox{a\footnote{b}\footnote{c}d}

This boils down to:

<node 26 < 1324 > nil : vlist 0>

<node 401 < 1348 > 507 : hlist 1>

<node 1348 < 507 > 457 : ins 131>

<node 507 < 457 > nil : ins 131>

And in case you wonder what more can end up
at the end, vertically adjusted material (\vadjust)
as well as marks (\mark) also get this treatment.

\vbox{a\footnote{b}\vadjust{c}%

\footnote{d}e\mark{f}}

As you see, we start with the line itself, followed
by a mixture of inserts and vertical adjusted content
(that will be placed before that line). This trace also
shows the list 2 levels deep.

<node 26 < 1324 > nil : vlist 0>

<node 401 < 1348 > 507 : hlist 1>

<node 1348 < 507 > 862 : ins 131>

<node 507 < 862 > 240 : hlist 1>

<node 862 < 240 > 2288 : ins 131>

<node 240 < 2288 > nil : mark 0>

Currently vadjust nodes have the same subtype
as an ordinary hlist but in LuaTEX versions beyond
0.50 they will have a dedicated subtype.

We can summarize the pattern of one ‘line’ in a
vertical list as:

[hlist][insertmarkvadjust]*[penaltyglue]+

In case you wonder what happens with for in-
stance specials, literals (and other whatsits): these
end up in the hlist that holds the line. Only inserts,
marks and vadjusts migrate to the outer level, but
as they stay inside the vlist, they are not visible to
the page builder unless we’re dealing with the main
vertical list. Compare:

this is a regular paragraph possibly with

inserts and they will be visible as the lines

are appended to the main vertical list \par

with:

but \vbox {this is a nested paragraph where

inserts will stay with the box} and not migrate

here \par

So much for the details; let’s move on to how
we can get around this phenomenon.

3 Some LuaTEX magic

The following code is just the first variant I made;
ConTEXt ships with a more extensive variant. Also,
in ConTEXt this is part of a larger suite of manipu-
lative actions but it does not make much sense (at
least not now) to discuss this framework here.

We start with defining a couple of convenient
shortcuts.

local hlist = node.id(’hlist’)

local vlist = node.id(’vlist’)

local ins = node.id(’ins’)

LuaTEX: Deeply nested notes

34 TUGboat, Volume 31 (2010), No. 1

We can write a more compact solution but split-
ting up the functionality better shows what we’re
doing. The main migration function hooks into the
callback build_page. Unlike other callbacks that do
phases in building lists and pages this callback does
not expect the head of a list as argument. Instead, we
operate directly on the additions to the main vertical
list which is accessible as tex.lists.contrib_head.

local deal_with_inserts -- forward reference

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist then

current = deal_with_inserts(current)

end

current = current.next

end

end

callback.register(’buildpage_filter’,

migrate_inserts)

So, effectively we scan for vertical and horizontal
lists and deal with embedded inserts when we find
them. In ConTEXt the migratory function is just one
of the functions that is applied to this filter.

We locate inserts and collect them in a list with
first and last as head and tail and do so recursively.
When we have run into inserts we insert them after
the horizontal or vertical list that had embedded
them.

local locate -- forward reference

deal_with_inserts = function(head)

local h, first, last = head.list, nil, nil

while h do

local id = h.id

if id == vlist or id == hlist then

h, first, last = locate(h,first,last)

end

h = h.next

end

if first then

local n = head.next

head.next = first

first.prev = head

if n then

last.next = n

n.prev = last

end

return last

else

return head

end

end

The locate function removes inserts and adds
them to a new list, that is passed on down in recursive
calls and eventually is returned back to the caller.

locate = function(head,first,last)

local current = head

while current do

local id = current.id

if id == vlist or id == hlist then

current.list, first, last

= locate(current.list,first,last)

current = current.next

elseif id == ins then

local insert = current

head, current = node.remove(head,current)

insert.next = nil

if first then

insert.prev = last

last.next = insert

else

insert.prev = nil

first = insert

end

last = insert

else

current = current.next

end

end

return head, first, last

end

As we can encounter the content several times
in a row, it makes sense to mark already processed
inserts. This can for instance be done by setting an
attribute. Of course one has to make sure that this
attribute is not used elsewhere.

if not node.has_attribute(current,8061) then

node.set_attribute(current,8061,1)

current = deal_with_inserts(current)

end

Or integrated:

local has_attribute = node.has_attribute

local set_attribute = node.set_attribute

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist then

if has_attribute(current,8061) then

-- maybe some tracing message

else

set_attribute(current,8061,1)

current = deal_with_inserts(current)

end

end

current = current.next

end

end; callback.register(’buildpage_filter’,

migrate_inserts)

Hans Hagen

TUGboat, Volume 31 (2010), No. 1 35

4 A few remarks

Surprisingly, the amount of code needed for insert
migration is not that large. This makes one won-
der why TEX does not provide this feature itself as
it could have saved macro writers quite some time
and headaches. Performance can be a reason, un-
predictable usage and side effects might be another.
Only one person knows the answer.

In ConTEXt this mechanism is built in and it
can be enabled by saying:

\automoveinserts

Future versions of ConTEXt will do this auto-
matically and also provide some control over what
classes of inserts are moved around. We will probably
overhaul the note handling mechanism a few more
times anyway as LuaTEX evolves due especially to
the demands from critical editions, which use many
kind of notes.

5 Summary of code

The following code should work in plain LuaTEX:

\directlua 0 {

local hlist = node.id(’hlist’)

local vlist = node.id(’vlist’)

local ins = node.id(’ins’)

local has_attribute = node.has_attribute

local set_attribute = node.set_attribute

local status = 8061

local function locate(head,first,last)

local current = head

while current do

local id = current.id

if id == vlist or id == hlist then

current.list, first, last

= locate(current.list,first,last)

current = current.next

elseif id == ins then

local insert = current

head, current = node.remove(head,current)

insert.next = nil

if first then

insert.prev, last.next = last, insert

else

insert.prev, first = nil, insert

end

last = insert

else

current = current.next

end

end

return head, first, last

end

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist and

not has_attribute(current,status) then

set_attribute(current,status,1)

local h, first, last = current.list, nil, nil

while h do

local id = h.id

if id == vlist or id == hlist then

h, first, last = locate(h,first,last)

end

h = h.next

end

if first then

local n = current.next

if n then

last.next, n.prev = n, last

end

current.next, first.prev = first, current

current = last

end

end

current = current.next

end

end

callback.register(’buildpage_filter’,

migrate_inserts)

}

Alternatively you can put the code in a file and
load that with:

\directlua {require "luatex-inserts.lua"}

A simple plain test is:

\vbox{a\footnote{1}{1}b}

\hbox{a\footnote{2}{2}b}

The first footnote only shows up when we have
hooked our migrator into the callback. Not a bad
result for 60 lines of Lua code.

⋄ Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

LuaTEX: Deeply nested notes

TUGboat, Volume 31 (2010), No. 1 37

The advantage of PSTricks in comparison to
METAPOST or TikZ is the possibility of using all
features of a powerful programming language with
very good support for graphic operations. This is
the reason why any calculation with mathematical
functions or large external data sets can be done
before the output is printed. Solving a differential
equation on the fly is as possible as drawing three-
dimensional solids with hidden lines and surfaces;
everything is done on the PostScript side. In the
TEX or LATEX source one has only to define the space
of the box and to describe the code with TEX or
LATEX macros which are then passed as specials to
PostScript. The next example shows the output of
the solution of the differential equation system of
first order:

ẋ = cos
π

2
· x

2 (1)

ẏ = sin
π

2
· x

2 (2)

0 1

0

1

b b b b b b b b b b b b b b b
b b b b

b b b
b b b

b b
b b
b b
b b
b b
b b
b b
b b
bb
bb
bb
bb

bb
bbb

bbbbbbbbbbbbbbbb b b b b b b b b b b b b b b
b b
b b
b b
bb
bb

bbb
bbbbbbbbbb b b b b b b b b b
b b
b b
bb
bb

bbbbbbbbb b b b b b b b b b
b b
bb
bb

bbbbbbbb b b b b b b b
b b
bb
bbbbbbbb b b b b b b
b b
bb
bbbbbbb b b b b b b
b b
bb

bbbbbb b b b b b b
b b
bb

bbbbb b b b b b
b b
bb

bbbbb b b b b b
b b
bbbbbb b b b b b
bb
bbbbbb b b b b
b b
bbbbbb b b b b
bb
bbbbb b b b b
bb
bbbbb b b b b
bb
bbbb b b b b
b b
bbbbb b b b b
bb

bbbb b b b
bb
bbbb b b b b
bb

bbbb b b b
bb

bbbb b b b
bb

bbbb b b b
bb

bbb b b b b
bbbbb b b b
bb

bbb b b b
bb

bbb b b

\usepackage{pstricks-add}

\psset{unit=5}

\begin{pspicture}(-0.04,-0.04)(1,1)

\psgrid[subgriddiv=5,subgridcolor=lightgray]

\psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,

method=rk4,algebraic,plotpoints=400,

showpoints=true]{0}{10}{0 0}%

{cos(Pi*x^2/2)|sin(Pi*x^2/2)}

\end{pspicture}

The parameters (coordinates) of the environ-
ment pspicture have a different meaning for TEX
and PostScript; for TEX they define width and height
of the box which has its lower left side at the current
point in TEX. When there is no shift defined, then
the lower side of this box is always on the baseline of
the current text line. It is for TEX just the same as
a box for a single letter. TEX needs the coordinates
only for its formatting; what will be inserted later
into this box is not of interest to TEX.

For PostScript the coordinates define a two-
dimensional area with the lower left and upper right
corner of the rectangle. The origin of this cartesian
coordinate system may be inside or outside of this
rectangle; it depends on the values of the coordinates.

An example: begin{pspicture}(-1,-2)(4,4) defines
for TEX a box with a width of five length units
(4 − (−1)) and a height of six length units (4− (−2)).
For PostScript the origin of this box is one length
unit to the right and two length units up, measured
from the current point, which is the lower left of the
TEX box.

The next example defines, on the TEX level, a
box with a width and height of 2.5 cm×1.5 cm.

The box with a reserved space of 2,5cm×1,5cm is by definition with its lower left

side at the current point. The lower side is on the baseline, which can easily be

seen on the this box: its internal origin maybe somewhere, also

outside this box. In this example the origin is at (1,0.5) units, measured from

the lower left corner of the box.

\usepackage{pstricks,pst-plot}

\raggedright The box with a reserved space

of 2,5cm\cdot1,5cm is by definition with

its lower left side at the current point.

The lower side is on the baseline, which

can easily be seen on the this box:

\psframebox[framesep=0]{%

\begin{pspicture}(-1,-0.5)(1.5,1)

\psaxes[labels=none]{->}(0,0)(-1,-0.5)(1.5,1)

\end{pspicture}}

its internal origin maybe somewhere, also

outside this box. In this example the origin

is at \texttt{(1,0.5)} units, measured from

the lower left corner of the box.

There are several optional arguments for the
main environment pspicture:

\pspicture * [Options] (xMin,yMin)(xMax,yMax)

. . .
\endpspicture

\pspicture * [Options] (xMax,yMax)

. . .
\endpspicture

\begin{pspicture * } [Options] (xMin,yMin)(xMax,yMax)

. . .
\end{pspicture * }

\begin{pspicture * } [Options] (xMax,yMax)

. . .
\end{pspicture * }

Another main focus of PSTricks is three-dimen-
sional graphic objects, with support for the hidden
line algorithm for lines and surfaces. The powerful
package pst-solides3d allows combining any three-
dimensional solid, given by coordinates or a math-
ematical expression. The following example shows
the book cover image from [2], a cylindrical object
divided by a plane into two parts, one of which is
moved and rotated.

The current state of the PSTricks project

38 TUGboat, Volume 31 (2010), No. 1

x

y

z

\usepackage[dvipsnames]{pstricks}

\usepackage{pst-solides3d}

\begin{pspicture}[solidmemory](-4,-5)(7,4)

\psset{viewpoint=50 -40 10 rtp2xyz,Decran=50,

linecolor=darkgray,lightsrc=viewpoint}

\psSolid[object=grille,action=draw,base=-3 5 -3 5,

linecolor=Salmon!40](0,0,-3)

\psSolid[object=cylindre,r=2,h=6,ngrid=6 24,

plansepare={[0.707 0 0.707 0]},name=Zylinder,

action=none](0,0,-3)

\psSolid[object=load,load=Zylinder1,

fillcolor=black!5,fcol=0 (Goldenrod)]

\psSolid[object=load,load=Zylinder0,RotZ=90,

fillcolor=black!5,rm=0,hollow,incolor=Goldenrod](0,4,0)

\psSolid[object=plan,action=draw,definition=equation,

args={[0.707 0 0.707 0] 90},base=-2 2 -3 3,planmarks]

\psSolid[object=line,args=0 0 0 0 5.5 0,

linecolor=blue]% first half of y axis

\color{white}\axesIIID[showOrigin=false,

linecolor=blue](0,6.8,0)(3.5,8,3.5)

\end{pspicture}

2 PSTricks project background

The first version of the main package pstricks, writ-
ten by Timothy Van Zandt and published nearly 20
years ago, is still the base package for the so-called
PSTricks project. A list of all additional packages
published since 1991 appears at the PSTricks web
page http://PSTricks.tug.org. In [1] and especially
[2] the packages are described and shown with a lot
of examples. Here, we will list the packages with only
one significant example, to give a glimpse at what the
package provides. More examples or some more infor-
mation can be found on the PSTricks web page (http:
//PSTricks.tug.org), CTAN (http://mirrors.ctan.org),
or your local TEX distribution’s documentation, e. g.,
using the texdoc program.

All PSTricks packages load by default the main
package pstricks, which itself loads the package
xcolor, which has a better support for colors than
the package color.

3 PSTricks and PDF

Figure 1 showed the different ways of generating
PDF output from (LA)TEX source. With PSTricks,
only the part in grey can be used to generate a PDF.
Unless you are using the package microtype there
will be no difference between a PDF generated in the
PSTricks way with latex and one directly generated
with pdflatex. When using a graphical user inter-
face, e. g. Kile for Linux, TeXShop for Mac OS X, or
TEXnicCenter for Windows, it is only one mouse click
to generate the PDF output. The intermediate DVI

and PostScript files are only temporaries, and can
be deleted after generating the PDF.

The remaining sections describe several ways
of using PSTricks-related code within a document
whose final version will be compiled with pdflatex,
which supports inclusion of images in PDF, PNG, and
JPG formats, as well as the microtype package for
optimized text formatting.

3.1 dvips and ps2pdf

If your PSTricks figure is created by a (LA)TEX file
separate from your main document, say fig.tex, you
can process it independently. First run tex or latex

on fig.tex to create fig.dvi; then dvips fig.dvi to
create fig.ps; and finally ps2pdf fig.ps (or another
distiller program) to create fig.pdf. Then your main
document can include fig.pdf like any PDF graphic.

3.2 pst2pdf

This is a Perl script to be used instead of the pdflatex
command. This way of creating PDF output is the
best choice when all graphics are needed as external
images.

The script extracts all pspicture and postscript

environments from the main text body and then runs
these code snippets with the same preamble as the
main document. The PDF output from each of these
single documents is then cropped to get rid of the
white space around the figure and also converted into
EPS and (on Linux only) PNG formats.

After producing all PostScript-related code as a
single image, saved in a default subdirectory images/,
the script pst2pdf runs the source one last time with
pdflatex and replaces all PostScript code with the
previously created image.

The script has several optional arguments which
are described with their defaults at the beginning of
the script.

3.3 pst-pdf and ps4pdf

This package from Rolf Niepraschk allows the cutting
of the pspicture or postscript environments from
the created DVI file into a new file *-pics.ps, which

Herbert Voß

TUGboat, Volume 31 (2010), No. 1 39

then is converted into a file *-pics.pdf. Every image
will be on one page and the size of the image is
taken from the pspicture coordinates or from the
bounding box for a postscript environment. In a
last pdflatex run the PDF images are inserted instead
of the PostScript-related code. There are four steps
needed:

1. latex FILE

2. dvips -Ppdf -o FILE-pics.ps FILE.dvi

3. ps2pdf -dAutoRotatePages=/None \

FILE-pics.ps FILE-pics.pdf

4. pdflatex FILE

Alternatively, one can use the script ps4pdf to per-
form these steps. The script is part of any TEX
distribution, and also available on CTAN. There are
also some profiles for use from GUI programs, also
available on CTAN (http://mirror.ctan.org/graphics/
pstricks/pst-support/).

3.4 auto-pst-pdf

This package from Will Robertson works in the
same way as pst-pdf, but it doesn’t need a script
or the four runs by the user. Everything is done
in a single pdflatex run, and therefore you must
allow execution of external programs from within
pdflatex: the shell-escape option for TEX Live
or enable-write18 for MiKTEX. Some GUI pro-
files are available from CTAN (http://mirror.ctan.
org/graphics/pstricks/pst-support/).

3.5 pdftricks

This package from Radhakrishnan CV, Rajagopal
CV, and Antoine Chambert-Loir was the first one to
support PostScript-related code with pdflatex. It
works in a similar way as pst-pdf, but it needs addi-
tional code in the preamble to separate the PostScript
part from the PDF part. More information is available
from CTAN, or by running texdoc pdftricks.

References

[1] Frank Mittelbach, Michel Goosens, Sebastian
Rahtz, Denis Roegel, and Herbert Voß. The

LATEX Graphics Companion. Addison-Wesley
Publishing Company, Boston, second edition,
2006.

[2] Herbert Voß. PSTricks – Grafik für

TEX und LATEX. DANTE – Lehmanns,
Heidelberg/Hamburg, fifth edition, 2008.

⋄ Herbert Voß
DANTE e.V.
http://PSTricks.tug.org

pstricks: Main package with the base
macros for lines, curves, areas, etc.

4
3
0
m
m

625mm

470mm

\usepackage{pstricks}

\psset{unit=0.05mm}% 1:20,or=0.1mm for 1:10

\begin{pspicture}(-100,-100)(1000,650)

\pspolygon[linewidth=2pt,fillcolor=gray!10,

fillstyle=solid](0,0)(0,470)(860,625)(860,0)

\psset{linewidth=0.2pt,arrowscale=2,tbarsize=10pt}

\psline{|<->|}(0,-100)(860,-100)

\rput*(430,-100){430mm}

\psline{|<->|}(960,0)(960,625)

\rput*{90}(960,312.5){625mm}

\psline{|<->|}(-100,0)(-100,470)

\rput*{90}(-100,235){470mm}

\end{pspicture}

pstricks-add: Extended base macros for the
packages pstricks, pst-node, and pst-plot

1

2

−1

−2

−3

1 2 3 4−1

x

y

\usepackage{pstricks-add}

\usepackage{multido}

\psscalebox{0.75}{%

\begin{pspicture}(-1,-3)(4.75,3)

\psaxes{->}(0,0)(-1,-3)(5,3)

\psplot[polarplot,linewidth=2pt,algebraic,

plotpoints=500]{0}{6.289}{2*(1+cos(x))}

\multido{\r=0.000+0.314}{21}{ %

\psplotTangent[polarplot,Derive=-2*sin(x),

algebraic,arrows=<->]{\r}{1.5}{2*(1+cos(x))}}

\end{pspicture}}

The current state of the PSTricks project

40 TUGboat, Volume 31 (2010), No. 1

pst-node: Nodes and node connections in
text and a matrix

bA

I

II

III

IV

\usepackage{pst-node} \SpecialCoor

\begin{Example}[ltxps]{\xLcs{pnode}\xLcs{uput}}

\begin{pspicture}(4,4)

\pnode(3,3){A}\psdot[dotscale=2](A)\uput[135](A){A}

\pscircle[linestyle=dotted](A){1}

\psline([nodesep=1,angle=-45]A)\uput[0](3.5,2){I}

\psline[linestyle=dashed]([nodesep=-1,angle=-45]A)

\uput[-45](2,4){II}

\psline[linestyle=dotted,linewidth=1.5pt]%

([offset=1,angle=-45]A)\uput[-225](4,4){III}

\psline[linewidth=1.5pt]([offset=1,angle=135]A)

\uput[0](2,2){IV} \nccurve{->}{A}{0,0}

\end{pspicture}

pst-plot: Plotting of mathematical functions
or external data sets

-1 0 1

-1

0

1

\usepackage{pst-plot}

\psset{xunit=1.5cm,yunit=1.5cm}

\begin{pspicture}[showgrid=true](-1.1,-1.1)(1.1,1.1)

\psparametricplot[plotstyle=curve,linewidth=1.5pt,

plotpoints=200]{-360}{360}%

{t 1.5 mul sin t 2 mul 60 add sin}

\end{pspicture}

pst-tree: Trees
Wurzel

\usepackage{pst-tree}

\pstree[levelsep=1cm,radius=3pt]{\Toval{Wurzel}}{%

\pstree{\TC}{%

\TC

\pstree{\TC*}{\TC\TC\TC\TC}%

\TC\TC}}

pst-bezier: Bézier curves

1 2 3 4

0

1

2 bb

bbb

bbb

bb

bb

bbbb

bb

bb

~l2

\usepackage{pst-bezier}

\pspicture[showgrid=true](5,3)\psset{showpoints=true}

\psbcurve[linecolor=blue,linewidth=0.01](1,1)%

(2,2)(3,1)(4,2)

\psbcurve(1,1)(2,2)l(2,1)(3,1)(4,2)

\uput[-90](2,1){\vec{l}_{2}}

\endpspicture

pst-text: Character and text manipulation

π
π

π
π
π

π
π
π
π
π

π
π
π
π
π
π

π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π
π
π

π
π
π
π
π
π
π
π

π
π
π
π
π
π
π

π
π
π
π
π
π

π
π
π

π
π

\usepackage{pst-text}

\usepackage[tiling]{pst-fill}

\DeclareFixedFont{\ps}{U}{psy}{m}{n}{8cm}

\psboxfill{\footnotesizeπ}

\begin{pspicture}(0,0)(.25\linewidth,8)

\pscharpath[fillstyle=solid,

fillcolor=cyan!20,

addfillstyle=boxfill,fillangle=30,

fillsep=0.6mm]{%

\rput[b](-0.5,0){\ps\char112}}

\end{pspicture}

pst-fill: Filling and tiling

\usepackage[tiling]{pst-fill}

\newcommand\FArcW{%

\begin{pspicture}(-0.25,-0.25)(0.25,0.25)%

\pswedge*(-0.25,-0.25){0.25}{0}{90}

\pswedge*(0.25,0.25){0.25}{180}{270}

\psframe[linewidth=0.1pt]%

(-0.25,-0.25)(0.25,0.25)

\end{pspicture}}

\begin{pspicture}(3.1,3.1)

\psboxfill{\FArcLW}

\psframe[fillstyle=boxfill,fillcyclex=2,

fillangle=45](3,3)

\end{pspicture}

Herbert Voß

42 TUGboat, Volume 31 (2010), No. 1

pst-ob3d: Simple three dimensional objects

b

b

b

b
b

b

b
b
b

b

\usepackage{pst-ob3d}\SpecialCoor

\begin{pspicture}(-1,-0.5)(3,1.7)

\psset{fillstyle=solid,fillcolor=yellow,RandomFaces=true}

\PstDie[viewpoint=1 -3 1]

\rput(1.5,0){\PstCube[Corners=true,CornersColor=blue,

fillstyle=solid,fillcolor=cyan,viewpoint=1 2 1]

{1}{1}{1}}

\end{pspicture}

pst-gr3d: Simple three dimensional grids

000

001

002

010

011

012

020

021

022

030

031

032

100

101

102

110

111

112

120

121

122

130

131

132

200

201

202

210

211

212

220

221

222

230

231

232

\usepackage{pst-gr3d,pst-node,multido}\SpecialCoor

\psscalebox{0.5}{\footnotesize

\PstGridThreeD[GridThreeDNodes,unit=2.5](2,3,2)

\multido{\ix=0+1}{3}{%

\multido{\iy=0+1}{4}{%

\multido{\iz=0+1}{3}{%

\rput*(Gr3dNode\ix\iy\iz){$\ix\iy\iz$}}}}

\psset{linecolor=blue,linestyle=dashed,

linewidth=0.3pt,arrowscale=2,nodesep=8pt}

\pcline{->}(Gr3dNode000)(Gr3dNode202)

\pccurve{->}(Gr3dNode000)(Gr3dNode232)}

pst-fr3d: Three dimensional buttons

Off On \usepackage{pst-fr3d}

\PstFrameBoxThreeD

[FrameBoxThreeDOn=false]

{\Large Off}

\quad

\PstFrameBoxThreeD{\Large On}% default

pst-3dplot: Three dimensional graphic
objects in parallel projection

x y

z

~Ω1

~Ω2

γ12

\usepackage{pst-3dplot}

\def\oA{\pstThreeDLine[linecolor=blue,linewidth=3pt,

arrows=c->](0,0,0)(1,60,70)}

\def\oB{\pstThreeDLine[linecolor=red,linewidth=3pt,

arrows=c->](0,0,0)(1,10,50)}

\def\oAB{\pstThreeDEllipse[beginAngle=58,

endAngle=90](0,0,0)(1,140,40)(1,10,50)}

\begin{pspicture}(-4.8,-1.75)(4.8,3.75)

\psset{unit=4cm,drawCoor,beginAngle=90,endAngle=180,

linestyle=dotted}

\pstThreeDCoor[drawing,linewidth=1pt,linecolor=black,

linestyle=solid,xMin=0,xMax=1.1,yMin=0,yMax=1.1,

zMin=0,zMax=1.1]

\pstThreeDEllipse(0,0,0)(-1,0,0)(0,1,0)

\pstThreeDEllipse(0,0,0)(-1,0,0)(0,0,1)

\pstThreeDEllipse[beginAngle=0,

endAngle=90](0,0,0)(0,0,1)(0,1,0)

\psset{SphericalCoor,linestyle=solid}

\pstThreeDDot[dotstyle=none](1,10,50)

\pstThreeDDot[dotstyle=none](1,60,70)

\pscustom[fillstyle=solid,fillcolor=black!20,

linestyle=none]{\oB\oAB\oA} \oA\oB\oAB

\pstThreeDPut[origin=lb](1.1,60,70){$\vec\Omega_1$}

\pstThreeDPut[origin=rb](1.2,10,50){$\vec\Omega_2$}

\pstThreeDPut[origin=lb](1,10,65){γ_{12}}

\end{pspicture}

pst-solides3d: Three dimensional graphic
objects in central projection

\usepackage{pst-solides3d}

\psset{viewpoint=100 50 20 rtp2xyz,

Decran=60,lightsrc=10 15 10}

\defFunction[algebraic]{corne}(u,v)%

{(2 + u*cos(v))*sin(2*pi*u)}%

{(2 + u*cos(v))*cos(2*pi*u)+2*u}%

{u *sin(v)}

\begin{pspicture}(-2,-2)(2,2)

\psSolid[object=surfaceparametree,

base=0 1 0 2 pi mul,

function=corne,ngrid=20]

\end{pspicture}

Herbert Voß

TUGboat, Volume 31 (2010), No. 1 43

pst-circ: Electronic and microelectronic
electrical circuits

−

+

iM

iP
iA

\usepackage{pst-circ}

\begin{pspicture}(4,3.5)

\pnode(0,3){A}\pnode(0,0){B}

\pnode(4,1.5){C}

\OA[OAperfect=false,OAiplus,

OAiminus,OAiout,

OAipluslabel=i_P,

OAiminuslabel=i_M,

OAioutlabel=i_A,

intensitycolor=red,

intensitylabelcolor=red](A)(B)(C)

\end{pspicture}

pst-geo: Two and three dimensional
geographical objects

Sumatra

Kamchatka

\usepackage{pst-map3d}

\psset{unit=0.75,Radius=5,Dobs=200,Decran=200,

path=data/pstricks,PHI=10,THETA=120,circlewidth=1.5pt}

\begin{pspicture}(-5,-5)(5,5)

\WorldMapThreeD[circles=false,australia=true]

\psmeridien{95.98} \psparallel{3.30}

\psepicenter[circlecolor=red!70,waves=4,

Rmax=2000](95.98,3.30){Sumatra}

\psmeridien[meridiencolor=red!70]{160}

\psparallel[parallelcolor=red!70]{52.76}

\psepicenter[circlecolor=blue!50](160,52.76){Kamchatka}

\end{pspicture}

pst-barcode: Barcodes

\usepackage{pst-barcode}

\begin{pspicture}(1in,1in)

\psbarcode{%

Herbert Voss Wasgenstraße 21 14129 Berlin

http://www.dante.de/}%

{rows=52 columns=52}{datamatrix}

\end{pspicture}

pst-bar: Bar diagrams

0

2

1
3
0
0
–

1
3
4
9
1
3
5
0
–

1
3
9
9
1
4
0
0
–

1
4
4
9
1
4
5
0
–

1
4
9
9

\usepackage{pst-plot,pst-bar}

\begin{filecontents*}{data1T.csv}

1300--1349, 1350--1399, 1400--1449, 1450--1499

1, 0.5, 2, 0.5

1, 2, 1.5, 1

\end{filecontents*}

\readpsbardata{\data}{data1T.csv}

\begin{pspicture}(-0.5,-2)(4,2)\footnotesize

\psline[linestyle=dashed](0,1)(4,1)

\psaxes[axesstyle=frame,Dy=2,labels=y](0,0)(4,2)

\psbarchart[barstyle={red,blue},barlabelrot=45,

chartstyle=cluster]{\data}

\end{pspicture}

pst-math: Extended PostScript functions

0

1

2

3

4

0 1 2 3 4 5

\usepackage{pst-plot,pst-math}

\begin{pspicture*}(-0.75,-.75)(6,5)

\psaxes{->}(6,5)

\psset{linewidth=1.5pt,

plotpoints=200}

\psplot{.1}{6}{x GAMMA}

\psplot{.1}{6}{x GAMMALN}

\end{pspicture*}

pst-func: Special mathematical functions:
polynomials, distributions, implicit, etc.

1

−1

−2

1 2 3−1−23

x

y

\usepackage{pst-func,pstricks-add}

\begin{pspicture*}(-3,-2.2)(3.6,2.5)

\psaxes{->}(0,0)(-3,-2)(3.2,2)[x,0][y,90]

\psplotImp[linewidth=2pt,algebraic](-5,-2.2)(5,2.4){%

(x^2+y^2)^2-8*(x^2-y^2)}

\rput*(2,1.5){$\left(x^2+y^2\right)^2-8(x^2-y^2)=0$}

\psplotImp[linewidth=1pt,linecolor=red,

algebraic](-5,-2.2)(5,2.4){(x^2+y^2)^2-4*(x^2-y^2)}

\end{pspicture*}

The current state of the PSTricks project

44 TUGboat, Volume 31 (2010), No. 1

pst-eucl: Euclidean geometry

bB

b
C

b

A

b D

b A′

/
/

b B′

\usepackage{pst-eucl}

\psset{unit=0.4}%

\begin{pspicture}(0,-2)(8,7)

\pstTriangle(1,3){B}(5,5){C}

(4,1){A}

\pstOrtSym{A}{B}{C}[D]

\psset{CodeFig=true}

\pstOrtSym[CodeFigColor=red]

{C}{B}{A}

\pstOrtSym[SegmentSymbol=pstslash,

dotsep=3mm,linestyle=dotted,

CodeFigColor=blue]{C}{A}{B}

\pspolygon[linestyle=dotted,

linewidth=1pt](A’)(B’)(D)

\end{pspicture}

pst-labo: Chemical objects

PH

◦C

\usepackage{pst-labo}

\psset{unit=0.5cm,

glassType=becher,

burette=false}

\pstDosage[phmetre]

pst-uml: UML diagrams

Class1

Eins

Zwei

Class2

Eins

Zwei

S

H

N

\usepackage{pst-uml}

\begin{pspicture}(5,4)

\rput(1,1.5){\rnode{A}{%

\umlClass{Class1}{Eins\\Zwei}}}

\rput(4,3){\rnode{B}{%

\umlClass{Class2}{Eins\\Zwei}}}

\end{pspicture}

\psset{linewidth=1pt}%

\ncNE[linestyle=dotted]{A}{B}

\ncEVE[linestyle=dashed]{A}{B}

\ncSHN{A}{B}\nbput[npos=0.5]

{\textbf{S}}

\nbput[npos=1.5]{\textbf{H}}

\nbput[npos=2.5]{\textbf{N}}

pst-asr: Autosegmental representations
for linguistics

[+cons]

Coronal

Place

[+cons]

Coronal

Place

[+cons]

Coronal

Place
Soft Palate

[+nas]

[-ant] [α ant] [-ant]

[-dist] [β dist] [+dist]

\usepackage{pst-asr}

\newpsstyle{dotted}{linestyle=dotted,

linewidth=1.2pt,dotsep=1.6pt}

\newpsstyle{crossing}{xed=true,

xedtype=\xedcirc,style=dotted}

\newpsstyle{dotted}{linestyle=dotted,

linewidth=1.2pt,dotsep=1.6pt}

\newpsstyle{crossing}{xed=true,xedtype=\xedcirc,

style=dotted}

\newtier{softpal,ant,dist,nasal} \tiershortcuts

\psset{xgap=1.5in,yunit=3em,ts=0 (Pg),sy=1 ([),

ph=-1 (Cg),softpal=.3 (Sg),nasal=-.4 ([),ant=-2 ([),

dist=-3 ([),tssym=Place,sysym=\textrm{[+cons]},

everyph=Coronal}

\DefList{\softpalA{2.5},\antoffset{-.22},

\distoffset{.36}} \quad \asr \1{}\1{}\1{}|

\@(\softpalA,softpal){Soft Palate} \-(2,sy)

\@(\softpalA,nasal){\textrm{[+nas]}}

\-(\softpalA,softpal) % ant features

\@(\antoffset,ant){\textrm{[-ant]}} \-(0,ph)

\-[style=crossing](2,ph)

\@[1](\antoffset,ant){\textrm{[α ant]}} \-(1,ph)

\@[2](\antoffset,ant){\textrm{[-ant]}} \-(2,ph)

\@(\distoffset,dist){\textrm{[-dist]}} \-(0,ph)

\-[style=crossing](2,ph)

\@[1](\distoffset,dist){\textrm{[β dist]}} \-(1,ph)

\@[2](\distoffset,dist){\textrm{[+dist]}} \-(2,ph)

|\endasr

pst-jtree: Linguistic trees
IP

sono stati FP

F[+strong] VoicePass

VoicePass AgrOP

DP AgrO
′

AgrO VP

ti tm

arrestatii

alcuni uominim

\usepackage{pst-jtree}

\jtree[xunit=5em,yunit=2em]

\! = {IP}

<tri>{\triline{sono stati\hfil}}

^<tri>[triratio=.95]{FP}

:{F$_{\rlap{$\scriptstyle\rm

[+strong]$}}$}!a {Voice$_{%

\rlap{$\scriptstyle\rm Pass$}}$}

:{Voice\rlap{$_{\rm Pass}$}}@A2 {$\rm Agr_OP$}

:{DP}!b {${\rm Agr_O}’$}

:[scaleby=.8 1]{$\rm Agr_O$}@A3 [scaleby=.8 1]{VP}

<tri>[scaleby=.4 .7]{\rnode{A5}{t_i}

\hskip1ex \rnode{A6}{t_m}}.

