
TUGboat, Volume 30 (2009), No. 1 69

Glisterings

Peter Wilson

Calm was the day and through the
trembling air
Sweet-breathing Zephyrus did softly play—
A gentle spirit, that lightly did delay
Hot Titan’s beams, which then did glister
fair.

Prothalamion, Edmund Spenser

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

This installment is not really about (LA)TEX,
except peripherally.

Nothing in India is identifiable, the mere
asking of a question causes it to disappear
or to merge into something else.

A Passage to India, E. M. Forster

1 Reprise

Following the last column [4], Prof. Klaus Lagally
wrote to me with another way of discarding an un-
wanted character at the end of a command. I had
shown some code that acted in a similar manner to
LATEX starred macros, except with a ‘?’ instead of
a ‘*’. The problem was to recognise the presence
or absence of the character ‘?’ and take different
actions according to whether it was there or not,
and to also discard the ‘?’ if it was present. More
precisely I presented
\makeatletter

\def\maybeQ{%

\@ifnextchar ?{\@maybeQ}{\@maybe}}

\def\@maybeQ#1#2#3{Query (#2) and (#3).}

\def\@maybe#1#2{(#1) and (#2).}

\makeatother

Prof. Lagally instead suggested that \@maybeQ could
be more simply defined as:
\makeatletter

\def\@maybeQ ?#1#2{Query (#1) and (#2).}

\makeatother

as a means of disposing of the ‘?’. In either version
here are a couple of example results:
\maybeQ{1st}{2nd} -> (1st) and (2nd).
\maybeQ?{1st}{2nd} -> Query (1st) and (2nd).

Child! do not throw this book about!
Refrain from the unholy pleasure
Of cutting all the pictures out!
Preserve it as your chiefest treasure!

A Bad Child’s Book of Beasts,
Hillaire Belloc

2 MetaPost and pdfLATEX

The MetaPost program generates PostScript illus-
trations. These can easily be inserted into a docu-
ment to be processed by (LA)TEX to produce a dvi
file. Generally speaking, though, pdfLATEX cannot
handle PostScript files. Fortunately it can handle
the limited form of PostScript that MetaPost gener-
ates, and so MetaPost illustrations can be directly
embedded into a pdfLATEX document. This, though,
is not quite as straightforward as it might be.

Given a file called, say, figs.mp, which con-
tains perhaps three pictures, MetaPost will gener-
ate 3 files, figs.1, figs.2 and figs.3, one for each
picture. On the other hand, pdfLATEX expects Meta-
Post generated PostScript files to have an .mps ex-
tension. If you use the graphicx package you can get
it to accept files with numeric extensions as though
they had an mps extension by specifying:
\DeclareGraphicsRule{*}{mps}{*}{}

which tells \includegraphics to treat any exten-
sion it does not recognise as though it were mps.

LATEX, or at least programs like dvips or xdvi,
can handle Encapsulated PostScript (eps) files, and
you can perform similar magic for the graphicx pack-
age:
\usepackage{ifpdf}

\ifpdf

\usepackage{graphicx}

\DeclareGraphicsRule{*}{mps}{*}{}

\else

\usepackage{graphicx}

\DeclareGraphicsRule{*}{eps}{*}{}

\fi

If a MetaPost illustration might be used in a LATEX
(as opposed to pdfLATEX) document, then put
prologues := 1;
at the start of the MetaPost file, which tells Meta-
Post to generate Encapsulated PostScript files. It
seems to do no harm to use the same prologues
specification for pdfLATEX.

A mathematician, like a painter or a poet,
is a maker of patterns. If his patterns are
more permanent than theirs, it is because
they are made with ideas.

A Mathematician’s Apology, G. H. Hardy

Glisterings

70 TUGboat, Volume 30 (2009), No. 1

3 Spidrons

The other week I was idly glancing through Sci-
ence News when I came across a short article about
spidrons [3]; try googling for ‘spidron’ to get more
on the subject. Spidrons, which were discovered
and named by the Hungarian designer and graphic
artist Dániel Erdély while doodling with hexagons,
are made up of ever smaller connected triangles al-
ternating between isosceles and equilateral in form.

It occurred to me that MetaPost could be used
to draw these and after a little trial and error I came
up with the following MetaPost program to support
drawing spidrons.

