TUG 2008

IATEX
Software & Tools

Dreamboat

Fonts

Graphics

Philology

Macros

Electronic Documents

Abstracts

News

Advertisements

TUG Business

350
352

356

362
365
372
380
383
376
392
401

413

418
421
426
435

444
446

454

458
462

464
474
480

482

485
486

487

484
488

TUGBOAT

Volume 29, Number 3 / 2008
TUG 2008 Conference Proceedings

Conference program, delegates, and sponsors
Peter Flynn / TUG 2008: TgX’s 30" birthday

Niall Mansfield / How to develop your own document class— our experience

Jonathan Kew / TEXworks: Lowering the barrier to entry

Jérome Laurens / Direct and reverse synchronization with SyncTEX

Joachim Schrod / Xindy revisited: Multi-lingual index creation for the UTF-8 age
Taco Hoekwater / MetaPost developments: MPlib project report

Hans Hagen / The TEX-Lua mix

Joe MCCool / A newbie’s experiences with Lilypond, Lilypond-book, IATEX and Perl
Krisztian Pdcza, Mihaly Biczé and Zoltan Porkoldb / docx2tex: Word 2007 to TEX
Jean-Michel Hufflen / Languages for bibliography styles

Chris Rowley / Vistas for TEX: liberate the typography! (Part I)

Dave Crossland / Why didn’t METAFONT catch on?
Karel Piska / Creating cuneiform fonts with MetaTypel and FontForge
Ulrik Vieth / Do we need a ‘Cork’ math font encoding?

Ameer Sherif and Hossam Fahmy / Meta-designing parameterized Arabic fonts
for AlQalam

Manjusha Joshi / Smart ways of drawing PSTricks figures
Hans Hagen / The MetaPost library and LuaTpX

Mojca Miklavec and Arthur Reutenauer / Putting the Cork back in the bottle—
Improving Unicode support in TEX

Stanislav Jan Sarman / Writing Gregg Shorthand with METAFONT and IATEX
Hans Hagen / The LuaTEX way: \framed

Ross Moore / Advanced features for publishing mathematics, in PDF and on the Web
John Plaice, Blanca Mancilla and Chris Rowley / Multidimensional text
Manjusha Joshi / Data mining: Role of TEX files

Abstracts (Fine, Hagen, Henkel, Hoekwater, Hagholm, Kiister,
Mancilla et al., Mittelbach, Peter, Rahilly et al., Rhatigan,
Veytsman & Akhmadeeva, Veytsman)

Calendar
TUG 2009 announcement

TEX consulting and production services

TUG institutional members
TUG 2009 election

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions
2008 dues for individual members are as follows:

= Ordinary members: $85.

= Students/Seniors: $45.
The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright © 2008 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Karl Berry, President*

Kaja Christiansen®, Vice President

David Walden*, Treasurer

Susan DeMeritt*, Secretary

Barbara Beeton

Jon Breitenbucher

Steve Grathwohl

Jim Hefferon

Klaus Hoppner

Dick Koch

Ross Moore

Arthur Ogawa

Steve Peter

Cheryl Ponchin

Philip Taylor

Raymond Goucher, Founding Ezxecutive Director?
Hermann Zapf, Wizard of Fonts!

*member of executive committee

fhonorary

See http://tug.org/board.html for a roster of
all past (and present) board members, and other
official positions.

Addresses Electronic Mail

TEX Users Group (Internet)

P.O. Box 2311 General correspondence,
Portland, OR 97208-2311 membership, subscriptions:
U.S.A. office@tug.org
Telephone Submissions to TUGboat,

+1 503 223-9994 letters to the Editor:

TUGboat@tug.org

Fax Technical support for
+1 206 203-3960 TEX users:
support@tug.org

Web
http://tug.org/
http://tug.org/TUGboat

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: October 2008]

Printed in U.S.A.

TUGBOAT

The Communications of the TEX Users Group

Volume 29, Number 3, 2008

TUG 2008 Conference Proceedings

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions
2008 dues for individual members are as follows:

= Ordinary members: $85.

= Students/Seniors: $45.
The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright © 2008 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Karl Berry, President®

Kaja Christiansen®, Vice President

David Walden*, Treasurer

Susan DeMeritt*, Secretary

Barbara Beeton

Jon Breitenbucher

Steve Grathwohl

Jim Hefferon

Klaus Hoppner

Dick Koch

Ross Moore

Arthur Ogawa

Steve Peter

Cheryl Ponchin

Philip Taylor

Raymond Goucher, Founding Ezxecutive Director?
Hermann Zapf, Wizard of Fonts!

*member of executive committee

fhonorary

See http://tug.org/board.html for a roster of
all past (and present) board members, and other
official positions.

Addresses Electronic Mail

TEX Users Group (Internet)

P.O. Box 2311 General correspondence,
Portland, OR 97208-2311 membership, subscriptions:
U.S.A. office@tug.org
Telephone Submissions to TUGboat,

+1 503 223-9994 letters to the Editor:

TUGboat@tug.org

Fax Technical support for
+1 206 203-3960 TEX users:
support@tug.org

Web
http://tug.org/
http://tug.org/TUGboat

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: October 2008]

Printed in U.S.A.

TUG 2008 Proceedings

University College Cork
Ireland
July 21-24, 2007

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
TUGBOAT EDITOR BARBARA BEETON
Proceepings EpiTorR KARL BERRY

VorLuME 29, NUMBER 3 . 2008
PORTLAND . OREGON . U.S.A.

TUG 2008 — TEX’s 30th birthday

July 20-24, 2008
University College Cork, Ireland

Sponsors

TEX Users Group = DANTE e.V. m Human Factors Research Group, UCC
Carleton Production Centre = Malcolm Clark = River Valley Technologies

Thanks to the sponsors, and to all the speakers, teachers, and participants, without whom
there would be no conference. The session chairs and speakers deserve special recognition for
adhering to a extra-tight schedule this year. Special thanks also to Kaveh Bazargan for the
video recording, and Duane Bibby for the (as always) excellent drawing.

Conference committee

Anita Schwartz = Peter Flynn = Robin Laakso = Karl Berry

Participants

Leila Akhmadeeva, Bashkir State Medical Univ., Russia

Edd Barrett, TEX Live / OpenBSD

Kaveh Bazargan, River Valley Technologies

Nelson Beebe, University of Utah

Barbara Beeton, American Mathematical Society

Mihaly Biczé, Eotvos Lorand University, Hungary

Johannes Braams, INTEX Project

Jennifer Claudio, St. Lawrence Academy

David Crossland, Wimborne, UK

Sue DeMeritt, Center for Communications Research

Christine Detig, Net & Publication Consultance GmbH

Michael Doob, University of Manitoba

Hossam Fahmy, Cairo University, Egypt

Jonathan Fine, The Open University, UK

Peter Flynn, University College Cork, Ireland

Ralf Gaertner, Miinchen, Germany

Michel Goossens, CERN

Steve Grathwohl, Duke University Press

Adelheid Grob, Universitat Ulm

Hans Hagen, Pragma ADE

Hartmut Henkel, von Hoerner & Sulger GmbH

Morten Hogholm, IATEX Project

Taco Hoekwater, Elvenkind BV

Klaus Hoppner, DANTE e.V.

Jean-Michel Hufflen, Université de Franche-Comté

Jelle Huisman, SIL International

Manjusha Joshi, Bhaskaracharya Institute in
Mathematics, India

Jonathan Kew, Thame, UK

Timothy Kew, Thame, UK

Peter Knaggs, Bournemouth, UK

Thomas Koch, Koln, Germany

Harald Koénig, Balingen, Germany

Reinhard Kotucha, Hannover, Germany

Valentinas Kriauciukas, VTEX

Martha Kummerer, University of Notre Dame

Johannes Kiister, typoma GmbH

Robin Laakso, TEX Users Group

Jéréme Laurens, Université de Bourgogne

Dag Langmyhr, University of Oslo

Olga Lapko, Moscow, Russia

Blanca Mancilla, University of New South Wales
Niall Mansfield, UIT Cambridge Ltd, UK

Patricia Masinyana, UNISA, South Africa

Joe McCool, Southern Regional College, UK
Stephen McCullagh, Dublin Inst. for Advanced Studies
Frank Mittelbach, IATEX Project

Ross Moore, Macquarie University, Australia
Winfried Neugebauer, Bremen, Germany

Manuel Pégourié-Gonnard, TEX Live

Steve Peter, Pragmatic Programmers

Karel Piska, Academy of Sciences, Czech Republic
John Plaice, University of New South Wales
Krisztian Pécza, E6tvos Lorand University, Hungary
Cheryl Ponchin, Institute for Defense Analyses

Toby Rahilly, University of New South Wales
Arthur Reutenauer, GUTenberg

Daniel Rhatigan, The University of Reading

David Roderick, Carlisle, UK

Chris Rowley, INTEX Project

Stanislav Sarman, Clausthal Univ. of Tech., Germany
Volker RW Schaa, DANTE e.V.

Joachim Schrod, Net & Publication Consultance GmbH
Torsten Schuetze, Moglingen, Germany

Herbert Schulz, Naperville, Illinois

Anita Schwartz, University of Delaware

Heidi Sestrich, Carnegie Mellon University

Martin Sievers, Trier, Germany

Linas Stonys, VIEX

Sigitas Tolusis, VTEX

Eva van Deventer, UNISA, South Africa

Marc van Dongen, University College Cork, Ireland
Boris Veytsman, George Mason University

GS Vidhya, River Valley Technologies

Ulrik Vieth, Stuttgart, Germany

Alan Wetmore, US Army Research Laboratory

TUG 2008 — program

Monday, July 21

9:00
9:15

10:00
10:30
10:45
11:15
11:45
12:30
2:15
2:45
3:15
3:30
4:00
4:30

Peter Flynn, opening

Frank Mittelbach, Windows of opportunity: A (biased) personal history of two decades
of BTEX development — are there lessons to be learned?

Steve Peter, A pragmatic toolchain: TEX and friends and friends of friends

break

Niall Mansfield, How to develop your own document class— our experience

Joe McCool, A newbie’s experiences with Lilypond, Lilypond-book, BTEX, and Perl

Jonathan Fine, Why we need BTEX3

lunch

Krisztidn Pécza, Mihdly Biczé & Zoltan Porkoldb, docx2tex: Word 2007 to TEX

Jonathan Kew, TEXworks: Lowering the barrier to entry

break

Manjusha Joshi, Data mining: Role of TEX files?

Taco Hoekwater, LuaTEX: What has been done, what will be done

Hans Hagen, LuaTgX: The TEX-Lua mix

reception

Tuesday, July 22

9:00

9:30
10:00
10:30
10:45
11:15
11:45
12:15

1:30

2:00

2:30

3:00

3:15

3:45

4:15

Mojca Miklavec & Arthur Reutenauer, Putting the Cork back in the bottle:
Improving Unicode support in TEX extensions

Joachim Schrod, xindy revisited — multilingual index creation for the UTF-8 age

Ulrik Vieth, Do we need a Cork math font encoding?

break

Daniel Rhatigan, Three typefaces for mathematics

Johannes Kiister, Minion Math: The design of a new math font family

Karel Piska, Creating cuneiform fonts with MetaTypel and FontForge

lunch

Ameer Sherif & Hossam Fahmy, Meta-designing parameterized Arabic fonts for AlQalam

Stanislav Sarman, Writing Gregg Shorthand with BTEX and Metafont

Dave Crossland, Why didn’t Metafont catch on?

break

John Plaice, Blanca Mancilla & Toby Rahilly, Multidimensional text

Blanca Mancilla, John Plaice & Toby Rahilly, Multiple simultaneous galleys:
A simpler model for electronic documents

Toby Rabhilly, John Plaice & Blanca Mancilla, Parallel typesetting

Wednesday, July 23

9:15
9:45

10:30
10:45
11:15
11:45
12:15
12:45

Tpm

Manjusha Joshi, Smart ways of drawing PSTricks figures

Boris Veytsman & Leila Akhmadeeva, Medical pedigrees with TEX and PSTricks:
New advances and challenges

break

Jonathan Fine, MathTran and TEX as a web service

Ross Moore, Advanced features for publishing mathematics, in PDF and on the Web

Morten Hggholm, The galley module, or How I Learned to Stop Worrying and Love the Whatsit

Jérome Laurens, Direct and reverse synchronization with SyncTEX

lunch

Afternoon excursions, coaches expected to leave around 2pm.

banquet

Thursday, July 24

9:00
9:30
9:30
10:30
10:45
11:15
11:45
12:15
12:30

Taco Hoekwater, MPlib: The project, the library and the future
Hartmut Henkel, Image handling in LuaTEX

Hans Hagen, MPlib: An example of integration

break

Hans Hagen, surprise LuaTEX talk

Jean-Michel Hufflen, Languages for bibliography styles

Boris Veytsman, Observations of a TEXnician for hire

Anita Schwartz, closing

lunch

TUG 2008: TEX's 30™ birthday

Peter Flynn
University College Cork
Ireland
http://tug.org/tug2008

"TWAS the night before TUGconf and all through the

No computer was stirring, not even my mouse. [house
The bags were all stuffed and in boxes for care

In hopes that the delegates soon would be there.
Attendees were nestled all snug in their planes

While visions of typesetting danced in their brains.

I dare say someone with more poetic license can
make a better shot at it, but by the night before
the 2008 Cork meeting the bags were indeed all
ready, thanks to Anita and Tyler Schwartz, Arthur
Reutenauer and Karel Piska who gave up their eve-
ning to sort T-shirts, mugs, programs, and the as-
sorted bits and pieces while registering the early ar-
rivals. We finally headed for a much-needed beer,
and bumped into my son and his girlfriend in the
beer-garden (just to show that Cork is actually a
village of 200,000 people).

The workshops (PSTricks and BTEX) were very
well attended, almost over capacity in one of the
rooms, and in addition to the expected content they
covered a lot of the vital but informal tips and hints
that you only get in face-to-face tuition.

The “Luck of the Irish” brought us excellent
weather and wonderful presenters. Everyone did a
fantastic job adhering to the schedule and adjusting
to all the last minute changes. Thanks to the session
chairs, Cheryl Ponchin, Anita Schwartz, myself and
our renowned TUG office manager, Robin Laakso.

As the local organiser I couldn’t get to as many
of the papers as I wanted to, but meeting old and
new faces is one of the benefits of conferences, and
I always get a lot out of hearing what people have
been doing and what they are using TEX for. Video
recordings of many of the talks were made by the
stalwart Kaveh Bazargan, so if you could not be
present, or for a reminder if you were, visit http:
//www.river-valley.tv/conferences/tug2008.

The excursions were full of history and beautiful
sites. Many would agree that most of us attending
TUG conferences do not need to kiss the Blarney

Stone for the gift of gab, especially when it comes to
our passion for TEX. However, many of us did enjoy
sharing these passionate discussions over Jameson,
Guinness and Beamish at the end of each long day.
The banquet provided a relaxing evening to enjoy a
nice dinner along with the opportunity to learn and
enjoy the talents of our user group members outside
of TEX.

A lot has changed since we hosted the 1990
meeting at Cork: fonts, encodings, packages, ver-
sions, features, systems, and people (some of us are
older and wiser; some of us just older!). Many of
these changes were evident in the presentations, and
it was good to see so much new work being done.
Many of us have had to fend off the “oh, that old
thing” response to mentioning TEX, and perhaps we
don’t shout loudly enough about all the shiny new
features we get to see at conferences.

And a lot hasn’t changed: I had occasion to dig
out some of the files I used back around 1990, and by
changing \documentstyle to \documentclass and
fixing a couple of package names, they worked fine;
a tribute to the stability of the underlying design
and the work of the maintainers and developers.

Perhaps embarrassingly, some of what hasn’t
changed still haunts us, although we’d never tell
that to the users of InDesign or QuarkXPress or
FrameMaker or (gasp) Word or OpenOffice. IyX
is great, but we still don’t have an editing inter-
face that non-technical writers can use. XHTEX is
wonderful but font installation is still a pain. The
MiKTgX-derived package managers are cool, but not
yet universal. And we still have people using \bf
and \it after all these years.

Next year we're meeting at Notre Dame, so we
have ten months to make some more good changes.
And they promise to have visitor wireless access,
which UCC didn’t, no matter how loudly I screamed.
See you there!

<51 TRAIN ror CORK

352 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

At the reception. Around the front table: Adelheid Grob, Hans Hagen, Hartmut Henkel,

Hans Hagen, Arthur Reutenauer, Taco Hoekwater, Jean-Michel Hufflen, Harald Koénig, Dag Langmyhr,
Reinhard Kotucha, Hartmut Henkel, (back of) Michael Doob, Nelson Beebe, Johannes Braams.

Volker Schaa. Behind Hartmut: Leila Akhmadeeva,
Olga Lapko, and Boris Veytsman. Behind
Reinhard: Heidi Sestrich, Alan Wetmore.

Ameer M. Sherif

Hossam A. H. Fahmy
Cairo University

Electronics and Communications Engines

Jonathan Fine. Hossam Fahmy.

Setting maths with met

= wSIERE g ﬁ‘_:!mm

=g 2 e [e

Kaveh Bazargan, recording and listening. Slide from Daniel Rhatigan’s talk.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 353

Klaus Hoppner, wielding camera.

At the English Market.

Kneeling: Reinhard Kotucha,
Manuel Pégorié-Gonnard, Dave Crossland.

Standing: Heidi Sestrich, Kaveh Bazargan,
Alan Wetmore, Martha Kummerer,
Barbara Beeton, Manjusha Joshi

Dave Crossland, wielding camera.

The cliffs of Moher. Steve Peter, outside the Jameson distillery.

ARARY,

354 TUGDboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

L

TEX’s 30" birthday cake.

Morten Hggholm and family: Evguenia, David,
Abigail.

Photos courtesy of Jennifer Claudio, Morten
Hggholm, Robin Laakso, Steve Peter, and
Main quad. Ulrik Vieth.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 355

How to develop your own document class—our experience

Niall Mansfield

UIT Cambridge Ltd.

PO Box 145

Cambridge, England

tug08 (at) uit dot co dot uk

Abstract

We recently started re-using IMTEX for large documents — professional computing
books—and had to convert an old (1987) IXTEX 2.09 custom class to work
with IMNTEX 2¢. We first tried converting it to a stand-alone .cls file, which the
documentation seemed to suggest is the thing to do, but we failed miserably.
We then tried the alternative approach of writing an “add-on” .sty file for the
standard book.cls. This was straightforward, and much easier than expected.
The resulting style is much shorter, and we can use most standard packages to

add extra features with no effort.

This paper describes our experience and the lessons and techniques we learned,
which we hope will encourage more people to write their own styles or classes.

1 Where we started from

Years ago I wrote a book The Joy of X [1], about
the X window system. It was in an unusual format
called STOP [5], as enhanced by Weiss [6], summa-
rized graphically in Figure 1. In 2008 I wanted to
write another book in the same format [2, 3]. It has
several interesting features that make it excellent for
technical books, although those details are not rele-
vant here. Suffice it to say that STOP required us to
change how parts, chapters, sections and sub-sections
are handled, and to provide extra sectional units at
the beginning and end of each chapter. We also had
to provide a summary table of contents, and for each
chapter a per-chapter table of contents (TOC) on the
first page of the chapter, and use PostScript fonts,
which in 1987 was a non-trivial task.

Back in 1987 a colleague of mine, Paul Davis,
very kindly wrote the necessary style file for this
format, and it worked very well. However, in the
meantime the world had moved on from ETEX 2.09
to IMTEX 2¢. The challenge was to provide the func-
tionality of the old style, but under ITEX 2¢.

2 First attempt — failure

Where do you start when developing a new style or
class? The document KTEX 2¢ for class and package
writers says:

if the commands could be used with any doc-
ument class, then make them a package; and
if not, then make them a class.

I took this to mean “We should write a class”. 1
wrongly went one step further, and thought it also
meant we should start our own class from scratch.

2.3 section title
2.3.4 sub-section title

This is the "theme" - brief
summary of key point.

"Exhibit" -
picture, diagram
or table

Body-text for
this section
or sub-section

Body-text
continued, or
more "exhibits"

Every section occupies

B S — .
a single 2-page spread

—_—

Figure 1: A STOP sub-section or “module”

(Another reason for thinking this was that at least
one major publisher seems to have gone this route.)

In fact the same document continues “There are
two major types of class: those like article, report
or letter, which are free-standing; and those which
are extensions or variations of other classes— for
example, the proc document class, which is built on
the article document class.” What I ought to have
done is started work on an “extension” or “variation’
class, but I didn’t realize it.

So I tried to convert the old .sty to BTEX 2¢,
and failed miserably. (This wasn’t surprising, be-
cause ITEX 2.09 style files consisted of plain TEX
code, which I have always found wvery difficult to
understand.) The end-product was something that
almost worked, but had lots of small bugs, and when
I fixed one problem, the change caused new problems
elsewhere.

)

356 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

How to develop your own document class— our experience

Another, equally large, disadvantage of this ap-
proach was that even if it had worked, the effort
to maintain it would have been huge. None of the
standard IMTEX 2¢ packages would have worked, so if
we needed any changes—even “simple” things like
changing the page size —we’d have had to code them
by hand ourselves.

Lesson A: whether you call your file a class

or a style doesn’t matter much —it’s just a

matter of a name. What is important is not

to start from scratch, but to build, as far as
possible, using existing code.

At this point we almost gave up and considered
using Quark Xpress or InDesign. But luckily someone
noticed the minitoc package, which looked like it
might give us exactly what we needed for our per-
chapter TOC, if only we could use it. We decided to
try again.

3 Second attempt —a short blind alley

We threw away everything we had and started again
from scratch. We tried book.cls plusminitoc. This
addressed one of our most difficult requirements —
the per-chapter TOC —and did it so well that we
were encouraged to persevere, thank goodness.

We copied the book.cls file as uitbook.cls,
and started adding our own modifications to this.
After a few days this became messy, especially when
bug-fixing: it wasn’t obvious which was our code
(where the bugs were likely to be) and which was the
original code.

Lesson B: in ITEX, the way to modify stan-
dard code is usually not to modify the original
file. Instead, extract just the piece that you
want to change, save it as something .sty and
modify just that little file. Then do
\usepackage{something.sty}.

4 Third attempt — success!

So we started again, leaving book.cls unchanged,
and created our own file uitbook.sty to contain all
our changes. The convention we settled on is:

e If something is just a convenience —e.g. a macro
that is merely a shorthand to save typing but
doesn’t add any new functionality — we create
a small .sty for it, and then \RequirePackage
that. In this way we can re-use the same conve-
nience tools with other classes.

For example, we defined about 12 macros for
including graphics or verbatim examples of pro-
gram code, with or without captions, and with
captions in the usual place below the figure or
alternatively beside the figure (to save vertical

space). These don’t do anything new, but they
all take the same number of arguments in the
same order; if a particular variant doesn’t actu-
ally need them all, we can just leave the irrele-
vant ones empty. This makes it easy to change
a figure from “no caption” to “side caption” or
to “normal caption” with a couple of keystrokes.
All these macros are in uit-figures.sty.

e Where we make substantial changes, e.g. to
the sectioning mechanism or to the format of
page headings, we include it directly in our file
uitbook.sty.

To cheer ourselves up after previous failures,
we did all the easy bits first. Those included the
convenience macros mentioned above, and the dozens
of \RequirePackage calls to the packages that we
needed:

caption chngpage color colortbl
courier crop endnotes fancyvrb
framed geometry graphicx helvet
hhline ifthen latexsym layout
makeidx mathpazo mcaption minitoc
nextpage paralist relsize showidx
sidecap ulem url wrapfig

At this point things were looking good. We had a
style that worked. However, several STOP-specific
features were still missing, so that’s what we had to
implement next.

The document BTEX 2¢ for class and package
writers describes the boilerplate for a class or pack-
age —analogous to telling a C programmer that he
needs a main() function, and how to use #include
statements. What it doesn’t tell you is how the
standard classes work, and the common techniques
they use. In the following sections we’ll explain the
techniques that we came across.

5 The hard bits 1 —over-riding existing
functionality

We needed to change the TOC entry for Parts. This
is handled in the \1@part function in book.cls.
We copied this function to our uitbook.sty, and
modified it there. The change involved was only a
single line—to use a different font, and insert the
word “Part” — but it illustrates a couple of important
points:

Lesson C: copying a piece of standard code
in ITEX, and changing your own version of
it is a bit like over-riding a method in object-
oriented programming. Everything that you
haven’t changed continues to work as before,
but as soon as the relevant function (macro)

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 357

Niall Mansfield

book.cls file uithook.sty file

\def
\l@part{...

\def
\l@part{...
New definition of
\I@part in local
style file over-rides
original definition
in system class file

Figure 2: How ETEX hooks work

is called — \1@part in our example — the new
code is used instead of the old (Figure 2).

Lesson D: you don’t have to understand ev-
erything to make a change to something rela-
tively small. As long as you change as little as
possible, you probably won’t break anything
else. In our case, even though \1@part con-
tains lots of complex stuff, we were confident
that our minor format changes would work,
because we didn’t modify anything else.

By the way, many functions or macros in the
package and class files are defined using the TEX
primitive \def, instead of WITEX’s \newcommand. If
you redefine an existing command with \def, you
don’t get an error, unlike \newcommand’s behavior.

6 The hard bits 2— ATEX hooks

The first clue we got about how IKXTEX2 packages
work with class files, i.e. how they modify their be-
havior, was reading 1tsect.dtx—the documented
version of the sectioning code in core INTEX2. It has
a comment: “Why not combine \@sect and \@xsect
and save doing the same test twice? It is not possible
to change this now as these have become hooks!”
What’s a hook? In the Emacs programmable
editor, hooks are used to customize the editor’s be-
havior. For example, before-save-hook is a list
of Lisp functions that should be run just before a
file is saved. By default the list is empty, but by
adding your own functions to the list, you can have
Emacs perform any special actions you want, such as
checking the file into a version control system as well
as saving it, etc. Emacs provides about 200 hooks,
letting you customize most aspects of its behavior.
In BTEX a hook is slightly different. It’s a
named function or macro that some other part of the
system is going to call. For example, in Section 5 we
used \1@part as a hook. As we saw, by redefining

\1@part, you can change how the TOC entries for
your Parts are printed. The hook mechanism and
the “over-riding functionality” technique above are
more or less the same thing.

Hooks are fundamental to how ETEX packages
work: they let the package over-ride the standard
operation with something different. As an example,
consider the shorttoc.sty package, which is useful
if you want a one-page summary table of contents
before the main TOC, for example. The package
contains only about 40 lines of code, and in essence,
all it does is call the standard table of contents,
having first redefined the variable \c@tocdepth to a
small value to show only the top levels of contents.
In effect, shorttoc.sty is using all the standard
table-of-contents macros as hooks, although it hasn’t
changed any of them.

Lesson E: hooks aren’t documented (as far
as we’ve been able to see). In fact they can
never be exhaustively documented, because
any package author can just copy any function
(as we did with \1@part earlier) and over-
ride it with their own code, thus using that
function as a hook. In real life, the only way
you can determine the important hooks is
by looking at the important packages, to see
which functions they over-ride.

Lesson F: when you copy a chunk of stan-
dard code, change the absolute minimum you
can get away with. The reason is you don’t
really know what parts of it might be used as
hooks, or what might happen if you remove
a call from it to some other hook. Resist the
temptation to tidy or “improve” the code.

7 The hard bits 3 —adding extra
functionality

(This section describes a technique that you will often
come across, and which you might find useful.)
Let’s say you want to change some function so
that it continues to do exactly what it does at present,
but does something extra in addition, i.e. the new
is a superset of the old. Here’s a real but slightly
weird example. The author of a book [4] was using
superscripts in his index for a special purpose. We
needed a list of the superscripts, and it was difficult
to get this from the source files. Using the TEX
primitive \1let, you can assign a whole function to
a new variable, and then call the same old function
but with the new name. We used this as follows:

\let\origsuper=\textsuperscript
\renewcommand{\textsuperscript}[1]
{\origsuper{XXX (#1)XXX}}

358 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

How to develop your own document class— our experience

This “saves” the original \textsuperscript defini-
tion as \origsuper (Figure 3). Then it redefines
\textsuperscript, to call the original, unaltered
function, but with a modified argument, so that the
superscripted text is still superscripted, but is sur-
rounded by the strings XXX (. ..)XXX, which we can
then easily search for.!

before after

our new definition
of \textsuperscript

\textsuperscript
| |

our new version
calls our copy of
the original code

\textsuperscript \origsuper
- 5 e
copied,
/ using /
\let
original definition our copy of the

of \textsuperscript original definition

Figure 3: Adding extra functionality to a macro

8 The hard bits 4 —plain TEX’s syntax

In 1987 1 found plain TEX incomprehensible, and
nothing has changed. Using ITEX is non-trivial, but
it’s powerful and the results are more than worth
the effort required. For me, the same is not true of
plain TEX: it’s too low level, and too complex. Its
syntax is weird. Instead of helping you do what you
know you need to do, the syntax gets in your way
and makes things hard for you. (As an example, we
recently found an “off by one” error in a standard
package. To fix it, all that was needed was to change
“4f X > Y to ‘if X >= Y, but plain TEX doesn’t
let you express things like that, so we had to get
someone more experienced in plain TEX to change
the code to do the equivalent.)

So, while plain TEX is wonderful and is the foun-
dation on which BTEX is built, it’s not for everyone.
(Or, it’s for almost no-one?)

Our feeble “solution” to this problem is to avoid
it, and when that’s not possible, to copy code from

packages that work, and hope that LuaTEX (www.

luatex.org) will eventually make it easier to code
complex or low-level macros.

1 catdvi file.dvi | tr -s " \t" "\n" |
fgrep ’XXX(’ | sort -u

9 The hard bits 5—indirection in
macro names

(Again, this section describes a common technique
that you need to understand, although you might
not use it often yourself.)

The TEX commands \csname ...\endcsname
let you construct a “control sequence” name, i.e.
a macro, programatically and then invoke it. The
following is equivalent to \textbf{fat cat}:

\newcommand{\mymac}{textbf}
\csname \mymac \endcsname{fat cat}

The first line defines the variable mymac to be the
string textbf, and the second line uses the variable
to construct a macro name and invoke it, passing
the argument ‘fat cat’ to it. Being able to invoke a
function or macro programatically like this, instead of
having to hard-code its literal name in your .sty file,
makes it possible to handle many similar but slightly
different cases compactly and with little duplication
of common code.

The sectioning mechanism uses this technique
frequently, to construct names of variables or func-
tions related to the level of the current “sectional
unit”? (SU), such as the macros \1@part, \1@chapter,
\1l@section, etc. We’ll look at this in more detail
in the next section, but for now, here’s a simple
but artificial example of how it works. We define a
macro \T, whose first argument is the style in which
its second argument is to be printed:

\newcommand{\T} [2]

{\csname text#1\endcsname{#2}}
Make stuff \T{bfl}{heavy}

or \T{it}{slanty}. The end.

