Multidimensional text

John Plaice

School of Computer Science and Engineering
The University of New South Wales

UNSW SYDNEY NSW 2052, Australia
plaice (at) cse dot unsw dot edu dot au

Blanca Mancilla

School of Computer Science and Engineering
The University of New South Wales

UNSW SYDNEY NSW 2052, Australia
mancilla (at) cse dot unsw dot edu dot au

Chris Rowley

Mathematics and Statistics

The Open University in London

1-11 Hawley Crescent, Camden Town
London NW1 8NP, UK

c.a.rowley (at) open dot ac dot uk

Abstract

The standard model of text, based on XML and Unicode, assumes that docu-
ments are trees whose leaves are sequences of encoded characters. This model is
too restrictive, making unnecessary assumptions about documents, text and the
processing applied to these.

We propose instead that text and documents be encoded as tuples, i.e., sets
of dimension-value pairs. Those dimensions used for content are split into the
property dimensions, which are named by elements of an unstructured set, and
the indexing dimensions, which form a structured set, often enumerated.

Using our approach allows natural solutions for a wide range of encoding
requirements: encoding of documents at multiple levels of abstraction (glyph,
character, word, stem-declension pair, compound word, etc.); encoding by linear,
tree, DAG and multidimensional structures. Our model is upwardly compatible

with existing approaches.

1 Introduction

In this article, we present a new model for manip-
ulating documents in which every structure is en-
coded as a tuple, a set of dimension-value pairs. The
simpler elements are ordinary tuples encoding basic
information, while more complex elements encode
mappings from structured index sets towards sim-
pler elements.

The advantage of this new model is that it al-
lows documents to be encoded in many different
ways, taking into account logical structure, visual
structure and linguistic analysis. Furthermore, the
proposed model is upwardly compatible with exist-
ing practice.

This model is one result of a research project

into the nature of text initiated by authors Plaice
and Rowley [5, 6]. The current standard computer
model of documents assumes that the structure of
a text is a tree—normally encoded using XML —
whose leaves are sequences of Unicode characters
and where the intermediate nodes contain sets of
attribute-value pairs to define properties. The con-
clusion of the aforementioned research was that the
current model makes the assumption that text is
simply something to be shuffled around, possibly
chopped up for rendering purposes, but that it has
no structure of its own; furthermore, the origin of
the view of a document as some form of stream
of bytes can be traced directly back to the near-
simultaneous invention of the typewriter and the

474 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

telegraph. The relatively recent distinction between
“character” and “glyph”, where character is an ab-
straction from glyph, still makes the assumption
that the visual presentation of text is the key, de-
spite the fact that, for example, English, Amharic
and Chinese are normally encoded at, respectively,
the letter, syllable and (sub)word levels.

As large collections of documents are brought
together, so that they can be searched, it is clear
that this “standard” model leaves something to be
desired. Searching through a multilingual database
of texts requires substantial linguistic support, and
here it becomes essential that the different languages
be handled at similar levels. Moreover, in linguis-
tics, texts are often encoded using parse trees and
attribute-valued matrices, often DAGs (directed acy-
clic graphs) or digraphs (directed graphs).

As for the structure of documents containing
text, the tree structure itself is not always appro-
priate. Although it is true that a two-dimensional
table can be encoded as a tree, this is only true
by imposing ordering on its two dimensions (either
by rows or by columns); they are not naturally en-
coded by a purely hierarchical structure but by its
antithesis, a completely crossed structure. More-
over, two-dimensional tables are often used to visu-
alize multidimensional data, whose encoding truly
requires a multidimensional data structure such as
those investigated in a different context by one of
the authors [1], not just to capture and simplify the
semantics, but to ensure an efficient and tractable
storage mechanism.

Importantly, what distinguishes the electronic
document from all previous forms of document is
that it is recreated every time that it is read, lis-
tened to, studied or processed. As a result, with a
slight change of parameters, it can be recreated dif-
ferently from any previous occasion. The standard
model completely breaks down for these kinds of
situations: it must resort to programming the docu-
ment and, in so doing, loses the possibility of having
the document being properly indexed for searchabil-
ity. (See [4] for further discussion.)

The tuple structure that we are proposing al-
lows us, as shall be shown below, to define a num-
ber of different structures, including ordered streams
and trees, DAGs and multidimensional structures.
For example, a sentence in a document can be en-
coded as a sequence of characters, as a parse tree
with words as leaves, or as a “feature structure”
from linguistics known as an attribute-valued ma-
trix. Indeed, it could easily be encoded as all of the
above, with appropriate link structures connecting
the components.

