
Do we need a ‘Cork’ math font encoding?

Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

Abstract

The city of Cork has become widely known in the TEX community, ever since it
gave name to an encoding developed at the European TEX conference of 1990.
The ‘Cork’ encoding, as it became known, was the first example of an 8-bit text
font encoding that appeared after the release of TEX 3.0, and was later followed
by a number of other encodings based on similar design principles.

As of today, the ‘Cork’ encoding represents only one out of several possible
choices of 8-bit subsets from a much larger repertoire of glyphs provided in fonts
such as Latin Modern or TEX Gyre. Moreover, recent developments of new TEX
engines are making it possible to take advantage of OpenType font technology
directly, largely eliminating the need for 8-bit font encodings altogether.

During the entire time since 1990 math fonts have always been lagging behind
the developments in text fonts. While the need for new math font encodings was
recognized early on and while several encoding proposals have been discussed,
none of them ever reached production quality or became widely used.

In this paper, we review the situation of math fonts as of 2008, especially in
view of recent developments of Unicode and OpenType math fonts such as the
STIX fonts or Cambria Math. In particular, we try to answer the question whether
a ‘Cork’ math font encoding is still needed or whether Unicode and OpenType
might eliminate the need for TEX-specific math font encodings.

1 History and development of text fonts
1.1 The ‘Cork’ encoding
When the 5th European TEX conference was held in
Cork in the summer of 1990, the TEX community
was undergoing a major transition phase. TEX 3.0
had just been released that year, making it possible
to switch from 7-bit to 8-bit font encodings and to
support hyphenation for multiple languages.

Since the ability to properly typeset and hy-
phenate accented languages strongly depended on
overcoming the previous limitations, European TEX
users wanted to take advantage of the new features
and started to work on new font encodings [1, 2, 3].
As a result, they came up with an encoding that
became widely known as the ‘Cork’ encoding, named
after the site of the conference [4].

The informal encoding name ‘Cork’ stayed in
use for many years, even after LATEX2ε and NFSS2
introduced a system of formal encoding names in
1993–94, assigning OTn for 7-bit old text encodings,
Tn for 8-bit standard text encodings, and Ln for local
or non-standard encodings [5]. The ‘Cork’ encoding

was the first example of a standard 8-bit text font
and thus became the T1 encoding.

While the ‘Cork’ encoding was certainly an im-
portant achievement, it also introduced some novel
features that may have seemed like a good idea at
that time but would be seen as shortcomings or
problems from today’s point of view, after nearly
two decades of experience with font encodings.

In retrospect, the ‘Cork’ encoding represents
a typical example of the TEX-specific way of doing
things of the early 1990s without much regard for
standards or technologies outside the TEX world.

Instead of following established standards, such
as using ISO Latin 1 or 2 or some extended versions
for Western and Eastern European languages, the
‘Cork’ encoding tried to support as many languages
as possible in a single font encoding, filling the 8-bit
font table to the limit with accented characters at
the expense of symbols. Since there was no more
room left in the font table, typesetting symbols at
first had to be taken from the old 7-bit fonts, until
a supplementary text symbol TS1 encoding [6] was
introduced in 1995 to fill the gap.

426 TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting

Do we need a ‘Cork’ math font encoding?

When it came to implementing the T1 and TS1
encodings for PostScript fonts, it turned out that the
encodings were designed without taking into account
the range of glyphs commonly available in standard
PostScript fonts.

Both font encodings could only be partially im-
plemented with glyphs from the real font, while the
remaining slots either had to be faked with virtual
fonts or remain unavailable. At the same time, none
of the encodings provided access to the full set of
available glyphs from the real font.

1.2 Alternatives to the ‘Cork’ encoding
As an alternative to using the T1 and TS1 encodings
for PostScript fonts, the TeXnANSI or LY1 encoding
was proposed [7], which was designed to provide ac-
cess to the full range of commonly available symbols
(similar to the TeXBase1 encoding), but also matched
the layout of the OT1 encoding in the lower half, so
that it could be used as drop-in replacement without
any need for virtual fonts.

In addition to that, a number of non-standard
encodings have come into use as local alternatives
to the ’Cork’ encoding, such as the Polish QX, the
Czech CS, and the Lithuanian L7X encoding, each of
them trying to provide better solutions for the needs
of specific languages.

In summary, the ‘Cork’ encoding as the first
example of an 8-bit text encoding (T1) was not only
followed by additional encodings based on the same
design principles for other languages (Tn), but also
supplemented by a text symbol encoding (TS1) and
complemented by a variety of local or non-standard
encodings (LY1, QX, CS, etc.).

As became clear over time, the original goal of
the ‘Cork’ encoding of providing a single standard
encoding for as many languages as possible couldn’t
possibly be achieved within the limits of 8-bit fonts,
simply because there are far too many languages and
symbols to consider, even when limiting the scope
to Latin and possibly Cyrillic or Greek.

2 Recent developments of text fonts
2.1 Unicode support in new TEX fonts
It was only in recent years that the development
of the Latin Modern [8, 9, 10] and TEX Gyre fonts
[11, 12] has provided a consistent implementation for
all the many choices of encodings.

As of today, the ‘Cork’ encoding represents only
one out of several possible 8-bit subsets taken from
a much larger repertoire of glyphs. The full set of
glyphs, however, can be accessed only when moving

beyond the limits of 8-bit fonts towards Unicode and
OpenType font technology.