\!a = <shortvert>{arrestati$_i$}@A1 .

\!b = <shortvert>{alcuni uomini$_m$}@A4 .

\psset{arrows=->}

\nccurve[angleA=225,angleB=-45]{A2}{A1}

\nccurve[angleA=200,angleB=-90,ncurv=1.5]{A3}{A2}

\nccurve[angleA=-130,angleB=-70]{A5}{A3}

\nccurve[angleA=-130,angleB=-70,

linestyle=dashed]{A6}{A4}

\endjtree

Herbert Voß

TUGboat, Volume 31 (2010), No. 1 45

pst-qtree: A qtree-like interface
for drawing trees

S

NP

D

the

N

cat

VP

V

sat

PP

P

on

NP

D

the

N

mat

\usepackage{pst-qtree}

\begin{Example}[ltxps]{\xLcs[pst-qtree]{Tree}}

\Tree

[.S [.NP [.D the] [.N cat]

] [.VP [.V sat] [.PP [.P on]

[.NP [.D the] [.N mat]]]]]

infix-RPN: Converting an algebraic
expression (infix) to a PostScript
expression (postfix)

0.0 0.25
1.0

2.25

4.0

6.25

9.0

12.25

16.0

20.25

0

5

10

15

20

0 1 2 3 4

\usepackage{infix-RPN,pst-func,

multido}

\SpecialCoor

\psset{yunit=0.25}

\begin{pspicture}(-0.25,-2)(5,22.5)

\infixtoRPN{x*x}

\multido{\rx=0.0+0.5}{10}{%

\rput(!/x \rx\space def

\RPN\space x exch){%

\psPrintValue{\RPN}}}

\psaxes[dy=5,Dy=5]{->}(5,22.5)

\end{pspicture}

pst-fractal: Fractals

b

\usepackage{pst-fractal}

\begin{pspicture}(-3,0)(3,4)

\psPTree\psdot*(0,0)

\end{pspicture}

pst-poly: Polygons

\usepackage{pst-poly}

\PstPolygon[PolyNbSides=21,

PolyOffset=2,

PolyIntermediatePoint=-0.9]

pst-coxeterp: Regular polytopes

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bcbcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bcbcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bcbcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bcbcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bcbcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc

bcbc

bc

bc

bc bc

bc
bcbc

bc

bc

bc bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bcbcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc
bcbc

bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bcbcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc
bcbc

bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bcbcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc
bcbc

bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bcbcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc
bcbc

bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bcbcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc
bcbc

bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc

bcbc
bc

bc

bc
bc

bc bcbc
bc

bc

bc
bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bcbcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bcbcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bcbcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bcbcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bcbcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc bcbcbc

bc

bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bcbcbcbc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bcbcbcbc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bcbcbcbc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bcbcbcbc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bcbcbcbc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bcbc
bc

bc
bc

bc

bc bcbc
bc

bc
bc

bc

bc

qpqp
qp
qp qp

qpqp
qp
qp qpqp
qp

qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qpqp
qp

qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qpqp
qp

qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qpqp
qp

qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qpqp
qp

qp
qp qp

qpqp
qp
qp qp

qpqp
qp
qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp
qp

qp
qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp
qp

qp
qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp
qp

qp
qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp
qp

qp
qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp
qp

qp
qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qp

qp
qp

qp

qp qpqp
qp

qp

qp qp qp
qp

qp

qp qp

qp
qp

qp

qp qp

\usepackage{pst-coxeterp}

\begin{pspicture}(-2,-2)(2,2)

\psset{unit=0.4cm,

colorCenters=blue,

styleCenters=pentagon,

sizeCenters=0.2}

\gammapn[P=5,dimension=4]

\end{pspicture}

pst-lens: Lens magnification

All the best

Jana,

for this new

year

2010!

l the b

Jana,

r this n

\usepackage{pst-lens}

\def\Wishes{{%

\rput[lb](0,0){%

\Large\begin{minipage}{3cm}

\centering

\textbf{All the best}\\

\textbf{Jana},\\

for the new year\\\Huge 2010!

\end{minipage}}}}

\begin{pspicture}(0,-1.5)(3,4)

\Wishes\PstLens[LensMagnification=2]%

(1.5,2.5){\Wishes}

\end{pspicture}

pst-optic: Two dimensional optical
arrangement

\usepackage{pst-optic}

\psset{unit=0.5}

\begin{pspicture}(-1.5,-5.5)(10,5.5)

\rput(0,0){\beamLight[drawing=false,mirrorDepth=4.75,

mirrorWidth=0.1,mirrorHeight=10,linecolor=lightgray]}

\makeatletter \pst@getcoor{Focus}\pst@tempf

\psset{linecolor=red}

\multido{\n=60+5}{18}{\mirrorCVGRay[linecolor=red,

mirrorDepth=4.75,mirrorHeight=10](Focus)(!

/XF \pst@tempf pop \pst@number\psxunit div def

\n\space cos XF add \n\space sin neg){Endd1}

\psOutLine[arrows=->,length=.25](Endd1)(Endd1’’){Endd2}

\mirrorCVGRay[linecolor=red,mirrorDepth=4.75,

mirrorHeight=10](Focus)(!

/XF \pst@tempf pop \pst@number\psxunit div def

\n\space cos XF add \n\space sin){End1}

\psOutLine[arrows=->,length=.25](End1)(End1’’){End2}}

\makeatother

\end{pspicture}

The current state of the PSTricks project

TUGboat, Volume 31 (2010), No. 1 47

pst-pad: Attachment models

\usepackage{pst-pad}

\begin{pspicture}(4,4)

\PstPad(2,2)

\end{pspicture}

pst-dbicons: Entity-Relationship diagrams

tbl_pbl

tbl_inst

tbl_dsc

tbl_lvl

tbl_indx

pbl_jrn

pbl_oth

pbl_authpbl_yr

pbl_id

inst_prm

inst_id

dsc_id

dsc_name

dsc_val
dsc_unit

dsc_oth

lvl_id

lvl_name

indx_id

indx_name

indx_rel

1:m

m:1

m:1

1:m

1:m

\usepackage{pst-dbicons}

\seticonparams{entity}{shadow=true,fillcolor=black!30,

fillstyle=solid}

\seticonparams{attribute}{fillcolor=black!10,

fillstyle=solid}

\seticonparams{relationship}{shadow=true,

fillcolor=black!20,fillstyle=solid}

\begin{tabular}{cc}

\begin{tabular}{c}

\entity{tblpbl}[tbl_pbl]\\[2cm]

\entity{tblinst}[tbl_inst]\\[2cm]

\entity{tbldsc}[tbl_dsc] \\[2cm]

\end{tabular}\hspace{6em}

\begin{tabular}{c}~\\[2cm]

\entity{tbllvl}[tbl_lvl]\\[2cm]

\entity{tblindx}[tbl_indx]\\[2cm]

\end{tabular}

\attributeof{tblpbl}[3em]{0}{pbljrn}[pbl_jrn]

\attributeof{tblpbl}[3em]{90}{pbloth}[pbl_oth]

\attributeof{tblpbl}[3em]{30}{pblauth}[pbl_auth]

\attributeof{tblpbl}[3em]{150}{pblyr}[pbl_yr]

\attributeof{tblpbl}[3em]{180}[key]{pblid}[pbl_id]

\attributeof{tblinst}[3em]{150}[key]{instprm}[inst_prm]

\attributeof{tblinst}[3em]{180}[key]{instid}[inst_id]

\attributeof{tbldsc}[3em]{180}[key]{dscid}[dsc_id]

\attributeof{tbldsc}[3em]{150}{dscname}[dsc_name]

\attributeof{tbldsc}[3em]{220}{dscval}[dsc_val]

\attributeof{tbldsc}[3em]{270}{dscunit}[dsc_unit]

\attributeof{tbldsc}[3em]{320}{dscoth}[dsc_oth]

\attributeof{tbllvl}[3em]{0}[key]{lvlid}[lvl_id]

\attributeof{tbllvl}[3em]{90}{lvlname}[lvl_name]

\attributeof{tblindx}[3em]{0}[key]{indxid}[indx_id]

\attributeof{tblindx}[3em]{30}{indxname}[indx_name]

\attributeof{tblindx}[3em]{270}{indxrel}[indx_rel]

\relationshipbetween{tblpbl}{tblinst}{1:m}%relationships

\relationshipbetween{tblinst}{tbldsc}{m:1}

\relationshipbetween{tblinst}{tbllvl}{m:1}

\relationshipbetween{tbldsc}{tblindx}{1:m}

\relationshipbetween{tbllvl}{tblindx}{1:m}

\end{tabular}

pst-vaucanson-g: Drawing automata
and graphs

p r
a

b

b

a

d

\usepackage{vaucanson-g}

\begin{VCPicture}{(0,-2)(5.5,2)}

\State[p]{(0,0)}{A} \State{(2.5,0)}{B}

\State[r]{(5.5,0)}{C}\Initial{A} \Final{C}

\EdgeL{A}{B}{a} \ArcL{B}{C}{b}

\ArcL{C}{B}{b} \LoopN{A}{a} \LoopS{C}{d}

\end{VCPicture}

pst-pdgr: Medical pedigrees

A:1 A:2

B:1 B:2 B:3 B:4 B:5

C:1 C:2 C:3

4/52

C:4 C:5

?

\usepackage{pst-pdgr}

\begin{pspicture}(6,6) \psset{belowtextrp=t,armB=1}

\rput(2.5,5.5){\pstPerson[male,deceased,

belowtext=A:1]{A:1}}

\rput(3.5,5.5){\pstPerson[female,deceased,

belowtext=A:2]{A:2}}

\pstRelationship[descentnode=A:1_2]{A:1}{A:2}

\rput(1,3.5){\pstPerson[female,affected,

belowtext=B:1]{B:1}}

\pstDescent{A:1_2}{B:1}

\rput(2,3.5){\pstPerson[male,belowtext=B:2]{B:2}}

\pstRelationship[descentnode=B:1_2]{B:1}{B:2}

\rput(3.5,3.5){\pstPerson[male,affected,

belowtext=B:3]{B:3}}

\pstDescent{A:1_2}{B:3}

\rput(4.5,3.5){\pstPerson[female,belowtext=B:4]{B:4}}

\pstRelationship[descentnode=B:3_4]{B:3}{B:4}

\rput(5.5,3.5){\pstPerson[female,affected,deceased,

proband,belowtext=B:5]{B:5}}

\pstDescent{A:1_2}{B:5}

\rput(0.5,1.5){\pstPerson[female,belowtext=C:1]{C:1}}

The current state of the PSTricks project

48 TUGboat, Volume 31 (2010), No. 1

\pstDescent{B:1_2}{C:1}

\rput(1.5,1.5){\pstPerson[female,belowtext=C:2]{C:2}}

\pstDescent{B:1_2}{C:2}

\rput(2.5,1.5){\pstPerson[female,deceased,

belowtext={\tabular{c}C:3\\4/52\endtabular}]{C:3}}

\pstDescent{B:1_2}{C:3}

\rput(3.5,1.5){\pstPerson[female,affected,

belowtext=C:4]{C:4}}

\pstDescent{B:3_4}{C:4}

\rput(4.5,1.5){\pstPerson[male,insidetext=?,

belowtext=C:5]{C:5}}

\pstDescent{B:3_4}{C:5}

\end{pspicture}

pst-light3d: Three dimensional light effects

\usepackage{pst-light3d}

\DeclareFixedFont{\RM}{T1}{ptm}{m}{n}

{2cm}

\psset{linestyle=none,fillstyle=solid,

fillcolor={[rgb]{1,0.84,0}}}

\PstLightThreeDText

[LightThreeDXLength=0.5]%

{\RM\TeX}

pst-gantt: Gantt charts

Year 1 Year 2 Year 3 Year 4

Task 1

Task 2

Task 3

Task 4

\usepackage{pst-gantt}

\begin{PstGanttChart}[yunit=1.5,

ChartUnitIntervalName=Year,

ChartUnitBasicIntervalName=Month,

TaskUnitIntervalValue=12,TaskUnitType=Year,

ChartShowIntervals]{4}{4}

\PstGanttTask[TaskInsideLabel={Task 1}]{0}{1}

\PstGanttTask[TaskInsideLabel={Task 2},

TaskUnitType=Month]{6}{24}% 24 mon start at 6

\PstGanttTask[TaskInsideLabel={Task 3}]{2}{2}

\PstGanttTask[TaskInsideLabel={Task 4}]{3}{1}

\end{PstGanttChart}

pst-thick: Very thick lines and curves

\usepackage{pst-thick}

\newpsstyle{thicklinejaune}{fillstyle=solid,

fillcolor=yellow!50!cyan!50,linecolor=yellow,

plotpoints=360}

\newpsstyle{thicklinevert}{fillstyle=solid,

fillcolor=green!50,linecolor=green,plotpoints=360}

\newpsstyle{onlycurvejaune}{linecolor=yellow,

plotpoints=360}

\def\SinusPhase#1#2#3{%

/P #1 def /A #2 def /F #3 DegtoRad def

/O 360 P div def /x0 t def

/y0 t F add O mul sin A mul def % A*sin(O*t)

/dx dt def /dy t F add dt add O mul sin

t F add O mul sin sub A mul def }

\psset{unit=0.5}

\begin{pspicture}(0,-4)(30,4)

\def\motif{\psclip{\psframe[linestyle=none,

dimen=inner](0,-3)(10,3)}

\psthick[stylethick=thicklineblue]{-1}{11}%

{\SinusPhase{10}{2}{90}}

\psthick[stylethick=thicklinejaune,E=0.5]{-1}{11}%

{\SinusPhase{10}{1.25}{-100}}

\psthick{-1}{11}{\SinusPhase{10}{2}{0}}

\psclip{\psthick[stylethick=vide,E=1.1]%

{-1}{11}{\SinusPhase{10}{2}{0}}}

\psthick[stylethick=thicklineblue]{0}{3}%

{\SinusPhase{10}{2}{90}}

\endpsclip

\psclip{\psthick[stylethick=vide,E=1.1]{0}{11}%

{\SinusPhase{10}{2}{90}}}

\psthick{5}{9}{\SinusPhase{10}{2}{0}}

\endpsclip

\psclip{\psthick[stylethick=vide,E=0.6]{0}{11}%

{\SinusPhase{10}{1.25}{-100}}}

\psthick[stylethick=thicklineblue]{7}{9}%

{\SinusPhase{10}{2}{90}}

\endpsclip

\psclip{\psthick[stylethick=vide,E=1.1]{0}{10}%

{\SinusPhase{10}{2}{0}}}

\psthick[stylethick=thicklinejaune,E=0.5]{7}{11}%

{\SinusPhase{10}{1.25}{-100}}

\endpsclip

\psclip{\psthick[stylethick=vide,E=1.1]{0}{11}%

{\SinusPhase{10}{2}{0}}}

\psthick[stylethick=thicklinejaune,E=0.5]{-0.5}{1}%

{\SinusPhase{10}{1.25}{-100}}

\endpsclip

\endpsclip}%

\motif\rput(10,0){\motif}\rput(20,0){\motif}

\psline[linewidth=0.1](0,3)(30,3)

\psline[linewidth=0.1](0,-3)(30,-3)

\end{pspicture}

Herbert Voß

TUGboat, Volume 31 (2010), No. 1 49

pst-mirror: Projections on a spherical mirror

\usepackage{pst-mirror,pst-grad}

\psscalebox{0.7}{\begin{pspicture}(-7,-7)(7,7)

\newpsstyle{GradWhiteYellow}{fillstyle=gradient,

gradbegin=yellow,gradend=yellow!20,linecolor=yellow!50,

GradientCircle=true,gradmidpoint=0,GradientPos={(1,1)}}

\pscircle[style=GradWhiteYellow]{7.07}

\pstSphereGrid[linecolor=red,grille=10,Ymin=-50,

Ymax=50,Xmax=80,Xmin=-80,normale=0 0](20,0,0)

\pstSphereGrid[linecolor=blue,grille=10,Ymin=-40,

Ymax=-20,Xmax=80,Xmin=-80,normale=0 90](40,0,-10)

\pstTextSphere[fillstyle=solid,fillcolor=red,

normale=0 0,fontscale=40,PSfont=Time-Roman,yO=0]

(20,0,10){pst-mirror}

\pstTextSphere[fillstyle=solid,fillcolor=black,

normale=0 0,fontscale=20,PSfont=Helvetica,yO=0]

(20,0,35){PSTricks}

\pstTextSphere[fillstyle=solid,fillcolor=blue,

normale=0 90,fontscale=10,PSfont=Helvetica,yO=2.5]

(10,0,-10){A Spherical Mirror}

\end{pspicture}}

pst-sigsys: Signal processing

xc(t)

s(t) Conversion

from

impulse

train to

discrete-

time

sequence

x[n]
xs(t)

C/D Converter

\usepackage{pstricks} \usepackage[pstadd]{pst-sigsys}

\begin{pspicture}(-2,-2)(5.5,2)

\rput(-1.75,0){\rnode{xc}{$x_c(t)$}}

\pscircleop[operation=times](0,0){otimes}

\rput(0,1.25){\rnode{s}{$s(t)$}}

\psblock[fillstyle=solid,fillcolor=purple!20]%

(2.75,0){conv}{\parbox[c]{2\psunit}%

{\centering Conversion from impulse

train to discrete-time sequence}}

\rput(5.5,0){\rnode{x}{$x[n]$}}

\psset{style=Arrow}

\ncline[nodesepA=.15]{xc}{otimes}

\ncline[nodesepA=.15]{s}{otimes}

\ncline{otimes}{conv}\naput{$x_s(t)$}

\ncline[nodesepB=.15]{conv}{x}

\psframe[linecolor=purple,linestyle=dashed,

style=Dash](-.75,-1.5)(4.5,1.5)

\rput(1.875,1.75){C/D Converter}

\end{pspicture}

pst-platon: Platonic solids

A

B
C

A

C

E

F

I

K

\usepackage{pst-platon}

\psTetrahedron\qquad

\psDodecahedron

pst-calendar: Two or three dimensional
calendars

November

M
T

W
T

F
S

S

11
2

3
4

5
6

7

8
9

10
1111

12
13

14

15
16

17
18

19
20

21

22
23

24
25

26
27

28

29
30

2010

Jun
e

M
T

W
T

F
S

S

1

2

3

4

5

6

7

8

9
10

11
12

13

14
15

16
17

18
19

20

21
22

23
24

25
26

27

28
29

30

20
10

July
M

T
W

T
F

S
S

1
2

3
4

5
6

7
8

9
10

11

12
13

14
15

16
17

18

19
20

21
22

23
24

25

26
27

28
29

30
31

2010

January
M

T
W

T
F

S
S

11
2

3

4
5

6
7

8
9

10

11
12

13
14

15
16

17

18
19

20
21

22
23

24

25
26

27
28

29
30

31
2010

May

M T W T F S S

11 2

3 4 5 6 7 88 9

10 11 12 1313 14 15 16

17 18 19 20 21 22 2323

24 25 26 27 28 29 30

31

2010

April

M
T

W
T

F
S

S

1

2

3

44

5

6

7

8

9
10

11

12
13

14
15

16
17

18

19
20

21
22

23
24

25

26
27

28
29

30

2010

\usepackage{pst-calendar}

\begin{Example}[ltxps]{}

\psscalebox{0.13}{ %

\psCalDodecaeder[Jahr=2010,

style=march]}

pst-knot: Knot lines

\usepackage{pst-knot}

\begin{pspicture}(-2,-2)(2,2)

\psKnot[linewidth=3pt,

linecolor=blue](0,0){7-7}

\end{pspicture}

pst-fun: Funny objects

\usepackage{pst-fun}

\begin{pspicture}(0,-1.3)(10,3)

\psBird[Branch]

\rput{-20}(4,1.8){\psBird}

\end{pspicture}

psgo: The game of Go

D E F G H J

1

2

3

4

5

6 \usepackage{psgo}

\psscalebox{0.7}{%

\begin{psgopartialboard}[9]{(4,1)(9,6)}

\stone{white}{c}{3} \stone{white}{e}{3}

\stone{white}{d}{2} \stone{white}{d}{4}

\stone{black}{f}{3} \stone{black}{e}{2}

\stone{black}{e}{4}

\end{psgopartialboard}}

The current state of the PSTricks project

50 TUGboat, Volume 31 (2010), No. 1

Plotting experimental data using pgfplots

Joseph Wright

Abstract

Creating plots in TEX is made easy by the pgfplots

package, but getting the best presentation of ex-
perimental results still requires some thought. In
this article, the basics of pgfplots are reviewed before
looking at how to adjust the standard settings to give
both good looking and scientifically precise plots.

1 Introduction

Presenting experimental data clearly and consist-
ently is a crucial part of publishing scientific results.
A key part of this is the careful preparation of plots,
graphs and so forth. Good quality plots often make
results clearer and more accessible than large tables
of numbers. A number of tools specialise in produ-
cing plots for scientific users, both commercial (such
as Origin and SigmaPlot) and open source (for
example QtiPlot and SciDAVis). The output of
these programs is impressive, but TEX users may
find that it lacks the ‘polish’ that TEX can provide.

There are a few approaches to producing plots
directly within a TEX document, but perhaps the easi-
est method to use the pgfplots package (Feuersänger,
2010). This is an extension of the very popular pgf

graphics system (Tantau, 2008), which as many read-
ers will know works equally well with the traditional
DVI-based work flow and the increasingly popular
direct production of PDF output. pgfplots also works
with plain TEX, LATEX and ConTEXt, meaning that
it is an accessible route for almost all TEX users.

As with any tool, getting the best results with
pgfplots does require a bit of understanding. In this
article, I’m going to look at getting good results for
plots of experimental data. This includes things like
worrying about units and how to get the graphics
out of TEX for publishers who require it.

In the examples, I am going to use real experi-
mental data from the research group I work in,1 and
explain how I’ve presented this for publication. The
aim is to show pgfplots in use ‘in the wild’, rather
than the usual approach of somewhat contrived sets
of data. The examples do not aim to be a com-
plete survey of the power of pgfplots: its manual is
excellent and covers all of the options in detail.

2 The basics

There are some basics that need to be in place before
plots can be created. First, the code for pgfplots

1 My supervisor is Professor Christopher Pickett:

http://www.uea.ac.uk/che/pickettc

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 1: An empty set of axes

needs to be loaded. This is designed to work equally
well with TEX, LATEX and ConTEXt, and of course
the loading mechanism depends on the format:

\input pgfplots.tex % Plain TeX

\usepackage{pgfplots} % LaTeX

\usemodule[pgfplots] % ConTeXt

Plots are created inside an ‘axis’ environment,
which itself needs to be inside the pgf environment
‘tikzpicture’. The differences between the three
formats again mean that there are again some vari-
ations. So, for plain TEX:

\tikzpicture

\axis

% Plot code

\endaxis

\endtikzpicture

while for LATEX:

\begin{tikzpicture}

\begin{axis}

% Plot code

\end{axis}

\end{tikzpicture}

and for ConTEXt:

\starttikzpicture

\startaxis

% Plot code

\stopaxis

\stoptikzpicture

In the examples in this article I’ll leave out the wrap-
per and concentrate just on the plot code, which is
the same for all three formats.

If the wrapper is given with no content at all
then pgfplots will fill in some standard values. This
gives an empty plot (Figure 1). To actually have
something appear, data has to be added to the axes.
This is done using one or more \addplot instructions,
which have a flexible syntax which can be applied to
a wide range of cases.

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 51

Table 1: Rates of a chemical reaction [Data taken
from Jablonskytė, Wright, and C. J. Pickett (2010)].

Concentration Rate
/ mmol dm−3 / s−1

338.1 266.45
169.1 143.43
84.5 64.80
42.3 34.19
21.1 9.47

Before starting to produce some real plots, there
is one minor thing to set up. The most recent version
of pgfplots (1.3) makes a number of improvements
to the standard settings for the package, but only if
told to. For new plots, it makes sense to use these
improved abilities using

\pgfplotsset{compat = newest}

in the source. In this article, I’ve included this line
in the preamble for the source (which is in LATEX).

3 Small data sets

Small sets of data, for example values calculated by
hand, can be plotted by including the data directly
in the TEX source. As an example set of data, I am
going to use the rate of a chemical reaction, recently
reported by the research group I work in (Table 1).
As shown, the rate of a chemical reaction depends on
the concentration of one of the ‘ingredients’, which
as a table is suggestive but not really immediately
accessible.

This can be plotted rapidly using the \addplot

macro along with the coordinates keyword, with
the input reading

\addplot coordinates {

(338.1, 266.45)

(169.1, 143.43)

(84.5, 64.80)

(42.3, 34.19)

(21.1, 9.47)

};

(placed inside the axis environment, as explained
above). This shows a number of features of the
pgfplots input syntax. First, after the primary macro
(\addplot) a keyword is used to direct the behaviour
of the code. Second, there is no need to worry about
white space, which makes it easier to read the in-
put. Third, as with other pgf commands, the entire
\addplot input is terminated by a semi-colon. This
will allow multiple plots to use the same axes, as will
be demonstrated later.

Using the input above also reveals why it is
necessary to think about plots, even with a powerful

0 100 200 300

0

100

200

Figure 2: A raw plot based on the data in Table 1.

system like pgfplots. Using the simple input I’ve
given results in Figure 2. There are a number of
issues with this initial plot. Most obviously, the
data points should not be plotted in a ‘join the dots’
fashion. Much better would be independent points
along with a best fit line showing the trend. The
plot is also in colour, which for a simple plot like this
one is not really necessary. Publishers prefer black
and white unless colour is adding real information.

As with other parts of the pgf system, pgfkeys

uses key–value arguments to alter settings. Here, the
options apply to a particular plot, and so are given
as an optional argument to the \addplot macro in
square brackets (irrespective of the format in use). So
the appearance of the plot can be altered by adding
an optional argument and suitable settings to the
\addplot macro.

\addplot[

color = black,

fill = black,

mark = *, % A filled circle

only marks

]

These keys all have self-explanatory names: the
pgfplots manual of course gives full details. It is
possible to use ‘black’ for the combination of color
= black and fill = black; here, I will stick to the
longer version including the key names, as it makes
the meaning a little clearer.

Adding a best fit line means a second \addplot

is needed. TEX is not the best way to do general
mathematics, and so the fitting was done using a
spreadsheet application. The easiest way to add a
line is to specify the two ends and show only the line:

\addplot[

color = black,

mark = none

]

Plotting experimental data using pgfplots

52 TUGboat, Volume 31 (2010), No. 1

0 100 200 300

0

100

200

300

Figure 3: Second version of a plot based on the data
in Table 1.

coordinates {

(0, 0)

(350, 279)

};

Making these first set of changes gives Figure 3,
which already looks more professional.

There is still more to think about before the
plot is finished. The axes do not start from 0, but
instead from a bit below zero: hardly very clear, and
certainly not needed here. Much more importantly,
the axes are not labelled and there are no units.
These are both problems about the entire plot, not
just one data set. So in this case the optional ar-
gument to the axis environment comes into play.
This follows the start of the environment in square
brackets (recall that the start of the environment is
format-dependent, as shown above). Once again the
various option names are pretty self-explanatory:

[

xlabel = Concentration\,/\,mmol\,dm$^{-3}$,

xmax = 400,

xmin = 0,

ylabel = Rate\,/\,s$^{-1}$,

ymax = 300,

ymin = 0

]

The result of these adjustments is Figure 4. The
contents of the axis environment is now:

[

xlabel = Concentration\,/\,mmol\,dm$^{-3}$,

xmax = 400,

xmin = 0,

ylabel = Rate\,/\,s$^{-1}$,

ymax = 300,

ymin = 0

]

0 100 200 300 400
0

100

200

300

Concentration / mmol dm−3

R
at

e
/

s−
1

Figure 4: Final version of a plot based on the data
in Table 1.

\addplot[

color = black,

fill = black,

mark = *,

only marks

] coordinates {

(338.1, 266.45)

(169.1, 143.43)

(84.5, 64.80)

(42.3, 34.19)

(21.1, 9.47)

};

\addplot[

color = black,

mark = none

] coordinates {

(0, 0)

(350, 279)

};

The plot now looks good, but there are a few
other points to note before moving on to more com-
plex challenges. In a real publication, the caption
of the figure should give any necessary experimental
details about the data presented. Also notice that
both axes of the plot are in simple whole numbers.
For this plot (and Table 1), the original concentra-
tions were in mol dm−3, and were multiplied by 1000
to make them whole numbers. Usually this approach
makes the final result much easier to read (even if it
requires more effort initially). pgfplots can do simple
mathematics, but I tend to favour doing the calcula-
tions first in an external tool and stick to using TEX
for its strength: typesetting.

The ideas used for the preceding plot can readily
be applied to presenting several sets of data on the
same axes. pgfplots allows the user to pick a number

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 53

of markers to differentiate the plots, and to include
legends and so forth. However, it rapidly becomes
unwieldy to have the raw data in the TEX source
when there are a number of curves to plot. Luckily,
pgfplots has an alternative \addplot syntax that
help out.

4 Large sets of data

As the number of data points to plot grows, adding
the information directly to the source rapidly be-
comes laborious and error-prone. Almost always, the
data will be available in a structured format, and so
reading an external file becomes a much more effi-
cient way to proceed. pgfplots can read data tables
from, for example, tab-separated text files, which can
conveniently be written by standard data handling
software. There are two approaches to reading such
data: loading the entire table into a macro which
can then be used for plotting, or reading the data
as part of the \addplot line. The most appropriate
method depends on the context: both methods will
be illustrated here.

4.1 One set of axes, several plots

When several related sets of data need to be presen-
ted on one set of axes, it rapidly becomes easier to
use external data files even if each plot has only a
small number of points.

Here, I will illustrate the methods using the
change in amount of four chemicals over time. The
data here are available as a single text file, and there
are not too many time points. It therefore makes
most sense to load all of the data into a macro, and to
use it to create each plot in turn. With the numbers
saved in a file called data-set-two.txt, the reading
instruction is

\pgfplotstableread{data-set-two.txt}

\datatable

Here, the name of the storage macro (\datatable) is
arbitrary: in a complex document it would probably
be more descriptive.

In the table here each column has a header for
ease of reference, with the first few rows reading

Time a b c d

0 49 7 41 1.3

67 55 9 33 1.6

134 61 10 26 1.9

200 65 12 20 1.9

...

The columns can be referred to either by their header
name (‘y = 〈header name〉’) or by their position in
the table (‘y index = 〈header index〉’), with column
‘a’ here being the y column with index 1, ‘b’ with
index 2, and so on. It’s also possible to include

0 200 400 600 800 1,000

0

20

40

60

Figure 5: Raw plot using a pre-loaded data table.

comment lines in the data file, which can be used
for things like the units or reference numbers for the
raw data.

The plot can then be created using the ‘table’
keyword after the \addplot macro:

\addplot table[y = a] from \datatable ;

\addplot table[y = b] from \datatable ;

\addplot table[y = c] from \datatable ;

\addplot table[y = d] from \datatable ;

Here, the second keyword ‘from’ indicates that a
macro will be used to supply the data to plot. With
no formatting changes the result is Figure 5. As
with the first data set, it is better not to ‘join the
dots’. As this applies to the entire plot, only marks

can be given in the optional argument to the start
of the axis environment, rather than repeating the
same instruction for each \addplot macro. There
also needs to be a legend to tell the reader which
curve is which. Using the \addlegendentry macro
after each \addplot line will automatically gather
the necessary information (symbol type and colour),
and will result in a legend being added to the plot:

\addplot table[y = a] from \datatable ;

\addlegendentry{Compound \textbf{a}} ;

\addplot table[y = b] from \datatable ;

\addlegendentry{Compound \textbf{b}} ;

...

The ideas about labelling axes and setting an appro-
priate scale which were necessary for the first plot
also apply here. Making these adjustments leads to
Figure 6.

Once again, colour is not really necessary here
if care is taken with the rest of the plot. The visual
difference between the different markers should be
enough to show which curve is which. When pre-
paring the real diagram for publication, my super-
visor asked for all of the symbols to be circles, filled

Plotting experimental data using pgfplots

54 TUGboat, Volume 31 (2010), No. 1

0 200 400 600 800 1,000
0

20

40

60

80

Time / s

R
el

at
iv

e
am

ou
n
t
/

%
Compound a

Compound b
Compound c

Compound d

Figure 6: Second version of a plot from a pre-loaded
data table.

in different ways. That needed a bit of help from
comp.text.tex to get half-filled circles, which can
be achieved by creating a special marker using some
lower level pgf code:

\pgfdeclareplotmark{halfcircle}{%

\begin{pgfscope}

\pgfsetfillcolor{white}%

\pgfpathcircle{\pgfpoint{0pt}{0pt}}

{\pgfplotmarksize}

\pgfusepathqfillstroke

\end{pgfscope}%

\pgfpathmoveto

{\pgfpoint{\pgfplotmarksize}{0pt}}

\pgfpatharc{0}{180}{\pgfplotmarksize}

\pgfpathclose

\pgfusepathqfill

}

(don’t worry too much about this; for myself, I just
accept that it works!). Including the above code in
the source means that halfcircle can be used as a
value for the mark key:

\addplot[mark = halfcircle, ...