Multidimensional text

The structure of this paper is as follows. We
present a brief analysis of, and show the current lim-
itations of, various existing models for the encoding
of texts and documents in §2. We follow with a pre-
sentation of our new model (§3) using an extended
example. We then (§4) describe some features of its
use to declined word-stem sequences, parse trees, hi-
erarchical document structure, attribute-value ma-
trices and tables. We conclude with a discussion of
future work.

2 Existing models

We examine in this section three approaches to deal-
ing with text. Although not exhaustive, it does pro-
vide us with indications of where a more complete
model should be heading.

2.1 XML documents

An XML document is typically encoded as a tree. In
some sense, this is all there is to say, but a proper
understanding of XML requires examining not just
the obvious tree structure, but also the structures of
the nodes and the leaves in these trees.

For each element in an XML document, there
is a possibly empty list of attribute-value pairs, and
a possibly empty list of child elements. The leaves
of the tree consist of PCDATA (Parsed Character
Data) or CDATA (Character Data), in both cases
sequences of characters from the Unicode or some
other character set, with PCDATA being parsed by
the XML parser.

Therefore XML, often presented as a simple en-
coding, actually requires four data structures to de-
scribe a document:

e the tree;

e the list of elements;

e the attribute-value list; and
e the character sequence.

In addition, there are arbitrary restrictions on at-
tributes which limit their usability: attributes can-
not contain multiple values, nor can they contain
tree structures.

Our model includes such XML tree-based docu-
ments but it can also handle non-hierarchical struc-
tures that do not necessarily have any natural XML
encoding.

2.2 Linguistics AVMs

In linguistics, it is common to model written lan-
guage using structures consisting of a tree and an as-
sociated attribute-value structure [3, p. 16]. For ex-
ample, here is the parse tree for the sentence “Mary
seems to sleep.”:

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 475

John Plaice, Blanca Mancilla and Chris Rowley

[Si: [NPy: Mary
VPi: [Vi: seems
VP3: [Auxs: to
VP3: [Vs:sleep 1111]

The associated structure, called an attribute-value
matrix (AVM), is presented below.

Note: The subscripts in the parse tree correspond
to the nodes in the AVM. Node 2 appears twice
in the AVM, being the subject of both node 1 and
node 3.

pers 3rd
. agr
subj num sg
pred mary
_subj
comp pred sleep
tense none
pred seem
| tense pres]

Because of such shared structures, AVMs are
often considered to be DAGs. Howewer, it is possible
to have cyclical structures in an AVM: Consider the
noun phrase “the man that I saw”, whose parse tree
is here:

[NP;: [Det: the
N’: [N: man
S’2: [Comp: that
S: [NP: I
VP: [V:saw 111111

In the following AVM, a cyclical structure is needed
to describe the “filler-gap” dependency in the rela-
tive clause [3, p.19]:

[def +

pred man

pred saw
comp subj {pred pro}
obj

Our model naturally encodes both such parse
trees and these AVMs.

2.3 Tables

Xinxin Wang and Derick Wood [7] developed a gen-
eral model for tables, in which a table is a map-
ping from a multidimensional coordinate set to sets
of contiguous cells. For them, the two-dimensional
format commonly used to present a table is not the
internal format. Here is an example of the use of a
3-dimensional coordinate set from their paper:

Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
1991
Winter 85 80 60 75 75
Spring 80 65 | 75 60 70 70
Fall 80 85 55 80 75
1992
Winter 85 80 75 75
Spring 80 80 70 75 75
Fall 75 70 65 60 80 70

It appears that, in 1991 alone, Assignment 3 was
identical across the three terms but for 1992, we
can see no such simple explanation of the larger box
since it seems to amalgamate this assignment with
an examination.

In this example and using their notation, the
three dimensions and their value sets are as follows:

Year = {1991,1992}
Term = {Winter, Spring, Fall}
Assignments - Assl,
Assignments - Ass2,
Marks — Assignments - Ass3,

Examinations - Midterm,
Examinations - Final,
Grade

A small change of syntax would transform this into
an example of our model.

3 The new model

In this section we present an extended descriptive
illustration of the model, using an example, rather
than a detailed formal model.

There is only one basic structure in this model:
the tuple, which is defined as a set of dimension-
value pairs. This is not a new data structure, and
it has many different names in different formalisms:
dictionary in PostScript, hash-array in Perl, map
in C++, association list in Haskell, attribute-value
list in XML, and tuple in Standard ML and Linda.

We begin by proposing a possible encoding for
the sentence “KTEX 2¢ is neat.”