This produces:
Make stuff heavy or slanty. The end.

10 The hard bits 6 — changing sectioning

The most difficult thing we had to do was change
how sectioning works. (We had to do this because
our STOP format has to print both section- and
sub-section headings on sub-sections.)

For a beginner, sectioning is difficult in three
separate ways:

1. There are many functions involved: sections,
subsections and lower are defined in terms of
\@startsection, which then uses \@sect (or
\@ssect if it’s a “starred” sectioning command,
which in turn calls \xsect); all these are com-
plex, and written in plain TEX, which makes life
difficult.

2 A sectional unit is a part, chapter, section, subsection,
etc.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 359

Niall Mansfield

The way we got over this was by document-
ing the functions. This is a work in progress,
so we’ve made the rudimentary documentation
available on our Web site (uit.co.uk/latex).

2. Sectioning uses indirection a lot. Because the
same functions (\@startsection, etc.) handle
many different levels of sectioning, they use in-
direction to refer to various parameters for the
SU being operated on. For example:

e The counters \c@part, \c@chapter,
\c@section, \c@subsection, ... hold the
number of the respective SU.

e The macros \thepart, \thechapter,
\thesection, ... specify how the respec-
tive counter is formatted. E.g. book.cls
defines:

\renewcommand \thesection

{\thechapter.\@arabic\c@section}
so that the numbering on a section will be
of the form “4.9”.

e Similarly, the variables \1@part,
\l@chapter, \1@section, ... are what are
used to create the table-of-contents entry
for the respective SU.

The first argument to the \@startsection and
\@ssect functions is the type of the current
SU, and the functions use this to construct the
relevant item they need, as in:

\csname 1@#1\endcsname

This technique isn’t intrinsically difficult, but
until you’re aware of it, the sectioning mecha-
nism can appear incomprehensible.

3. Functions seem to do funny things with their
arguments. We cover this in the next section.

11 The hard bits 7— plain TEX really is a
macro processor

The file book.cls defines:

\newcommand\section
{\@startsection {section} ...

i.e. a \section is just a call to \@startsection
with 6 arguments, the first of which is the type
of the current SU, as we explained above. However
\@startsection then calls \@sect with 7 arguments,
even though \@sect is defined to take 8 arguments.
And then you realize that \section was defined
to take no arguments of its own at alll What’s
happening? Why isn’t \section defined to take
some arguments, like this:
\newcommand\section[1]

{...}

since \section is always called with a name argu-
ment, as in \section{Thanks}?

read process copy to
from stack output
Hello Hello

in p ut L world

stack |[world

Figure 4: Macro processor — output processing

This starts to make sense only when you realize
that plain TEX behaves as a classical, stack-oriented,
macro processor (which also typesets!). Initially you
can consider the input stack to contain the whole
input file. The processor reads input from the file,
i.e. removes it from the stack. It just copies the input
to the output, unless it’s either a macro definition,
or a macro invocation, in which case it’s evaluated
and the result is pushed back onto the input stack,
to be re-processed. To make this concrete, let’s look
at a few simple examples for the m4 macro processor.
The following input has no macros or anything else
special, so it’s copied to the output without change:

% echo ’Hello, world.’ | m4
Hello, world.

as shown in Figure 4. The slightly more complex:

define(‘showarg’, ‘my arg is $1°)
A showarg(mouse) A

defines a simple macro that takes a single argument.
Run it and see what you get:

% m4 exl.md
A my arg is mouse A

Now let’s have one macro reference another indi-
rectly:

define(‘concat’, ‘$1$2’)
define(‘showarg’, ‘my arg is $1°)
B concat(quick, brown) B

C showarg(fox) C

D concat(sho, warg) (jumps) D

and run this:

% m4 example.md

B quickbrown B

C my arg is fox C
D my arg is jumps D

The B and C lines are straightforward, but line D is
tricky: concat(sho, warg) is read from the stack,
leaving only:

(jumps) D
But what we’ve just read — concat (sho, warg) —
evaluates to showarg, so the string {showarg} is

360 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

How to develop your own document class— our experience

process
read
from stack
p— push result
N of macro call
= back onto
stack
warg
input | showarg input
stack | ¢ (stack
before |Jjumps jumps after
))
D D

Figure 5: Macro result pushed back onto stack

pushed back onto the stack (Figure 5). The top of
the stack now looks like:

showarg(jumps) D

which is re-evaluated as a call to showarg with argu-
ment jumps. In other words, (jumps) was left lying
on the stack, and it was picked up as an argument
to a macro in due course.

The same thing happens in IXTEX. In the fol-
lowing code:

Foo \textbf{cat} bar. (A)
\newcommand{\Ttwo} [2]

{\csname text#1 \endcsname{#2}}
Foo \Ttwo{bf}{cat} bar. (B)
\newcommand{\Tone} [1]

{\csname text#1 \endcsname}
Foo \Tone{bf}{cat} bar. (C)
Foo \newcommand{\Tzero}{textbf}

\csname \Tzero \endcsname{cat} bar. (D)

each line produces the same output:

Foo cat bar. (A)

Foo cat bar. (B)

Foo cat bar. (C)

Foo cat bar. (D)

However, in lines (C) and (D) the string {cat} is
not specified as an argument to the Txxx macro
we defined —it’s left lying around, conveniently sur-
rounded by braces, and is picked up later.

This technique is used in the sectioning code.
When you write ‘\section{Thanks}’, the macro
\section is invoked with no arguments, leaving
the string {Thanks} on the stack. \section calls
\@startsection, which calls \@sect with 7 argu-
ments; but \@sect needs 8 arguments, so it picks up
{Thanks} from the top of the stack, so it’s happy,
and we don’t get any errors.

12 The results, and lessons learned

Our original BTEX 2.09 style file had 1400 lines of
code, excluding comments.

Our new IXTEX 2¢ style file has 300 lines of code,
excluding comments: 34 are \RequirePackages, 150
lines make up 54 \newcommands for convenience-type
functions that we ought to have isolated in separate
files had we been disciplined enough, and 15 lines
make up 11 \newenviromnments. The other large
chunk of code is 35 lines for our modified version of
\@sect.

Not only is our new style file much shorter, it’s
easier to understand and maintain, and is much more
flexible than our old one. We can use most standard
packages to add extra features with no effort, because
we still provide all the hooks that add-on packages
rely on. Moreover, the standard class and style files
have had years of debugging and are very robust
and reliable. By re-using as much as possible, and
minimizing the amount of code changed, we’ve ended
up with a stable system. We’ve had almost no bugs,
and the ones we did have we were able to fix quickly
and cleanly.

13 Thanks

Lots of people very kindly helped us over the years,
with advice and pieces of code. These include, but are
not limited to: Donald Arseneau, Barbara Beeton,
Timothy Van Zandt, and lots of other patient and
helpful people on the texhax@tug.org mailing list.

References

[1] Niall Mansfield. The Joy of X. Addison-Wesley,
1986.

[2] Niall Mansfield. Practical TCP/IP — Designing,
using, and troubleshooting TCP/IP networks
on Linux and Windows (first edition).
Addison-Wesley, 2003.

[3] Niall Mansfield. Practical TCP/IP — Designing,
using, and troubleshooting TCP/IP networks
on Linuz and Windows (second edition). UIT
Cambridge Ltd., 2008.

[4] Jan-Piet Mens. Alternative DNS Servers —
Choice and deployment, and optional SQL/
LDAP back ends. UIT Cambridge Ltd., 2008.

[5] J.R. Tracey, D.E. Rugh, and W.S. Starkey.
STOP: Sequential Thematic Organization of
Publications. Hughes Aircraft Corporation,
Fullerton, CA, 1965.

[6] Edmond H. Weiss. How to Write a Usable User
Manual. 1ISI Press, 1985.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 361

TEXworks: Lowering the barrier to entry

Jonathan Kew

21 Ireton Court

Thame OX9 3EB
England
jonathan@jfkew.plus.com

1 Introduction

One of the most successful TEX interfaces in recent
years has been Dick Koch’s award-winning TeXShop
on Mac OS X. I believe a large part of its success has
been due to its relative simplicity, which has invited
new users to begin working with the system with-
out baffling them with options or cluttering their
screen with controls and buttons they don’t under-
stand. Experienced users may prefer environments
such as iTEXMac, AUCTEX (or on other platforms,
WinEDT, Kile, TEXmaker, or many others), with
more advanced editing features and project man-
agement, but the simplicity of the TeXShop model
has much to recommend it for the new or occasional
user.

Besides the relatively “clean” interface, a sec-
ond factor in TeXShop’s success is probably the use
of a PDF-centric workflow, with pdfTEX as the de-
fault typesetting engine. PDF is the de facto stan-
dard for fully-formatted pages; every user knows
what a PDF file is and what they can do with it.
Bypassing DVI reduces the apparent complexity of
the overall process, and so reduces the “intimida-
tion factor” for a newcomer. But TeXShop is built
on Mac OS X-specific technologies, and is available
only to Mac users. There does not seem to be an
equivalent tool available on other platforms; there
are many TEX editors and environments, but none
with this particular focus.

The TEXworks project is an effort to build a
similar TEX environment (“front end”) that will be
available for all today’s major desktop operating sys-
tems —in particular, MS Windows (XP and Vista),
typical GNU/Linux distributions, and other X11-
based systems, in addition to Mac OS X.

To achieve this, TEXworks is based on cross-
platform, free and open source tools and libraries. In
particular, the Qt toolkit was chosen for the qual-
ity of its cross-platform user interface capabilities,
with native “look and feel” for each platform being
a realistic target. Qt also provides a rich application
framework, facilitating the relatively rapid develop-
ment of a usable product.

The standard TEXworks workflow will also be
PDF-centric, using pdfTEX and XHTEX as typeset-
ting engines and generating PDF documents as the
default formatted output. Although it will still be
possible to configure a processing path based on
DVI, newcomers to the TEX world need not be con-
cerned with DVI at all, but can generally treat TEX
as a system that goes directly from marked-up text
files to ready-to-use PDF documents.

TrXworks includes an integrated PDF viewer,
based on the Poppler library, so there is no need
to switch to an external program such as Acrobat,
xpdf, etc., to view the typeset output. The inte-
grated viewer also allows it to support source <
preview synchronization (e.g., control-click within
the source text to locate the corresponding position
in the PDF, and vice versa). This capability is based
on the “SyncTEX” feature developed by Jéréme Lau-
rens, now integrated into the XqTEX and pdfTEX en-
gines in TEX Live 2008, MiKTEX, and other current
distributions.

2 Features for initial release

Figure 1 shows the current TEXworks prototype run-
ning on Windows Vista. While this is not a finished
interface, it gives an impression of how the applica-
tion will look. TEXworks version 0 will be an easy-
to-install application offering:
1. Simple (non-intimidating — this is not emacs or
vil) GUI text editor with
i. Unicode support using standard OpenType
fonts
ii. multi-level undo/redo
iii. search & replace, with (optional) regular
expressions as well as simple string match
iv. comment/uncomment lines, etc.
v. (M)TEX syntax coloring
vi. TEX-aware spell checker
vii. auto-completion for easy insertion of com-
mon commands

viii. templates to provide a starting point for
common document types

362 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

TEXworks: Lowering the barrier to entry

| TeXwarks-Corkitex - TeXworks
o bis - [@2 % as

X TS-program = piflatex -
%%ITEX encoding = UTF-8 Unicode T

Vdocumenttlass {tugprock

\usepackage {enumerate}

\usepackage {graphicx}

\usepackage{fxetex}

Vfxetex E
\usepackage {fontspac}

\setmainfont{Mapping=tex-text] {Garamond Premier Pro}

‘sloppy

else

\usepackage[utfe] finputenc)

i

\usepackage {nyperref} L

\newcommand TW{TTeX Daorks}
\newcommand TS {TexShop}

\titie {ITW; lowering the barrier to entry}
\author {Jonathan Ken}
\ackdress {21 Ireton Court|{Thame | OX9 3E81 Engiand)
! 25, 2008}

{seteounter ftopnumber} {1}

\begin{dociment}

\maketit
\section{Introduction}

One of the most successful e\ interfaces in recent years has been Dick Koch's award-winting TS\ on Mac OS X. T believe a large part of its
success has been due to s relative simplicity, which has invited new users to begin working with the system without baffing them with
options or cluttering their screen with controls and buttons they don' users may prefer such as
iTeXMac, AUCTeX (or on other platforms, WinEDT, Kile, TeXmaker, or many others), with more advanced editing features and project
management, but the simpliity of the TS\ model has much to recommend it for the new or ocasional user,

Besides the relatively “dean” nterface, a second factor in TS's success is probably the use of a PDF~centric workfiow, with pdfiTeX | as the
defauit typesetting engine, PDF is the de facto standard for fully-formatted pages, and every user knows what 2 PDF file s and what they
an do with it, Bypassing DVI reduces the apparent complexity of the overal process, and sa reduces the “ntimidation factor”for a
neweomer, But {TS} s bult on Mac OS X-specific technologies, and is available orly to Mac users. There does not seem to be an equivalent
tool available on other platforms; there are many TeX) editors and envirorments, but none with this particular focus.

“The \TW\ projectis an effort to build 2 simitar \TeX\ frant-end program (working enviranment) that will be available for all today's major
desktop operating systems'Dash in particular, MS Windows (XP and Vista), typical GNU/Linux distros, and other "nix/X 11-based systems, in
addition to Mac 05 X,

To achieve this, T\ is based on cross-platform, open source tools and braries. In particular the Qt toolkit was chosen for the quality of its
ross platform user inter face capabilties, with native ‘look and feel” for each platform being a realistic target. Qt also provides a rich
application framenork, faciltatng the reltively rapid development of 2 usable product.

‘The standard T\ workfiow will also be PDF-centric, using pdfiTeX| and 1XeTeX| as typesetting engines and generating PDF documents as
the e favilt frmatted aotnit althnonh it wil 2hll he nassihle 0 ranfinire 2 nreessing nath hased an VT newenmers t the Ted | wnrld nesd

TeXworks-Cork.pdf - TeXworks
File Edit View Typesst Window Help

e+ oW DONAYA =

TpXworks: lowering the barrier to entry

Jonathan Kew

21 Ireton Court

1 Introductlon

One of the most successful TEX
years has been Dick Koch's award,
on Mac OS X. I believe a large pa;
been due to its relative Simplicity;‘ DV eveone
new users to begin working with ¢ [;M. el
baffling them with options or clu?

with controls and buttons they
Frxnerienced.nsers mav, nrefey

Besides the rel;
ond factor in
of a PDF-cent
fanlt typesetting engine. PDF is the de facto stan-
dard for fully-formatted pages. and every user knows

PDF file is and what they can do \\Jlll it

The staudard TEXworks workflow will a1 =
PDF-centric. using pdfTEX and XATEX as ty)
ting engines and generating PDF documents
default formatted output, Although ic will st
possible to configure o processing

ed not hi
rally treai

ystent ihat goes directly from nrarkedang

preview synchr)
the source text to locate the oc ruu;mmhm_ =
tion in the PDF, and vice ve This ea

aud other current distributions.

2 Features for initial release
sws the current TEXworks prototy
P. While this is not a finished intc
s am impression of how the application 1
fon 0 will be an casy-to-i

ssers. There does not seem to
exquivilent: il wifBleon oiirpiatamng e
are many TEX editors and eavironments, but, none
with this particular focus.

ook,

applic

this is not em:

[Line 1 of 155]

Figure 1: A recent TEXworks build running on Windows Vista:

TeXShop-style magnifying glass in use.

2. Ability to run TEX on the current document to
generate PDF:

i. extensible set of TEX commands (with com-
mon commands such as pdftex, pdflatex,
xelatex, context, etc. preconfigured)

ii. also support running BIBTEX, Makeindex,
etc.

iii. any terminal output appears in a “console”

panel of the document window; automati-

cally hidden if no errors occur

iv. “root document” metadata so “Typeset”
works from an \included file

3. Preview window to view the output:
i. anti-aliased PDF display
ii. automatically opens when TEX finishes

auto-refresh when re-typesetting (stay at
same page/view)

iii.

iv. TeXShop-like “magnifying glass” feature to
examine detail in the preview

v. one-click re-typesetting from either source

or preview

source < preview synchronization based on

Jérome Laurens’ SyncTEX technology

vi.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

source and preview windows, with the

3 Current status

An early TEXworks prototype was demonstrated at
the BachoTEX conference (April 2008). It became
more widely available (though still considered a pro-
totype, not a finished release) when a version was
posted in mid-July before the TUG 2008 conference.
The current code is available as source (easy to build
on typical GNU/Linux systems), and as precompiled
binaries for Windows and Mac OS X.

At this time, the application supports text edit-
ing and PDF viewer windows, and has the ability to
run a typesetting job and refresh the output view,
etc. There is not yet any documentation, and many
potential “power user” features do not yet exist, but
it is a usable tool in its current state. In addition to
Windows (XP and Vista), it runs on Mac OSX (see
figure 2) and GNU/Linux systems (figure 3).

A few features remain to be implemented be-
fore a formal release of “version 0”, including “sin-
gle instance” behavior, and various options for win-
dow positioning; appropriate installer packages for
Mac OS X and Windows are also needed, to simplify
setup.

More information may be found online via the
TEXworks home page at http://texworks.org/.

363

Jonathan Kew

50]]M M O4 = @ais MM Q

OGO’ S A

Figure 2: TEXworks running on Mac OSX: using the
Preferences dialog to configure a typesetting tool.

4 Future plans

After the release of version 0, several major addi-
tional features are planned; some ideas high on the
priority list include:

intelligent handling of TEX errors

e assistance with graphics inclusion and format
conversions

e text search and copy in the PDF preview

e support rich PDF features such as transitions,
embedded media (sound, video), annotations,
etc.

e customizable palettes of symbols, commands,
etc.

e TEX documentation lookup/browser

e interaction with external editors and other tools

e additional support for navigating in the source,

e.g., “folding” sections of text, recognizing doc-

ument structure tags such as \section, etc.

I expect development priorities to be guided by
user feedback as well as developer interest, once the
initial version 0 release is available.

5 Invitation to participate

TEXworks is a free and open source software project,
and all are welcome to participate and contribute to
its development. This does not necessarily mean
writing code; many other roles are equally impor-
tant. Some possible ways to participate include the
following.

e Use the prototype for some real work, and give
feedback on what’s good, what’s bad, what’s
broken:

— if there’s a current binary download avail-
able for your platform, try that;

— get the code and try building it on your
platform; provide bug reports (and fixes!)
for whatever problems show up.

When you use ITEX, !¢
a great help as you
file shows how you ¢
ause printing is differ
u have to do different
the document direct.
I

u mi sampleze po e L]

Figure 3: TEXworks running on a typical GNU/Linux
system (Ubuntu).

e Dig in to the code, and submit patches to im-
plement your favorite missing features.

e Write on-line help, documentation and tutorials
for newcomers to TEXworks and TEX.

e Review and enhance the command completion
lists available for the integrated editor.

e Provide well-commented templates for various
types of documents.

e Design icons for the toolbars, etc.; TEXworks
has some nice icons from Qt and the Tango
project, but others are merely rough placehold-
ers.

e Use the Qt Linguist tool to localize the user
interface for your language.

e Package TEXworks appropriately for your fa-
vorite GNU/Linux or BSD distribution, or cre-
ate an installer for Windows or Mac OS X.

There is a TEXworks mailing list for questions
and discussions related to the project; see http://
lists.tug.org/texworks/ to subscribe, for the list
archives, etc.

The TEXworks source itself is maintained in a
Google Code project at http://code.google.com/
p/texworks/. Resources available through this site
include the Subversion source repository, precom-
piled binaries for Windows and Mac OSX, and an
issue tracker for bug reports and feature suggestions.

6 Thanks

The TEXworks project arose out of discussions at
several recent TEX Users Group meetings, and has
received generous support from TUG’s TEX develop-
ment fund and its contributors, and from UK-TUG.
Special thanks to Karl Berry for his encouragement
and support, and to Dick Koch for showing us the
potential of a clean, simple TEX environment for the
average user.

364 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Direct and reverse synchronization with SyncITEX

Jérome Laurens

Département de mathématiques

Université de Bourgogne

21078 Dijon Cedex

FRANCE

jerome (dot) laurens (at) u-bourgogne (dot) fr
http://itexmac.sourceforge.net/SyncTeX.html

Abstract

We present a new technology named SyncIEX used to synchronize between the

TEX input and the output.

1 What is synchronization?

Creating documents with the TEX typesetting system
often requires two windows, one for entering the
text, the other one for viewing the resulting output.
In general, documents are too long to fit in the
visible frame of a window on screen, and what is
really visible is only some part of either the input
or the output. We say that the input view and the
output view are synchronized if they are displaying
the “same” portion of the document. Forwards or
direct synchronization is the ability, for an output
viewer, to scroll the window to a part corresponding
to a given location in the input file. Backwards
or reverse synchronization is the ability, for a text
editor, to scroll the text view to a part corresponding
to a given location in the output file.

Figure 1 is a screenshot illustrating SyncTEX
supported in iTgXMac2, the TEX front end devel-
oped by the author on Mac OSX. The top window
is a text editor where an extract of the “Not so
short introduction to BKTEX 2¢” is displayed. The
word “lscommand” has been selected and the viewer
window at the bottom automatically scrolled to the
position of this word in the output, highlighting it
with a small red arrow. The grey background was
added afterwards in the bottom window for the sake
of visibility on printed media.

2 What is SyncTEX?

This is a new technology embedded in both pdfTEX
and XHTEX, available in the 2008 TgX Live and cor-
responding MiKTEX distributions. When activated,
it gives both text editors and output viewers the nec-
essary information to complete the synchronization
process. It will be available in LuaTEX soon.

In order to activate SyncIEX, there is a new
command line option:

pdftex -synctex=1 foo.tex

¥ custom.tex (revisited Ishort-4.16)
If I ever decide that | do not like the commands to be
typeset in a box any more, | can simply change the
definition of the \texttt{lIscommand} environment to
create a new look. This is much easier than going
through the whole document to hunt down all the
places where | have used some generic \LaTeX{}
commands to draw a box around some word.

Ligne 45 sur 909

short.pdf (revisited Ishort-4.16)
nat I do not like the commands to be typeset in a box
ly change the definition of the 1scommand environment
. This is much easier than going through the whole
wn all the places where I have used some generic BTEX
box around some word.

Figure 1: Synchronization in ¢{TgXMac2 based on
SyncIEX technology with text analysis.

(or -—synctex=1) and the same for xetex. With this
option, a new informational line is printed at the end
of the command output and reads SyncTeX written
on foo.synctex.gz. The new (compressed) auxil-
iary file named foo.synctex.gz is used by appli-
cations for the synchronization process; this is the
SyncTEX output file.

Setting the synctex option to -1 creates an
uncompressed foo.synctex auxiliary file, more suit-
able for certain operations. Setting it to 0 definitively
prevents SyncTEX activation.

There is also an eponymous new TEX primitive
that you can set to 1 for SyncTEX activation from the
source file: \synctex=1. It can be used, for example,
to temporarily disable SyncIEX operations for some
input file by properly using \synctex=0. This prim-
itive has no effect if the -synctex=0 command line
option was given, or if the first page has already been
shipped out (it is then too late to activate SyncTEX).

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 365

Jérome Laurens

3 Other synchronization technologies

The commercial software Visual TpX available on
Windows has had the PDF synchronization capabil-
ity embedded in its TEX engine since 1999. The
commercial software TEXtures available on Mac OS X
has had embedded synchronization since 2000, but
between the text source and the DVI output. Neither
implementation is freely available to the public and
will not be considered in the remainder of this article.

Turning to the TEX macro level, Aleksander Si-
monic, the author of the WinEdt TEX shell on Win-
dows, wrote before 1998 the srcltx macro package
to enable synchronization between the text source
and the DVI output. It is based on the powerful
\special command and was later integrated into
the TEX engine as “source specials”. Heiko Oberdiek
wrote vpe in 1999 where PDF technologies are used
for reverse synchronization from the PDF output
to the text input. In 2003, the author wrote the
pdfsync package discussed in [5], [6] and [7], to al-
low synchronization between the PDF output and
the text input, following ideas from Piero d’Ancona.
This was based on the use of pdfTEX commands sim-
ilar to \special, with the same limitations, namely
an incompatibility with very useful packages and
unwanted changes in the layout.

None of these solutions is satisfying, being either
incomplete or unsafe, as we shall see.

4 Solving the synchronization problem
4.1 Stating the problem

The problem is to define a mapping between an input
record given by an input file name and a line number
in that file, and an output record given by a page
number and a location in that page of the output
file. The input record describes a certain part of the
input text whereas the output record describes the
corresponding location where this text appears in the
output. The original TEX engine does not provide
any facility for such a correspondence, except the
debugging information used to report syntax errors
(we call it the current input record). More precisely,
TEX does not know at the same time both the input
records and their corresponding output records. In
short, TEX parses each different line of the input
text file and expands the macros with its “eyes” and
“mouth” (according to [2], page 38), then it sends a
list of tokens into its “stomach”. In turn, the stomach
creates lines of text, stacks them into paragraphs,
and stacks the paragraphs into pages. Once a page
is complete with the objects properly positioned, it
is shipped out to the output file. During this process,
TEX keeps the input record information until macro

expansion only (in its head), and it does not know
the corresponding output record until ship out time
which occurs later (in its stomach). The problem is to
force TEX to remember the input record information
until ship out time.

4.2 Partial solutions using macros

The first idea, developed in the srcltx package,
is to use the \special macro to keep track of the
input record information until ship out time. By this
method, it inserts in the text flow invisible material
that dedicated DVI viewers can understand. The
main problem is that this invisible material is not
expected to be there and can alter significantly the
line breaking mechanism or cause other packages to
malfunction, which is extremely troublesome.

The second idea, developed in the pdfsync pack-
age, is also to use macros, but in a different way
because it is more difficult to manage PDF contents
than DVI contents. This package automatically adds
in the input source some macros that act in two
steps. At macro expansion time, they write to an
auxiliary file the input record information with a
unique identifying tag. They also insert in the text
flow invisible material to prepare TEX to write the
output record information at ship out time, with
exactly the same identifying tag. In this design,
the problems concerning line breaking and package
incompatibility remain. Moreover, the mapping be-
tween input and output records is not one to one,
which renders synchronization support very hard to
implement for developers.

In these two different solutions, we see the in-
herent limits of synchronization using macros. More
generally, we can say that those macros are active
observers of the input records. In fact, by inserting
invisible material in the text flow they interact with
the typesetting process. On the contrary, SyncIEX
is a nmeutral observer that never interacts with the
typesetting process.

4.3 How SyncTEX works

In fact, the only object that ever knows both the
input and output records is the TEX engine itself,
so it seems natural to embed some synchronization
technology into it.

We first have to determine what kind of infor-
mation is needed to achieve synchronization. For
that purpose, we follow [2] at page 63: “TEX makes
complicated pages by starting with simple individ-
ual characters and putting them together in larger
units, and putting these together in still larger units,
and so on. Conceptually, it’s a big paste-up job.

366 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

The TEXnical terms used to describe such page con-
struction are boxes and glue.” The key words are
“characters”, “boxes” and “glue”. But since an in-
dividual character requires a considerable amount
of extra memory, only horizontal boxes and vertical
boxes are taken into account at first. For these boxes,
we ask TEX to store in memory, at creation time and
during their entire lifetime, the current input record.
At ship out time, we ask TEX to report for each box
the stored file name, the stored line number, the
horizontal and vertical positions, and the dimensions
as computed during typesetting. This information
will be available for synchronization: for example
when the user clicks on some location of the PDF
document, we can really find out in which box the
click occurred, and then deduce the corresponding
file name and line number. We have here the design
for a neutral observer.

But if this new information is sufficient for lo-
cating, it cannot be used for synchronization due
to the way TEX processes files. In fact, boxes can
be created in TEX’s mouth where the current input
record is accurate, but in general, they are created
in the stomach when breaking lines into paragraphs,
for text that was parsed a long time ago and no
longer corresponds to the current input record. This
is particularly obvious when a paragraph spans many
lines of the input text: the line breaking mechanism
is engaged after the last line is parsed, and every hor-
izontal box then created will refer to the last input
line number even if the contained material comes
from a previous input line. For that reason, we also
ask TEX to store input records for glue items, be-
cause they are created in TEX’s mouth, when the
current input record is still accurate.

By combining boxes and glue management, we
have accurate information about positions in the
output and the correspondence with positions in the
input file. In fact, things are slightly more compli-
cated because of TEX internals: kern, glue and math
nodes are more or less equivalent at the engine level,
so SyncTEX must treat them similarly, but this is
better for synchronization due to the supplemental
information provided.

SyncTEX does other sorts of magic concerning
file name management, the magnification and offset,
but these are implementation details.

4.4 The benefits of SyncTEX

Embedding the synchronization technology deeply
inside the TEX engine solves many problems and
improves the feature significantly.

The most visible improvements are connected
with accuracy: with SyncTEX, the synchronization

Direct and reverse synchronization with SyncTEX

process reaches in general a precision of +1 line.
With additional technologies such as implemented in
iTEXMac2, we can even synchronize by words (see
figure 1), essentially always finding an exact word
correspondence between input and output.

The next improvements are a consequence of
the overall design of SyncTEX. Since synchronization
is deeply embedded into the TEX engines, there is
no TEX macro involved in the process. As a straight-
forward consequence, there cannot be any incom-
patibility with macro packages. Moreover, no extra
invisible material is added to the text flow, thus en-
suring that the layout of the documents is exactly the
same whether SyncTEX is activated or not. As a mat-
ter of fact, it is absolutely impossible to determine
if the output was created with SyncITEX activated
by examining its contents. Finally, no assumptions
are made about external macros or output format,
so that synchronization works the same for Plain,
BTEX or ConTEXt as well as DVI, XDV or PDF.

Of course, all this needs extra memory and com-
putational time but this is in no way significant. In
fine, we can say that with SyncTEX, the synchroniza-
tion has become safe and more precise.

5 Limits and improvements

It is indisputable that abandoning the use of macros
and choosing an embedded design is a great advance
for synchronization. But still it is not perfect! Some
aspects of the implementation are not complete due
to a lack of time, but others will prevent us from
reaching the ultimate synchronization comparable to
wystwyg (an acronym for “What You See Is What
You Get”) as discussed in [7].