The filled portion can be moved ‘around’ the circle
by rotating the mark

\addplot[

mark = halfcircle,

mark options = {rotate = 90},

There are a couple of other issues with Figure 6.
Most obviously, the legend is covering some of the
data points, while there is a handy space right in
the middle. This can be fixed by asking pgfplots to
move the entire legend box using the legend style

key, which is used in the optional argument to the
axis environment. It takes a bit of experimentation
to get the correct position; in this case

0 200 400 600 800 1000
0

20

40

60

80

Time / s

R
el

at
iv

e
am

ou
n
t
/

%

Compound a

Compound b
Compound c

Compound d

Figure 7: Final version of a plot from a pre-loaded
data table.

[

legend style = { at = {(0.6,0.75)}}

]

seems to be about right.
The x axis label for 1000 includes a comma as

a digit separator: that is not usual in publications
in English. So there is a slight modification to make
to the digit formatting routine: this is a general pgf

setting:

\pgfkeys{

/pgf/number format/

set thousands separator =

}

Making these changes, and adjusting a few minor
settings to get the colours correct leads to the final
version of the plot (Figure 7). Here is the code:

[

legend style = { at = {(0.6,0.75)}},

only marks,

xlabel = Time\,/\,s,

xmax = 1000,

xmin = 0,

ylabel = Relative amount\,/\,\%,

ymax = 80,

ymin = 0

]

\addplot[

color = black,

mark = *

] table[y = a] from \datatable ;

\addlegendentry{Compound \textbf{a}} ;

\addplot[

color = black,

fill = white,

mark = *

] table[y = b] from \datatable ;

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 55

\addlegendentry{Compound \textbf{b}} ;

\addplot[

color = black,

mark = halfcircle

] table[y = c] from \datatable ;

\addlegendentry{Compound \textbf{c}} ;

\addplot[

color = black,

mark = halfcircle,

mark options = {rotate = 90}

] table[y = d] from \datatable ;

\addlegendentry{Compound \textbf{d}} ;

4.2 An experimental spectrum

One common technique in scientific research is record-
ing spectra: how a sample absorbs light, microwaves,
radio waves, etc. Often, these are published by simply
taking the raw print out from the control program
and pasting it into the article, which does not make
for a good appearance. So replotting with pgfplots

is a good idea.
Spectra tend to involve a lot of numbers, and

so using an external table is once again a good idea.
As these are large files that will only be used once,
loading to a macro is not efficient. Instead, the data
table can be loaded as part of the \addplot line,
with the syntax

\addplot table {data-set-three.txt};

The first version of the plot in this case (Fig-
ure 8) already includes a number of the refinements
discussed in the first two examples. The example
shows data from a technique called ‘nuclear mag-
netic resonance’, in which radio waves are absorbed
by a sample. In the plot, the x axis is related to the
frequency of the radio waves, while the y axis shows
how much is absorbed.

The plot looks generally good, but there are
some adjustments required. First, the y scale is es-
sentially arbitrary, and so is usually not given any
values at all. This can be achieved by setting the
yticklabels option to an empty value in the op-
tional argument to the axis environment:

[yticklabels =]

Second, for various historical reasons it is normal to
plot the x axis backward (running high to low). The
latest version of pgfplots can do this automatically
using the x dir option.

\addplot[

x dir = reverse,

...

These changes give an improved version of the plot
(Figure 9).

The final thing this plot needs is some ‘peak
labels’: markers showing the exact value at the top

18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

1.2

Chemical shift / ppm

Figure 8: First version of a single spectrum.

18192021222324

Chemical shift / ppm

Figure 9: Second version of a single spectrum.

of each peak. For this, the pgf \node macro can be
used. A \node can be used to put material anywhere
on a plot, and each node takes a range of options to
control its appearance. In this case, the node itself
is going to be completely empty, and a pin will be
used to point to the node. A pin generates a short
line from the node to some associated text, which in
this case I want to rotate by 90◦ to pack the labels
in. The syntax ends up a little bit complicated, as
various options need to be correct, for example:

\node[

coordinate,

pin = {[rotate=90]right:22.26}

] at (axis cs:22.26,1.1) { };

Plotting experimental data using pgfplots

56 TUGboat, Volume 31 (2010), No. 1

The right keyword here can be replaced by an angle,
which can then be used to be slightly off a peak’s
position, for example

\node[

coordinate,

pin = {[rotate=90]5:22.32}

] at (axis cs:22.32,1.1) { };

Once again, putting everything together leads
to the completed plot (Figure 10).

[

x dir = reverse,

xlabel = Chemical shift\,/\,ppm,

xmin = 18,

xmax = 24,

ymax = 1.75,

ymin = 0,

yticklabels =

]

\addplot[

color = black,

mark = none

] table from {data-set-three.txt};

\node[

coordinate,

pin = {[rotate=90]5:22.32}

] at (axis cs:22.32,1.1) { };

\node[

coordinate,

pin = {[rotate=90]right:22.26}

] at (axis cs:22.26,1.1) { };

\node[

coordinate,

pin = {[rotate=90]right:21.96}

] at (axis cs:21.96,1.1) { };

\node[

coordinate,

pin = {[rotate=90]-5:21.90}

] at (axis cs:21.90,1.1) { };

\node[

coordinate,

pin = {[rotate=90]right:21.26}

] at (axis cs:21.26,1.1) { };

\node[

coordinate,

pin = {[rotate=90]right:19.03}

] at (axis cs:19.03,1.1) { };

\node[

coordinate,

pin = {[rotate=90]right:18.32}

] at (axis cs:18.32,1.1) { };

4.3 Changes over time

The previous example demonstrated how to plot a
single spectrum from an external file. In a final
example, I want to look at going beyond this to
showing how experimental data changes over time.
This means plotting a series of spectra on the same

18192021222324

2
2
.3

2
2
2
.2

6
2
1
.9

6
2
1
.9

0

2
1
.2

6

1
9
.0

3

1
8
.3

2

Chemical shift / ppm

Figure 10: Final version of a single spectrum.

axes, and finding a good way to show which way
time is running. Some people choose to use a ‘three-
dimensional’ plot for this scenario, and pgfplots in-
cludes the ability to generate this type of output.
However, experience suggests to me that there is
more value in a well-constructed two-dimensional
plot than a three-dimensional representation of the
same data. The challenge is therefore to find the
best way to represent the results on paper.

In this example, the raw data is how a sample
absorbs infra-red light (heat). There is a reaction
taking place, and so the absorption will change over
time. The initial results simply show a series of peaks,
a bit like Figure 10. The changes are quite subtle
compared to the overall scale, so the first stage in cre-
ating a plot is not TEX related. Using a spreadsheet
it’s possible to find how the signal changes relative
to the one at the start of the experiment: this gives
a ‘difference spectrum’ for each time. That can then
be saved as a text file which can be used as the input
to pgfplots.

In this case, a single file contains all of the data
for the plot. To get each \addplot line to use a single
time, the optional argument to the table keyword
is used, for example:

\addplot[mark = none] table[y index = 1]

{data-set-four.txt};

\addplot[mark = none] table[y index = 2]

{data-set-four.txt};

...

As there are many almost identical lines, the pgf

\foreach macro can be used to vary only the y

index used

\foreach \yindex in {1,2,...,20}

\addplot[mark = none]

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 57

19001950200020502100

−10

0

10

20 19
90

20
01

20
31

20
55

Wavenumber / cm−1

∆
M

il
li
ab

so
rb

an
ce

Figure 11: First plot of a change over time.

table[y index = \yindex]

{data-set-four.txt};

A bit of experimentation showed that around
20 lines gave a good appearance for the plot (the full
data set has nearly 200 time points!). The \foreach

syntax makes it easy to show an evenly-spaced subset
of the available points, by setting the gap between
selected columns to be larger:

\foreach \yindex in {1,10,...,189}

\addplot[mark = none]

table[y index = \yindex]

{data-set-four.txt};

This uses every 9th column for the plot, and in the
example results in 19 separate curves (Figure 11).

There is one obvious problem with the plot:
which way is time running? Here, careful use of
colour can be used in a way which really does add
to the information imparted by the plot. To do this,
a ‘plot cycle’ is needed to specify the colour used for
each plot. There are some built in to pgfplots, but
one is also easy to construct:

\pgfplotscreateplotcyclelist

{blue to red}{%

color = red!0!blue\\%

color = red!5!blue\\%

color = red!10!blue\\%

color = red!15!blue\\%

color = red!20!blue\\%

color = red!25!blue\\%

color = red!30!blue\\%

color = red!35!blue\\%

color = red!40!blue\\%

color = red!45!blue\\%

color = red!50!blue\\%

color = red!55!blue\\%

color = red!60!blue\\%

color = red!65!blue\\%

19001950200020502100

−10

0

10

20 19
90

20
01

20
31

20
55

Wavenumber / cm−1

∆
M

il
li
ab

so
rb

an
ce

Figure 12: Second plot of a change over time (time
runs blue to red).

color = red!70!blue\\%

color = red!75!blue\\%

color = red!80!blue\\%

color = red!85!blue\\%

color = red!90!blue\\%

color = red!95!blue\\%

color = red!100!blue\\%

}

It’s important to note that the end of lines here must
end in comments. With that cycle available, the
option cycle list name can be used for the axes:
this will mean that the first plot will be pure blue,
the second 95 % blue and 5 % red, and so on.

The other minor adjustment to make is to in-
clude a line at for y = 0. This can be done by
including an extra ‘tick’:

[

extra y ticks = 0,

extra y tick labels = ,

extra y tick style =

{ grid = major }

]

(The ‘extra y tick labels = ,’ line makes sure
that the label for 0 is not printed twice, as this gives
a slightly ‘bold’ appearance.)

These two adjustments lead to Figure 12:

[

cycle list name = blue to red,

extra y ticks = 0,

extra y tick labels = ,

extra y tick style = { grid = major },

x dir = reverse,

xlabel = Wavenumber\,/\,cm$^{-1}$,

xmin = 1900,

xmax = 2100,

ylabel = $ \Delta $Milliabsorbance,

Plotting experimental data using pgfplots

58 TUGboat, Volume 31 (2010), No. 1

ymax = 27,

ymin = -15

]

\foreach \yindex in {1,10,...,189}

\addplot table[y index = \yindex]

{data-set-four.txt};

\node[

coordinate,

pin = {[rotate=90]right:1990}

] at (axis cs:1990,16) { };

\node[

coordinate,

pin = {[rotate=90]right:2001}

] at (axis cs:2001,16) { };

\node[

coordinate,

pin = {[rotate=90]right:2031}

] at (axis cs:2031,16) { };

\node[

coordinate,

pin = {[rotate=90]right:2055}

] at (axis cs:2055,16) { };

As with the other plots, it’s important to include
details about the experiment somewhere close to the
figure: usually the caption is a good place for this. In
the published article, I included details about what I
used as time zero, the time range and concentrations
for the experiment in the caption.

5 Exporting plots from TEX

Processing a large number of plots in TEX can lead
to the program running out of memory. The ability
to set up plots as separate files which can then be
included in the main document as graphics is there-
fore important. At the same time, some publishers
require all graphics to be available as stand-alone
files, which again means finding a way to export plots
from TEX.

pgfplots includes methods for carrying out this
process in an automated fashion. The latest release
of pgfplots makes the process much easier than was
previously the case, and includes full instructions on
how to proceed. When using pdfTEX the lines

\usetikzlibrary{pgfplots.external}

\tikzexternalize{<filename>}

will instruct pgfplots to make each plot into a separate
PDF file. To create PostScript files the additional
command:

\tikzset{external/system call =

{latex -shell-escape -halt-on-error

-interaction=batchmode -jobname "\image"

"\texsource"; dvips -o "\image".ps

"\image".dvi}}

is needed, and the main file should be typeset in DVI

mode. In both cases \write18 (external command
execution) needs to be enabled for the process to
work correctly.

6 Conclusions

Producing scientific plots using pgfplots can produce
high quality output with relatively little effort for
the user. To do so, some thought about both the
information to be reported and the appearance of
the output is needed.

7 Acknowledgements

Thanks to Stefan Pinnow for a number of useful
improvements both to the code and to the text while
drafting this article.

The published versions of the figures used here
originally appeared in Wright and Pickett (2009) and
Jablonskytė, Wright, and C. J. Pickett (2010). They
are reproduced by permission of The Royal Society
of Chemistry.

References

Feuersänger, Christian. “pgfplots”. http://mirror.
ctan.org/graphics/pgf/contrib/pgfplots,
2010.

Jablonskytė, Aušra, J. A. Wright, and
C. J. Pickett. “Mechanistic aspects of the
protonation of [FeFe]-hydrogenase subsite
analogues”. Dalton Transactions (39),
3026–3034, 2010.

Tantau, Till. “The TikZ and pgf Packages”.
http://mirror.ctan.org/graphics/pgf,
2008.

Wright, Joseph A., and C. J. Pickett. “Protonation
of a subsite analogue of [FeFe]-hydrogenase:
mechanism of a deceptively simple reaction
revealed by time-resolved IR spectroscopy”.
Chemical Communications (38), 5719–5721,
2009.

⋄ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph.wright (at)

morningstar2.co.uk

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 59

From Logo to MetaPost

Mateusz Kmiecik

Abstract

The Logo language (turtle graphics) is recommended
for teaching of Information Technology at secondary
schools in Poland. It is quite a primitive language
so young people quickly get discouraged while pro-
gramming more advanced pictures. Could MetaPost
be used to this end?

1 Why have I chosen this topic?

When I was preparing for the Malopolska Computing
Competition, I had to learn about many domains
concerning computers. One of them was the Logo
language. Before the competition I had noticed one
of the tools which my dad [Jacek Kmiecik] had been
using to create pictures. It was MetaPost. Dad sug-
gested that I should compare and describe MetaPost
and Logo in a BachoTEX presentation. But I had one
problem with the topic of this presentation. After
consideration I have chosen ‘From Logo to MetaPost’
because I created the same pictures in MetaPost as
in Logo. Both languages are used in making graphics
but I want to show that MetaPost is superior.

2 Logo

2.1 Introduction

Logo is a programming language which supports the
development of creative and logical thinking as well
as algorithmic abilities. In Poland, since the second
half of the 1980s Logo has been used as a teaching
tool in mathematics and computing lessons [1].

The graphic symbol of Logo is a turtle. Logo
uses a specific geometry — ‘turtle geometry’. Thanks
to the symbol of a turtle which we can move and
turn on the screen and which leaves signs, we can
create pictures.

The program called Logo Komeniusz is a didac-
tic tool which helps with using the Logo language. It
has Polish commands which are very useful to help
students comprehend the basic commands necessary
for drawing.

Of course there are other programs to help us
understand the Logo language but in my opinion
Logo Komeniusz is the best one. This program is
a commercial one, but its price is adjusted to the
group of students who need it.

2.2 Beginnings

At first I was making easy pictures, such as a trian-
gle or a square. Then I made my first procedure —
a command creating a chosen polygon. After I ab-

Figure 1: The window of Logo Komeniusz program

sorbed the basics of Logo, I started creating more
complicated figures, even whole pictures.

2.3 An example of making pictures

Commands are inserted in the bottom part of the
Logo Komeniusz window. When you put commands
and press Enter the results will be shown in the top
part (fig. 1).

These commands will make the turtle go 50
steps ahead and turn around 90 degrees:

np 50

pw 90

np is short for naprzód which in English means
towards, and pw is short for prawo which in English
means right.

If we want to jump to another place we have
to use commands podnieś (lift in English) and
move the turtle to the proper place. To start draw-
ing a picture again we have to use command opuść

(drop).

pod ==> podnieś

np 20 ==> naprzód 20

opu ==> opuść

It is worth mentioning that Logo Komeniusz
uses a Polish dialect which I believe makes using
it much easier — but there are many contradictory
opinions.

3 MetaPost

3.1 Introduction

When I was making pictures in Logo, I had lots of
problems with it. My dad said that after the competi-
tion I should draw the same figures in MetaPost and
then I would see the difference. I didn’t think that
it would be easier programming with paths (exam-
ple: fig. 3). And there I noticed the main difference

From Logo to MetaPost

60 TUGboat, Volume 31 (2010), No. 1

between Logo and MetaPost: Logo works by control-
ling an object, while MetaPost works on defining a
path (opened or closed), which we can fill with color
or not and put it at the proper place on the virtual
“paper”.

3.2 Beginnings

Everybody who starts to learn MetaPost with the
original book begins with a picture of a triangle with
a line (fig. 2). Not wanting to break this rule I began
my MetaPost adventure with it too.

Figure 2: My first MetaPost picture (based on [3],
page 4)

I was studying MetaPost by taking to pieces
examples which I found on the Internet [5, 6, 7]. My
dad took the role of teacher and explained many
useful functions to me. I have to admit that I had
quite large problems getting out of the habit of “using
the turtle” (the method of working in Logo).

3.3 An example of making pictures

To make a picture with MetaPost, at first you have
to define coordinates (x, y) of each point (pair) — in
the example there will be four points (fig. 3):

A

B

C

D pair A, B, C, D;

A = (0,0); B = (0,10mm);

C = (10mm,0); D = (10mm,10mm);

Figure 3: Four points and the code to produce them

Next, I show four examples — how we can de-
fine paths between those four points and make four
different shapes: fig. 4.

draw A..B..C..D;

draw A..B..D..C..cycle;

draw A{left}..{right}B

--C{left}..{left}D;

draw A--B--C--D--cycle;

Figure 4: Examples of paths through the four points
of fig. 3

To edit MetaPost files we only need a good
text editor. To then create graphics we have to run
the command mpost example.mp where example is
the name of our input file. Then we will get the
output example.1 where the 1 refers to the number
of a particular figure defined in the MetaPost file.
To see the image we can put it into a LATEX file or
use the command mptopdf which will convert a file
example.1 to PDF.

4 Examples

In this section I’m going to show the examples which
I did both in MetaPost and in Logo.

Triangle (fig. 5)

Logo version:

powtórz 3 [npw 20 pw 120]

MetaPost version:

pair A,B,C;

A = (1cm,0);

B = A rotated 120;

C = B rotated 120;

draw A--B--C--cycle;

Square (fig. 6)

Logo version:

powtórz 4 [np 20 pw 90]

The powtórz (repeat in English)
command makes a loop; the next
number defines how many times
this loop will be repeated.

MetaPost version:

draw (0,0)--(0,u)

--(u,u)--(u,0)--cycle;

Polygon (fig. 7)

Logo version:

oto wielokąt :n :bok

powtórz :n [np :bok pw 360/:n]

już

The command oto defines a new
procedure, here with parameters
:n and :bok, then the procedure
definition, ending with już.

MetaPost version:

def wielokat (expr n,b) =

draw for i := 0 step 1 until n-1:

1cm*up rotated (i*360/n) --

endfor cycle;

enddef;

wielokat(5,1cm)

Mateusz Kmiecik

TUGboat, Volume 31 (2010), No. 1 61

Double-squared chessboard (fig. 8)

Logo version:

oto kw

cs pż

niech "a~25

pod np 5 * :a lw 90 np 7 * :a pw 90 opu

powtórz 6 [powtórz 8 [mkw :a pod pw 90

np 2 * :a opu lw 90] pod

np -2 * :a pw 90 np - 16 * :a lw 90]

pod wróć

już

oto mkw :bok

ugp 1 ukm 0

pod np - :bok pw 90 np - :bok lw 90 opu

powtórz 4 [np 2 * :bok pw 90]

np :bok pw 45

powtórz 4 [np :bok * pwk 2 pw 90]

pw 45 pod np :bok lw 90

zamaluj

już

MetaPost version:

numeric u; u := 25;

pair A,B,C,D;

A=(0,0); B=(u,0); C=(u,u); D=(0,u);

transform T;

A transformed T = 1/2[A,B];

B transformed T = 1/2[B,C];

C transformed T = 1/2[C,D];

path p; p := A--B--C--D--cycle;

path r; r := p transformed T;

picture o;

o := image (

draw p;

fill r withcolor black;

);

for i := 1 upto 8:

for j := 1 upto 6:

draw o shifted (u*(i,j));

endfor;

endfor;

Sierpiński’s Triangle (fig. 9)

Logo version:

oto sierpinski :a :n

sż opu

jeśli :n = 0 [stop]

trojkat :a

sierpinski (:a / 2) (:n - 1)

np (:a / 2)

sierpinski (:a / 2) (:n - 1)

np (:a / 2) pw 120 np (:a / 2)

sierpinski (:a / 2) (:n - 1)

np (:a / 2) pw 120 np :a pw 120

już

MetaPost version:

def sierpinskiN (expr a, b, n) =

if n = 0:

draw a--(b rotatedabout(a,60))--b--cycle;

else:

sierpinskiN(a, 0.5[a,b], n-1);

sierpinskiN(0.5[a,b], b, n-1);

sierpinskiN(0.5[a,b rotatedabout(a,60)],

0.5[a~rotatedabout(b,-60),b], n-1);

fi;

enddef;

z0 = origin;

z1 = z0 shifted (0,-500);

sierpinskiN (z0, z1, 5);

Honeycomb (fig. 10)

From Logo to MetaPost

62 TUGboat, Volume 31 (2010), No. 1

Logo version:

oto plaster :n

jeśli :n < 1 [stop]

cs sż

niech "bok 300 / 8

pod np (- (0.75 * :n - 1) * :bok)

pw 90 np (- 0.5 * (:n - 1) * :bok

* pwk 3) lw 90 opu

plastek :n :bok

już

oto plastek :n :bok

jeśli :n = 0 [stop]

powtórz :n [szesc :bok pod pw 90

np :bok * (pwk 3) lw 90 opu]

pod np 1.5 * :bok pw 90

np (- (:n - 0.5) * :bok * (pwk 3))

lw 90 opu

plastek :n - 1 :bok

już

MetaPost version:

numeric n,w; n := 6; w := 25;

path _s; _s := for i := 0 upto n-1:

up rotated (i*360/n) -- endfor

cycle;

def plast (expr n, b) =

if n<>0:

for i := 1 upto n:

pair zz;

xpart zz = ((i-1)*(sqrt3) -

((sqrt3)/2) * n) * b;

ypart zz = -3/2*n * b;

draw _s scaled b shifted zz;

endfor;

plast ((n-1), b);

fi;

enddef;

Magic chessboard (fig. 11)

Logo version:

oto iluzja

sż

cs

niech "bok 50

niech "mbok 10

skok 7 * :bok (- 7 * :bok)

powtórz 7 [powtórz 7 >>

[kwadratcz skok 0 (2*:bok)]]

kwadratcz skok - :bok (-:bok)

powtórz 7 [kwadratcz skok 0 (-:bok*2)]

skok - :bok :bok]

powtórz 7 [kwadratcz skok 0 (2*:bok)]

kwadratcz

skok 7 * :bok (- 7 * :bok)

; male

skok :bok / 2 (- :bok / 2)

niech "bok 10

powtórz 4 >>

[kwadraciki pw 90 skok 25 (- 25)]

już

This code is wrong because of a restriction of
the Logo Komeniusz editor. I used the symbol >>
because the command powtórz and its syntax must
be written in the same line. And this is a drawback
of making procedures in Logo — regardless of the
resulting code’s legibility, some commands must be
written all on one line.

The entire program takes 70 lines, and is on my
web page: www.mateusz.kmiecik.pl

MetaPost version:

numeric u, k; u := 25; k := 0.3;

path fullsquare;

fullsquare :=

unitsquare shifted -center unitsquare;

picture A, B, C, D, E, F, G, H;

path p, q;

p := fullsquare scaled u;

q := p scaled 0.33;

color Wh, Bl;

def Wh = white enddef;

def Bl = black enddef;

A := image (fill p withcolor black;);

B := image (fill p withcolor white;);

C := image (draw A;

fill q shifted (k*u*(-1,1)) withcolor Wh;

fill q shifted (k*u*(1,-1)) withcolor Wh;

);

D := image (draw B;

fill q shifted (k*u*(-1,1)) withcolor Bl;

fill q shifted (k*u*(1,-1)) withcolor Bl;

);

E := image (draw A;

Mateusz Kmiecik

TUGboat, Volume 31 (2010), No. 1 63

fill q shifted (k*u*(1,1)) withcolor Wh;

fill q shifted (k*u*(1,-1)) withcolor Wh;

);

F := image (draw B;

fill q shifted (k*u*(1,1)) withcolor Bl;

fill q shifted (k*u*(1,-1)) withcolor Bl;

);

G := image (draw E

rotatedaround (center E,180););

H := image (draw F

rotatedaround (center F,180););

for i := 1 upto 7:

for j := 1 upto 8:

draw

if ((j=1) and (i<>7)):

if odd(i): H else: G fi

elseif ((i+j) = 8) and (i <>7): D

elseif ((i+j) = 6): D

elseif ((i+j) = 4): D

elseif ((i+j) = 9) and (i>2) and (i<6):

C

elseif ((i+j) = 7): C

elseif ((i+j) = 5): C

elseif ((i+j) = 3): C

else:

if odd(j):

if odd(i): B

else: A

fi

else:

if odd(i-1): B

else: A

fi

fi

fi

shifted(u*(i,j));

endfor;

endfor;

picture szach;

szach := currentpicture;

currentpicture:=nullpicture;

draw szach shifted (0,-u);

draw A;

draw currentpicture rotated 90;

draw currentpicture rotated 180;

5 Summary

Although Logo Komeniusz uses Polish commands,
drawing some figures is still very troublesome. In
MetaPost we make images by defining proper paths
and points, which is very useful. Another difference
is the approach to drawing figures: MetaPost doesn’t
control a pencil (or turtle) or anything like that, but
defines proper paths and puts them on a virtual sheet
of paper, filled with some color. The drawback of
MetaPost is that we must have installed TEX and
we must know how to operate it. Logo Komeniusz
is a program which doesn’t require any installation.
After turning on it we can start working.

I think that for learning algorithms in secondary
schools Logo Komeniusz is very valuable, while Meta-
Post can be introduced for additional lessons, per-
haps in computing or mathematics.

References

[1] Jadwiga Orłowska-Puzio: Dydaktyczne

zastosowania programowania w LOGO, http:

//www.jorlowska.prv.pl/rdydakt/logo.html,
wersja PDF: http://www.jorlowska.prv.pl/

rdydakt/docs/DYDAKTYCZNE_ZASTOSOWANIA_

PROGRAMOWANIA_W_LOGO.pdf

[2] Pierwszy dokument w MetaPost [First
document with MetaPost], http://www.gust.

org.pl/doc/1stdocument/metapost

[3] John D. Hobby: A user’s manual for

MetaPost, http://www.tug.org/docs/metapost/

mpman.pdf

[4] Hans Hagen: Metafun, http://www.pragma-ade.

com/general/manuals/metafun-p.pdf

[5] Métapost: exemples, http://tex.loria.fr/

prod-graph/zoonekynd/metapost/metapost.html

[6] André Heck: Learning MetaPost by Doing,
http://staff.science.uva.nl/~heck/Courses/

mptut.pdf

[7] Documentation, tutorials and examples at
http://www.tug.org/metapost.html

⋄ Mateusz Kmiecik
Gimnazjum nr 16 im. Króla

Stefana Batorego, Kraków
mateusz (at) kmiecik dot pl

http://www.mateusz.kmiecik.pl

From Logo to MetaPost

64 TUGboat, Volume 31 (2010), No. 1

LATEX News
Issue 19, September 2009

New LATEX release

This issue of LATEX News marks the first release of a
new version of LATEX 2ε since the publication of The
LATEX Companion in 2005–2006.

Just in time for TEX Live 2009, this version is a
maintenance release and introduces no new features. A
number of small changes have been made to correct
minor bugs in the kernel, slightly extend the Unicode
support, and improve various aspects of some of the
tools packages.

New code repository

Since the last LATEX release, the entire code base has
been moved to a public svn repository1 and the entire
build architecture re-written. In fact, it has only been
possible for us to consider a new LATEX release since
earlier this year when the test suite was finally set up
with the new system. In the process, a bug in the LATEX
picture fonts distributed with TEX Live was discovered,
proving that the tests are working and are still very
valuable.

Now that we can easily generate new packaged
versions of the LATEX 2ε distribution, we expect to be
able to roll out bug fixes in a much more timely manner
than over the last few years. New versions should be
distributed yearly with TEX Live. Having said this, the
maintenance of the LATEX 2ε kernel is slowing down as
the bugs become fewer and more subtle. Remember
that we cannot change any of the underlying
architecture of the kernel or any design decisions of the
standard classes because we must preserve backwards
compatibility with legacy documents at all costs.

Even new features cannot be added, because any new
documents using them will not compile in systems (such
as journal production engines) that are generally not
updated once they’ve been proven to work as necessary.

None of this is to say that we consider LATEX 2ε to be
any less relevant for document production than in years
past: a stable system is a useful one. Moreover, the
package system continues to provide a flourishing and
stable means for the development of a wide range of
extensions.

1http://www.latex-project.org/svnroot/latex2e-public/

Babel

One area of the LATEX 2ε code base that is still receiving
feedback to be incorporated into the main distribution
is the Babel system for multilingual typesetting. While
the Babel sources have already been added to the svn

repository the integration of the test system for Babel is
still outstanding.

The future

While work on LATEX 2ε tends to maintenance over
active development, the LATEX3 project is seeing new
life. Our goals here are to provide a transition from the
LATEX 2ε document processing model to one with a
more flexible foundation. Work is continuing in the
expl3 programming language and the xpackages for
document design. Future announcements about LATEX3
will be available via the LATEX Project website and in
TUGboat.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2009, all rights reserved.

TUGboat, Volume 31 (2010), No. 1 65

Talbot packages: An overview

Nicola L. C. Talbot

Abstract

This article briefly describes my packages that are
available on CTAN and how they came about.

1 Introduction

Many of my packages end up on CTAN, the Compre-
hensive TEX Archive Network (http://www.ctan.
org), and subsequently in TEX distributions such
as TEX Live and MiKTEX. (My other packages are
not on CTAN because they are either bespoke or
still experimental.) Most of the packages are dis-
tributed under the “LATEX Public Project License”
(http://www.latex-project.org/lppl).

2 General packages

This section describes packages for general use.

2.1 datetime

Changes the format of \today and provides
commands for displaying the time.

The datetime package was the first package I wrote.
It started out as an example in a LATEX course I
was teaching in the late 1990s, but I later decided it
might be useful to others so I uploaded it to CTAN.

The package provides the command

\formatdate{〈day〉}{〈month〉}{〈year〉}

that formats the given date according to the current
date style. The command \today is redefined as
\formatdate\day\month\year so they both display
the dates in the same style. The default date style is
the UK style or the style of the current language if
babel has been loaded. The style can be changed via
package options or declarations. You can also define
your own custom date format.

An analogous command

\formattime{〈hour〉}{〈min〉}{〈sec〉}

formats the given time according to the current
time style. The command \currenttime will dis-
play the current time according to the same format
as \formattime. The style can be changed via pack-
age options or using \settimeformat. You can also
define your own custom time format.

2.2 fmtcount

Display the value of a LATEX counter in a
variety of formats.

Editor’s note: The TUGboat editors requested this article in
recognition of the many fine packages Nicola has created.

When I first wrote the datetime package, I provided
commands that convert a number or ordinal to a
string so that it could be used with the textual date
and time styles. I realised that people might want
to use these commands but not want the rest of the
datetime package so I decided to split them off into
a separate package. While I was at it, I thought I
may as well add some other formats, such as binary
and hexadecimal.

2.3 glossaries

Create glossaries and lists of acronyms.

(This replaces the now obsolete glossary package.)
With the glossaries package, you can define terms
and acronyms which can then be used throughout
the document. The default plural (appending an
“s” to the singular) can be overridden and you can
additionally specify a symbol or use the “user” keys
to add other information.

To make a sorted list of the terms or acronyms
to be displayed in the document, you need to use
either makeindex or xindy to collate and sort the
entries. Only those entries that have actually been
used in the text will be displayed in the glossary or
list of acronyms.

The glossaries bundle also provides the following
packages:

• glossaries-accsupp: This package provides an in-
terface between glossaries and Heiko Oberdiek’s
PDF accessibility support package accsupp.

• mfirstuc: This package provides \makefirstuc,
which capitalizes the first letter of its argument,
unless the first thing in its argument is a com-
mand with a non-empty argument, in which case
it capitalizes the first letter of that command’s
argument. For instance, \makefirstuc{abc}

produces ‘Abc’, \makefirstuc{\ae{}bc} pro-
duces ‘Æbc’, and \makefirstuc{\emph{abc}}

produces ‘Abc’.

2.4 datatool

Tools to load and manipulate data.

(This replaces the obsolete csvtools package.) With
the datatool package you can create databases, either
via supplied commands or by loading an external
CSV file. The original version of datatool was slow
and inefficient, but Morten Høgholm suggested a
much better internal representation of the database,
which has significantly improved compilation time.
The datatool bundle provides the following packages:

• datatool: This is the main package of the bun-
dle. It can be used to create databases, iterate
through a database, determine whether elements

Talbot packages: An overview

66 TUGboat, Volume 31 (2010), No. 1

are integers, real numbers, strings or currency,
and it provides commands that interface with
the fp package to perform numerical operations
on database elements (for example, computing
the total, the arithmetic mean or standard devi-
ation).

• datapie: This uses the pgf package to represent
the contents of a database as a pie chart.

• dataplot: This uses the pgf package to plot the
contents of a database.

• databar: This uses the pgf package to represent
the contents of a database as a bar chart.

