E112 MAPS 39

Péter Szabé

Optimizing PDF output size of

TEX documents

Abstract

There are several tools for generating PDF output from
a TEX document. By choosing the appropriate tools
and configuring them properly, it is possible to reduce
the PDF output size by a factor of 3 or even more, thus
reducing document download times, hosting and
archiving costs. We enumerate the most common tools,
and show how to configure them to reduce the size of
text, fonts, images and cross-reference information
embedded into the final PDF. We also analyze image
compression in detail.

We present a new tool called pdfsizeopt.py which
optimizes the size of embedded images and Typel
fonts, and removes object duplicates. We also propose
a workflow for PDF size optimization, which involves
configuration of TEX tools, running pdfsizeopt.py and
the Multivalent PDF compressor as well.

1 Introduction

1.1 What does a PDF document contain
PDF is a popular document file format designed for print-
ing and on-screen viewing. PDF faithfully preserves the
design elements of the document, such as fonts, line
breaks, page breaks, exact spacing, text layout, vector
graphics and image resolution. Thus the author of a
PDF document has precise control over the document’s
appearance—no matter what operating system or renderer
software is used for viewing or printing the PDF. From
the viewer’s perspective, a PDF document is a sequence
of rectangular pages containing text, vector graphics and
pixel-based images. In addition, some rectangular page
regions can be marked as hyperlinks, and Unicode anno-
tations can also be added to the regions, so text may be
copy-pasted from the documents. (Usually the copy-paste
yields only a sequence of characters, with all formatting
and positioning lost. Depending on the software and the
annotation, the bold and italics properties can be pre-
served.) A tree-structured table of contents can be added
as well, each node consisting of an unformatted caption
and a hyperlink within the document.

Additional features of PDF include forms (the user fills
some fields with data, clicks on the submit button, and the

data is sent to a server in an HTTP request), event handlers
in JavaScript, embedded multimedia files, encryption and
access protection.

PDF has almost the same 2D graphics model (text, fonts,
colors, vector graphics) as PostScript, one of the most
widespread page description and printer control language.
So it is possible to convert between PDF and PostScript
without loss of information, except for a few constructs,
e.g. transparency and color gradients are not supported
by PostScript. Conversion from PDF to PostScript may
blow up the file size if there are many repetitions in the
PDF (e.g. a logo drawn to each page). Some of the inter-
active features of PDF (such as forms, annotations and
bookmarks) have no PostScript equivalent either; other
nonprintable elements (such as hyperlinks and the docu-
ment outline) are supported in PostScript using pdfmark,
but many PDF-to-PostScript converters just ignore them.

1.2 How to create PDF

Since PDF contains little or no structural and semantic
information (such as in which order the document should
be read, which regions are titles, how the tables are built
and how the charts generated), word processors, drawing
programs and typesetting systems usually can export to
PDF, but for loading and saving they keep using their own
file format which preserves semantics. PDF is usually not
involved while the author is composing (or typesetting)
the document, but once a version of a document is ready,
a PDF can be exported and distributed. Should the author
distribute the document in the native file format of the
word processor, he might risk that the document doesn’t
get rendered as he intended, due to software version
differences or because slightly different fonts are installed
on the rendering computer, or the page layout settings in
the word processor are different.

Most word processors and drawing programs and im-
age editors support exporting as PDF. It is also possible to
generate a PDF even if the software doesn’t have a PDF
export feature. For example, it may be possible to install a
printer driver, which generates PDF instead of sending the
document to a real printer. (For example, on Windows,
PDFCreator [22] is such an open-source driver.) Some old

Optimizing PDF output size of TEX documents

programs can emit PostScript, but not PDF. The ps2pdf
[28] tool (part of Ghostscript) can be used to convert the
PostScript to PDF.

There are several options for PDF generation from
TpX documents, including pdfTEX, dvipdfmx and dvips +
ps2pdf. Depending on how the document uses hyperlinks
and PostScript programming in graphics, some of these
would not work. See the details in Subsection 2.1. See
[13] for some more information about PDF and generating
it with KIEX.

1.3 Motivation for making PDF files smaller
Our goal is to reduce the size of PDF files, focusing on
those created from TgX documents. Having smaller PDF
files reduces download times, web hosting costs and stor-
age costs as well. Although there is no urgent need for
reducing PDF storage costs for personal use (since hard
drives in modern PCs are large enough), storage costs
are significant for publishing houses, print shops, e-book
stores and hosting services, libraries and archives [26].
Usually lots of copies and backups are made of PDF files
originating from such places; saving 20% of the file size
right after generating the PDF would save 20% of all future
costs associated with the file.

Although e-book readers can store lots of documents
(e.g. a 4 GB e-book reader can store 800 PDF books of 5 MB
average reasonable file size), they get full quickly if we
don’t pay attention to optimized PDF generation. One
can easily get a PDF file 5 times larger than reasonable by
generating it with software which doesn’t pay attention to
size, or not setting the export settings properly. Upgrading
or changing the generator software is not always feasible.
A PDF recompressor becomes useful in these cases.

It is not our goal to propose or use alternative file
formats, which support a more compact document repre-
sentation or more aggressive compression than PDF. An
example for such an approach is the Multivalent compact
PDF file format [25], see Section 5 for more details. There
is no technical reason against using a compact format for
storage, and converting it on the fly to regular PDF before
processing if needed. The disadvantage of a nonstandard
compact format is that most PDF viewers and tools don’t
support it by default, so the user has to install and run the
conversion tool, which some users can’t or won’t do just
for viewing a PDF. When archiving compact PDF files
for a long term, we have to make sure that we’ll have
a working converter at restore time. With Multivalent,
this is possible by archiving the . jar file containing the
code of the converter. But this may not suit all needs,
because Multivalent is not open source, there are no
alternative implementations, and there is no detailed
open specification for its compact PDF file format.

EUROTEX 2009 E113

A pixel-based (fixed resolution) alternative of PDF is
DjVu (see Section 5).

It is possible to save space in a PDF by removing non-
printed information such as hyperlinks, document outline
elements, forms, text-to-Unicode mapping or user anno-
tations. Removing these does not affect the output when
the PDF is printed, but it degrades the user experience
when the PDF is viewed on a computer, and it may also
degrade navigation and searchability. Another option
is to remove embedded fonts. In such a case, the PDF
viewer will pick a font with similar metrics if the font
is not installed on the viewer machine. Please note that
unembedding the font doesn’t change the horizontal dis-
tance between glyphs, so the page layout will remain the
same, but maybe glyphs will look funny or hard-to-read.
Yet another option to save space is to reduce the resolu-
tion of the embedded images. We will not use any of the
techniques mentioned in this paragraph, because our goal
is to reduce redundancy and make the byte representa-
tion more effective, while preserving visual and semantic
information in the document.

1.4 PDF file structure

It is possible to save space in the PDF by serializing the
same information more effectively and/or using better
compression. This section gives a high-level introduction
to the data structures and their serialization in the PDF
file, focusing on size optimization. For a full description
of the PDF file format, see [3].

PDF supports integer, real number, boolean, null, string
and name as simple data types. A string is a sequence
of 8-bit bytes. A name is also a sequence of 8-bit bytes,
usually a concatenation of a few English words in Camel-
Case, often used as a dictionary key (e.g. /MediaBox) or an
enumeration value (e.g. /DeviceGray). Composite data
types are the list and the dictionary. A dictionary is an
unordered sequence of key-value pairs, where keys must
be names. Values in dictionaries and list items can be
primitive or composite. There is a simple serialization of
values to 8-bit strings, compatible with PostScript Lan-
guageLevel 2. For example,

<</Integer 5 /Real -6.7 /Null null
/StringInHex <Face> /String ((C)2009\\))
/Boolean true /Name /Foo /List [3 4 51>>

defines a dictionary with values of various types. All data
types are immutable.

It is possible to define a value for future use by defining
an object. For example, 12 0 obj [/PDF /Text] endobj
defines object number 12 to be an array of two items
(/PDF and /Text). The number 0 in the definition is the
so-called generation number, signifying that the object
has not been modified since the PDF was generated. PDF

E114 MAPS 39

makes it possible to store old versions of an object with
different generation numbers, the one with the highest
number being the most recent. Since most of the tools
just create a new PDF instead of updating parts of an
existing one, we can assume for simplicity that the gener-
ation number is always zero. Once an object is defined
it is possible to refer to it (e.g. 12 0 R) instead of typing
its value. It is possible to define self-referential lists and
dictionaries using object definitions. The PDF specifica-
tion requires that some PDF structure elements (such as
the /FontDescriptor value) be an indirect reference, i.e.
defined as an object. Such elements cannot be inlined
into other object, but they must be referred to.

A PDF file contains a header, a list of objects, a trailer
dictionary, cross-reference information (offsets of object
definitions, sorted by object number), and the end-of-file
marker. The header contains the PDF version (PDF-1.7
being the latest). All of the file elements above except
for the PDF version, the list of objects and the trailer are
redundant, and can be regenerated if lost. The parsing
of the PDF starts at the trailer dictionary. Its /Root value
refers to the catalog dictionary object, whose /Pages
value refers to a dictionary object containing the list
of pages. The interpretation of each object depends on
the reference path which leads to that object from the
trailer. In addition, dictionary objects may have the /Type
and/or /Subtype value indicating the interpretation. For
example, <</Subtype/Image ...>> defines a pixel-based
image.

In addition to the data types above, PDF supports
streams as well. A stream object is a dictionary aug-
mented by the stream data, which is a byte sequence. The
syntax is X Y obj << dict-items >> stream stream-data
endstream endobj. The stream data can be compressed
or otherwise encoded (such as in hex). The /Filter and
/DecodeParms values in the dictionary specify how to
uncompress/decode the stream data. It is possible to spec-
ify multiple such filters, e.g. /Filter [/ASCIIHexDecode
/FlateDecode] says that the bytes after stream should
be decoded as a hex string, and then uncompressed us-
ing PDF’s ZIP implementation. (Please note that the use
of /ASCIIHexDecode is just a waste of space unless one
wants to create an ASCII PDF file.) The three most com-
mon uses for streams are: image pixel data, embedded
font files and content streams. A content stream contains
the instructions to draw the contents of the page. The
stream data is ASCII, with a syntax similar to PostScript,
but with different operators. For example, BT/F 20 Tf
100 1 8 9 Tm(Hello world)Tj ET draws the text
“Hello World” with the font /F at size 20 units, shifted up
by 8 units, and shifted right by 9 units (according to the
transformation matrix 1 0 0 1 8 9).