5.1 The DVI to PDF filters

When producing a PDF document from a DVI or XDV
output, we apply a filter like dvitopdf or xdv2pdfmx.
But those filters can alter the geometry of the output
by changing the magnification or the offset of the
top left corner of the text. In that case, the SyncTEX
information, which is accurate for the DVI file, is not
accurate for the PDF file. This problem is solvable
by post-processing the SyncITEX output file with the
new synctex command line tool available in the
distributions, eg

xdv2pdfmx -m MAG -x XXX -y YYY foo
should be followed by
synctex update -m MAG -x XXX -y YYY foo

But this is not a good design. Instead, the post-
processing should be embedded into the various DVI
to PDF filters so that no further user interaction is
required.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 367

Jérome Laurens

5.2 Using TEX’s friends

Some documents are created with a complex typeset-
ting flow where TEX is just one tool amongst others.
In such circumstances, the TEX file is automatically
generated from possibly many original input files by
some processor. Then, synchronization should occur
between the output and the original input files rather
than the TEX file, which is just an intermediate step.
For example, a bibliography in IXTEX is generally
built by BIBTEX based on a bibliography database
with a bib file extension using an intermediate auxil-
iary BTEX file with a bbl file extension. At present,
the synchronization occurs between the PDF output
and the bbl file and not the original bib file, as one
would prefer.

Improving SyncTEX to properly manage this
situation is not extremely complicated: we first have
to define a SyncTEX map file format for the mapping
between the lines of the original input files and the
lines of the produced TgX files, then we have to
provide facilities to merge this mapping information
into the SyncIEX output file. Then the processor
could produce the map file, and a supplemental step
in the typesetting flow would update the SyncTEX
information with that map.

Sometimes it might not be appropriate to simply
bypass the intermediate file. In that case, the viewer
should synchronize with the auxiliary file using a
text editor which in turn should synchronize with
the original input file using the map file.

5.3 Accuracy and the column number

As described above, we only take into account whole
lines in the input files and jump from or to lines
in the text. This can suffice for textual files, but
does not when mathematical formulas are involved —
we would like to have a more precise position in
the input. Unfortunately, when parsing the input
files, the original TEX engine does not handle column
positions at all. And it seems that adding support
for this supplemental information might need a great
amount of work, probably much greater than the
eventual benefits.

5.4 For non-Latin languages

SyncIEX has been designed with a Latin language
background: it relies on the fact that TEX automat-
ically creates kern and glue nodes at parse time to
manage interword spacing. For languages that do not
have a comparable notion of word, the synchroniza-
tion will not be sufficiently accurate and will most
certainly need further investigations. This question is

open and the author welcomes test files, suggestions
and advice.

5.5 A question of design

The two preceding limitations are consequences of
a conceptual default in the actual synchronization
design. With SyncTEX, the TEX engine has been
modified to export some observed information useful
for synchronizers. The problem is that we are able to
observe only what TEX allows us to, and this is not
always the best information we would like to have.
It would be more comfortable and efficient if TEX
already provided synchronization facilities from the
very beginning. In that case, all the macros packages
would have to be compatible with the synchroniza-
tion code and not the opposite. That would require
more work for the package maintainers but would
also prevent any kind of layout and compatibility
problems due to special nodes.

In a different approach, a supplemental step
could be to store synchronization information for
each individual character, thus increasing the mem-
ory requirements of the engine in a way similar to
how XHTEX handles multi-byte characters. This idea
was originally proposed by Han Thé Thanh, but it
was abandoned because the SyncTEX output file was
unbearably huge. With the new design, this idea can
certainly be revisited with more success.

Anyway, further investigations into the arcana
of the TEX program would certainly lead to a better
synchronization accuracy but if we want to avoid
huge changes in TEX and keep compatibility with
existing macro packages, we must admit that we
have almost reached some insuperable barrier.

6 Implementation in TEX Live

Without entering into great detail, we explain how
the implementation of SyncIEX is carefully designed
to ease code maintenance and enhancements, as far
as possible.

6.1 A segmented implementation

All the SyncTEX related code is gathered in only one
directory named synctexdir, in which the code is
split into different source files. The separation is orga-
nized in order to share the maximum amount of code
between the different engines, and to clearly iden-
tify the different tasks involved in the information
management. All in all, we end up with 14 different
change files. When building the binaries, the partial
make file synctex.mk has the duty to manage which
change file should apply to which engine and when.

368 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

6.2 An orthogonal implementation

One of the key concepts in modern code design is sep-
aration, whose purpose is to ease code management
and maintenance. WEB Pascal does not offer facilities
for code separation, nevertheless, it is possible to
build all the engines with or without the SyncTEX
feature, as explained in the synctex.mk file. It will
be useful for developers whenever a problem is caused
by the SyncTEX patches.

7 Which software supports SyncTEX

Up to now, we have focused on the technological
aspects of synchronization, and we have described
in detail the foundations. It is time to look at the
concrete implementations of synchronization with
different methods, because this feature is useless if
it is not adopted by applications. SyncIEX not only
consists of changes to the TEX engine, but gives
developers tools to easily support the technology.

7.1 The SyncITEX parser library

The main tool is a library written in C, whose pur-
pose is to help developers implement direct and re-
verse synchronization in their application. It con-
sists of one file named synctex_parser.c and its
header counterpart synctex_parser.h, meant to
be included as-is in application sources. Both are
available on the SyncIEX web site [4]. The source
file takes care of all the ancillary work concerning
SyncIEX information management and the header
file contains all the necessary help for an optimal
usage of the programming interface.

At this writing, TEXworks (presented by J. Kew
in [1]), Sumatra PDF on the Windows platform,
and Skim and iTgXMac2 on Mac OS X, all support
SyncTEX by including this parser library. For other
applications, TEX users are encouraged to send a
feature request to the developers of their favorite
PDF or DVI viewer.

7.2 Remark about the document viewer

It should be noticed that the tricky part of direct and
reverse synchronization should be handled by the
viewer only. The SyncIEX parser library is meant
not for text editors but for viewers. In a normal
direct synchronization flow, the user asks the text
editor to synchronize the viewer with a given line
in a given input file, the text editor forwards the
file name and the line number to the viewer, the
viewer asks the SyncTEX parser for the page number
and location corresponding to the information it has
received, then it scrolls its view to the expected page
and highlights the location. In a normal reverse

Direct and reverse synchronization with SyncTEX

synchronization flow, the user asks the viewer to
synchronize the text editor with a given location
in a given page of an output file, the viewer asks
the SyncTEX parser for the input file name and line
number corresponding to the location; it then asks
the text editor to display the named input file and
highlight the numbered line.

7.3 The new synctex command line tool

There are cases when the inclusion of the parser li-
brary is not possible or even improbable (consider
for example Adobe’s Acrobat reader). For such situ-
ations, the synctex command line tool is the alter-
native designed to allow synchronization. It is just a
wrapper over the SyncTEX parser library that acts as
an intermediate controller between a text editor and
a viewer. The description of its usage is obtained via
the command line interface running synctex help
view for direct synchronization and synctex help
edit for reverse synchronization.

Provided that the text editor and the viewer
have some scripting facilities, here is how this tool
should be used. For direct synchronization, the user
asks the text editor to synchronize the viewer with
a given line in a given input file, the text editor for-
wards this file name and line number to the synctex
tool together with some scripting command to acti-
vate the viewer, the synctex tool transparently asks
the SyncTEX parser for the page number and loca-
tion corresponding to the information it has received,
then it asks the viewer to proceed with the help of
the scripting command.

For reverse synchronization, the user asks the
viewer to synchronize the text editor with a given
location in a given page of an output file, the viewer
forwards this information to the synctex tool to-
gether with some scripting command to activate the
text editor, the synctex tool transparently asks the
SyncTEX parser for the input file name and line num-
ber corresponding to the information it has received,
then it asks the text editor to proceed according to
the received scripting command.

Before this tool was available, developers had no
solution other than directly parsing the contents of
the SyncTEX output file. This was generally made in
continuation of the implementation of pfdsync sup-
port. Comparatively, it is more comfortable to work
with a . synctex file than a . pdfsync file because the
new syntax is extremely clear and straightforward,
consequently reverse engineering was unexpectedly
encouraged. But this practice should be abandoned
for two reasons: it is certainly not compatible with
forthcoming enhancements of SyncIEX, and it gener-
ally does not work when changing the magnification

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 369

Jérome Laurens

and the offset in the DVI to PDF conversion, as dis-
cussed above. In order to convince developers to
prefer the synctex tool, the specifications of the
SyncTEX output file are considered private and will
not be widely published.

More details concerning usage and implementa-
tion are available on the SyncTEX web site [4].

8 Applications

There are a variety of ways to use the newly avail-
able information in the SyncTEX output file. Some
were considered while designing this feature, others
suggested by people at the conference. No doubt this
list is not exhaustive.

8.1 Better typesetting mechanisms

TEX is well known for its high quality page breaking
mechanism, but the hardware constraints that were
crucial 30 years ago imposed some choices and delib-
erate barriers. The limitation in memory usage led
to a page by page design, where memory is freed each
time a page is shipped out. In that situation, a page
breaking algorithm cannot perform optimization in
a document as a whole, but only on a small number
of consecutive pages.

In order to have global optimization algorithms,
one can keep everything in memory until the end of
the TEX run, but that would require a big change in
the engine. From another standpoint, SyncIEX has
demonstrated that it is possible to trace geometrical
information throughout the typesetting process. It is
clear that the information actually contained in the
SyncITEX output file is not suitable for typesetting
purpose because it was designed for synchronization
only. But with some additional adaptations, there is
no doubt that SyncIEX can help in designing global
optimization algorithms for even better typesetting.

8.2 Debugging facilities

During his presentation at the conference (see [3]),
the author used a lightweight PDF viewer to demon-
strate SyncIEX. This viewer was primarily designed
as a proof of concept and as such, was meant to
remain private. But one of its features might be of
great interest to the TEX community, as suggested
by different people at the conference, namely the
ability to display over the text all the boxes, either
horizontal or vertical, created during the typesetting
process. As it happens, this feature was already im-
plemented in an unknown modest PDF viewer for
Mac OS X (whose name I have unfortunately lost) by
parsing the result of the \tracingall macro in the
log file.

Superscript may indicate not only exponential, but modi
cos?(x) cos™ ! () may indicate cos(z:)*, cos(s
cos’ () almost never means COS(COS(I))

Figure 2: TEX output embedded in HTML, detail of
http://en.wikipedia.org/wiki/Special_functions
(2008/08/11)

The interest is at least twofold. It can serve
debugging purposes for publishers who want to elab-
orate complicated page layouts, and it can also serve
pedagogical purposes during TEX training sessions.
For these reasons, this viewer will be available on
the SyncTEX web site [4] once it has been properly
factored for distribution. Unfortunately, this bene-
fits Mac OS X users only, but adding this feature to
the new cross-platform TgXworks will eventually be
considered.

8.3 Embedding TEX output into HTML or
running text

In web pages, it is rather common to include mathe-
matical formulas as embedded images built with TEX,
to compensate for the limitations of web browsers.
The example given in figure 2 is particularly ugly,
not only because the size of the mathematical text
does not conform to the size of the running text, but
also because the base lines of the formulas and the
running text are not properly aligned. In fact, the
included images contain no information concerning
the base line, and this is where SyncTEX can come
into play. The synchronization information contains
the dimensions of each box containing a mathemati-
cal formula, in particular its height and depth, hence
the exact position of the base line. We just have to
raise the image by the proper amount to obtain a
correct vertical alignment.

9 Concluding remarks
9.1 Synchronizing by word

In iTEXMac2, synchronization is enhanced to at-
tain the precision of a word or even a character, by
combining SyncITEX with some text analysis. This
was rather easy to accomplish because (TpXMac2
manages both the text input and the PDF output,
and also because the PDF library on Mac OSX has
text facilities. But this does not mean that only an
integrated TEX environment is able to reach such
a level of accuracy. It is in fact more a matter of
communication between different applications.

370 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

In fact, the text editors and the viewers allow
some inter-process communication through the com-
mand line, for example mate -1 LINE foo.tex asks
the TextMate text editor to edit foo.tex at line LINE.
Only the line number is used and this is perfectly
suitable for programmers because in general, com-
pilers and debuggers only need line numbers. But
TEX users are not programmers. In ¢TgpXMac2 this
kind of practice has been reconsidered for reverse
synchronization and the information passed to the
text editor contains not only the file name and the
line number, but also an extract of text surrounding
the character under the mouse. This supplemental
information is the hint used by the text editor to
have a better focus on the synchronization target.
For direct synchronization, the same idea applies and
the PDF viewer is asked to highlight a location in a
given page, with the help of a similar textual hint.

In order to achieve synchronization by word
or character, text editors and viewers should use a
textual hint, both as senders and receivers. Of course
this requires some coding effort because input text
and output text are not exactly the same (due to line
breaking for example), but the expense is affordable
as soon as efforts are combined. Once again, users
are encouraged to submit feature requests to the
developers of their favorite tools.

By the way, the new synctex command line
tool anticipates the use of a textual hint by editors
or viewers through its -h command line option.

9.2 An historical standpoint

Synchronization with SyncTEX appears for the 30"
anniversary of TEX; we can legitimately wonder why
and whether such a long period of gestation was
necessary. In order to explain this delay, let us
review the ingredients that made SyncIEX possible.

As in many situations of software design, a fa-
vorable context comes concurrently from available
technologies and available workers. Regarding tech-
nological aspects, we can say in a reduction not very
far from reality that SyncIEX is nothing but a clever
usage of the Web2C implementation of TEX. Of
course, developing on Mac OSX was rather easy and
very efficient, but any other environment would cer-
tainly provide the same result at the price of more
programming work.

Concerning people, the author has claimed since
the beginning of pdfsync that some synchronization
should definitely be embedded in the TEX engine, in
the hope that someday, someone else would do it.
Han Thé Thanh was aware of the problem three years

Direct and reverse synchronization with SyncTEX

ago (not one year ago as claimed by the author dur-
ing his presentation [3]), but he could only take some
time for coding this in summer 2007, probably under
the friendly pressure of some users dissatisfied with
the limits of pdfsync. Although his first attempt was
hardly usable and finally abandoned, it introduced
the author to the minutiae of the Web2¢ implemen-
tation of TEX. Initially, SyncTEX was targeted at
pdfTEX but Jonathan Kew helped in adapting it to
XHATEX and also with the integration into TEX Live.

This short review seems to indicate that tech-
nologies like SyncTEX could easily have become avail-
able many years ago. One can attribute the delay
to a lack of effort devoted to the human interface
of TEX, which is highly regrettable. With SyncTEX
and tools like TpXworks, first steps are made in the
right direction, because TEX really deserves a good
human interface, not just a user interface.

10 Acknowledgements

The author gratefully thanks Han Thé Thanh with-
out whom this work would never have started and
Jonathan Kew without whom this work would not
have reached the present stage. He received impor-
tant remarks and valuable help from members of the

pdfTEX, XHATEX, iTpXMac2 and TEX Live develop-

ment teams; thanks to all of them.

References

[1] Jonathan Kew. TgXworks: Lowering the
barrier to entry. In this volume, pages 362-364.

[2] D. Knuth. The TgXbook. Addison Wesley, 1983.

[3] Jérome Laurens. SyncTEX presentation at
TUG 2008. http://www.river-valley.
tv/conferences/tug2008/#0302-Jerome_
Laurens.

[4] Jérome Laurens. SyncTpX web site. http:
//itexmac.sourceforge.net/SyncTeX.html.

[5] Jérome Laurens. iTEXMac, an integrated TEX
environment for Mac OSX. In TgX, XML,
and Digital Typography, volume 3130,/2004
of Lecture Notes in Computer Science, pages
192-202. Springer Berlin / Heidelberg, 2004.

[6] Jérome Laurens. The TEX wrapper structure:
A basic TEX document model implemented
in iTpXMac. In EuroTgX 2005, 15" Annual
Meeting of European TEX Users, 2005.

[7] Jérome Laurens. Will TEX ever be wysiwyg or
the PDF synchronization story. The PracTgX
Journal 2007(3), 2007.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 371

Xindy revisited: Multi-lingual index creation for the UTF-8 age

Joachim Schrod

Net & Publication Consultance GmbH
Kranichweg 1

63322 Rodermark, Germany

jschrod (at) acm dot org
http://www.xindy.org/

Abstract

Xindy is a flexible index processor for multi-lingual index creation. It handles 44
languages with several variants out of the box. In addition, some indexes demand
special sort orders for names, locations or different target audiences; xindy can
handle them as well. Raw index files may have several encodings beyond ASCII. In
particular, IATEX’s standard output encoding is supported directly, as is X{TEX’s
UTF-8 output. With the new zindy TUGS30 release, support for Windows is added;
previously xindy was available only for GNU/Linux, Mac OS X, and other Unix-like

systems.

1 What is xindy?

Xindy is an index processor. Just like Makelndex,
it transforms raw index information into a sorted
index, made available as document text with markup
that may be processed by TEX to produce typeset
book indexes. Unlike MakeIndex, it is multi-lingual
and supports UTF-8 encoding, both in the raw index
input and in the tagged document output.
Overall, xindy has five key features:

1. Internationalization is the most important fea-
ture at all and was originally xindy’s raison
d’étre: the standard distribution knows how to
handle many languages and dialects correctly
out of the box.

2. Markup normalization and encoding support is
the ability to handle markup in the index keys
in a transparent and consistent way, as well as
different encodings.

3. Modular configuration enables the reusability
of index configurations. For standard indexing
tasks, KTEX users do not have to do much except
use available modules.

4. Location references go beyond page numbers.
Locations may also be book names, section num-
bers or names, URLs, etc.

5. Highly configurable markup is another corner-
stone. While this is usually not as important
for BTEX users, it comes in handy if one works
with other author systems.

The focus of this paper is the current state of
multi-lingual and encoding support that’s available
for xindy. The paper’s scope does not include other
features which I’ll mention just in passing:

Locations are more than page numbers: Most
index processors can work only with numbers, or
maybe sequences of numbers such as “2.12”. Going
further, xindy features a generalized notion of struc-
tured location references that can be book names,
music piece names, law paragraphs, URLs and other
references. You can index “Genesis 3:16” and “Ex-
odus 3:16” and Genesis will be in front of Exodus
since they are not alphabetically sorted names any
more, but terms in an enumeration.

Such location references may be combined into
a range, such as 6, 7, 8, and 9 becoming “6-9”. Also
well-known are range specifications in the humani-
ties, such as 6f or 6ff. With xindy, location ranges
can also be formed over structured references, but
some knowledge about the domain of the reference
components must be available.

xindy is configured with a declarative style lan-
guage, where declarations look like

(some-clause argumentl argument2 ...)

A file with such declarations is called an xindy mod-
ule, and an xindy run may use several of these mod-
ules. This allows making available predefined mod-
ules for common indexing tasks, e.g., the f- and
ff-range designation illustrated above. Xindy decla-
rations are also used to configure output markup.

Last, but not least, xindy is the practical result
in research about a theoretical model of index cre-
ation. Even if one does not use xindy the program,
the model itself can provide valuable input for the
creation of future index creation programs.

2 Multi-lingual sorting

Sorting is a multi-layered process where characters
are first determined, placed into categories that are

372 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Xindy revisited: Multi-lingual index creation for the UTF-8 age

albanian greek norwegian
belarusian gypsy polish
bulgarian hausa portuguese
croatian hebrew romanian
czech hungarian russian
danish icelandic serbian
dutch italian slovak
english klingon slovenian
esperanto kurdish spanish
estonian latin swedish
finnish latvian turkish
french lithuanian ukrainian
general lower-sorbian upper-sorbian
georgian macedonian vietnamese
german mongolian

Table 1: Predefined languages in xindy

sorted the same for now (collation classes), and sorted
either left-to-right or right-to-left. If this results in
index entries that are sorted the same but are not
identical, characters are reclassified with different
rules and sorted again to resolve the ambiguities.
Words from most languages can be sorted with this
process. It is standardized as ISO/IEC 14651 (Inter-
national String Ordering).

2.1 Predefined languages

Xindy provides the ability to sort indexes in different
languages; 44 of them are already prepackaged in the
distribution and are listed in Table 1. For some of
these languages there are multiple sorting definitions:
e.g., German has two different kind of sort orders,
colloquially called DIN and Duden sorting (more on
that later).

While the sorting of all predefined languages
may be expressed in terms of the ISO standard 14651
named above, xindy’s abilities go beyond that. The
standard language modules are usable for indexes
where index entries all belong to one language or
where foreign terms are sorted as if they would be
local. But if one mixes several languages in one
index, e.g., in an author index, one is able to define
the sort rules that should be used individually, just
for this text. While this is some work, of course,
xindy at least makes it possible to create indexes for
such real international works that go beyond mere
multi-lingualism.

2.2 Complexity of index sorting

One might ask if this paper doesn’t make a mountain
out of a molehill, and what’s the big deal with all this
supposed complexity of index sorting and creation

To address that valid question, I'd like to present a
few peculiarities that show why index sorting is more
complex than just sorting a few strings and why an
ISO standard on string ordering is a good start but
not the end of ordering index entries.

Cultural peculiarities For some languages, in-
dex sort order depends on context, or the term’s
semantics. German is a good example for this com-
plexity: there are two sort orders in wide usage and
they differ in the sorting the “umlauts”. These are
the vowels with two dots above: &, 6, and 1.

One sort order sorts them as if there were a
following ‘e’, i.e., ‘4’ is sorted as ‘ae’, ‘G’ is sorted as
‘oe’, and ‘i’ is sorted as ‘ue’. That is the official sort
order, and is defined in an official German standard,
DIN 5007. This sort order is used for indexes in
publications for the domestic market, for an audience
that knows German and is thus expected to know
that these characters are true letters on their own
and not just vowels with accents. Such a domestic
audience is also expected to have learned the sort
order of umlauts in their first school year and will
be able to cope with that cultural peculiarity.

A second way of index sorting drops that idio-
syncratic German feature and sorts umlauts as if
they were vowels with accents, i.e., ‘4’ is sorted just
like ‘a’, and so on. This sort order is used in indexes
of publications for an international market, or where
an international audience is expected to read this
publication regularly. Especially dictionaries and
phone books use this non-standard way of sorting;
we want to give our foreign visitors a chance to look
up the phone number of any Mr. or Ms. Miiller they
want to visit. This sort order has no official name,
but is colloquially known as phone book sorting or
“Duden sorting”, after the most important dictionary
of the German language that uses this sort order.

Legacy rules Some special and non-obvious sort
orders are so old that the reason behind them is
not known (at least, not to me). An interesting
example is French, where additional complexity has
been introduced in some previous time when it comes
to sorting names with accented characters: when two
words have the same letters but differ in accents, the
existence of accents decides the final sort order — but
backwards, from right to left!

The most prominent example is the four words

cote coOte coté coté

In the first pass of sorting a French index, these
four words are sorted the same. In the second
pass, they are still sorted the same—the second
pass sorts uppercase letters before lowercase letters.

The third pass then sorts from right to left and puts

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 373

Joachim Schrod

non-accented letters before accented letters:

—

cote

-

cote

coté

coté
This finally results in the sort order shown in the
table above.

Character recognition Sometimes legacy repre-
sentations in files on computers introduce complex-
ities: In Spanish, ‘ch’ and ‘lII’ are one letter and
sorted accordingly, whereas in all other European
languages they are two letters. Traditionally, these
Spanish letters are represented by two characters in
a file; an index sort processor has to recognize them
as such.

There is also the problem of what to do when a
character appears in an index that does not exist in
that language, e.g., there is no ‘w’ in Latin. Should
one be pragmatic and sort it like modern languages
of the Roman family, between ‘v’ and ‘x’? Or should
one place it somewhere in the non-letter group? The
order might very well depend on the target audience
and intent of the respective index.

In the TEX world, character recognition is ar-
guably less an issue for non-Latin scripts — TEX au-
thors are used to specifying their characters with
exact encodings or transliteration. Especially the
rise of Unicode text editors and their enhanced in-
put support for non-Latin scripts make identification
of characters easier than the supposedly ASCII-like
representation in traditional encodings.

Beyond Europe The examples so far were “just”
about European languages. (Admittedly, because I
know most about them...) Some languages use pho-
netic sorting where one needs additional information
about words that are used in the sort algorithm. This
does not change the algorithm itself, but available
authoring systems often do not support that aspect
at all. (xindy does not support it out-of-the-box
either, but it has the functionality to describe such
sorting in its language modules.)

Other languages use aspects of glyphs such as
strokes or number of strokes for sorting. Diacritics
may or may not influence sorting; sometimes they are
vowels, sometimes they just denote special emphasis
and can be ignored.

3 One sort order is not enough

For multi-lingual index creation it is not sufficient
to define sort orders for languages. Having defined
a language module with the default sort order of

German, French, or any other language is a good
and necessary start, and many index processors stop
at that. But it is not sufficient for production of
actual indexes where sorting rules appear that are
not covered by standards.

For example, in author indexes some languages
handle parts of nobility names differently, depending
on whether they are part of the name or a true
peerage title. In registers of places, city names might
be sorted differently than spelled. Transliteration
must be taken into account, just like combination of
alphabets within one index.

This boils down to the requirement that project-
or document-specific sort rules are needed. While one
book might sort ‘St.” as it is written, Gault Millau
will need a different sort order for its register — they
sort it as ‘Saint’. Makelndex introduced a way to
do that by specifying print and sort keys explicitly,
as in \index{Saint Malo@St. Malo}: It demands
from the author that this explicit specification must
be used every time that term appears.

Xindy goes a step further and allows the user
to specify sort orders in a separate style file that
may be used just for one document or reused for
all documents in a project. It still allows using an
explicit sort and print key in your TEX document —
but experience has shown that it is much less error-
prone to declare it once in an external file for a whole
group of index terms than to write it explicitly in
each occurrence of that group.

4 Examples for xindy style declarations

Let’s have a look at how such document-specific
declarations are done. We demonstrate their use for
two purposes: index entry normalization and entry
sorting.

Markup normalization is the process to decide
if two raw index entries denote the same term and
should be combined into one processed index entry,
i.e., if they should be merged.

Especially with TEX, it might be that the same
term appears differently in the raw index. This is
caused by macro expansions, especially when one
produces part of the index entries automatically. De-
pending on the state of TEX’s processing, macros in
the raw index are sometimes expanded and some-
times not expanded.

Here comes into play a point where xindy dif-
fers from Makelndex: it ignores TEX or IATEX tags
(macro names and braces) by default. With xindy,
you can write \index{\textbf{term}} and this will
be the index entry “term”, \textbf and the braces
will be ignored. (Such index entries are usually not

374 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Xindy revisited: Multi-lingual index creation for the UTF-8 age

input manually, but are generated by other macros.)

So, how would one index METAFONT, written
in the Metafont logo font? The Makelndex way
would be to use \index{METAFONT@\MF} for every
to-be-indexed occurrence of METAFONT, and that
way still works with xindy. But in addition, one can
use an xindy style file with the declaration

(merge-rule "\MF" "METAFONT")

and just use \index{\MF} in the document. No
risk to add typos to one’s index entries; these index
entries will be sorted as ‘METAFONT’ but output as
METAFONT.

Merge rules may influence whole index terms
or just parts of them. One can also use regular
expressions to normalize large classes of raw terms.

Sort specifications Sort orders are specified with
very similar declarations:

(sort-rule "&" "a"e")

tells xindy to place ‘4’ between ‘a’ and ‘b’. (The
special notion ‘“e’ means “at the end”; there is also
““p’ for “at beginning”.)

This is the low-level way to specify sort orders,
and it is used to create special document- or project-
specific sort orders as mentioned above. It is possible
to create whole language sort-order modules with
that method as well —we did so at the start of the
xindy project.

But then Thomas Henlich wrote make-rules, a
preprocessor to create xindy language modules for
languages where sort order can be expressed with
the ISO 14651 concept. For that preprocessor, one
describes alphabets and sort orders over collation
classes with multiple passes, and xindy modules with
sort rules as shown above are created as a result.

5 Encoding of raw index files —
LICR and UTF-8

At the moment, the most often used encoding for raw
index files is the IXTEX output of \index commands.
That encodes non-ASCII characters as macros; the
representation is called BTEX Internal Character
Representation or LICR, as described in section 7.11
of The BTEX Companion, 2nd ed. Xindy knows
about LICR: xindy modules exist with merge rules to
recognize these character representations. A special
invocation command for XTEX, texindy, picks them
up automatically, so authors have no need to think
about them.

At the moment, LICR is mapped to an ISO-8859
encoding that’s appropriate for the given language,
and that encoding is then the base for xindy’s sort
rules. Please note that this is completely unrelated
to the encoding used in the author’s M TEX document.

You can use UTF-8 there with the inputenc package,
but that encoding doesn’t matter for index sorting.
When the raw index arrives at xindy, that original
encoding is not visible any more; we see only LICR.
And we just need ISO-8859 encodings for sorting
languages that are supported by ITEX’s standard
setup, which mostly use European scripts.

While this is appropriate and useful for Euro-
pean languages, it won’t help authors with docu-
ments in Arabic, Hebrew, Asian, or African lan-
guages. But they also won’t use LICR much any-
how and will probably be better served by new pro-
grams like XHTEX or Omega/Aleph. For these users,
all language modules are supplied in a variant that
knows about UTF-8 encodings as output by XHTEX
or Omega’s low-level output of (Unicode) characters.
If one has a raw index file that was produced by
these systems, one can use xindy; it will “just work”.

Looking beyond UTF-8 is still not necessary in
the TEX world; we have no TEX engine that will
output UTF-16 or even wider characters to a raw
index file or expect such encodings in a processed
index file. That’s good, because xindy can’t handle
UTF-16 input —yet. This will probably be an en-
hancement of one the next major releases and shall
help to open up xindy’s appeal beyond TEX-based
authoring environments.

6 Availability

Through release 2.3, xindy was available only for
GNU/Linux and other Unix-like systems. At the
time of writing, release 2.4 has been prepared which
is nicknamed the TUGS0 release, to honor TUG’s 30"
birthday. This release adds support for Windows
(2000, XP, and Vista), thus widening the potential
user base considerably. For now, installation of a
Perl system is needed to use xindy; this should not
be a big obstacle.

The TUG30 release is available for download at
xindy’s Web site www.xindy.org. Currently, it is
there in source form; binary distributions for several
operating systems will be added as time permits.

While release 2.3 is included in TEX Live 2008,
with executables for nearly all the platforms except
Windows, including Mac OS X, we were not able to
finish the new release 2.4 in time to make it to the
DVD. Hopefully, it will become available via the
new on-line update mechanism soon. Eventually, full
support for xindy will be available in TEX Live 20009.

The best place to look for user documentation
about xindy is The KTEX Companion, 2nd ed., sec-
tion 11.3. Documentation on the Web site is techni-
cally more complete, but improvements of its organi-
zation and accessibility are high on our to-do list.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 375

A newbie’s experiences with Lilypond, Lilypond-book, ETEX and Perl

Joe M€Cool
Southern Regional College, Ireland

mccoolj (at) src dot ac dot uk

http://benburb.demon. co.uk/apache2-default/joe.html

Abstract

The author is an active Irish traditional musician. He is also a keen inland boater.
He is having a lot of fun composing a book on “Traditional Music for Boaters”.