• databib: This works with BibTEX to convert
a bibliography into a database. It can then
be manipulated (for example, sorted according
to a particular field) and displayed. Since you
can apply filtering when iterating through a
database, you can use it to, say, only display
entries since a particular year, or only display
entries that are journal articles.

• person: This provides support for displaying a
person’s name and pronoun in a document, thus
avoiding the cumbersome use of “he/she” etc
when performing tasks such as mail-merging.

2.5 flowfram

Create text frames for posters, brochures or
magazines.

This package came about because I became frustrated
trying to design technical posters for conferences.
The layouts tended to require four columns with a
figure or table spanning a couple of the columns,
either at the top or at the bottom. I decided to
adapt the technique used to format two-column text
so that I could have an arbitrary number of columns
with custom dimensions and locations so that the
document text would flow from one column to the
next just as it does in a regular two-column document.
In addition I designed “static” and “dynamic” frames
whose contents had to be set via a command or
environment. This meant that I could position the
figures and tables wherever I liked.

The same technique can be used to design the
layout of brochures and magazines so I developed
the code to make it easier to create a mini-table of
contents that could be put in a separate frame along-
side the chapter heading and thumbtabs which could
be used to navigate through the printed document.
TEX’s \parshape and Donald Arseneau’s shapepar

package can be used to shape the static and dynamic
frames so that the text can, say, go around an image
or go in an L-shape to fit snugly around a shorter
passage.

Determining the layout, particularly the param-
eters for \parshape and \shapepar, can be tricky
so I made a Java GUI to assist. This is discussed in
Section 4.

2.6 probsoln

Generate problem sheets and their solutions.

I wrote this package to help my husband, Gavin
Cawley, generate assignment sheets. It underwent
substantial modifications when Alain Schremmer
asked for assistance with his documents at http:

//freemathtexts.org.
The idea is to have a database of questions

(optionally with their solutions) and you can select
particular questions, all questions or a random set. A
package option or declaration can be used to hide or
show questions or solutions so it’s possible to either
have each solution after the relevant question or have
the solutions bundled together in another part of the
document.

2.7 bibleref

Format bible citations.

I wrote this package in response to a query on
comp.text.tex. It’s designed to provide consistent
formatting of references to parts of the Christian
bible.

2.8 doipubmed

Special commands for use in bibliographies.

This package provides the commands \doi, \pubmed
and \citeurl for use in bibliographies. Maarten
Sneep and Heiko Oberdiek’s doi package provides a
more robust \doi.

2.9 quotmark

Consistent quote marks.

This package provides a means of ensuring consistent
quote marks throughout your document. When I
wrote it, I was unaware of Philipp Lehman’s csquotes
package.1 The csquotes package provides more func-
tionality than my quotmark package.

3 Development packages

The packages described here are provided for package
and class developers.

3.1 makedtx

Perl script to help generate DTX and INS files.

Classes and packages are typically distributed as a
DTX file with an accompanying INS file that’s used

1 I must have used the wrong terms in my keyword search.

Nicola L. C. Talbot

TUGboat, Volume 31 (2010), No. 1 67

to extract the code. However, when developing the
code, it’s a nuisance to have to edit the DTX file
and then extract the STY or CLS files to test the
modifications. I much prefer to edit the STY and CLS

files directly, but this means that when I’m ready to
distribute the new version I have to then bundle the
code into a DTX file. I wrote this Perl script to do
this for me.

3.2 xfor

Reimplements the LATEX for-loop macro.

The glossaries and datatool packages need to use
\@for to iterate through lists. However, quite often,
I only need to search for an element that satisfies
a particular condition, and it would be useful to
terminate the loop when the element is found, akin to
the break statement in languages such as C and Java.
The xfor package redefines \@for so the loop can be
terminated after the end of the current iteration.2

4 Jpgfdraw

Vector graphics application for LATEX users
(distributed under the GNU General Public
License, http://www.gnu.org/copyleft).

My favourite drawing application has always been
!Draw, which came with the Acorn Archimedes and
Acorn RiscPC. Even after I moved to GNU/Linux, I
still used the RiscPC to create images, which I then
converted to Encapsulated PostScript. In the end,
this became impracticable. Since I wanted to learn
Java, I decided to write a Java application based on
!Draw. While I was creating it, I was also considering
writing an application that would work as a GUI

for my flowfram package. Since both tasks required
much of the same code, it seemed sensible to combine
them into the same application. The code for the
flowfram package required methods for computing
the parameters for \parshape and \shapepar so I
decided to also provide those as part of the set of
LATEX tools that come with the application. Briefly,
you can use Jpgfdraw3 to:

• Construct shapes using lines, moves and cubic
Bezier segments;

• Edit shapes by changing the control points;

• Extract the parameters for TEX’s \parshape

command and for \shapepar (defined in the
shapepar package);

• Construct frames for use with flowfram;

2 In this respect, it differs from break, which immediately
terminates the loop.

3 I’m not very good at thinking of good names: it’s a Java
drawing package that creates pgf code.

• Pictures can be saved in Jpgfdraw’s native binary
format (JDR) or native ASCII format (AJR) or
can be exported in LATEX and image formats:

– a pgfpicture environment for use in LATEX
documents with the pgf package;

– a single-page LATEX document (including
the picture code);

– a LATEX package based on flowfram;
– a PNG image file;
– an EPS file; or
– an SVG image file;

• Incorporate text, text-along-a-path and bitmap
images (for annotation and background effects);

• Alternative text may be specified for use when
exporting to a LATEX file (e.g. if the text contains
symbols or if it should be set in maths mode);

• Mappings may be used to specify what LATEX
font declarations should be used when exporting
to a LATEX file (e.g. so you can map Chancery
to \fontfamily{pzc}\selectfont).

Jpgfdraw is still in the beta stage. Occasionally
it doesn’t redraw some parts of the screen that need
updating and it doesn’t always update the bounding
box for text areas. I hope to be able to fix these
problems eventually. It also seems to have a problem
when run on Windows Vista with Java6. This is
difficult for me to test as I don’t use Vista.

5 Conclusion

There have been times over the past couple of years
when I considered giving up maintaining my pack-
ages as a result of ill-health and other commitments,
and there were a couple of occasions when I was on
the point of giving up, but then I received emails
thanking me for the work I’d done and I changed
my mind. I’m glad I didn’t give up, although my
responses to queries are somewhat slower than they
used to be.

In my work as a production editor over the past
year, I have developed a class that uses combine and
hyperref to produce books, containing collections of
articles, that can either be printed or made available
on-line. It’s my hope that at some point I’ll be able
to upload this to CTAN as well. The more I write
classes and packages, the more I learn, and that’s
always satisfying.

⋄ Nicola L. C. Talbot
University of East Anglia
Norwich, Norfolk
U.K.
N.Talbot (at) uea dot ac dot uk

http://theoval.cmp.uea.ac.uk/~nlct/

Talbot packages: An overview

68 TUGboat, Volume 31 (2010), No. 1

Tuning LATEX to one’s own needs

Jacek Kmiecik

Abstract

I will not conceal that the topic brought up in the
article has been discussed many times over, especially
on mailing lists — but it continues to come back.
There are numerous methods of adjusting LATEX to
particular typographic needs.

I am not going to advocate for a particular, the
only proper, way of tackling low-level modifications
of LATEX macros, but will be suggesting several ways
of handling such situations. As usual, there are many
ways. The choice depends on how well one masters
the tools. Also, I will restrict myself to selected
areas of typesetting, those where adjustments are
most often needed.

1 Introduction

LATEX is for many the first form of contact with a
TEX environment. In many cases, it remains so and
LATEX becomes the only set of macros (classes, styles,
packages) which a user is able to work with and which
he trusts. His own macro-creation is limited to tiny
modifications of basic definitions as described either
in textbooks, or in easily accessible documentation.

A more demanding necessity might make a user
search for an appropriate macro package in the cav-
ernous CTAN archives. According to various “omni-
scient” authorities and mailing lists, these packages
are supposed to provide — magically — a wonderful
automatic mechanism of improving everything simul-
taneously. If it is not a single package of macros,
then, unfortunately, other packages — supplementing
successive missing elements of the typesetting — are
being added to the LATEX preamble.

However, sooner or later it turns out that adding
one more package breaks the compilation, changes
the hitherto acceptable typesetting in impermissible
places, or warns with announcements about some
incompatibility.

Thanks to such situations, we can often en-
counter statements similar to the following: “I don’t
use LATEX, because once something didn’t work as I
wanted (. . .) and that’s why I use Plain TEX”.

That’s right! This should be the next step
in one’s TEX education. Nevertheless, writing all
macros for a voluminous publication may become
a spectacular challenge — some functionalities can

This is a translation of the article “Dostosowanie LATEX-a
do konkretnych potrzeb”, which first appeared in Biuletyn

GUST 25 (2008), pp. 44–52. Reprinted with permission.
Translation by Jerzy Ludwichowski and the author.

be programmed quickly and easily (e.g., headings,
imprints, footnotes), others demand advanced knowl-
edge of TEX (the contents, preparation of a hyper-
linked PDF file, multiple runs, etc.). Undisputed
educational and cognitive values do not often go
hand in hand with the hurry with which we have
to cope with difficult cases, hence there is an irre-
sistible temptation to use LATEX as it seems to be an
easier and friendlier environment. At least, it was
the assumption of its creator, Leslie Lamport.

And if we . . . let’s say . . . “marry” Plain TEX
with LATEX? In principle, all LATEX macros are more
or less extended plain macro definitions. Instead of
being exposed to limitations of ready-made packages,
it suffices to redefine the most necessary LATEX com-
mands for our own local use. Any way we look at
it, the majority of packages originated in this way —
locally needed definitions, modified canonic LATEX
macros — all have been compiled into a separate
package and adjusted to be used with the contem-
porary LATEX 2ε format. The issue of maintaining
compatibility is a different topic, which we are not
going to elaborate on. Nonetheless, we should be
aware of the existing dangers.

The purpose of this article is to suggest ways of
modifying of some basic, canonical LATEX definitions,
starting from their source code.

2 What should we start from?

From the documentation! The LATEX 2ε standard
distribution contains quite well-documented source
code — in your basic installation you can find for
sure the source directory, and in it a file entitled
source2e.tex. Its compilation gives ≈ 600 pages of
documentation of the LATEX 2ε format source code —
makes for good bedtime reading! Very instructive!
And how “plain” it is! Almost everything is written
with the conventions of primary plain macros.

3 And what’s next?

Apply the method of small steps. If your document
requires the use of colors and the desired destina-
tion format of the publication is PDF— I do not
recommend that anyone write a whole colourful PDF

machinery from scratch. We have verified and tested
packages color.sty or xcolor.sty, so we do not have
to reinvent the wheel. Likewise for the graphics
embedding macros or building tabular setups.

Let’s suppose we have to deal with a voluminous
publication. As a first step I would suggest divid-
ing the document into logically smaller parts, e.g.,
chapters, and place them in separate files attached
to the main document file. In this file, in the pream-
ble, we can put the additional essential commands,

Jacek Kmiecik

TUGboat, Volume 31 (2010), No. 1 69

or — what seems to me the most appropriate solu-
tion — we can create our own package or even a class.
Building our own local macro package seems to be
decidedly easier for a TEX beginner, so we will choose
this particular solution. Our own file mystyle.sty

should be incorporated into the preamble as follows:

\usepackage{mystyle}

Such a solution allows the use of any plain or
LATEX primary commands, on the condition that
we know what we are doing. It also allows the use
of the @ sign when naming macros. The @ sign is
used by the inner LATEX constructs (the commands
\makeatletter and \makeatother will then need to
appear in the preamble of the main document). This
gives us quite some power, but be forewarned that
without good working knowledge of the LATEX docu-
mentation and its inner workings, we may — by our
own efforts — accomplish more damage than good.
This is why I recommend only minimal modifications.
As our TEX skills reach higher levels, we may try
more challenging things . . . but for the time being
let’s stick to the small steps method . . .

4 Page layout

Let’s begin with the page layout — column size, mar-
gins, indents, side notes, headings . . . how can we
see the invisible? Where are the document elements
such as the main column, side notes, captions or
footer being placed? For DVI output:

\RequirePackage{showframe}

or when PDF is the output format:

\input{pdf-trans.tex}

\def\boxsh{\boxshow

{0 .7 .1 RG .2 w}%

{0 0 .8 RG [2 2]1 d}{}}

\let\shb\boxsh

The showframe.sty package is a part of a bigger
macro package eso-pic.sty— it helps to illustrate
the physical placement of the page contour, that
is, the locations of fixed elements of the column
exposition, such as heading, column, footer or side
notes (fig. 1).

What are the \RequirePackage and all the rest
being used for? Well, without delving into techni-
cal details of LATEX and the packages being used,
more serious tasks can hardly be approached. At
first it should suffice to say that we are defining low-
level plain TEX macros to suit our own needs. The
inquisitive user should consult the package documen-
tation or be happy with a terse: It is easier that

way! I would like to add that the pdf-trans pack-
age [3] by Pawe l Jackowski, is written in low-level
TEX so cleanly that it can be directly incorporated

4 1. Wprowadzenie

możliwości formalnej analizy są zazwyczaj uboższe lub trudniejsze do zastosowa-

nia. W książce występuje kilkanaście przykładów modeli w postaci sieci Petriego.

Omówienie każdego modelu zawiera wybrane wyniki jego analizy.

Dla kogo jest ta książka

Niniejsza książka jest przeznaczona przede wszystkim dla tych osób, które chcą

stosować sieci Petriego w badaniach naukowych lub w praktyce inżynierskiej. Jej

lektura powinna ułatwić wybór klasy sieci najbardziej odpowiadającej ich wyma-

ganiom. Książka może też posłużyć wykładowcom przedmiotów, które częściowo

dotyczą sieci Petriego. Najliczniejsze grono czytelników będą zapewne stanowić

studenci, zarówno studiów inżynierskich i magisterskich, jak i doktoranckich, na

których są wykładane elementy teorii sieci Petriego. Mam nadzieję, że książka

pomoże w poszerzyć ich wiedzę z tego zakresu.

Pisząc tę książkę, przyjąłem założenie, że czytelnik zna elementy z zakresy mate-

matyki wyższej wykładanej na pierwszym roku studiów technicznych. Dotyczy to

zwłaszcza następujących działów matematyki: algebry zbiorów, algebry liniowej

(w tym rachunku macierzowego) i teorii grafów.

Przyjęta konwencja notacyjna

Różnorodność istniejących klas sieci Petriego, a także narzędzi komputerowych

umożliwiających ich użytkowanie, spowodowała, że nie istnieje jednolita notacja

odnosząca się do zarówno graficznej reprezentacji sieci, jak i oznaczeń jej poszcze-

gólnych elementów. Notacje graficzne sieci różnią się w zależności od wybranego

oprogramowania, ale różnice te nie są zbyt zasadnicze. Sytuacja wygląda inaczej,

w przypadku formalnego opisu sieci, gdyż nawet w obrebie jednej klasy stosuje

się różne notacje. W książce próbowałem wprowadzić jednolitą notację, zarówno

przedstawiając graf sieci, jak i formułując definicję.

Internet pozwala korzystać z wielu narzędzi komputerowych, umożliwiających mo-

delowanie z zastosowaniem sieci Petriego. Nie istnieje jednak oprogramowanie

służące jednocześnie do modelowania wszystkich omawianych klas sieci, toteż

żadnego w szczególny sposób nie polecam. Dodatek C zawiera informacje o na-

rzędziach użytych w omawianych przykładach.

Figure 1: See with your own eyes what the composed
page looks like

qwerty
Figure 2: \shb depicts the boxes . . .

into LATEX 2ε. So far, I have not come across any
conflict of those macros with any LATEX macros. The
\boxsh definition, or its abbreviation \shb (show-

box) placed directly before boxes like \vbox and
\hbox will, when typeset, show their contours and
baselines (fig. 2). We need only remember to exclude
the “helpers” from the final typesetting, e.g.,

\let\shb\relax

Now we can move on to the next activity, i.e.,
setting of the page parameters as seen in the printout.
The default page sizes defined in LATEX classes usually
do not conform to the Polish typography tradition or
the requirements of our publishing houses. Nothing
stands in the way of adjusting them to our needs.
Already in the standard format, there are about
15 parameters which define the characteristic page
dimensions, and to which we have direct access. Not
everything needs to be “touched” — if we do not use
marginal notes in our document, then there is no
need to manipulate their dimensions.

Let us for example do the following:

\setlength{\paperwidth} {165mm}

\setlength{\paperheight}{238mm}

\special{papersize=\the\paperwidth,

\the\paperheight}

Tuning LATEX to one’s own needs

70 TUGboat, Volume 31 (2010), No. 1

It doesn’t seem like much . . . but if at a later
stage the document will be further processed at pre-
press or converted to the PDF format, its pages
should have proper outer dimensions (including mar-
gins, etc.). Without that magic “spell” the paper
size information will be missing from the DVI file
and most drivers (e.g., dvips) will in such a case
assume the default letter page size (11 in× 8.1 in
or 279 mm× 216 mm). Those who like minimizing
chances for trouble in the future may readily remem-
ber and appreciate this little hint.

The modern production cycle of compiling doc-
uments directly to PDF from TEX sources, with
pdfTEX, also requires these sizes to be set, this time
like so:

\pdfpagewidth 165mm

\pdfpageheight 238mm

Other default size values will surely require cor-
rections. For example:

\setlength{\textheight} {190mm}

\setlength{\textwidth} {130mm}

\setlength{\hoffset} { 0mm}

\setlength{\voffset} {-11mm}

\setlength{\oddsidemargin} { -5mm}

\setlength{\evensidemargin}{ -5mm}

\newlength\g@parindent

\setlength\g@parindent{20bp}

\setlength{\parskip} {0pt}

\setlength{\parindent} {\g@parindent}

\setlength{\leftmargini}{\g@parindent}

\setlength{\topskip} {8bp}

The auxiliary variable \g@parindent we define
above (something like a global-parindent) helps other
macros to come, where we will define distances being
multiples of the paragraph indent. Therefore, it
seems sensible to define that particular length unit
in one place. This “fixed” variable allows us to not
to worry, for example, about some lengths changing
with a change of the current font size.

What alternatives exist? One is the geometry

package — calling it with appropriate parameters al-
lows setting of all necessary dimensions of the typeset
page [6]:

\RequirePackage[pdftex,

papersize={185mm,235mm},

textwidth= 123mm,

textheight= 181mm,

inner= 42mm,

headheight= 9pt,

headsep= 8mm,

top= 14mm,

footskip= 10mm,

marginparwidth= 21mm,

marginparsep= 1mm,

includehead,

asymmetric,

]%

{geometry}

(Note: the above examples are for two different pub-
lications).

We should also mention:

\sloppy

\widowpenalty 10000

\clubpenalty 10000

\flushbottom

The \sloppy parameter forces LATEX to set quite
liberal demerit values thus allowing for sub-optimal
line breaks and page breaks. The following two
parameters, \widowpenalty and \clubpenalty, set
for the maximum demerit value of 10000, forbid
page breaks leaving “widows” or “orphans”. The
\flushbottom parameter (a possibly overzealous set-
ting) asks for the following pages to be set to exactly
the same height. Some packages may confuse the
typesetting with respect to page height.

5 Not only Computer Modern

There is nothing to prevent replacing the “core” TEX
fonts with fonts of the typographer’s choosing. We
will not go here into the problems related to using
outline fonts with TEX as they have been discussed
many times elsewhere. However, when typesetting
math texts, especially with “tough” or “heavy” math,
one should bear in mind that only the CM fonts offer
the most comprehensive set of sophisticated math
signs and symbols.

Recently the free fonts of high TEXnical quality
were joined by the TEX Gyre family of fonts. They
complement the collection of other freely available
computer fonts of Polish origin (Antykwa Pó ltawski-
ego, Antykwa Toruńska, Kurier, Iwona, Cyklop) [10].

Lets assume that our model document will use
Pagella (previously QuasiPalatino) as the base font
(the current, serif font), the sans serif Heros font
(in some installations it might lie around as Quasi-
Swiss) — for typesetting of headings or sometimes to
emphasize portions of text, and Cursor (ex-Quasi-
Courier) as the typewriter font (e.g., for program
code snippets). To achieve that one need only give
the following commands:

\RequirePackage{pxfonts}

\RequirePackage{tgheros}

\RequirePackage{tgpagella}

\RequirePackage[QX]{fontenc}

The pxfonts.sty macro package enables the use
of math symbols available with the Pagella font (the
pxfonts package in TEX distributions). Inclusion

Jacek Kmiecik

TUGboat, Volume 31 (2010), No. 1 71

of fontenc.sty with the QX option allows for easy
access to the complete set of glyphs available in the
font — for more on the (Polish) QX encoding see [9].

All those packages can also be included “whole-
sale”, with the following single command:

\RequirePackage{pxfonts,tgheros,tgpagella}

\RequirePackage[QX]{fontenc}

6 Typesetting of headings

The fundamental LATEX commands \part, \chapter,
\section, \subsection, \subsubsection, \paragraph,
and \subparagraph are responsible for the formatting
of the titles of the sectioning units of the document.
Of course, the commands do much more but for now
we are only going to discuss the formatting of their
parameter text.

First, to make it easier to set the size of the font
and line spacing, let’s define some font manipulation
utility macros:

\def\h@fam{qhv}

\def\font@def #1#2{%

\usefont{\encodingdefault}%

{\h@fam}{#1}{#2}}

\def\font@set #1#2#3#4{%

\font@def{#1}{#2}%

\fontsize{#3pt}{#4pt}\selectfont}

\def\foo@chp@num{\font@set{bx}{n} {32}{16}}

\def\foo@chp@txt{\font@set{b} {n} {18}{16}}

\def\foo@sec {\font@set{b} {n} {14}{16}}

\def\foo@sse {\font@set{m} {n} {12}{14}}

\def\foo@sss {\font@set{b} {n} {11}{13}}

\def\foo@par {\font@set{m} {n} {11}{13}}

\def\foo@spa {\font@set{m} {it}{10}{12}}

Why these fancy macro names? Well, indeed,
the naming is the writer’s choice . . . we tried to
make them intuitive (font for the headings, chapter
text, chapter number and so on) — there is no ideal,
unambiguous recipe. Here we only suggest a solu-
tion — one can define macros with almost any name.
What one should look out for, however, are names
previously used inside the format, classes or packages
used with our document.

Now we will move on to redefining the original
LATEX macros — the use of \renewcommand or \def

is crucial. The \def command is to some degree
dangerous: as a purely Plain TEX construct, it does
not control name conflicts, thus one may uninten-
tionally create quite some havoc. The \newcommand

command detects possible name conflicts and so if
we really want to redefine an already existing macro,
we should use the \renewcommand command. Let’s
start with \chapter:

\renewcommand\chapter{%

\if@openright\clearemptydoublepage

Przedmowa

Pomysł napisania tej książki zrodził się kilka lat temu, a konkretnie w 2000 ro-

ku, kiedy obroniłem pracę doktorską, której tematyka była związana z koloro-

wanymi sieciami Petriego. Rok wcześniej ukazała się książka [74], której jestem

współautorem. Zawierała ona przegląd klas sieci Petriego niskiego poziomu. Bra-

kowało jednak w literaturze książki, w której przedstawiono by wybrane klasy

sieci Petriego niskiego i wysokiego poziomu z zachowaniem jednolitych oznaczeń

i uwypukleniem różnic między tymi klasami. Postanowiłem tę lukę wypełnić, choć

realizacja tych ambitnych planów się odsuwała, głównie z powodu różnych obo-

wiązków naukowych i dydaktycznych. W tym czasie prowadziłem badania doty-

czące systemów czasu rzeczywistego. Interesowały mnie możliwości zastosowania

sieci Petriego do modelowania i analizy systemów wbudowanych, a zwłaszcza

własności czasowych takich systemów.

Udało mi się w końcu doprowadzić do skutku moje zamierzenia. Książka ta nie za-

wiera przeglądu wszystkich klas sieci Petriego, nie jest też wyczerpującym studium

na temat klas w niej opisanych. Zależało mi bowiem na przedstawieniu zarysu teo-

rii sieci Petriego przez ukazanie różnorodności klas tych sieci, metod ich formalnej

analizy oraz możliwości ich zastosowania do modelowania systemów współbież-

nych i systemów czasu rzeczywistego. Miała to być specyficzna podróż przez różne

klasy sieci, począwszy od najprostszych, skończywszy na bardzo rozbudowanych

z możliwościami hierarchizacji opisu sieci.

Wszystkie omawiane w książce klasy sieci Petriego zostały opisane z podaniem ich

formalnej definicji, z przedstawieniem ich najważniejszych własności oraz metod

ich analizy. Główny nacisk położyłem na zaprezentowanie przykładów zastosowa-

nia poszczególnych klas sieci, zwracając uwagę zwłaszcza na formalną analizę ich

własności. W kilku wypadkach ten sam system rozważam przy okazji omawiania

różnych klas, tak aby zwrócić uwagę na różne możliwości rozmaitych klas sieci

Petriego.

1

Figure 3: The beginning of an unnumbered chapter

\else\clearpage\fi

\thispagestyle{open}%

\global\@topnum\z@

\@afterindentfalse

\secdef\@chapter\@schapter}

— here we call the \clearemptydoublepage com-
mand with the objective to output, if necessary, an
empty left (even numbered) page (with head and foot
empty), just before the chapter’s title page. This
command does not exist in the canonical set of LATEX
macros, so we have to define it ourselves [2]:

\newcommand{\clearemptydoublepage}{%

\newpage{\thispagestyle{empty}}%

\cleardoublepage}

The use of a nonstandard style for the current
page \thispagestyle{open} may also have caught the
reader’s attention — we will discuss this in section 7.

The following changes reach deeper into the
source code — they cannot be explained without a
detailed analysis of the original LATEX code — those
interested are referred to the documentation. One
might also see this as an antidote for sleeplessness.
We will cut corners and go directly to the the macro
code. The macros modify the headings in the way
presented with figures 3 and 4.

Let us begin with some utility definitions (only
those which have been used to change the look of
the chapters’ titles):

\definecolor {xxv@gray} {cmyk}{0,0,0,.25}

\newlength\begin@skip

\setlength\begin@skip {46mm}

\newsavebox{\chpt@box}

\def\@stempel{\vphantom

{\foo@chp@num 0123456789}}

Tuning LATEX to one’s own needs

72 TUGboat, Volume 31 (2010), No. 1

1
Wprowadzenie

Sieci Petriego są graficznym i matematycznym narzędziem, stosowanym w wielu

różnych dziedzinach nauki. Charakteryzuje je intuicyjny graficzny język modelo-

wania, wspierany przez zaawansowane metody formalnej analizy ich własności.

Naturalnym zjawiskiem w sieciach Petriego jest współbieżność wykonywanych

akcji; dlatego też są one najczęściej postrzegane jako matematyczne narzędzie

służące do modelowania systemów współbieżnych (zob. prace: [32], [70], [74]

i [93]). Sieci, których definicję rozbudowano o model czasu, mogą być stosowane

do modelowania systemów czasu rzeczywistego (zob. prace: [11], [42], [75], [76]

i [77]).

Teoria sieci Petriego wzięła początek od pracy K. A. Petriego [51] opublikowa-

nej w 1962 roku, a swą nazwę – od nazwiska autora tej pracy. W wyniku ponad

czterdziestoletniego rozwoju tej teorii powstało wiele różnych klas sieci i rozsze-

rzono zakres ich zastosowań. W zależności od potrzeb definicję sieci zmieniano

i dostosowywano do rozważanego problemu. Na wprowadzanie takich modyfikacji

pozwala niezwykła elastyczność tej teorii. Dzięki różnorodności znanych obecnie

klas sieci można stosunkowo łatwo dobrać klasę najwłaściwszą dla danej dziedzi-

ny zastosowań. Różnorodność ta jednak utrudnia opracowanie jednolitych metod

analizy różnych klas sieci.

Sieć Petriego jest przedstawiana jako graf dwudzielny. Może ona mieć struktu-

rą hierarchiczną, znacznie ułatwiającą modelowanie złożonych systemów. Model

w postaci sieci Petriego jest nie tylko graficzną reprezentacją danego systemu.

Możliwa jest bowiem symulacja pracy sieci (najczęściej wspomagana przez od-

powiednie narzędzia komputerowe), dzięki której model taki staje się wirtualnym

prototypem reprezentowanego systemu.

Oprócz reprezentacji graficznej i możliwości symulacji pracy, na uwagę zasługuje

rozbudowana teoria, która jest podstawą formalnej analizy własności sieci Petrie-

go. Różnorodność klas sieci powoduje, że metody ich analizy znacznie się różnią.

Dla sieci o najprostszej strukturze istnieje najszerszy wachlarz tych metod i są

one stosunkowo łatwe w użyciu. W przypadku sieci najbardziej rozbudowanych

3

Figure 4: The beginning of a numbered chapter

\def\foo@chp@num{%

\font@set{qtm}{m}{n}{48}{48}}

\def\foo@chp@txt{%

\font@set{qhv}{m}{n}{26}{28}}

And now to “more serious” code snippets:

\newcommand\@make@chapterhead[2]{%

\nointerlineskip

\vspace*{-\topskip}%

\shb\vbox to\begin@skip{%

\vspace*{-.5mm}%

\parindent \z@

\language 255

\raggedright

\color{xxv@gray}%

\ifx|#2|

\sbox{\chpt@box}%

{\normalfont\foo@chp@txt

\textcolor{black}{#1}}%

\else

\sbox{\chpt@box}%

{\normalfont\foo@chp@num#1\@stempel}%

\fi

\chap@dinks

\rlap{\raisebox{10pt}[0pt][0pt]%

{\usebox{\chpt@box}}}%

\color{black}%

\rule{\linewidth}{.5pt}%

\hfill\endgraf

\par\vspace{-8pt}%

\interlinepenalty\@M

\foo@chp@txt#2\par

\vspace{\stretch{1}}

}\nointerlineskip \vskip-6pt}

That parameterized macro deals with two cases —
numbered and unnumbered chapters. Doing it that

way seems to facilitate future changes. Usage of this
definition is trivial:

% for numbered:

\renewcommand\@makechapterhead[1]{%

\@make@chapterhead

{\thechapter}%

{#1}}%

% for unnumbered:

\renewcommand\@makeschapterhead[1]{%

\@make@chapterhead

{#1}%

{}}

Any questions? \@stempel? What are the dig-
its 0–9 for? They are not needed in the presented
case. The font we use does not require it because all
digits have the same height.But let’s imagine that
the designer employed in that place an unusual, e.g.,
handwriting font — each digit has its own height and
depth . . . and the headings must be aligned “in one
line”. This definition is the easiest way to obtain the
maximal dimensions.

Now, let’s remind ourselves of how to modify
the appearance of the lower level headings — there
is little of pure plain but nonetheless:

\renewcommand\section{\@startsection

{section}% name

{1}% level

{\z@}% indent

{-3.5ex \@plus -1ex \@minus -.2ex}% above skip

{2.3ex \@plus.2ex}% below skip

{\normalfont\foo@sec}% font

}

Similarly for the titles of the lower levels down
to \subparagraph, if need be. What is left is to
insert the period sign after the section number in
the numbered titles. The most convenient way is to
redefine the proper macro:

\def\@seccntformat#1{

\csname the#1\endcsname.\quad}

Low-level, as in . . . plain!

7 Changing headers and footers

The default page headers are usually not satisfying.
The same applies to footers, where page numbers are
usually placed. However, nothing stands in our way
of changing that appearance! The manipulations
of the content of these page elements can be done
according to the following pattern:

\def\ps@myheadings{%

\def\@evenhead{ ...left head... }%

\def\@oddhead { ...right head... }%

\let\@oddfoot { ...left foot... }%

\let\@evenfoot{ ...right foot... }%

\let\@mkboth\markboth

}

Jacek Kmiecik

TUGboat, Volume 31 (2010), No. 1 73

10 2. Struktura sieci

Jeżeli zbiory węzłów i łuków grafu G są zbiorami skończonymi, to graf G nazy-

wamy grafem skończonym. �

Graf skierowany jest najczęściej przedstawiany w postaci wykresu, który składa

się z punktów reprezentujących elementy zbioru V oraz strzałek reprezentujących

2.1. Grafy skierowane 11

Definicja 2.2. Graf skierowany G = (V, A, γ) nazywamy grafem etykietowanym nad zbiorem ety-

kiet L, jeżeli łuki grafu G mają przypisane etykiety ze zbioru L. �

Przykład grafu etykietowanego nad zbiorem N przedstawiono na rys. 2.2.

8

Figure 5: Page headers

For example, the headers presented in figure 5
were defined as follows:

\newlength\full@wd

\setlength\full@wd{145mm}

\def\foo@hed@pag{%

\font@set{qhv}{b}{n}{11}{10}}

\def\foo@hed@odd{%

\font@set{qhv}{m}{n} {9}{10}}

\let\foo@hed@eve = \foo@hed@odd

The \foo@hed@pag command defines the font
to be used when typesetting the page numbers in
the header, the \foo@hed@odd and \foo@hed@eve

commands may be used to define different fonts for
the left and right running headings. In the sample
case illustrated with figure 5, the same font and size
were used for both page numbers.

The style definition of the sample page looks as
follows:

\def\ps@MYheadings{%

\def\@evenhead{\@x@line

{\makebox[22mm][l]{\foo@hed@pag\thepage}%

\foo@hed@eve\leftmark

\hfill}}%

\def\@oddhead {\@x@line

{\hspace*{22mm}\foo@hed@odd\rightmark

\hfill

\makebox[22mm][r]{\foo@hed@pag\thepage}}}%

\let\@oddfoot\@empty

\let\@evenfoot\@empty

\let\@mkboth\markboth

}

\def\ps@open{

\let\@evenhead\@empty

\let\@oddhead\@empty

\def\@oddfoot {\makebox[\textwidth][r]{%

\foo@hed@pag\thepage}}%

\def\@evenfoot{\makebox[\textwidth][l]{%

\foo@hed@pag\thepage}}%

}

Here we see the previously mentioned, private
page style \thispagestyle{open}, applied to the ini-
tial pages of chapters (figure 3 and 4). In a similar
way other needed page styles might be defined.