2.2 Unicode support in new TEX engines
As we are approaching the TUG 2008 conference at
Cork, the TEX community is again undergoing a ma-
jor transition phase. While TEX itself remains frozen
and stable, a number of important developments
have been going on in recent years.

Starting with the development of PDFTEX since
the late 1990s the use of PDF output and scalable
PostScript or TrueType fonts has largely replaced
the use of DVI output and bitmap PK fonts.

Followed by the ongoing development of X ETEX
and LuaTEX in recent years the use of Unicode and
OpenType font technology is also starting to replace
the use of 8-bit font encodings as well as traditional
PostScript or TrueType font formats.

Putting everything together, the development
of new fonts and new TEX engines in recent years
has enabled the TEX community to catch up with
developments of font technology in the publishing
industry and to prepare for the future.

The only thing still missing (besides finishing
the ongoing development work) is the development
of support for Unicode math in the new TEX engines
and the development of OpenType math fonts for
Latin Modern and TEX Gyre.

3 History and development of math fonts
When TEX was first developed in 1977–78, the 7-bit
font encodings for text fonts and math fonts were
developed simultaneously, since both of them were
needed for typesetting mathematical textbooks like
The Art of Computer Programming.

When TEX 3.0 made it possible to switch from
7-bit to 8-bit font encodings, it was the text fonts
driving these new developments while the math fonts
remained largely unchanged.

As a result, the development of math fonts has
been lagging behind the corresponding text fonts for
nearly two decades now, ever since the development
of the ‘Cork’ encoding started in 1990.

In principle, a general need for new math fonts
was recognized early on: When the first implementa-
tions of ‘Cork’ encoded text fonts became available,
it was soon discovered that the new 8-bit text fonts
couldn’t fully replace the old 7-bit text fonts with-
out resolving the inter-dependencies between text
and math fonts. In practice, however, nothing much
happened since there was no pressing need.

TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting 427

Ulrik Vieth

3.1 The ‘Aston’ proposal
The first bit of progress was made in the summer of
1993, when the LATEX3 Project and some TEX users
group sponsored a research student to work on math
font encodings for a few months.

As a result, a proposal for the general layout
of new 8-bit math font encodings was developed
and presented at TUG 1993 at Aston University [13].
Unlike the ‘Cork’ encoding, which became widely
known, this ‘Aston’ proposal was known only to
some insiders and went largely unnoticed.

After only a few months of activity in 1993 the
project mailing list went silent and nothing further
happened for several years, even after a detailed
report was published as a LATEX3 Project Report
[14].

3.2 The ‘newmath’ prototype
The next bit of progress was made in 1997–98, when
the ideas of the ‘Aston’ proposal were taken up again
and work on an implementation was started.

This time, instead of just discussing ideas or
preparing research documents, the project focussed
on developing a prototype implementation of new
math fonts for several font families using a mixture
of METAFONT and fontinst work [15].

When the results of the project were presented
at the EuroTEX 1998 conference [16], the project was
making good progress, although the results were still
very preliminary and far from ready for production.

Unfortunately, the project then came to a halt
soon after the conference when other activities came
to the forefront and changed the scope and direction
of the project [17, 18].

Before the conference, the goal of the project had
been to develop a set of 8-bit math font encodings
for use with traditional TEX engines (within the
constraints of 16 families of 256 glyphs) and also to
provide some example implementations by means of
reencoding and enhancing existing font sets.

After the conference, that goal was set aside and
put on hold for an indefinite time by the efforts to
bring math into Unicode.

4 Recent developments of math fonts
4.1 Unicode math and the STIX fonts
While the efforts to bring math into Unicode were
certainly very important, they also brought along a
lot of baggage in the form of a very large number of
additional symbols, making it much more work to
provide a reasonably complete implementation and
nearly impossible to encode all those symbols within
the constraints of traditional TEX engines.

In the end, the Unicode math efforts continued
over several years until the symbols were accepted [19,
20] and several more years until an implementation
of a Unicode math font was commissioned [21] by
a consortium of scientific and technical publishers,
known as the STIX Project.

When the first beta-test release of the so-called
STIX fonts [22] finally became available in late 2007,
nearly a decade had passed without making progress
on math font encodings for TEX.

While the STIX fonts provide all the building
blocks of Unicode math symbols, they are still lacking
TEX support and may yet have to be repackaged in
a different way to turn them into a usable font for
use with TEX or other systems.

Despite the progress on providing the Unicode
math symbols, the question of how to encode all
the many Unicode math symbols in a set of 8-bit
font encodings for use with traditional TEX engines
still remains unresolved. Most likely, only a subset
of the most commonly used symbols could be made
available in a set of 8-bit fonts, whereas the full range
of symbols would be available only when moving to
Unicode and OpenType font technology.

4.2 OpenType math in MS Office 2007
While the TEX community and the consortium of
scientific publishers were patiently awaiting the re-
lease of the STIX fonts before reconsidering the topic
of math font encodings, outside developments have
continued to move on. In particular, Microsoft has
moved ahead and has implemented its own support
for Unicode math in Office 2007.