In this paper he describes his successes and frustrations using Lilypond,
Lilypond-book, BTEX and ABC musical notation. Lilypond and IXTEX have a lot
in common. Neither are WYSIWYG, neither demand GUI’s. Both compile simple
flat files to produce beautiful graphical output.

Lilypond’s original manifestations produced output directly for I TEX, but of
late users writing books have been encouraged to use Lilypond-book. This looks
for Lilypond code within IATEX source files and produces graphics and associated
instructions which can then be processed by KTEX.

Most joy has come from automating these processes via GNU/Linux and Perl.

1 What’s out there

By definition classical music has an inherent connec-
tion with books and text. Traditional music does not.
Classical music is written down in scores. Histori-
cally, traditional music is not. It is largely an aural
medium and tunes are learnt by ear. Having said
that, musical scores do now have an important role
to play. More and more young traditonal musicians
are learning how to read scores. Printed material
allows us to store pieces that would otherwise be lost
and pencil and paper is a useful aid to composition.

Musicians like to share pieces and the arrival
of the personal computer has made this easier than
ever. But, where years ago we popped manuscripts in
the post, we now need to share scores electronically.
This has brought about a plethora of programs and
systems that enable us to do so.

1.1 ABC notation

In the 1980’s Chris Walshaw, then at the Univer-
sity of Cambridge, began writing out fragments of
folk/traditional tunes using letters to represent the
notes. This became gradually formalised into what
is known as the ABC “standard”.! Numerous small
programs have appeared to convert ASCII files of
ABC to printed scores.? There are also programs to
convert ABC code to midi.

Here’s an example of an ABC file:
X: 1
T:The trout

1 www.walshaw.plus.com/abc

2 for example, moinejf.free.fr

C:Franz Schubert

0:Austria

M:C|

L:1/8

Q:1/4=160

K:C

G2|"C"c2c2e2e2| "C"c4G2G2|"G"G3G dcBA|"G"
G4 z2G2|"C"c2c2 e2e2]|"C"c4G2c2| "G"B2AB

The K: field represents the tune’s key. All lines
below this contain the music. Lines above are header
fields, with X: representing an index for this partic-
ular tune in a file of other ABC’s. Notes in quotes
represent accompaniment chords.

At first sight ABC seems ideal for what I wish
to do. It has a simple input format. It can output
PostScript files that I can incorporate into IATEX
documents. ABC programs are open source and,
most importantly, there are huge collections of ABC
source files available on the internet.

But, I have a few issues with ABC:

e there is a gross lack of standardisation. What
standardisation exists is often ignored by the
authors of ABC files.

e [need a system comparable to ITEX in terms
of typesetting quality. ABC does not have the
fine grained control of KTEX.

e It is difficult to avoid clashing problems: note
heads clashing with bar numbers, or grace notes
clashing with accidentals.

e At the time I started my project, the ABC mail-
ing list seemed to vanish!

376 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

A newbie’s experiences with Lilypond, Lilypond-book, BTEX and Perl

1.2 Commercially available software

Under Microsoft Windows, several commercial pro-
grams are available for typesetting music. Finale,?
Sibelius,* and Cakewalk® are well known. Notewor-
thy Composer is available as shareware.%

1.3 MusicTEX and MusiXTEX

Both of these, based on what I could find out about
them,” appeared too complex for me. They did
not seem to have an active development or support
community.

1.4 Lilypond

I rejected the commercial products and Notewor-
thy because they use proprietary file formats and
they rely on GUI interfaces. I am a traditional-
ist in more ways than one. Long ago I realised the
power, elegance and beauty of plain ASCII files under
GNU/Linux. Hence my final choice of Lilypond.®?

e Lilypond’s originators have objectives very simi-
lar to those of IMTEX: “to print music in the best
traditions of classical engraving with minimum
fuss”.

Lilypond uses plain ASCII, not dissimilar to ABC.
Lilypond enjoys ongoing development.

Its documentation is excellent.

Very active user support via mailing lists.
Very fast keying of source files:

— Note durations need stating once only. In
the input a4 b, the notes a and b have the
same duration.

— Notes can be raised an octave using a fol-
lowing ’ or lowered by a following ,. Lily-
pond also provides a relative mode in
which it will position notes on the scale in
a common sense, reasonable fashion.

\relative c’’ {
bcdcbcbes a
}

These notes will all be placed within the
scale, rather than climbing higher upward.
e key transposition is easy: \transpose d e ...
e The excitement and delight I found putting to-
gether my first Lilypond scripts was matched
only by that of my first IXTEX scripts. Lilypond

and WTEX really are first cousins!

www.finalemusic.com
www.sibelius.com
www.cakewalk.com
www.noteworthysoftware.com
www.tex.ac.uk/cgi-bin/texfaq2html?label=music
www.lilypond.org

9 In rural Ireland we have a saying: “If you think a donkey
will do the job, use a horse!”

[IR B S N

1.5 Example Lilypond file
\version "2.11.33"

\header {
composer = "Joe Mc Cool"
title = "The Eight Lock"
dedication = ""

}

voicedefault = {
\relative c’
\clef treble
\key g \major
\time 4/4
\repeat volta 2 {
\time 4/4
\clef treble
d’4 d8 e d c b4

}

\repeat volta 2 {
a’4 a8 a b c4.

}
}

\include "../new.score.ly"

Notice the indentation of code, similar to pro-
gramming languages. voicedefault is a musical object
that will subsequently process as a score (see below),
or a midi file.'°

As my project gathered weight I got tired of
having to edit individual Lilypond files in order to
change the overall look of my book, hence my use of
the include statement. new.score.ly consists of:

\scoreq{
<<

{

\voicedefault

}

>>
\layoutq{
#(layout-set-staff-size 20)
}

}

In order to change the overall look of all my

pieces, for example to change the staff size, all I have
to do is edit the above.

2 My approach
My approach is constrained by the following goals:
e Each page should contain an integer number of
tunes. Classical musicians are happy (or at least
willing) to turn a page in the middle of a piece,
traditional musicians are not.
e Traditional music is often played in sets. Two
or three jigs will be played one after the other,

10 though midi support is regrettably not good in Lilypond.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 377

Joe MCCool

or a group of hornpipes. When new tunes are
added to the collection, they must be kept as
close together as possible to other members of
their set, ideally on the same page, or on the
same spread.

e Brief texts and footnotes must appear on the
page of the tune to which they refer.

e Index entries must have the form ‘name : type
: page number’. This reveals the page number
and the tune type for each entry.

e The build process should produce midi files.

3 Combining Lilypond and BTEX

Here is a simple example of a BTEX file (small.ly)
containing Lilypond code:

\documentclass{article}
\begin{document}

\noindent

Some text before a musical snippet.\\
\begin[quote, fragment]{lilypond}

{

C) e) g’ e’
}
\end{lilypond}

Another snippet:\\
\begin[quote, fragment]{lilypond}
{
f) g) a) b’
}
\end{lilypond}
Some more text.\\
\end{document}

This is processed by the command line:

lilypond-book -f latex --psfonts
--output OUTPUT small.tex

And in the QUTPUT directory Lilypond creates
the following files:

1ily-2b589e£f505-1.eps
1ily-2b589ef505.eps
1lily-2b589e£f505.1y
1ily-2b589ef505-systems.tex
1lily-2b589ef505-systems.texi
1lily-2b589ef505.txt
lily-eb070afcf7-1.eps
lily-eb070afcf7.eps
lily-eb070afcf7.1ly
lily-eb070afcf7-systems.tex
lily-eb070afcf7-systems.texi
lily-eb070afcf7.txt
small.dep

small.tex

snippet-map.ly

snippet-names

tmpMQ9ShM. aux

Some text before a musical snippet.

| 1EEA

> St
ol
ol

| RN
| HE
T

Some more text.

Figure 1: small.pdf

Here the file small.tex constitutes the final
output. This is then processsed by IXTEX in the
normal way, with the result shown in Fig. 1.

Lilypond-book creates a graphic for each line of
music. It also creates a graphic for the whole snip-
pet —in our small example, 2b589ef505-1.eps and
2b589ef505.eps. My project has currently gath-
ered about 200 tunes and the number of small files
in OUTPUT hovers around 3500!

Contents of OUTPUT/small.tex:

\documentclass{article}
\usepackage{graphics}
\begin{document}
\noindent
Some text before a musical snippet.\\
Tk
\parindent Opt%
\ifx\preLilyPondExample \undefined/,
\relax’,
\else%
\preLilyPondExampleY
\fi%
\def\1lilypondbook{}%
\input 1ily-2b589ef505-systems.tex%
\ifx\postLilyPondExample \undefinedy
\relax
\elseY
\postLilyPondExampley,
\fi%
}
Another snippet:\\
{h
\parindent Opt/
\ifx\preLilyPondExample \undefined,
\relax’
\else%
\preLilyPondExample,
\fi%
\def\1lilypondbook{}%
\input lily-eb070afcf7-systems.tex’
\ifx\postLilyPondExample \undefined}
\relax,
\else’
\postLilyPondExample}
\fi%
}
Some more text.\\
\end{document}

378 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

A newbie’s experiences with Lilypond, Lilypond-book, BTEX and Perl

If BTEX can fit the snippet into a page in its
entirety it uses the whole graphic, otherwise it uses
individual lines, placing some of the lines on the fol-
lowing page. This breaks my first requirement: pages
should contain only an integer number of snippets.

4 Overcoming the first limitation

My first approach to this problem was to wrap the
snippet in a Figure environment:

\begin{figure}
lilypond code
\end{figure}

An integer number of tunes then appeared on a
page, but I found that the positioning of the graphics
was inconsistent, particularly at the end of chapters.
Google reported that lots of people had suffered from
this same problem, but I could find no solutions.

Indeed the suggestion was that I abandon TEX
altogether and use only lilypond and a particular
stylesheet.!!

I also tried using the standard utility grep to
find a relation between my KTEX file, the Lilypond
file and the lilypond-book-generated eps files. I in-
tended then to use conventional \includegraphics
commands to position the graphics manually. This

proved too cumbersome.
My final code ended up as:

\noindent
\begin{minipage}{\columnwidth}
\index{mytune:reels}
\lilypondfile{mytune.ly\\\\
\include{mytune.tex}
\end{minipage}

Here mytune.tex contains notes pertaining to
this particular piece. Wrapped within the minipage,
it was guaranteed to appear on the same page. It
might also contain footnotes.

This example also shows that if the Lilypond
script is long, it can be stored in a file and referred to
with \lilypondfile; lilypond-book then processes
its argument.

5 Clever includes

Ideally T would have liked code such as:

\newcommand{\1ily}[1]{
\lilypondfile{#1}{#1}}

\1lily{lilys/my.tune.ly}

11 1sr.dsi.unimi.it/LSR/Item?id=368

but lilypond-book complained about not being able
to find files. It is just not that clever. It is not able
to process my \newcommand.

6 Source collections

Ironically the largest collections of traditional music
from all over the world are held in ABC files and there
are quite a few search engines tuned specifically for
searching ABC sites.!? There is also a Python script
available that converts ABC to Lilypond (abc2ly).

Again, possibly because of the lack of ABC stan-
dards, abc2ly does not produce very tidy code and
sometimes gets the repeats plain wrong. It is often
brought to its knees by idiosyncratic ABC.

7 And then there was Perl

Perl is ideal for processing text. Both ITEX and
Lilypond are text based, so the marriage is obvi-
ous. My collecting of ABC files and their subsequent
placement in my book is now almost completely au-
tomatic:
e ABC file arrives in target folder (often via email)
e A Perl daemon:
makes a backup
cleans up ABC code
creates an index entry

merges text to precede or follow this item

RANE I

runs abc2ly
6. adds name of lily file to compilation list
e a make invocation puts together book version

I think of this process as resembling a trout: the
Perl daemon watches for an ABC file arriving as a
result of an Internet search — just as a trout watches
for minnows! It is not perfect, but I have good error
reporting in place and mistakes are easily fixed by
hand.

When sufficient new tunes have been added to
the repository, another Perl script employs lilypond-
book, later, dvips and ps2pdf to produce the final

copy.

8 Subversion

Small changes are made to this project daily and
sometimes the editing is done using machines on
different sites. A small change can have a disastrous
effect on the end product. For this reason the whole
project is controlled using the Subversion'® version
control system.

12 for example, trillian.mit.edu/~jc/cgi/abc/tunefind
13 subversion.tigris.org

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 379

MetaPost developments: MPlib project report

Taco Hoekwater
Elvenkind BV

Dordrecht, The Netherlands
http://tug.org/metapost

Abstract

The initial stage of the MPlib project has resulted in a library that can be em-
bedded in external programs such as LuaTgX, and that is also the core of the
mpost program. This paper presents the current state of affairs, the conversion
process of the MetaPost source code, and the application interface to the library.

1 MPlib project goals

The MPlib project is a logical consequence of the
transfer of MetaPost development from its author
John Hobby to the MetaPost development team. It
originates from a desire to update MetaPost for use
in the 215 century. The first thing that needed to
be done to make that happen was updating the pro-
gram source code and infrastructure to be closer to
today’s programming standards.

These days, programs are often written in the
form of shared libraries, with a small frontend appli-
cation. When written in this way, a program can not
only be used as a standalone program, but can also
easily and efficiently be (re)used as a plugin inside
other programs, or turned into a multi-user system
service.

With current MetaPost, such alternate uses are
impossible because of the internals of the code. For
example, MetaPost uses many internal global vari-
ables. This is a problem because when two users
would be accessing a ‘MetaPost’ library at the same
time, they would alter each other’s variables. For
another example, MetaPost has static memory allo-
cation: it requests all the computer memory it will
ever use right at startup. It never bothers to free
that memory, because it counts on the operating
system to clean up automatically after it exits. And
one file example: MetaPost not only opens files at
will, but it also writes to and, even more problem-
atically, reads from the terminal directly.

A large part of updating MetaPost is therefore
fixing all these issues. But while doing this, there
are other weirdnesses to take care of at the same
time.

The present subsystem for typesetting labels
(btex ...etex) is pretty complicated, requiring an
array of external programs to be installed on top
of the normal mpost executable. And from a sys-
tem viewpoint, the error handling of MetaPost is
not very good: it often needs user interaction, and

in most other cases it simply aborts. Finally, the
whole process of installing the program is compli-
cated: a fair bit of the TEX Live development tree
is needed to compile the executable at all.

2 Solutions

Many of the problems mentioned above are a side-
effect of the age of the source code: the source is
largely based on METAFONT, and therefore written
in Pascal WEB. And the bits that are not in Pascal
WEB are an amalgam of C code borrowed from other
projects, most notably pdfTEX.

Not wanting to lose the literate programming
documentation, we had only one practical way to
proceed: using the CWEB system. CWEB has the
same functionality that Pascal WEB has, except that
it uses C as the programming language instead of
Pascal, and it has some extensions so that it does
not get in the way of the ‘normal’ C build system.

Using CWEB, a single programming language
now replaces all of the old Pascal and C code. The
code has been restructured into a C library, the label
generator makempx has been integrated, and compi-
lation now depends only on the ctangle program
and the normal system C compiler, so that a simple
Autoconf script can be used for configuration of the
build process.

3 Code restructuring

Whereas converting the C code of the font inclu-
sion and label processing subsystems to CWEB was
a fairly straightforward process, converting the Pas-
cal WEB core of MetaPost was a more elaborate
undertaking.

In the first stage, the Pascal code within the
WEB underwent an automatic rough conversion into
C code. Afterwards, the generated C code was man-
ually cleaned up so that it compiled properly using
ctangle. This part took roughly one month, and
the end result was an executable that was ‘just like’

380 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Pascal MetaPost, but using CWEB as source lan-
guage instead of Pascal WEB.
After that was done, the real work started:

e All of the global variables were collected into
a C structure that represents an ‘instance’ of
MetaPost.

e The Pascal string pool was stripped away so
that it is now used only for run-time generated
strings. Most internal functions now use normal
C strings.

e The PostScript backend was isolated from the
core of the program so that other backends can
be added much more easily.

e All of the exported functions now use a C name-
space.

e Where it was feasible to do so, MPlib uses dy-
namic memory allocation. There are a few ex-
ceptions that will be mentioned later.

e All input and output now uses function pointers
that can be configured through the program-
ming interface.

e The MPIib library never calls exit () itself but
instead returns to the calling program with a
status indicator.

4 Using the library from source code

Using the MPlib library from other program code is
pretty straightforward: first you set up the MPlib
options, then you create an MPlib instance with
those options, then you run MetaPost code from a
file or buffer, and finally finish up.

The options that can be controlled are:

e various command-line options that are familiar
from mpost, such as whether MetaPost starts in
INI mode, the mem_name and job_name, ‘troff’
mode, and the non-option part of the command
line,

e the size of the few remaining statically allocated
memory arrays,

e various function pointers like those for input
and output, file searching, the generator func-
tion for typeset labels, and the ‘editor escape’
function,

e the start value of the internal randomizer,

e and finally a ‘userdata’ pointer that is never
used by MPlib itself but can be retrieved by the
controlling program at any time.

The application programming interface at the
moment is very high-level and simplistic. It supports
two modes of operation:

e emulation of the command-line mpost program,
with traditional I/O and interactive error han-
dling,

MetaPost developments: MPlib project report

e an interpreter that can repeatedly execute in-
dividual string chunks, with redirected I/0O and
all errors treated as if nonstopmode is in effect.

For the string-based interpreter, there are a few
extra functions:

e the runtime data can be fetched; this comprises
the logging information and the internal data
structure representation of any generated fig-
ures,

e the instance’s error state can be queried,

e the userdata pointer can be retrieved,

e some statistics can be gathered,

e PostScript can be generated from the image
output,

e and some glyph information can be retrieved;
this is useful if you want to create a backend
yourself.

4.1 Examples

Here is a minimalistic but complete example that
uses the mpost emulation method in C code:

#include <stdlib.h>
#include "mplib.h"
int main (int argc, char *xargv) {
MP mp;
MP_options *opt = mp_options();
opt->command_line = argv[1];
mp = mp_initialize(opt);
if (mp) {
int history = mp_run(mp);
mp_finish(mp);
exit (history);
} else {
exit (EXIT_FAILURE);
}
}

Given the basic library functionality now avail-
able, it is reasonably straightforward to create bind-
ings for other languages. We have done this for Lua,
and here is a second example that uses these Lua
language bindings. The Lua bindings are always
based on string execution, and the option setting
and instance creation are merged into a single new
function:
local mplib, mp, 1, chunk
mplib = require(’mplib’)

mp = mplib.new ({ini_version = false,
mem_name = ’plain’})

chunk = [[

beginfig(1);

fill fullcircle scaled 20;

endfig;

1]
if mp then

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 381

Taco Hoekwater

1 = mp:execute(chunk)
if 1 and 1.fig then
print (1.fig[1]:postscript())
end
mp:finish()
end

5 Using the command-line program

On the command line very little has changed. The
executable mpost still exists. Now it is merely a
thin wrapper that is much like the C code example
shown earlier, except with a few hundred more lines
because it has to set up the command-line properly.
As mentioned already, the makempx functional-
ity has also been converted into a small library that
is used by mpost to emulate the old label creation
system. The programs makempx, dvitomp, mpto,
and dmp have been merged into this library and no
longer exist as separate programs. For backward
compatibility, a user-supplied external label gener-
ation program will be called if the MPXCOMMAND
environment variable is set, but normally mpost sets
up the MPIib library to use the new embedded code.
In the normal case, the only external program
that will be run is the actual typesetter (TEX or
Troff). The command-line of mpost is extended to
allow the specification of which typesetter to use.

6 Planning and TODO

Most development took place at the beginning of
2008, after which we entered a period of extensive
testing. This way we were relatively confident that
the first version of the library was basically usable
from the start.

The first beta release (1.091) was presented at
the TUG 2008 conference. The distribution contains
the MPlib library source, the code for the ‘mpost’
frontend, code for the Lua bindings, and the C and
Lua API documentation.

382

The final MPlib 1.100 release will be released

later in 2008, and the MPlib-based distribution will
replace the Pascal MetaPost distribution from that
point forward.

After this release, work on the TODO list will

continue. Items already on the wishlist:

Start using dynamic memory allocation for the
remaining statically allocated items: the main
memory, the number of hash entries, the num-
ber of simultaneously active macro parameters,
and the maximum allowed input nesting levels.

An extension is being planned under the work-
ing name ‘MegaPost’ that will extend the range
and precision of the internal data types.

In the future, we want to use MPlib to gener-
ate (OpenType) fonts. This requires support
from the core engine like overlap detection and
calculation of pen envelopes.

Error strategies are planned so that the be-
haviour of the string-chunk based interface can
be configured properly.

There are desires to expand the API. For in-
stance, it would be nice if applications were able
to use the equation solver directly.

7 Acknowledgements and contact

The MPlib project could not have been done without
funding by the worldwide TEX user groups, in par-
ticular: DANTE, TUG India, TUG, NTG, CSTUG,
and GUST. A big thank you goes to all of you for
giving us the opportunity to work on this project.

The general contact information for MetaPost

and MPlib has not changed:

Web site and portal:
http://tug.org/metapost

User mailing list:
http://lists.tug.org/metapost

Source code and bug tracker:
http://foundry.supelec.fr/projects/metapost

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

The TEX-Lua mix

Hans Hagen
Pragma ADE
http://pragma-ade.com

Abstract

An introduction to the combination of TEX and the scripting language Lua.

1 Introduction

The idea of embedding Lua into TEX originates in
some experiments with Lua embedded in the SciTE
editor. You can add functionality to this editor by
loading Lua scripts. This is accomplished by a li-
brary that gives access to the internals of the editing
component.

The first integration of Lua in pdfTEX was rel-
atively simple: from TEX one could call out to Lua
and from Lua one could print to TgX. My first ap-
plication was converting math written in a calcula-
tor syntax to TEX. Following experiments dealt with
MetaPost. At this point integration meant as lit-
tle as: having some scripting language as an ad-
dition to the macro language. But, even in this
early stage further possibilities were explored, for
instance in manipulating the final output (i.e. the
PDF code). The first versions of what by then was
already called LuaTgX provided access to some in-
ternals, like counter and dimension registers and the
dimensions of boxes.

Boosted by the Oriental TEX project, the team
started exploring more fundamental possibilities:
hooks in the input/output, tokenization, fonts and
nodelists. This was followed by opening up hyphen-
ation, breaking lines into paragraphs and building
ligatures. At that point we not only had access to
some internals but also could influence the way TEX
operates.

After that, an excursion was made to MPlib,
which fulfilled a long standing wish for a more nat-
ural integration of MetaPost into TEX. At that point
we ended up with mixtures of TEX, Lua and Meta-
Post code.

As of mid-2008 we still need to open up more
of TgX, like page building, math, alignments and
the backend. Eventually LuaTgX will be nicely split
up in components, rewritten in C, and we may even
end up with Lua gluing together the components
that make up the TEX engine. At that point the
interoperation between TEX and Lua may be even
richer than it is now.

In the next sections I will discuss some of the

ideas behind LuaTEX and the relationship between
Lua and TgX and how it presents itself to users. I
will not discuss the interface itself, which consists of
quite a number of functions (organized in pseudo-
libraries) and the mechanisms used to access and
replace internals (we call them callbacks).

2 TgX vs. Lua

TEX is a macro language. Everything boils down
to either allowing stepwise expansion or explicitly
preventing it. There are no real control features,
like loops; tail recursion is a key concept. There
are only a few accessible data structures, such as
numbers, dimensions, glue, token lists and boxes.
What happens inside TEX is controlled by variables,
mostly hidden from view, and optimized within the
constraints of 30 years ago.

The original idea behind TEX was that an au-
thor would write a specific collection of macros for
each publication, but increasing popularity among
non-programmers quickly resulted in distributed col-
lections of macros, called macro packages. They
started small but grew and grew and by now have
become pretty large. In these packages there are
macros dealing with fonts, structure, page layout,
graphic inclusion, etc. There is also code dealing
with user interfaces, process control, conversion and
much of that code looks out of place: the lack of
control features and string manipulation is solved
by mimicking other languages, the unavailability of
a float datatype is compensated by misusing dimen-
sion registers, and you can find provisions to force
or inhibit expansion all over the place.

TEX is a powerful typographical programming
language but lacks some of the handy features of
scripting languages. Handy in the sense that you will
need them when you want to go beyond the original
purpose of the system. Lua is a powerful script-
ing language, but knows nothing of typesetting. To
some extent it resembles the language that TEX was
written in: Pascal. And, since Lua is meant for em-
bedding and extending existing systems, it makes
sense to bring Lua into TEX. How do they compare?
Let’s give some examples.

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings 383

Hans Hagen

About the simplest example of using Lua in TEX
is the following:
\directlua { tex.print(math.sqrt(10)) }

This kind of application is probably what most
users will want and use, if they use Lua at all. How-
ever, we can go further than that.

3 Loops

In TEX a loop can be implemented as in the plain

format (editorial line breaks, but with original com-

ment):

\def\loop#1\repeat{\def\body{#1}\iterate}

\def\iterate{\body\let\next\iterate
\else\let\next\relax\fi\next}

\let\repeat=\fi % this makes \loop..\if..\repeat

% skippable
This is then used as:

\newcount \mycounter \mycounter=1
\loop

\advance\mycounter 1

\ifnum\mycounter < 11
\repeat

The definition shows a bit how TEX program-
ming works. Of course such definitions can be
wrapped in macros, like:

\forloop{1}{10}{1}{some action}

and this is what often happens in more complex
macro packages. In order to use such control loops
without side effects, the macro writer needs to take
measures to permit, for instance, nested usage and
avoid clashes between local variables (counters or
macros) and user-defined ones. Above we used a
counter in the condition, but in practice expressions
will be more complex and this is not that trivial to
implement.

The original definition of the iterator can be
written a bit more efficiently:

\def\iterate{\body \expandafter\iterate \fil}

And indeed, in macro packages you will find
many such expansion control primitives being used,
which does not make reading macros easier.

Now, get me right, this does not make TEX less
powerful, it’s just that the language is focused on
typesetting and not on general purpose program-
ming, and in principle users can do without that:
documents can be preprocessed using another lan-
guage, and document specific styles can be used.

We have to keep in mind that TEX was writ-
ten in a time when resources in terms of memory
and CPU cycles were far less abundant than they are
now. The 255 registers per class and (about) 3000

hash slots in original TEX were more than enough for
typesetting a book, but in huge collections of macros
they are not all that much. For that reason many
macro packages use obscure names to hide their pri-
vate registers from users and instead of allocating
new ones with meaningful names, existing ones are
shared. It is therefore not completely fair to compare
TEX code with Lua code: in Lua we have plenty of
memory and the only limitations are those imposed
by modern computers.
In Lua, a loop looks like this:

for i=1,10 do

end

But while in the TEX example, the content di-
rectly ends up in the input stream, in Lua we need
to do that explicitly, so in fact we will have:
for i=1,10 do

tex.print("...")
end

And, in order to execute this code snippet, in
LuaTgX we will do:
\directlua 0 {
for i=1,10 do
tex.print("...")
end

So, eventually we will end up with more code
than just Lua code, but still the loop itself looks
quite readable and more complex loops are possible:
\directlua 0 {

local t, n={12}, 0

while true do

local r = math.random(1,10)
if not t[r] then

t[r], n = true, n+1

tex.print(r)

if n == 10 then break end
end

end

This will typeset the numbers 1 to 10 in ran-
domized order. Implementing a random number
generator in pure TEX takes a fair amount of code
and keeping track of already defined numbers in
macros can be done with macros, but neither of these
is very efficient.

4 Basic typesetting

I already stressed that TEX is a typographical pro-
gramming language and as such some things in TEX
are easier than in Lua, given some access to inter-
nals:

384 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

\setbox0=\hbox{x}\the\wdO

In Lua we can do this as follows:
\directlua O {

local n = node.new(’glyph’)

n.font = font.current()

n.char = string.byte(’x’)
tex.box[0] = node.hpack(n)
tex.print (tex.wd[0]/65536 .. "pt")

One pitfall here is that TEX rounds the number
differently than Lua. Both implementations can be
wrapped in a macro resp. function:
\def\measured#1{\setbox0=\hbox{#1}\the\wdO\relax}

Now we get:

\measured{x}

The same macro using Lua looks as follows:
\directlua 0 {

function measure(chr)

local n = node.new(’glyph’)
n.font = font.current()
n.char = string.byte(chr)
tex.box[0] = node.hpack(n)

tex.print (tex.wd[0]/65536 ..
end

"Pt")

}
\def\measured#1{\directluaO{measure ("#1")}}

In both cases, special tricks are needed if you
want to pass for instance a # character to the TEX
implementation, or a " to Lua; namely, using \# in
the first case, and Lua’s “long strings” marked with
double square brackets in the second.

This example is somewhat misleading. Imagine
that we want to pass more than one character. The
TEX variant is already suited for that, but the Lua
function will now look like:

\directlua 0 {
function measure(str)
if str == "" then
tex.print ("Opt")
else
local head, tail = nil, nil
for chr in str:gmatch(".") do
local n = node.new(’glyph’)
n.font = font.current()
n.char = string.byte(chr)
if not head then
head = n
else
tail.next = n
end
tail = n
end
tex.box[0] = node.hpack(head)

tex.print(tex.wd[0]/655636 .. "pt")

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

The TEX-Lua mix

end
end

And still it’s not okay, since TEX inserts kerns
between characters (depending on the font) and glue
between words, and doing that all in Lua takes more
code. So, it will be clear that although we will use
Lua to implement advanced features, TEX itself still
has quite a lot of work to do.

5 Typesetting stylistic variations

In the following examples we show code, but it is
not of production quality. It just demonstrates a
new way of dealing with text in TEX.

Occasionally a design demands that at some
place the first character of each word should be up-
percase, or that the first word of a paragraph should
be in small caps, or that each first line of a paragraph
has to be in dark blue. When using traditional TEX
the user then has to fall back on parsing the data
stream, and preferably you should then start such
a sentence with a command that can pick up the
text. For accentless languages like English this is
quite doable but as soon as commands (for instance
dealing with accents) enter the stream this process
becomes quite hairy.

The next code shows how ConTEXt MKII defines
the \Word and \Words macros that capitalize the
first characters of a word or words. The spaces are
really important here because they signal the end of
a word.

\def\doWord#1Y,
{\bgroup\the\everyuppercase\uppercase{#1}J,
\egroup}

\def\Word#1%
{\doWord#1}

\def\doprocesswords#1 #2\od
{\doifsomething{#1}{\processword{#1} J space!
\doprocesswords#2 \od}}

\def\processwords#1/
{\doprocesswords#1 \od\unskip}

\let\processword\relax

\def\Words
{\1let\processword\Word \processwords}

The code here is not that complex. We split off
each word and feed it to a macro that picks up the
first token (hopefully a character) which is then fed
into the \uppercase primitive. This assumes that
for each character a corresponding uppercase vari-
ant is defined using the \uccode primitive. Excep-

385

Hans Hagen

tions can be dealt with by assigning relevant code to

the token register \everyuppercase. However, such

macros are far from robust. What happens if the

text is generated and not input as is? What hap-

pens with commands in the stream that do some-

thing with the following tokens?