And now the remaining definitions:

\def\@x@line#1{%

\makebox[\textwidth][r]%

{\shb\hb@xt@\full@wd{#1}\ul}}

\newcommand\ul{\unskip

\llap{\rule[-4bp]{\full@wd}{.5bp}}}

As we see, LATEX and plain commands can be
used alongside. One only needs to remember their
functionality — parametrisation, expandability and
redefinitions.

The periods are still missing after chapter and
section numbers:

\renewcommand\chaptermark[1]{%

\markboth {\thechapter.\space#1}%

{\thechapter.\space#1}}

\renewcommand\sectionmark[1]{%

\markright{\thesection.\space{#1}}}

The default page style declaration is simple:

\pagestyle{MYheadings}

8 Redefining enumeration environments

Our customization zeal will not stop short of stan-
dard enumerations: we feel that some things should
be done about them.

LATEX enumeration environments have several
variants and applications. However, a set of instruc-
tions similar for all of them determines their ap-
pearance (hanging indents, line spacing, indents).
Unfortunately, we have to consult “the source”, re-
type appropriate parts of the code and modify the
relevant parameters. Let’s do it:

\setlength\leftmargini {\g@parindent}

\leftmargin\leftmargini

\setlength\leftmarginii {\g@parindent}

\setlength\leftmarginiii{\g@parindent}

\setlength\leftmarginiv {\g@parindent}

\setlength\leftmarginv {1em}

\setlength\leftmarginvi {1em}

\setlength\labelsep {.5em}

\setlength\labelwidth {\leftmargini}

\addtolength\labelwidth {-\labelsep}

\setlength\partopsep{0\p@}

\g@parindent, defined close to the beginning
of our code, has now found its application — now,
independent of their placement within the document,
enumerations will always be indented by the same
amount. Unless we spoil this with a strange macro
or environment.

Tuning LATEX to one’s own needs

74 TUGboat, Volume 31 (2010), No. 1

In our next move we will change the formatting
parameters for the consecutive enumeration nesting
levels of which standard LATEX allows up to six! Such
deep nesting is not used in practice. One should think
of re-writing the text rather than using very deeply
nested enumerations, which might hinder compre-
hension. Anyway, let’s now deal with the definitions:

\def\@listi{\leftmargin\leftmargini

\parsep \z@

\topsep .5\baselineskip

plus .25\baselineskip

minus .15\baselineskip

\itemsep \z@ plus .5pt}

\let\@listI\@listi

\@listi

And the deeper levels:

\def\@listii {\leftmargin\leftmarginii

\labelwidth\leftmarginii

\advance\labelwidth-\labelsep

\topsep \z@

\parsep \z@

\itemsep \z@}

\def\@listiii{\leftmargin\leftmarginiii

\labelwidth\leftmarginiii

\advance\labelwidth-\labelsep

\itemsep \z@}

. . . enough! Those who grasped the rules of the game
will easily tackle even deeper levels if need be. and, as
demonstrated, that kind of activity requires reading
the source code of classes and styles.

Let’s change the bullets for the consecutive nest-
ing levels (we will skip the last two levels):

\renewcommand\labelitemi {\sq@black}

\renewcommand\labelitemii {\sq@white}

\renewcommand\labelitemiii{\textemdash}

\renewcommand\labelitemiv {\ast}

\def\sq@black{\rule[.1ex]{1ex}{1ex}}

\def\sq@white{\mbox{%

\fboxsep=0pt

\fboxrule=.5pt

\raisebox{.15ex}{\fbox{%

\phantom{\rule{.8ex}{.8ex}}}}}}

The following command might turn out to be
very useful:

\def\keepitem{\@beginparpenalty\@M}

— we forbid page breaks before the first short item.
It suffices to give it just before that item — this is
the equivalent of eliminating “orphans” in running
text.

For those liking pure LATEX solutions, the pack-
age enumitem is worth recommending. It allows for
individual tailoring of each enumeration through
proper parameters, or might be applied globally, in
the preamble:

\setenumerate{%

labelsep = 6pt,

leftmargin = \leftmargini,

itemsep = 1pt,

topsep = 6pt,

partopsep = 0pt,

parsep = 0pt

}

\setitemize{%

label = \textsquare\hfill,

labelsep = 6pt,

leftmargin = *,

itemsep = 1pt,

topsep = 6pt,

partopsep = 0pt,

parsep = 0pt

}

The meanings of the parameters are intuitive.
Their names correspond to the various lengths used
to construct enumerations. A more complete descrip-
tion of the package might be found in its documen-
tation [1].

9 Modifying footnotes

Another typesetting element we might want to mod-
ify is footnotes. Let’s assume we’d like the rule
separating the footnote from the text column to be
of full column width:

\renewcommand\footnoterule{%

\kern-3\p@

\hrule width\linewidth height.5pt

\kern2.5\p@}

That’s the way to gain direct access to the sep-
arating rule: we can modify its length, thickness,
position and even colour!

With the replacement of the default font, need
may arise to correct the positioning of footnote num-
bers both in the running text and the footnotes.
Changes might be needed in the font and size of the
indexes, or the footnote marks.

\def\@makefnmark{\hbox{%

\@textsuperscript{\normalfont\@thefnmark}}}

\renewcommand\@makefntext[1]{%

\parindent\g@parindent%

\noindent

\hb@xt@\parindent{\hss\@makefnmark\space}#1}

10 Positioning floating objects

Figures and tables are amongst the most often used
floating objects. One may also encounter other
objects with distinct typographic properties (algo-
rithms, screen shots) and separate numbering. The
placement of such typesetting elements is controlled
in LATEX through several parameters which, unfor-
tunately, have their defaults set to rather restrictive

Jacek Kmiecik

TUGboat, Volume 31 (2010), No. 1 75

values. For publications with a large number of tables
and figures, it might be difficult to obtain aestheti-
cally pleasing page breaks and proper placements of
the elements with respect to the running text.

However, again nothing stands in our way to
slightly relax those parameters. For example:

\setcounter {topnumber} {3} %%{2}

\renewcommand{\topfraction} {.9} %%{.7}

\setcounter {bottomnumber} {0} %%{1}

\renewcommand{\bottomfraction} {.2} %%{.3}

\setcounter {totalnumber} {3} %%{3}

\renewcommand{\textfraction} {.1} %%{.2}

\renewcommand{\floatpagefraction} {.85}%%{.5}

\setcounter {dbltopnumber} {2} %%{2}

\renewcommand{\dbltopfraction} {.8} %%{.7}

\renewcommand{\dblfloatpagefraction}{.8} %%{.5}

The meaning of the particular counters and pa-
rameters can be found in the LATEX documentation.
The default values offered by the format and stan-
dard LATEX classes are given after the double percent
sign. The modified values will surely cause a better
placement of our floating objects.

11 Smaller fonts for tables et al.

Instead of placing a command changing the current
font size in each and every table environment, we
may achieve the desired result globally:

\def\font@caption{\font@set{qtm}{m}{n}{8}{10}}

\def\@floatboxreset {%

\reset@font

\font@caption

\centering

\@setminipage

}

Isn’t it simple? In a similar way the e.g., verbatim
environment might be modified — a slight decrease
of the typewriter font size without reducing the read-
ability of these fragments. This may be achieved
with a small change to the canonical LATEX format:

\def\verbatim@font{%

\normalfont\ttfamily\small}

However, one should bear in mind that some spe-
cialized packages dealing with verbatim-like environ-
ments will be immune to such machinations. Such
packages might have internal font mechanisms and
offer considerable flexibility.

12 Summary

The topic has by no means been exhausted — but still,
I hope that the examples given here will convince
those less versed in LATEX that even that format may
be modified to achieve one’s own ends.

Turning such code snippets into styles or classes
is a separate subject and, often, requires more in-

depth studies of the subject, e.g., compatibility with
other macro packages. There will be no way around
reading the documentation or, in many cases, analys-
ing the TEX code.

Some examples in this article were taken from
this book by Marcin Szpyrka: Sieci Petriego w mo-

delowaniu i analizie systemów wspó lbieżnych, War-
saw 2007. The book was typeset for Wydawnictwa
Naukowo-Techniczne using the techniques presented
here.

References

[1] Javier Bezos: Customizing lists with the

enumitem package, mirror.ctan.org/macros/
latex/contrib/enumitem/

[2] Michel Goossens et al.: The LATEX

Companion, Addison-Wesley, 2nd edition
(2004)

[3] Pawe l Jackowski, Box Transformations

in pdf-trans.tex, mirror.ctan.org/macros/
generic/pdf-trans/

[4] Helmut Kopka, Patrick W. Daly: Guide to

LATEX 2ε, Document Preparation for Beginners

and Advanced Users, Addison-Wesley,
4th edition (2003)

[5] Leslie Lamport: LATEX System opracowywania

dokumentów Podrȩcznik i przewodnik

użytkownika [LATEX: A Document Preparation
System], Wydawnictwa Naukowo-Techniczne
(2004)

[6] Hideo Umeki: The geometry package, mirror.
ctan.org/macros/latex/contrib/geometry/

[7] Marcin Woliński: Moje w lasne klasy

dokumentów [My own document classes],
www.math.upenn.edu/tex_docs/latex/mwcls/

mwclsdoc.pdf

[8] Marcin Woliński: Ku polskim klasom

dokumentów dla LATEX-a, Biuletyn GUST,
nr 15, 2000

[9] Kodowanie QX [The QX encoding],
www.gust.org.pl/doc/fonts/qx/

[10] Projekty fontowe [Font projects], www.gust.
org.pl/doc/fonts/projects

⋄ Jacek Kmiecik
AGH University of Science and

Technology
University Computer Centre
al. Mickiewicza 30, 30-059 Kraków
jk (at) agh dot edu dot pl

Tuning LATEX to one’s own needs

76 TUGboat, Volume 31 (2010), No. 1

Some misunderstood or unknown
LATEX2ε tricks

Luca Merciadri

1 Introduction

Some simple things to do in LATEX 2ε are often mis-
understood (or simply unknown) to — even skilled —
authors. We here present some useful coding for:

1. pedagogical uses : write a matrix with borders,
show simplifications of terms in mathematical
developments;

2. presenting data: make an accolade in a table;
3. solving Springer’s tocdepth problem in svmono;
4. writing European envelopes in an efficient way ;
5. improving typography : the microtype package.

These examples come from (Merciadri, 2009).

2 Pedagogical uses

It is always interesting to give students (whatever
the institution) some clues about presented concepts.
Sometimes, the LATEX skills of lecturers are not suf-
ficient. Despite their great ideas, these ideas some-
times fall into oblivion. Why? All their material is
illustrated using LATEX. If they decide to show some-
thing they cannot code in LATEX, they will need to
write it in another form (a non-LATEX form). That
makes it directly “less serious”, or at least less com-
petent than they want to appear. Facing this situa-
tion, they may choose to put aside their idea rather
than show anything.

That is a bad thing, as LATEX can do many
things, even if it is sometimes tricky. A typesetting
program should not limit the writer.

2.1 Matrix with borders

Let’s say you want to explain an adjacency matrix
to students. You first draw the triangle in Figure 1.
(By the way, to make the drawing I used LATEXDraw
(http://latexdraw.sourceforge.net), which can
generate graphics in PSTricks.)

1

2

3

Figure 1: Graph example.

Next, you need to typeset its adjacency matrix.
How? One of your colleagues has created this:

MS =





1 2 3

1 0 1 0
2 0 0 1
3 1 1 0





He’s away now, so you can’t ask him how he did it.
So here’s how:

\mathcal M_{S} =

\bordermatrix{

& 1 & 2 & 3 \cr

1 & 0 & 1 & 0 \cr

2 & 0 & 0 & 1 \cr

3 & 1 & 1 & 0 \cr

}

Side note: \bordermatrix uses \tabular un-
derneath, so, as with every tabular, you can use
\hline to draw a horizontal line.

2.2 Show simplifications

It is sometimes helpful, particularly when writing
long mathematical developments, to show the sim-
plifications which can be done, especially when the
developments become tricky. (The opposite is also
true: it sometimes happens in proofs that you choose
to write, for example,

(x + 1)2

as

(x + 1 + (1− 1))(x + 1 + (1− 1))

as a step on the way to the result you want to prove.)
For cancelling terms, you might use \not, but

it is not very efficient, and was not implemented for
this. A better alternative is to use the cancel pack-
age, thus:

\usepackage{cancel}

in your preamble, and then

\dfrac{\cancel{(b-a)} (a^2+ab+b^2)}

{\cancel{(b-a)}(b+a)}

in the body. The result is:

✘✘✘✘(b− a)(a2 + ab + b2)

✘✘✘✘(b− a)(b + a)
.

Typographically, cancelling terms like this is
ugly, but, pedagogically, it can be very useful for
students.

3 Presenting data

Tables constitute a natural way to display data with-
out taking too much space. They can be very useful
with judicious choice of data.

Luca Merciadri

TUGboat, Volume 31 (2010), No. 1 77

3.1 With braces

Let’s say that you want to make a table. Everything
is set up: you have the data, the bibliography ref-
erences, and you have written the whole table. But
you are puzzled, because you want to put a connect-
ing brace at some place to help the reader. You can
use:

\usepackage{multirow}

\usepackage{bigdelim}

in the preamble, and

\begin{tabular}{l|l|r}

\hline

a & \rule{0pt}{10pt} b &\\

\hline

c & d & \rule{0pt}{12pt}

\multirow{2}{*}{}

\rdelim\}{2}{1cm}[text]\\

e & f &

\end{tabular}

in the body. The (invisible) \rule commands stop
the b and the brace from touching the horizontal rule
above. The result:

a b

c d
}

text
e f

4 Springer’s tocdepth problem

Springer is one of the largest mathematical publish-
ers. When writing a book with their svmono class,
you may realize that it does not respect tocdepth.
As a result, subparagraphs cannot be included in the
table of contents — it can include chapters, sections,
subsections, subsubsections, and paragraphs . . . but
not subparagraphs. The following code solves this:

\makeatletter

\renewcommand\subparagraph{%

\@startsection{subparagraph}{4}{\z@}%

{-18\p@}% \p@lus -4\p@ \@minus -4\p@}%

{6\p@}% \p@lus 4\p@ \@minus 4\p@}%

{\normalfont\normalsize\itshape

\rightskip=\z@ \@plus 8em%

\pretolerance=10000}%

}

\makeatother

5 Envelopes

You’d like to write envelopes with LATEX but do not
know how. Here is one global solution. What could
be better looking than a LATEX-generated envelope?

5.1 C6 standard and adaptations

Here is an example of an envelope document (using
the C6 standard size).

\documentclass[12pt]{letter}

\usepackage{geometry}

\geometry{paperheight=162mm,paperwidth=114mm}

\usepackage{graphics}

\usepackage[c6envelope,noprintbarcodes,

rightenvelopes,printreturnaddress]

{envlab}

\makelabels

\begin{document}

\startlabels

\mlabel{%

% Sender’s info:

LastName FirstName\\

Street No\\

ZIPcode City (Country)}{

% Receiver’s info:

LastName FirstName\\

Street No\\

ZIPcode City (Country)}

\end{document}

You can directly print the output of such a code on
a C6 envelope. If your envelopes have height M mm
and width N mm, just replace the third line in this
code with:

\geometry{paperheight=Mmm,paperwidth=Nmm}

5.2 In the printer

You need to put your C6 envelope in your printer as
illustrated at Figure 2.

162
m

m

114 mm

Figure 2: How to put your C6 envelope in the printer.

5.3 Sample output

An example of the envelope’s output which will be
produced is given in Figure 3.

Some misunderstood or unknown LATEX 2ε tricks

78 TUGboat, Volume 31 (2010), No. 1

162 mm

11
4

m
m

LastName FirstName
Street No

ZIPcode City (Country)
15mm

1
5
m

m

LastName FirstName
Street No
ZIPcode City (Country)

51 mm

6
7
m
m

Figure 3: Generated C6 envelope.

5.4 Standard envelope sizes

Here are some standard sizes for envelopes:

1. C4 format: 22,9 cm × 32,4 cm, to transport an
A4 sheet,

2. C5 format: 16,2 cm × 22,9 cm, to transport an
A4 sheet folded one time,

3. C6 format: 11,4 cm × 16,2 cm, to transport an
A4 sheet folded two times.

You can directly modify the envelope code in Sec-
tion 5.1 to match the dimensions of your envelope.

6 Improving typography

According to Schlicht (2009), the microtype package
provides a LATEX interface to the micro-typographic
extensions of pdfTEX: most prominently, character
protrusion and font expansion. Furthermore, it pro-
vides for the adjustment of interword spacing and ad-
ditional kerning, as well as hyphenatable letterspac-
ing (tracking) and the possibility of disabling all or
selected ligatures.

That is, microtype basically helps you produce
better output when used in conjunction with pdfTEX.

You do not have to worry over the details; just use:

\usepackage{microtype}

in the preamble of your document. If you are using
babel, for further refinement you may write

\usepackage[babel=true]{microtype}

An example of its interest is illustrated by the
following phenomenon. This document has been
typeset using ltugboat class and, among others, the
microtype package, with the options which were
given before. If this package is not added to the
preamble, a black box appears in the first sentence
of Section 2: the period was too far into the margin.
With microtype loaded, all is well.

Many options can be selected with microtype.
Reading its nice manual (Schlicht, 2009) is a fruitful
way to learn more about typesetting.

⋄ Luca Merciadri
University of Liège
Luca.Merciadri (at) student dot ulg dot

ac dot be

http://www.student.montefiore.ulg.ac.be/

~merciadri/

References

Downes, Michael. Short Math Guide for LATEX,
2002. ftp://ftp.ams.org/pub/tex/doc/
amsmath/short-math-guide.pdf.

Merciadri, Luca. “A Practical Guide to LATEX Tips
and Tricks”. 2009.

Schlicht, R. The microtype package: An interface

to the micro-typographic extensions of pdfTEX,
2009. http://mirror.ctan.org/macros/
latex/contrib/microtype/microtype.pdf.

Luca Merciadri

TUGboat, Volume 31 (2010), No. 1 79

LATEX3 News
Issue 3, January 2010

Happy New Year

Welcome to the holiday season edition of ‘news of our
activities’ for the LATEX3 team.

Recent developments

The last six months has seen two significant releases
in the LATEX3 code. In the ctan repository for the
xpackages,1 you’ll find two items of interest:

• A revised version of xparse; and

• The new package xtemplate, a re-implementation of
template with a new syntax.

Special thanks to Joseph Wright who handled the im-
plementations above almost single-handedly (with lots
of input and feedback from other members of the team
and members of the latex-l mailing list).

These two packages are designed for the LATEX
package author who wishes to define document com-
mands and designer interfaces in a high-level manner.

xparse This package allows complex document com-
mands to be constructed with all sorts of optional
arguments and flags. Think of how \newcommand al-
lows you to create a command with a single optional
argument and xparse is a generalisation of that idea.

xtemplate This package requires more explanation.
Xtemplate is designed to separate the logical infor-
mation in a document from its visual representation.
‘Templates’ are constructed to fulfil individual typeset-
ting requirements for each set of arguments; to change
the look of a certain part of a document, instantiations
of templates can be swapped out for another without
(a) having to change the markup of the source docu-
ment, or (b) having to edit some internal LATEX macro.

LATEX2ε packages, such as geometry or titlesec, al-
ready provide parameterized interfaces to specific doc-
ument elements. For example, one may use titlesec to
change the layout of a \section: one modifies its lay-
out parameters via \titleformat and \titlespacing.
In a way, such packages define a template for a specific
document element and some manipulation commands
to instantiate it. However, the moment the intended

1http://mirror.ctan.org/tex-archive/macros/latex/

contrib/xpackages/

layout is not achievable with one package you are on
your own: either you have to resort to low-level pro-
gramming or find some other high-level package which,
of course, comes with its own set of conventions and
manipulation commands.

The xtemplate package can be thought of a gener-
alization of such ideas. It provides a uniform interface
for defining and managing templates for any kind of
document element and most importantly provides a
uniform interface for instantiating the layout.

Thus the designer activity of defining or modifying
a document class is limited to selecting the document
elements that should be provided by the class (e.g.,
\chapter, \section \footnote, lists, . . .), selecting
appropriate “named” templates for each of them, and
instantiating these templates by specifying values for
their layout parameters. If a desired layout can’t be
achieved with a given template a different template for
the same document element can be selected.

Programming is only necessary if no suitable tem-
plate for the intended layout is available. It is then that
a LATEX programmer has to build a new template that
supports the layout requirements. Once this task is
complete, the template may be added to the selection
of templates that designers and users may choose from
to define or adjust document layouts seamlessly.

This is a slight gloss over the complexities of the
package itself, which you can read about in the docu-
mentation. We’ve tried to document xtemplate clearly
but we’d love feedback on whether the ideas make sense
to you.

As an addendum to the introduction of xtemplate,
the older template package will be retired in the near
future. To our knowledge there is only a single package
on ctan that uses template, namely xfrac, and members
of the LATEX team are in the process of switching this
package over to xtemplate. If you have any private code
that uses template, please let us know!

Upcoming plans

Having announced the updated xparse and the new
xtemplate, the next stage of development will revolve
around using these two systems in the other compo-
nents of the xpackages, feeding back our experience in
practise with the original ideas behind the designs and
evaluating if the packages are meeting our expectations.

LATEX3 News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2010, all rights reserved.

80 TUGboat, Volume 31 (2010), No. 1

Beyond \newcommand with xparse

Joseph Wright

1 Introduction

The LATEX 2ε \newcommand macro is most LATEX
users’ first choice for creating macros. As well as the
‘sanity checks’ it carries out, the ability to define mac-
ros with an optional argument is very useful. How-
ever, to go beyond using a single optional argument,
or to create more complex input syntaxes, LATEX 2ε

users have to do things ‘by hand’ using \def or load
one of the packages which extend \newcommand (for
example twoopt (Oberdiek, 2008)).

As part of the wider efforts to develop LATEX3,
the xparse package (LATEX3 Project, 2009) aims to
replace \newcommand with a much more flexible set
of tools. This means looking again at the way that
commands are defined, and so xparse uses different
syntax conventions to \newcommand. In this article,
I will be looking at some of the highlights of xparse.

2 Creating document commands

LATEX 2ε provides not only \newcommand, but also
\renewcommand and \providecommand, all sharing
a common syntax. xparse also provides a family of
related commands following the same pattern:

• \NewDocumentCommand For defining a macro not
already defined, giving an error message if it is.

• \RenewDocumentCommand For changing a defini-
tion, issuing an error message if the macro does
not already exist.

• \ProvideDocumentCommand Creates a macro if
it does not exist, and otherwise does nothing:
i.e., will not change an existing definition.

• \DeclareDocumentCommand Does no checks for
an existing definition: simply defines the macro
using the expansion given.

As \DeclareDocumentCommand always creates an up-
dated definition, it is most convenient for the ex-
amples in the rest of this article.

The \DeclareDocumentCommand function takes
three mandatory arguments:

1. The name of the function to define;

2. An ‘argument specification’;

3. The code which the function expands to.

\DeclareDocumentCommand \foo { m } {%

% Code here

}

The first and third arguments are essentially the
same as the equivalents for \newcommand: it is the
argument specification that marks out an xparse defin-

ition. As you might guess from the above example,
it is enclosed in braces, and spaces are ignored.

3 Argument specifications

The basic idea of an argument specification (‘arg
spec’) is that each argument is listed as a single letter.
This means that the number of letters tells you how
many arguments a function takes, while the letters
themselves determine the type of argument. As the
argument specification is a mandatory argument, a
function with no arguments still needs an arg spec.

\DeclareDocumentCommand \foo { } {%

% Code with no arguments

}

xparse provides a range of argument specifier
letters, some of which are somewhat specialised. The
following is therefore only covers the most generally
useful variants in detail.

Mandatory arguments are created using the let-
ter m. So

\DeclareDocumentCommand \foo { m m } {%

% Code with 2 arguments

}

is nearly equivalent to

\newcommand*\foo[2]{%

% Code with 2 arguments

}

The ‘nearly’ is an important point: in contrast to
\newcommand, xparse functions are not \long by de-
fault. In xparse, we can decide for each argument
whether to allow paragraph tokens or not. This is
done by preceding the arg spec letter by +:

\DeclareDocumentCommand \foo { m +m } {%

% #1 No \par tokens allowed

% #2 \par tokens permitted

}

\DeclareDocumentCommand \foo { +m +m } {%

% Both arguments allow \par

}

LATEX optional arguments with no default value
are given the letter o, while those with a default
value are given the letter O. The latter also requires
the default itself, of course!

\DeclareDocumentCommand \foo { o m } {%

% First argument optional, no default

% Second argument mandatory

}

\DeclareDocumentCommand \foo

{ O{bar} m } {%

% First argument optional, default "bar"

% Second argument mandatory

}

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 81

The use of two separate letters here illustrates an-
other LATEX3 concept: functions used for setting up a
document should have a fixed number of mandatory
arguments. So while o is given with no additional
information, O must always be given along with the
default (as shown).

Thus far, the xparse method does not go signi-
ficantly beyond what is possible using \newcommand.
However, as well as recognising more types of argu-
ment, xparse also allows free mixing of optional and
mandatory arguments. For example, it is easy to
create a function with two optional and two long
mandatory arguments in one step.

\DeclareDocumentCommand \foo

{ o +m o +m } {%

% Four args, #1, #2, #3 and #4

% Only #2 and #4 can include \par tokens

}

Creating this type of behaviour is far from trivial
without xparse.

Generalising the idea of a LATEX 2ε optional ar-
gument, which is always enclosed in square brackets,
xparse can create optional arguments delimited by
any pair of tokens. This is done using the letters
d (no default value) and D (with default value): ‘d’
stands for ‘delimited’. So we can easily add an argu-
ment in parentheses or angle brackets, for example.

\DeclareDocumentCommand \foo

{ d() D<>{text} m } {%

% Optional #1 inside (...)

% Optional #2 inside < ... >

% with default "text"

% Mandatory #3

}

A standard LATEX 2ε method to indicate a spe-
cial variant of a macro is to add a star to its name.
xparse uses the letter s to indicate this type of argu-
ment. There is then a need to indicate if a star has
been seen. This done by returned one of two special
values (\BooleanTrue or \BooleanFalse), which
can be checked using the function \IfBooleanTF:

\DeclareDocumentCommand \foo { s m } {%

\IfBooleanTF #1 {%

% Starred stuff using #2

}{%

% Non-starred stuff using #2

}%

}

A generalised version of the s specifier, with the letter
t for ‘token’. This works in exactly the same way,
but for an arbitrary token, which is given following
the ‘t’.

\DeclareDocumentCommand \foo { t/ m } {%

\IfBooleanTF #1 {%

% Code if a slash was seen

}{%

% Code if no slash was seen

}%

}

Of the more specialised specifier letters, per-
haps the most interesting is u, to read ‘up to’ some
specified value.

\DeclareDocumentCommand \foo

{ u{stop} } {%

% Code here

}

\foo text stop here

Here, the code will parse ‘text␣’ as #1. Following
standard TEX behaviour, the space between ‘text’
and ‘stop’ will be picked up as part of the argument.

4 Optional arguments

\newcommand does not differentiate between an op-
tional argument which has not been given and one
which is empty:

\newcommand\foo[2][]{%

% Code

}

\foo{bar}

\foo[]{bar}

In both cases, #1 is empty: not entirely helpful. It is
possible to get around this using a suitable default
value, but xparse aims to solve this problem in a
general fashion.

When no default is available for an optional argu-
ment, xparse will return the special marker \NoValue
if the argument is not given. It is then possible to
check for this marker using the \IfNoValue test:

\DeclareDocumentCommand \foo { o m } {%

\IfNoValueTF{#1}{%

% Stuff just with #2

}{%

% Stuff with #1 and #2

}%

}

Following the standard LATEX3 approach, this test
is available with versions which only have a true or
false branch:

\DeclareDocumentCommand \foo { o m } {%

\IfNoValueF{#1}{%

% Stuff with #1

}%

% Stuff with #2

}

Beyond \newcommand with xparse

82 TUGboat, Volume 31 (2010), No. 1

5 Robustness

xparse creates functions which are naturally ‘robust’.
This means that they can be used in section names
and so on without needing to be protected using
\protect. This makes using functions created using
xparse much more reliable than using those created
using \newcommand, particularly when there are op-
tional arguments.

xparse is also designed so that optional argu-
ments can themselves contain optional material. For
example, if you try

\newcommand*\foo[2][]{%

% Code

}

\foo[\baz[arg1]{arg2}]{arg3}

you will find that \foo will pick up ‘\baz[arg1’ as
#1 and ‘arg2’ as #2: not what is intended. However,
the same code with xparse

\DeclareDocumentCommand \foo { o m } {%

% Code

}

\foo[\baz[arg1]{arg2}]{arg3}

will parse ‘\baz[arg1]{}’ as #1 and ‘arg’ as #2, as
anticipated.

6 Fully expandable commands

There are a small number of circumstances under
which fully expandable detection of optional argu-
ments is desirable. For example, the etextools pack-
age (Chervet, 2009) provides a number of utility
macros to produce this type of macro.

Rather than require the learning of an entirely
new method for creating purely expandable com-
mands, xparse can generate them in an analogous
manner to normal (robust) commands.

\DeclareExpandableDocumentCommand \foo

{ o m } {%

% Expandable code

}

This process has some limitations, some of which
can be detected by xparse at definition time. It is
therefore intended for exceptional use when a robust
command will not behave suitably.

7 Environments

In analogy to the relationship between \newcommand

and \newenvironment, xparse provides the function
\DeclareDocumentEnvironment (and variants) for
creating environments. The same argument spe-
cifications are used for declaring the arguments to
\begin{...}. The crucial difference to standard
LATEX 2ε environments is that the arguments are
also available in the \end{...} code.

\DeclareDocumentEnvironment {foo} { o m } {%

% Begin code using #1 and #2

}{%

% End code using #1 and #2

}

8 Conclusions

By providing a single interface for defining both
simple and complex user functions, xparse frees us
from needing to worry about the detail of parsing
input. Almost all cases can be covered without the
need to use low level methods to process input.

Final note: you can use xparse in LATEX 2ε. Just:

\usepackage{xparse}

References

Chervet, Florian. “The etextools package: An
ε-TEX package providing useful (purely
expandable) tools for LATEX users and
package writers”. Available from CTAN,
macros/latex/contrib/etextools, 2009.

LATEX3 Project. “The xparse package: Generic
document command processor”. Available from
CTAN, macros/latex/contrib/xpackages/
xparse, 2009.

Oberdiek, Heiko. “The twoopt package”. Part of
the oberdiek bundle, available from CTAN,
macros/latex/contrib/oberdiek, 2008.

⋄ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2 dot co dot uk

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 83

Programming key–value in expl3

Joseph Wright

1 Introduction

Key–value entry, in which a series of 〈key〉 = 〈value〉
statements are given in a comma-separated list, is
a powerful method for specifying a flexible range of
values in (LA)TEX. For the user, this type of input
avoids the need for a very large number of control
macros to alter how a LATEX package or class behaves.
Using key–value input also allows the programmer
to expose a very wide range of internal settings.
Used properly, this should avoid the need for users
to access or modify the internal code of a LATEX
package or class to achieve the desired behaviour.

Programming key–value methods can be con-
fusing, as the link between the user interface and
implementation at the code level is not always ob-
vious. Christian Feuersänger and I have given an
overview of programming key–value input using most
of the LATEX 2ε implementations (Wright and Feuer-
sänger, 2010), covering both the broad concepts and
the implementation details.

The new possibilities opened up by the expl3

programming language of LATEX3 (LATEX3 Project,
2010) include providing a new, consistent interface
for creating key–value input. Programming using
expl3 is somewhat different from traditional (LA)TEX,
and I covered the key general concepts for using
expl3 in an earlier TUGboat article (Wright, 2010).
In this article, I will focus on how expl3 implements
key–value methods, with an assumption of some
familiarity with both expl3 and using key–value with
LATEX 2ε.

2 Low-level key–value support: l3keyval

The expl3 bundle of modules includes two with key in
their name, l3keyval and l3keys. The two are aimed
at different parts of the programming process, and
most of this article will focus on l3keys. However,
some idea of the place of l3keyval in the larger scheme
is useful.

The l3keyval module provides low-level parsing
of key–value input, used by l3keys but also available
for other purposes. Thus, l3keyval does not do any-
thing beyond split a list first at each comma (that is,
into key–value pairs), and then into a key and value.
It includes the facility to sanitize the category codes
of ‘,’ and ‘=’, and also to ignore spaces if necessary.

The result is that, while l3keyval is crucial for
key–value support using expl3, the exact mechanisms
used are unimportant. This frees us to focus on the
facilities provided by l3keys. (Well, it frees you from

understanding l3keyval: I wrote most of l3keys, so I
have to know what is going on!)

3 The design ideas for l3keys

Perhaps the best package for defining key–value input
using LATEX 2ε methods is pgfkeys (Tantau, 2008). It
uses key–value input in the definition of keys them-
selves, and thus uses the power of key–value methods
to help the programmers as well as the end user. The
approach taken by the l3keys module in expl3 is in-
spired by pgfkeys, although programmers familiar
with the latter will find some important differences.

The main design ideas for l3keys were:

• Use of key–value methods for creating keys at
the programming level;

• Separate functions for defining and setting keys
(namely, \keys_define:nn and \keys_set:nn);

• ‘Fit’ with the LATEX3 syntax and variable con-
ventions;

• Rich set of key types, including clear handling
of multiple choices.

Taking these ideas and concepts from pgfkeys,
l3keys introduces the idea of ‘properties’ for keys.
Each valid key name must have at least one property,
to attach some code to the key. By combining a
number of properties, a wide range of effects can be
created without an overly-complex interface.

4 Functions for keys

Keys are created using the \keys_define:nn func-
tion, where the function name follows general expl3

conventions and thus requires two arguments. The
first is the module name with which the keys are
associated. Typically, this will be the same as the
LATEX 2ε package or LATEX3 module name being cre-
ated, although it can be more complex. The second
argument for \keys_define:nn is a list of keys, prop-
erties and values, which are then used to set up the
key–value system.