Péter Szabé

Streams can use the following generic compression
methods: ZIP (also called flate), LZW and RLE (run-length
encoding). ZIP is almost always superior. In addition
to those, PDF supports some image-specific compression
methods as well: JPEG and JPEG2000 for true-color images
and JBIG2 and G3 fax (also called CCITT fax) for bilevel
(two-color) images. JPEG and JPEG2000 are lossy meth-
ods, they usually yield the same size at the same quality
settings—but JPEG2000 is more flexible. JBIG2 is superior
to G3 fax and ZIP for bilevel images. Any number of
compression filters can be applied to a stream, but usu-
ally applying more than one yields a larger compressed
stream size than just applying one. ZIP and LZW support
predictors as well. A predictor is an easy-to-compute,
invertible filter which is applied to the stream data be-
fore compression, to make the data more compressible.
One possible predictor subtracts the previous data value
from the current one, and sends the difference to the com-
pressor. This helps reduce the file size if the difference
between adjacent data values is mostly small, which is
true for some images with a small number of colors.

There is cross-reference information near the end of
the PDF file, which contains the start byte offset of all
object definitions. Using this information it is possible
to render parts of the file, without reading the whole file.
The most common format for cross-reference informa-
tion is the cross-reference table (starting with the keyword
xref). Each item in the table consumes 20 bytes, and con-
tains an object byte offset. The object number is encoded
by the position of the item. For PDFs with several thou-
sand objects, the space occupied by the cross-reference
table is not negligible. PDF 1.5 introduces cross-reference
streams, which store the cross-reference information in
compact form in a stream. Such streams are usually com-
pressed as well, using ZIP and a predictor. The benefit
of the predictor is that adjacent offsets are close to each
other, so their difference will contain lots of zeros, which
can be compressed better.

Compression cannot be applied to the PDF file as a
whole, only individual parts (such as stream data and
cross-reference information) can be compressed. How-
ever, there can be lots of small object definitions in the
file which are not streams. To compress those, PDF 1.5
introduces object streams. The data in an object stream
contains a concatenation of any number of non-stream
object definitions. Object streams can be compressed
just as regular stream data. This makes it possible to
squeeze repetitions spanning over multiple object defi-
nitions. Thus, with PDF 1.5, most of the PDF file can be
stored in compressed streams. Only a few dozen header
bytes and end-of-file markers and the stream dictionaries
remain uncompressed.

Optimizing PDF output size of TEX documents

Table 1: Output file sizes of PDF generation from The TgXbook,
with various methods. The PDF was optimized with pdf-

sizeopt.py, then with Multivalent.
optimized
method PDF bytes PDF bytes
pdf TEX 2283510 1806887
dvipdfm 2269821 1787039
dvipdfmx 2007012 1800270

dvips+ps2pdf 3485081 3181869

2 Making PDF files smaller

2.1 How to prepare a small, optimizable
PDF with TgX

When aiming for a small PDF, it is possible to get it by
using the best tools with the proper settings to create the
smallest possible PDF from the start. Another approach
is to create a PDF without paying attention to the tools
and their settings, and then optimize PDF with a PDF size
optimizer tool. The approach we suggest in this paper is
a mixture of the two: pay attention to the PDF generator
tools and their fundamental settings, so generating a PDF
which is small enough for temporary use and also easy to
optimize further; and use an optimizer to create the final,
even smaller PDF.

This section enumerates the most common tools which
can generate the temporary PDF from a . tex source. As
part of this, it explains how to enforce the proper com-
pression and font settings, and how to prepare vector and
pixel-based images so they don’t become unnecessarily
large.

Pick the best PDF generation method. Table 2 lists fea-
tures of the 3 most common methods (also called drivers)
which produce a PDF from a TgX document, and Table 1
compares the file size they produce when compiling The
TeXbook. There is no single best driver because of the
different feature sets, but looking at how large the out-
put of dvips is, the preliminary conclusion would be to
use pdfTgX or dvipdfm(x) except if advanced PostScript
features are needed (such as for psfrag and pstricks).

We continue with presenting and analyzing the meth-
ods mentioned.

dvips This approach converts TgX source — DVI —
PostScript — PDF, using dvips [29] for creating the
PostScript file, and ps2pdf [28] (part of Ghostscript)
for creating the PDF file. Example command-lines for
compiling doc. tex to doc. pdf:
$ latex doc

$ dvips doc
$ ps2pdf14 -d{\PDF}SETTINGS=/prepress doc.ps

EUROTEX 2009 E115

Table 2. Features supported by various PDF output methods.
dvipdfm(x) dvips

Feature

ae)
o
]
%

hyperref

TikZ

beamer.cls

include PDF
embed bitmap font
embed Type1l font

o

A+t

embed TrueType font
include EPS

include JPEG

include PNG

include MetaPost
psfrag

pstricks

pdfpages

line break in link

X X%

3

L+++ 1+ ++++++

L+++++ ++++++

+ 41
+
\

b: bounding box detection with ebb or pts-graphics-helper
f: see [21] for workarounds

m: convenient with \includegraphicsmps defined in pts-
graphics-helper

r: rename file to .eps manually

o: with \documentclass[dvipdfm]{beamer}

u: use dvips -t unknown doc.dvi to get the paper size
right.

x: with \usepackage[dvipdfmx]{graphics} and shell escape
running extractbb

dvipdfmx The tool dvipdfmx [7] converts from DVI to
PDF, producing a very small output file. dvipdfmx
is part of TeX Live 2008, but since it’s quite new, it
may be missing from other TgX distributions. Its
predecessor, dvipdfm has not been updated since
March 2007. Notable new features in dvipdfmx are:
support for non-latin scripts and fonts; emitting the
Type 1 fonts in CFF (that’s the main reason for the
size difference in Table 2); parsing pdfTgX-style font
.map files. Example command-lines:

$ latex doc
$ dvipdfmx doc

pdfTEX The commands pdftex or pdflatex [41]
generate PDF directly from the . tex source, without
any intermediate files. An important advantage of
pdfTEX over the other methods is that it integrates
nicely with the editors TgXShop and TgXworks. The
single-step approach ensures that there would be
no glitches (e.g. images misaligned or not properly
sized) because the tools are not integrated properly.
Example command-line:

$ pdflatex doc

The command latex doc is run for both dvips and

E116 MAPS 39

dvipdfm(x). Since these two drivers expect a bit different
\specials in the DVI file, the driver name has to be com-
municated to the TgX macros generating the \specials.
For BIEX, dvips is the default. To get dvipdfm(x)
right, pass dvipdfm (or dvipdfmx) as an option to
\documentclass or to both \usepackage{graphicx} and
\usepackage{hyperref}. The package pts-graphics-
helper [34] sets up dvipdfm as default unless the doc-
ument is compiled with pdflatex.

Unfortunately, some graphics packages (such as psfrag
and pstricks) require a PostScript backend such as dvips,
and pdfTgX or dvipdfmx don’t provide that. See [21]
for a list of workarounds. They rely on running dvips
on the graphics, possibly converting its output to PDF,
and then including those files in the main compilation.
Most of the extra work can be avoided if graphics are
created as external PDF files (without text replacements),
TikZ [8] figures or MetaPost figures. TikZ and MetaPost
support text captions typeset by TgX. Inkscape users can
use textext [46] within Inkscape to make TgX typeset the
captions.

The \includegraphics command of the standard
graphicx KIgX-package accepts a PDF as the image file.
In this case, the first page of the specified PDF will be
used as a rectangular image. With dvipdfm(x), one also
needs a .bb (or .bbx) file containing the bounding box.
This can be generated with the ebb tool (or the extractbb
tool shipping with dvipdfm(x). Or, it is possible to use
the pts-graphics-helper package [34], which can find the
PDF bounding box directly (most of the time).

dvipdfm(x) contains special support for embedding
figures created by MetaPost. For pdfTgX, the graphicx
package loads supp-pdf.tex, which can parse the out-
put of MetaPost, and embed it to the document. Unfor-
tunately, the graphicx package is not smart enough to
recognize MetaPost output files (jobname. 1, jobname.2
etc.) by extension. The pts-graphics-helper package over-
comes this limitation by defining \includegraphicsmps,
which can be used in place of \includegraphics for in-
cluding figures created by MetaPost. The package works
consistently with dvipdfm(x) and pdfTgX.

With pdfTgX, it is possible to embed page regions from
an external PDF file, using the pdfpages KIgX-package.
Please note that due to a limitation in pdfTgX, hyperlinks
and outlines (table of contents) in the embedded PDF will
be lost.

Although dvipdfm(x) supports PNG and JPEG image
inclusion, calculating the bounding box may be cumber-
some. It is recommended that all external images should
be converted to PDF first. The recommended software for
that conversion is sam2p [38, 39], which creates a small
PDF (or EPS) quickly.

Péter Szabé

Considering all of the above, we recommend using
pdfTgX for compiling TgX documents to PDF. If, for
some reason, using pdfTgX is not feasible, we recommend
dvipdfmx from TgX Live 2008 or later. If a 1% decrease
in file size is worth the trouble of getting fonts right, we
recommend dvipdfm. In all these cases, the final PDF
should be optimized with pdfsizeopt.py (see later).

Get rid of complex graphics. Some computer algebra pro-
grams and vector modeling tools emit very large PDF (or
similar vector graphics) files. This can be because they
draw the graphics using too many little parts (e.g. they
draw a sphere using several thousand triangles), or they
draw too many parts which would be invisible anyway
since other parts cover them. Converting or optimizing
such PDF files usually doesn’t help, because the optimizers
are not smart enough to rearrange the drawing instruc-
tions, and then skip some of them. A good rule of thumb
is that if a figure in an optimized PDF file is larger than
the corresponding PNG file rendered in 600 DPI, then the
figure is too complex. To reduce the file size, it is recom-
mended to export the figure as a PNG (or JPEG) image
from the program, and embed that bitmap image.

Downsample high-resolution images. For most printers
it doesn’t make a visible difference to print in a resolu-
tion higher than 600 DPI. Sometimes even the difference
between 300 DPI and 600 DPI is negligible. So convert-
ing the embedded images down to 300 DPI may save
significant space without too much quality degradation.
Downsampling before the image is included is a bit of
manual work for each image, but there are a lot of free
software tools to do it (such as GIMP [10] and the con-
vert tool of ImageMagick). It is possible to downsample
after the PDF has been created, for example with the
commercial software PDF Enhancer [20] or Adobe Ac-
robat. ps2pdf (using Ghostscript’s ~dDEVICE=pdfwrite,
and setdistillerparams to customize, see parameters in
[28]) can read PDF files, and downsample images within
as well, but it usually grows other parts of the file too
much (15% increase in file size for The TgXbook), and it
may lose some information (it does keep hyperlinks and
the document outline, though).