A Lua-based solution could look as follows:
\def\Words#1{\directlua 0
for s in unicode.utf8.gmatch("#1", "([~ 1)") do
tex.sprint(string.upper(

s:sub(1,1)) .. s:sub(2))

end

}

But there is no real advantage here, apart from
the fact that less code is needed. We still operate on
the input and therefore we need to look to a different
kind of solution: operating on the node list.
function CapitalizeWords (head)

local done = false

local glyph = node.id("glyph")

for start in node.traverse_id(glyph,head) do
local prev, next = start.prev, start.next

if prev and prev.id == kern

and prev.subtype == 0 then
prev = prev.prev

end

if next and next.id == kern

and next.subtype == 0 then
next = next.next

end

if (not prev or prev.id ~= glyph)

and next and next.id == glyph then
done = upper(start)

end

end
return head, done
end

A node list is a forward-linked list. With a
helper function in the node library we can loop over
such lists. Instead of traversing we can use a regu-
lar while loop, but it is probably less efficient in this
case. But how to apply this function to the relevant
part of the input? In LuaTEX there are several call-
backs that operate on the horizontal lists and we can
use one of them to plug in this function. However,
in that case the function is applied to probably more
text than we want.

The solution for this is to assign attributes to
the range of text which a function is intended to
take care of. These attributes (there can be many)
travel with the nodes. This is also a reason why
such code normally is not written by end users, but
by macro package writers: they need to provide the
frameworks where you can plug in code. In Con-
TEXt we have several such mechanisms and therefore

in MKIV this function looks (slightly simplified) as
follows:
function cases.process(namespace,attribute,head)
local done, actions = false, cases.actions
for start in node.traverse_id(glyph,head) do
local attr = has_attribute(start,attribute)
if attr and attr > O then
unset_attribute(start,attribute)
local action = actions[attr]
if action then
local _, ok = action(start)
done = done and ok
end
end
end
return head, done
end

Here we check attributes (these are set on the
TEX side) and we have all kind of actions that can
be applied, depending on the value of the attribute.
Here the function that does the actual uppercasing
is defined somewhere else. The cases table provides
us a namespace; such namespaces need to be coor-
dinated by macro package writers.

This approach means that the macro code looks
completely different; in pseudo code:
\def\Words#1{{<setattribute><cases>

<somevalue>#1}}

Or alternatively:
\def\StartWords{\begingroup<setattribute><cases>

<somevalue>}
\def\StopWords {\endgroup}

Because starting a paragraph with a group can
have unwanted side effects (such as \everypar being
expanded inside a group) a variant is:

\def\StartWords{<setattribute><cases><somevalue>}
\def\StopWords {<resetattribute><cases>}

So, what happens here is that the user sets an
attribute using some high level command, and at
some point during the transformation of the input
into node lists, some action takes place. At that
point commands, expansion and the like no longer
can interfere.

In addition to some infrastructure, macro pack-
ages need to carry some knowledge, just as with the
\uccode used in \uppercase. The upper function
in the first example looks as follows:
local function upper(start)

local data, char = characters.data, start.char
if datalchar] then

local uc = datal[char].uccode

if uc and

fonts.tfm.id[start.font].characters[uc]
then

386 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

start.char = uc
return true
end
end
return false
end

Such code is really macro package dependent:
LuaTgX provides only the means, not the solutions.
In ConTEXt we have collected information about
characters in a data table in the characters name-
space. There we have stored the uppercase codes
(uccode). The fonts table, again ConTEXt specific,
keeps track of all defined fonts and before we change
the case, we make sure that this character is present
in the font. Here id is the number by which Lua-
TEX keeps track of the used fonts. Each glyph node
carries such a reference.

In this example, eventually we end up with more
code than in TgX, but the solution is much more
robust. Just imagine what would happen when in
the TEX solution we would have:

\Words{\framed [offset=3pt]{hello world}}

It simply does not work. On the other hand, the
Lua code never sees TEX commands, it only sees the
two words represented by glyph nodes and separated
by glue.

Of course, there is a danger when we start open-
ing TEX’s core features. Currently macro packages
know what to expect, they know what TEX can and
cannot do, and macro writers have exploited every
corner of TEX, even the darkest ones. while the dirty
tricks in The TEXbook had an educational purpose,
those of users sometimes have obscene traits. If we
just stick to the trickery introduced for parsing in-
put, converting this into that, doing some calcula-
tions, and the like, it will be clear that Lua is more
than welcome. It may hurt to throw away thou-
sands of lines of impressive code and replace it by a
few lines of Lua but that’s the price the user pays
for abusing TEX. Eventually ConTEXt MKIV will be
a decent mix of Lua and TgX code, and hopefully
the solutions programmed in those languages are as
clean as possible.

Of course we can discuss until eternity whether
Lua is the best choice. Taco, Hartmut and I are
pretty confident that it is, and in the couple of years
that we have been working on LuaTgX nothing has
proved us wrong yet. We can fantasize about con-
cepts, only to find out that they are impossible to
implement or hard to agree on; we just go ahead us-
ing trial and error. We can talk over and over how
opening up should be done, which is what the team
does in a nicely closed and efficient loop, but at some

The TEX-Lua mix

points decisions have to be made. Nothing is perfect,
neither is LuaTEX, but most users won’t notice it as
long as it extends TEX’s life and makes usage more
convenient.

6 Groups

Users of TEX and MetaPost will have noticed that
both languages have their own grouping (scope)
model. In TEX grouping is focused on content: by
grouping the macro writer (or author) can limit the
scope to a specific part of the text or have certain
macros live within their own world.

.1. \bgroup .2. \egroup .1.

Everything done at 2 is local unless explicitly
told otherwise. This means that users can write
(and share) macros with a small chance of clashes.
In MetaPost grouping is available too, but variables
explicitly need to be saved.

.1. begingroup; save p; path p; .2. endgroup .1.

After using MetaPost for a while this feels quite
natural because an enforced local scope demands
multiple return values which is not part of the macro
language. Actually, this is another fundamental dif-
ference between the languages: MetaPost has (a
kind of) functions, which TEX lacks. In MetaPost
you can write

draw origin for i=1 upto 10: ..(i,sin(i)) endfor;
but also:
draw some(0) for i=1 upto 10: ..some(i) endfor;
with
vardef some (expr i) =

ifi>4:1i=1-41i;

(i,sin(4i))
enddef ;

The condition and assignment in no way inter-
fere with the loop where this function is called, as
long as some value is returned (a pair in this case).

In TEX things work differently. Take this:
\count0=1
\message{\advance\count0 by 1 \the\countO}
\the\count0
The terminal wil show:
\advance \count O by 1 1

At the end the counter still has the value 1.
There are quite a few situations like this, for in-
stance when data such as a table of contents has
to be written to a file. You cannot write macros
where such calculations are done, hidden away, and
only the result is seen.

The nice thing about the way Lua is presented
to the user is that it permits the following:

TUGboat, Volume 29 (2008), No. 3—TUG 2008 Conference Proceedings 387

Hans Hagen

\count0=1

\message{\directlua0{’
tex.count[0] = tex.count[0] + 1}
\the\count0}

\the\countO

This will report 2 to the terminal and typeset
a 2 in the document. Of course this does not solve
everything, but it is a step forward. Also, compared
to TEX and MetaPost, grouping is done differently:
there is a local prefix that makes variables (and
functions are variables too) local in modules, func-
tions, conditions, loops, etc. The Lua code in this
article contains such locals.

7 An example: XML

In practice most users will use a macro package and
S0, if a user sees TEX, he or she sees a user interface,
not the code behind it. As such, they will also not
encounter the code written in Lua that handles, for
instance, fonts or node list manipulations. If a user
sees Lua, it will most probably be in processing ac-
tual data. Therefore, in this section I will give an ex-
ample of two ways to deal with XML: one more suit-
able for traditional TEX, and one inspired by Lua. It
demonstrates how the availability of Lua can result
in different solutions for the same problem.

7.1 MKII: stream-based processing

In ConTEXt MKII, the version that deals with pdf-
TEX and XATEX, we use a stream-based XML parser,
written in TEX. Each < and & triggers a macro that
then parses the tag and/or entity. This method is
quite efficient in terms of memory but the associ-
ated code is not simple because it has to deal with
attributes, namespaces and nesting.

The user interface is not that complex, but in-
volves quite a few commands. Take for instance the
following XML snippet:
<document>

<section>

<title>Whatever</title>
<p>some text</p>
<p>some more</p>

</section>
</document>

When using ConTEXt commands, we can imag-
ine the following definitions:
\defineXMLenvironment [document]
{\starttext} {\stoptext}
\defineXMLargument [title]
{\section}
\def ineXMLenvironment [p]
{\ignorespaces}{\par}

When attributes have to be dealt with, for in-

stance a reference to this section, things quickly start
looking more complex. Also, users need to know
what definitions to use in situations like this:

<table>
<tr><td>first</td> ... <td>last</td></tr>
<tr><td>left</td> . <td>right</td></tr>
</table>

Here we cannot be sure that a cell does not con-
tain a nested table, which is why we need to define
the mapping as follows:

\defineXMLnested[table] {\bTABLE} {\eTABLE}

\defineXMLnested [tr] {\bTR} {\eTR}
\defineXMLnested[td] {\bTD} {\eTD}

The \defineXMLnested macro is rather messy
because it has to collect snippets and keep track of
the nesting level, but users don’t see that code, they
just need to know when to use what macro. Once it
works, it keeps working.

Unfortunately mappings from source to style
are never that simple in real life. We usually need
to collect, filter and relocate data. Of course this
can be done before feeding the source to TEX, but
MKII provides a few mechanisms for that too. For
instance, to reverse the order you can do this:
<article>

<title>Whatever</title>

<author>Someone</author>

<p>some text</p>
</article>
\defineXMLenvironment [article]

{\defineXMLsave [author]}

{\blank author: \XMLflush{authorl}}

This will save the content of the author element and
flush it when the end tag article is seen. So, given
previous definitions, we will get the title, some text
and then the author. You may argue that instead
we should use for instance XSLT but even then a
mapping is needed from the XML to TEX, and it’s a
matter of taste where the burden is put.

Because ConTgXt also wants to support stan-
dards like MathML, there are some more mechanisms
but these are hidden from the user. And although
these do a good job in most cases, the code associ-
ated with the solutions has never been satisfying.

Supporting XML this way is doable, and Con-
TEXt has used this method for many years in fairly
complex situations. However, now that we have Lua
available, it is possible to see if some things can be
done more simply (or differently).

7.2 MKIV: tree-based processing

After some experimenting I decided to write a full
blown XML parser in Lua, but contrary to the

388 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

stream-based approach, this time the whole tree is
loaded in memory. Although this uses more mem-
ory than a streaming solution, in practice the differ-
ence is not significant because often in MKII we also
needed to store whole chunks.

Loading XML files in memory is very fast and
once it is done we can have access to the elements
in a way similar to XPath. We can selectively pipe
data to TEX and manipulate content using TEX or
Lua. In most cases this is faster than the stream-
based method. An interesting fact is that we can do
this without linking to existing XML libraries, and
as a result we are pretty independent.

So how does this look from the perspective of
the user? Say that we have the simple article defin-
ition stored in demo.xml.

<?xml version =’1.0°7>
<article>
<title>Whatever</title>
<author>Someone</author>
<p>some text</p>
</article>

This time we associate so-called setups with the
elements. Each element can have its own setup, and
we can use expressions to assign them. Here we have
just one such setup:

\startxmlsetups xml:document
\xmlsetsetup{main}{article}{xml:article}
\stopxmlsetups

When loading the document it will automatically be
associated with the tag main. The previous rule as-
sociates the setup xml:article with the article
element in tree main. We register this setup so that
it will be applied to the document after loading:

\xmlregistersetup{xml:document}

and the document itself is processed with (the empty
braces are an optional setup argument):

\xmlprocessfile{main}{demo.xm1}{}
The setup xml:article can look as follows:

\startxmlsetups xml:article
\section{\xmltext{#1}{/title}}
\xmlall{#1}{!(title|author)}

\blank author: \xmltext{#1}{/author}

\stopxmlsetups

Here #1 refers to the current node in the XML
tree, in this case the root element, article. The sec-
ond argument of \xmltext and \xmlall is a path ex-
pression, comparable to XPath: /title means: the
title element anchored to the current root (#1),
and !(titlelauthor) is the negation of (comple-
ment to) title or author. Such expressions can be
more complex than the one above, for instance:

The TEX-Lua mix

\xmlfirst{#1}{/one/(alphalbeta)/two/text ()}

which returns the content of the first element that
satisfies one of the paths (nested tree):
/one/alpha/two
/one/beta/two

There is a whole bunch of commands like \xm1-
text that filter content and pipe it into TEX. These
are calling Lua functions. This is no manual, so we
will not discuss them here. However, it is important
to realize that we have to associate setups (consider
them free formatted macros) with at least one ele-
ment in order to get started. Also, XML inclusions
have to be dealt with before assigning the setups.
These are simple one-line commands. You can also
assign defaults to elements, which saves some work.

Because we can use Lua to access the tree and
manipulate content, we can now implement parts of
XML handling in Lua. An example of this is dealing
with so-called Cals tables. This is done in approxi-
mately 150 lines of Lua code, loaded at runtime in
a module. This time the association uses functions
instead of setups and those functions will pipe data
back to TEX. In the module you will find:
\startxmlsetups xml:cals:process

\xmlsetfunction {\xmldocument} {cals:table}

{1xml.cals.table}

\stopxmlsetups

\xmlregistersetup{xml:cals:process}
\xmlregisterns{cals}{cals}

These commands tell MKIV that elements with
a namespace specification that contains cals will be
remapped to the internal namespace cals and the
setup associates a function with this internal name-
space.

By now it will be clear that from the perspec-
tive of the user Lua is hardly visible. Sure, he or
she can deduce that deep down some magic takes
place, especially when you run into more complex
expressions like this (the @ denotes an attribute):

\xmlsetsetup
{main} {item[@type=’mpctext’ or @type=’mrtext’]}
{questions:multiple:text}

Such expressions resemble XPath, but can go
much further, just by adding more functions to the
library.

item[position() > 2 and position() < 5
and text() == ’ok’]

item[position() > 2 and position() < 5
and text() == upper(’ok’)]

item[@n==’03" or @n==’08’]

item[number (@n)>2 and number (@n)<6]

item[find (text (), ’ALS0’)]

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings 389

Hans Hagen

Just to give you an idea, in the module that
implements the parser you will find definitions that
match the function calls in the above expressions.
xml.functions.find = string.find

xml.functions.upper = string.upper
xml.functions.number = tonumber

So much for the different approaches. It’s up to
the user what method to use: stream-based MKII,
tree-based MKIV, or a mixture.

8 TgX-Lua in conversation

The main reason for taking XML as an example of
mixing TEX and Lua is in that it can be a bit mind-
boggling if you start thinking of what happens be-
hind the scenes. Say that we have
<?7xml version =’1.0’7>
<article>
<title>Whatever</title>
<author>Someone</author>
<p>some bold text</p>
</article>

and we use the setup shown before with article.

At some point, we are done with defining setups
and load the document. The first thing that happens
is that the list of manipulations is applied: file in-
clusions are processed first, setups and functions are
assigned next, maybe some elements are deleted or
added, etc. When that is done we serialize the tree
to TEX, starting with the root element. When pip-
ing data to TEX we use the current catcode regime;
linebreaks and spaces are honored as usual.

Each element can have a function (command)
associated and when this is the case, control is given
to that function. In our case the root element has
such a command, one that will trigger a setup. And
so, instead of piping content to TEX, a function is
called that lets TEX expand the macro that deals
with this setup.

However, that setup itself calls Lua code that
filters the title and feeds it into the \section com-
mand, next it flushes everything except the title and
author, which again involves calling Lua. Last it
flushes the author. The nested sequence of events is
as follows:

lua: Load the document and apply setups and
the like.
lua: Serialize the article element, but since
there is an associated setup, tell TEX to
expand that one instead.
tex: Execute the setup, first expand the
\section macro, but its argument is a
call to Lua.
lua: Filter title from the subtree un-

der article, print the content to
TEX and return control to TEX.
tex: Tell Lua to filter the paragraphs i.e.
skip title and author; since the b
element has no associated setup (or
whatever) it is just serialized.
lua: Filter the requested elements and
return control to TEX.
tex: Ask Lua to filter author.
lua: Pipe author’s content to TEX.
tex: We’re done.
lua: We’re done.

This is a very simple case. In my daily work I am
dealing with rather extensive and complex educa-
tional documents where in one source there is text,
math, graphics, all kind of fancy stuff, questions and
answers in several categories and of different kinds,
to be reshuffled or not, omitted or combined. So
there we are talking about many more levels of TEX
calling Lua and Lua piping to TEX, etc. To stay
in TEX speak: we're dealing with one big ongoing
nested expansion (because Lua calls expand), and
you can imagine that this somewhat stresses TEX’s
input stack, but so far I have not encountered any
problems.

9 Final remarks

Here I discuss several possible applications of Lua
in TEX. I didn’t mention yet that because LuaTEX
contains a scripting engine plus some extra libraries,
it can also be used purely for that. This means that
support programs can now be written in Lua and
that we need no longer depend on other scripting
engines being present on the system. Consider this
a bonus.

Usage in TEX can be categorized in four ways:

1. Users can use Lua for generating data, do all
kind of data manipulations, maybe read data
from file, etc. The only link with TEX is the
print function.

2. Users can use information provided by TgpX
and use this when making decisions. An ex-
ample is collecting data in boxes and use Lua
to do calculations with the dimensions. An-
other example is a converter from MetaPost
output to PDF literals. No real knowledge of
TEX’s internals is needed. The MkIV XML
functionality discussed before demonstrates
this: it’s mostly data processing and piping to
TEX. Other examples are dealing with buffers,
defining character mappings, and handling er-
ror messages, verbatim ... the list is long.

3. Users can extend TEX’s core functionality. An

390 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

example is support for OpenType fonts: Lua-
TEX itself does not support this format di-
rectly, but provides ways to feed TEX with the
relevant information. Support for OpenType
features demands manipulating node lists.
Knowledge of internals is a requirement. Ad-
vanced spacing and language specific features
are made possible by node list manipulations
and attributes. The alternative \Words macro
is an example of this.

4. Users can replace existing TEX functional-
ity. In MKIV there are numerous examples of
this, for instance all file /O is written in Lua,
including reading from zip files and remote
locations. Loading and defining fonts is also
under Lua control. At some point MKIV will
provide dedicated splitters for multicolumn
typesetting and probably also better display

The TEX-Lua mix

spacing and display math splitting.

The boundaries between these categories are not set
in stone. For instance, support for image inclu-
sion and MPlib in ConTEXt MKIV sits between cat-
egories 3 and 4. Categories 3 and 4, and probably
also 2, are normally the domain of macro package
writers and more advanced users who contribute to
macro packages. Because a macro package has to
provide some stability it is not a good idea to let
users mess around with all those internals, due to
potential interference. On the other hand, normally
users operate on top of a kernel using some kind of
API, and history has proved that macro packages are
stable enough for this.

Sometime around 2010 the team expects Lua-
TEX to be feature complete and stable. By that time
I can probably provide a more detailed categoriza-
tion.

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings 391

docx2tex: Word 2007 to TEX

Krisztian Pdcza

E6tvos Lorand University, Faculty of Informatics, Department of Programming Languages and Compilers,

Pézmény Péter sétdny 1/C. H-1117, Budapest, Hungary

kpocza (at) kpocza dot net
http://kpocza.net/

Mihaly Biczé

Eo6tvos Lordand University, Faculty of Informatics, Department of Programming Languages and Compilers,

Pédzmény Péter sétdny 1/C. H-1117, Budapest, Hungary

mihaly.biczo (at) t-online dot hu
http://avalon.inf.elte.hu/personal/hdbiczo/

Zoltan Porkolab

E6tvos Lorand University, Faculty of Informatics, Department of Programming Languages and Compilers,

Pézmény Péter sétdny 1/C. H-1117, Budapest, Hungary

gsd (at) elte dot hu
http://gsd.web.elte.hu/

Abstract

Docx2tex is a small command line tool to support users of Word 2007 to publish
documents when typography is important or only papers produced by TEX are
accepted. Behind the scenes, docx2tex uses common technologies to interpret
Word 2007 OOXML format without utilizing the API of Word 2007. Docx2tex is
published as a free and open source utility that is accessible and extensible by
everyone. The source code and the binary executable of the application can be
downloaded from http://codeplex.com/docx2tex/. This paper was originally
written in Word 2007 and later converted to TEX using docx2tex.

1 Introduction

There are two general methods to produce human
readable and printable digital documents:

1. Using a WYSIWYG word processor
2. Using a typesetting system

Each of them has its own advantages and disadvan-
tages; therefore each of them has many use cases
where one is better than the other.

WYSIWYG [1] is an acronym for the term What
You See Is What You Get that originates from the
late "70s. WYSIWYG editors are usually favored by
everyday computer users whose aim is to produce
good-looking documents in a fast and straightfor-
ward way exploiting the rich formatting capabilities
of such systems. WYSIWYG editors and word pro-
cessors ensure that the printed version of the docu-
ment will be the same as the document that is vis-
ible on the screen during editing. The first WYSI-
WYG word processor called Bravo was created at
Xerox by Charles Simonyi, who is the inventor of
intentional programming. In 1981 Simonyi left Xe-

rox and joined Microsoft where he created Microsoft
Word [2, 3], the first and still the most popular word
processor. Word is capable of producing simple and
also complex documents, including those with many
mathematical symbols. Another important feature
of Word is Track Changes that supports team work.
Using Track Changes any of the team members can
modify the document while these modifications are
tracked and can be accepted or refused by the team
leader.

Typesetting is the process of putting characters
of different types in their correct place on the paper
or screen. Before electronic typesetting systems be-
came widely used, printed materials had been pro-
duced by compositors who worked by hand or us-
ing special machines. The aim of typesetting sys-
tems is to create high-quality output of materials
that may contain complex mathematical formulae
and complex figures. Similarly, electronic typeset-
ting systems follow this goal and produce high qual-
ity, device independent output. The most popular

392 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

typesetting system is TEX [4] created by Donald E.
Knuth. TgX is mainly used by researchers and in-
dividuals whose aim is to achieve the best quality
output without sacrificing platform or device inde-
pendence. The users of TEX use a special and ex-
tensible DSL (Domain Specific Language) that was
designed to solve complex typesetting problems, pro-
duce books containing hundreds of pages, and more.

There is a big gap between these systems be-
cause each tries to satisfy different demands, namely:
produce common documents quickly even in a group
setting vs. achieve the best quality and typographi-
cally correct printout. To bridge this difference there
are both commercial and non-commercial tools that
support conversion from Word or other WYSIWYG
formats to TEX (and back). The first direction, con-
verting from WYSIWYG (Word) formats to TEX, has
perhaps more frequent usage because many users
edit the original text in Word for the sake of sim-
plicity and efficiency, and later convert it to TEX by
hand in order to ensure quality.

The problems with present conversion applica-
tions include the following;:

1. many of them are available only as proprietary
tools;

2. thus they have limitations (running times or
page limit) when not purchased;

3. they support only the old, binary Word or Rich
Text document format (.doc, .rtf); and/or

4. they use the Word’s COM API to process docu-
ments, which makes them complex.

In this paper we present an open source and free so-
lution that is capable of handling the new and open
Word 2007 .docx format natively by using standard
technologies without using the COM API of Word
and without even installing Word. In this article
the current features are presented along with further
development directions.

2 Existing solutions

It has always been challenging to convert propri-
etary, binary or any other document formats to TEX.
Because Word is the most common editor, many
tools try to convert from Word documents. One of
these tools is the proprietary Word2TeX [5], which
makes Word capable of saving documents in TEX
format. This tool is embedded into Word, has an
evaluation period and can be purchased in different
license packages. A similarly featured tool named
Word-to-Latex [6] does not provide sources, though
it is available at no cost.

Another possibility is to use OpenOffice.org [7],
which is capable of reading Word documents and

docx2tex: Word 2007 to TEX

also saving them in TEX format. It is a free and
open source application; however, it interprets the
binary data of Word documents.

Rtf2latex2e [8] is the most recent solution that
translates .rtf files to TEX. It is a free and open
source application.

3 Technology

In this section we will enumerate and then briefly
review the technologies that are used in docx2tex
and show how they cooperate.

The technologies used are the following:

1. Office Open XML (ECMA 376 Standard [9], re-
cently approved as an ISO Standard), the de-
fault format of Word 2007. In brief: OOXML.

2. Microsoft .NET 3.0 (CLI is ECMA 335 Standard
[10] and ISO/IEC 23271:2006 Standard [11]).

3. ImageMagick [12] to convert images.

OOXML files are simply XML and media files com-
pressed using ZIP. Docx2tex uses Microsoft .NET
3.0 to open and unzip OOXML Word 2007 (.docx
extension) documents. Microsoft .NET 3.0 has some
special classes in the System.lO.Packaging name-
space that facilitate opening and unzipping OOXML
files and also provide an abstraction to represent the
included XML and media files as packages. The op-
erations performed by this component are described
by the object line called OOXML depackaging in Fig-
ure 1.

The most important component of docx2tex is
the Core XML FEngine that implements the basic
conversion from XML files to TEX. The Core En-
gine is responsible for reading and processing the
XML data of the OOXML documents that is served
by the OOXML depackaging component. The Core
Engine identifies parts of the OOXML document and
processes the contents of these parts (paragraphs,
runs, tables, image references, numberings, ...). It
is not responsible for processing parts of the OOXML
document that are available through a relation. For
those, docx2tex has a set of internal helper func-
tions that are responsible for driving the process-
ing of related entities such as image conversion, spe-
cial styling and resolving the properties of numbered
lists.

When an image reference is found in the XML,
ImageMagick is called to produce EPS files from the
original image files. The resulting EPS files can be
embedded easily into TEX documents.

We support the exact output produced by Word
2007; other output variations saved by third party
applications that may differ from the ECMA 376
Standard are not supported.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 393

Krisztian Pécza, Mihaly Biczé and Zoltan Porkolab

OOXML depackaging Core XML Engine

Helper Functions

Image Converter TeXizer

T T
| |
| |
—_— i

Feed original XML

Helper call (styling)

Style calculated

Helper call (image conv.)

Image converted

Helper call (numbering)

Execute ImageMagick

EPS created

|
I
|
I
}
Numbering performed }
I
|
I
I
|
I
|

Helper call (image conv.)

Image converted

Simplify runs and ensure line lengths

Conversation done

Performed

Figure 1: UML sequence diagram

In the next sections the structure of OOXML
will be briefly discussed; first, let us review the idea
of runs. A run is a piece of text which also has some
style specification. Runs are placed and removed
dynamically while the Word document is edited. A
sentence or even a word can be divided into more
than one run with the same style. The component
called TeXizer is responsible to join runs having the
same style to a simple run in the outgoing TEX code
and break the source line length at some predefined
value (default is 72).

The previous description is illustrated by the
UML sequence diagram in Figure 1.

4 Features of docx2tex

In this section we list the supported and the unsup-
ported features of docx2tex.

394

4.1 Supported features
Docx2tex supports the following features of Word
2007 and TEX:

1. Normal text

2. Italic, bold, underlined, stroked, small capitals,

Left, right, center aligned text

Headings and sections, three levels

Verbatim text

Style mapping

Simple tables

Line and page breaks

Numbered and bulleted lists

10. Multilevel lists and continuous numbered lists

© XN oW

11. Figure, table and listing captions
12. Cross references to captions and headings

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

13. Image conversion from various formats (includ-
ing .png, .jpeg, .enf, etc.) to .eps

14. Substitution of special characters (e.g. \, #, {,
VL)% &)

15. Text boxes

16. Basic math formulae, Word Equations support

docx2tex supports normal and special text styles
and also text alignments. We support heading styles
Headingl, Heading2, and Heading3 that convert to
\section, \subsection, and \subsubsection re-
spectively. Word does not support verbatim text
while TEX does. To work around this deficiency,
text marked with Verbatim style is converted to ver-
batim text surrounded by \begin{verbatim} and
\end{verbatim}. There are many cases where we
are required to use different styles for headings or
even verbatim.

Only simple, left-aligned tables are supported.
Both numbered and bulleted lists are supported, in-
cluding mixing and nesting. Continuous lists are
also supported using the \setcounter, \enumi, and
\theenumi commands. Figure, table and listings
captions are recognized and we support referencing
them; likewise with heading references. Image ref-
erences are resolved and the images (mainly .png
and . jpeg) embedded in the OOXML documents are
converted to .eps. The width and height properties
are queried and the same properties are used in the
resulting TEX documents. Some special TEX char-
acters are also resolved and escaped in the resulting
TEX document. Text found in Text Boxes of Word
documents are also processed and inserted in place
of the resulting TEX document.

4.2 Unsupported features

Docx2tex has only basic Word Equations (mathe-
matical formulae) support at the time of publishing
this paper. We plan to add more support for Word
2007 Equations and Drawings that can be converted
to TEX mathematical formulas and xfigs respectively.
Both of them are described in XML format therefore
our standard solution can be extended without intro-
ducing other technologies.

5 A complex example

In this section we will show a complex example bro-
ken into significant parts that introduces the most
important features of docx2tex.

5.1 The structure of the OOXML ZIP
package
To inspect the content of an OOXML ZIP package we

first unzip the contents of our Word 2007 document
to a directory and get a recursive directory listing:

docx2tex: Word 2007 to TEX

PS C:\Phd\conf\2008_4_tex\example.docx>
1s -Recu |% {$_.FullName.SubString(30)}
example.docx\customXml
example.docx\docProps
example.docx\word
example.docx_rels
example.docx\[Content_Types] .xml
example.docx\customXml_rels
example.docx\customXml\iteml.xml
example.docx\customXml\itemProps1.xml
example.docx\docProps\app.xml
example.docx\docProps\core.xml
example.docx\word\media
example.docx\word\theme
example.docx\word_rels
example.docx\word\document .xml
example.docx\word\fontTable.xml
example.docx\word\numbering.xml
example.docx\word\settings.xml
example.docx\word\styles.xml
example.docx\word\webSettings.xml
example.docx\word\media\imagel. jpeg
example.docx\word\theme\themel.xml
example.docx\word_rels\document.xml.rels
example.docx_rels\.rels

The most important part is the document .xml
file that contains the document itself and references
to external items. The numbering.xml file specifies
the style of the numbered or bulleted lists contained
in document.xml. The styles.xml file specifies in-
formation about the styles used in the document.
Under the media subdirectory the embedded images
can be found (imagel. jpeg in our example).