[type: sentence
numberWord: 3
endPunctuation: [type: unichar, code: 002E]
0: [type: TeXlogo
TeXcode: "\LaTeX\thinspace2\lowerlpt
\hbox{\smallε}}"
SimpleForm: [type: digiletters
unicharstring: "LaTeX2e" 1]
1: [type: word
numberChar: 2
0: [type: unichar, code: 0069]

476 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

1: [type: unichar, code: 0073] 1]
2: [type: word
numberChar: 4
2: [type: unichar, code: 0061]
1: [type: unichar, code: 0065]
0: [type: unichar, code: O0O6E]
3: [type: unichar, code: 0074]]]
In this example, there are 12 tuples:
e 1 sentence,
e 1 TEX logo,
e 1 character string consisting of a “word and dig-
its”,

2 words, and
7 Unicode characters.

The different dimensions in the example play
different roles. In fact, there are three categories of
dimensions:

e The typing dimensions allow one to distinguish
the different kinds of tuple. Thus all tuples
must have a typing dimension. In the exam-
ple, a special dimension, called type, provides
the information. This is the standard solution,
although we do not exclude the use of further
special dimensions, say subtype or version, for
further clarification.

e The property dimensions are used to store any
type of information about the tuple. In the ex-
ample, these dimensions are:

— numberWord and endPunctuation, for
tuples of type sentence;

— TeXcode and SimpleForm, for the
TeXlogo tuples;

— unicharstring for digiletters tuples;!

— numberChar for word tuples;

— code for unichar tuples.

e The indexing dimensions are used to access the
substructures of a tuple (the content of the tu-
ple) via an indexing mechanism or structure.
The set of all the indexing dimensions available
to a given type of tuple can be very large, con-
ceptually infinite, and will often carry a com-
plex structure.

In the following sections we will extensively
develop examples of how the structure of these
indexing dimensions can be used to encode com-
plex systems. In the example, both the sen-
tence and word tuples use the natural num-
bers (N) to enumerate their content; thus the
indexing dimensions available are the natural

1 This could be replaced by a more formal tuple of type
digiword that is like word: being an indexed collection of
unichar tuples that can also contain digits.

Multidimensional text

numbers, whose structure is the unique count-
able well-ordering.

More precisely, the property dimensions form
an unstructured set, whilst the indexing dimensions
form a subset of a structured set. We can, for exam-
ple, write a tuple of type typespec that defines the
sets needed for the dimensions in sentence tuples:

[type: typespec
tupletype: sentence
typedim: {type}
propdim: {numberWord, endPunctuation}
indexdim: N
]

Note that, although the set of possible index dimen-
sions N is the infinite set of all natural numbers, any
given tuple will use only a finite number of numbers
as indices. Also, it is important that, for example,
the order of the characters in a word is defined by
the ordering of their indexing dimensions as natural
numbers, not the order in which they appear in the
written form of the “word tuple”. In this example
we write the characters in the order of the numbers
of their Unicode slots (such an ordering may be very
efficient for certain applications).

In all of these sets, of dimensions and possible
values, both equality and membership must be com-
putable. In all usable examples, of course, equality-
testing and other necessary set operations should be
at worst of polynomial time complexity for reason-
ably sized sets.

The tuples used as values may be of any type,
thus, for example, they could include strings, files,
programs, and so on.

There can be other interesting interplays be-
tween dimensions and values. Consider, for exam-
ple, the Unicode character tuple:

[type: unichar, code: 002E]

Here the value 002E is a value used to index the Uni-
code character database and, as Bella [2] has shown,
that database can be understood as a single tuple
indexed by the natural numbers whose entries are
themselves tuples containing various kinds of infor-
mation about each Unicode character.

The tuples used in this model are conceptual:
they can be implemented —both as data structures
in running programs and as sequentialised files on
disk —in many different ways. Depending on the ex-
act applications, algorithms and programming lan-
guages and environments, some solutions are more
appropriate than others.

4 Examples

We hope it is now clear that our tuple structure

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 477

John Plaice, Blanca Mancilla and Chris Rowley

can encode any sort of simple record or entry. In
this section, we indicate with a few more examples
how the tuple structure can encode different kinds
of data structure.

As was described in the previous section, there
are typing, property and indexing dimensions in a
tuple. If we restrict ourselves to the indexing di-
mensions, then the tuple can be considered to be a
(partial) function from an index set (the structured
set of indexing dimensions) to a set of values, which
are in general themselves tuples, interpreting a sin-
gleton value as a type of tuple singleton and in-
dexing set of size 1 {0}. If, in the sense of datatypes,
these singleton values are strongly typed, then these
singleton values will need a datatype property di-
mension.

e Declined word-stem sequences: To enhance doc-
ument search or to effect grammatical analy-
sis, it is common to stem words, separating the
stem and the prefixes or suffixes of the words.
We would then end up with entries such as:

[type: verb
language: English
stem: carry
mood: indicative
tense: present perfect
voice: active
person: 3rd
number: singular

unicharstring: "has carried"]

or
[type: noun
language: French
stem: pomme
gender: feminine
number: plural
unicharstring: "pommes"]

Should the system not be able to parse such
a word/phrase, then it will store only its uni-
charstring until it is appropriately updated.

e Parse trees: The result of the natural language
parsing of a sentence is a richer text structure
that is often encoded in a tree structure.