\keys_define:nn { module } {

key-one .property-a:n = value-one ,

key-one .property-b:n = value-two ,

key-two .property-a:n = value-three ,

}

As illustrated, the ‘properties’ of a key are indicated
starting with a full stop (period) character at the end
of the name of the key. (Remember that expl3 code
blocks ignore spaces, so there are no significant spaces
in the example.) In line with expl3 conventions, each
property includes a specification to indicate what
arguments it expects.

The second part of using key–value methods is
setting keys, and is handled by the \keys_set:nn

Programming key–value in expl3

84 TUGboat, Volume 31 (2010), No. 1

function. This also takes the module as the first
argument and a key–value list as the second:

\keys_set:nn { module } {

key-one = value-one ,

key-one = value-two ,

key-two = value-three ,

}

Here, the key–value list is used along with the key
implementation to ‘set’ the keys.

\keys_define:nn will almost always appear in-
side code blocks, and so does not carry out any sanity
checks on category codes of its input. On the other
hand, \keys_set:nn is likely to handle user input,
and so does carry out these checks. It is also worth
saying that \keys_set:nn will typically be ‘wrapped
up’ in a user-accessible function, say, \modulesetup.
Using the LATEX3 xparse module, this might look like:

\DeclareDocumentCommand

\modulesetup { +m } {

\keys_set:nn { module } {#1}

}

or using traditional LATEX 2ε:

\newcommand \modulesetup [1] {

\keys_set:nn { module } {#1}

}

5 Key properties

The most general property that can be given for a
key is .code:n. This associates completely general
code with a particular key name; the value given to
a key when used is available within the code as #1.

\keys_define:nn { module } {

key .code:n = You~gave~input~#1! ,

...

}

As is generally the case with key–value input, we
do not need braces around the code here, as it is
delimited by the comma separating key–value pairs.
The only exception is if the code itself contains , or
= characters, which of course need to be ‘hidden’.

Related to the .code:n property is .code:x.
Following expl3 conventions, the difference here is in
the expansion of the code. .code:n carries out no
expansion, whereas .code:x carries out an \edef-
like procedure:

\tl_set:Nn \l_tmp_tl { You~said }

\keys_define:nn { module } {

key-one .code:x = \l_tmp_tl\~‘‘#1’’,

key-two .code:n = \l_tmp_tl\~‘‘#1’’,

}

\tl_set:Nn \l_tmp_tl { You~typed }

If inside the document body we then do

\keys_set:nn { module } {

key-one = text ,

key-two = more~text ,

}

the result will be to print ‘You said “text”’ followed
by ‘You typed “more text”’.

5.1 Storing values

One of the most common tasks to carry out using key–
value methods is storing values in variables. While
this can be done using the .code:n property, a series
of dedicated properties are available, all of which
follow the same general pattern.

\keys_define:nn { module } {

key-one .dim_set:N = \l_module_dim ,

key-two .int_set:N = \l_module_int ,

key-three .skip_set:N = \l_module_skip ,

key-four .tl_set:N = \l_module_tl ,

}

As illustrated, each property should ‘point’ to a vari-
able to store the value given. While the examples
here use LATEX3-style variables, the properties will
also work with variables following LATEX 2ε naming
conventions. Giving the setting instruction:

\keys_set:nn { module } {

key-four = content

}

will set token list variable \l_module_tl to the text
content. (As a reminder, a LATEX3 ‘token list vari-
able’ is a macro which is used as a variable to store
tokens, often text.)

Assignments using the .〈var〉_set:N properties
are local, which is normally what you want. How-
ever, global assignments can also be made, using
the .〈var〉_gset:N properties. These are set up and
used in exactly the same way as the local versions:

\keys_define:nn { module } {

key-one .tl_set:N = \l_module_tl ,

key-two .tl_gset:N = \g_module_tl ,

}

\keys_set:nn { module } {

key-one = text, % Locally

key-two = text % Globally

}

Values can be stored in token list variables either
as-given or with full (\edef) expansion. As the
expansion takes place later it cannot be indicated
using an argument specifier. Instead, two ‘expand
then store’ properties are available:

\keys_define:nn { module } {

key-one .tl_set_x:N = \l_module_tl ,

key-two .tl_gset_x:N = \g_module_tl ,

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 85

}

\tl_set:Nn \l_tmp_tl { text }

\keys_set:nn { module } {

key-one = \l_tmp_tl ,

key-two = \l_tmp_tl ,

}

\tl_set:Nn \l_tmp_tl { changed }

Both \l_module_tl and \g_module_tl will store
‘text’, whereas with the normal .tl_(g)set:N prop-
erty they would simply contain ‘\l_tmp_tl’.

One thing to notice is that l3keys will make sure
every variable we use actually exists. So there is no
need to worry about long lists of declarations along
with an equally long list setting up keys.

5.2 Storing Boolean values

Boolean variables can only take true and false values,
and so can be viewed as a type of multiple choice.
To avoid code duplication, l3keys provides a method
to set LATEX3 Boolean variables using a pre-defined
choice, using the .bool_set:N property. This works
in much the same way as those for setting other
variables, except that it will only accept the values
true and false.

\keys_define:nn { module } {

key .bool_set:N = \l_module_bool

}

It is important to note that LATEX3 Boolean variables
do not work in the same way as TEX or LATEX 2ε

\if.. statements. Thus, .bool_set cannot be used
to set the latter: you have to use .code:n.

5.3 Values assumed, required, forbidden

Some keys can assume a particular value is meant if
only the key name is given. This is often the case
with keys which can be set only to true or false:
giving the key name alone is usually the same as
given the true value. This is referred to by l3keys as
a default value, and is set up using the .default:n

property:

\keys_define:nn { module } {

key .code:n = Do stuff with #1! ,

key .default:n = yes

}

With the settings above

\keys_set:nn { module } { key }

and

\keys_set:nn { module } { key = yes }

are entirely equivalent.
Alternatively, rather than assume a particu-

lar value is meant if the key name alone is given,

you might wish to always require a value or for-
bid one entirely. This can be controlled using the
.value_required: and .value_forbidden: prop-
erties, both of which act in an obvious way:

\keys_define:nn { module } {

key-one .code:n = Do stuff with #1,

key-one .value_required: ,

key-two .code:n = Do other stuff ,

key-two .value_forbidden: ,

}

In both cases, error messages result if the requirement
is not met.

5.4 Choices

One very useful thing to do using key–value input
is to provide a list of predetermined choices. These
can then be used to set up potentially complicated
code patterns with a simple interface.

A key is made into a multiple choice by setting
the .choice: property, but this does not create any
valid choices! Each choice is created as a ‘subkey’:

\keys_define:nn { module } {

key .choice:,

key / choice-a .code:n = Choice-a code ,

key / choice-b .code:n = Choice-b code ,

key / choice-c .code:n = Choice-c code ,

}

As shown, each choice is given in the format 〈key〉
/ 〈choice〉: the / character marks the boundary
between the key and subkey names. It is likely that
there will be some similarity between the implement-
ation for different keys, but this is not necessary for
the system to work.

To avoid the need to duplicate code between
choices with very similar implementations, an auto-
mated system is available. First, the shared code
is set up using the .choice_code:n property. A
comma-separated list of choices is then given using
the .generate_choices:n property.

\keys_define:nn { module } {

key .choice_code:n = {

Do something using either

\l_keys_choice_tl or

\l_keys_choice_int.

},

key .generate_choices:n = {

choice-a, % Choice 0

choice-b, % Choice 1

choice-c, % Choice 2

...

}

}

Programming key–value in expl3

86 TUGboat, Volume 31 (2010), No. 1

As illustrated, within the code \l_keys_choice_tl

and \l_keys_choice_int are available. The name
of the current choice (for example choice-b) is as-
signed to \l_keys_choice_tl, its numeric position
in the list (for example 1 for choice-b) is assigned
to \l_keys_choice_int. Notice that this is indexed
from 0!

5.5 Keys setting keys

The final property provide by l3keys is for creating
so-called meta keys: keys which themselves set other
keys. Using the .meta:n property, we can provide a
short-cut to set several things in one go.

\keys_define:nn { module } {

key-one .code:n = Some code ,

key-two .code:n = Other code ,

key-three .meta:n = {

key-one = Value ,

key-two = Value ,

}

}

It is possible to pass on the argument given to a
meta-key to its ‘children’ using #1:

\keys_define:nn { module } {

key-one .code:n = Something with #1 ,

key-two .code:n = Other thing #1 ,

key-three .meta:n = {

key-one = #1 ,

key-two = #1 ,

}

}

Almost always, the data for a meta key needs to be
wrapped in braces, as it contains , and = characters.

6 Unknown keys and choices

The ability to handle input which has not been pre-
viously defined is important for flexible key–value
methods. Each time a key is set using \keys_set:nn,
after looking for the key itself l3keys checks for a spe-
cial unknown key before issuing an error message.
This key is set up in the same way as any other,
and can carry out whatever function is appropriate.
The name of the unknown key is available within the
unknown key as \l_keys_key_tl, and can therefore
be used by the attached code. A simple example
would be to issue a customised error message if a key
is unknown:

\keys_define:nn { module } {

unknown .code:n = {

\msg_error:nnx { module }

{ unknown-key } { \l_keys_key_tl }

}

}

More sophisticated use might include creating new
keys from this data, storing information in custom
variables and so on.

7 LATEX 2ε package options

As LATEX3 development is still at the stage of creating
low-level structures, the most likely use of l3keys is
with LATEX 2ε packages and classes. To enable the
methods described here to be used with LATEX 2ε

package and class options, a support package l3keys2e

is available to enable the appropriate processing.
As is true with any key–value package, any op-

tions created with l3keys are simply keys that have
been defined when option processing takes place. So
creating options means first using \keys_define:nn

for set up, then processing the option list with the
\ProcessKeysOptions function. This takes a single
argument: the name of the module.

\keys_defined:nn { module } {

option-one .code:n = ... ,

option-two .code:n = ... ,

...

}

\ProcessKeysOptions { module }

8 An example

Putting everything together can be challenging start-
ing from a bare description of the methods available.
In my general key–value article, I included a short ex-
ample package to illustrate some of the major ideas.
I’ll use the same scenario here, which also means that
readers can compare the l3keys approach directly to
keyval- and pgfkeys-based solutions.

Consider the following situation. The inexperi-
enced LATEX user who asked for a small package for
the last article has come back, and wants to be at
the cutting edge. So they’ve asked if you can rewrite
your code from before using expl3. What they want
is a package to provide one user macro, \xmph, which
will act as an enhanced version of \emph. As well as
italic, it should be able to make its argument bold,
coloured or a combination. This should be control-
lable on loading the package, or during the document.
Finally, a de-activation setting is requested, so that
the \xmph macro acts exactly like \emph. This latter
setting should be available only in the preamble, so
that it will apply to the entire document body.

Looking back over your earlier solution, there is
not too much to change. You decide to follow LATEX3
conventions and adjust some of the option names
slightly:

• inactive, a key with no value, which can be
given only in the preamble;

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 87

• use-italic, a Boolean option for making the
text italic;

• use-bold and use-colour, two more Boolean
options with obvious meanings;

• colour, a string option to set the colour to use
when the use-colour option is true.

You also anticipate that US users would prefer the
option names use-color and color, and so you
decide to implement them as well.

Things are going to look a bit different from a
traditional LATEX 2ε package, but hopefully things
will not be too bad! The first stage is to declare
the code as a LATEX3 package, and to load color for
colour support, l3keys2e to do the option processing,
and xparse to make user commands the LATEX3 way.

\RequirePackage{color,l3keys2e,xparse}

\ProvidesExplPackage

{xmph} {2010/01/02}

{2.0} {Extended emph}

The next stage is to set up the key–value input, and
set the default values (red italic text).

\keys_define:nn { xmph } {

colour

.tl_set:N = \l_xmph_colour_tl ,

color

.meta:n = { colour = #1 } ,

inactive

.code:n =

\cs_set_eq:NN \xmph \emph ,

use-bold

.bool_set:N = \l_xmph_bold_bool ,

use-colour

.bool_set:N = \l_xmph_colour_bool ,

use-color

.bool_set:N = \l_xmph_colour_bool ,

use-italic

.bool_set:N = \l_xmph_italic_bool ,

}

\keys_set:nn { xmph } {

colour = red ,

use-italic

}

With everything set up, any load-time options can be
dealt with using the \ProcessKeysOptions function.

\ProcessKeysOptions { xmph }

For the code implementing everything, the pattern
here is the same as in the LATEX 2ε version. The
formatting functions are wrapped up one inside an-
other.

\NewDocumentCommand \xmph { m } {

\xmph_emph:n {

\xmph_bold:n {

\xmph_colour:n {#1}}}}

\cs_new:Nn \xmph_bold:n {

\bool_if:NTF \l_xmph_bold_bool {

\textbf {#1}

}{#1}}

\cs_new:Nn \xmph_colour:n {

\bool_if:NTF \l_xmph_colour_bool {

\textcolor { \l_xmph_colour_tl } {#1}

}{#1}}

\cs_new:Nn \xmph_emph:n {

\bool_if:NTF \l_xmph_italic_bool {

\emph {#1}

}{#1}}

The last job to do is to disable the inactive at the
end of the preamble. That simply means setting the
option to do nothing.

\AtBeginDocument {

\keys_define:nn { xmph } {

inactive .code:n = { }

}

}

9 Conclusions

Key–value methods are a powerful way to provide
users with a clear interface to code internals. expl3

adds the ability to create key–value input to LATEX,
along with the many other programming refinements
it provides. By including this in the base layer of
LATEX3, the confusion between LATEX 2ε implementa-
tions is avoided. This should mean that more people
can get to grips with using key–value methods in
their packages, and do so more reliably.

References

LATEX3 Project. “The expl3 package”. Available from
CTAN, macros/latex/contrib/expl3, 2010.

Tantau, Till. “pgfkeys”. Part of the TikZ and pgf

bundle, available from CTAN, graphics/pgf,
2008.

Wright, Joseph. “LATEX3 programming: External
perspectives”. TUGboat 31, 2010.

Wright, Joseph, and C. Feuersänger. “Implementing
key–value input: an introduction”. TUGboat 31,
2010.

⋄ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2 dot co dot uk

Programming key–value in expl3

88 TUGboat, Volume 31 (2010), No. 1

ConTEXt basics for users:
Conditional processing

Aditya Mahajan

Abstract

Very often, you want to generate multiple versions
of the same document: one version for printing and
one for viewing on the screen, one version for stu-
dents and one version for the instructor, and so on.
You can do this in a simple but naive way: create
different files set up for the different versions and
\input the common material, or create some new
conditional flags using \newif and set them appro-
priately for conditional processing. Or you could use
modes — the ConTEXt way of doing conditional pro-
cessing.

1 Introduction

A mode is similar to a conditional flag, but with
a few advantages: new modes need not be explic-
itly defined (no need for something like \newif),
multiple modes can be simultaneously enabled or
disabled, and the status of multiple modes can be
checked easily. Moreover, modes can be set from a
command line switch. As a result, multiple versions
of a document can be generated without changing
the source file.

The name or identifier of a mode can be any
combination of letters, digits, or spaces. Names
starting with * are reserved for system modes.

In this article I explain how to activate a mode
and how to check if a mode is active or not.

2 Setting modes

ConTEXt has three commands for setting modes:

• \enablemode [...]

• \disablemode[...]

• \preventmode[...]

The names are self-descriptive. \enablemode acti-
vates a mode, \disablemode deactivates a mode,
and \preventmode permanently deactivates a mode.
All three commands take a list of modes as an argu-
ment. For example, you can activate modes named
screen and solution with

\enablemode[screen,solution]

Modes can also be activated by a command line
switch --modes to texexec or context. For exam-
ple, another way to activate the screen and solu-

tion modes, to run ConTEXt using one of:

texexec --mode=screen,solution ...

context --mode=screen,solution ...

3 Conditional processing based on modes

You may want to process or ignore a chunk of code
if a particular mode is enabled or disabled. Such
a chunk of code is specified using \startmode and
\startnotmode environments. Their usage is best
explained by an example.

Suppose you want to change the paper size of
a document depending on whether it is for print or
screen. This can be done in multiple ways. You
could set the default paper size for print and change
it in screen mode:

\setuppapersize[letter][letter]

\startmode[screen]

\setuppapersize[S6][S6]

\stopmode

(S6 is one of the screen-optimized paper sizes in Con-
TEXt; the paper size has a 4:3 aspect ratio and a
width equal to the width of A4 paper.)

Alternatively, you could set a default paper size
for the screen and change it if screen mode is not
enabled:

\setuppapersize[S6][S6]

\startnotmode[screen]

\setuppapersize[letter][letter]

\stopnotmode

\startmode and \startnotmode can check for
multiple modes, by giving a list of modes as their ar-
guments. \startmode processes its contents (every-
thing until the next \stopmode, thus \startmode

cannot be nested) if any of the modes are enabled,
otherwise (i.e., when all the modes are disabled)
\startmode ignores its contents. The opposite is
\startnotmode: it processes its contents (every-
thing until the next \stopnotmode) if any of the
modes are disabled, otherwise — when all the modes
are enabled — the contents are ignored.

\startmode and \startnotmode are “or” envi-
ronments. They process their contents if any of the
modes satisfy the required condition. Their “and”
counterparts are also available: \startallmodes

and \startnotallmodes process their contents only
if all the given modes satisfy the required condition.
For example, suppose you want to enable interac-
tion (e.g., hyperlinks) only when both screen and
solution modes are enabled. Then you can use:

\startallmodes[screen,solution]

\setupinteraction[state=start]

\stopallmodes

To summarize, the four start-stop environments
for checking modes are:

\startmode[mode1, mode2, ...]

% Processed if any of the modes is enabled

\stopmode

TUGboat, Volume 31 (2010), No. 1 89

\startnotmode[mode1, mode2, ...]

% Processed if any of the modes is disabled

\stopnotmode

\startallmodes[mode1, mode2, ...]

% Processed if all the modes are enabled

\stopallmodes

\startnotallmodes[mode1, mode2, ...]

% Processed if all the modes are disabled

\stopnotallmodes

These environments have \doif... alternatives
that are useful for short setups. Also, they can be
nested.

\doifmode {modes} {content}

\doifnotmode {modes} {content}

\doifallmodes {modes} {content}

\doifnotallmodes {modes} {content}

The logic for determining when the content is
processed is exactly the same as for the start-stop
commands.

These \doif commands each have a variant to
process alternative code if the conditions are not sat-
isfied (like the \else branch of \if).

\doifmodeelse {modes} {content} {alt}

\doifnotmodeelse {modes} {content} {alt}

\doifallmodeselse {modes} {content} {alt}

\doifnotallmodeselse{modes} {content} {alt}

4 System modes

Besides allowing user-definable modes, ConTEXt
provides some system modes. These modes start
with a * character. Here I will explain only the more
commonly used system modes; see the ConTEXt
modes manual (http://pragma-ade.com/general/
manuals/mmodes.pdf) for a complete list.

Perhaps the most useful system modes are
*mkii and *mkiv which determine whether MkII or
MkIV is being used. These modes are handy when
you want different setups for MkII and MkIV.

Other modes are useful for very specific situa-
tions. Some of these are described below.

A document must be run multiple times to get
the cross referencing, table of contents, etc. right.
However, sometimes you need to do some external
processing (e.g., graphic conversion) that only needs
to be done once. In such cases, the *first mode
is handy — it is active only on the first run of the
document.

You can use the project-product-component
structure for managing large projects like a book se-

ries. See the ConTEXt wiki article (http://wiki.
contextgarden.net/Project_structure) for de-
tails of this approach. A product or its components
may be compiled separately, and you may want to do
something different when a product is compiled or
when a component is compiled. To do so, you need
to check for modes *project, *product, *compo-

nent, and *environment; these modes are set when
the corresponding structure file is processed. For ex-
ample, the *product mode is set whenever a product
file is read; more specifically, when \startproduct

is encountered. Similarly, a mode *text is enabled
when \starttext is encountered, and likewise for
the others.

A large document is typically broken down into
different section blocks: frontmatter, bodymatter,
appendices, and backmatter. Internally, these sec-
tion blocks are referred to as frontpart, bodypart,
appendix, and backpart. Each section block sets
a system mode with the same name. So, if you
want macros that work differently in different sec-
tion blocks, you can check for modes *frontpart,
*bodypart, and so on.

ConTEXt provides support for multiple lan-
guages. Languages are recognized by their IETF

language tags, like en-us for US English, en-gb for
British English, nl for Dutch, de for German, etc.
A document has a main language, set with the com-
mand \mainlanguage[...], that is used for trans-
lated labels like chapter and figure. You can also
switch the current language using \language[...]

to change the hyphenation rules. Whenever a lan-
guage is chosen, its identifier is set as a mode. The
mode for the main language starts with two *. For
example, when the main language is US English and
the current language is Dutch, the modes **en-us

and *nl are set (notice the extra * in **en-us).
Other system modes: *figure is set when a

graphic is found, *interaction is set when interac-
tion is enabled, *grid is set when grid typesetting is
enabled, and *pdf and *dvi are set when the output
is PDF or DVI. Others are too esoteric to describe
here. If you are interested, see the modes manual
mentioned earlier.

In summary, modes provide generalized condi-
tional processing. A rich set of built-in modes is
available.

⋄ Aditya Mahajan
adityam (at) ieee dot org

90 TUGboat, Volume 31 (2010), No. 1

Glisterings

Peter Wilson

His eye, which scornfully glisters like fire,
Shows his hot courage and his high desire.

Venus and Adonis, William Shakespeare

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

Words are wise men’s counters, they do but
reckon with them, but they are the money
of fools.

Leviathan, Thomas Hobbes

1 Counting

1.1 Number of words

Some publications put word limits on manuscripts,
and the question often arises as what is the (best)
way to count them. This is answered in detail in
the FAQ [1] but my answer is to simply count the
number of words on one page of your manuscript and
multiply by the number of pages. This is essentially
the technique used by book designers and publishers
when confronted with a manuscript in the process
called casting off (see, for example, [3, Chap. 8]).
The publishers are not particularly interested in the
exact number of words but are very much interested
in the number of pages in the final production.

If you are writing a thesis the powers-that-be
may specify a word limit, but it is probably safe to
assume that they will not actually check the num-
ber of words themselves, unless there is an obvi-
ous mismatch between your number and the size of
the thesis. In any event, what counts as a ‘word’?
Is ‘powers-that-be’ one word or three? How many
‘words’ are the equivalent of a table or a figure?
If different sized fonts will be used, are all ‘words’
equal? What about footnotes, mathematical equa-
tions, verse — how many ‘words’ should be allocated
to them?

1.2 Lua

By the time you read this LuaTEX should be avail-
able, and perhaps you have used it. At the time of
writing it is still being developed and I have not tried
it. However, assuming that Lua [2] will be available
on all TEX platforms, I thought that I would try and
use it for its own sake.

I have been fortunate in being able to use lead
type and a hand operated press, much as Gutenberg
did in the 15th century. Unlike digital typesetting
where you can have an unlimited number of charac-
ters of any particular kind, the number of available
characters is strictly limited — if the font you are us-
ing has only 23 ‘e’ sorts (a sort is a single piece of
lead type), then in one go you can only set text that
has no more than 23 ‘e’ characters. It is therefore
important to know how many of each sort is required
to set a page of text. For example, I wanted to print
a 16th century poem — only 2 verses on one page —
in a particular font but I couldn’t do so as I was
one ‘h’ short (there were a lot of thee, thou, thine,
. . . eth, etc., words compared to modern English). I
work on a Linux system which provides programs for
counting the number of words and the total number
of characters in a piece of text; presumably other
systems provide the equivalent. But what I wanted
was a program to count the numbers of the individ-
ual characters — the number of ‘A’ characters, the
number of ‘a’ characters, and so on.

I managed to extend a Lua program that would
do this for me. Here it is, in a file that is called
gwc.lua:

#!/usr/local/bin/lua5.1

-- gwc.lua Lua program to count characters, etc

-- (see Lua Manual p.198)

-- call as: gwc.lua file

local BUFSIZE = 2^13 -- 8k

local f = io.input(arg[1]) -- open input file

local cc = 0 -- count of chars

local lc = 0 -- count of lines

local wc = 0 -- count of words

local ct = {} -- table of char counts

local k, v -- table key and value

for i = 32,126 do -- initialise ASCII slots

ct[i] = 0

end

local T = 0 -- my total chars

local tc = 0 -- actual total chars

-- (no newlines, etc)

while true do

-- read a chunk of text

local lines, rest = f:read(BUFSIZE, "*line")

if not lines then break end

if rest then

lines = lines .. rest .. "\n" end

cc = cc + #lines

-- count words in the chunk

local _, t = string.gsub(lines, "%S+", "")

wc = wc + t

-- count newlines in the chunk

_, t = string.gsub(lines, "\n", "\n")

lc = lc + t

Peter Wilson

TUGboat, Volume 31 (2010), No. 1 91

-- make a list of character frequencies

local K

for i = 1, string.len(lines) do

K = string.byte(lines,i)

if K > 32 then

if K < 126 then

ct[K] = ct[K] + 1

T = T + 1

end

end

end

end

-- strip off input (e.g., fin.ext) file’s

-- extension and make output file fin.gwc

base, ext = string.match(arg[1],

"(%w+)%.(%w+)")

ofile = base..".gwc"

-- cc includes newlines, so T = (lc + wc)

tc = cc - lc - wc

io.output(ofile)

io.write("Character counts in file ",

arg[1], "\n")

io.write("", "lines =", lc, "\n",

"words =", wc, "\n",

"characters = ", tc, "\n\n")

io.write("Character total\n")

for k,v in pairs(ct) do

if v > 0 then

print(string.char(k),v)

io.write(" ", string.char(k), " ",

string.format("%4d",v), "\n")

end

end

print("Output saved in: ", ofile)

That ends the Lua program. In this case a ‘word’
is a sequence of characters followed by one or more
spaces. I was only interested in characters corre-
sponding to the sorts in the fonts that were avail-
able to me. Being English this fortunately restricted
the characters to the ASCII printable character set.
If you need to count other characters then you will
have to extend the program. The Lua manual [2,
p. 198] describes how the word and line count part
of the program works in more detail.

Change is not made without inconvenience,
even from worse to better.

A Dictionary of the English Language: Preface,
Samuel Johnson

2 Changing the layout

A question that pops up from time to time is ‘How
do I change the layout for a particular page?’, where

the ‘layout’ includes items like the size and location
of the textblock, and different headers and footers.

2.1 The shape of the page

You can do many things, but one that you cannot do
is to change the textwidth in the middle of a para-
graph. For instance if the textblock is 30pc wide
on one page and 25pc wide on the following page,
then a paragraph that starts on the first page and
continues onto the next will be 30pc wide on both
pages. This is because TEX internally typesets para-
graph by paragraph according to the current text-
width. Having set a paragraph it then decides if
there should be a pagebreak in it. If there is it puts
the beginning of the already laid out paragraph on
the first page and the remainder, which is already
set internally, goes on the following page(s) with the
same textwidth.

The general page layout parameters are dia-
grammed in Figure 1.

To change the height of the textblock on a par-
ticular page, the LATEX \enlargethispage macro
can be used. This takes a single length argument
which is added to the textheight for the page on
which it occurs — a positive length increases the text-
height and a negative one decreases it. The change
is made at the bottom of the textblock; the location
of the top of the textblock is unchanged.

The quote and quotation environments tem-
porarily change the margins and width of the text-
block, and you can do the same by using, for exam-
ple, the adjustwidth environment provided by the
changepage package [5].

The adjustwidth environment takes two
length arguments, and increases the left
and right margins by the given amounts.
For example, I used
\begin{adjustwidth}{3em}{1.5em}

at the start of this paragraph, and will
end adjustwidth at the end of the para-
graph.

The page layout parameters used are those in
effect at the start of a page when the first item (e.g.,
a character, a box, etc.) is put onto the page. Lay-
out changes after that will not be effective until the
start of the next page. You can, though, change the
text width between pages. The trick here is that
when you change from one column to two columns,
or vice versa, LATEX recalculates its view of the lay-
out. The general scheme is to clear the page, change
the layout parameters, then set the number of col-
umns which starts the same new page again but with
the layout changes implemented. Assuming a one
column document, the general procedure is:

Glisterings

92 TUGboat, Volume 31 (2010), No. 1

The circle is at 1 inch from the top and left of the page. Dashed lines represent

(\hoffset + 1 inch) and (\voffset + 1 inch) from the top and left of the page.

❝

Header

Body

Footer

Margin

Note

❄
\topmargin

❄
\headheight

❄
\headsep

❄
\textheight

❄

\footskip

❄
\marginparpush

✲
\marginparwidth

✲
\oddsidemargin

✲
\marginparsep

✲
\textwidth

Figure 1: LATEX page layout parameters for a recto page

\clearpage

% change textblock, margins, ...

\onecolumn

If you need them, the changepage package provides
macros to ‘change textblock, margins, ...’.

Just so you can see what happens, the kernel
definition of \onecolumn is:

\def\onecolumn{%

\clearpage

\global\columnwidth\textwidth

\global\hsize\columnwidth

\global\linewidth\columnwidth

\global\@twocolumnfalse

\col@number \@ne

\@floatplacement}

The code for \twocolumn is similar but does a little
more, especially as it takes an optional argument
although that has no effect on the various width
settings.

As an example, if you needed to have different
text heights and widths for one set of pages, those in
the frontmatter perhaps, than for another set, say
the rest of the work, you could define

\newcommand*{\addtotextheightwidth}[2]{%

\clearpage

\addtolength{\textheight}{#1}

\addtolength{\textwidth}{#2}

\onecolumn}

and use it when you need to make a change.

2.2 Headers and footers

Another kind of layout change that I have seen re-
quested is to add ‘Page’ above the page numbers in
the Table of Contents or List of Figures, etc. As
an example say that the requirement is that for the
List of Figures (LoF) the word ‘Figure’ should be
placed flushleft at the start of the column of figure
titles and the word ‘Page’ flushright above the page
numbers; if the LoF continues for more than one
page, these should be repeated at the start of each
page. The page number(s) of the LoF itself should
be centered at the bottom of the page (i.e., the plain

pagestyle). There are similar requirements for the
Table of Contents (ToC) and List of Tables (LoT),
but I’ll just show how the LoF requirements can be
met.

Changing pagestyles can be accomplished with
the fancyhdr package [4] but I will assume that the
memoir class [6] is being used which includes similar
facilities.

The memoir class lets you define as many page-
styles as you want. We need a pagestyle for any

Peter Wilson

TUGboat, Volume 31 (2010), No. 1 93

LoF continuation pages (and others for the ToC and
LoT). Here’s the one for the LoF, which I have called
the lof pagestyle. This puts the page number cen-
tered in the footer and ‘Figure’ at the left in the
header and ‘Page’ at the right.

\makepagestyle{lof}% a new pagestyle

\makevenfoot{lof}{}{\thepage}{} % like plain

\makeoddfoot{lof}{}{\thepage}{} % like plain

\makeevenhead{lof}{Figure}{}{Page}

\makeoddhead{lof}{Figure}{}{Page}

When we start the LoF we need to make sure
that the lof pagestyle will be used for any continua-
tion pages. We can do this by adding the necessary
code to the \listoffigures command, and mem-

oir provides the \addtodef command for doing this.
It takes three arguments, the first is the name of a
macro, the second is code to be added at the start
of the macro’s definition and the third is code to be
added at the end of the macro’s definition.

\addtodef{\listoffigures}{%

\clearpage\pagestyle{lof}}{}

Memoir provides a command that is called be-
fore setting the title of the LoF and another that is
called after the title. You can redefine these to do
what you want. In this case we just need to extend
what happens after the title.

\renewcommand*{\afterloftitle}{%

\thispagestyle{plain}

\par\nobreak

{\normalfont\normalsize Figure \hfill Page}

\par\nobreak}

The above makes the first page of the LoF use the
plain pagestyle, and then puts a line containing ‘Fig-
ure’ at the left and ‘Page’ at the right. The actual
listing of titles and page numbers will start after
these preliminaries.

Setting up the ToC and LoT is almost identical
to the above, but with names changed.

One thing to watch for is that after the LoF
has been processed the lof pagestyle is still in effect.
After the LoF has finished it will be necessary to
revert back to the regular pagestyle which, for the
sake of argument, let’s say is heads. To be on the
safe side the general scheme, then, is:

\documentclass[...]{memoir}

%% define heads pagestyle

%% ToC, LoF, ToC changes

%% more preamble

\addtodef{\mainmatter}{}{\pagestyle{heads}}

\pagestyle{heads}

\begin{document}

%% title pages

%% maybe Preface and such

%% \tableofcontents\clearpage\pagestyle{heads}

%% \listoffigures\clearpage\pagestyle{heads}

%% \listoftables\clearpage\pagestyle{heads}

%% other prelims

\mainmatter

...

\end{document}

which ensures that at the start of the main matter
the regular heads pagestyle is in effect, no matter
what games were played beforehand.

References

[1] Robin Fairbairns. The UK TEX FAQ. Available
on CTAN in help/uk-tex-faq.

[2] Roberto Ierusalimschy. Programming in Lua,

Second Edition. Lua.org, Rio de Janeiro, 2006.
ISBN 85-903798-2-5.

[3] Ruari McLean. The Thames and Hudson

Manual of Typography. Thames and Hudson,
1980. ISBN 0-500-68022-1.

[4] Piet van Oostrum. Page layout in LATEX, 2004.
Available on CTAN in latex/macros/contrib/

fancyhdr.

[5] Peter Wilson. The changepage package, 2008.
Available on CTAN in latex/macros/contrib/

misc/changepage.sty.

[6] Peter Wilson. The memoir class for
configurable typesetting, 2009. Available on
CTAN in latex/macros/contrib/memoir.

⋄ Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

Glisterings

The exact placement of superscripts
and subscripts

Timothy Hall

Introduction

Consider the following segment of mathematics in
“uncramped” display (D) style.