Crop large images. If only parts of a large image contain
useful and relevant information, one can save space by
cropping the image.

Choose the JPEG quality. When using JPEG (or JPEG2000)
compression, there is a tradeoff between quality and file
size. Most JPEG encoders based on libjpeg accept an
integer quality value between 1 and 100. For true color
photos, a quality below 40 produces a severely degraded,
hard-to-recognize image, with 75 we get some harmless

Optimizing PDF output size of TEX documents

glitches, and with 85 the degradation is hard to notice.
If the document contains lots of large JPEG images, it
is worth reencoding those with a lower quality setting
to get a smaller PDF file. PDF Enhancer can reencode
JPEG images in an existing PDF, but sometimes not all the
images have to be reencoded. With GIMP it is possible to
get a real-time preview of the quality degradation before
saving, by moving the quality slider.

Please note that some cameras don’t encode JPEG files
effectively when saving to the memory card, and it is pos-
sible to save a lot of space by reencoding on the computer,
even with high quality settings.

Optimize poorly exported images. Not all image process-
ing programs pay attention to size of the image file they
save or export. They might not use compression by de-
fault; or they compress with suboptimal settings; or (for
EPS files) they try to save the file in some compatibil-
ity mode, encoding and compressing the data poorly; or
they add lots of unneeded metadata. These poorly ex-
ported images make TgX and the drivers run slowly, and
they waste disk space (both on the local machine and in
the revision control repository). A good rule of thumb
to detect a poorly exported image is to use sam2p to
convert the exported image to JPEG and PNG (sam2p -c
ijg:85 exported.img test.jpg; sam2p exported.img
test.png), and if any of these files is a lot smaller than
the exported image, then the image was exported poorly.
Converting the exported image with sam2p (to any of
EPS, PDF, JPEG and PNG) is a fast and effective way to
reduce the exported image size. Although sam?2p, with its
default settings, doesn’t create the smallest possible file,
it runs very quickly, and it creates an image file which is
small enough to be embedded in the temporary PDF.

Embed vector fonts instead of bitmap fonts. Most fonts
used with TgX nowadays are available in Type 1 vector
format. (These fonts include the Computer Modern fam-
ilies, the Latin Modern families, the URW versions of
the base 14 and some other Adobe fonts, the TeX Gyre
families, the Vera families, the Palatino family, the cor-
responding math fonts, and some symbol and drawing
fonts.) This is a significant shift from the original TgX
(+ dvips) concept, which used bitmap fonts generated
by MetaFont. While drivers still support embedding
bitmap fonts to the PDF, this is not recommended, be-
cause bitmaps (at 600 DPI) are larger than their vector
equivalent, they render more slowly and they look uglier
in some PDF viewers.

If a font is missing from the font .map file, drivers tend
to generate a bitmap font automatically, and embed that.
To make sure this didn’t happen, it is possible to detect
the presence of bitmap fonts in a PDF by running grep -a

EUROTEX 2009 E117

Table 3: Font .map files used by various drivers and their symlink
targets (default first) in TEX Live 2008.

Driver Font .map file
xdvi ps2pk.map
dvips psfonts.map —

psfonts_tl.map | (psfonts_pk.map)
pdf TEX pdftex.map —

pdftex_dl14.map | (pdftex_ndl14.map)
dvipdfm(x) dvipdfm.map —

dvipdfm_dI14.map | (dvipdfm_ndl14.map)

"/Subtype */Type3” doc.pdf. Here is how to instruct
pdfTEX to use bitmap fonts only (for debugging purposes):
pdflatex "\pdfmapfile\input” doc. The most common
reason for the driver not finding a corresponding vector
font is that the .map file is wrong or the wrong map file
is used. With TgX Live, the updmap tool can be used to
regenerate the .map files for the user, and the updmap-sys
command regenerates the system-level .map files. Table 3
shows which driver reads which .map file. Copying over
pdftex_dI14.map to the current directory as the driver-
specific . map file usually makes the driver find the font.
Old TgX distributions had quite a lot of problems finding
fonts, upgrading to TgX Live 2008 or newer is strongly
recommended.

Some other popular fonts (such as the Microsoft web
fonts) are available in TrueType, another vector format.
dvipdfm(x) and pdfTEX can embed TrueType fonts, but
dvips cannot (it just dumps the . ttf file to the .ps file,
rendering it unparsable).

OpenType fonts with advanced tables for script and
feature selection and glyph substitution are supported by
Unicode-aware TgX-derivatives such as XeTgX, and also
by dvipdfmx.

Omit the base 14 fonts. The base 14 fonts are Times (in 4
styles, Helvetica (in 4 styles), Courier (in 4 styles), Symbol
and Zapf Dingbats. To reduce the size of the PDF, it is
possible to omit them from the PDF file, because PDF
viewers tend to have them. However, omitting the base
14 fonts is deprecated since PDF 1.5. Adobe Reader 6.0 or
newer, and other PDF viewers (such as xpdf and evince)
don’t contain those fonts either, but they can find them
as system fonts. On Debian-based Linux systems, those
fonts are in the gsfonts package.

In TgXLive, directives pdftexDownloadBasel4 and
dvipdfmDownloadBasel4 etc. in the configuration file
texmf-config/web2c/updmap.cfg specify whether to em-
bed the base 14 fonts. After modifying this file (either the
system-wide one or the one in $HOME/ . tex1ive2008) and
running the updmap command, the following font map
files would be created:

E118 MAPS 39

pdftex_dl14.map Font map file for pdfTgX with the
base 14 fonts embedded. This is the default.

pdftex_ndli4.map Font map file for pdfTgX with the
base 14 fonts omitted.

pdftex.map Font map file used by pdfTEX by default.
Identical to one of the two above, based on the
pdftexDownloadBase14 setting.

dvipdfm_dl14.map Font map file for dvipdfm(x) with
the base 14 fonts embedded. This is the default.

dvipdfm_ndl14.map Font map file for dvipdfm(x)
with the base 14 fonts omitted.

dvipdfm.map Font map file used by dvipdfm(x) by
default. Identical to one of the two above, based on
the dvipdfmDownloadBase14 setting.

It is possible to specify the base 14 embedding settings
without modifying configuration files or generating .map
files. Example command-line for pdfTgX (type it without
line breaks):

pdflatex "\pdfmapfile{pdftex_ndl14.map}
\input” doc.tex

However, this will display a warning No flags specified
for non-embedded font. To get rid of this, use

pdflatex "\pdfmapfile{=
pdftex_ndl14_extraflag.map}
\input” doc.tex

instead. Get the .map file from [34].
The .map file syntax for dvipdfm is different, but
dvipdfmx can use a .map file of pdfTgX syntax, like this:

dvipdfmx -f pdftex_dl14.map doc.dvi

Please note that dvipdfm loads the .map files specified
in dvipdfmx.cfg first, and the .map files loaded with the
-f flag override entries loaded previously, from the con-
figuration file. To have the base 14 fonts omitted, run
(without a line break):

dvipdfmx -f pdftex_ndl14.map
-f dvipdfmx_ndl14_extra.map doc.tex

Again, you can get the last .map file from [34]. Without
dvipdfmx_ndI14_extra.map, a bug in dvipdfm prevents
it from writing a PDF file without the font—it would
embed a rendered bitmap font instead.

Subset fonts. Font subsetting is the process when the
driver selects and embeds only the glyphs of a font which
are actually used in the document. Font subsetting is
turned on by default for dvips, dvipdfm(x) and pdfTgX
when emitting glyphs produced by TgX.

2.2 Extra manual tweaks on
TeX-to-PDF compilation

This sections shows a couple of methods to reduce the

Péter Szabé

size of the PDF created by a TgX compilation manually.
It is not necessary to implement these methods if the
temporary PDF gets optimized by pdfsizeopy.py + Multi-
valent, because this combination implements the methods
discussed here.

Set the ZIP compression level to maximum. For pdfTgX,
the assignment \pdfcompresslevel9 selects maximum
PDF compression. With TgX Live 2008, this is the default.
Here is how to specify it on the command-line (without
line breaks):

pdflatex "\pdfcompresslevel9
\input"” doc.tex

For dvipdfm(x), the command-line flag -z9 can be used
to maximize compression. This is also the default. PDF
itself supports redundancy elimination in many different
places (see in Subsection 2.3) in addition to setting the
ZIP compression level.

There is no need to pay attention to this tweak, because
Multivalent recompresses all ZIP streams with maximum
effort.

Generate object streams and cross-reference streams.
pdfTEX can generate object streams and cross-reference
streams to save about 10% of the PDF file size, or even
more if the file contains lots of hyperlinks. (The actual
saving depends on the file structure.) Example command-
line for enabling it (without line breaks):

pdflatex "\pdfminorversion5
\pdfobjcompresslevel3
\input"” doc.tex

According to [27], if ZIP compression is used to com-
press the object streams, in some rare cases it is possible to
save space by starting a new block within the ZIP stream
just at the right points.

There is no need to pay attention to this tweak, because
Multivalent generates object streams and cross-reference
streams by default.

Encode Type 1 fonts as CFF. CFF [2] (Type 2 or /Subtype
/Type1C) is an alternative, compact, highly compressible
binary font format that can represent Type 1 font data
without loss. By embedding vector fonts in CFF instead
of Type 1, one can save significant portion of the PDF file,
especially if the document is 10 pages or less (e.g. reducing
the PDF file size from 200kB to 50 kB). dvipdfmx does
this by default, but the other drivers (pdfTEX, dvipdfm,
ps2pdf with dvips) don’t support CFF embedding so far.
There is no need to pay attention to this tweak, because
pdfsizeopt.py converts Type 1 fonts in the PDF to CFF.

Create graphics with font subsetting in mind. For glyphs
coming from external sources such as the included

Optimizing PDF output size of TEX documents

PostScript and PDF graphics, the driver is usually not
smart enough to recognize the fonts already embedded,
and unify them with the fonts in the main document.
Let’s suppose that the document contains included graph-
ics with text captions, each graphics source PostScript
or PDF having the font subsets embedded. No matter
whether dvips, dvipdfm(x) or pdfTgX is the driver, it will
not be smart enough to unify these subsets to a single
font. Thus space would be wasted in the final PDF file
containing multiple subsets of the same font, possibly
storing duplicate versions of some glyphs.

It is possible to avoid this waste by using a graphics
package implemented in pure TgX (such as TikZ) or us-
ing MetaPost (for which there is special support in dvips,
dvipdfm(x) and pdfTEX to avoid font and glyph duplica-
tion). The package psfrag doesn’t suffer from this problem
either if the EPS files don’t contain any embedded fonts.