5.1.1 Structure of the document

The text in the document.xml file is grouped into
paragraphs. Every segment of the document is a
paragraph (normal text, heading texts, images, etc.)
except for some special elements like tables. Para-
graphs are further divided into runs. A run is a
piece of text that also has some style specification.

5.2 Text conversion

The most fundamental feature of tools like docx2tex
is the ability to interpret text runs with many basic
styling properties and convert them to TEX format.
Consider the following example sentence: This is a
sentence that contains text with different formatting:

This sentence looks like the following in OOXML:

<w:p w:rsidR="004F5706" w:rsidRDefault=
"004F5706" w:rsidP="004F5706">
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve">

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 395

Krisztian Pécza, Mihaly Biczé and Zoltan Porkolab

This is a </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:i/>
<w:vertAlign w:val="superscript"/>
</w:rPr>
<w:t>sentence</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:b/>
<w:i/>
</w:rPr>
<w:t xml:space="preserve"> that</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">

<w:rPr>
<w:u w:val="single"/>
</w:rPr>
<w:t>contains</w:t>
</w:r>

<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> text </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:b/>
<w:i/>
<w:u w:val="single"/>
</w:rPr>
<w:t>with</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:strike/>
</w:rPr>
<w:t>different</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:vertAlign w:val="subscript"/>
</w:rPr>
<w:t>formatting</w:t>
</w:r>

<w:r w:rsidRPr="0030655B">
<w:t>.</w:it>
</w:r>
</w:p>
The XML node <w:p> and </w:p> encloses a
paragraph while <w:r> and </w:r> encloses a run.
A run contains a range of text (between <w:t> and
</w:t>) and may contain some formatting between
<w:rPr> and </w:rPr> (e.g. <w:b/> means bold,
while <w:i/> means italic font style).
The TEX output generated by docx2tex of the
previous sentence looks like the following:

This is a \textit{$ {sentence}$}\textbf{/
\textit{that}} \underline{contains} text
\textbf{\textit{\underline{with}}} \sout{%
different} $_{formattingl}$.

5.3 Headings and verbatim

Headings and verbatim are handled the same way
because they can be identified in the source docu-
ment by examining paragraph level styles.

Consider the following OOXML fragment that
describes a first level heading:

<w:p w:rsidR="004F5706" w:rsidRPr=
"0030655B" w:rsidRDefault="004F5706"
w:rsidP="000136DF">
<w:pPr>
<w:pStyle w:val="Headingl"/>
</w:pPr>
<w:bookmarkStart w:id="0" w:name=
"_Ref186547407"/>
<w:r w:rsidRPr="0030655B">
<w:t>Heading text</w:t>
</w:r>
<w:bookmarkEnd w:id="0"/>
</w:p>
The <w:pStyle w:val="Headingl"/> node speci-
fies that a first level heading begins, while the con-
tained node <w:bookmarkStart w:id="0" w:name=
"_Ref186547407"/> identifies a unique internal ref-
erence (bookmark) to the heading that can be cross-
referenced from any part of the document. For each
referenceable item Word generates an ugly unique
number prefixed with _Ref as an identifier (in our
example, _Ref186547407).
The generated TEX output is the following (line
break is editorial):

\section{Heading textl}\label{section:
_Ref186547407%

It is possible to map custom styles to certain
TEX elements. The special mappings are loaded
from a file with the same name having the extension
.paraStyleName (that is, a file example.docx has

396 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

the mapping file example.paraStyleName). The
Word 2007 styles appearing on the right side of these
equations have to be the w:styleId attribute of one
of the styles found in the styles.xml file (names are
case sensitive).

Here is a listing to help understand the format
of the .paraStyleName files:

section=Myheadingl
subsection=Myheading?2
subsubsection=Myheading3
verbatim=Myverbatim

5.4 Images and cross references

In OOXML, images are described in a very complex
and loose way; there is no space here to show the
original XML fragment. Instead we show only the
generated TEX code:

\begin{figure}[h]

\centering

\includegraphics [width=10.52cm,height=
8.41cm]{media/imagel.eps}
\caption{\label{figure: _Ref186544261}:
Figure caption}

\end{figure}

The image is centered and the width and the
height of the image are preserved. imagel.jpeg was
converted to imagel.eps and the file was saved in
the media subdirectory. When the image has a cap-
tion then it is also added to the output so that it
can be referenced.

Reference to the previous figure is described in
OOXML in the following form:

<w:p w:rsidR="004F5706" w:rsidRPr=
"0030655B" w:rsidRDefault=
"004F5706" w:rsidP="004F5706">
<w:pPr>
<w:keepNext/>
</w:pPr>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve">Reference to
the figure: </w:t>
</w:r>
<w:r w:rsidR="007A289D">
<w:fldChar w:fldCharType="begin"/>
</w:r>
<w:r w:rsidR="006B4DA8">
<w:instrText xml:space="preserve">
REF _Ref186544261 \h </w:instrText>
</w:r>
<w:r w:rsidR="007A289D">
<w:fldChar w:fldCharType="separate"/>
</w:r>
<w:r w:rsidR="006B4DA8">

docx2tex: Word 2007 to TEX

<w:t xml:space="preserve">Figure</w:t>
</w:r>
<w:r w:rsidR="006B4DA8">
<w:rPr>
<w:noProof/>
</w:rPr>
<w:t>1</wit>
</w:r>
<w:r w:rsidR="007A289D">
<w:fldChar w:fldCharType="end"/>
</w:r>
</w:p>
The generated TEX code is simple (it can be
seen that the Figure 1 text has been omitted from
the output because it is internal to Word):

Reference to the figure: \ref{figure:
_Ref186544261}.

Referencing tables is the same as for figures and
sections.

5.5 Lists and tables

There are two main categories of lists supported by
OOXML and Word 2007: numbered and bulleted.
Both types of lists are allowed to have multiple levels,
and numbered lists can be continuous, meaning that
the list can be interrupted by some other content
and then continued at the same number.

The first item of a numbered list looks like the
following:

<w:p w:rsidR="004F5706" w:rsidRPr=
"0030655B" w:rsidRDefault="004F5706"
w:rsidP="004F5706">
<w:pPr>
<w:pStyle w:val="ListParagraph"/>
<w:keepNext/>
<w:numPr>
<w:ilvl w:val="0O"/>
<w:numlId w:val="1"/>
</w:numPr>
</w:pPr>
<w:r w:rsidRPr="0030655B">
<w:t>First</w:t>
</w:r>
</w:p>
The nodes enclosed in <w:numPr> and </w:numPr>
specify that we have a list. The w:val attributes
of w:numId and w:ilvl specify numbering identi-
fier and level parameters (style 1 at level 0 in our
example). It may seem strange that the w:numPr
nodes describe both numbered and bulleted lists. It
is the numbering identifier and the level parameter
that distinguishes between the two categories of lists.
These parameters are defined in the numbering.xml

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 397

Krisztian Pécza, Mihaly Biczé and Zoltan Porkolab

file that is processed by docx2tex. The above ele-
ment is part of a complex multilevel numbered list:

\newcounter{numberedCntA}
\begin{enumerate}

\item First

\item Second

\item Third
\begin{enumerate}

\item First

\item Second

\item Third
\end{enumerate}

\item Fourth
\setcounter{numberedCntA}{\theenumi}
\end{enumerate}

When a previous list is continued, \setcounter
{enumi}{\thenumberedCntA} is inserted after the
\begin{enumerate} by docx2tex.

We omit showing a bulleted example since it
differs only in the TEX output: the itemize keyword
is used instead of enumerate, and we do not have to
maintain counters for continuous lists.

Docx2tex supports only simple tables, so no
merged, divided or differently aligned table cells are
possible, but the current features still allow docx2tex
to be able to convert most tables.

Again there is not enough space here to show
the OOXML version of a simple table. The generated
TEX output of a table with four cells is the following:
\begin{tabular}{|111]}

\hline

1 & 2 \\

\hline

3 & 4 \\

\hline

\end{tabular}

\caption{\label{table: _Ref186545972}:
caption}

\end{table}

5.6 Special characters

TEX uses some special characters to place formatting
commands to structure or change the appearance of
text. When we want to place these special charac-
ters in running text they have to be described in a
special way.

Consider the following set of special characters:
#\N{}Y%h " _"&s$"
These are described in OOXML in the following form:

<w:p w:rsidR="00AB630B" w:rsidRDefault=
"00OAB630B" w:rsidP="00AB630B">

<> as’q ...

<w:r>
<w:t xml:space="preserve"><>

</w:it>
</w:r>
<w:proofErr w:type="spellStart"/>
<w:r>
<w:t>as’q</w:t>
</w:r>
<w:proofErr w:type="spellEnd"/>
<w:r>
<w:t xml:space="preserve"> ...# \ { }
</fw:it>
</w:r>
<w:proofErr w:type="gramStart"/>
<w:r>
w:t>h “</wit>

</w:r>
<w:proofErr w:type="gramEnd"/>
<w:r>
<w:t xml:space="preserve"> _ = &
$ ""</w:it>
</w:r>
</w:p>

The resulting TEX code is:

$<$$>$ as’q ...\# \backslash \{ \} \% \~
o\ \E S M,

5.7 Math formulae

Math formulae (Word Equations) are described in a
hierarchical XML structure inside the OOXML doc-
ument. It can be easily walked by a recursive algo-
rithm to create TEX output. The name of the XML
node that hosts mathematical formulae is m: oMath.
While standard parts of the document are described
by nodes that have the w XML namespace, Word
Equations have the m namespace.

There is no space to show an OOXML fragment
that holds a quite complex formula, but here is the
formula and the resulting TEX code that was gener-
ated by docx2tex:

B(v) & \/LQ—W L e Tdt

$B(v)\cong \frac{1i}{\sqrt{2\pi }}\int_{v}"
{\infty e {-\frac{t {2}}{2}}dt}$

6 A use case

Let us suppose the following scenario: Two authors
decide to write a scientific article about their re-
search topic and submit it to a conference or journal.
First they split the proposed article into sections
and assign each section to one of the authors. They
start to work independently using Word 2007. After
both of the authors finish they merge the resulting
text into a single document. After that step the
first author reads the whole document and makes
changes using the Track Changes function of Word.

398 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Let's write o \

Author 1 works

an article
Assign different parts

to different authors

docx2tex: Word 2007 to TEX

|

|
|
1

Merge work ‘

[Result is acceptable: No]

Track Changes: Authorw

[Result is acceptable: Yes]

Apply docx2tex

Special formatting O -

Submit

Figure 2: Workflow

The second author accepts or rejects the changes
of the first author and also makes his own changes
using the Track Changes function of Word. When
the authors agree that the quality of the article is
acceptable, they convert it to TEX using docx2tex
and apply special formatting required for the partic-
ular conference or journal. Now the article can be
submitted.

This workflow is illustrated in Figure 2.

As can be seen we exploited the strengths of
both the WYSIWYG Word 2007 system to support
effective team work and the typesetting TEX system
to produce the best quality printout. The conversion
between the file formats they use was performed us-
ing docx2tex. Note that currently docx2tex is able
to do rough conversion and cannot apply special
commands and styles.

Readers not familiar with the Track Changes
function should consider Figure 3.

7 Conclusion and further work

In this article we introduced a tool called docx2tex
that is dedicated to producing TEX documents from
Word 2007 OOXML documents. The main advan-
tage of this solution over classical methods is that
we process the bare XML content of OOXML pack-
ages instead of processing binary files or exploiting
the capabilities of the COM API of Word, thus mak-

ing our solution more robust and usable.

We presented the main features of docx2tex, re-
lated primarily to text processing and formatting,
structuring the document, handling images, tables
and references. There are some important features
that we consider worth implementing in the future:

More Equations support

Embedded vector graphical drawings
Configuration settings

Optional font and coloring support
Documentation

Automated installer

SO

Multicolumn document handling and templat-
ing may also worth considering.

We published the application as free and open
source software under the terms of the BSD [13] li-
cense, so anybody can use it royalty free and can
add new features to the current feature set.

The source code and the binary of the appli-
cation can be downloaded from http://codeplex.
com/docx2tex/. If the reader would like to partici-
pate in the development of docx2tex, please contact
the authors.

References

[1] Wikipedia article on What You See Is What
You Get. http://en.wikipedia.org/wiki/
WYSIWYG

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 399

Krisztian Pécza, Mihaly Biczé and Zoltan Porkolab

Spelling & New
Grammar L3 Transiate a5

Home Insert References

Review

Page Layout Mailings View

L . —

Bl nig el

\;Thesaurus &

é.lResearch ﬁ_ J_J Final Showing Markup - £ Reject ~ j

A2 Previous i
Compare S/

B3 Next iz

Changes

Accept

=] Show Markup =
Track
Changes ™

Balloclns s
E Reviewing Pane ~

Tracking

Comment 2

Proofing Commants Compare

Abstract

Thi b by Ho i1l HE HER LY
S Paper-RasBeer FEr

it lbrwiton i W 007-snd-ther-converted—to TeX usingdoex2t

HtHSHE— e =H

Docx2tex isa small command line tool that uses standard technologies to help users of Word 2
puhlish publications where typography is relevant or only papers produced by TeX are accepte

| Paste

v_} Accept Change

OOXML format w:thout utilizing the APl of Word 2007. Docx2tex is planned to be published as

. A} Reject Change
open source utility that is accessible and extensible by everyone. This paper has been originall

: :] = & _» Track Changes
written in Word 2007 and then converted to TeX using doex2tex. #

-8 ﬂype_rlink...
Introduction
There are two general methods to produce human readable and printable digital documents:

1. Using a WYSIWYG word processor
2. Using a typesetting system

Each of them has its own advantages and disadvantages therefore each of them has many use cases

where one is better than the other and vice versa.

WYSIWYG [
late "70. WYSIWYG editors are mostly used by everyday computer users whose aim iste produce

[...] is the acronym for the term What You See Is What You Get that originates from the

good looking documents fast and exploit the rich formatting capabilities of such systems. WYSIWYG
editors and word processors ensure that the printed version of the document will be the same as the
sisibledocument that is visible on the screen swhite-during editing. The first WYSIWYG word
processor called Bravo was created at Kerox by Stmsarenbers-Charles Slmon\,rl, who was the

e

Protect
Document ~

Pratect

I RS

ient [BM17]: &ste
shanis szsrepsl, Slb

e R R e S L e i PR, O

- ONNT 1. Anoa o

WO

o) 53 T 1 (o R |

e i — li

Page:1 of 13 | Words: 3320 | £ English (United States)

[Eas

Figure 3: Track Changes function of Word

[2] Wikipedia article on Microsoft Word. http:
//en.wikipedia.org/wiki/Microsoft_
0ffice_Word

Product page of Microsoft Word. http:
//office.microsoft.com/en-us/word/
FX100487981033. aspx

Wikipedia article on TEX. http://en.
wikipedia.org/wiki/TeX

Product page of Word2Tex. http://wuw.
chikrii.com/

Product page of Word-to-LaTeX. http://
kebrt.webz.cz/programs/word-to-latex/
Product page of OpenOffice.org. http:
//www.openoffice.org/

Project page of rtf2latex2e. http://
sourceforge.net/projects/rtf2latex2e/

400

[9] ECMA 376 OOXML Standard. http://www.
ecma-international.org/publications/
standards/Ecma-376.htm

ECMA 335 .NET CLI Standard. http://www.
ecma-international.org/publications/
standards/Ecma-335.htm

Link to ISO/IEC 23271:2006 Standard.
http://standards.iso.org/ittf/
PubliclyAvailableStandards/index.html
Project page of ImageMagick. http:
//www.imagemagick.org/

Article on BSD license. http://en.
wikipedia.org/wiki/BSD_license

[10]

[11]

TUGDboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Languages for bibliography styles

Jean-Michel Hufflen

LIFC (EA CNRS 4269)

University of Franche-Comté

16, route de Gray

25030 Besangon Cedex, France

hufflen (at) lifc dot univ-fcomte dot fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

BiIBTEX is the most commonly used bibliography processor in conjunction with
IMTEX. To put bibliography styles into action, it uses a stack-based language
written with postfixed notation. Recently, other approaches have been proposed:
some use a script programming language for designing bibliography styles, e.g.,
Perl in Bibulus; some are based on converters to XML texts and use XSLT for
bibliography styles; a recent proposal —the biblatex package — consists of using
IXTEX commands to control the layout of generated references, and more. We
propose a comparative study of these approaches and show which programming
styles are encouraged, from a point of view related to methodology. Finally, we
explain how this study has influenced the design of MIBIBTEX, our multilingual
reimplementation of BIBTEX.

Keywords Bibliographies, bibliography styles, BIBTEX, software quality, bst,
BIBTEX++, cl-bibtex, MIBIBTEX, packages natbib, jurabib, and latexbib, T1b, XML,

XSLT, nbst, Perl, DSSSL.

1 Introduction

Three decades ago,' some programming languages
were designed to be universal, that is, to serve all
purposes. All of these languages—e.g., PL/1 [25],
Ada [2] —have failed to be accepted as filling this
role. Nowadays, only the C programming language
[30] is still used for a very wide range of applications.
Present-day programming languages are very diverse
and put different paradigms into action: procedural
programming, object-oriented programming, func-
tional programming, process-oriented programming,
logic programming, ... In addition, most of these
present languages are specialised, that is, designed
for particular purposes, even if they are not formally
limited to only one class of applications: two good ex-
amples are Java [28] and C+# [39], originally designed
for client-server applications. But, if you are building
a standalone application using the object-oriented
paradigm and are especially interested in the effi-
ciency of the resulting program, it is well-known that
a better choice is C++ [47], even if code generated
by Java and C# compilers have greatly improved
since their first versions.

The purpose of this article is neither a compari-
son of all programming languages — which would be

1 That is, at the time of TEX’s first version. .. Let us recall
that we are celebrating TEX’s 30th birthday.

impossible —nor an absolute comparison of several
programming languages — which would not be of in-
terest — but a comparative study of languages used
to develop bibliography styles. BIBTEX [42] is the
bibliography processor most commonly used in con-
junction with the IATEX typesetting engine [40], so
most of the bibliography styles used for I#TEX texts
are written using bst, the stack-based language of
BIBTEX [40, § 13.6]. But other proposals exist, based
on other programming paradigms, and this article
aims to study the advantages and drawbacks of these
approaches. We will not discuss the typographical
conventions ruling the typesetting of bibliographies —
readers interested in this topic can consult manuals
like [5, § 10], [6, §§ 15.54-15.76], [16, pp. 53-54] —
but are interested only in the development of bibli-
ography styles— from scratch or derived from other
existing styles—and the expressive power of lan-
guages used to do that.

In Section 2, we recall the main quality factors of
software, and show which factors are interesting from
a point of view related to bibliography styles. Then
BIBTEX is studied in Section 3, including some mod-
ern use of this program. Other approaches are based
on XML,? as shown in Section 4. This experience

2 EXtensible Markup Language. Readers interested in an
introductory book to this formalism can refer to [44].

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 401

Jean-Michel Hufflen

of dealing with several ways to develop bibliogra-
phy styles has influenced the design of MIBIBTEX —
for ‘MultiLingual BIBTEX’, our multilingual reim-
plementation of BIBTEX [18]: we explain that in
Section 5. Reading this article requires only a ba-
sic knowledge of BIBTEX and a little experience
about bibliography styles; we think that our exam-
ples should be understandable,? even if readers do
not know thoroughly the languages used throughout
this article.

2 Criteria

Of course, this section does not aim to replace a
textbook about software quality, we just make precise
the terminology we use. Then we explain how these
notions are applied to bibliography styles.

2.1 General point of view

The main reference for the terminology used in soft-
ware quality is the beginning of [38], as recalled in
most works within this topic. [38, Ch. 1] clearly
distinguishes external quality factors, that may be
detected by users of a product, and internal factors,
that are only perceptible to computer professionals.
Here are the main external quality factors:

correctness the ability of software products to ex-
actly perform their tasks, as defined by the re-
quirements and specification;

robustness the ability of software systems to work
even in abnormal conditions;

extendability the ease with which products may
be adapted to changes of specifications;

reusability the ability of products may be com-
bined with others;

others being efficiency, portability, verifiability, in-

tegrity, ease of use, etc. Internal quality factors in-

clude modularity, legibility, maintainability, etc. The

factors related to modularity are studied more pre-

cisely in [38, Ch. 2], they include:

modular decomposability the ability for a prob-
lem to be decomposed into subproblems;

modular composability the ability for modules
to be combined freely with each other;

modular understandability each module can be
separately understood by a human reader;

modular continuity a small change in a problem
specification results in a change of just a module
or few modules.*

3 Complete texts may be downloaded from MIBI1BTEX’s
home page: http://lifc.univ-fcomte.fr/ hufflen/texts/
mlbibtex/hc-styles/.

4 This terminology is related to mathematical analysis: a
function is continuous if a small change in the argument will
yield a small change in the result.

2.2 Tasks of a bibliography processor

Given citation keys —stored in an .aux file when a
source text is processed by BTEX [40, Fig. 12.1]—a
bibliography processor searches bibliography data-
base files for resources associated with these keys,
performs a sort operation on bibliographical items,’
and arranges them according to a bibliography style,
the result being a source file for a ‘References’ section,
suitable for a word processor. So does BIBTEX.

Roughly speaking, a bibliography has to do two
kinds of tasks:

e some are related to ‘pure’ programming, e.g.,
sorting bibliographical items, while

e others are related to put markup, in order for
the word processor to be able to typeset the
bibliography of a printed work.

The extendability of such a tool concerns these
two kinds of tasks. On the one hand, we should be
able to add a new relation order for sorting biblio-
graphical items, since these lexicographical orders
are language-dependent [24]. On the other hand,
we should be able to build a new bibliography style,
according to a publisher’s specification. This style
may be developed from scratch if we do not find a
suitable existing style. Or we can get it by introduc-
ing some changes to another style, i.e., reusing some
parts of the previous style. In addition, finding the
parts that have to be changed is related to the notion
of modular understandability. Of course, building
a new bibliography style is not an end-user’s task,
but it should be possible by people other than the
bibliography processor’s developers.

Another notion is related to extending a bibli-
ography processor: improving it so that it is usable
with more word processors. If we consider the for-
mats built on TEX [34], WTEX is still widely used, but
more and more people are interested in alternatives,
such as ConTEXt [13]. Likewise, some new typeset
engines, such as XqTEX [32] or LuaTEX [14], should
be taken into account. In addition, it should be pos-
sible to put the contents of a bibliography database
file on a Web page, that is, to express the informa-
tion about these items using the HTML language.®
A last example is given by RTF:” at first glance,
deriving bibliographies using the internal markup
language of Microsoft Word may seem strange, but

5 ... unless the bibliography style is unsorted, that is, the

order of items is the order of first citations. In practice, most
bibliography styles are ‘sorted’.

6 HyperText Markup Language. [41] is a good introduc-
tion to this language.

7 Rich Text Format. A good introductory book to this
markup language is [4].

402 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

@STRING{srd = {Stephen Reeder Donaldson}}

©BOOK{donaldson1993,
AUTHOR = srd,
TITLE = {The Gap into Power: A Dark and
Hungry God Arises},
PUBLISHER = {HarperCollins},
SERIES = {The Gap},
NUMBER = 3,
YEAR = 1993}

©@BO0OK{donaldson1993a,
EDITOR = srd,
TITLE = {Strange Dreams},
PUBLISHER = {Bantam-Spectra},
YEAR = 1993}

©@BOOK{murphy-mullaney2007,
AUTHOR = {Warren Murphy and James
Mullaney},
TITLE = {Choke Hold},
PUBLISHER = {Tor},
ADDRESS = {New-York},
SERIES = {The New Destroyer},
NUMBER = 2,
NOTE = {The original series has been
created by Richard Sapir and
Warren Murphyl,
YEAR = 2007,
MONTH = nov}

Figure 1: Bibliographical entries in the .bib format.

such a strategy may cause Word end-users to discover
progressively the tools related to TEX.

3 BIBTEX

3.1 Basic use

How to use BIBTEX in conjunction with KTEX is
explained in [40, § 12.1.3], and the .bib format, used
within bibliography database files, is detailed in [40,
§ 13.2]; an example is given in Figure 1. As men-
tioned above, bibliography styles are written in a
stack-based language using postfixed notation. As
an example, Figure 2 gives two functions used within
the plain style of BIBTEX.

BIBTEX is indisputably correct® and robust: as
far as we have used it, the bibliographies it derives
have satisfactory layout, at least for bibliographies
of English-language documents. In addition, it has
never crashed during our usage of it, even when
dealing with syntactically incorrect .bib files.

8 When the word ‘correct’ is used in software engineering,
it is related to the existence of a formal specification —i.e., a
mathematical description — of the behaviour, and the program
should have been proved correct w.r.t. this specification. Here
we adopt a more basic and intuitive sense: the program’s
results are what is expected by end-users.

Languages for bibliography styles

FUNCTION {format.title}
{ title empty$
{" 3
{ title "t" change.case$ }
if$
}
FUNCTION {new.sentence.checkb}
{ empty$
swap$ empty$
and
’skip$
‘new.sentence
if$
}

Figure 2: Two functions from BIBTEX’s plain style.

Extending BIBTEX, however, may be very te-
dious, especially for functionalities related to pro-
gramming. For example, the only way to control the
SORT command consists of using the entry variable
sort.key$ [40, Table 13.7]. Some workarounds may
allow the definition of sort procedures according to
lexicographic orders for natural languages other than
English, but with great difficulty. Developing bibli-
ography styles for word processors other than ITEX
has been done, but only for formatters built on TEX,
e.g., ConTEXt [17]. In other cases, this task may be
difficult since some features related to TEX are hard-
wired in some built-in functions of BIBTEX, e.g., the
use of ‘7’ for an unbreakable space character is in
the specification of the format.name$ function [23].
As an example, there is a converter from .bib format
to HTML: BIBTEX2HTML [9]. It uses BIBTEX, but
most of this translator is not written using BIBTEX's
language, but in Objective CAML,” a strongly typed
functional programming language including object-
oriented features [37]. Using such a tool—as well
as the bibliography styles developed for ConTEXt’s
texts [17] —is possible only if end-users do not put
IMTEX commands inside the values associated with
BI1BTEXs fields.

We think that the continuity of the bibliogra-
phy styles written using the bst language is average.
Introducing some changes concerning the layout of
fragments is easy, e.g., short-circuiting case changes
for a title, as shown in [40, § 13.6.3|, as well as chang-
ing the style of a string by using a command like
‘\emph{...}’. That is due to the fact that inserting
additional strings before or after the contents of a
field is easy if this information is at the stack’s top
and has not been popped yet by means of the write$

9 Categorical Abstract Machine Language.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 403

Jean-Michel Hufflen

\bibitem[{Murphy\jbbtasep Mullaney\jbdy {2007}}%
{3%
{{0}{}{book}{2007HIH I}/

{New-York\bpubaddr {} Tor\bibbdsep {} 2007}1}J

{{Choke Hold}}
23
J{murphy-mullaney2007}

\jbbibargs {\bibnf {Murphy} {Warren} {W.} {} {}\Bibbtasep \bibnf {Mullaney}
{James} {J.} {} {}} {Warren MurphyJames Mullaney} {aus} {\bibtfont {Choke
Hold}\bibatsep\ \apyformat {New-York\bpubaddr {} Tor\bibbdsep {} \novname\
2007} \numberandseries {2}{The New Destroyer Series} \jbnote {1} {The
original series has been created by Richard Sapir and Warren Murphy} }
{\bibhowcited} \jbendnote {The original series has been created by Richard
Sapir and Warren Murphy} \jbdoitem {{Murphy}{Warren}{W.}{}{};
{Mullaney}{James}{J.}{}{}} {} {} \bibAnnoteFile {murphy-mullaney2007}

Figure 3: BIBTEX’s output as used by the jurabib package.

function. For the same reason, adding a closing punc-
tuation sign is easy; a shorthand example to do that
is the add.period$ function. Often handling a new
field is easy, too [40, § 13.6.3]. On the other hand,
changing the order of appearance of fields may be
tedious.

In addition, it is well-known that there is no
modularity within the bst language: each style is a
monolithic file. If you develop a new style from an
existing one, you just copy the .bst file onto a new
file, and apply your changes. Of course, doing such
a task requires good ‘modular understanding’ of the
functions belonging to the ‘old’ style. Sometimes,
that is easy —cf. the format.title function given
in Figure 2—while other times, understanding the
role of a function is possible only if you know the
stack’s state—cf. the new.sentence.checkb func-
tion in the same figure.!?

3.2 Task delegation

Originally, all the predefined bibliography styles pro-
vided by BIBTEX’s generated ‘pure’ IMTEX texts, in
the sense that only basic M TEX commands were used:
the \bibitem command, the thebibliography en-
vironment [40, § 12.1.2], and some additional com-
mands for word capitalisation or emphasis. No addi-
tional package was required when derived bibliogra-
phies were processed by KTEX.

This situation has changed when the author-
date system was implemented by the natbib package
and the bibliography styles associated with it [40,
§ 12.3.2]. Progressively, other bibliography styles
have been released, working as follows: BIBTEX’s
output is marked up with BTEX commands defined

10 This function is used when the decision of beginning a
new sentence within a reference depends on the presence of
two fields within an entry.

in an additional package. Citation and formatting
functions can be customised by redefining these com-
mands. In other words, we can say that BIBTEX
delegates the layout of bibliographies to these com-
mands.

3.2.1

Figure 3 gives an example of using the jurabib bib-
liography style. The IZTEX commands provided by
the jurabib package can be redefined like any IXTEX
command, although the best method is to use the
\jurabibsetup command, as shown in [40, § 12.5.1].
A similar approach is used within the amsxport bibli-
ography style [8] and the bibliography styles usable
with ConTEXt [17].

Interface packages

This modus operandi is taken to extremes by
the biblatex package [36]. In such cases, BIBTEX
is used only to search bibliography database files
and sort references. The advantage: end-users can
customise the layout of bibliographies without any
knowledge of the bst language. But BIBTEX still
remains used to sort references, and this task is not
easily customisable, as mentioned above.

3.2.2 Tib

In fact, this notion of task delegation already existed
in T1b [1], a bibliography processor initially designed
for use with Plain TEX, although it can also be used
with BTEX. An example of a bibliography style file
used by Tib is given in Figure 4: it consists of some
T1b commands —e.g., ‘£’ for ‘citations as footnotes’ —
followed by some definitions of TEX commands for
typesetting citation references and bibliographies’
items. That is, Tib delegates a bibliography’s layout
to these commands. Let us recall that the bibliogra-
phy database files searched by this processor do not

404 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Languages for bibliography styles

#

standard footnote format (latex)

#

if titles are desired in loc. cit. references, see note in stdftl.ttx
#

include word-definition file (journals and publishers)
I TMACLIB amsabb.ttz

f footnotes

L use ibid and loc cit

Cco empty citation string

0 for multiple citations use ordering of reference file

%The lines below are copied verbatim into the output document as TeX commands.
%First the file Macros.ttx is \input with Macros and default settings.