%% semispid.mp MP macro to draw a semi-spidron

% semispid(center, vertex, iterations,

% color1, color2, clockwise)

def semispid(suffix $$, $)%

(expr iter, shadea, shadeb, clock) =

if clock: hxa := -60; else: hxa := 60; fi

pair v[];

path phex[];

v0 := z$$;

v1 := z$;

% enclosing hexagon

for i := 2 upto 6:

v[i] := v1 rotatedaround(v0,(i-1)*hxa);

endfor

z$a = v1; z$b = v2; z$c = v3;

z$d = v4; z$e = v5; z$f = v6;

phex0 := v1--v2--v3--v4--v5--v6--cycle;

if showverts:

dotlabels.lft($a,$b,$c,$d,$e,$f);

fi

if showlines:

draw v1--v3--v5--cycle;

draw v2--v4--v6--cycle;

fi

% construct triangles

for n:= 1 upto iter:

k := 10(n-1);

j := 10n;

v[1+j] := (v[1+k]--v[3+k])

intersectionpoint

(v[2+k]--v[6+k]);

for i := (2+j) upto (6+j):

v[i] := v[1+j]

rotatedaround

(v0, (i-1-j)*hxa);

endfor

if showlines:

draw v[1+j]--v[3+j]--v[5+j]--cycle;

draw v[2+j]--v[4+j]--v[6+j]--cycle;

fi

phex[n] := v[1+j]--v[1+k]--v[2+k]--cycle;

phex[n+1] := v[1+j]--v[2+j]--v[2+k]--cycle;

fill phex[n] withcolor shadea;

fill phex[n+1] withcolor shadeb;

if showcells:

draw phex[n]; draw phex[n+1];

fi

if showedges:

draw v[1+k]--v[1+j];

draw v[2+k]--v[2+j];

fi

endfor

if showedges: draw v[1+j]--v[2+j]; fi

if showhex: draw phex0; fi

enddef;

As its name implies, the routine semispid gen-
erates and draws half of a spidron, which Erdély
called a semi-spidron, and this is contained within
a hexagon. The location arguments are the center
point of the enclosing hexagon and the location of
one of the vertices. The other arguments control the
number of triangles and two colors for coloring alter-
nate triangles. The routine uses booleans, specified
elsewhere, to control the display of various aspects
of the construction method.

I used the next MetaPost program to create the
spidron shown in Figure 1.

% glstr9.mp MP spidron figures

prologues := 1;

input semispid

%%% define the boolean flags and defaults

% show the initial hexagon

boolean showhex; showhex := false;

% label vertices

boolean showverts; showverts := false;

% draw construction lines

boolean showlines; showlines := false;

% draw triangle cell boundaries

boolean showcells; showcells := false;

% work clockwise (yes = true)

boolean rh; rh := false;

% draw sem-spidron outline

boolean showedges; showedges := false;

% shading

color light,dark;

light := 0.1[white,black];

dark := 0.2[white,black];

beginfig(1); % a spidron

u := 1in; % units

showhex := false;

showverts := false;

showlines := false;

showcells := false;

rh := false;

showedges := false;

% center & initial vertex

z0 = (0,0);

z1 = (x0-2u,y0) rotatedaround(z0,60);

semispid(0, 1, 9, dark, light, rh);

y0-y1a = y1a-y10; x10=x0;

Peter Wilson

TUGboat, Volume 30 (2009), No. 1 71

Figure 1: A spidron

z11 = z1b;

semispid(10, 11, 9, light, dark, rh);

endfig;

%% more pictures here

end

The construction details of a semi-spidron are
illustrated in Figure 2. The semispid routine gen-
erates the vertices of a hexagon, labelling the given
one as ‘a’, then the others in turn as ‘b’, ‘c’, etc.
The hexagon is repeatedly partitioned by joining
alternate vertices, which creates a smaller interior
hexagon, which is then partitioned into a smaller
one again, and so on until it all gets ‘too small’. The
shaded triangles form a semi-spidron, starting on the
‘a-b’ side of the hexagon, and finishing close to the
center. The second half of the complete spidron is a
rotation of the first semi-spidron about the midpoint
of the ‘a-b’ edge of the hexagon, with the colors re-
versed.

Spidrons are space-filling; that is, they can be
assembled to completely cover, or tile, a plane sur-
face. You can get a hint about this from Figure 3
which shows three semi-spidrons constructed in a
single hexagon. The empty spaces can be exactly
filled by three more semi-spidrons. A plane can be
completely tiled using hexagons; in this particular
case it happens that it can also be completely tiled

1a 1b

1c

1d1e

1f

Figure 2: Construction details of a spidron

Figure 3: Three semi-spidrons in a hexagon

by spidrons. Interesting effects can be achieved by
changing the coloring of the spidrons. An example is
shown in Figure 4. For much, much, more on tilings
see Tilings and Patterns [2], although it doesn’t in-
clude spidrons as they hadn’t been discovered when
the book was published.