θAtγjk

It is conceivable that an author would want the At

term to be higher on the θ, since the base of the
At is apparently all the way down to the midline
of the θ. Such higher placement might make room
for different levels of superscripts, like those used
in tensor notation. This need commonly occurs
when the nucleus, in this case θ, has zero depth
and a height that is greater than its width. That
same author might also want the jk to be lower
on the γ, since, on quick inspection, the jk might
appear to be on the same level as the γ (making it
a product of three terms). This situation commonly
occurs when the nucleus has a descender and the
subscript has an ascender (and where a significantly
large nucleus depth exists compared to the ascender
height).

In both these cases, it would be impractical for
the author to address these issues by changing to
a completely different font that has more appealing
font dimensions, or to use a specially designed
character, when its presence in other contexts
would have just as many problems as before.

As is usually the case with TEX, there is a way
to address these issues with a scalpel and not a
club. Individual elements in a mathematical expres-
sion may be precisely placed to an author’s exact
requirements through the careful manipulation of
local font dimensions, without the need of creating
new fonts or using custom character glyphs.

The placement of superscripts and subscripts
when generating boxes from formulas follows the
rules set forth in Appendix G of The TEXbook. In
particular, Rules 18a, 18c, and 18d apply to the
first situation, where there is a superscript on θ but
not a subscript, and Rules 18a and 18b apply to
the second situation, where there is a subscript on
γ but not a superscript. Other combinations of the
rules apply when there is both a superscript and a
subscript on the same nucleus.

Superscript placement

Consider the first situation, where an author wishes
to raise the placement of the At term slightly

94 TUGboat, Volume 31 (2010), No. 1

higher. The standard placement rules under this
circumstance are as follows.

18a. Since the nucleus is a character box, set u = 0.
18c. Set box X to the contents of the superscript,

here At, in scriptstyle, and add \scriptspace

to the width of X. Then set

u← max

{

u, σ13, d (θ) +
1

4
|σ5|

}

,

since we are in display style, where d (θ) is
the depth of the θ character, σ13 is font
dimension 13 of \textfont2 (the so-called
“sup1” dimension), and σ5 is font dimension 5
of \textfont2 (the so-called “x-height”). Note
that |σ5| is used since the x-height of a font
may (conceivably) be negative.

18d. Append box X to the horizontal list, shifting
it up by u.

These simple steps show that the only way to
influence the placement of the superscript box X
(without changing the dimensions of the nucleus
itself) is to temporarily change the 5th and/or 13th

font dimension of \textfont2. The most direct
way of doing so is to increase σ13 by an amount that
exceeds d (θ) + 1

4 |σ5|. For Plain TEX, \textfont2
is \tensy (an alias for cmsy10), and d (θ) = 0,
σ5 = 4.30554 pt, and σ13 = 4.12892 pt. This means
u = σ13 when θAt is translated under Plain TEX
into a horizontal list. However, the height of θ
is 6.94444 pt (which shows that the superscript is
normally placed 4.12892

6.94444 ≈ 59.456% of the way up θ
from the baseline), so that σ13 = 7 pt would place
the baseline of At less than 1

10 pt above the top of
the θ. Comparing these two options, we have

θAt versus θ
At

which was produced by the following TEX code.

1. \tmp=\the\fontdimen14\tensy

2. \centerline{θ^{At}\quad

3. {\rm versus}\quad

4. $\fontdimen14\tensy=7pt

5. \theta^{At}$}

6. % See note below about the

7. % use of font dimension 14.

8. \fontdimen14\tensy=\tmp

Since font dimension changes are, by default,
global, any such changes must be explicitly reversed.
This is the purpose of the \tmp dimension register
in the previous example. Note also that it is the
font dimensions of \textfont2 that are changed to
produce the desired results, and not the dimensions

of \scriptfont2, even though the placement of the
“script” parts are affected.

For expressions that have only superscripts, in
regular math mode, i.e., not in display style, the
14th font dimension (sup2) of \textfont2 would be
changed (instead of the 13th one as before), and in
“cramped” display style, the 15th font dimension
(sup3) of \textfont2 would be changed.

Subscript placement

The procedure for subscript placement is similar to
that of superscript placement, except that (a) it is
slightly more straightforward, except (b) it uses a
“cramped” style. To wit:

18a. Since the nucleus is a character box, set v = 0.
18b. Set box X to the contents of the subscript,

here jk, in “cramped” scriptstyle, and add
\scriptspace to the width of X. Append box
X to the horizontal list, shifting it down by

max

{

v, σ16, h (γ)−
4

5
|σ5|

}

,

since we are in display style, where h (γ) is
the height of the γ character, σ16 is font
dimension 16 of \textfont2 (the so-called
“sub1” dimension), and σ5 is font dimension 5
of \textfont2 (the so-called “x-height”). Note
that |σ5| is used since the x-height of a font
may (conceivably) be negative.

We have h (γ) = 4.30554 pt, σ5 = 4.30554 pt,
and σ16 = 1.49998 pt. This means the subscript
is lowered by σ16 = 1.49998 pt under Plain TEX.
However, the depth of γ is 1.94444 pt, and the
height of k in scriptstyle is 4.8611 pt. This means
σ16 = (1.94444 + 4.8611) pt = 6.8055 pt would place
the top of jk at the bottom of the γ. Comparing
these two options, we have

γjk versus γ
jk

which was produced by the following TEX code.

1. \tmp=\the\fontdimen16\tensy

2. \centerline{γ_{jk}\quad

3. {\rm versus}\quad

4. $\fontdimen16\tensy=6.8055pt

5. \gamma_{jk}$}

6. \fontdimen16\tensy=\tmp

TUGboat, Volume 31 (2010), No. 1 95

Note that for expressions that have only sub-
scripts, the 16th font dimension of \textfont2

would be changed regardless of the style where the
expression occurs.

Optional changes

Additional aesthetic changes for the second example
might include moving the subscripts slightly closer
to the γ due to the shape of the j. This may be
accomplished by a small kern in the subscript, such
as

\gamma_{\mkern-2.7mu jk}

However, considering how small the differences
may be relative to the font dimensions, it may be
difficult to distinguish the horizontally unadjusted
version with the adjusted version.

γ
jk

versus γ
jk

Both types of scripts together

Rule 18a contains more complicated instructions
when the nucleus of the expression is not simply
a character, and Rules 18d, 18e, and 18f contain
even more complicated instructions when there is a
superscript and a subscript in the same expression.
Taken collectively, the effect of this latter set
of rules is not the same as simply placing the
superscript independently of the subscript, one
after the other, in either order. These two more
challenging circumstances are not covered here;
everything an author needs to know, and a lot
more, to make arbitrary changes in superscript and
subscript placements, is in Appendix G of The

TEXbook . It suffices to state that no matter how
exotic the expression becomes, the placement of
superscripts and subscripts in TEX is enormously
flexible due to the ability to change a few font
dimensions at strategic positions.

⋄ Timothy Hall
PQI Consulting
P. O. Box 425616
Cambridge, MA 02142-0012
tgh (at) pqic dot com

96 TUGboat, Volume 31 (2010), No. 1

TheTreasure Chest

This is a list of selected new packages posted to CTAN

(http://ctan.org) from July 2009 through April
2010, with descriptions based on the announcements
and edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
http://tug.org/ctan.html

biblio

biber in biblio

BibTEX replacement for biblatex users, in Perl.

persian-bib in biblio/bibtex/contrib

Persian translations of standard BibTEX styles.

fonts

ccicons in fonts

LATEX support for Creative Commons icons.

jablantile in fonts

New Metafont font from Don Knuth to implement
the modular tiles described by Slavik Jablan.

mathgifg in fonts

Text and math LATEX support for Microsoft Georgia
and ITC Franklin Gothic.

oldlatin in fonts

Computer Modern with “long s” used in old texts.

softmaker-freefont in fonts

Support for SoftMaker fonts from freefont.de.

txfontsb in fonts

Small caps and oldstyle numerals for txfonts, and
Greek support through Babel.

zhmetrics in fonts

TFM subfonts to support Chinese in 8-bit TEX.

graphics

drv in graphics/metapost/contrib/macros

Drawing derivation trees in MetaPost.

fig4latex in graphics

Makefile support for xfig graphics exported to
LATEX.

garrigues in graphics/metapost/contrib/macros

Drawing Garrigues’ Easter nomogram.

jflap2tikz in graphics

Convert finite automata from JFlap to TikZ.

pgf-umlsd in graphics/pgf/contrib

UML sequence diagrams.

pst-am in graphics/pstricks/contrib

(De)modulation of radio waves.

pst-abspos in graphics/pstricks/contrib

Absolute or relative page positioning.

pst-knot in graphics/pstricks/contrib

Drawing knots.

pst-mirror in graphics/pstricks/contrib

Three-dimensional objects on a spherical mirror.

pst-node in graphics/pstricks/contrib

Drawing nodes and their connections.

pst-platon in graphics/pstricks/contrib

Drawing the five Platonic solids in a 3D view.

pst-plot in graphics/pstricks/contrib

Drawing functions and data records.

pst-thick in graphics/pstricks/contrib

Drawing and filling of very thick lines and curves.

suanpan in graphics/metapost/contrib/macros

Drawing Chinese and Japanese abaci.

tikz-3dplot in graphics/pgf/contrib

Coordinate transformations for 3D plots.

tikz-qtree in graphics/pgf/contrib

Simpler syntax and better layout for trees in TikZ.

tkz-orm in graphics/pgf/contrib

Drawing Object-Role Model (ORM) diagrams.

info

apprends-latex in index

French manual for LATEX beginners.

asy-faq/zh-cn in info

Chinese translation of the Asymptote FAQ.

asymptote-by-example-zh-cn in info

An Asymptote tutorial in Simplified Chinese.

asymptote-manual-zh-cn in info

Chinese translation of the Asymptote manual.

context-notes-zh-cn in info

ConTEXt tutorial in Chinese.

context-top-ten in info

Most common ConTEXt commands.

ctex-faq in info

LATEX FAQ for Chinese TEX users.

latexcheat-es MX in info

Spanish translation of latexcheat.

lshort-persian in info

Persian translation of lshort.

memdesign in info

A few notes on book design, by Peter Wilson.

Presentations_de in info/examples

Examples from the book Presentationen mit LATEX.

biblio/biber

TUGboat, Volume 31 (2010), No. 1 97

language

bardi in language

Hyphenation and language support for Bardi (BCJ).

cjkpunct in language/chinese

Adjust location and kerning of CJK punctuation.

ctex in language/chinese

Classes and macros for Chinese typesetting.

kmrhyph in language/hyphenation

Hyphenation patterns for Kurmanji (T1-encoded).

turkmen in language

Turkmen definitions for Babel.

macros/context

context-ruby in macros/context/contrib

W3C’s “ruby”, short runs by base text.

macros/latex/contrib

* background in macros/latex/contrib

Background material on pages of a document.

bigints in macros/latex/contrib

Producing big integrals.

boolexpr in macros/latex/contrib

Expandable evaluation of boolean expressions.

bracketkey in macros/latex/contrib

Bracket keys for genealogies.

cachepic in macros/latex/contrib

Lua script and package to convert document
fragments to graphics.

censor in macros/latex/contrib

Support for redacting material.

changelayout in macros/latex/contrib

Change layout of individual pages.

combelow in macros/latex/contrib

Typeset letters with a comma-below accent.

combinedgraphics in macros/latex/contrib

Extended options for including EPS or PDF.

cookybooky in macros/latex/contrib

Typeset recipes.

currfile in macros/latex/contrib

Macros for file name and path of input files.

dashundergaps in macros/latex/contrib

Underline some specified, possibly invisible, text.

docmute in macros/latex/contrib

Use standalone documents with \input or \include.

dox in macros/latex/contrib

Extensions to the doc package.

elbioimp in macros/latex/contrib

Journal of Electrical Bioimpedance support.

engtlc in macros/latex/contrib

Telecommunications engineering support.

eqexam in macros/latex/contrib

Exam generation, with additional features for AeB.

erdc in macros/latex/contrib

Technical information reports of the US Army
Engineer Research and Development Center.

estcpmm in macros/latex/contrib

Munitions management reports.

* etextools in macros/latex/contrib

ε-TEX tools for LATEX.

fancypar in macros/latex/contrib

Decorative styles for individual text paragraphs.

fc arith in macros/latex/contrib

Create an arithmetic flash card.

filehook in macros/latex/contrib

Hooks for input files.

flashmovie in macros/latex/contrib

Embed flash movies in PDF output.

ftnxtra in macros/latex/contrib

Make \footnote work in \caption, \chapter, etc.

germkorr in macros/latex/contrib

Change kerning for German quotation marks.

hvindex in macros/latex/contrib

Facilitate index typesetting.

idxlayout in macros/latex/contrib

Key–value interface to configure index layout,
supporting KOMA-script and Memoir.

iftex in macros/latex/contrib

Am I running under pdfTEX or X ETEX or LuaTEX?

keycommand in macros/latex/contrib

Natural way to define commands with optional keys.

knitting in macros/latex/contrib

Fonts and (LA)TEX macros for knitting charts.

knittingpattern in macros/latex/contrib

Formatting knitting patterns.

librarian in macros/latex/contrib

Extract material from .bib files, for typesetting in
plain, LATEX, and ConTEXt.

listings-ext in macros/latex/contrib

Shell script and macros to input parts of programs
into a document.

ltxnew in macros/latex/contrib

Generalized \new, \renew, and \provide prefixes.

mailmerge in macros/latex/contrib

Instantiate a template from successive actual texts.

mdframed in macros/latex/contrib

Automatically split framed environments.

minted in macros/latex/contrib

Highlight LATEX sources using Pygments.

mylatexformat in macros/latex/contrib

Construct .fmt for fast loading from any preamble.

newverbs in macros/latex/contrib

\verb variants that can add TEX code before and
after the verbatim text.

ocgtools in macros/latex/contrib

Manipulate OCG layers in PDF, that is, hide and
reveal material via links or buttons.

macros/latex/contrib/ocgtools

98 TUGboat, Volume 31 (2010), No. 1

onrannual in macros/latex/contrib

Office of Naval Research report class.

ot-tableau in macros/latex/contrib

Produce optimality theory tableaux.

pagerange in macros/latex/contrib

Expand page ranges.

plantslabels in macros/latex/contrib

Labels for plants.

popupmenus in macros/latex/contrib

Create popup menus via links or buttons.

properties in macros/latex/contrib

Load (key,value) properties from a file.

rangen in macros/latex/contrib

Random integers, rational, and decimal numbers.

renditions in macros/latex/contrib

Classes of comments environments.

seuthesis in macros/latex/contrib

Theses at the Southeast University, Nanjing, China.

skeyval in macros/latex/contrib

Extensions to xkeyval.

soton in macros/latex/contrib

Beamer-friendly University of Southampton palette.

spreadtab in macros/latex/contrib

Spreadsheet features for LATEX table environments.

* spverbatim in macros/latex/contrib

Allow line breaks within \verb and verbatim.

standalone in macros/latex/contrib

Compile TEX pictures or code by themselves or
included in a main document.

subsupscripts in macros/latex/contrib

Additional features for superscripts and subscripts.

tablenotes in macros/latex/contrib

Notes for tables, à la footnotes and endnotes.

tabularborder in macros/latex/contrib

Make \hline have the width of tabular text, taking
account of the outer \tabcolsep.

tex-label in macros/latex/contrib

Label (classify) parts of a document for proofs.

texilikechaps in macros/latex/contrib/misc

Customizable Texinfo-like chapter headers.

threeparttablex in macros/latex/contrib

Support table notes in longtable.

thumby in macros/latex/contrib

Creating thumb indexes.

titlepic in macros/latex/contrib

Display a picture on the title page.

trimspaces in macros/latex/contrib

Remove spaces from token lists and macros.

widetable in macros/latex/contrib

Typeset tables of specified width.

* xpackages in macros/latex/contrib

High-level parts of LATEX3—still experimental.

xypdf in macros/latex/contrib

Improve PDF output of xypic.

ydoc in macros/latex/contrib

An alternative for documenting LATEX packages.

macros/latex/exptl

cfr-lm in macros/latex/exptl

Enhanced support for GUST’s Latin Modern fonts.

keys3 in macros/latex/exptl

Key management for LATEX3.

macros/plain

font-change in macros/plain/contrib

Change text and math fonts in plain TEX with one
command; supports all major free font families.

macros/xetex

itrans in macros/xetex/generic

ITRANS mappings for X ETEX for Devanagari and
Kannada.

xecjk in macros/xetex/latex

Typesetting CJK documents in X ETEX.

xeindex in macros/xetex/generic

Automatically index specified strings in X ELATEX.

xesearch in macros/xetex/generic

Manipulate and apply macros to (sub)strings.

zhspacing in macros/xetex/generic

Simpler typesetting of CJK documents in X ETEX.

support

lua-alt-getopt in support/lua

Lua implementation of GNU getopt long.

chklref in support

Report unused labels in LATEX.

csv2latex in support

Ruby script + Applescript for copying spreadsheet
cells to LATEX.

installfont in support

Shell script for installing a Type 1 font family.

latex-make in support

Easy compilation via GNU make with automatic
dependency tracking and xfig support.

match parens in support

Perl script for general parenthesis balancing.

* pdfjam in support

Shell script interface to pdfpages: concatenating
PDF files, selecting pages, n-up formatting, etc.

rake4latex in support

A Ruby script to compile LATEX projects.

ratexdb in support

Preprocessor in Ruby to query a database and create
LATEX; compatible with latexdb.

style showcase in support

Build web page to compare LATEX styles.

texdiff in support

Merge two LATEX documents, for change tracking.

macros/latex/contrib/onrannual

TUGboat, Volume 31 (2010), No. 1 99

ArsTEXnica #8 (October 2009)

ArsTEXnica is the journal of guIt, the Italian TEX
user group (http://www.guit.sssup.it/).

Massimiliano Dominici and Gianluca

Pignalberi, Editoriale [From the editor]; pp. 5–6
A short overview of the present issue.

Enrico Gregorio, Simboli matematici in TEX e
LATEX [Mathematical symbols in TEX and LATEX];
pp. 7–24

An introduction to the primitive commands of
TEX for the typesetting of mathematical formulas
and to the corresponding LATEX commands, with
examples and suggestions for defining new symbols
in a suitable way in order to exploit the automatic
spacing provided by TEX.

Agostino De Marco, Produrre grafica vettoriale
di alta qualità programmando Asymptote
[Introducing the high quality vector graphics
programming Asymptote)]; pp. 25–39

Asymptote is a powerful programmable graph-
ics system, distributed under the GNU GPL. It pro-
vides a high level descriptive programming language,
which is based on advanced mathematical functions.
Asymptote is particularly suited to produce techni-
cal drawings. It allows users to compose labels and
more complicated textual objects with LATEX and
this feature guarantees a high-quality typographical
performance. This article does not give a complete
overview of Asymptote, rather it has the aim at in-
troducing gradually, with appropriate examples, the
main elements of its programming language empha-
sizing the aspects which are of interest for the LATEX
user.

Given the breadth of topics related to a high
level programming language, the reader interested
in the details and in the potential of this graphics
system is advised to read carefully the references
cited and to study the source code of the many pre-
defined functions.

Kaveh Bazargan, TEX as an ebook reader;
pp. 40–41

Published in TUGboat 30:2.

Claudio Beccari, La composizione di tabelle
con larghezza specificata [Composition of
specified-width tables]; pp. 42–47

This tutorial examines the LATEX kernel’s basic
commands necessary to typeset tabular material with
specified width; pros and cons are discussed and, as
an exercise, this tutorial suggests correction of some
glitches with suitable macros.

Lorenzo Pantieri, L’arte di gestire la
bibliografia con biblatex [The art of bibliography
handling with biblatex]; pp. 48–60

The purpose of this work is to describe the ba-
sic concepts of the biblatex package, which offers
a general solution for managing and customizing
the bibliography in a LATEX document. The article
requires a basic knowledge of BibTEX.

Massimiliano Dominici, LATEX e CSV [LATEX
and CSV]; pp. 61–69

In this paper we will present some techniques
and a few examples about handling data in comma
separated value format. We will focus mainly on two
packages specifically aimed at this purpose: datatool
and pgfplots.

Gianluca Pignalberi, combelow: abbasso i
segni diacritici di serie B [combelow: Down with
second-class diacritic marks]; pp. 70–75

Should Romanian and Latvian be considered
second class languages in the TEX world? Though
up to now they may have been, this small package
tries to raise them to the right level, by using the
correct diacritic mark. No more cedilla instead of
comma below.

Claudio Beccari, Uso del comando \write18

per comporre l’indice analitico in modo sincrono
[Using \write18 command to typeset the index in
a synchronous way]; pp. 76–78

Published in TUGboat 30:2.

Luigi Scarso, Una estensione di luatex: luatex

lunatic [A luatex extension: luatex lunatic];
pp. 79–91

Published in TUGboat 30:3.

Emmanuele Somma, Il respawn di Infomedia
(LATEX-based) [The rebirth of Infomedia
(LATEX-based)]; pp. 92–101

Infomedia, famous Italian publisher of program-
ming magazines, has been born again thanks to free
software. To typeset its magazines it relies on LATEX
and some other tools discussed in the paper.

Jean-Michel Hufflen, Processing “computed”
texts; pp. 102–110

This article is a comparison among methods
that may be used to derive texts to be typeset by a
word processor. By ‘derive’, we mean that such texts
are extracted from a larger structure. The present
standard for such a structure uses XML-like format,
and we give an overview of the available tools for
this derivation task.

[Received from Gianluca Pignalberi.]

100 TUGboat, Volume 31 (2010), No. 1

Die TEXnische Komödie 2009/4–2010/2

Die TEXnische Komödie is the journal of DANTE

e.V., the German-language TEX user group (http:
//www.dante.de).

DTK 2009/4

Jürgen Gilg, Exercises, tests and exams
Using the eqexam package one can easily typeset

exercises, tests and exams to include the solutions
in the text. This article introduces the environment
problem as well as its starred version, and shows
how to deal with the solutions of the exercises.

Uwe Ziegenhagen, Dynamic hiding of text and
creating gap texts

There are many applications where hiding cer-
tain parts of the text can be useful: a cv is to be set
with or without final grades; for test sheets, exercises
with and without solutions are needed. Especially
useful in school are texts with gaps where the stu-
dents have to fill certain words or phrases. Using
LATEX it is quite easy to fulfill theses requirements,
dealing with them also provides a chance to work
with the definition of new commands.

Herbert Möller, Creating LATEX figures using
OpenOffice.org 3 Draw

The powerful, freely available drawing tool Open-
Office.org 3 Draw (OOoDraw) and a Perl-based filter
program are used to create—even complicated—
editable figures for the LATEX picture environment.
The filter program OOopict.pl transforms the Post-
Script code exported by OOoDraw and directly cre-
ates LATEX code. Since the PostScript code is the
same on all platforms OOopict.pl can be used with
any operating system. Particularly useful is the fact
that the curves generated by OOoDraw are imple-
mented as cubic Bezier splines in the PostScript
code since the pict2e package (which is supported
by OOopict.pl) can represent these curves in a very
efficient way.

Herbert Möller, From pageref to \hyperpage

The jump targets created from links defined by
\pageref are often faulty when the hyperref pack-
age is used with pdfTEX. This article shows how the
problem and systematic corrections while creating
an index can be solved by Perl filter programs.

Adelheid Grob, Typesetting crossword puzzles
with LATEX

There are two packages available for typesetting
crossword puzzles with LATEX: The older crossword
package by B. Hamilton Kelly from 1996, the newer
cwpuzzle by Gerd Neugebauer, its latest version

from 2009. While the first only allows typesetting
of quadratic puzzles, the latter allows all kinds of
crossword puzzles and even Sudoku or Kakuro riddles.
Both packages allow the output of the solution as
well. This article introduces both packages and their
features.

Alexander Willand, LATEX going business: Law
firms

LATEX was designed for science. Is it possible to
employ LATEX in companies doing real business? To
what extent does LATEX meet the requirements for
software to write commercial texts? What will be
better compared to Word & Co., and where are the
difficulties?

DTK 2010/1

EuroTEX 2009 proceedings, a.k.a. TUGboat 30:3.

DTK 2010/2

Christian Justen, Hebrew typesetting for
theologians

This article offers a brief overview of the pecu-
liarities in Hebrew typesetting and tries to show a
LATEX approach.

Wilfried Ehrenfeld, The LATEX template for
IWH green papers

The article discusses the LATEX template for Ger-
man and English green papers used by the Institute
for Economic Research in Halle. Requirements, im-
plementation, and first experience with the template
are described.

Arno Trautmann, Dennis Heidsiek,

Christian Kluge, and Stefan Mayer, Neo &
X ELATEX —Ergonomics and variety of characters

Since the spread of X ETEX and the advance-
ments of LuaTEX, the TEX world has certainly ar-
rived at Unicode text encoding and modern font
technologies. The main input device of most users,
the keyboard, still remains essentially a mechanical
typewriter. This article presents the modern Neo
keyboard layout, which intends permitting up to date
work with text processing and possibly eases the use
of LATEX.

Christian Faulhammer, Commercial LATEX:
Canoe Rental

Even with outdoor activities TEX can provide
good service. Reading on the balcony in summer
is not intended, but rather its application in canoe
rental. Here the wide range and flexibility is demon-
strated in various possible scenarios.

[Received from Herbert Voß.]

TUGboat, Volume 31 (2010), No. 1 101

The Asian Journal of TEX, Volume 3 (2009)

The Asian Journal of TEX is the publication of the
Korean TEX Society (http://ktug.kr).

AJT Volume 3, Number 1

Kangsoo Kim, Hangul TEX: Past, present, and
future; pp. 1–26

This article looks back upon the past and the
current status of Hangul TEX system, and tries to
give a view on the future of Hangul TEX. Specifically,
we will look into a set of required features of the
Hangul TEX system by describing the tasks that
ko.TEX has faced and tackled. Our focus will be on
the issues regarding implementing proper Hangul
typography as well as basic typesetting of Hangul
characters.

Kihwang Lee, Installing TEX Live 2008 and
ko.TEX under Ubuntu Linux; pp. 27–40

This article provides practical guides for in-
stalling TEX Live 2008 and ko.TEX under Ubuntu
Linux, a popular Linux distribution. We also look
into issues regarding installing other TEX-related
tools including Kile and LYX, and additional True-
Type fonts.

Eung-Shin Lee, Practical presentations using
TEX; pp. 41–50

To achieve effective communication of ideas and
thoughts, it is vital to choose appropriate tools and
medium. This article offers some general princi-
ples for better presentations. It also introduces the
beamer class, a LATEX macro packages for creating
beautiful and effective presentation materials. We
will concentrate on the key features of beamer that
distinguish it from other presentation tools.

Juho Lee, Applications of TEX in the publishing
world; pp. 51–79

In this paper, we look into the definition and
the components of a book which is the final product
of publishing. We also introduce the roles that TEX
can play in the various stages of producing a book,
and describe the strengths and weaknesses of TEX
as a typesetting system compared to other systems.
The methods of implementing essential typographi-
cal elements including book size, page layout, font
selection, line and character spacing settings, and
paragraph justification are also shown together with
practical examples.

Hans Hagen and Taco Hoekwater, Halfway,
the LuaTEX Project; pp. 81–87

Published in TUGboat 30:2.

AJT Volume 3, Number 2

Shinsaku Fujita, Articles, books, and Internet
documents with structural formulas drawn by
XΥMTEX—Writing, submission, publication, and
Internet communication in chemistry; pp. 89–108

Preparation methods of chemical documents con-
taining chemical structural formulas are surveyed,
referring to the author’s experiences of publishing
books, emphasizing differences before and after the
adoption of (LA)TEX-typesetting as well as before
and after the development of XΥMTEX. The recog-
nition of XΥMTEX commands as linear notation has
led to the concept of the XΥM notation, which has
further grown into XΥMML (XΥM Markup Language)
as a markup language for characterizing chemical
structural formulas. XML (Extensible Markup Lan-
guage) documents with XΥMML are converted into
HTML (Hypertext Markup Language) documents
with XΥM notations, which are able to display chem-
ical structural formulas in the Internet by means of
the XΥMJava system developed as a Java applet for
Internet browsers. On the other hand, the same XML

documents with XΥMML are converted into LATEX
documents with XΥMTEX commands (the same as
XΥM notations), which are able to print out chem-
ical structural formulas of high quality. Functions
added by the latest version (4.04) of XΥMTEX have
enhanced abilities of drawing complicated structures
such as steroids. LATEX documents with XΥMTEX
formulas can be converted into PDF (Portable Docu-
ment Format) documents directly or via PostScript
document. Applications of such PDF documents in
online or semi-online submission to scientific journals
have been discussed.

Shin-ichi Todoroki, Beyond standard slideware:
Audience-oriented slide preparation using LATEX
and a scripting language; pp. 109–118

Many people start to prepare their slides before
identifying their core messages, which should be ex-
tracted from what they want to talk about. Thus
the resulting presentations fail to attract much at-
tention. To avoid this mistake, I apply the “Rule
of Three” to all my slides, in each of which I place
certain key phrases including my three core mes-
sages. These additional editing tasks are performed
semi-automatically with the aid of the programming
functions of LATEX and a scripting language. My
motivation for developing this system is to acquire a
sincere attitude towards my audience through Kata,
an essential concept in the process by which tradi-
tional Japanese culture is passed on.

102 TUGboat, Volume 31 (2010), No. 1

Yoshihisa Nagata, Overcoming limited access
issues with LATEX: Online reprints of old books;
pp. 119–123

The online publishing potential of LATEX offers
a possible solution to the problem of access to old
and rare books. This paper demonstrates how LATEX
could be applied to rare editions of the nineteenth
century Grimm’s Fairy Tales. Attention is drawn to
the ability of LATEX to accommodate Old German
scripts, and by extension, other archaic typefaces
in its font selection scheme. A khm package that
I developed myself by integrating developments of
Daniel Taupin, Walter Schmidt and Torsten Bronger
is introduced, outlining its ease of use and range of
option selections.

Satoshi Hagihira, Tool for customizing BibTEX
style files; pp. 125–131

BibTEX is a powerful tool for building reference
lists from a bibliography database. Because bibli-
ography styling varies so widely among journals, a
bibliography style file, capable of creating a list that
exactly meets the requirements of a target journal,
may not always be available. Since manually editing
a BibTEX style file to ensure compatibility is trou-
blesome and prone to error, I developed cbst, a tool
that employs shell scripting and Gawk scripts to cus-
tomize BibTEX style files. Using cbst, it is possible
to easily generate bibliographies that conform with
the style of most target journals.

Tomohiko Morioka, Typesetting of multilingual
bibliography for Oriental studies using upLATEX;
pp. 133–139

This paper describes the typesetting of “An-
nual Bibliography of Oriental Studies” (ABOS) as
a case study of multilingual typesetting. ABOS is a
multilingual bibliography of oriental studies, includ-
ing various languages and scripts such as Japanese,
Chinese, Korean, English, French, German, Russian,
other European languages, Vietnamese, Thai, Latin
transcriptions of Sanskrit, Tibetan, Arabic, etc., IPA

phonetic symbols, Ancient Chinese scripts such as
Oracle-Bone inscriptions, Bronze inscriptions, Chu
bamboo scripts and their modern transcriptions, etc.
Most of the characters included in ABOS are in-
cluded in UCS, however, some characters/scripts are
missing, for example Oracle-Bone script, other an-
cient Chinese scripts and their modern transcriptions.
This paper briefly describes the current typesetting
system based on upLATEX.

[Received from Jin-Hwan Cho.]

Les Cahiers GUTenberg

Contents of issues 48–53 (2006–2009)

Les Cahiers GUTenberg is the journal of GUT,
the French-language TEX user group
(http://www.gutenberg.eu.org).

Cahiers 48, 2006

Thierry Bouche and Michel Bovani, Éditorial;
pp. 3–6

Denis Roegel, Sphères, grands cercles
et parallèles [Spheres, great circles, and parallels];
pp. 7–22

[Translation published in TUGboat 30:1.]

Till Tantau, Tutoriel TikZ [TikZ tutorial];
pp. 23–92

Karl is a math and chemistry high-school teacher.
He used to create the graphics in his writings using
LATEX’s {picture} environment. While the results
were acceptable, creating the graphics often turned
out to be a lengthy process. His son advises him to
try out another tool, named TikZ. We follow him
along his rapid learning curve.

Hagen must give a talk about his favorite formal-
ism for distributed systems: Petri nets. He discovers
the power of the tools available with TikZ in order
to set-up this kind of structure.

At the end of the day, both of them seem rather
convinced: TikZ is quite a piece of software!

Cahiers 49, 2007

Thierry Bouche, Éditorial; p. 3

Sébastien Mengin, LATEX en édition littéraire
et dans un contexte professionnel [LATEX in the
professional context of a literary edition]; pp. 5–18

This is the tale of the author’s experience while
implementing LATEX as a typesetting tool at an al-
ternative publisher’s house.

Jacques André and Jean-Côme Charpentier,
Lexique anglo-français du Companion

[English-French glossary of the Companion];
pp. 19–45

The LATEX Companion, Second Edition, has been
translated into French. During editing, problems hap-
pened due, on one hand, to the fact that prepress
process was done by people who were at the same
time translators, composers and proof readers, and
on the other hand to some difficulties in translat-
ing technical terms especially in the context of TEX.
Typical examples of these problems are exhibited.
Then the English to French lexicon built for this
translation is given.

TUGboat, Volume 31 (2010), No. 1 103

Christian Rossi, De la diffusion à la
conservation des documents numériques
[From dissemination to preservation of digital
documents]; pp. 47–61

[Translation published in TUGboat 30:2.]

Cahiers 50, 2008

Thierry Bouche, Éditorial; pp. 3–4

Yves Soulet, Manuel de prise en main pour TikZ
[Hands-on manual for TikZ]; pp. 5–87

This is a concise manual for getting aquainted
with the TikZ drawing system by Till Tantau. Special
attention is given to applications from the real world.

