
Vistas for TEX: liberate the typography! (Part I)

Chris Rowley
Semantic Maths for All! Project
Department of Mathematics and Statistics
Faculty of Mathematics, Computing and Technology
Open University, London, UK
c.a.rowley (at) open dot ac dot uk

Abstract

This is a polemic in favour of liberating the core typesetting structures and algorithms
around which TEX is built from the monolithic superstructure of the mini-dinosaur of a
program called tex and its more or less modernised and approachable derivatives such as
xetex and luatex.

Although the high-level aims of the programme of activity advocated here have a
lot in common with those of the very exciting and active LuaTEX project, the route I
propose seems to me to be very different. The major ambition of the latter project is
to embed (something similar to) the whole of the current TEX system within a vastly
more complex monolith [sic] of an application which will presumably be well-adapted to
the formatting needs of oriental languages. To this monolith are now being added many
well-oriented intrusions [sic] into but a single instance of that ancient bedrock of TEX!

Of course, luatex promises to provide a spectacularly sophisticated and highly
hackable system that will eventually enable a great evolutionary radiation of species
within the phylum of automated document processing; hence the importance and
fascination, for me at least, of the developmental path of the LuaTEX project.

Pursuing the paleontological metaphor well beyond its point of total and painful
collapse, my plan can be thought of as providing many tools that can be easily dispersed
in such a way that TEX’s clever genes can influence (for the good) far more aspects of the
evolution of automated typesetting: all this abundance being more speedily and robustly
achieved due to not being held back by the decision to build all future systems on a
perfectly preserved and complete digestive system from a fossilised ancestral TEXosaur.

I am here also making a plea to the Grand Technical Wizards of TUG to widen
support from their development fund’s treasure chest to encompass projects that are
designed to spread TEX’s influence and presence throughout the fertile modern world of
document processing via its algorithms alone, without the dead weight of its monolithic,
programmatic paradigm and the many somewhat dated aspects of its detailed software
design.

Adding topicality and an even longer time-base to the metaphors, please can we
have plentiful levels of international funding to support an actual Big Bang to get the
elementary particles of TEX spread throughout the typesetting universe, rather than
funding only an engineering wonder (for interesting but small-scale experiments to find
new TEX-like particles) such as the LHC: LuaTEX’s Hard-problems Cruncher, a ‘shining
star in the East’ which I fear may spin-off some big black-holes to trap even the most
energetic of us mortal, western programmers.

1 Introduction

This could easily have been the shortest genuine
paper in this, or any, TEX Users Group proceedings.
All it needs to say is: please support Free, Open
and Reusable Algorithms from TEX (yes folks, the
FORAT Campaign starts here!).

However, I will attempt, in this and subsequent
papers, to expand on some examples of what I mean
by liberating TEX’s formatting algorithms in the
form, for example, of C++ libraries, embeddable
JavaScript or similar reusable artefacts.

In Section 3 I shall also provide more or less

deep discussions, through examples, of the most im-
portant and most difficult part of doing this in a
practical and useful way: the provision of good ex-
ternal interfaces. But we shall begin in Section 2,
with some introductory remarks (not all strictly per-
tinent) concerning current TEX’s use and misuse
of its formatting subsystems. The paper concludes
with a note on non-TEX math formatters, being an
introduction to further study in this area.

The whole is permeated by a sincere plea for
greatly increased support, of all types and by the
many TUGs and all individuals in the TEX com-

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 413



Chris Rowley

munity, for this outward-looking work so crucial to
ensuring a very long life for both the great gifts that
arrived within TEX, and also for the inventive and
experimental spirit of its pioneers. May this paper
be the first of many that promote the creation of
Really Useful Software from TEX’s Inner Engineering
(the RUSTIE project).

2 The structure of TEX

The sum of the ‘document manipulation’ parts of
TEX can be well described as a text processing ap-
plication whose originality and utility is provided by
many specialised formatting engines. Many of these
engines are barely recognisable as independent soft-
ware artefacts due to the programming techniques
wisely chosen by Knuth to implement the system [6].
(His methodology can these days be well described
as the EO method: Extreme Optimisation, of both
space and time!)

Each of these deeply embedded formatting en-
gines will, when it has been disentangled from the
sticky mess of connections and optimisations that
holds it deep within TEX’s embrace, reveal itself as a
thing of beauty. Less appealing, each such newly dis-
entangled creature, whilst happy to be breathing free,
will also be a very vulnerable beast as it will have no
communication interfaces through which to nurture
it. Thus its liberators will need to carefully craft
protective interfaces in order to ensure the fledgling
formatter’s viability in the real and exciting, but
non-programmatic, world of 21st century documents.