There is an associated figure that can also be
made out of two semi-spidrons. In a spidron the
two semi-spidrons are rotations of each other. In
the shape that Erdély calls a hornflake, shown in
Figure 5, the two halves are mirror images of each
other. Unlike spidrons, hornflakes are not space-
filling but can be used for tiling if they are suitably
combined with spidrons, as can be seen in Figure 4.

In his article, Peterson says that

[Erdély’s] insight was to start with an ar-
ray of hexagons drawn on a sheet of paper
and laid as if they were bathroom tiles. By
creasing the pattern in the right combina-
tions of mountains and valleys at the lines
within each spidron arm and leaving a small

Glisterings

72 TUGboat, Volume 30 (2009), No. 1

Figure 4: Tilings: (left) Spidrons can do it alone (right) Hornflakes need spidrons

Figure 5: A hornflake

hole at the center of each hexagon, he crin-
kled the whole aray into a dramatic three-
dimensional relief.

It turns out that spidron patterns can also be assem-
bled into novel three-dimensional crystal-like froms
with spiral polygonal faces.

What is missing from the article is any hint as
to what the ‘right combinations’ of folds might be
to create these effects. After some searching on the
web I found the following remarks by Erdély [1].

I folded every second edge, reaching to the
centre of the created hexagon in the given
Spidron system, as a spine and folded every
first edge as a groove. The resulting relief-
like surface, under the impact of an external
deforming force, does not show simple linear
displacements, such as those produced with
an accordion; instead, the edges between the
vertices and the centres of the original hexag-
onal system move in a vortex within each
hexagon.

After a lot of cogitation and physical experi-
mentation I came to believe that among the ‘right
combinations’ are the ones shown in Figure 6, which
shows half a hexagon with three semi-spidrons. The
dotted lines indicate ‘valley’ folds (paper on either
side of the fold, or crease, is bent upwards) and the
full lines indicate ‘mountain’ folds (paper on either
side of the crease is bent downwards).

If you want to create a large construct for fold-
ing, here is the code for generating the spidron tiling

Peter Wilson

TUGboat, Volume 30 (2009), No. 1 73

Figure 6: Folding

shown in Figure 4. You can, of course, modify this
to meet your needs.
% glstr9.mp MP spidron figures

% earlier pictures

beginfig(5); % spidron tiling

u := 0.175in;

showhex := false;

showverts := false;

showlines := false;

showcells := false;

rh := false;

showedges := false; showedges := true;

color cola, colb;

cola := light; colb := dark;

depth := 7;

rad := 2u;

z0 = (0,0);

% fill initial hexagon

for kn := 1 upto 6:

z[kn] = (x0-2u,y0) rotatedaround(z0,60*(kn-1));

if odd kn:

cola := light;

else:

cola := dark;

fi

colb := cola;

semispid(0, [kn], depth, cola, colb, rh);

endfor

% copy (in circles) the filled hexagon

% to make the tiling

shd := (sqrt 3)/2*rad; % shift up/down

shr := 3rad; % shift left/right

picture pic[];

pic100 := currentpicture;

pic0 := pic100 shifted (0,2shd);

for kn := 1 upto 6:

pic[kn] := pic0 rotatedaround(z0,60kn);

draw pic[kn];

endfor

pic10 = pic100 shifted (0,4shd);

for kn := 1 upto 6:

pic[10+kn] := pic10 rotatedaround(z0,60kn);

draw pic[10+kn];

endfor

pic20 = pic100 shifted (3rad, 0);

for kn := 1 upto 6:

pic[20+kn] := pic20 rotatedaround(z0,60kn);

draw pic[20+kn];

endfor

endfig;

% more pictures

end

However, I found that it was difficult enough to
properly fold even a single large filled hexagon e.g.,
one that just fitted onto a typical sheet of paper,
such as letter paper or A4. I decided that the best
way was to use single spidrons, fold them appro-
priately, and then hinge them together with sticky
tape. I then concluded that it was much more plea-
surable to look at pictures of what others had accom-
plished (most of which, I suspect, were done using
computer graphics instead of using physical meth-
ods and photographing the results).

References

[1] Dániel Erdély. Spidron system: A flexible
space-filling structure. Idea 1979, first
presented on the Twelfth International
Conference on Crystal Growth in 1998, 2002.
Possibly available at http://www.szinhaz.hu/
spidron.

[2] Branko Grunbaum and G. C. Shephard.
Tilings and Patterns. W. H. Freeman, 1987.

[3] Ivars Peterson. Swirling seas, crystal balls.
Science News, 170(17):266–268, 21 October
2006.

[4] Peter Wilson. Glisterings. TUGboat,
29(2):324–327, 2008.

� Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

Glisterings