They did so by adding support for math type-
setting in OpenType font technology [23, 24] and
by commissioning the design of the Cambria Math
font as an implementation of an OpenType math
font [25, 26, 27]. In addition, they have also adopted
an input language called ‘linear math’ [28], which is
strongly based on TEX concepts.

While OpenType math is officially still consid-
ered experimental and not yet part of the OpenType
specification [29], it is already a de facto standard,
not only because it has been deployed to millions
of installations of Office 2007, but also because it
has already been adopted by other projects, such as
the FontForge font editor [30] and independent font
designs such as Asana Math [31].

In addition, the next release of the STIX fonts
scheduled for the summer of 2008 is also expected
to include support for OpenType math.

428 TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting

Do we need a ‘Cork’ math font encoding?

4.3 OpenType math in new TEX engines
At the time of writing, current development versions
of X ETEX have added some (limited) support for
OpenType math, so it is already possible to use
fonts such as Cambria Math in X ETEX [32], and this
OpenType math support will soon become available
to the TEX community at large with the upcoming
release of TEX Live 2008.

Most likely, LuaTEX will also be adding support
for OpenType math eventually, so OpenType math
is likely to become a de facto standard in the TEX
world as well, much as we have adopted other outside
developments in the past.

4.4 OpenType math for new TEX fonts?
Given these developments, the question posed in the
title of this paper about the need for new math font
encodings may soon become a non-issue.

If we decide to adopt Unicode and OpenType
math font technology in new TEX engines and new
fonts, the real question is no longer how to design
the layout of encoding tables but rather how to deal
with the technology of OpenType math fonts, as we
will discuss in the following sections.

5 Future developments in math fonts
5.1 Some background on OpenType math
The OpenType font format was developed jointly
by Microsoft and Adobe, based on concepts adopted
from the earlier TrueType and PostScript formats.
The overall structure of OpenType fonts shares the
extensible table structure of TrueType fonts, adding
support for different flavors of glyph descriptions in
either PostScript CFF or TrueType format.1

One of the most interesting points about Open-
Type is the support for ‘advanced’ typographic fea-
tures, supporting a considerable amount of intelli-
gence in the font, enabling complex manipulations
of glyph positioning or glyph substitutions. At the
user level, many of these ‘advanced’ typographic fea-
tures can be controlled selectively by the activation
of so-called OpenType feature tags.

Despite its name, the OpenType font format
is not really open and remains a vendor-controlled
specification, much like the previous TrueType and
PostScript font formats developed by these vendors.
The official OpenType specification is published on
a Microsoft web site at [29], but that version may
not necessarily reflect the latest developments.

1 An extensive documentation of the OpenType format
and its features as well as many other important font formats
can be found in [33].

In the case of OpenType math, Microsoft has
used its powers as one of the vendors controlling
the specification to implement an extension of the
OpenType format and declare it as ‘experimental’
until they see fit to release it. Fortunately, Microsoft
was smart enough to borrow from the best examples
of math typesetting technology when they designed
OpenType math, so they chose TEX as a model for
many of the concepts of OpenType math.

5.2 The details of OpenType math
The OpenType MATH table One of the most
distinctive features of an OpenType math font is the
presence of a MATH table. This table contains a
number of global font metric parameters, much like
the \fontdimen parameters of math fonts in TEX
described in Appendix G of The TEXbook.

In a traditional TEX setup these parameters are
essential for typesetting math, controlling various
aspects such as the spacing of elements such as big
operators, fractions, and indices [34, 35].

In an OpenType font the parameters of the
MATH table have a similar role for typesetting math.
From what is known, Microsoft apparently consulted
with Don Knuth about the design of this table, so
the result is not only similar to TEX, but even goes
beyond TEX by adding new parameters for cases
where hard-wired defaults are applied in TEX.

In the X ETEX implementation the parameters
of the OpenType MATH table are mapped internally
to TEX’s \fontdimen parameters. In most cases this
mapping is quite obvious and straight-forward, but
unfortunately there are also a few exceptions where
some parameters in TEX do not have a direct cor-
respondence in OpenType. It is not clear, however,
whether these omissions are just an oversight or a
deliberate design decision in case a parameter was
deemed irrelevant or unnecessary.

Support for OpenType math in X ETEX still re-
mains somewhat limited for precisely this reason;
until the mapping problems are resolved, X ETEX
has to rely on workarounds to extract the necessary
parameters from the OpenType MATH table.

At the time of writing, the extra parameters
introduced by OpenType generalizing the concepts
of TEX have been silently ignored. It is conceivable,
however, that future extensions of new TEX engines
might eventually start to use these parameters in the
math typesetting algorithms as well.

In the end, whatever technology is used to type-
set OpenType math, it remains the responsibility of
the font designer to set up the values of all the many
parameters affecting the quality of math typesetting.
Unfortunately, for a non-technical designer such a

TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting 429

Ulrik Vieth

task feels like a burden, which is better left to a
technical person as a font implementor.

For best results, it is essential to develop a good
understanding of the significance of the parameters
and how they affect the quality of math typesetting.
In [35] we have presented a method for setting up
the values of metric parameters of math fonts in TEX.
For OpenType math fonts, we would obviously have
to reconsider this procedure.
Font metrics of math fonts Besides storing the
global font metric parameters, the OpenType MATH
table is also used to store additional glyph-specific
information such as italic corrections or kern pairs,
as well as information related to the placement of
math accents, superscripts and subscripts.