Cahiers 51, 2008

Thierry Bouche, Éditorial; pp. 3–6

Heinrich Stamerjohanns, Deyan Ginev,

Catalin David, Dimitar Misev, Vladimir

Zamdzhiev and Michael Kohlhase, Conversion
d’articles en LATEX vers XML avec MathML: une
étude comparative [Conversion of articles in LATEX
to XML with MathML: A comparative study];
pp. 7–28

Publishing in Mathematics and theoretical areas
in Computer Science and Physics has been predomi-
nantly using (LA)TEX as a formatting language in the
last two decades. This large corpus of born-digital
material is both a boon—LATEX is a semi-semantic
format where the source often contains indications
of the author’s intentions—and a problem—TEX is
Turing-complete and authors use this freedom to use
thousands of styles and millions of user macros.

Several tools have been developed to convert
(LA)TEX documents to XML-based documents. Differ-
ent DML projects use different tools, and the selection
seems largely accidental. To put the choice of convert-
ers for DML projects onto a more solid footing and to
encourage competition and feature convergence we
survey the market. In this paper we investigate and
compare five LATEX-to-XML transformers along three
dimensions: a) ergonomic factors like documentation,
ease of installation, b) coverage, and c) quality of
the resulting documents (in particular the MathML

parts).

José Grimm, Convertir du LATEX en HTML en
passant par XML: Deux exemples d’utilisation de
Tralics [From LATEX to HTML via XML]; pp. 29–59

This paper demonstrates on two examples how
a LATEX document can be converted to HTML using
an XML intermediate document. The first example
is INRIA’s Activity Report, for which the printed
reference (the PDF version) is obtained from the
XML. The second example concerns a Ph.D. thesis,
whose translation to HTML was undertaken after the
defence, and needed some adaptations.

Thierry Bouche, Production de métadonnées
MathML pour des articles de recherche en
mathématiques : l’expérience du CEDRAM

[Producing MathML metadata for mathematical
research articles: The CEDRAM experience];
pp. 61–76

We describe CEDRICS, a general purpose sys-
tem for automated journal production entirely based
on a LATEX input format. We show how the very
basic ideas that initiated the whole effort turned
into an efficient system because of the ability of
LATEX markup to parametrise simultaneously, and
without compromising high typographical quality,
for the PDF output as well as accurate XML meta-
data with (presentation) MathML formulas. This
was made possible by the availability of two entirely
independent LATEX source processors each with its
own specific focus but with full TEX-macro language
support: pdfLATEX by Hàn Thé̂ Thành, and Tralics
by José Grimm.

Jean-Michel Hufflen, Passer de LATEX à
XSL-FO [Introducing LATEX users to XSL-FO];
pp. 77–99

[Published in TUGboat 29:1.]

Cahiers 52–53, 2009

Thierry Bouche, Éditorial; pp. 3–4

Yves Soulet, METAPOST raconté aux piétons
[METAPOST for pedestrians]; pp. 5–117

This is a manual for getting started with the
powerful graphic language METAPOST. It is written
in a most accessible manner for those not so familiar
with computer programming. It comes with a load
of exercises and illustrations, which are each care-
fully explained. The example files are available for
download on the Cahiers’ website.

104 TUGboat, Volume 31 (2010), No. 1

Eutypon 22–23, October 2009

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

Natasha Raissaki, Sans serif and serif Greek
fonts; pp. 1–10

Sans serif and serif fonts differ in the width
of the stroke in the same character: in the second
the stroke is almost uniform throughout the letter,
while in the first ones the stroke changes imitating
the pen. The Greek small letters do not have serifs
like the Latin ones; still many fonts have come out
in the last years with that erroneous design. In
this article, the Greek fonts are presented from a
historic perspective, starting from the first sans serif
designs of the Renaissance years up to some more
recent efforts to correct the design mistakes of the
photocomposition era. (Article in Greek with English

abstract.)

Alexey Kryukov, Old Standard — a free font
family for scholars and classicists; pp. 11–23

This paper takes its origin from the documenta-
tion accompanying version 2.0 of the Old Standard
font family. However it goes into deeper details de-
scribing various problems that someone faces when
reconstructing a historical typeface and extending
it into a multilingual font family. In particular, the
main character metrics (such as x-height and the
length of ascenders and descenders) should be har-
monized across all supported alphabets (e.g., Latin
and Greek). The paper also concentrates on some
aspects of OpenType programming which should be
taken into account when preparing a font intended
for Greek scholars. (Article in English.)

Dimitrios Filippou, Searching for the first Greek
publications in the New World; pp. 25–43

The first Greek books published in the New
World (America and Oceania) remain mostly un-
known and very little studied. From some prelim-
inary research, it seems that the first Greek book
published in America is Lucian’s Selected Dialogues,
which was printed in Philadelphia, USA, in 1789.
The publication of Greek classics in North Amer-
ica continued at an increasing pace throughout the
19th century. At the same time, the publication
of some other kinds of Greek books commenced in
the United States such as a Greek primer (Haploun

Alphabētarion), grammars, etc. Later, at the twi-
light of the 19th century and the dawn of the 20th
century, newspapers, journals and books came out
for the Greek immigrants in the New World. With
regards to æsthetics, these publications were similar
to Greek books published in Europe or Greece at
those times. (Article in Greek with English abstract.)

Apostolos Syropoulos, X ELATEX and Greek;
pp. 45–56

The relationship of TEX with the Greek lan-
guage started about 25 years ago, with the first
Greek fonts created by Silvio Levy. Since then, this
relationship has continued with various packages, the
greek option of babel, Beccari’s fonts, etc., to to-
day’s xgreek package for X ELATEX. X ELATEX offers
unique conveniences such as the use of OpenType
fonts, automatic change of languages and hyphen-
ation rules, etc. All these advantages of X ELATEX for
the typesetting of Greek are presented briefly in this
paper. (This article is an earlier version of a chapter
from Apostolos’ forthcoming book (in Greek), Dig-

ital Typography with X

E

LATEX.) (Article in Greek

with English abstract.)

[Received from Dimitrios Filippou.]

TUGboat, Volume 31 (2010), No. 1 105

MAPS 38–39 (2009)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

MAPS 38 (Spring 2009)

Taco Hoekwater, Redactioneel [From the
editor]; pp. 1–2

Overview.

Ulrik Vieth, Do we need a ‘Cork’ math font
encoding?; pp. 3–11

[Published in TUGboat 29:3.]

Ulrik Vieth, OpenType Math Illuminated;
pp. 12–21

[Published in TUGboat 30:1.]

Taco Hoekwater, Math in LuaTEX 0.40;
pp. 22–31

The math machinery in LuaTEX has been com-
pletely overhauled in version 0.40. The handling of
mathematics in LuaTEX has been extended quite a
bit compared to how TEX82 (and therefore pdfTEX)
handles math. First, LuaTEX adds primitives and
extends some others so that Unicode input can be
used easily. Second, all of TEX82’s internal special
values (for example for operator spacing) have been
made accessible and changeable via control sequences.
Third, there are extensions that make it easier to use
OpenType math fonts. And finally, there are some
extensions that have been proposed in the past that
are now added to the engine.

Hans Hagen, Unicode math in ConTEXt;
pp. 32–46

This article is complementary to Taco Hoek-
water’s article about the upgrade of the math subsys-
tem in LuaTEX. In parallel (also because we needed
a testbed) the math subsystem of ConTEXt has been
upgraded. In this article I will describe how we deal
with Unicode math using the regular Latin Modern
and TEX Gyre fonts and how we were able to clean
up some of the more nasty aspects of math.

Hans Hagen and Taco Hoekwater and
Hartmut Henkel, LuaTEX—Halfway; pp. 47–50

[Published in TUGboat 30:2.]

Aditya Mahajan, TEX programming: The past,
the present, and the future; pp. 51–56

This article summarizes a recent thread on the
ConTEXt mailing list regarding table typesetting.
To make the article interesting, I have changed the
question and correspondingly modified the solutions.

Pawe l Jackowski, TEX beauties and oddities;
pp. 57–62

The BachoTEX 2009 conference continued the
Pearls of TEX Programming open session, introduced
in 2005, during which volunteers present TEX-related
tricks and short macros.

Siep Kroonenberg, Doe-het-zelf presentaties
[Do-it-yourself presentations]; pp. 63–65

This article shows how one can produce presen-
tations in one’s own style, without making use of
dedicated presentation packagaes.

MAPS 39

EuroTEX 2009 proceedings, a.k.a. TUGboat 30:3.

[Received from Wybo Dekker.]

Baskerville 10.2, October 2009

Baskerville is the journal of the UK-TEX Users’ Group
(http://uk.tug.org).

Jonathan Webley, Editorial; Events; News;
pp. 2–3

Editor’s introduction; announcement of TUG

2010; an update of the TEX FAQ, and note on the
MathTran web site.

Jonathan Webley, The Hound; p. 3
A “somewhat easy”, cryptic crossword (solution

later in the issue).

Joseph Wright, siunitx: A LATEX Swiss army
knife for units; pp. 3–6

Reprinted in this issue of TUGboat.

Joseph Wright, LATEX for chemists: filling in the
gaps; pp. 6–9

New and existing packages for chemists.

Jonathan Webley, An introduction to the
Greek alphabet; pp. 9–12

Background of and typesetting with the Greek
alphabet.

[Received from Jonathan Webley.]

106 TUGboat, Volume 31 (2010), No. 1

Zpravodaj 16(1), 2006, 19(3)–19(4), 2009

Editor’s note: Zpravodaj is the journal of CSTUG,
the TEX user group oriented mainly but not entirely
to the Czech and Slovak languages (http://www.
cstug.cz).

Zpravodaj 16(1), 2006

Jaroḿır Kuben, Úvodńıček [Opening letter from
the CSTUG president]; p. 1

Ondřej Jakubč́ık, Sazba chemických vzorc̊u
v TEXu [Typesetting chemical formulas in TEX];
pp. 2–10

The typesetting program TEX is used world-
wide for formatting various kinds of documents. In
this article, a short presentation of its abilities for
typesetting various chemical structures is given.

Petr Březina, Hrstka tip̊u pro TEXovskou
sazbu [Some tips and tricks for TEX typesetting];
pp. 10–25

The article presents an original solution of three
challenging typographic tasks by means of TEX’s
macro language. The reader can find here not only
a detailed description of the sophisticated macros
but also a number of recommendations concerning
typography.

1. In Czech typography, the interval dash can-
not stand at the end of a line nor can it be moved
to the beginning of the following line. If the split
between lines is inevitable, the dash is replaced by a
word. While writing a macro for the interval dash,
it is necessary to overcome a certain disadvantage
of the command \discretionary, namely that it
does not allow appending glue to the current list,
as the word which replaces the dash has to be sepa-
rated from the text by a space, while the dash is not
separated.

2. The setting of the whole first line of a para-
graph in capitals (or possibly in a different font) can
be applied at the beginning of individual chapters.

3. For hanging hyphenation, The TEXbook rec-
ommends using a special font with a zero-width
\hyphenchar. The solution to this typographic task
can, however, be achieved using an ordinary font
with real-width \hyphenchar.

The article is also available on the author’s home
page, http://www.volny.cz/petr-brezina/.

Petr Olšák, Makro pro konverzi text̊u, PDF

záložky [Macro for conversion of texts, PDF

outlines]; pp. 26–32
A TEX macro programmer sometimes needs to

convert a string of tokens to another string of tokens
according to defined rules. For example, we may

need to remove accents from a Czech text or to
recode this text to another encoding or to transform
some special characters to something else or . . . For
this purpose, the cnv.tex macro was designed. The
last but not least motivation was the problem of my
TEX colleague Jaromı́r Kuben: he needed to convert
Czech text to PDF outlines (conversion to Unicode)
using hyperref.sty but without activating Czech
characters by inputenc.sty.

This article presents the cnv.tex macro for
string conversion by a user defined table. The con-
version process is outside of normal expansion and
each token (independent of category code) can be
converted to a single token or a group of tokens. The
macro is available, with documentation, at ftp://

math.feld.cvut.cz/pub/olsak/makra/ in the files
cnv.tex, cnv-pu.tex, and cnv-word.tex.

Ondřej Jakubč́ık, TrueType fonty, TEX a
čeština [TrueType fonts, TEX and Czech language];
pp. 33–40

TrueType and OpenType fonts have several ad-
vantages compared to the well-known Type 1 fonts,
which have been used for years by TEX users. In
this article a way to use TrueType fonts with TEX
for typesetting in Czech and Slovak language is pre-
sented. While instructions are specific for encoding
XL2 and XT2 (which are compatible with ISO 8859-
2), the encoding vectors can be easily modified to
support other encodings, such as Cork.

Zdeněk Wagner, Zpracováńı pomocných
TEXových soubor̊u pomoćı XSLT 2.0 [Processing
auxiliary TEX files with XSLT 2.0]; pp. 40–53

The article shows possibilities for processing aux-
iliary TEX files with XSLT 2.0. The idea is demon-
strated with a reimplementation of MakeIndex in
XSLT. Some thoughts concerning the possibilities
of reimplementation of BibTEX purely in XSLT are
also presented.

Schválené grantové projekty [Grant projects
accepted by CSTUG]; pp. 53–56

Zpravodaj 19(3), 2009

Pavel Stř́ıž, Pozdravy z TEXperience 2009
[Greetings from TEXperience 2009]; p. 117

Subjekty dlouhodobě podporuj́ıćı Zpravodaj
[Parties supporting the journal on a long-term
basis]; p. 118

Program TEXperience 2009 [The scientific and
social programmes of the TEXperience 2009
conference]; pp. 119–120

TUGboat, Volume 31 (2010), No. 1 107

Miroslava Dolejšová, Malé pov́ıdáńı o Valašsku
[About the venue of the conference: Southern
Moravia, Wallachia]; pp. 121–123

Jan Šustek, Sazba odstavc̊u do textových
oblast́ı [Typesetting paragraphs into text regions];
pp. 124–137

When typesetting paragraphs of text into text
regions some problems arise in cases where the re-
gions have different widths and rubber vertical spaces
are used. One possible solution is described. The
source code is available from http://www1.osu.cz/

~sustek/TeX/oblasti3.tex.

Tomáš Kotouč & Martin Kvoch, TEX
v informačńım systému studijńı agendy [TEX used
and implemented in the university student agency
information systems]; pp. 138–143

The article summarises the use of TEX in the
information system of the university student agency
(IS/STAG) developed over 15 years at the University
of West Bohemia in Plzeň, the Czech Republic. TEX
is mainly used to prepare all major official university
documents in cooperation with Oracle databases.

A user can use TEX and pre-defined commands
directly. The additional tool, FormsEd editor, al-
lows the user to visually select mathematical and
other special symbols, such as letters from Greek and
Cyrillic alphabets. The style-sheets are customisable
at three levels.

Educators from Plzeň deliver the basics of typog-
raphy and LATEXing with regular training in IS/STAG

for secretaries of departments who are usually non-
typographers and non-TEXists.

The official website of the IS/STAG is http:

//www.stag.zcu.cz.

Jiř́ı Rybička, Podpora př́ıpravy závěrečných praćı
[Support for a thesis preparation]; pp. 144–159

Support for a formal submission of a final thesis
for the Faculty of Business and Economy, Mendel
University of Agriculture and Forestry in Brno, con-
tains different components — courses, texts and tech-
nical elements (packages and templates). This arti-
cle describes the dipp.sty package for final thesis
preparation. The dipp package is supported in the
TEXonWeb system (http://tex.mendelu.cz) and
offered for any user.

Pavel Stř́ıž & Michal Polášek, Šablony pro
vysokoškolské kvalifikačńı práce [Templates at
Tomas Bata University in Zĺın]; pp. 160–172

This article briefly introduces the concept and
effectiveness of creating style sheets. It gives an
overview of links with several major templates over
the world and templates for thesis used over the world

with an emphasis to those found on web sites of the
universities in the Czech Republic and Slovakia. The
templates are available from http://web.utb.cz/

?id=0_0_12_3&lang=cs under “Směrnice rektora č.
12/2009” [The Rector’s Regulation No. 12/2009].

The second part of the article focuses on style
sheets for Microsoft Word, OpenOffice.org Writer
and LATEX created at Tomas Bata University in Zĺın.
The full source code of the LATEX style sheet is also
presented as an appendix of the article.

Michal Mádr & Pavel Stř́ıž, Nové a staronové
knihy [New and older books]; pp. 173–180

Frank Mittelbach, et al.: The LATEX Companion,
http://www.informit.com.

Michel Goossens, et al.: The LATEX Web Com-

panion: Integrating TEX, HTML, and XML, http:
//www.informit.com.

Apostolos Syropoulos, et al.: Digital Typog-

raphy Using LATEX, http://ocean1.ee.duth.gr/

LaTeXBook.
Robert Bringhurst: TheElements of Typographic

Style, http://typebooks.org/r-elements.htm;
see also http://webtypography.net.

Florian Coulmas: The Blackwell Encyclopedia

of Writing Systems, http://blackwellreference.
com.

Peter T. Daniels, William Bright (editors): The

World’s Writing Systems, http://ukcatalogue.oup.
com, cited in http://www.omniglot.com.

Zdeněk Wagner: Chromozon 46,YB (in Czech),
http://icebearsoft.euweb.cz/chromozom46yb.
Please meet an adventure book written in TEX. Con-
gratulations to Zdeněk who holds the title “The
winning book of the TEXperience 2009 conference”.

Zpravodaj 19(4), 2009

Pavel Stř́ıž, Šťastné a veselé . . . [Merry Christmas
and Happy New Year 2010 from the Editorial
Board]; pp. 181–183

Dave Walden & Hàn Thế Thành, Rozhovor
s Hàn Thé̂ Thànhem, tv̊urcem a správcem
pdfTEXu [Interview with Hàn Thé̂ Thành, the
creator and maintainer of pdfTEX, Czech version;
translation and corrections by Michal Mádr and
Pavel Stř́ıž]; pp. 184–190

Translation of an interview conducted by Dave
Walden with Hàn Thé̂ Thành, the creator and main-
tainer of the pdfTEX program. Topics included the
origins of the program pdfTEX, its early develop-
ment, introduction to the wider TEX community and
the organization of current development and mainte-
nance. The original English interview can be found at

108 TUGboat, Volume 31 (2010), No. 1

http://tug.org/interviews/interview-files/

han-the-thanh.html.

Michal Mádr & Pavel Stř́ıž, Představeńı
LuaTEXu [Introduction to LuaTEX]; pp. 191–200

This article introduces the program LuaTEX —
an ambitious successor of pdfTEX. The article dis-
cusses LuaTEX’s position among other TEX follow-
ups and new features of this system. Its official web
site is http://www.luatex.org.

Jan Šustek, Zašifrováńı zdrojového textu
při zachováńı jeho funkčnosti [On Enciphering
a Source Code and Preserving Its Functionality];
pp. 201–211

It is possible to write a document in many differ-
ent ways using TEX. Similarly, one can write a macro
package in many different ways. Some ways are read-
able and some are not. If we want another user to
use our macros, we have to send him the source code
of those macros. But if we don’t want him to see the
source code, we have to encipher it and send only
the ciphertext to the user.

This paper shows one way to achieve this goal.
The original file is enciphered using the \uppercase

primitive. The first line of the ciphered file contains
macros for deciphering the other lines. This ensures
that the ciphered file has the same functionality as
the original file. The source code is available from the
author’s website at http://www1.osu.cz/~sustek/
TeX/zasifruj.tex.

Lúıs Nobre Gonçalves, Michal Mádr &

Pavel Stř́ıž, Drawing the Shree Yantra Core with
METAPOST [Vykresleńı středové části obrazce Shri
Yantra pomoćı METAPOSTu]; pp. 212–221

The Shree Yantra Core is a figure composed of
nine interlocking isosceles triangles, all inside a cir-
cle. This figure is found in some of the oldest Hindu
temples and contains, in itself, a series of interesting
mathematical problems. This article describes an at-
tempt to solve the problem of drawing the Shree
Yantra Core with METAPOST. The sources can
be downloaded from http://matagalatlante.org/

nobre/MetaPost/PlainMetaPostProgs/, in the files
sriyantra.mp and sriyantraquest.mp.

André Simon, The Highlight programme: Code
& syntax highlighting [Program Highlight a jeho
užit́ı]; pp. 222–239

The article presents features and options of
the Highlight programme which is capable of high-
lighting source codes of different programming lan-
guages. The experimental approach of nested syn-
tax configuration is tested on files with HTML+
CSS+PHP+JavaScript, Perl+TEX, LATEX+Sweave
+R and Lua+TEX. The official web site is http:

//andre-simon.de.

Jiř́ı Demel, Pár postřeh̊u z TEXperience
2009 [Impressions from the TEXperience 2009
conference]; pp. 240–241

PF 2010! from CSTUG and the Editorial Board
[Přáńı do nového roku od výboru a redakce]; p. 241

Michal Mádr & Pavel Stř́ıž, Nové a staronové
knihy [New and older books]; pp. 242–244

Karl Berry, David Walden (editors): TEX Peo-

ple: Interviews from the World of TEX, http://tug.
org/store/texpeople.

Roberto Ierusalimschy, Luiz Henrique de Figuei-
redo, Waldemar Celes: “The Evolution of Lua” (an
article), http://www.tecgraf.puc-rio.br/~lhf/
ftp/doc/hopl.pdf.

Roberto Ierusalimschy, Luiz Henrique de Figuei-
redo, Waldemar Celes: Lua 5.1 Reference Manual,
http://www.lua.org/manual/5.1.

Roberto Ierusalimschy: Programming in Lua,
http://www.inf.puc-rio.br/~roberto/pil2.

Roberto Ierusalimschy, Luiz Henrique de Figuei-
redo, Waldemar Celes: Lua Programming Gems,
http://www.lua.org/gems.

Zdeněk Wagner: Sedmero drač́ıch srdćı, in Czech.
Please meet a book with fairy tales written in TEX.
The book was presented for the first time at the
TEXperience 2008 conference. http://icebearsoft.
euweb.cz/sedmero.dracich.srdci .

Pozvánka na TUG 2010: TEX slav́ı 25 [Invitation
to the TUG 2010 conference, Czech version;
translated by Michal Mádr]; the back cover of the
issue.

[Received from Pavel Stř́ıž.]

TUGboat, Volume 31 (2010), No. 1 109

TUG financial statements for 2009

David Walden, TUG treasurer

The financial statements for 2009 have been reviewed
by the TUG board but have not been audited. They
may change slightly when the final 2009 tax return
is filed. As a US tax-exempt organization, TUG’s
annual information returns are publicly available on
our web site: http://www.tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue were down from 2008 to
2009 (at the end of December 2009 we had 1,522 paid
members); conference income was substantially up;
and interest income was substantially down. Product
sales income was down; and contributions income
was up about $2,200. Altogether, revenue increased
3 percent (about $4,000) from 2008 to 2009.

Cost of Goods Sold and Expenses highlights,
and the bottom line

Payroll, office expenses, and TUGboat production
and mailing continue to be the major expense items.

Because Cost of Goods Sold and Expenses did
not change very materially from 2008 to 2009 and
revenue increased, year-to-year gross loss was down
about $3,500.

Often we have a prior year adjustment that takes
place early in the year to compensate for something
that had to be estimated at the time the books
were closed at year end; in 2009 we had two such
adjustments, for a total of minus $175.

Balance sheet highlights

TUG’s end-of-year asset level is up from 2008 to 2009
partly because the last 2009 issue of TUGboat was
billed but not yet paid.

The ‘Committed Funds’ come to TUG specifi-
cally for designated projects: the LATEX project, the
TEX development fund, and so forth. They have
been allocated accordingly and are disbursed as the
projects progress. TUG charges no overhead for ad-
ministering these funds.

‘Prepaid Member Income’ is member dues that
were paid in 2009 for 2010 and beyond. Most of
this liability (the 2010 portion) was converted to
‘Membership Dues’ for 2010 in January 2010.

The payroll liabilities are for 2009 state and
federal taxes due January 15, 2010.

Because of the 2009 loss of $3,829, the Total
Equity is down essentially the same amount from
2008 to 2009.

Summary

TUG remained financially solid as we entered 2009.
However, we did have to increase the fee rates (af-
ter holding them steady for three years) to cover
slowly inflating expenses. Hopefully the fee increase
will not cause too many people to drop their TUG
membership.

TUG continues to work closely with the other
TEX user groups and ad hoc committees on many
activities to benefit the TEX community.

110 TUGboat, Volume 31 (2010), No. 1

 TUG 12/31/2009 (versus 2008) Balance Sheet

Dec 31, 09 Dec 31, 08

ASSETS

Current Assets

Total Checking/Savings 181,596 162,709

Accounts Receivable 55 95

Other Current Assets 2,029 1,314

Total Current Assets 183,680 164,119

Fixed Assets 1,068 2,396

TOTAL ASSETS 184,748 166,515

LIABILITIES & EQUITY

Liabilities

Accounts Payable 11,000 0

Committed Funds 43,417 33,569

Deferred conference income 830 0

Prepaid member income 3,305 2,905

Payroll Liabilities 1,079 1,096

Total Current Liabilities 59,631 37,570

Total Liabilities 59,631 37,570

Equity

Unrestricted 128,945 136,230

Net Income -3,828 -7,285

Total Equity 125,117 128,945

TOTAL LIABILITIES & EQUITY 184,748 166,515

 TUG 2009 (versus 2008) Revenue and Expenses

Jan - Dec 09 Jan - Dec 08

Ordinary Income/Expense

Income

Membership Dues 98,815 103,171

Product Sales 5,095 5,809

Contributions Income 9,253 6,987

Annual Conference 7,640 -1,339

Interest Income 3,163 5,341

Advertising Income 315 405

Total Income 124,281 120,374

Cost of Goods Sold

TUGboat Prod/Mailing 31,045 31,401

Software Production/Mailing 4,112 3,911

Postage/Delivery - Members 2,331 3,164

Conf Expense, office + overhead 1,840 1,036

JMM supplies/shipping 370 829

Member Renewal 434 408

Copy/Printing for members 234 30

Total COGS 40,366 40,779

Gross Profit 83,915 79,595

Expense

Contributions made by TUG 5,000 10,525

Office Overhead 16,560 12,595

Payroll Exp 64,451 62,200

Professional Fees 230 230

Depreciation Expense 1,328 1,330

Total Expense 87,569 86,880

Net Ordinary Income -3,654 -7,285

Other Income/Expense

Other Income

Prior year adjust -175

Total Other Income -175

Net Other Income -175

Net Income -3,829 -7,285

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Banca d’Italia,

Roma, Italy

Center for Computing Sciences,

Bowie, Maryland

Certicom Corp.,

Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Konica Minolta Systems Lab Inc,

Boulder, Colorado

MacKichan Software, Inc.,

Washington/New Mexico, USA

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

University of Delaware,

Computing and Network Services,

Newark, Delaware

Université Laval,

Ste-Foy, Québec, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

2010

Apr 30 –
May 4

BachoTEX2010: 18th BachoTEX
Conference, “Typographers and
programmers: mutual inspirations”,
Bachotek, Poland. For information, visit
www.gust.org.pl/bachotex/2010

May 3 –
Jun 25

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Public Library of
Cincinnati and Hamilton County,
Ohio. Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

May 26 NTG 45th meeting, Dordrecht, Netherlands.
www.ntg.nl/bijeen/bijeen45.html

May 27 – 28 “DIY Design”, Ninth annual St Bride
Library conference, London, England.
stbride.org/events

Jun 15 – 19 The 4th International Conference on
Typography and Visual Communication
(ICTVC), “Lending Grace to Language”,
University of Nicosia, Cyprus.
www.ictvc.org

TUG2010

San Francisco, California.

Jun 28 – 30 The 31st annual meeting of the TEX
Users Group—TEX’s 25 Anniversary.
tug.org/tug2010

Jun 29 –
Jul 1

75 Years of Penguin Books:
An International Multidisciplinary
Conference, University of Bristol,
Bristol, UK. www.bristol.ac.uk/

penguinarchiveproject

Jul 5 –
Aug 26

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Lafayette
College, Easton, Pennsylvania.
Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

TUGboat, Volume 31 (2010), No. 1 111

Calendar

Jul 7 – 10 Digital Humanities 2010, Alliance of
Digital Humanities Organizations,
King’s College, London, UK.
www.cch.kcl.ac.uk/dh2010

Jul 25 – 29 SIGGRAPH 2010, Los Angeles, California.
www.siggraph.org/s2010

Aug 2 – 6 Balisage: The Markup Conference,
Montréal, Québec. www.balisage.net

Aug 17 – 22 TypeCon 2010: “Babel”, Los Angeles,
California. www.typecon.com

Aug 17 – 20 SHARP 2010, “Book Culture from Below”,
Society for the History of Authorship,
Reading & Publishing, Helsinki, Finland.
www.helsinki.fi/sharp2010

Aug 25 – 29 EuroTEX2010, Pisa, Italy.
www.guit.sssup.it/eurotex2010

Sep 5 –
Oct 25

“Marking Time”: A traveling juried
exhibition of books by members
of the Guild of Book Workers.
Dartmouth College, Hanover, New
Hampshire. Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

Sep 8 – 12 Association Typographique Internationale
(ATypI) annual conference, Dublin,
Ireland. www.atypi.org

Sep 13 – 18 Fourth International ConTEXt User
Meeting, “ConTEXt typesetting
documentation, teach as we preach”,
Brejlov (Prague), Czech Republic.
meeting.contextgarden.net

Sep 24 – 26 DANTE Herbsttagung and

43rd meeting, Trier, Germany.
www.dante.de/events/mv43.html

Oct 2 – 3 Oak Knoll Fest XVI, New Castle,
Delaware. www.oakknoll.com/fest

Nov 6 – 8 The Eighth International Conference on
the Book, University of St.Gallen,
St.Gallen, Switzerland.
booksandpublishing.com/conference-2010

Status as of 1 May 2010

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Martinez, Mercè Aicart

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, TEX and LATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Peter, Steve

New Jersey, USA
+1 732 287-5392
Email: speter (at) mac.com

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and ConTEXt,
I have typeset books for Pragmatic Programmers,
Oxford University Press, Routledge, and Kluwer,
among others, and have helped numerous authors turn
rough manuscripts, some with dozens of languages,
into beautiful camera-ready copy. I have extensive
experience in editing, proofreading, and writing
documentation. I also tweak and design fonts. I have
an MA in Linguistics from Harvard University and live
in the New York metro area.

112 TUGboat, Volume 31 (2010), No. 1

TEXConsultants

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about fifteen years of experience in
TEX and twenty-eight years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related
subjects.

TUGBOAT Volume 31 (2010), No. 1

Introductory

4 Barbara Beeton / Editorial comments
• typography and TUGboat news

3 Karl Berry / From the President
• conferences; interviews; TEX Collection 2010; TEX journals

76 Luca Merciadri / Some misunderstood or unknown LATEX2ε tricks
• matrix with borders; accolades in tables; envelopes; microtypography

18 André Miede / Theses and other beautiful documents with classicthesis
• overview and examples of classicthesis

27 Amit Raj Dhawan / Mathematical typefaces in TEX documents
• examples of existing typefaces with math support, and plain macros

21 Peter Flynn / Typographers’ Inn
• indenting; where have all the flowers gone?

64 LATEX Project Team / LATEX news, issue 19
• [2009] LATEX release; new code repository; Babel; the future

79 LATEX Project Team / LATEX3 news, issue 3
• xparse; xtemplate; upcoming plans

6 Evan Wessler / An argument for learning LATEX: The benefits of typesetting and beyond
• benefits of LATEX apart from aesthetics

Intermediate

96 Karl Berry / The treasure chest
• new CTAN packages from July 2009 through April 2010

26 Hans Hagen / LuaTEX: Microtypography for plain fonts
• font extension, slant, protrusion and expansion for LuaTEX

59 Mateusz Kmiecik / From Logo to MetaPost
• comparison of graphics, both simple and complex, in Logo and MetaPost

88 Aditya Mahajan / ConTEXt basics for users: Conditional processing
• usage of ConTEXt modes, with several examples

9 Nicolaas Mars / A computer scientist self-publishing in the humanities
• notes on layout, creating new glyphs, and self-publishing with CreateSpace

23 Oleg Parashchenko / Minimal setup for a (cyrillic) TrueType font
• concise step-by-step creation of support files for a new font

65 Nicola Talbot / Talbot packages: An overview
• date and time, glossaries, spreadsheet-like manipulation, poster layout, graphics drawing, and more

36 Herbert Voß / The current state of the PSTricks project
• review of basic PSTricks, generation of PDF, a wealth of examples

Intermediate Plus

12 Paul Isambert / Strategies against widows

68 Jacek Kmiecik / Tuning LATEX to one’s own needs
• customizing page layout, section titles, headings, figure placement, and more

90 Peter Wilson / Glisterings
• counting; changing the layout

80 Joseph Wright / Beyond \newcommand with xparse
• LATEX3’s extended facilities for defining macros

50 Joseph Wright / Plotting experimental data using pgfplots
• creating good-looking and scientifically accurate plots

83 Joseph Wright / Programming key–value in expl3
• a general key–value package for LATEX3

Advanced

32 Hans Hagen / LuaTEX: Deeply nested notes
• migrating nested footnotes and other insertions via Lua

94 Timothy Hall / The exact placement of superscripts and subscripts
• adjusting font dimensions to improve superscript/subscript appearance

Contents of publications from other TEX groups

99 ArsTEXnica: Issue 8 (October 2009); Die TEXnische Komödie: Issues 2009/4–2010/2;
Asian Journal of TEX : Volume 3 (2009); Les Cahiers GUTenberg : Issues 48–53 (2006–2009);
MAPS: Issues 38–39 (2009); Baskerville: Issue 10.2 (2009);
Zpravodaj: Issues 16(1), 19(3)–19(4) (2006, 2009); Eutypon: Issue 22–23 (October 2009)

Reports and notices

109 David Walden / TUG financial statements for 2009

110 Institutional members

111 Calendar

112 TEX consulting and production services