%The control string \TMACLIB is just a path.
%The \footnote macro is from LaTeX

%

\input \TMACLIB stdftl.ttx %macros for formatting reference list
\Refstda\Citesuper %set general formats for reference list and citations

\def\Lcitemark{\footnotemark}\def\Rcitemark{}
\def\Citecomma{$~,$\footnotemark}

\def\LAcitemark{\addtocounter{footnote}{1}\arabic{footnotel}}

\def\RAcitemark{}

\def\LIcitemark#1\RIcitemark{\def\Ztest{ }\def\Zstr{#1}}

Figure 4: The footl.tib file.

%A |srdl

%T The Gap into Power: A Dark and Hungry God
Arises

%P HarperCollins

%S The Gap

W 3

%D 1993

%E |srdl
%T Strange Dreams
%I Bantam-Spectra
%D 1993

%A Warren Murphy
%A James Mullaney

%0 November 2007. The original series...

The ‘srd’ abbreviation should be defined by means of
the following Tib command:

D srd Stephen Reeder Donaldson

Figure 5: Entries using the Refer format.

use the .bib format, but rather the Refer format,!

an example being given in Figure 5.

3.3 Extending bst
The following works allow bibliography style writ-

11 The pybibliographer program can be used as a converter
from the .bib format to the Refer format: see [40, § 13.4.5] for
more details.

ers to compile bst styles, and annotate or extend
the result. As far as we know, they are not widely
used. If we consider a style already written in bst
and to be adapted, this approach allows more am-
bitious changes. However, they do not propose a
new methodology for designing such styles, so tak-
ing maximum advantage of the target languages is
difficult for style designers.

3.3.1 BIBTEXt++

BIBTEX++ [31] allows a bst style file to be com-
piled into Java classes [28]. As an example, the
new.sentence.checkb function (cf. Fig. 2) is com-
piled into the Java function new_sentence_checkb
given in Figure 6. BIBTEX++ can also run native bib-
liography styles developed in Java, from scratch or de-
rived from the compilation of ‘old’ styles. Other func-
tionalities, such as the production of references for
programs other than KTEX, can be implemented by
means of plug-ins. There are six steps in BIBTEX++s
process: for example, parsing a .bst file is the fourth
one. After each step, there is a hook, as a callback
that allows this process to be customised.

3.3.2 cl-bibtex

cl-bibtex [35] is based on ANSI*? Common Lisp [11].
It includes an interpreter for the bst language, and

12 American National Standards Institute.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 405

Jean-Michel Hufflen

public void new_sentence_checkb(String s0,
String s1) {
int 10, i1 ; i1l = BuiltIn.empty(sl) ;
i0 = i1 ; il = BuiltIn.empty(s0) ;
i0 = and(new Cell(i0),il) ;
if (i0 <= 0) new_sentence() ;

Figure 6: A bst function compiled into Java.

(define-bst-primitive "if$"
((pred (boolean)) (then (symbol body))
(else (symbol body)))
O
:interpreted
(bst-execute-stack-literal
(if pred then else)))

Figure 7: Implementation of if$ in cl-bibtex.

can also compile a BIBTEX style file into a Common
Lisp program, as a starting point for customising such
a style, by refining the corresponding Common Lisp
program. As a short example, we show in Figure 7
how the if$ function of BIBTEX is implemented.

4 Using XML-like formats

Over the past several years, XML has become a cen-
tral formalism for data interchange, so some projects
are based on an XML-like language representing bib-
liographical items.

4.1 Converters

Several converters from the .bib format into an XML-
like format have been developed: the bib2xml pro-
gram [43], and the converter used as part of the
BIBTEXXML project [12]. MIBIBTEX uses such a
converter, too, and the result of the conversion of
the second bibliographical entry of Figure 1 is given
in Figure 8; the conventions used throughout such
XML texts are a revision of the specification given
in [10, § B.4.4].

The main difficulty of these tools is related to
the BTEX commands put inside the values associ-
ated with BIBTEX fields. The bib2xml converter
expands the commands for accents and diacritical
signs into the corresponding single letters belonging
to the Unicode encoding [48], but just drops out
the ‘\’ characters that open the other commands.
MIBIBTEX’s converter processes more commands —
e.g., \emph, \textbf —but of course, the way of deal-
ing with user-defined commands should be defined
by end-users [21].

<book id="donaldson1993a">
<editor>
<name>
<personname>
<first>Stephen Reeder</first>
<last>Donaldson</last>
</personname>
</name>
</editor>
<title>Strange Dreams</title>
<publisher>Bantam Spectra</publisher>
<year>1993</year>
</book>

Figure 8: XML-like format used in MIBIBTEX.

4.2 XSLT

XSLT!? is the language used for the transformation
of XML texts. Building a ‘References’ section is a
particular case of transformation. This point is true
for IATEX source files as well as verbatim texts or
HTML pages. Figure 9 shows how multiple authors
or editors connected by an empty and tag can be pro-
cessed, the result being a source text for KTEX. More
ambitious examples of using XSLT for typesetting
texts are given in [46].

We have personally written many XSLT pro-
grams serving very diverse purposes. This language
allows good modularity and reusability of fragments
of existing programs. It allows users to write robust
programs, too. As for developing bibliography styles,
it offers good continuity, except for multilingual ex-
tensions. It was difficult to add information for a
natural language without directly modifying an ex-
isting style. More precisely, that was difficult with
the first version (1.0) [49], but has been improved
in XSLT 2.0 where using modes has been refined
[50, § 6.5]. Likewise, the expressive power of the
xsl:sort element has been improved in this new
version [50, § 13].

Extending XSLT functionalities often consists
of calling external functions written using a more

‘classical’ programming language such as C or Java.

That is possible, but not in a portable way, because it
depends on the programming languages accepted by
each XSLT processor. In practice, this point mainly
concerns new lexicographical order relations within
bibliography styles.

4.3 nbst

nbst'# is the language used within MIBIBTEX for
specifying bibliography styles. As explained in [18],

13 eXtensible Stylesheet Language Transformations.
14 New Bibliography STyles.

406 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

<xsl:template match="author">
<xsl:apply-templates/><xsl:text>. </xsl:text>
</xsl:template>

<xsl:template match="editor">
<xsl:apply-templates/>
<xsl:text>, </xsl:text>
<xsl:choose>
<xsl:when test="count(*) > 1">
<xsl:text>\bbled</xsl:text>
</xsl:when>
<xsl:otherwise>\bbleds</xsl:otherwise>
</xsl:choose>
<xsl:text>. </xsl:text>
</xsl:template>

<xsl:template match="name | personname">
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="first">
<xsl:value-of select="concat(.,’ ’)"/>
</xsl:template>

<xsl:template match="last">
<xsl:value-of select="."/>
</xsl:template>

<xsl:template match="and">
<xsl:choose>
<xsl:when
test="following-sibling::and or
following-sibling: :and-others">
<xsl:text>, </xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text> \bbland\ </xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Figure 9: Dealing with authors or editors in XSLT.

this language is close to XSLT, and introduces a kind
of inheritance for natural languages’ specification.
First, we look for a template whose language at-
tribute matches the current language, and second
a more general template, without the language at-
tribute.

MIBIBTEX is written in Scheme [29], and XML
texts are represented using the SXML'® format [33].
Roughly speaking, this format uses prefixed nota-
tion, surrounded by parentheses—as in any Lisp
dialect — for tags surrounding contents. As an exam-
ple, the result of parsing the bibliographical entries
of Figure 1 is sketched in Figure 10. Dealing directly
with Scheme functions is needed when new language-
dependent lexicographical order relations are to be

15 Scheme implementation of XML.

Languages for bibliography styles

(*TOP*
(*PI* xml "version=\"1.0\"
encoding=\"IS0-8859-1\"")
(mlbiblio
(book
(@ (id "murphy-mullaney2007"))
(author
(name (personname (first "Warren")
(last "Murphy")))
(and)
(name (personname (first "James")
(last "Mullaney"))))
(title "Choke Hold") (publisher "Tor")
(year "2007") (month (nov)) (number "2")
(series "The New Destroyer")
(address "New-York")
(note "The original series..."))))

Figure 10: Using the SXML format.

added [24]. nbst texts can call functions directly
written in Scheme, as well.

4.4 Perl

Perl!6 [51] can be used for bibliography styles, as is
done by Bibulus [52], this program being based on the
bib2xml converter [43]. The resulting bibliography
styles are compact, modular, and easily extensible.
The modularity of Bibulus styles can be illustrated
by the \bibulus command that can be used in place
of the \bibliographystyle command:

\bibulus{citationstyle=numerical,
surname=comes-first,
givennames=initials,
blockpuctuation=.}

Multilingual features are processed by means of sub-
stitutions, which can easily be incorrect: for example,
a month name precedes the year in English, but fol-
lows the year in Hungarian. So a rough substitution
of an English month name is insufficient.'” Last
but not least, Bibulus is not very easy to use, it is
presently accessible only to developers.

4.5 DSSSL

DSSSL!® [27] was initially designed as the stylesheet
language for SGML' texts. Since XML is a subset
of SGML, stylesheets written using DSSSL can be
applied to XML texts. DSSSL is rarely used now,

16 Practical Extraction Report Language.

17 The same criticism holds for the babelbib package [15].

18 Document Style Semantics Specification Language.

19 Standard Generalised Markup Language. Now it is only
of historical interest. Readers interested in this metalanguage
can refer to [3].

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 407

Jean-Michel Hufflen

<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN">

<style-sheet>
<style-specification id="hcs">
<style-specification-body>
(root (let ((margin-size 1in)) ; DSSSL uses quantities, analogous to TEX’s dimensions.
(make simple-page-sequence

;3 An identifier ending with the ‘:’ characters is a key, bound to the following value.
page-width: 210mm page-height: 297mm left-margin: margin-size
right-margin: margin-size top-margin: margin-size bottom-margin: margin-size
header-margin: margin-size footer-margin: 12mm center-footer: (page-number-sosofo)
(process-children))))

(element book

(make-reference (lambda (current-children) ; Function to be applied as soon as the general

(make sequence ; framework for a reference has just been built: cf. the
(author-xor-editor current-children) ; definition of our make-reference
(process-matching-children "title") ; function below.

(process-seriesinfo current-children)
(apply sosofo-append
(map process-matching-children
> ("publisher" "address" "month" "year" "note")))))))
(element author (process-author-or-editor)) ; The same for editor elements.
(element name (process-children-trim)) ; The same for number elements.
(element personname (processing-matching-children "first" "von" "last" "junior"))
(element first (ending-with space-literal))
(element last (process-children-trim))
(element and (if (node-list-empty? (select-elements (follow (current-node)) "and"))
(literal " and ")
comma-space-literal))
(element (book title) (make sequence font-posture: ’italic (process-and-closing-period)))
(element year (process-and-closing-period)) ; The same for series and note elements.
(element month (make sequence (process-children) space-literal))
(element jan (literal "January")) ... ; Other month elements skipped.
(element publisher (ending-with comma-space-literal)) ; The same for address elements.

;3 Definitions for particular literals and strings:

(define comma-space-literal (literal ", "))
(define period-string ".")
(define space-literal (literal " "))

;3 General framework for references’ layout:
(define make-reference
(let ((biblioentry-indent 20pt))
(lambda (process-f)
(make paragraph
first-line-start-indent: (- biblioentry-indent) font-size: 12pt quadding: ’justify
space-before: 10pt start-indent: biblioentry-indent
(literal "[" (attribute-string "id") "] ") (process-f (children (current-node)))))))
;3 Some utility functions:
(define (process-author-or-editor)
(process-matching-children "name" "and"))
(define (ending-with literal-0)
(make sequence (process-children-trim) literal-0))

</style-specification-body>
</style-specification>

</style-sheet>

Figure 11: Example of a DSSSL stylesheet.

408 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

(define (process-and-closing-period)

(let ((the-string (string-trim-right (data (current-node)))))

(literal (if (check-for-closing-sign? the-string)

the-string

Languages for bibliography styles

; Get the contents and leave trailing
; Space characters.
; Checking if the-string ends with ., ‘?’, or ‘!’

(string-append the-string period-string)))))

(define (author-xor-editor node-list)

(let ((author-node-list (select-elements node-list "author"))
(editor-node-list (select-elements node-list "editor")))

(make sequence
(cond ((node-list-empty? author-node-list)

(if (node-list-empty? editor-node-list)
(error "Neither author, nor editor!")
(make sequence (process-node-list editor-node-list) (literal ", editor."))))

((node-list-empty? editor-node-list)
(make sequence

(process-node-list author-node-list)

(if (check-for-closing-sign? (string-trim-right (data author-node-list)))

(empty-sosofo)
(literal period-string))))

(else (error "Both author and editor!")))

(literal " "))))

Figure 12: Some auxiliary functions implemented in DSSSL.

(define (b-if$ sxml-mlbiblio-tree current-entry-plus)
;3 sxml-biblio-tree is the complete tree of all the entries to be processed, current-entry-plus the annotated

;; tree of the current entry.
(let* ((i2 ((b-bst-stack-pv ’pop)))
(i1 ((b-bst-stack-pv ’pop)))

(if (integer? i0)

5 “Else” part.
5 “Then” part.
(10 ((b-bst-stack-pv ’pop)))) ; Condition.

(b-process-sequence (if (positive? i0) il i2) sxml-mlbiblio-tree current-entry-plus)

(begin

((msg-manager ’bst-type-conflict) ’if$ i0)

#t))))

Figure 13: Implementing if$ within MIBIBTEX’s compatibility mode.

but the example we show illustrates how a functional
programming language can implement a bibliography
style. More examples can be found in [10, § 7.5].

Figure 11 gives some excerpts of a stylesheet that
displays the items of a bibliography by labelling them
with their own keys. The core expression language
of DSSSL is a side-effect free subset of Scheme. As
shown in Figure 11, processing elements uses pattern-
matching:

(element name E)
(element (namey name) E;)

the E expression specifies how to process the name
element, unless this element is a child of the name(
element, in which case the Ey expression applies.
The choice of the accurate expression is launched
by functions such as process-matching-children,
process-children, and process-node-list.

Expressions like E or Eq consist of assembling
literals by means of the make form, using types pre-
defined in DSSSL: paragraph, sequence, ... The
generic type of such results is called sosofo?® w.r.t.
DSSSL’s terminology.

Figure 12 illustrates this style of programming
by showing some specific details: how to implement
BIBTEX’s add.period$ function, and the switch be-
tween author and editor elements for a book. This
stylesheet can be run by the jade?' program; as
shown in [10, § 7.5.2], the TEX-like typeset engine
able to process such results is JadeTEX.

Fragments of DSSL stylesheets can be organised
into libraries, so this language is modular. Most of
the implementations of it are robust, efficient, but

20 Specification Of a Sequence Of Flow Objects.
21 James Clark’s Awesome DSSSL Engine.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 409

Jean-Michel Hufflen

they are neither extensible, nor easy to use, because
we have to make precise a predefined backend. For
example, if jade is used to process the complete
stylesheet given in Figures 11 & 12, the possible
backends are tex (resp. rtf), in which case the result
is to be processed by JadeTEX (resp. Microsoft Word
or OpenOffice). Deriving texts directly processable
by IMTEX or ConTEXt is impossible.

5 The application to MIBIBTEX

When we designed MIBIBTEX’s present version, we
had had much experience in programming DSSSL and
XSLT stylesheets. We thought that a language close
to DSSSL would provide more expressive power for
developing, but would be accessible only for program-
mers. A language close to XSLT is better from this
point of view, provided that an extension mechanism
is given for operations related to pure programming,
e.g., the definition of new relation orders [24]. In
addition, performing some operations may be more
difficult than in bst, e.g., the add.period$ function-
ality.

The only solution is to provide an initial library
legible from a point of view related to methodology
[19]. A compatibility mode is needed in order to ease
the transition between old and new bibliography
styles [20] — Figure 13 shows how the if$ function is
implemented within this mode, in comparison with
the implementation of cl-bibtex, given in Figure 7.
This progressively led us to the architecture described
in [22].

We can be objective about MIBIBTEX only with
difficulty. However, several points seem to us to
confirm our choices. First, XSLT has succeeded as a
language able to deal with XML texts, much more so
than DSSSL with SGML texts. Second, the need for
a classical programming language: using the whole
expressive power of Scheme — and not a subset as in
DSSSL — allowed us to program efficiently, by using
advanced features of Scheme. Third, our experience
with ConTEXt [21] seems to confirm the extendability
of our tool.

6 Conclusion

Table 1 summarises our experience with the lan-
guages we have described above. Of course, this
synthesis is not as objective as benchmarks would
have been. It is just a study of the effort we have
made for developing bibliography styles, and a pro-
fessional view of the results we have found.

To end, let us make a last remark about what
is done in MIBIBTEX: the separation of function-
alities related to programming, written in Scheme,
and specifications of layout, given in an XSLT-like

& 2| £
z S 2] 2
M =< A M
Correctness v
Robustness v v v
Extendability b 4 4 X |v/X
Reusability v/X
Modularity poor 4 vV | v
Continuity average v v v
Efficiency 4 v
Ease of use v average | X b 4

@ ... except for multilingual features, in XSLT 1.0.

Table 1: Languages for bibliography styles: synthesis.

language. Analogous combinations exist, the most
widely used are a logic programming language, like
Prolog,?? called within a C (or similar) program.
This modus operandi allows programmers to use a
very specialised language only when it is suitable.
There is an analogous example within TEX’s world:
LuaTgX. Functionalities related to typesetting are
performed by commands built into TEX, whereas
other functions are implemented by means of the
Lua language [26]. So TEX is used as the wonder-
ful typesetting engine that it is, and functionalities
difficult to implement with TEX’s language?? are del-
egated to a more traditional programming language.

BIBTEX is still a powerful bibliography proces-
sor, but the main way to extend it easily concerns
the layout of the bibliographies. That was sufficient
some years ago, but not now with the use of Unicode,
new processors like X{IEX, and new languages like
HTML.

7 Acknowledgements

I have been able to write this article because I have
had much occasion to become familiar with the lan-
guages and applications mentioned above. For ex-
ample, some years ago, a colleague asked me to help
him with a DSSSL program because I knew Scheme:
that was my first contact with this language and
SGML, before XML came out. Another time, a friend
who used Plain TEX asked me a question about Tib,
although I had merely heard of the name of this
program, and I discovered it in this way. So I was
thinking about all these people when I was writ-
ing this article, and I am grateful to them. Many
thanks to Karl Berry: as usual, he is a conscientious
proofreader and ‘figure-positioner’.

22 A good introductory book to this language is [7].
23 Some examples can be found in [45].

410 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

References

(1]

2]

13l

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

James C. ALEXANDER: T1b: a TgX
Bibliographic Preprocessor. Version 2.2, see
CTAN:biblio/tib/tibdoc.tex. 1989.
ANSI: The Programming Language Ada®
Reference Manual. Technical Report
ANSI/MIL-STD-1815A-1983, American
National Standard Institute, Inc. LNCS No.
155, Springer-Verlag. 1983.

Neil BRADLEY: The Concise SGML
Companion. Addison-Wesley. 1997.

Sean M. BURKE: RTF Pocket Guide. O’Reilly.

July 2003.

Judith BuTrcHER: Copy-Editing. The
Cambridge Handbook for Editors, Authors,
Publishers. 3rd edition. Cambridge University
Press. 1992.

The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a manual
of style revised and expanded. 1993.

William F. CLOCKSIN and Christopher S.

MELLISH: Programming in Prolog. 5th edition.

Springer-Verlag. 2003.

Michael DOWNES: “The amsrefs INXTEX
Package and the amsxport BIBTEX Style”.
TUGboat, Vol. 21, no. 3, pp. 201-209.
September 2000.

Jean-Christophe FILLIATRE and Claude
MARCHE: The BIBTEX2HTML Home Page.
June 2006. http://www.lri.fr/"filliatr/
bibtex2html/.

Michel GOOSSENS and Sebastian RAHTZ,
with Eitan M. GURARI, Ross MOORE, and

Robert S. SUTOR: The ETEX Web Companion.

Addison-Wesley Longmann, Inc., Reading,
Massachusetts. May 1999.

Paul GRAHAM: ANSI Common Lisp. Series
in Artificial Intelligence. Prentice Hall,
Englewood Cliffs, New Jersey. 1996.

Vidar Bronken GUNDERSEN and

Zeger W. HENDRIKSE: BIBTEX as

XML Markup. January 2007. http:
//bibtexml.sourceforge.net.

Hans HAGEN: ConTgXt, the Manual.
November 2001. http://www.pragma-ade.
com/general/manuals/cont-enp.pdf.

Hans HAGEN: “LuaTgX: Howling to the
Moon”. Biuletyn Polskiej Grupy Uzytkownikdéw
Systemu TEX, Vol. 23, pp. 63-68. April 2006.
Harald HARDERS: ,Mehrsprachige
Literaturverzeichnisse: Anwendung und
Erweiterung des Pakets babelbib“. Die

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
28]

[29]

Languages for bibliography styles

TEpXnische Komddie, Bd. 4/2003, S. 39-63.
November 2003.

Hart’s Rules for Composers and Readers at
the University Press. Oxford University Press.
39th edition. 1999.

Taco HOEKWATER: “The Bibliographic
Module for ConTEXt”. In: FuroTgX 2001, pp.
61-73. Kerkrade (the Netherlands). September
2001.

Jean-Michel HUFFLEN: “MIBIBTEX’s Version
1.37. TUGboat, Vol. 24, no. 2, pp. 249-262.
July 2003.

Jean-Michel HUFFLEN: “Bibliography Styles
Easier with MIBIBTEX”. In: Proc. EuroTEX
2005, pp. 179-192. Pont-& Mousson, France.
March 2005.

Jean-Michel HUFFLEN: “BIBTEX, MIBIBTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76-80. In BachoTgX 2006
conference. April 2006.

Jean-Michel HUFFLEN: “MIBIBTEX Meets
ConTEXt”. TUGboat, Vol. 27, no. 1, pp. 76-82.
EuroTEX 2006 proceedings, Debrecen,
Hungary. July 2006.

Jean-Michel HUFFLEN: “MIBIBTEX
Architecture”. ArsTgXnica, Vol. 2, pp. 54-59.
In GUIT 2006 meeting. October 2006.
Jean-Michel HUFFLEN: “Names in BIBTEX
and MIBIBTEX”. TUGboat, Vol. 27, no. 2,

pp- 243-253. TUG 2006 proceedings,
Marrakesh, Morocco. November 2006.
Jean-Michel HUFFLEN: “Managing Order
Relations in MIBIBTEX”. TUGboat, Vol. 29,
no. 1, pp. 101-108. EuroBachoTEX 2007
proceedings. 2007.

IBM SysTEM 360: PL/1 Reference Manual.
March 1968.

Roberto IERUSALIMSCHY: Programming in
Lua. 2nd edition. Lua.org. March 2006.
International Standard ISO/IEC
10179:1996(E): DSSSL. 1996.

Java Technology. March 2008.
http://java.sun.com.

Richard KeLSEY, William D. CLINGER,
Jonathan A. REES, Harold ABELSON,
Norman I. AbDAMS 1v, David H. BARTLEY,
Gary BrROOKS, R. Kent DYBVIG, Daniel P.
FrIEDMAN, Robert HALSTEAD, Chris
HansonN, Christopher T. HAYNES,

Fugene Edmund KOHLBECKER, JR, Donald
OXLEY, Kent M. PITMAN, Guillermo J.
RozAs, Guy Lewis STEELE, JR, Gerald Jay

411

Jean-Michel Hufflen

[30]

[31]

32]

133]

[34]

[35]

[36]

37]

[38]

[39]

[40]

412

SussMAN and Mitchell WAND: “Revised®

Report on the Algorithmic Language Scheme”.

HOSC, Vol. 11, no. 1, pp. 7-105. August 1998.

Brian W. KERNIGHAN and Dennis M.
RircHIE: The C Programming Language. 2nd
edition. Prentice Hall. 1988.

Ronan KERYELL: “BIBTEX++: Towards
Higher-Order BIBTEXing”. In: FuroTgX 2003,
p- 143. ENSTB. June 2003.

Jonathan KEw: “X{TEX in TEX Live and
beyond”. TUGboat, Vol. 29, no. 1, pp. 146-150.
EuroBachoTEX 2007 proceedings. 2007.

Oleg E. KISELYOV: XML and Scheme.
September 2005. http://okmij.org/ftp/
Scheme/xml.html.

Donald Ervin KNUTH: Computers

& Typesetting. Vol. A: The TEXbook.
Addison-Wesley Publishing Company,
Reading, Massachusetts. 1984.
Matthias KOpPPE: A BIBTEX System
in Common Lisp. January 2003. http:
//www.nongnu.org/cl-bibtex.

Philipp LEHMAN: The biblatex Package.
Programmable Bibliographies and Citations.
Version 0.7 (beta). December 2007.
http://www.ctan.org/tex-archive/macros/
latex/exptl/biblatex/doc/biblatex.pdf.

Xavier LEROY, Damien DOLIGEZ, Jacques
GARRIGUE, Didier REMY and Jéréme
VOUILLON: The Objective Caml System.
Release 0.9. Documentation and User’s
Manual. 2004. http://caml.inria.fr/pub/
docs/manual-ocaml/index.html.

Bertrand MEYER: Object-Oriented Software
Construction. Series in Computer Science.
Prentice Hall International. 1988.

MICROSOFT CORPORATION: Microsoft C#
Specifications. Microsoft Press. 2001.

Frank MITTELBACH and Michel GOOSSENS,
with Johannes BRAAMS, David CARLISLE,
Chris A. ROWLEY, Christine DETIG and
Joachim SCHROD: The ETEX Companion. 2nd
edition. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

Chuck MusciaNO and Bill KENNEDY: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

Oren PATASHNIK: BIBTEXing. February 1988.
Part of the BIBTEX distribution.

Chris PurNaM: Bibliography Conversion
Utilities. February 2005. http://www.scripps.
edu/"cdputnam/software/bibutils/
bibutils.html.

Erik T. RAY: Learning XML. O’Reilly
& Associates, Inc. January 2001.

Denis B. ROEGEL : « Anatomie d’une
macro ». Cahiers GUTenberg, Vol. 31, p. 19-27.
Décembre 1998.

Bob STAYTON: DocBook—XSL. The Complete
Guide. 3rd edition. Sagehill Enterprises.
February 2005.

Bjarne STROUSTRUP: The C++ Programming
Language. 2nd edition. Addison-Wesley
Publishing Company, Inc., Reading,
Massachusetts. 1991.

THE UNICODE CONSORTIUM: The Unicode
Standard Version 5.0. Addison-Wesley.
November 2006.

W3C: XSL Transformations (XSLT).

Version 1.0. W3C Recommendation. Edited
by James Clark. November 1999. http:
//www.w3.org/TR/1999/REC-xs1t-19991116.

W3C: XSL Transformations (XSLT).

Version 2.0. W3C Recommendation. Edited
by Michael H. Kay. January 2007. http://
www.w3.org/TR/2007/WD-xs1t20-20070123.
Larry WALL, Tom CHRISTIANSEN and Jon
ORWANT: Programming Perl. 3rd edition.
O’Reilly & Associates, Inc. July 2000.

Thomas WIDMAN: “Bibulus—a Perl XML
Replacement for BIBTEX”. In: FuroTEX 20083,
pp. 137-141. ENSTB. June 2003.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Vistas for TEX: liberate the typography! (Part I)

Chris Rowley

Semantic Maths for Alll Project

Department of Mathematics and Statistics

Faculty of Mathematics, Computing and Technology
Open University, London, UK

c.a.rowley (at) open dot ac dot uk

Abstract

This is a polemic in favour of liberating the core typesetting structures and algorithms
around which TEX is built from the monolithic superstructure of the mini-dinosaur of a
program called tex and its more or less modernised and approachable derivatives such as
xetex and luatex.

Although the high-level aims of the programme of activity advocated here have a
lot in common with those of the very exciting and active LuaTEX project, the route I
propose seems to me to be very different. The major ambition of the latter project is
to embed (something similar to) the whole of the current TEX system within a vastly
more complex monolith [sic] of an application which will presumably be well-adapted to
the formatting needs of oriental languages. To this monolith are now being added many
well-oriented intrusions [sic] into but a single instance of that ancient bedrock of TEX!

Of course, luatex promises to provide a spectacularly sophisticated and highly
hackable system that will eventually enable a great evolutionary radiation of species
within the phylum of automated document processing; hence the importance and
fascination, for me at least, of the developmental path of the LuaTEX project.

Pursuing the paleontological metaphor well beyond its point of total and painful
collapse, my plan can be thought of as providing many tools that can be easily dispersed
in such a way that TEX’s clever genes can influence (for the good) far more aspects of the
evolution of automated typesetting: all this abundance being more speedily and robustly
achieved due to not being held back by the decision to build all future systems on a
perfectly preserved and complete digestive system from a fossilised ancestral TEXosaur.

I am here also making a plea to the Grand Technical Wizards of TUG to widen
support from their development fund’s treasure chest to encompass projects that are
designed to spread TEX’s influence and presence throughout the fertile modern world of
document processing via its algorithms alone, without the dead weight of its monolithic,
programmatic paradigm and the many somewhat dated aspects of its detailed software
design.

Adding topicality and an even longer time-base to the metaphors, please can we
have plentiful levels of international funding to support an actual Big Bang to get the
elementary particles of TEX spread throughout the typesetting universe, rather than
funding only an engineering wonder (for interesting but small-scale experiments to find
new TEX-like particles) such as the LHC: LuaTgX’s Hard-problems Cruncher, a ‘shining
star in the East’ which I fear may spin-off some big black-holes to trap even the most
energetic of us mortal, western programmers.

1 Introduction

This could easily have been the shortest genuine

paper in this, or any, TEX Users Group proceedings.

All it needs to say is: please support Free, Open
and Reusable Algorithms from TEX (yes folks, the
FORAT Campaign starts here!).

However, I will attempt, in this and subsequent
papers, to expand on some examples of what I mean
by liberating TEX’s formatting algorithms in the
form, for example, of C++ libraries, embeddable
JavaScript or similar reusable artefacts.

In Section 3 I shall also provide more or less

deep discussions, through examples, of the most im-
portant and most difficult part of doing this in a
practical and useful way: the provision of good ex-
ternal interfaces. But we shall begin in Section 2,
with some introductory remarks (not all strictly per-
tinent) concerning current TEX’s use and misuse
of its formatting subsystems. The paper concludes
with a note on non-TEX math formatters, being an
introduction to further study in this area.