In a traditional TEX setup the font metrics of
math fonts have rather peculiar properties, because
much of the glyph-specific information is encoded
or hidden by overloading existing fields in the TFM
metrics in an unusual or non-intuitive way [36].

For example, the width in the TFM metrics is
not the real width of the glyph. Instead, it is used to
indicate the position where to attach the subscript.
Similarly, the italic correction is used to indicate the
offset between subscript and superscript.

As another example, fake kern pairs involving a
skewchar are used to indicate how much the visual
center of the glyphs is skewed in order to determine
the position where to attach a math accent.

In OpenType math fonts all such peculiarities
will become obsolete, as the MATH table provides
data structures to store all the glyph-specific metric
information in a much better way. In the case of
indices, OpenType math has extended the concepts
of TEX by defining ‘cut-ins’ at the corners on both
sides of a glyph and not just to the right.

Unfortunately, while the conceptual clarity of
OpenType math may be very welcome in principle,
it may cause an additional burden on font designers
developing OpenType math fonts based on tradi-
tional TEX fonts (such as the Latin Modern fonts)
and trying to maintain metric compatibility.

In such cases it may be necessary to examine the
metrics of each glyph and to translate the original
metrics into appropriate OpenType metrics.
Font encoding and organization The encoding
of OpenType fonts is essentially defined by Unicode
code points. Most likely, a typical OpenType math
font will include only a subset of Unicode limited to
the relevant ranges of math symbols and alphabets,
while the corresponding text font may contain a
bigger range of scripts.

In a traditional TEX setup the math setup con-
sists of a series of 8-bit fonts organized into families.
Typically, each font will contain one set of alphabets
in a particular style and a selection of symbols filling
the remaining slots.

In a Unicode setup the math setup will consist
of only one big OpenType font, containing all the
math symbols and operators in the relevant Unicode
slots, as well as all the many styles of math alphabets
assigned to slots starting at U+1D400.

As a result, there will be several important con-
ceptual implications to consider in the design and
implementation of OpenType math fonts, such as
how to handle font switches of math alphabets, how
to include the various sizes of big operators, delim-
iters, or radicals, or how to include the optical sizes
of superscripts and subscripts.
Handling of math alphabets In a traditional
TEX setup the letters of the Latin and Greek alpha-
bets are subject to font switches between the various
math families, usually containing a different style in
each family (roman, italic, script, etc.).

In a Unicode setup each style of math alphabets
has a different range of slots assigned to it, since
each style is assumed to convey a different meaning.

When dealing with direct Unicode input, this
might not be a problem, but when dealing with
traditional TEX input, quite a lot of setup may be
needed at the macro level to ensure that input such
as \mathrm{a} or \mathit{a} or \mathbf{a} will
be translated to the appropriate Unicode slots.

An additional complication arises because the
Unicode code points assigned to the math alphabets
are non-contiguous for historical reasons [37]. While
most of the alphabetic letters are taken from one big
block starting at U+1D400, a few letters which were
part of Unicode already before the introduction of
Unicode math have to be taken from another block
starting at U+2100.

An example implementation of a LATEX macro
package for X ETEX to support OpenType math is
already available [32], and it shows how much setup
is needed just to handle math alphabets. Fortunately,
such a setup will be needed only once and will be
applicable for all Unicode math fonts, quite unlike
the case of traditional TEX fonts where each set of
math fonts requires its own macro package.
Handling of size variants Ever since the days
of DVI files and PK fonts, TEX users have been ac-
customed to thinking of font encodings in terms of
numeric slots in an encoding table, usually assuming
a 1:1 mapping between code points and glyphs.

430 TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting

Do we need a ‘Cork’ math font encoding?

However, there have always been exceptions to
this rule, most notably in the case of a math extension
font, where special TFM features were used to set up
a linked list from one code point to a series of next-
larger glyph variants representing different sizes of
operators, delimiters, radicals, or accents, optionally
followed by an extensible version.

In a traditional TEX font each glyph variant has
a slot by itself in the font encoding, even if it was
addressed only indirectly.

In an OpenType font, however, the font encod-
ing is determined by Unicode code points, so the
additional glyph variants representing different sizes
cannot be addressed directly by Unicode code points
and have to remain unencoded, potentially mapped
to the Unicode private use area, if needed.

While the conceptual ideas of vertical and hori-
zontal variants and constructions in the OpenType
MATH table are very similar to the concepts of char-
lists and extensible recipes in TEX font metrics, it is
interesting to note that OpenType has generalized
these concepts a little bit.

While TEX supports extensible recipes only in
a vertical context of big delimiters, OpenType also
supports horizontal extensible constructions, so it
would be possible to define an extensible overbrace
or underbrace in the font, rather than at the macro
level using straight line segments for the extensible
parts. In addition, the same concept could also be
applied to arbitrarily long arrows.
Optical sizes for scripts In a traditional TEX
setup math fonts are organized into families, each
of them consisting of three fonts loaded at different
design sizes representing text style and first and
second level script style.

If a math font provides optical design sizes, such
as in the case of traditional METAFONT fonts, these
fonts are typically loaded at sizes of 10 pt, 7 pt, 5 pt,
each of them having different proportions adjusted
for improved readability at smaller sizes.