Below is a possible parse tree for the sentence

“Mary seems to sleep.”, first presented in the
section on AVMs (§2):

[type: sentence

NP: Mary
VP: [type: verbPhrase
V: seems
VP: [type: verbPhrase
Aux: to
VP: [type: verb
V: sleep 1]11]

o Hierarchical document structure: The traditio-

nal book with frontmatter, chapters, sections
and subsections is a typical example of a doc-
ument tree. This hierarchy can be extended
downwards to paragraphs, sentences, phrases,
words and characters.

Attribute-value matrices: As explained in §2,
these contain shared structures. Below is the
AVM for the last example sentence.

[type: AVMentries
numberEntries: 3
1: [type: AVM
subj: 2
comp: 3
pred: seem
tense: pres]
2: [type: AVM
agr: [type: AVM
pers: 3rd
num: sg]
pred: mary]
3: [type: AVM
subj: 2
pred: sleep
tense: none]]

e Tables: The encoding of tables by Wang and

Wood is our final example of the model. Here
is a possible encoding, where the dimensions are
allowed to range over a set of possible values in
order to encode the boxed values.

[type: WWtable
[type: WWindex
year: 1991
term: Winter
mark: Assignments.Assl
] : 85

[type: WWindex
year: 1991
term: Winter..Fall
mark: Assignments.Ass3
] :75

type: WWindex

year: 1992

term: Winter..Spring

mark: Assignments.Ass3..Midterm

—/

] : 70

[type: WWindex
year: 1992
term: Fall
mark: Grade

] : 70

478 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

5 Conclusions

The model introduced in this paper, based on gen-
eral tuples, is as simple as possible whilst being flex-
ible enough to encode a large range of different ap-
proaches to the study and manipulation of text in
all of its forms, as well as to support the encoding
and linguistic tools such as language dictionaries.

However, the real power of the model is the idea
of the index, built right into the model, which pro-
vides access to any piece of data, thereby support-
ing the specification of algorithms and hypertext-
like links between document components.

The infinite index sets correspond to iterators
into containers, as used, for example, in the C++
STL (Standard Template Library) for generic pro-
gramming. Furthermore, using these sets it is even
possible that certain tuples are, conceptually, count-
able infinite (like lists in a functional programming
language), with the components being evaluated in
a lazy manner, on-demand.

In future papers we shall show how this unifying
data model makes it easy to combine in a single sys-
tem myriad ways of editing, storing, manipulating
and presenting text and to manipulate all of these
together.

Multidimensional text

References

[1] R.A. Bailey, Cheryl E. Praeger, C.A. Rowley,
and T.P. Speed. Generalized wreath products
of permutation groups. Proc. Lond. Math. Soc.,
$3-47(1):69-82, July 1983.

[2] Gébor Bella. Modélisation du texte numérique
multilingue: vers des modéles généraux et exten-
sibles fondés sur le concept de textéme. PhD the-
sis, Télécom Bretagne, Brest, France, 2008.

[3] Mark Johnson. Attribute-Value Logic and the
Theory of Grammar. Center for the Study of
Language and Information, Stanford University,
1988.

[4] Blanca Mancilla and John Plaice. Possible
worlds versioning. Mathematics in Computer
Science, 2008. In press.

[5] John Plaice and Chris Rowley. Characters are
not simply names, nor documents trees. In Glyph
and Typesetting Workshop, East Asian Center
for Informatics in Humanities, Kyoto University,
2003. http://coe2l.zinbun.kyoto-u.ac.jp/
papers/ws-type-2003/009-plaice.pdf.

[6] Chris Rowley and John Plaice. New directions in
document formatting: What is text? In Glyph
and Typesetting Workshop, East Asian Center
for Informatics in Humanities, Kyoto University,
2003. http://coe2l.zinbun.kyoto-u.ac.jp/
papers/ws-type-2003/001-rowley.pdf.

[7] Xinxin Wang and Derick Wood. A concep-
tual model for tables. In Ethan V. Munson,
Charles K. Nicholas, and Derick Wood, editors,
PODDP, volume 1481 of Lecture Notes in Com-
puter Science, pages 10-23. Springer, 1998.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 479