These hidden gems include formatters for words,
LR-boxes (with natural and many other width speci-
fications), split-able [sic] LR-boxes, leaders of various
types, paragraphs, split-able [sic] paragraphs, justi-
fied lines, formulas, superscripts, fractions, radicals
with bar, etc.

One aspect of these specialised formatters clearly
shows TEX’s ancient pedigree, from a time when data
flow had kept to a minimum. This is their lack of
flexibility, in the following sense. With the exception
of using the concept of ‘unset glue’, TEX’s formatters
will always combine to produce, from a given input,
a unique, fully specified boxful of formatted output
(often with a claim of its ‘optimal’ quality).

As Frank Mittelbach and I have copiously ar-
gued over the years, for a sophisticated document
formatter a more useful product would be a reason-
ably sized collection of possible formattings that are
all ‘good enough’. To this collection could possibly
be added some ranking of their absolute quality but
even more useful would be a few descriptors or quan-
tisations of how good each is, together with other
information that may be of use to other co-operating

formatters. Such output could then be used by other
‘higher-level’ formatters to choose the formatting
most suited to their higher purposes.

I shall not pursue such valuable enhancements
here as I am only asking for the Moon, not Mars,
. . . this year; the benefits of this approach to the
practical optimisation of formatted documents have
been long known and much discussed since Frank
Mittelbach and I [18] introduced them.

3 Two (of many) examples

The two of TEX’s many embedded formatters about
which I have chosen to say a little more here are not
necessarily either the most complex or the easiest to
specify, but they are both central to TEX’s raison
d’être. I have somewhat presumptuously chosen to
put these into the form of outline draft specifica-
tions. I hope that they will start a process that leads
smoothly and quickly to full specifications and to the
production of partial but usable ‘proof-of-concept’
library implementations. For the maths formatter
some more detailed work has been done (Section 3.3)
that will soon form the contents of a funding bid for
the project.

3.1 The paragraph formatter

This is just one possible route towards the expo-
sure of a TEX-like paragraph mechanism and it is
treated very briefly here. I hope it inspires others
to help expand this to a full and carefully explained
specification, to be published in this series.

Note that this outline description assumes the
existence of methods for formatting ‘LR-boxes’: these
are ‘single lines’ of text with well-defined spacing of
‘words’. In turn that formatter will require a ‘word
formatter’, etc. I plan to provide a fuller explanation
of these ideas in a future paper.

The inputs to this formatter would be as follows.
• The material to be formatted (see below).
• Parameter settings. Although it may not be

essential, it would be very useful to have the
ability to input values for all the parameters
that are used by TEX’s algorithm for forming
and formatting a paragraph. Of course, many
of them will have sensible default values that
could be fixed or, in context, inherited.

The material to be formatted would consist of the
following.

– Pure text (e.g. Unicode strings).
– Some ‘formatting information’ such as:

– font selection hints
– line-breaking hints
– word-division information

414 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting



Vistas for TEX: liberate the typography! (Part I)

– even direct formatting instructions (!)
all with a precisely defined syntax.

– Pre-formatted material in the form of ‘in-line
boxes’.
The basic liberated version of this formatter

would return two types of material (this is slightly
more than current TEX’s internal mechanism can
be bothered to do, despite the information being
available). Applications using it are free to ignore
item 2.

1. A formatting of the paragraph: the formatted
‘lines’ of the paragraph plus other information
about their layout in a well-defined format.

2. The number of lines, information about the
break-points used (e.g. their location in the in-
put string, whether a word was broken), an
evaluation of how ‘good’ each break-point is and
of the quality of the formatting of each line.
Note that here I have not explicitly discussed

any of TEX’s sophisticated escape mechanisms that
implement a small range of specialised extra activ-
ities, such as ‘vadjust material’, marks or ‘whatsit
nodes’. These are good examples of Knuth’s cleverly
ad hoc use of small and tightly integrated extensions
to a basic algorithm in order to emulate the effect
of fully modelling these varied aspects of the docu-
ment formatting process as separate modules. Such
features of TEX thus express a limited collection of
ideas from a wider class that is important to auto-
mated document processing. Being ad hoc, Knuth’s
efficient implementations typically use inappropri-
ate models and hence have severe deficiencies. It is
therefore probably not sensible to reproduce such
escape mechanisms when providing our exposures of
The Good Things of TEXTM.