There is no need to pay attention to this tweak, because
pdfsizeopt.py unifies font subsets.

Disable font subsetting before concatenation. If a PDF
document is a concatenation of several smaller PDF files
(such as in journal volumes and conference proceeding),
and each PDF file contains its own, subsetted fonts, then
it depends on the concatenator tool whether those sub-
sets are unified or not. Most concatenator tools (pdftk,
Multivalent, pdfpages, ps2pdf; see [32] for more) don’t
unify these font subsets.

However, if you use ps2pdf for PDF concatenation,
you can get font subsetting and subset unification by
disabling font subsetting when generating the small PDF
files. In this case, Ghostscript (run by ps2pdf) will notice
that the document contains the exact same font many
times, and it will subset only one copy of the font.

There is no need to pay attention to this tweak, because
pdfsizeopt.py unifies font subsets.

Embed each graphics file once. When the same graphics
file (such as the company logo on presentation slides) is
included multiple times, it depends on the driver whether
the graphics data is duplicated in the final PDF. pdfTgX
doesn’t duplicate, dvipdfm(x) duplicates only MetaPost
graphics, and dvips always duplicates.

There is no need to pay attention to this tweak, because
both pdfsizeopt.py and Multivalent eliminate duplicates
of identical objects.

2.3 How PDF optimizers save space

This subsection describes some methods PDF optimizers
use to reduce the file size. We focus on ideas and methods
relevant to TgX documents.

Use cross-reference streams compressed with the y-
predictor. Each offset entry in an (uncompressed) cross-

EUROTEX 2009 E119

reference table consumes 20 bytes. It can be reduced by
using compressed cross-reference streams, and enabling
the y-predictor. As shown in column xref of Table 4, a
reduction factor of 180 is possible if the PDF file contains
many objects (e.g. more than 10° objects in pdfref, with
less than 12000 bytes in the cross-reference stream).

The reason why the y-predictor can make a difference
of a factor of 2 or even more is the following. The y-
predictor encodes each byte in a rectangular array of
bytes by subtracting the original byte above the current
byte from the current byte. So if each row of the rectan-
gular array contains an object offset, and the offsets are
increasing, then most of the bytes in the output of the y-
predictor would have a small absolute value, mostly zero.
Thus the output of the y-predictor can be compressed
better with ZIP than the original byte array.

Some tools such as Multivalent implement the y-
predictor with PNG predictor 12, but using TIFF predic-
tor 2 avoids stuffing in the extra byte per each row—
pdfsizeopt.py does that.

Use object streams. It is possible to save space in the PDF
by concatenating small (non-stream) objects to an object
stream, and compressing the stream as a whole. One can
even sort objects by type first, so similar objects will be
placed next to each other, and they will fit to the 32kB
long ZIP compression window.

Please note that both object streams and cross-
reference streams are PDF 1.5 features, and cross-reference
streams must be also used when object streams are used.

Use better stream compression. In PDF any stream can
be compressed with any compression filter (or a combina-
tion of filters). ZIP is the most effective general-purpose
compression, which is recommended for compressing
content streams, object streams, cross-reference streams
and font data (such as CFF). For images, however, there
are specialized filters (see later in this section).

Most PDF generators (such as dvipdfm(x) and pdfTgX)
and optimization tools (such as Multivalent) use the zlib
code for general-purpose ZIP compression. zlib lets the
user specify the effort parameter between 0 (no com-
pression) and 9 (slowest compression, smallest output)
to balance compression speed versus compressed data
size. There are, however alternative ZIP compressor im-
plementations (such as the one in KZIP [30] and PNGOUT
[31, 9]), which provide an even higher effort—but the
author doesn’t know of any PDF optimizers using those
algorithms.

Recompress pixel-based images. PDF supports more than
6 compression methods (and any combination of them)
and more than 6 predictors, so there are lots of possibil-
ities to make images smaller. Here we focus on lossless

E120 MAPS 39

compression (thus excluding JPEG and JPEG2000 used for
compressing photos). An image is rectangular array of
pixels. Each pixel is encoded as a vector of one or more
components in the color space of the image. Typical
color spaces are RGB (/DeviceRGB), grayscale (/Device>
Gray), CMYK (/DeviceCMYK), color spaces where colors
are device-independent, and the palette (indexed) ver-
sions of those. Each color component of each pixel is
encoded as a nonnegative integer with a fixed number of
bits (bits-per-component, BPC; can be 1, 2, 4, 8, 12 or 16).
The image data can be compressed with any combination
of the PDF compression methods.

Before recompressing the image, usually it is worth
extracting the raw RGB or CMYK (or device-independent)
image data, and then compressing the image the best we
can. Partial approaches such as optimizing the palette
only are usually suboptimal, because they may be inca-
pable of converting an indexed image to grayscale to save
the storage space needed by the palette.

To pick the best encoding for the image, we have to
decide which color space, bits-per-component, compres-
sion method(s) and predictor to use. We have to choose
a color space which can represent all the colors in the
image. We may convert a grayscale image to an RGB
image (and back if all pixels are grayscale). We may also
convert a grayscale image to a CMYK image (and maybe
back). If the image doesn’t have more than 256 different
colors, we can use an indexed version of the color space.
A good rule of thumb (no matter the compression) is to
pick the color space + bits-per-component combination
which needs the least number of bits per pixel. On a draw,
pick the one which doesn’t need a palette. These ideas
can also be applied if the image contains an alpha channel
(which allows for transparent or semi-transparent pixels).

It is possible to further optimize some corner cases, for
example if the image has only a single color, then it is
worth encoding it as vector graphics filling a rectangle
of that color. Or, when the image is a grid of rectangles,
where each rectangle contains a single color, then it is
worth encoding a lower resolution image, and increase
the scale factor in the image transformation matrix to
draw the larger image.

High-effort ZIP is the best compression method sup-
ported by PDF, except for bilevel (two-color) images,
where JBIG2 can yield a smaller result for some inputs.
JBIG2 is most effective on images with lots of 2D repe-
titions, e.g. images containing lots of text (because the
letters are repeating). Other lossless compression methods
supported by PDF (such as RLE, LZW and G3 fax) are infe-
rior to ZIP and/or JBIG2. Sometimes the image is so small
(like 10 x 10 pixels) that compressing would increase its
size. Most of the images don’t benefit from a predictor

Péter Szabé

(used together with ZIP compression), but some of them
do. PDF supports the PNG predictor image data format,
which makes it possible to choose a different predictor for
scanline (image row). The heuristic default algorithm in
pnmtopng calculates all 5 scanline variations, and picks
the one having the smallest sum of absolute values. This
facilitates bytes with small absolute values in the uncom-
pressed image data, so the Huffman coding in ZIP can
compress it effectively.

Most of the time it is not possible to tell in advance
if ZIP or JBIG2 should be used, or whether a predictor
should be used with ZIP or not. To get the smallest pos-
sible output, it is recommended to run all 3 variations
and pick the one yielding the smallest image object. For
very small images, the uncompressed version should be
considered as well. If the image is huge and it has lots
repetitive regions, it may be worth to apply ZIP more
than once. Please note that metadata (such as specifying
the decompression filter(s) to use) also contributes to the
image size.

Most PDF optimizers use the zlib code for ZIP compres-
sion in images. The output of some other image com-
pressors (most notably PNGOUT [31], see also OptiPNG
[43] and [42] for a list of 11 other PNG optimization tools,
and more tools in [15]) is smaller than what zlib pro-
duces with its highest effort, but those other compressors
usually run a 100 times or even slower than zlib.

How much a document size decreases because of image
recompression depends on the structure of the document
(how many images are there, how large the images are,
how large part of the file size is occupied by images) and
how effectively the PDF was generated. The percentage
savings in the image column of Table 4 suggests that
only a little saving is possible (about 5%) if the user pays
attention to embed the images effectively, according to
the image-related guidelines presented in Section 2.1. It
is possible to save lots of space by decreasing the image
resolution, or decreasing the image quality by using some
lossy compression method (such as JPEG or JPEG2000)
with lower quality settings. These kinds of optimizations
are supported by Adobe Acrobat Pro and PDF Enhancer,
but they are out of scope of our goals to decrease the file
size while not changing its rendered appearance.

JPEG files could benefit from a lossless transformation,
such as removing EXIF tags and other metadata. Com-
pressing JPEG data further with ZIP wouldn’t save space.
The program packJPG [33] applies custom lossless com-
pression to JPEG files, saving about 20%. Unfortunately,
PDF doesn’t have a decompression filter for that.

Convert some inline images to objects. It is possible to
inline images into content streams. This PDF feature saves
about 30 bytes per image as compared to having the image

Optimizing PDF output size of TEX documents

as a standalone image object. However, inline images
cannot be shared. So in order to save the most space,
inline images which are used more than once should be
converted to objects, and image objects used only once
should be converted to inline images. Images having
palette duplication with other images should be image
objects, so the palette can be shared.

Unify duplicate objects. If two or more PDF objects share
the same serialized value, it is natural to save space by
keeping only the first one, and modifying references to
the rest so that they refer to the first one. It is possible to
optimize even more by constructing equivalence classes,
and keeping only one object per class. For example, if the
PDF contains

5 0 obj << /Next 6 0 R /Prev 5 0 R >> endobj
6 0 obj << /Next 5 0 R /Prev 6 0 R >> endobj
7 0 obj << /First 6 0 R >> endobj

then objects 5 and 6 are equivalent, so we can rewrite the
PDF to

5 0 obj << /Next 5 0 R /Prev 5 0 R >> endobj
7 0 obj << /First 5 0 R >> endobj

PDF generators usually don’t emit duplicate objects on
purpose, but it just happens by chance that some object
values are equal. If the document contains the same page
content, font, font encoding, image or graphics more
than once, and the PDF generator fails to notice that,
then these would most probably become duplicate ob-
jects, which can be optimized away. The method dvips
+ ps2pdf usually produces lots of duplicated objects if
the document contains lots of duplicate content such as
\includegraphics loading same graphics many times.

Remove image duplicates, based on visible pixel value.
Different color space, bits-per-pixel and compression set-
tings can cause many different representations of the
same image (rectangular pixel array) to be present in the
document. This can indeed happen if different parts of
the PDF were created with different (e.g. one with pdfTgX,
another with dvips), and the results were concatenated.
To save space, the optimizer can keep only the smallest
image object, and update references.