If a math font doesn’t provide optical sizes, such
as in the case of typical PostScript fonts, scaled-down
versions of the 10 pt design size will have to make do,
but in such cases it may be necessary to use bigger
sizes of first and second level scripts, such as 10 pt,
7.6 pt, 6 pt, since the font may otherwise become too
unreadable at such small sizes.

In OpenType math the concept of optical sizes
from TEX and METAFONT has been adopted as well,
but it is implemented in a different way, typical for
OpenType fonts. Instead of loading multiple fonts
at different sizes, OpenType math fonts incorporate
the multiple design variants in the same font and

activate them by a standard OpenType substitution
mechanism using a feature tag ssty=0 and ssty=1,
not much different from the standard substitutions
for small caps or oldstyle figures in text fonts.

It is important to note that the optical design
variants intended for use in first and second level
scripts, using proportions adjusted for smaller sizes,
are nevertheless provided at the basic design size
and subsequently scaled down using a scaling factor
defined in the OpenType MATH table.

If an OpenType math font lacks optical design
variants for script sizes and does not support the
ssty feature tag, a scaled-down version of the basic
design size will be used automatically. The same will
also apply to non-alphabetic symbols.
Use of OpenType feature tags Besides using
OpenType feature tags for specific purposes in math
fonts, most professional OpenType text fonts also use
feature tags for other purposes, such as for selecting
small caps or switching between oldstyle and lining
figures. Some OpenType fonts may provide a rich
set of features, such as a number of stylistic variants,
initial and final forms, or optical sizes.

Ultimately, it remains to be seen how the use of
OpenType feature tags will influence the organization
of OpenType fonts for TEX, such as Latin Modern
or TEX Gyre, not just concerning new math fonts,
but also existing text fonts.

So far, the Latin Modern fonts have very closely
followed the model of the Computer Modern fonts,
providing separate fonts for each design size and each
font shape or variant.

While it might well be possible to eliminate
some variants by making extensive use of OpenType
feature tags, such as by embedding small caps into
the roman fonts, implementing such a step would
imply an important conceptual change and might
cause unforeseen problems.

Incorporating multiple design sizes into a single
font might have similar implications, but the effects
might be less critical if they are limited to the well-
controlled environment of math typesetting.

In the TEX Gyre fonts the situation is somewhat
simpler, because these fonts are currently limited to
the basic roman and italic fonts and do not have
small caps variants or optical sizes.

Incorporating a potential addition of small caps
in TEX Gyre fonts by means of OpenType feature
tags might well be possible without causing any in-
compatible changes. Similarly, incorporating some
expanded design variants with adjusted proportions
for use in script sizes would also be conceivable when
designing TEX Gyre math fonts.

TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting 431

Ulrik Vieth

5.3 The impact of OpenType math
As we have seen in the previous sections, Open-
Type math fonts provide a way of embedding all the
relevant font-specific and glyph-specific information
needed for high-quality math typesetting.

In many aspects, the concepts of OpenType
math are very similar to TEX or go beyond TEX.
However, the implementation of these concepts in
OpenType fonts will be different in most cases.

Given the adoption of OpenType math as a
de facto standard and its likelihood of becoming an
official standard eventually, OpenType math seems
to be the best choice for future developments of new
math fonts for use with new TEX engines.

While X ETEX has already started to support
OpenType math and LuaTEX is very likely to follow,
adopting OpenType for the design of math fonts for
Latin Modern or TEX Gyre will take more time and
will require developing a deeper understanding of the
concepts and data structures.

Most importantly, however, it will also require
rethinking many traditional assumptions about the
way fonts are organized.

Thus, while the topic of font encodings of math
fonts may ultimately become a non-issue, the topic
of font technology will certainly remain important.

5.4 The challenges of OpenType math
Developing a math font has never been an easy job,
so attempting to develop a full-featured OpenType
math font for Latin Modern or TEX Gyre certainly
presents a major challenge to font designers or font
implementors for a number reasons.

First, such a math font will be really large, even
in comparison with text fonts, which already cover
a large range of Unicode.2 It will have to extend
across multiple 16-bit planes to account for the slots
of the math alphabets starting at U+1D400, and it
will also require a considerable number of unencoded
glyphs to account for the size variants of extensible
glyphs and the optical variants of math alphabets.

Besides the size of the font, such a project will
also present many technical challenges in dealing
with the technology of OpenType math fonts.

While setting up the font-specific parameters of
the OpenType MATH table is comparable to setting
up the \fontdimen parameters of TEX’s math fonts,
setting up the glyph-specific information will require
detailed attention to each glyph as well as extensive

2 In the example of the Cambria Math font, the math font
is reported to have more than 2900 glyphs compared to nearly
1000 glyphs in the Cambria text font.

testing and fine-tuning to achieve optimal placement
of math accents and indices.

Finally, there will be the question of assembling
the many diverse elements that have to be integrated
in a comprehensive OpenType math font. So far,
the various styles of math alphabets and the various
optical sizes of these alphabets have been designed
as individual fonts, but in OpenType all of them
have to be combined in a single font. Moreover, the
optical sizes will have to be set up as substitutions
triggered by OpenType feature tags.