A more advanced version of this liberated for-
matter would allow the replacement of TEX’s algo-
rithm for finding break-points but this would entail
provision for whole new parametrisations of the pro-
cess and thus could decrease its immediate usability.
A more practical way of providing this formatter may
be to split it up into smaller modules that undertake
distinct parts of the task, leaving the master para-
graph formatter with only the two tasks of control-
ling the whole process and of handling all external
interfaces (which would need to be customisable).

3.2 The mathematics formatter

This formatter has turned out to be the central fea-
ture in this final form of my diatribe; thus I shall
warn you that it gets tediously detailed from here on.
Although many of you would like to follow the exam-
ple of Sebastian Rahtz [3] and banish all mathematics

from the TEX world (if not all worlds), we must nev-
ertheless face the reality that TEX Does Math!! —
both within the TEX world but also, far more and
growing rapidly, outside it, including much that will
never see the guts of a TEX processor. Hence if, over
the next 10 years or so, real world ‘TEX for maths’
is not to lose all contact with ‘TEX the processor’,
then TEX’s maths formatter must get out there and
strut its stuff wherever maths is being stuffed into
digital form.

For the liberated form of this important format-
ter it is more difficult to specify in suitably general
terms the nature of the material to be formatted; the
obvious specification is ‘Presentation MathML con-
taining Unicode strings’ [16] but it is not clear to me
at this stage whether this will always be sufficiently
rich in information about the mathematical struc-
ture of the notation to be typeset. However, a lot
of work has been done, and is continuing, on a wide
range of uses of mathematical notation in comput-
ers, together with their associated description and
formatting requirements. Exposing this formatter
will greatly help many aspects of this research and
development effort, in particular the task of deter-
mining what needs to be encoded in the input to
ensure high quality maths output.

The output will be material that can be used
by an ‘LR-box’ or ‘paragraph’ formatter.

The current understanding of the parametrisa-
tion needed for this task is also still somewhat em-
pirical. It is known that standard TEX’s algorithm is
severely under-parametrised for the tasks in which it
claims supremacy but, in contrast, many applications
will require only a far simpler parametrisation.

It is therefore desirable that the implementation
of this algorithm should build in sensible default rules
for determining plausible values of all TEX’s ‘maths
parameters’ from data as meagre as just the nominal
text font size. However, this liberation must at least
remove all of current TEX’s explicit overloading in
the ‘standard parameter set’ in order to be more
generally usable. It may also be sensible to remove
some aspects of the parametrisation from the current
dependence on the choice of fonts.

The following subsection contains further de-
tails of this project; it is an extract from a fund-
ing proposal currently being pursued for this task.
Throughout, the phrase ‘Standard LATEX’ refers to a
well known and defined (mainly ad hoc at present)
subset of LATEX’s math mode, but using the full range
of Unicode maths characters, for encoding mathe-
matical structures and glyphs. This is not a good
phrase for this beast, thus it has also been dubbed
‘LoTEX’ [17] (as in the common multiple Lcm).

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 415



Chris Rowley

3.3 Liberating TEX: maths formatting

A fact and the obvious question: Many current appli-
cations, like the above specification, require a maths
formatter: why not make it TEX’s?

Until quite recently the standard TEX formatter
for Computer Modern was the only such application
that was both widely available and offered even rea-
sonable typeset quality. However, bits of TEX were,
back then, totally incompatible with other applica-
tions that used different font resource technologies or
series. Thus there are now many applications that,
with varying degrees of success, attempt to emulate
the quality of TEX without its restrictions on input
and output. There are now also some serious rivals
to TEX’s typeset quality for mathematics but they
also share two, at least, of TEX’s problems: being too
far embedded in widely used and sophisticated docu-
ment processing systems; and being closely linked to
particular font series.

Whilst it may not be feasible to get the highest
quality formatting using a given maths font series
without careful choice of the set of layout parameters
(and their values) specific to that series [7, 8], it is
certainly possible to give the world TEX’s current al-
gorithm with some liberation of the parametrisation.
For example, it is straightforward to remove from
its layout parameter set-up the many explicit (and
30-year old) overloadings and relationships that were
necessary to Knuth’s giving us this wonderful gift, so
expertly tuned to a particular font series (Monotype
Modern), itself about 100 years old![15]

More importantly, this quality can now be made
available in a portable form so that it could be easily
linked into any application, such as browsers or office
suites, that need to render structured representa-
tions of mathematics, particularly MathML 3.0 and
‘Standard LATEX’ or LoTEX. Post-liberation, this
valuable treasure can be further enhanced by making
it more configurable so as to allow extensions of its
capabilities in the following two areas: the diversity
of 1.5-dimensional (or maybe fully 2-dimensional)
text-based layouts that it can construct; the range
of fonts, glyphs, colour resources and other printing
marks that can be used in these constructs (and
maybe built-in interactivity).