Remove unused objects. Some PDF files contain objects
which are not reachable from the /Root or trailer objects.
These may be present because of incremental updates,
concatenations or conversion, or because the file is a
linearized PDF. It is safe to save space by removing those
unused objects. A linearized PDF provides a better web
experience to the user, because it makes the first page
of the PDF appear earlier. Since a linearized PDF can be
automatically generated from a non-linearized one any
time, there is no point keeping a linearized PDF when

EUROTEX 2009 E121

optimizing for size.

Extract large parts of objects. Unifying duplicate objects
can save space only if a whole object is duplicated. If
a paragraph is repeated on a page, it will most proba-
bly remain duplicated, because the duplication is within
a single object (the content stream). So the optimizer
can save space by detecting content duplication in the
sub-object level (outside stream data and inside content
stream data), and extracting the duplicated parts to indi-
vidual objects, which can now be unified. Although this
extraction would usually be too slow if applied to all data
structures in the PDF, it may be worth applying it to some
large structures such as image palettes (whose maximum
size is 768 bytes for RGB images).

Reorganize content streams and form XObjects. Instruc-
tions for drawing a single page can span over multiple
content streams and form XObjects. To save space, it is
possible to concatenate those to a single content stream,
and compress the stream at once. After all those con-
catenations, large common instruction sequences can be
extracted to form XObjects to make code reuse possible.

Remove unnecessary indirect references. The PDF speci-
fication defines whether a value within a compound PDF
value must be an indirect reference. If a particular value
in the PDF file is an indirect reference, but it doesn’t have
to be, and other objects are not referring to that object,
then inlining the value of the object saves space. Some
PDF generators emit lots of unnecessary indirect refer-
ences, because they generate the PDF file sequentially,
and for some objects they don’t know the full value when
they are generating the object—so they replace parts of
the value by indirect references, whose definitions they
give later. This strategy can save some RAM during the
PDF generation, but it makes the PDF about 40 bytes larger
than necessary for each such reference.

Convert Type 1 fonts to CFF. Since drivers embed Type 1
fonts to the PDF as Type 1 (except for dvipdfmx, which
emits CFF), and CFF can represent the same font with
less bytes (because of the binary format and the smart
defaults), and it is also more compressible (because it
doesn’t have encryption), it is natural to save space by
converting Type 1 fonts in the PDF to CFF.

Subset fonts. This can be done by finding unused glyphs
in fonts, and getting rid of them. Usually this doesn’t
save any space for TgX documents, because drivers subset
fonts by default.

Unify subsets of the same font. As discussed in Sec-
tion 2.1, a PDF file may end up containing multiple sub-
sets of the same font when typesetting a collection of

E122 MAPS 39

articles (such as a journal volume or a conference pro-
ceedings) with BIEX, or embedding graphics containing
text captions. Since these subsets are not identical, uni-
fying duplicate objects will not collapse them to a single
font. A font-specific optimization can save file size by
taking a union of these subsets in each font, thus elim-
inating glyph duplication and improving compression
effectiveness by grouping similar data (font glyphs) next
to each other.

Remove data ignored by the PDF specification. For com-
patibility with future PDF specification versions, a PDF
viewer or printer must accept dictionary keys which are
not defined in the PDF specification. These keys can be
safely removed without affecting the meaning of the PDF.
An example for such a key is /PTEX.Fullbanner emitted
by pdfTEX.

Omit explicitly specified default values. The PDF specifi-
cation provides default values for many dictionary keys.
Some PDF generators, however, emit keys with the default
value. It is safe to remove these to save space.

Recompress streams with ZIP. Uncompressing a stream
and recompressing it with maximum-effort ZIP makes
the stream smaller most of the time. That’s because ZIP
is more effective than the other general purpose compres-
sion algorithms PDF supports (RLE and LZW).

For compatibility with the PostScript language, PDF
supports the /ASCIIHexDecode and /ASCII85Decode fil-
ters on streams. Using them just makes the stream in
the file longer (by a factor of about 2/1 and 5/4, respec-
tively). These filters make it possible to embed binary
stream data in a pure ASCII PDF file. However, there is no
significant use case for an ASCII-only PDF nowadays, so
it is recommended to get rid of these filters to decrease to
file size.

Remove page thumbnails. If the PDF file has page thumb-
nails, the PDF viewer can show them to the user to make
navigation easier and faster. Since page thumbnails are
redundant information which can be regenerated any
time, it is safe to save space by removing them.

Serialize values more effectively. Whitespace can be
omitted between tokens, except between a name to-
ken and a token starting with a number or a letter (e.g.
/Ascent 750). Whitespace in front of endstream can be
omitted as well. The binary representation of strings
should be used instead of the hexadecimal, because it’s
never longer and it’s shorter most of the time if used prop-
erly. Only the characters (\) have to be escaped with a
backslash within strings, but parentheses which nest can
be left unescaped. So, e.g. the string a(())) (()\b can be
represented as (a(())\) (\(\\b).

Péter Szabé

Shrink cross-reference data. Renumbering objects (from
1, consecutively) saves space in the cross-reference data,
because gaps don’t have to be encoded. (Each gap of
consecutive missing objects costs about 10 bytes.) Also if
an object is referenced many times, then giving it a small
object number reduces the file size by a few bytes.

Remove old, unused object versions. PDF can store old
object versions in the file. This makes incremental up-
dates (e.g. the File / Save action in Adobe Acrobat) faster.
Removing the old versions saves space.

Remove content outside the page. /MediaBox, /CropBox
and other bounding box values of the page define a rect-
angle where drawing takes place. All content (vector
graphics or parts of it, images or parts of them, or text)
than falls outside this rectangle can be removed to save
space. Implementing this removal can be tricky for par-
tially visible content. For example, 8-pixel wide bars
can be removed from the edge of a JPEG image without
quality loss in the remaining part.

Remove unused named destinations. A named destina-
tion maps a name to a document location or view. It
can be a target of a hyperlink within the document, or
from outside. Some PDF generator software (such as
FrameMaker) generates lots of named destinations never
referenced. But care has to be taken when removing
those, because then hyperlinks from outside the docu-
ment wouldn’t work.

Flatten structures. To facilitate incremental updates, PDF
can store some structures (such as the page tree and the
content streams within a page) spread to more objects
and parts than necessary. Using the simplest, single-level
or single-part structure saves space.

3 PDF size optimization tools
3.1 Test PDF files

In order to compare the optimization effectiveness of the
tools presented in this section, we have compiled a set of
test PDF files, and optimized them with each tool. The
totals column of Table 4 shows the size of each file (the
+ and — percentages can be ignored for now), and other
columns show the bytes used by different object types.
The test files can be downloaded from [36]. Some more
details about the test files:

cff 62-page technical documentation about the CFF
file format. Font data is a mixture of Type 1, CFF
and TrueType. Compiled with FrameMaker 7.0, PDF
generated by Distiller 6.0.1.

beamer1 75 slide-steps long presentation created with

Optimizing PDF output size of TEX documents

EUROTEX 2009 E123

Table 4. PDF size reduction by object type, when running pdfsizeopy.py + Multivalent.

document contents font image other xref total
cff 141153 — 02% 25547 — 02% 0 178926 — 91% 174774 — 100% 521909 — 65%
beamer 169789 — 03% 44799 — 54% 115160 — 00% 445732 — 96% 56752 —98% 832319 — 62%
eu2006 1065864 — 01% 3271206 — 91% 3597779 — 06% 430352 — 80% 45792 — 94% 8411464 — 43%
inkscape 10679156 — 20% 230241 — 00% 6255203 — 20% 943269 — 79% 122274 — 94% 18245172 — 24%
Ime2006 1501584 — 14% 314265 — 73% 678549 — 06% 176666 — 91% 31892 — 93% 2703119 — 25%
pdfref 6269878 — 05% 274231 — 04% 1339264 — 00% 17906915 — 79% 6665536 — 100% 32472771 — 65%
pgf2 2184323 — 03% 275768 — 51% 0 1132100 —84% 190832 — 96% 3783193 — 36%
texbook 1507901 — 01% 519550 — 48% 0 217616 — 84% 35532 — 87% 2280769 — 21%
tuzv 112145 — 03% 201155 — 84% 0 21913 — 77% 2471 — 88% 337764 — 57%

The first number in each cell is the number of bytes used in the original document.
The —...% value indicates the percentage saved by optimization.
The data in this table was extracted from the original and optimized PDF files using pdfsizeopy.py --stats.

contents: content streams
font: embedded font files

image: pixel-based image objects and inline images, the latter created by sam2p

other: other objects
xref: cross-reference tables or streams
total: size of the PDF file

beamer.cls [40]. Contains hyperlinks, math formulas,
some vector graphics and a few pixel-based images.
Compiled with pdfTgX. Font data is in Type 1 format.

eu2006 126-page conference proceedings (of EuroTeX
2006) containing some large images. Individual
articles were compiled with pdfTgX, and then PDF
files were concatenated. Because of the concatenation,
many font subsets were embedded multiple times,
so a large part of the file is font data. Font data is
mostly CFF, but it contains some Type 1 and TrueType
fonts as well. Most fonts are compressed with the less
effective LZW instead of ZIP.

inkscape 341-page software manual created with
codeMantra Universal PDF [5]. Contains lots of
screenshots and small images. Font data is a mixture
of Type 1, CFF and TrueType.

Ime2006 240-page conference proceedings in Hun-
garian. Contains some black-and-white screenshot
images. Individual articles were compiled with
KIEX and dvips (without font subsetting), and the
PostScript files were concatenated and converted to
PDF in a single run of a modified ps2pdf. Since font
subsetting was disabled in dvips, later ps2pdf was
able to subset fonts without duplication. Font data is
in CFF.

pdfref 1310-page reference manual about PDF 1.7
containing quite a lot of duplicate xref tables and
XML metadata of document parts. Optimization
gets rid of both the duplicate xref tables and the
XML metadata. Font data is in CFF. Compiled
with FrameMaker 7.2, PDF generated by Acrobat

Distiller 7.0.5.

pef2 560-page software manual about TikZ, with lots of
vector graphics as examples, with an outline, without
hyperlinks. Compiled with pdfTgX. Font data is in
Type 1 format.

texbook 494-page user manual about TgX (The
TeXbook), compiled with pdfTgX. No pixel images,
and hardly any vector graphics.

tuzv Mini novel in Hungarian, typeset on 20 A4 pages
in a 2-column layout. Generated by dvipdfm. It
contains no images or graphics. Font data is in Type 1
format.

None of the test PDF files used object streams or cross-
reference streams.