6 Summary and conclusions
In this paper we have reviewed the work on math
font encodings since 1990 and the current situation
of math fonts as of 2008, especially in view of re-
cent developments in Unicode and OpenType font
technology. In particular, we have looked in detail
at the features of OpenType math in comparison to
the well-known features of TEX’s math fonts.

While OpenType math font technology looks
very promising and seems to be the best choice for
future developments of math fonts, it also presents
many challenges that will have to be met.

While support for OpenType math in new TEX
engines has already started to appear, the develop-
ment of math fonts for Latin Modern or TEX Gyre
using this font technology will not be easy and will
take considerable time.

In the past, the TEX conference in Cork in 1990
was the starting point for major developments in text
fonts, which have ultimately led to the adoption of
Unicode and OpenType font technology.

Hopefully, the TEX conference at Cork in 2008
might become the starting point for major develop-
ments of math fonts in a similar way, except that this
time there will be no more need for a new encoding
that could be named after the site of the conference.

Acknowledgements
The author wishes to acknowledge feedback, sugges-
tions, and corrections from some of the developers
of projects discussed in this review.

A preprint of this paper has been circulated
on the Unicode math mailing list hosted at Google
Groups [38] and future discussions on the topics of
this paper are invited to be directed here.

References
[1] Yannis Haralambous: TEX and Latin alphabet

languages. TUGboat, 10(3):342–345, 1989.
http://www.tug.org/TUGboat/Articles/tb10-3/
tb25hara-latin.pdf

432 TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting

http://www.tug.org/TUGboat/Articles/tb10-3/tb25hara-latin.pdf
http://www.tug.org/TUGboat/Articles/tb10-3/tb25hara-latin.pdf

Do we need a ‘Cork’ math font encoding?

[2] Nelson Beebe: Character set encoding.
TUGboat, 11(2):171–175, 1990.
http://www.tug.org/TUGboat/Articles/tb11-2/
tb28beebe.pdf

[3] Janusz S. Bień: On standards for CM font
extensions. TUGboat, 11(2):175–183, 1990.
http://www.tug.org/TUGboat/Articles/tb11-2/
tb28bien.pdf

[4] Michael Ferguson: Report on multilingual
activities. TUGboat, 11(4):514–516, 1990.
http://www.tug.org/TUGboat/Articles/tb11-4/
tb30ferguson.pdf

[5] Frank Mittelbach, Robin Fairbairns, Werner
Lemberg: LATEX font encodings, 2006.
http://www.ctan.org/tex-archive/macros/
latex/doc/encguide.pdf

[6] Jörg Knappen: The release 1.2 of the Cork
encoded DC fonts and text companion fonts.
TUGboat, 16(4):381–387, 1995. Reprint from
the Proceedings of the 9th European TEX
Conference 1995, Arnhem, The Netherlands.
http://www.tug.org/TUGboat/Articles/tb16-4/
tb49knap.pdf

[7] Berthold K. P. Horn: The European Modern
fonts. TUGboat, 19(1):62–63, 1998
http://www.tug.org/TUGboat/Articles/tb19-1/
tb58horn.pdf

[8] Bogusław Jackowski, Janusz M. Nowacki:
Latin Modern: Enhancing Computer Modern
with accents, accents, accents. TUGboat,
24(1):64–74, 2003. Proceedings of the
TUG 2003 Conference, Hawaii, USA.
http://www.tug.org/TUGboat/Articles/tb24-1/
jackowski.pdf

[9] Bogusław Jackowski, Janusz M. Nowacki:
Latin Modern: How less means more.
TUGboat, 27(0):171–178, 2006 Proceedings
of the 15th European TEX Conference 2005,
Pont-à-Mousson, France.
http://www.tug.org/TUGboat/Articles/tb27-0/
jackowski.pdf

[10] Will Robertson: An exploration of the Latin
Modern fonts. TUGboat, 28(2):177-180, 2007.
http://www.tug.org/TUGboat/Articles/tb28-2/
tb89robertson.pdf

[11] Hans Hagen, Jerzy B. Ludwichowski, Volker
RW Schaa: The new font project: TEX Gyre.
TUGboat, 27(2):250–253, 2006. Proceedings
of the TUG 2006 Conference, Marrakesh,
Morocco.
http://www.tug.org/TUGboat/Articles/tb27-2/
tb87hagen-gyre.pdf

[12] Jerzy B. Ludwichowski, Bogusław Jackowski,
Janusz M. Nowacki: Five years after: Report
on international TEX font projects. TUGboat,
29(1):25–26, 2008. Proceedings of the 17th
European TEX Conference 2007, Bachotek,
Poland.
http://www.tug.org/TUGboat/Articles/tb29-1/
tb91ludwichowski-fonts.pdf

[13] Alan Jeffrey: Math font encodings: A
workshop summary. TUGboat, 14(3):293–295,
1993. Proceedings of the TUG 1993 Conference,
Aston University, Birmingham, UK.
http://www.tug.org/TUGboat/Articles/tb14-3/
tb40mathenc.pdf

[14] Justin Ziegler: Technical report on math font
encodings. LATEX3 Project Report, 1993.
http://www.ctan.org/tex-archive/info/
ltx3pub/processed/l3d007.pdf

[15] Math Font Group (MFG) web site, archives,
papers, and mailing list.
http://www.tug.org/twg/mfg/
http://www.tug.org/twg/mfg/archive/
http://www.tug.org/twg/mfg/papers/
http://www.tug.org/mailman/listinfo/
math-font-discuss