For many modern applications it will be essential
to provide (at least in a derivative version) optimisa-
tion for fast parallel rendering of a large collection
of (typically small) maths fragments, possibly with
different ‘quality control requirements’.

A typical such application (from the trendy
worlds of Web 2.0 and/or the Semantic Web) of
the near-medium future will be fast, highly interac-

tive, agent-supported browsing of large collections of
pages that contain a lot of connectivity and mathe-
matical intelligence embedded in semantically rich
encodings of mathematical notation [19].

3.3.1 Inputs

• Maths material encoded in a fully specified lan-
guage that describes, at least, the presentational
structure (or, visual semantics) of the material.
This currently would typically be either a pre-
cisely defined (and large) subset of P-MML (Pre-
sentation MathML 3.0 [16]) or a syntactically
precise subset of the currently used range of
LATEX-related math-mode syntax (LoTEX).1

In order to support a more semantically ori-
ented and user-friendly form of LATEX input, it
may be wise to provide a preprocessor that ac-
cepts precisely restricted uses of \newcommand.

• A modern ‘maths font’ resource (similar to Open-
Type with the necessary ‘math tables’ as sup-
plied with Microsoft’s Cambria Math font).

3.3.2 Outputs

This is not so easy to standardise. The high-level
specification is that it will consist of ‘glyphs plus rules’
(plus, possibly, other simple graphical components
and colour features) that are absolutely positioned
in a local coordinate system relative to a reference
or ‘base point’ that in turn can be used to position
and orient the output on a page. It will also contain
the necessary pointers to glyph rendering and paint
resources, etc.

Since there is no widely accepted standard lan-
guage for precisely such output, it will be necessary
to use a simple fixed internal representation akin
to TEX’s h/vlist or DVI languages. However, unlike
the current TEX paradigm, modules to convert this
internal language to a range of commonly needed
languages will also be included. Examples of outputs
are thus some type of PDF and SVG fragments and
other application-specific formats such as RTF or the
internal renderable format of a web browser.

4 Other mathematics formatters

Time has mitigated against extending this section
beyond these very brief comments on some impor-
tant existing non-TEX maths formatters. So there is
another paper or two waiting in the wings.

For a long time there have been non-TEX maths
formatters in general use, such as techexplorer [20].
There are now a large number of these; here is a par-
tial list of those that are definitely ‘fit-to-purpose’,

1 There is also a far wider need for LoTEX, together with
standard translations to/from P-MML.

416 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting



Vistas for TEX: liberate the typography! (Part I)

be that quick, simple and clear rendering of sim-
ple maths in browsers, or high quality use of well-
designed fonts for more classical paper presentation:

jsmath, Mathplayer for Internet Explorer,
Gecko-Math (used in Firefox et al.),
Microsoft’s Rich Edit (in Office 2007),
MathEX (incorporates techexplorer), SWiM.

How much the design of each of these systems
uses, or is influenced by, Knuth’s algorithm and
layout rules ([5], Appendix G) has not I think been
much studied; maybe the individual authors of the
systems once knew the answers?

Only Microsoft’s system [23, 2, 22] (as demon-
strated in my talk at San Diego) claims typograph-
ical quality that is better than that of TEX; it is
also the only one that is not intimately connected
with MathML [16] although the two are reasonably
friendly. The creators of this RichEdit system state
that it uses ‘TEX’s mathematical typography prin-
ciples’ but they go on to remark that this task was
nevertheless ‘considerably harder than any of us imag-
ined it would be’, taking 15 years of elapsed time
to complete (fortunately, throughout this time the
then boss of the whole company took a keen per-
sonal interest in the whole project). They conclude
that ‘mathematical typography is very intricate and
varied’.

Although the associated product does not seem
to be widely used, the GtkMathView project [11]
has worked on and documented a lot of interesting
ideas and artefacts in this area.

References

[1] Hermann Zapf. About micro-typography and
the hz -program. Electronic Publishing 6(3),
pages 283–288, Wiley, 1993.
http://cajun.cs.nott.ac.uk/compsci/epo/
papers/epoddaui.html

[2] About Rich Edit Controls.
http://msdn.microsoft.com/en-us/
library/bb787873(VS.85).aspx

[3] Sebastian P. Q. Rahtz. Banish Maths! Daily
personal communications, 1990–2005.