3.2 ps2pdf
The ps2pdf [28] script (and its counterparts for specific
PDF versions, e.g. ps2pdfl4) runs Ghostscript with the
flag -sDEVICE=pdfwrite, which converts its input to PDF.
Contrary to what the name suggests, ps2pdf accepts not
only PostScript, but also PDF files as input.

ps2pdf works by converting its input to low-level
PostScript drawing primitives, and then emitting them
as a PDF document. ps2pdf wasn’t written to be a PDF
size optimizer, but it can be used as such. Table 5 shows
that ps2pdf increases the file size many times. For the
documents cff and pdfref, we got a file size decrease be-
cause ps2pdf got rid of some metadata, and for pdfref; it
optimized the cross-reference table. For eu2006 it saved
space by recompressing fonts with ZIP. The document

E124 MAPS 39

tuzv became smaller because ps2pdf converted Type 1
fonts to CFF. The reason for the extremely large growth
in beamer1 is that ps2pdf blew up images, and it also em-
bedded multiple instances of the same image as separate
images. (It doesn’t always do so: if the two instances of
the image are close to each other, then ps2pdf reuses the
same object in the PDF for representing the image.)

ps2pdf keeps all printable features of the origi-
nal PDF, and hyperlinks and the document outline as
well. However, it recompresses JPEG images (back
to a different JPEG, sometimes larger than the orig-
inal), thus losing quality. The only way to disable
this is specifying the flags ~dEncodeColorImages=false
-dEncodeGrayImages=false, but it would blow up the
file size even more, because it will keep photos uncom-
pressed. Specifying -dColorImageFilter=/FlateEncode
would convert JPEG images to use ZIP compression with-
out quality loss, but this still blows up the file size. Thus,
it is not possible to set up pdf2ps to leave JPEG images as
is: it will either blow up the image size (by uncompress-
ing the image or recompressing it with ZIP), or it will do
a transformation with quality loss. The Distiller option
/PassThroughJPEGImages would solve this problem, but
Ghostscript doesn’t support it yet.

ps2pdf doesn’t remove duplicate content (although
it removes image duplicates if they are close by), and it
also doesn’t minimize the use of indirect references (e.g.
it emits the /Length of content streams as an indirect
reference). The only aspects ps2pdf seems to optimize
effectively is converting Type 1 fonts to CFF and removing
content outside the page. Since this conversion is also
done by pdfsizeopt.py, it is not recommended to use
ps2pdf to optimize PDF files.

Table 5. PDF optimization effectiveness of ps2pdf.

document input ps2pdf psom
cff 521909 264861 180987
beamerl 832319 3027368 317351
eu2006 8411464 6322867 4812306
inkscape 18245172 failed 13944481
Ime2006 2703119 3091842 2033582
pdfref 32472771 15949169 11237663
pgf2 3783193 4023581 2438261
texbook 2280769 2539424 1806887
tuzv 337764 199279 146414

All numeric values are in bytes. ltalic values indicate that
the optimizer increased the file size.

ps2pdf: Ghostscript 8.61 run as

ps2pdf14 -dPDFSETTINGS=/prepress

psom: pdfsizeopt.py + Multivalent

Péter Szabé

3.3 PDF Enhancer

PDF Enhancer [20] is commercial software which can
concatenate, split, convert and optimize PDF documents,
and remove selected PDF parts as well. It has lots of
conversion and optimization features (see the table in [4]),
and it is highly configurable. With its default settings, it
optimizes the PDF without removing information. It is
a feature-extended version of the PDF Shrink software
from the same company. The use of the GUI version
of PDF Enhancer is analyzed in [12]. A single license
for the server edition, needed for batch processing, costs
about $1000, and the advanced server edition (with JBIG2
support) costs about twice as much. The standard edition
with the GUI costs only $200.

Columns input and pdfe of Table 6 show how effec-
tively PDF Enhancer optimizes. The server edition was
used in our automated tests, but the standard edition gen-
erates PDF files of the same size. Looking at columns pdfe
and a9p4 we can compare PDF Enhancer to Adobe Acro-
bat Pro. Please note that PDF Enhancer doesn’t generate
object streams or cross-reference streams, that’s why we
compare it to a9p4 instead of a9p5 in the table. Feeding
the output of PDF Enhancer to Multivalent decreases the
file size even further, because Multivalent generates those
streams. The column epsom of Table 6 shows the PDF
output file sizes of the PDF Enhancer + pdfsizeopt.py
+ Multivalent combination, which seems to be the most
effective for TgX documents.

According to the messages it prints, PDF Enchancer
optimizes content streams within the page. Most other
optimizers (except for Adobe Acrobat Pro) don’t do this.
Text-only content streams generated from TgX don’t ben-
efit from such an optimization, but for the pgf2 document,
which contains lots of graphics, this optimization saved
about 10% of the content streams.

It is worth noting that PDF Enhancer failed when op-
timizing one of the test documents (see in Table 6). The
developers of PDF Enhancer reply quickly to bug reports,
and they are willing to track and fix bugs in the software.

3.4 Adobe Acrobat Pro

Adobe’s WYSIWYG PDF manipulation program, Adobe
Acrobat Pro [1] also contains a PDF optimizer (menu item
Advanced / PDF Optimizer). A single license of the whole
software costs $450; it is not possible to buy only the
optimizer. There seems to be no direct way to run the
optimizer on multiple files in batch mode. Columns a9p4
and a9p5 of Table 6 shows the effectiveness of the opti-
mizer: values in the column a9p4 are for PDF 1.4 output,
and column a9p5 belongs to PDF 1.5 output. The PDF 1.5
files are much smaller because they make use of object
streams and cross-reference streams. The optimizer lets

Optimizing PDF output size of TEX documents

EUROTEX 2009 E125

Table 6. PDF optimization effectiveness of PDF Enhancer and Adobe Acrobat Pro.

document input pdfe epsom psom apsom a9p4 agp5
cff 521909 229953 174182 180987 158395 548181 329315
beamerl 832319 756971 296816 317351 317326 765785 363963
eu2006 8411464 failed n/a 4812306 3666315 8115676 7991997
inkscape 18245172 14613044 12289136 13944481 11807680 14283567 13962583
Ime2006 2703119 2263227 1781574 2033582 1830936 2410603 2279985
pdfref 32472771 23794114 11009960 11237663 9360794 23217668 20208419
pgf2 3783193 3498756 2245797 2438261 n/a failed failed
texbook 2280769 2273410 1803166 1806887 1804565 2314025 2150899
tuzv 337764 338316 147453 146414 150813 344215 328843

All numeric values are in bytes. Italic values indicate that the optimizer increased the file size.

pdfe: PDF Enhancer 3.2.5 (1122r) server edition
epsom: PDF Enhancer + pdfsizeopt.py + Multivalent
psom: pdfsizeopt.py + Multivalent

apsom: Adobe Acrobat Pro 9 creating PDF 1.4 + pdfsizeopt.py + Multivalent

a9p4: Adobe Acrobat Pro 9 creating PDF 1.4
a9p5: Adobe Acrobat Pro 9 creating PDF 1.5

the user specify quite a few settings. For the tests we have
enabled all optimizations except those which lose infor-
mation (such as image resampling). It turned out that we
had to disable Discard User Data / Discard all comments,
forms and multimedia, otherwise the optimizer removed
hyperlinks from the document beamer1.

It is worth noting that Adobe Acrobat Pro 9 failed with
an image-related error when optimizing document pgf2.
Oddly enough, that PDF file doesn’t contain any images.

3.5 pdfcompress

pdfcompress [45] is the command-line version of the
PDF optimizer in Advanced PDF Tools. It is commercial
software, a single-computer license costs less than $80.
It can resample and recompress images based on a few
set of settings for monochrome, gray and color images.
It can also recompress streams, and it can remove some
PDF features (such metadata, JavaScript, page thumbnails,
comments, embedded files, outlines, private data and
forms). We haven’t analyzed it, because PDF Enhancer
seems to have all the features of pdfcompress.

3.6 Multivalent tool.pdf.Compress

Multivalent [17] is a collection of programs for document
viewing, annotation, organization, conversion, validation,
inspection, encryption and text extraction (etc.). It sup-
ports multiple file formats such as HTML, PDF, DVI and
man pages. It is implemented in Java; the 2006 January
version is available for download [18] as a single . jar
file, and it needs Java 1.4 or later. It contains a PDF op-
timizer [24, 27], which can be invoked like this at the
command-line (without line breaks):

java -cp Multivalent20060102. jar

Table 7: PDF optimization effectiveness of Multivalent and
pdfsizeopt.py.

document input multi psom pso
cff 521909 181178 180987 230675
beamerl 832319 341732 317351 443253
eu2006 8411464 7198149 4812306 4993913
inkscape 18245172 13976597 13944481 17183194
Ime2006 2703119 2285956 2033582 2349035
pdfref 32472771 11235006 11237663 23413875
pgf2 3783193 2584180 2438261 3449386
texbook 2280769 2057755 1806887 1992958
tuzv 337764 314508 146414 166863

All numeric values are in bytes. The Italic value indicates
that Multivalent alone was better than with pdfsizeopt.py.
multi: Multivalent 20060102 tool.pdf.Compress

psom: pdfsizeopt.py + Multivalent

pso: pdfsizeopt.py without Multivalent

tool.pdf.Compress doc.pdf

This creates the optimized PDF in file doc-o.pdf. If we
don’t indicate otherwise, by the term Multivalent we
mean its PDF optimizer. Although the 2006 January ver-
sion of Multivalent with full functionality is available
for download, Multivalent is not free software or open
source. For example, its license allows running the PDF
optimizer from the command-line. For other uses of the
optimizer, a commercial license has to be acquired. The
web site doesn’t show details about commercial licenses.

According to [27], the Mutivalent did the following
optimizations in 2003: remove object duplicates; recom-
press LZW to ZIP; generate object streams; generate a
cross-reference stream; serialize values more effectively;
remove old object versions; remove page thumbnails;

E126 MAPS 39

remove some obsolete values such as /ProcSet; inline
small objects such as stream lengths; remove unused ob-
jects; omit default values; shrink cross-reference data.
In addition to those above, Multivalent recompresses all
streams with maximum-effort ZIP, and it also moves up
/MediaBox etc. in the page tree.

Column multi of Table 7 shows how effectively Mul-
tivalent optimizes. The column psom indicates that run-
ning pdfsizeopt.py before Multivalent usually decreases
the file size even more. That’s because pdfsizeopt.py
can convert Type 1 fonts to CFF, unify CFF font subsets,
and it also has a more effective image optimizer than
Multivalent.