[16] Matthias Clasen, Ulrik Vieth: Towards a new
Math Font Encoding for (LA)TEX. Cahiers
GUTenberg, 28–29:94–121, 1998. Proceedings
of the 10th European TEX Conference 1998,
St. Malo, France.
http://www.gutenberg.eu.org/pub/GUTenberg/
publicationsPDF/28-29-clasen.pdf

[17] Ulrik Vieth et al.: Summary of math
font-related activities at EuroTEX 1998.
MAPS, 20:243–246, 1998.
http://www.ntg.nl/maps/20/36.pdf

[18] Ulrik Vieth: What is the status of new math
font encodings? Posting to mailing list, 2007.
http://www.tug.org/pipermail/
math-font-discuss/2007-May/000068.html

[19] Barbara Beeton, Asmus Freytag, Murray
Sargent III: Unicode Support for Mathematics.
Unicode Technical Report UTR#25. 2001.
http://www.unicode.org/reports/tr25/

[20] Barbara Beeton: Unicode and math, a
combination whose time has come—Finally!
TUGboat, 21(3):174–185, 2000. Proceedings of
the TUG 2000 Conference, Oxford, UK.
http://www.tug.org/TUGboat/Articles/tb21-3/
tb68beet.pdf

[21] Barbara Beeton: The STIX Project—From
Unicode to fonts. TUGboat, 28(3):299–304,
2007. Proceedings of the TUG 2007 Conference,

TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting 433

http://www.tug.org/TUGboat/Articles/tb11-2/tb28beebe.pdf
http://www.tug.org/TUGboat/Articles/tb11-2/tb28beebe.pdf
http://www.tug.org/TUGboat/Articles/tb11-2/tb28bien.pdf
http://www.tug.org/TUGboat/Articles/tb11-2/tb28bien.pdf
http://www.tug.org/TUGboat/Articles/tb11-4/tb30ferguson.pdf
http://www.tug.org/TUGboat/Articles/tb11-4/tb30ferguson.pdf
http://www.ctan.org/tex-archive/macros/latex/doc/encguide.pdf
http://www.ctan.org/tex-archive/macros/latex/doc/encguide.pdf
http://www.tug.org/TUGboat/Articles/tb16-4/tb49knap.pdf
http://www.tug.org/TUGboat/Articles/tb16-4/tb49knap.pdf
http://www.tug.org/TUGboat/Articles/tb19-1/tb58horn.pdf
http://www.tug.org/TUGboat/Articles/tb19-1/tb58horn.pdf
http://www.tug.org/TUGboat/Articles/tb24-1/jackowski.pdf
http://www.tug.org/TUGboat/Articles/tb24-1/jackowski.pdf
http://www.tug.org/TUGboat/Articles/tb27-0/jackowski.pdf
http://www.tug.org/TUGboat/Articles/tb27-0/jackowski.pdf
http://www.tug.org/TUGboat/Articles/tb28-2/tb89robertson.pdf
http://www.tug.org/TUGboat/Articles/tb28-2/tb89robertson.pdf
http://www.tug.org/TUGboat/Articles/tb27-2/tb87hagen-gyre.pdf
http://www.tug.org/TUGboat/Articles/tb27-2/tb87hagen-gyre.pdf
http://www.tug.org/TUGboat/Articles/tb29-1/tb91ludwichowski-fonts.pdf
http://www.tug.org/TUGboat/Articles/tb29-1/tb91ludwichowski-fonts.pdf
http://www.tug.org/TUGboat/Articles/tb14-3/tb40mathenc.pdf
http://www.tug.org/TUGboat/Articles/tb14-3/tb40mathenc.pdf
http://www.ctan.org/tex-archive/info/ltx3pub/processed/l3d007.pdf
http://www.ctan.org/tex-archive/info/ltx3pub/processed/l3d007.pdf
http://www.tug.org/twg/mfg/
http://www.tug.org/twg/mfg/archive/
http://www.tug.org/twg/mfg/papers/
http://www.tug.org/mailman/listinfo/math-font-discuss
http://www.tug.org/mailman/listinfo/math-font-discuss
http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/28-29-clasen.pdf
http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/28-29-clasen.pdf
http://www.ntg.nl/maps/20/36.pdf
http://www.tug.org/pipermail/
math-font-discuss/2007-May/000068.html
http://www.unicode.org/reports/tr25/
http://www.tug.org/TUGboat/Articles/tb21-3/tb68beet.pdf
http://www.tug.org/TUGboat/Articles/tb21-3/tb68beet.pdf

Ulrik Vieth

San Diego, California, USA.
http://www.tug.org/TUGboat/Articles/tb28-3/
tb90beet.pdf

[22] STIX Fonts Project: Web Site and Frequently
Asked Questions.
http://www.stixfonts.org/
http://www.stixfonts.org/STIXfaq.html

[23] Murray Sargent III: Math in Office Blog.
http://blogs.msdn.com/murrays/default.aspx

[24] Murray Sargent III: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/2006/
09/13/752206.aspx

[25] Tiro Typeworks: Cambria Math Specimen.
http://www.tiro.nu/Articles/Cambria/
Cambria_Math_Basic_Spec_V1.pdf