[4] D. E. Knuth and M. F. Plass. Breaking
paragraphs into lines. Software – Practice and
Experience, 11(11), pages 1119–1184, 1981.

[5] D. E. Knuth. TEX: The Program.
Addison-Wesley, 1986, 1993.

[6] D. E. Knuth. The TEXbook. Addison-Wesley,
1986, 1993.

[7] Richard Southall. Designing a new typeface
with METAFONT, in TEX for Scientific
Documentation, Springer 1986, pages 161–179.

http://www.springerlink.com/content/
57432v516731367n/

[8] Peter Karow and Herman Zapf. Digital
typography. Private communication, 2003.

[9] John Plaice, Yannis Haralambous and
Chris Rowley. An extensible approach to
high-quality multilingual typesetting. In
RIDE-MLIM 2003, IEEE Computer Society
Press, 2003.

[10] Extensible Markup Language (XML).
http://www.w3c.org/XML

[11] GtkMathView Home Page.
http://helm.cs.unibo.it/mml-widget

[12] X ETEX. http://scripts.sil.org/xetex

[13] LATEX: A document preparation system.
http://www.latex-project.org

[14] LuaTEX. http://www.luatex.org

[15] Monotype Modern: Description. http:
//www.paratype.com/fstore/default.asp?
fcode=871&search=Monotype+Modern

[16] Mathematical Markup Language (MathML)
Version 3.0, W3C Working Draft.
http://www.w3.org/TR/MathML3

[17] Chris Rowley and Stephen Watt. The need for
a ‘Standard LATEX’. Private communication,
July 2007.

[18] Frank Mittelbach and Chris Rowley. The
pursuit of quality: How can automated
typesetting achieve the highest standards of
craft typography?
In Electronic Publishing, pages 261–273,
Cambridge University Press, 1992.

[19] Christoph Lange and Michael Kohlhase.
SWiM: A Semantic Wiki for Mathematical
Knowledge Management.
Poster at http://kwarc.info/projects/
swim/pubs/poster-semwiki06.pdf

[20] Don DeLand. From TEX to XML: The legacy
of techexplorer and the future of math on the
Web. Abstract in TUGboat 28:3, page 369,
TUG, Proceedings of the 2007 Annual Meeting.

[21] Unicode. http://www.unicode.org

[22] Murray Sargent. Using RichEdit 6.0 for Math.
http://blogs.msdn.com/murrays/archive/
2007/10/28/using-richedit-6-0-for-math.
aspx

[23] Ross Mills and John Hudson, Editors.
Mathematical Typesetting: Typesetting
Solutions from Microsoft. Glossy brochure
distributed at TypeCon 2007, Seattle,
August 1–5, 2007.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 417

http://cajun.cs.nott.ac.uk/compsci/epo/papers/epoddaui.html
http://cajun.cs.nott.ac.uk/compsci/epo/papers/epoddaui.html
http://msdn.microsoft.com/en-us/library/bb787873(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb787873(VS.85).aspx
http://www.springerlink.com/content/57432v516731367n/
http://www.springerlink.com/content/57432v516731367n/
http://www.w3c.org/XML
http://helm.cs.unibo.it/mml-widget
http://scripts.sil.org/xetex
http://www.latex-project.org
http://www.luatex.org
http://www.paratype.com/fstore/default.asp?fcode=871&search=Monotype+Modern
http://www.paratype.com/fstore/default.asp?fcode=871&search=Monotype+Modern
http://www.paratype.com/fstore/default.asp?fcode=871&search=Monotype+Modern
http://www.w3.org/TR/MathML3
http://kwarc.info/projects/swim/pubs/poster-semwiki06.pdf
http://kwarc.info/projects/swim/pubs/poster-semwiki06.pdf
http://www.unicode.org
http://blogs.msdn.com/murrays/archive/2007/10/28/using-richedit-6-0-for-math.aspx
http://blogs.msdn.com/murrays/archive/2007/10/28/using-richedit-6-0-for-math.aspx
http://blogs.msdn.com/murrays/archive/2007/10/28/using-richedit-6-0-for-math.aspx

	Introduction
	The structure of TeX
	Two (of many) examples
	The paragraph formatter
	The mathematics formatter
	Liberating TeX: maths formatting
	Inputs
	Outputs


	Other mathematics formatters