3.7 pdfsizeopt.py
pdfsizeopt.py [37] was written as part of this work. Its
purpose is to implement the most common optimizations
typical TgX documents benefit from, but only those which
are not already done by Multivalent. As described in
Section 4, to get the smallest PDF, the optimizations done
by pdfsizeopt.py should be applied first, and the result
should be processed by Multivalent. The 20060102 version
of Multivalent optimizes images, and it replaces the image
even if the optimized version is larger than the original,
so pdfsizeopt.py implements a final step to put those
original images back which are smaller.

pdfsizeopt.py can be used as a stand-alone PDF op-
timizer (without Multivalent), but the final PDF will be
much smaller if Multivalent is run as well.

pdfsizeopt.py is free software licensed under the GPL.
It is written in Python. It needs Python2.4 (or 2.5 or
2.6). It uses only the standard Python modules, but it
invokes several external programs to help with the op-
timizations. These are: Ghostscript (8.61 or newer is
recommended), sam2p [38] (0.46 is needed), pngtopnm,
tool.pdf.Compress of Multivalent [24] (which needs
Sun’s JDK or OpenJDK), optionally jbig2 [14], optionally
PNGOUT [31]. Installation instructions are given in [35].
Most of these are free software, except for the Multivalent
tools, which are not free software or open source, but they
can be downloaded and used on the command line free
of charge; for other uses they have to be licensed com-
mercially. PNGOUT is not free software or open source
either, but the binaries available free of charge can be
used without restriction.

pdfsizeopt.py implements these PDF size optimization
methods:

Convert Type 1 fonts to CFF It is done by generating
a PostScript document with all fonts, converting
it to PDF with Ghostscript (just like ps2pdf), and
extracting the CFF fonts from the PDF. Another

Péter Szabé

option would be to use dvipdfmx, which can read
Type 1 fonts, and emit them as CFF fonts. Please
note that Ghostscript inlines subroutines (/Subrs) in
the Type 1 font, so the CFF becomes larger—but we
are compressing the font with ZIP anyway, which
eliminates most of the repetitions.

Unify subsets of the same CFF font
Ghostscript is used for parsing CFF to a font dictionary,
and also for serializing the modified dictionary as CFF.
Again, the latter is done by generating a PostScript
file with all the fonts, then converting it to a PDF
using Ghostscript. Limitations: it only works for CFF
(and former Type 1) fonts; it doesn’t unify fonts with
different names; it won’t unify some fonts if one of
them has slightly different metrics.

Convert inline images to objects We need this be-
cause most tools (including pdfsizeopy.py) do not
optimize inline images. Limitations: it only detects
inline images generated by sam2p; it only detects
inline images within a form XObject (not in a content
stream).

Optimize individual images First the data gets de-
compressed (with Ghostscript if the image data is
compressed with anything other than simple ZIP),
then it is recompressed with high-effort ZIP, then it is
converted to PNG, then several external PNG compres-
sors are run to get the optimized PNG, and finally the
smallest representation (among the optimized PNG
files, intermediate images and the original image)
is picked, i.e. the one with the smallest PDF image
object representation, counting the stream dictionary
and the compressed stream as well. The following
PNG optimizers are used: sam2p without predictor,
sam2p with PNG predictor, PNGOUT (very slow, but
generates a few percent smaller PNG files) and jbig2
(only for bilevel images). Limitations: no CMYK
support; no device-independent color space support
(only RGB with or without palette and grayscale
is supported); no images with an alpha channel;
only some types of transparency; images with lossy
compression (JPEG or JPEG2000) are not optimized.

Remove object duplicates Equivalence classes are
used, so duplicate subtrees referring to objects
between themselves or each other are also removed.
(Multivalent also has this feature.)

Remove image duplicates Images are compared based
on RGB pixel data, so duplicates using a different
compression or color space or bits-per-component are
also detected and removed. This is useful if the PDF
is a concatenation of PDF files in the same collection,
each PDF compiled with a different method, and then
concatenated. The newest version of sam2p (0.46)

Optimizing PDF output size of TEX documents

produces exactly the same output file for two images
with identical RGB pixel data, so image duplicates are
identified by comparing the files created by sam2p.
There are also several early checks in the optimization
algorithm to detect the duplicate before wasting time
on running the many different optimizers.

Remove unused objects All objects unreachable from
the trailer object are removed.

Serialize values more effectively Extra spaces are
removed; hex strings are converted to binary; strings
are serialized without extra backslashes; comments
are removed; garbage between object definitions
is removed; gaps in the cross-reference table are
removed; objects with high reference counts are given
low numbers.

The column pso of Table 7 shows how effectively
pdfsizeopt.py optimizes. The column psom shows the
combined effectiveness of pdfsizeopt.py + Multivalent.
Please note that it is not with running pdfsizeopt.py
alone, because pdfsizeopt.py was designed to do only
those optimizations which Multivalent does not provide
(or, such as image compression, does suboptimally). On
the other hand, it is almost always worth running pdf-
sizeopt.py before Multivalent, rather than running Multi-
valent alone. The only exception we could find was the
document pdfref, where the combined approach yielded
a 0.02% larger file size.

pdfsizeopt.py can count the total byte size of various
object types in a PDF. Table 4 shows the results on our test
PDF files. The percentages in the table cells are savings by
running pdfsizeopt.py + Multivalent. Although it is not
visible in the table, most of the savings come from Multi-
valent, except in the font and image columns, where the
contributions of pdfsizeopt.py are important. The large
font savings for the document tuzv are because the docu-
ment is short and it contains many Type 1 fonts. For the
document eu2006 we get an even larger saving, because
there was lots of glyph duplication across the articles in
the collection, and also because LZW was used instead of
ZIP to compress the fonts. Only a few of our test docu-
ments benefit from image optimization, and even there
the contribution of pdfsizeopt.py is small because the
original PDF contains the images emitted effectively, and
also Multivalent does a decent (though suboptimal) job
at image optimization. So for the document eu2006 Mul-
tivalent alone saves about 1.55%, and pdfsizeopt.py alone
saves 6.14%. (There is no data on the extra size reduc-
tion by combining the two tools, because pdfsizeopt.py
disables Multivalent’s image optimizations since most
images won’t benefit.) For the document Ime2006 Multi-
valent alone saves 3.41%, and pdfsizeopy.py alone saves

EUROTEX 2009 E127

6.39%. The document inkscape benefits most from im-
age recompression: Multivalent alone saves 19.87%, and
pdfsizeopy.py alone saves 20.35%.

Columns psom, apsom and epsom of Table 6 show that
optimizing with PDF Enhancer or Adobe Acrobat Pro
before running the pdfsizeopt.py + Multivalent combi-
nation almost always decreases the file size, sometimes
by a few percent, but in the case of document beamer1
the extra gain of running PDF Enhancer first was 6.46%.
It seems that for TgX documents PDF Enhancer (with the
combination) is the more effective, and Adobe Acrobat
Pro is more effective for other documents.

See ideas for improving pdfsizeopt.py in Section 6.

4 Suggested PDF optimization
workflow

Based on the optimization tests in Section 3 we suggest
the following PDF generation and optimization workflow:

1. Upgrade Ghostscript to at least 8.61, and upgrade to
TgX Live 2008.

2. For TgX documents, create the PDF using pdf-
TgX or dvipdfmx, with the settings discussed in
Subsection 2.1. Use dvips + ps2pdf only if absolutely
necessary, because of the large PDF files it produces.

3. Use pdftk or Multivalent’s PDF merge tool (as
shown in [32]) to concatenate PDF files if necessary.
Pay attention to the hyperlinks and the document
outline after concatenation. Don’t concatenate with
Ghostscript, because that it would blow up the file
size.

4. If you have access to PDF Enhancer, optimize the
PDF with it. Otherwise, if you have access to Adobe
Acrobat Pro, optimize the PDF with it.

5. Optimize the PDF with pdfsizeopt.py, including the
last step of running Multivalent as well.

Most of the optimization steps above can be fully auto-
mated and run in batch, except if Adobe Acrobat Pro is
involved.

5 Related work

There are several documents discussing PDF optimization.
[23] gives a list of ideas how to generate small PDF files.
Most of those are present in this work as well. PDF En-
hancer and Adobe Acrobat Pro are analyzed in [12], but
that article focuses on reducing image resolution and un-
embedding fonts, which are not information-preserving
optimizations. [44] gives a simple introduction to (pos-
sibly lossy) PDF image compression and content stream

E128 MAPS 39

compression.

Since web browsers can display PNG images, several
PNG optimization tools [15, 43, 31] have been developed
to reduce web page loading times. These tools can be used
for optimizing (mainly non-photo) images in PDF docu-
ments as well. But since PDF has a more generic image
and compression model than PNG, it would be possible
to save a little bit more by developing PDF-specific tools,
which take advantage of e.g. using the TIFF predictor and
ZIP compression together.

An alternative document file format is DjVu [6], whose
most important limitation compared to PDF is that it
doesn’t support vector graphics. Due to the sophisticated
image layer separation and compression, the size of a
600 DPI DjVu file is comparable to the corresponding op-
timized PDF document: if the PDF contains text with
embedded vector fonts and vector graphics, the DjVu
file can be about 3 times larger than the PDF. If the PDF
contains mainly images (such as a sequence of scanned
sheets), the DjVu file will become slightly smaller than
the PDF. Of course these ratios depend on the software
used for encoding as well. There are only a few DjVu
encoders available: pdf2djvu and djvudigital are free,
and Document Express is a commercial application. PDF
is more complex than DjVu: the PDF 1.7 reference [3]
itself is 1310 pages long, and it relies on external specifi-
cations such as ZIP, JBIG2, G3 fax, JPEG, JPEG2000, Type 1,
CFF, TrueType, OpenType, CMap, CID font, XML, OPI,
DSA, AES, MD5, SHA-1, PKCS, PANOSE, ICC color profiles,
JavaScript and more. PDF 1.7 became an ISO standard [11]
in 2008, which adds additional long documents. Having
to understand many of these makes PDF viewers hard
to implement and complex. This problem can become
more severe for long-term archiving if we want to view a
PDF 20 or 50 years from now; maybe today’s PDF viewers
won’t work on future architectures, so we have to imple-
ment our own viewer. In contrast, the DjVu specification
[16] is only 71 pages long, and more self-contained. Since
the DjVu file format uses very different technologies than
PDF, one can archive both the PDF and the DjVu version
of the same document, in case a decent renderer won'’t be
available for one of the formats decades later.

The PDF Database [19] contains more than 500 PDF
documents by various producers, with different sizes and
versions. These PDF files can be used can be used for
testing PDF parsers and optimizers.