[26] John Hudson, Ross Mills: Mathematical
Typesetting: Mathematical and scientific
typesetting solutions from Microsoft.
Promotional Booklet, Microsoft, 2006.
http://www.tiro.com/projects/

[27] Daniel Rhatigan: Three typefaces for
mathematics. The development of Times
4-line Mathematics, AMS Euler, and Cambria
Math. Dissertation for the MA in typeface
design, University of Reading, 2007.
http://www.typeculture.com/academic_
resource/articles_essays/pdfs/tc_article_
47.pdf

[28] Murray Sargent III: Unicode Nearly Plain
Text Encodings of Mathematics. Unicode
Technical Note UTN#28, 2006.
http://www.unicode.org/notes/tn28/

[29] Microsoft Typography: OpenType
specification version 1.5.
http://www.microsoft.com/typography/otspec/

[30] George Williams: FontForge. Math typesetting
information.
http://fontforge.sourceforge.net/math.html

[31] Apostolos Syropoulos: Asana Math.
www.ctan.org/tex-archive/fonts/Asana-Math/

[32] Will Robertson: Experimental Unicode math
typesetting: The unicode-math package.
http://scripts.sil.org/svn-public/xetex/
TRUNK/texmf/source/xelatex/unicode-math/
unicode-math.pdf

[33] Yannis Haralambous: Fonts and Encodings.
O’Reilly Media, 2007. ISBN 0-596-10242-9
http://oreilly.com/catalog/9780596102425/

[34] Bogusław Jackowski: Appendix G Illuminated.
TUGboat, 27(1):83–90, 2006. Proceedings
of the 16th European TEX Conference 2006,
Debrecen, Hungary.
http://www.tug.org/TUGboat/Articles/tb27-1/
tb86jackowski.pdf

[35] Ulrik Vieth: Understanding the æsthetics of
math typesetting. Biuletyn GUST, 5–12, 2008.
Proceedings of the 16th BachoTEX Conference
2008, Bachotek, Poland.
http://www.gust.org.pl/projects/e-foundry/
math-support/vieth2008.pdf

[36] Ulrik Vieth: Math Typesetting in TEX: The
Good, the Bad, the Ugly. MAPS, 26:207–216,
2001. Proceedings of the 12th European TEX
Conference 2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

[37] Unicode Consortium: Code Charts for
Symbols and Punctuation.
http://www.unicode.org/charts/symbols.html

[38] Google Groups: Unicode math for TEX.
http://groups.google.com/group/unimath

434 TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting

http://www.tug.org/TUGboat/Articles/tb28-3/tb90beet.pdf
http://www.tug.org/TUGboat/Articles/tb28-3/tb90beet.pdf
http://www.stixfonts.org/
http://www.stixfonts.org/STIXfaq.html
http://blogs.msdn.com/murrays/default.aspx
http://blogs.msdn.com/murrays/archive/2006/09/13/752206.aspx
http://blogs.msdn.com/murrays/archive/2006/09/13/752206.aspx
http://www.tiro.nu/Articles/Cambria/Cambria_Math_Basic_Spec_V1.pdf
http://www.tiro.nu/Articles/Cambria/Cambria_Math_Basic_Spec_V1.pdf
http://www.tiro.com/projects/
http://www.typeculture.com/academic_resource/articles_essays/pdfs/tc_article_47.pdf
http://www.typeculture.com/academic_resource/articles_essays/pdfs/tc_article_47.pdf
http://www.typeculture.com/academic_resource/articles_essays/pdfs/tc_article_47.pdf
http://www.unicode.org/notes/tn28/
http://www.microsoft.com/typography/otspec/
http://fontforge.sourceforge.net/math.html
www.ctan.org/tex-archive/fonts/Asana-Math/
http://scripts.sil.org/svn-public/xetex/TRUNK/texmf/source/xelatex/unicode-math/unicode-math.pdf
http://scripts.sil.org/svn-public/xetex/TRUNK/texmf/source/xelatex/unicode-math/unicode-math.pdf
http://scripts.sil.org/svn-public/xetex/TRUNK/texmf/source/xelatex/unicode-math/unicode-math.pdf
http://oreilly.com/catalog/9780596102425/
http://www.tug.org/TUGboat/Articles/tb27-1/tb86jackowski.pdf
http://www.tug.org/TUGboat/Articles/tb27-1/tb86jackowski.pdf
http://www.gust.org.pl/projects/e-foundry/math-support/vieth2008.pdf
http://www.gust.org.pl/projects/e-foundry/math-support/vieth2008.pdf
http://www.ntg.nl/maps/26/27.pdf
http://www.unicode.org/charts/symbols.html
http://groups.google.com/group/unimath

	History and development of text fonts
	The `Cork' encoding
	Alternatives to the `Cork' encoding

	Recent developments of text fonts
	Unicode support in new TeX fonts
	Unicode support in new TeX engines

	History and development of math fonts
	The `Aston' proposal
	The `newmath' prototype

	Recent developments of math fonts
	Unicode math and the STIX fonts
	OpenType math in MS Office 2007
	OpenType math in new TeX engines
	OpenType math for new TeX fonts?

	Future developments in math fonts
	Some background on OpenType math
	The details of OpenType math
	The impact of OpenType math
	The challenges of OpenType math

	Summary and conclusions