Multivalent introduced the custom file format compact
PDF [25, 27], which is about 30% to 60% smaller than a
regular PDF. The disadvantage is that only Multivalent
can read or write this format so far (but it supports fast
and lossless conversion to regular PDF). Compact PDF
achieves the size reduction by grouping similar objects

Péter Szabé

next to each other, and compressing the whole document
as one big stream with bzip2, which is superior to ZIP.
Another improvement is that compact PDF stores Type 1
fonts unencrypted, with boilerplate such as the 512-byte
font tailer and random bytes for encryption stripped out.

6 Conclusion and future work

Since it is not the primary goal for most PDF generators
to emit the smallest possible PDF, simple techniques done
by Multivalent and pdfsizeopt.py can yield significant
size reduction (up to a factor of 3) depending on the gen-
erator and the PDF features used. Rearranging the draw-
ing instructions (contents streams and form XObjects, as
done by Adobe Acrobat Pro and PDF Enhancer) is a more
complicated optimization, and saves some more space in
addition to the simple techniques. It also matters how the
PDF was generated (e.g. pdfTgX generates a smaller and
more optimizable PDF than dvips + ps2pdf).

The workflow proposed in this article has too many
dependencies. Python (for pdfsizeopt.py) and Java (for
Multivalent) runtimes, and Ghostscript (needed by pdf-
sizeopt.py for Type 1 and CFF font parsing, CFF genera-
tion and arbitrary stream filtering) are the heaviest ones.
It is possible to get rid of these by reimplementing pdf-
sizeopt.py from scratch. To get rid of Python, we could
use Lua, and build a statically linked C binary with the
Lua interpreter, zlib and all the Lua bytecode linked in.
We could reimplement the optimizations done by Multi-
valent in Lua. (This would include reading and writing
object streams and cross-reference streams.) Gradually
we could move some functionality to C or C++ code to
speed up the optimizer. We could reuse the xpdf code-
base to be able to use all PDF filters without invoking
Ghostscript. We would have to implement Type 1 and
CFF parsing and CFF generation, possibly relying on the
dvipdfmx codebase. Other dependencies such as jbig2,
sam2p, pngtopnm, PNGOUT and PDF Enhancer are not
so problematic, because they can be compiled to small,
statically linked, stand-alone executables.

Some optimizations of pdfsizeopt.py could be general-
ized to cover more cases. Examples are: add CMYK image
optimization; make CFF matching more permissive (be-
fore unification); recognize more inline images (not only
those created by sam2p, and not only in form XObjects).
pdfsizeopt.py would also benefit from compiling a test
set of PDF files (possibly based on the PDF Database [19]),
and adding a framework which automatically checks that
pdfsizeopt.py detected the opportunity to optimize, and
did the optimization properly in each case.

When preparing a collection (such as a journal vol-
ume or a conference proceedings) with TgX, in a typical

Optimizing PDF output size of TEX documents

workflow individual articles are compiled to PDF, and the
PDF files are then concatenated. See [32] for tools which
can do PDF concatenation. The concatenated document
can be optimized using pdfsizeopt.py + Multivalent to
get rid of redundancy (such as duplicate glyphs in fonts
and duplicate images) across articles. Not all concatena-
tors can preserve hyperlinks and the document outline
for TgX documents. Adding concatenation support to
pdfsizeopt.py would make creating small and interactive
collections more straightforward.

References

[1] Adobe. Adobe Acrobat Pro 9 (project page).
http://www.adobe.com/products/acrobatpro/.

[2] Adobe. The Compact Font Format Specification,
1.0 edition, 4 December 2003. http://www.adobe.
com/devnet/font/pdfs/5176.CFF.pdf.

[3] Adobe. PDF Reference, Adobe Portable Document
Format Version 1.7. Adobe, 6th edition, November
2006. http://www.adobe.com/devnet/acrobat/
pdfs/pdf_reference_1-7.pdf.

[4] Apago. Which features are in what PDF Enhancer
edition?, 29 July 2009. http://www.apagoinc.
com/prod_feat.php?feat_id=30&feat_disp_
order=7&prod_id=2.

[5] codeMantra Universal PDF, a PDF generator.
http://codemantra.com/universalpdf.htm.

[6] DjVu: A tutorial. http://www.djvuzone.org/
support/tutorial/chapter-intro.html.

[7] DVIPDFMx, an extended DVI-to-PDF translator.
http://project.ktug.or.kr/dvipdfmx/.

[8] Till Tantau ed. The TikZ and PGF Packages.
Institute fiir Theoretische Informatik, Universitat
zu Libeck, 2.00 edition, 20 February 2008.
http://www.ctan.org/tex-archive/graphics/
pgf/base/doc/generic/pgf/pgfmanual.pdf.

[9] Jonathon Fowler. PNGOUT port for Unix systems,
2007. http://www.jonof.id.au/kenutils.

[10] Gimp, the GNU Image Manipulation Program.
http://www.gimp.org/.

[11] 1ISO 32000-1:2008 Document management—
Portable document format—part 1: PDF
1.7, 2008. http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=51502.

[12] Andy King. Optimize PDF files. http://
websiteoptimization.com/speed/tweak/pdf/,
25 September 2006.

[13] Ralf Koening. Creative use of PDF files in
BIEX environments. http://www.tu-chemnitz.
de/urz/anwendungen/tex/stammtisch/chronik/

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

EUROTEX 2009

pdf_interna.pdf, 18 June 2004.

Adam Langley. jbig2enc, a JBIG2 encoder (project
page). http://github.com/agl/jbig2enc/tree/
master.

List of PNG recompressors. http://en.
wikipedia.org/wiki/OptiPNG#See_also.
Lizardtech. DjVu Reference, djVu v3 edition,
November 2005. http://djvu.org/docs/
DjVu3Spec.djvu.

Multivalent, digital documents research and de-
velopment. http://multivalent.sourceforge.
net/.

Multivalent, download location. http:
//sourceforge.net/projects/multivalent/
files/.

PDF database, 20 April 2005. http://www.
stillhqg.com/pdfdb/db.html.

PDF Enhancer, a PDF converter, concatenator
and optimizer. http://www.apagoinc.com/prod
home. php?prod_id=2.

Workarounds for PDF output with the PSTricks
KIEX package. http://tug.org/PSTricks/main.
cgi?file=pdf/pdfoutput.

PDFCreator, a free tool to create PDF files
from nearly any Windows application. http:
//www.pdfforge.org/products/pdfcreator.
Shlomo Perets. Best practices #1: Reducing
the size of your PDFs, 7 August 2001. http:
//www.planetpdf.com/creative/article.asp?
ContentID=6568.

Thomas A. Phelps. Compress, the Multivalent
PDF compression tool. http://multivalent.
sourceforge.net/Tools/pdf/Compress.html.
Thomas A. Phelps. Compact PDF specification,
March 2004. http://multivalent.sourceforge.
net/Research/CompactPDF.html.

Thomas A. Phelps and P.B. Watry. A no-
compromises architecture for digital document
preservation. In Proceedings of European
Conference on Digital Libraries, September
2005. http://multivalent.sourceforge.net/
Research/Live.pdf.

Thomas A. Phelps and Robert Wilensky. Two
diet plans for fat PDF. In Proceedings of ACM
Symposium on Document Engineering, Novem-
ber 2003. http://multivalent.sourceforge.
net/Research/TwoDietPlans. pdf.

ps2pdf, a PostScript-to-PDF converter. http:
//pages.cs.wisc.edu/~ghost/doc/svn/Ps2pdf.
htm.

Tomas Rokicki. Dvips: A DVI-to-PostScript
translator, January 2007. http://mirror.ctan.

E129

E130 MAPS 39

[30]

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

org/info/doc-k/dvips.pdf.

Ken Silverman. KZIP, a PKZIP-compatible
compressor focusing on space over speed.
http://advsys.net/ken/utils.htm#tkzip.

Ken Silverman. PNGOUT, a lossless PNG size

optimizer, 2009. http://advsys.net/ken/utils.

htm#pngout.

Matthew Skala. How to concatenate PDFs

without pain, 13 May 2008. http://ansuz.sooke.

bc.ca/software/pdf-append. php.

Matthias Stirner and Gerhard Seelmann. pack-
JPG, a lossless compressor for JPEG images
(project page), 21 November 2007. http:
//www.elektronik.htw-aalen.de/packjpg/.
Péter Szabd. Extra files related to PDF generation

and PDF size optimization. http://code.google.

com/p/pdfsizeopt/source/browse/#svn/trunk/
extra.

Péter Szabd. Installation instructions for
pdfsizeopt.py. http://code.google.com/p/
pdfsizeopt/wiki/InstallationInstructions.
Péter Szabd. PDF test files for pdfsizeopt.py.
http://code.google.com/p/pdfsizeopt/wiki/
ExamplePDFsToOptimize.

Péter Szabo. pdfsizeopt.py, a PDF file size
optimizer (project page). http://code.google.
com/p/pdfsizeopt.

Péter Szab6. sam2p, a pixel image converter
which can generate small PostScript and PDF.
http://www.inf.bme.hu/~pts/sam2p/.

Péter Szabo. Inserting figures into TgX documents.

In EuroBachoTgX, 2002. http://www.inf.bme.
hu/~pts/sam2p/sam2p_article.pdf.

Till Tantau. The beamer class, 3.07 edi-
tion, 11 March 2007. http://www.ctan.org/
tex-archive/macros/latex/contrib/beamer/
doc/beameruserguide. pdf.

Han Thé Thanh, Sebastian Rahtz, Hans Hagen,
et al. The pdfIgX manual, 1.671 edition,

25 January 2007. http://www.ctan.org/get/
systems/pdftex/pdftex-a.pdf.

Cosmin Truta. A guide to PNG optimization.
http://optipng.sourceforge.net/pngtech/
optipng.html, 2008.

Cosmin Truta. OptiPNG, advanced PNG
optimizer (project page), 9 June 2009. http:
//optipng.sourceforge.net/.

VeryPDF.com. Compressing your PDF files,
13 July 2006. http://www.verypdf.com/
pdfinfoeditor/compression.htm.
VeryPDF.com. PDF Compress Command Line

User Manual, 13 July 2006. http://www.verypdf.

[46]

Péter Szabé

com/pdfinfoeditor/pdfcompress.htm.

Pauli Virtanen. TexText, an Inkscape extension
for adding EIEX markup, 6 February 2009.
http://www.elisanet.fi/ptvirtan/software/
textext/.

Péter Szabé

Google

Brandschenkestrasse 110
CH-8002, Zirich, Switzerland
pts (at) google dot com
http://www.inf.bme.hu/~pts/