The whole is permeated by a sincere plea for
greatly increased support, of all types and by the
many TUGs and all individuals in the TEX com-

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 413

Chris Rowley

munity, for this outward-looking work so crucial to
ensuring a very long life for both the great gifts that
arrived within TEX, and also for the inventive and
experimental spirit of its pioneers. May this paper
be the first of many that promote the creation of
Really Useful Software from TEX’s Inner Engineering
(the RUSTIE project).

2 The structure of TEX

The sum of the ‘document manipulation’ parts of
TEX can be well described as a text processing ap-
plication whose originality and utility is provided by
many specialised formatting engines. Many of these
engines are barely recognisable as independent soft-
ware artefacts due to the programming techniques
wisely chosen by Knuth to implement the system [6].
(His methodology can these days be well described
as the EO method: Extreme Optimisation, of both
space and time!)

Each of these deeply embedded formatting en-
gines will, when it has been disentangled from the
sticky mess of connections and optimisations that
holds it deep within TEX’s embrace, reveal itself as a
thing of beauty. Less appealing, each such newly dis-
entangled creature, whilst happy to be breathing free,
will also be a very vulnerable beast as it will have no
communication interfaces through which to nurture
it. Thus its liberators will need to carefully craft
protective interfaces in order to ensure the fledgling
formatter’s viability in the real and exciting, but
non-programmatic, world of 215° century documents.

These hidden gems include formatters for words,
LR-boxes (with natural and many other width speci-
fications), split-able [sic] LR-boxes, leaders of various
types, paragraphs, split-able [sic] paragraphs, justi-
fied lines, formulas, superscripts, fractions, radicals
with bar, etc.

One aspect of these specialised formatters clearly
shows TEX’s ancient pedigree, from a time when data
flow had kept to a minimum. This is their lack of
flexibility, in the following sense. With the exception
of using the concept of ‘unset glue’, TEX’s formatters
will always combine to produce, from a given input,
a unique, fully specified boxful of formatted output
(often with a claim of its ‘optimal’ quality).

As Frank Mittelbach and I have copiously ar-
gued over the years, for a sophisticated document
formatter a more useful product would be a reason-
ably sized collection of possible formattings that are
all ‘good enough’. To this collection could possibly
be added some ranking of their absolute quality but
even more useful would be a few descriptors or quan-
tisations of how good each is, together with other
information that may be of use to other co-operating

formatters. Such output could then be used by other
‘higher-level’ formatters to choose the formatting
most suited to their higher purposes.
I shall not pursue such valuable enhancements
here as I am only asking for the Moon, not Mars,
. this year; the benefits of this approach to the
practical optimisation of formatted documents have
been long known and much discussed since Frank
Mittelbach and I [18] introduced them.

3 Two (of many) examples

The two of TEX’s many embedded formatters about
which I have chosen to say a little more here are not
necessarily either the most complex or the easiest to
specify, but they are both central to TEX’s raison
d’étre. I have somewhat presumptuously chosen to
put these into the form of outline draft specifica-
tions. I hope that they will start a process that leads
smoothly and quickly to full specifications and to the
production of partial but usable ‘proof-of-concept’
library implementations. For the maths formatter
some more detailed work has been done (Section 3.3)
that will soon form the contents of a funding bid for
the project.

3.1 The paragraph formatter

This is just one possible route towards the expo-
sure of a TEX-like paragraph mechanism and it is
treated very briefly here. I hope it inspires others
to help expand this to a full and carefully explained
specification, to be published in this series.

Note that this outline description assumes the
existence of methods for formatting ‘LR-boxes’: these
are ‘single lines’ of text with well-defined spacing of
‘words’. In turn that formatter will require a ‘word
formatter’, etc. I plan to provide a fuller explanation
of these ideas in a future paper.

The inputs to this formatter would be as follows.

e The material to be formatted (see below).

e Parameter settings. Although it may not be
essential, it would be very useful to have the
ability to input values for all the parameters
that are used by TEX’s algorithm for forming
and formatting a paragraph. Of course, many
of them will have sensible default values that
could be fixed or, in context, inherited.

The material to be formatted would consist of the
following.
— Pure text (e.g. Unicode strings).
— Some ‘formatting information’ such as:
— font selection hints
— line-breaking hints
— word-division information

414 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

— even direct formatting instructions (1)
all with a precisely defined syntax.

— Pre-formatted material in the form of ‘in-line
boxes’.

The basic liberated version of this formatter
would return two types of material (this is slightly
more than current TEX’s internal mechanism can
be bothered to do, despite the information being
available). Applications using it are free to ignore
item 2.

1. A formatting of the paragraph: the formatted
‘lines’ of the paragraph plus other information
about their layout in a well-defined format.

2. The number of lines, information about the
break-points used (e.g. their location in the in-
put string, whether a word was broken), an
evaluation of how ‘good’ each break-point is and
of the quality of the formatting of each line.

Note that here I have not explicitly discussed
any of TEX’s sophisticated escape mechanisms that
implement a small range of specialised extra activ-
ities, such as ‘vadjust material’, marks or ‘whatsit
nodes’. These are good examples of Knuth’s cleverly
ad hoc use of small and tightly integrated extensions
to a basic algorithm in order to emulate the effect
of fully modelling these varied aspects of the docu-
ment formatting process as separate modules. Such
features of TEX thus express a limited collection of
ideas from a wider class that is important to auto-
mated document processing. Being ad hoc, Knuth’s
efficient implementations typically use inappropri-
ate models and hence have severe deficiencies. It is
therefore probably not sensible to reproduce such
escape mechanisms when providing our exposures of
The Good Things of TEXTM.

A more advanced version of this liberated for-
matter would allow the replacement of TEX’s algo-
rithm for finding break-points but this would entail
provision for whole new parametrisations of the pro-
cess and thus could decrease its immediate usability.
A more practical way of providing this formatter may
be to split it up into smaller modules that undertake
distinct parts of the task, leaving the master para-
graph formatter with only the two tasks of control-
ling the whole process and of handling all external
interfaces (which would need to be customisable).

3.2 The mathematics formatter

This formatter has turned out to be the central fea-
ture in this final form of my diatribe; thus I shall
warn you that it gets tediously detailed from here on.
Although many of you would like to follow the exam-
ple of Sebastian Rahtz [3] and banish all mathematics

Vistas for TEX: liberate the typography! (Part I)

from the TEX world (if not all worlds), we must nev-
ertheless face the reality that TEX Does Math!! —
both within the TEX world but also, far more and
growing rapidly, outside it, including much that will
never see the guts of a TEX processor. Hence if, over
the next 10 years or so, real world ‘TEX for maths’
is not to lose all contact with ‘TEX the processor’,
then TEX’s maths formatter must get out there and
strut its stuff wherever maths is being stuffed into
digital form.

For the liberated form of this important format-
ter it is more difficult to specify in suitably general
terms the nature of the material to be formatted; the
obvious specification is ‘Presentation MathML con-
taining Unicode strings’ [16] but it is not clear to me
at this stage whether this will always be sufficiently
rich in information about the mathematical struc-
ture of the notation to be typeset. However, a lot
of work has been done, and is continuing, on a wide
range of uses of mathematical notation in comput-
ers, together with their associated description and
formatting requirements. Exposing this formatter
will greatly help many aspects of this research and
development effort, in particular the task of deter-
mining what needs to be encoded in the input to
ensure high quality maths output.

The output will be material that can be used
by an ‘LR-box’ or ‘paragraph’ formatter.

The current understanding of the parametrisa-
tion needed for this task is also still somewhat em-
pirical. It is known that standard TEX’s algorithm is
severely under-parametrised for the tasks in which it
claims supremacy but, in contrast, many applications
will require only a far simpler parametrisation.

It is therefore desirable that the implementation
of this algorithm should build in sensible default rules
for determining plausible values of all TEX’s ‘maths
parameters’ from data as meagre as just the nominal
text font size. However, this liberation must at least
remove all of current TEX’s explicit overloading in
the ‘standard parameter set’ in order to be more
generally usable. It may also be sensible to remove
some aspects of the parametrisation from the current
dependence on the choice of fonts.

The following subsection contains further de-
tails of this project; it is an extract from a fund-
ing proposal currently being pursued for this task.
Throughout, the phrase ‘Standard BTEX’ refers to a
well known and defined (mainly ad hoc at present)
subset of WTEX’s math mode, but using the full range
of Unicode maths characters, for encoding mathe-
matical structures and glyphs. This is not a good
phrase for this beast, thus it has also been dubbed
‘LoTEX’ [17] (as in the common multiple Lem).

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 415

Chris Rowley

3.3 Liberating TEX: maths formatting

A fact and the obvious question: Many current appli-
cations, like the above specification, require a maths
formatter: why not make it TEX’s?

Until quite recently the standard TEX formatter
for Computer Modern was the only such application
that was both widely available and offered even rea-
sonable typeset quality. However, bits of TEX were,
back then, totally incompatible with other applica-
tions that used different font resource technologies or
series. Thus there are now many applications that,
with varying degrees of success, attempt to emulate
the quality of TEX without its restrictions on input
and output. There are now also some serious rivals
to TEX’s typeset quality for mathematics but they
also share two, at least, of TEX’s problems: being too
far embedded in widely used and sophisticated docu-
ment processing systems; and being closely linked to
particular font series.

Whilst it may not be feasible to get the highest
quality formatting using a given maths font series
without careful choice of the set of layout parameters
(and their values) specific to that series [7, 8], it is
certainly possible to give the world TEX’s current al-
gorithm with some liberation of the parametrisation.
For example, it is straightforward to remove from
its layout parameter set-up the many explicit (and
30-year old) overloadings and relationships that were
necessary to Knuth’s giving us this wonderful gift, so
expertly tuned to a particular font series (Monotype
Modern), itself about 100 years old![15]

More importantly, this quality can now be made
available in a portable form so that it could be easily
linked into any application, such as browsers or office
suites, that need to render structured representa-
tions of mathematics, particularly MathML 3.0 and
‘Standard KTEX’ or LoTEX. Post-liberation, this
valuable treasure can be further enhanced by making
it more configurable so as to allow extensions of its
capabilities in the following two areas: the diversity
of 1.5-dimensional (or maybe fully 2-dimensional)
text-based layouts that it can construct; the range
of fonts, glyphs, colour resources and other printing
marks that can be used in these constructs (and
maybe built-in interactivity).

For many modern applications it will be essential
to provide (at least in a derivative version) optimisa-
tion for fast parallel rendering of a large collection
of (typically small) maths fragments, possibly with
different ‘quality control requirements’.

A typical such application (from the trendy
worlds of Web 2.0 and/or the Semantic Web) of
the near-medium future will be fast, highly interac-

tive, agent-supported browsing of large collections of
pages that contain a lot of connectivity and mathe-
matical intelligence embedded in semantically rich
encodings of mathematical notation [19].

3.3.1

e Maths material encoded in a fully specified lan-
guage that describes, at least, the presentational
structure (or, visual semantics) of the material.
This currently would typically be either a pre-
cisely defined (and large) subset of P-MML (Pre-
sentation MathML 3.0 [16]) or a syntactically
precise subset of the currently used range of
TEX-related math-mode syntax (LoTEX).!

In order to support a more semantically ori-
ented and user-friendly form of INTEX input, it
may be wise to provide a preprocessor that ac-
cepts precisely restricted uses of \newcommand.

Inputs

e A modern ‘maths font’ resource (similar to Open-
Type with the necessary ‘math tables’ as sup-
plied with Microsoft’s Cambria Math font).

3.3.2 Outputs

This is not so easy to standardise. The high-level
specification is that it will consist of ‘glyphs plus rules’
(plus, possibly, other simple graphical components
and colour features) that are absolutely positioned
in a local coordinate system relative to a reference
or ‘base point’ that in turn can be used to position
and orient the output on a page. It will also contain
the necessary pointers to glyph rendering and paint
resources, etc.

Since there is no widely accepted standard lan-
guage for precisely such output, it will be necessary
to use a simple fixed internal representation akin
to TEX’s h/vlist or DVI languages. However, unlike
the current TEX paradigm, modules to convert this
internal language to a range of commonly needed
languages will also be included. Examples of outputs
are thus some type of PDF and SVG fragments and
other application-specific formats such as RTF or the
internal renderable format of a web browser.

4 Other mathematics formatters

Time has mitigated against extending this section
beyond these very brief comments on some impor-
tant existing non-TEX maths formatters. So there is
another paper or two waiting in the wings.

For a long time there have been non-TEX maths
formatters in general use, such as techexplorer [20].
There are now a large number of these; here is a par-
tial list of those that are definitely ‘fit-to-purpose’,

1 There is also a far wider need for LoTEX, together with
standard translations to/from P-MML.

416 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

be that quick, simple and clear rendering of sim-
ple maths in browsers, or high quality use of well-
designed fonts for more classical paper presentation:

jsmath, Mathplayer for Internet Explorer,
Gecko-Math (used in Firefox et al.),
Microsoft’s Rich Edit (in Office 2007),
MathEX (incorporates techexplorer), SWiM.

How much the design of each of these systems
uses, or is influenced by, Knuth’s algorithm and
layout rules ([5], Appendix G) has not I think been
much studied; maybe the individual authors of the
systems once knew the answers?

Only Microsoft’s system [23, 2, 22] (as demon-
strated in my talk at San Diego) claims typograph-
ical quality that is better than that of TEX; it is
also the only one that is not intimately connected
with MathML [16] although the two are reasonably
friendly. The creators of this RichEdit system state
that it uses “TEX’s mathematical typography prin-
ciples’ but they go on to remark that this task was
nevertheless ‘considerably harder than any of us imag-
ined it would be’; taking 15 years of elapsed time
to complete (fortunately, throughout this time the
then boss of the whole company took a keen per-
sonal interest in the whole project). They conclude
that ‘mathematical typography is very intricate and
varied’.

Although the associated product does not seem
to be widely used, the GtkMathView project [11]
has worked on and documented a lot of interesting
ideas and artefacts in this area.

References

[1] Hermann Zapf. About micro-typography and
the hz-program. Flectronic Publishing 6(3),
pages 283-288, Wiley, 1993.
http://cajun.cs.nott.ac.uk/compsci/epo/
papers/epoddaui.html

[2] About Rich Edit Controls.
http://msdn.microsoft.com/en-us/
library/bb787873(VS.85) .aspx

[3] Sebastian P. Q. Rahtz. Banish Maths! Daily
personal communications, 1990-2005.

[4] D. E. Knuth and M. F. Plass. Breaking
paragraphs into lines. Software — Practice and
Ezperience, 11(11), pages 1119-1184, 1981.

[5] D. E. Knuth. TgX: The Program.
Addison-Wesley, 1986, 1993.

[6] D. E. Knuth. The TgXbook. Addison-Wesley,
1986, 1993.

[7] Richard Southall. Designing a new typeface
with METAFONT, in TgX for Scientific
Documentation, Springer 1986, pages 161-179.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Vistas for TEX: liberate the typography! (Part I)

8]

[9]

[17]

[18]

[19]

[20]

[23]

http://www.springerlink.com/content/
57432v516731367n/

Peter Karow and Herman Zapf. Digital
typography. Private communication, 2003.

John Plaice, Yannis Haralambous and
Chris Rowley. An extensible approach to
high-quality multilingual typesetting. In
RIDE-MLIM 2003, IEEE Computer Society
Press, 2003.

Extensible Markup Language (XML).
http://www.w3c.org/XML

GtkMathView Home Page.
http://helm.cs.unibo.it/mml-widget

XATEX. http://scripts.sil.org/xetex

IATEX: A document preparation system.
http://www.latex-project.org

LuaTEX. http://www.luatex.org
Monotype Modern: Description. http:
//www.paratype.com/fstore/default.asp?
fcode=871&search=Monotype+Modern

Mathematical Markup Language (MathML)
Version 3.0, W3C Working Draft.
http://www.w3.org/TR/MathML3

Chris Rowley and Stephen Watt. The need for

a ‘Standard IATEX’. Private communication,
July 2007.

Frank Mittelbach and Chris Rowley. The
pursuit of quality: How can automated
typesetting achieve the highest standards of
craft typography?

In Electronic Publishing, pages 261-273,
Cambridge University Press, 1992.

Christoph Lange and Michael Kohlhase.
SWiM: A Semantic Wiki for Mathematical
Knowledge Management.

Poster at http://kwarc.info/projects/
swim/pubs/poster-semwikiO6.pdf

Don DeLand. From TEX to XML: The legacy
of techexplorer and the future of math on the
Web. Abstract in TUGboat 28:3, page 369,
TUG, Proceedings of the 2007 Annual Meeting.

Unicode. http://www.unicode.org

Murray Sargent. Using RichEdit 6.0 for Math.
http://blogs.msdn.com/murrays/archive/
2007/10/28/using-richedit-6-0-for-math.
aspx

Ross Mills and John Hudson, Editors.
Mathematical Typesetting: Typesetting
Solutions from Microsoft. Glossy brochure
distributed at TypeCon 2007, Seattle,

August 1-5, 2007.

417

Why didn’t METAFONT catch on?

Dave Crossland

University of Reading, UK

dave (at) lab6 dot com
http://www.understandinglimited.com

Abstract

METAFONT is an algebraic programming language for describing the shapes of
letters, designed and implemented by Knuth as part of the original TEX type-
setting system. It was one of the earliest digital type design systems, and is
completely capable of dealing with the letters of any writing system, has always
been freely available, and is remarkably powerful. Yet it never caught on with

type designers. Why?

“There are three kinds of people. Those that can
count, and those that can’t.”

There is type in typography, but there is also
type in psychology: Personality type.

There are many ways of thinking about per-
sonality type [1] and the famous Myers—Briggs ty-
pology places importance on four attitudes. First,
there is our preference for competition or coopera-
tion, or whether we tend to make decisions logically
or emotionally. Second, our use of language reveals
the way we think, with some people preferring more
abstract language and others preferring more con-
crete language. Third is our attitude to time keep-
ing, which may be exploratory or scheduling, and
fourth is our orientation to socialising, where after
a party we may feel drained or energised.

Put together, these four preferences between
two options yield 16 personality types. The book
Please Understand Me 2 [2] puts them into a co-
hesive system that groups the 16 types into four
temperaments, fleshed out by labels and personified
by Greek gods: Epimethean ‘Guardians,” Dionysian
‘Artisans,” Apollonian ‘Idealists,” and Promethean
PEXXdes” ‘Rationalists.’

Such broad theories for how people differ prob-
ably can’t be taken too far, as ultimately people
are all pretty much alike; “what one man can do,
another man can do.” But there is a common senti-
ment that some of us are more abstract in our lan-
guage and more logical in our thinking than others.

Software is pretty abstract and logical, and peo-
ple who become immersed in the world of software
tend to be of a Promethean temperament. The ar-
guments for software freedom especially have that
kind of draw. TEX takes an abstract and logical ap-
proach to digital typography, from concept to usage,
and METAFONT is no exception. But graphic design

is not abstract and logical, for the most part; it is
visual, concrete, more emotional than logical.

Throughout the long history of desktop pub-
lishing, people have generally not found TEX type-
setting intuitive, preferring desktop publishing ap-
plications with graphical user interfaces. Even for
those who go deep enough into graphic design to ar-
rive at type design, METAFONT is almost entirely
ignored — despite being freely available, completely
capable, and remarkably powerful. I believe this
issue of personality type is a primary reason why
METAFONT has not caught on.

Let’s consider type design divorced from the en-
gineering of font software for a moment.

Design happens at various scales at the same
time. In type design, the lowest visible level is that
of the letter, where you are dealing mainly with the
black shapes of the letter. It is obvious what those
are, but there are also the ‘white’ shapes. If you are
not sure what that means, imagine an image of a
letter, and invert it so that the black becomes white
and the white becomes black. Now, look around
you to find a letter printed large on something like
a poster or book cover. Looking at the letter, shift
your awareness to the ‘negative space’ in and around
the letter, and bring these white shapes into percep-
tual focus. It is hard to describe them, but they are
there, and designing them is as important as design-
ing the black shapes.

The next level up is that of words. Here there
are not only the white shapes inside and around the
letters, but those between the letters. At this level
we can also see patterns in the black shapes across
letters; things that look similar, yet are not exactly
the same.

Consider the lowercase n and h. These contain
several similar shapes, but looking closely, you will

418 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

see that there are slight differences. Balancing these
similarities and differences is a core part of the type
design process. There are strong patterns in some
sets of letters, weaker similarities in other sets, and
some letters that are less typical, yet still look like
they belong with the rest. The letter s is perhaps
the most different, and Knuth wrote an interesting
essay about the peculiarities of that letter [3].

Finally, there is the level of paragraphs. When
a paragraph is set with a typeface, a different im-
pression of the letters emerges. This must be taken
into account at the other levels. Seen in this way, a
type design is a collection of individual glyph shapes
that fits together cohesively at all levels.

We can now see clearly the subtle distinction
between a font and a typeface. The same typeface
can be implemented in a variety of typesetting tech-
nologies —metal, software, even potato— with the
end result appearing the same. A font is a typeface
implemented in software. The term ‘software’ spans
programs and data, and fonts are a peculiar kind of
software because they are both programs and data,
while normally the two have some separation. Ex-
amples of programs within fonts are TrueType hints
and OpenType layout features; these instruct the
computer to display the type in various ways. The
data in a font is the glyph point data and metrics
table data.

There are generally two approaches to imple-
menting typefaces in software. The ‘outline’ ap-
proach involves drawing each letter by interactively
placing points along its outline. This attempts to
be a direct facsimile of drawing letters on paper.
Interpolation between sets of outlines means this
approach can handle the creation of large typeface
families.

The ‘stroke’ approach is where each letter is
constructed by specifying points along the path of
a pen’s stroke, and the attributes of the pen’s nib
at those points. Archetypal pieces can be designed
and used like Lego blocks to construct whole glyphs,
with refinements made for the individual require-
ments of each letter. With parametrisation to make
the shared values of shapes easily adjustable, such
as widening stems or modifying serifs, this approach
can handle a large typeface family in a cohesive and
powerful way.

Today the outline approach is dominant be-
cause it gives instant visual feedback and exacting
control; it is direct and visceral. This means design-
ing type at the level of individual letter shapes is
intuitive and a typeface emerges quickly.

It is especially suited to implementing exist-
ing type designs where all the aspects have already

Why didn’t METAFONT catch on?

been thought out; the TEX community provides a
clear example of this in the AMS FEuler project [4],
where a team of Stanford students attempted to
digitise a new type design for mathematics that Zapf
had drawn on paper; the developers tried both ap-
proaches and felt tracing outlines was most appro-
priate. FontForge [5] is a vigorously developed free
software font editor application for working in this
way today.

While not suitable for implementing existing
type designs, METAFONT’s abstract and logical na-
ture makes it powerful for dealing with type at the
level of words. While initially slow, it speeds up
later stages of the design process, especially when
covering very large character sets. I think it is ide-
ally suited to developing new type designs where the
designer is not sure of the precise look that they are
trying to capture and want to experiment with a
variety of sweeping changes to their design.

TEXworks [6] attempts to make TEX typeset-
ting more visual and interactive. While still abstract
and logical compared to desktop publishing applica-
tions like Scribus [7], its user interface design and
the SyncTEX technology [8] tightly interconnect the
code and the document, making TEX more visual,
interactive, concrete and emotional.

Today METAFONT source code is written, var-
ious programs are run to generate graphics, then
another program is used to view them. These pro-
grams may be METAFONT, or METAFONT and then
mftrace [9], or METAPOST [10] with MetaTypel
[11]. All involve a whole long process that is similar
to writing TEX documents in the traditional man-
ner. But with TEXworks, the TEX source code is
rendered into a document in near real-time, so there
is a very quick Boyd cycle [12] between adjusting the
typesetting code and seeing the document rendered.

Perhaps if there was a graphical user interface
to visualise METAFONT code in near real-time, type
designers who feel writing code is unintuitive could
be more confident about doing so. The simple GUI
shown by Sherif & Fahmy in their Arabic design
work is an example of this [13]. It might even be
feasible to have two-way interaction between code
and rendering, as Inkscape [14] achieves for SVG.
Perhaps then, METAFONT might catch on.

Dave Crossland is an international public speaker
on software freedom and fonts, Tuns a small busi-
ness doing type and information design and systems
administration, and is a committee member of UK-
TUG. He is currently studying at the University
of Reading’s Department of Typography on the MA
Typeface Design programme.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 419

Dave Crossland

References

[1]
[2]

420

http://en.wikipedia.org/wiki/Category:
Personality_typologies

Keirsey, D. Please Understand Me II:
Temperament, Character, Intelligence. 1998:
Prometheus Nemesis.

Knuth, D. Digital typography. 1999: CSLI.
Knuth, D. & Zapf, H. AMS FEuler: A New
Typeface for Mathematics. 1989: Scholarly
Publishing.
http://fontforge.sourceforge.net
http://tug.org/texworks/
http://www.scribus.net

http://itexmac.sourceforge.net/SyncTeX.

html

[9] http://1lilypond.org/mftrace/

[10] http://www.tug.org/metapost.html

[11] http://www.ctan.org/tex-archive/fonts/
utilities/metatypel/

[12] Osinga, F. Science, Strategy and War:
The Strategic Theory of John Boyd. 2006:
Routledge.

[13] Sherif, A. and Fahmy, H. Meta-designing
parameterized Arabic fonts for AlQalam. In
this volume, 435-443.

[14] http://www.inkscape.org

[15] http://metafont.tutorial.free.fr

Copyright (© 2008 Dave Crossland. Verbatim copy-
ing and redistribution of this entire article is per-
mitted, provided this notice is preserved.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Creating cuneiform fonts with MetaTypel and FontForge

Karel Piska

Institute of Physics of the ASCR, v.v.i.
CZ-182 21 Prague, Czech Republic
piska (at) fzu dot cz

Abstract

A cuneiform font collection covering Akkadian, Ugaritic and Old Persian glyph
subsets (about 600 signs) has been produced in two steps. With MetaTypel we
generate intermediate Type 1 fonts, and then construct OpenType fonts using
FontForge. We describe cuneiform design and the process of font development.

1 Introduction

I am interested in scripts, alphabets, writing sys-
tems, and in fonts, their computer representation.
Ten years ago I decided to create Type 1 fonts for
cuneiform, and last year, to extend them to Unicode
OpenType versions. In my older Type 1 version
(1998/9) [4] the raw text was written ‘by hand’ and
then directly compiled into Type 1 with tiasm from
tilutils [10]. The glyph set consisted of several
separate Type 1 components to cover Akkadian (ac-
cording to Labat) in a ‘Neo-Assyrian’ form (three
files), Ugaritic, and Old Persian.

Three books served as principal sources: two
Akkadian syllabaries edited by R. Labat [1] and
F. Thureau-Dangin [2], and the encyclopedia The
World’s Writing Systems [3]. No scanning of pictures
or clay tablets was performed. The fonts are based
on a starting point —my simple design of wedges in
three variant forms (see also Fig. 1, below):

E A A
A ‘Academic’ B ‘Bold (Filled)’ C ‘Classic’

Our aim is to use free and open source software
to produce “open source fonts”. Thus, to create the
fonts only non-proprietary tools have been employed:
MetaTypel; FontForge; tlutils, gawk; other stan-
dard Unix utilities such as bash, sed, sort, ... In the
following sections we will explain the process of cre-
ating fonts and illustrate it with numerous examples.

2 Producing Type 1 with MetaTypel

The MetaTypel package [6], developed by the au-
thors of Latin Modern, TEX Gyre and other font
collections (B. Jackowski, J. Nowacki, P. Strzelczyk):
e runs METAPOST (any available version) to pro-
duce eps files with outlines for all glyphs;
e collects all the data into one Type 1 file.
The information about the font and its glyphs
is described in the METAPOST source files; addi-

tional macros are defined in MetaTypel extensions
or may be appended by the user. For illustrations
see the examples below. An explanation of some
technical details and techniques how to work with
MetaTypel can be found in the tutorial written by
Klaus Hoppner [7], which also includes a simple com-
plete example and Makefile.

2.1 Font description in MetaTypel

As usual with METAFONT or METAPOST the compi-
lation is invoked by a main control file—naakc.mp:

input fontbase;
use_emergency_turningnumber;
input naak.mpe;
maybeinput "naakc.mpd";
maybeinput "naakc.mph";
maybeinput "naug.mph";
maybeinput "naop.mph";
beginfont
maybeinput "naak.mpg";
maybeinput "naug.mpg";
maybeinput "naop.mpg";
endfont

Global font parameters may be defined in a font
header file—naakc .mph:

% FONT INFORMATION
pf_info_familyname "NeoAssyrianClassicTypel";
pf_info_weight "Medium";
pf_info_fontname "NeoAssyrianClassicTypel";
pf_info_version "002.001";
pf_info_author "Karel Piska at fzu.cz 2008";
pf_info_italicangle O;
pf_info_underline -100, 50;
pf_info_fixedpitch false;
pf_info_adl 750, 250, O;
italic_shift:=0;

Internal glyph names and metric data can be
assigned as follows:
% INTRODUCE CHARS
standard_introduce("ash.akk");

standard_introduce("hal.akk");
standard_introduce ("mug.akk") ;

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 421

Karel Piska

standard_introduce("zadim.akk") ;
standard_introduce("ba.akk");
standard_introduce("zu.akk") ;

% METRICS

wd._ash.akk=240; ht._ash.akk=160; dp._ash.akk=0;

wd._hal.akk=340; ht._hal.akk=160; dp._hal.akk=0;

wd._mug.akk=380; ht._mug.akk=220; dp._mug.akk=0;

wd._zadim.akk=460; ht._zadim.akk=220;
dp._zadim.akk=0;

wd._ba.akk=420; ht._ba.akk=240; dp._ba.akk=0;

wd._zu.akk=500; ht._zu.akk=240; dp._zu.akk=0;

(We do not define the encoding in Type 1.)

2.2 Glyph contours in MetaTypel

Simple (atomic) elements — single wedges are defined
by macros:
def wh(expr 1,x,y)=

r:=5; w:=40; b:=b; c:=20; d:=70;

z[nw] 0=(x+1,y+r);

z[nw] Oa=(x+d,y+r); z[nw] 1b=(x+d,y+r);
z[nw] 1=(x,y+w);

z[nw] la=(x+b,y+c); z[nw] 2b=(x+b,y-c);
z[nw] 2=(x,y-w);

z[nw] 2a=(x+d,y-r); z[nw] 3b=(x+d,y-1r);
z[nw] 3=(x+1,y-r);
p[nwl=compose_path.z[nw] (3);

Fill plnwl;

nw:=nw+1;
enddef;

—

Another definition of a wedge — a single path:
def pwh(expr 1,x,y)=
(x+1,y+r) . .controls(x+d,y+r) .. (x,y+w)
..controls(x+b,y+c)and(x+b,y-c) .. (x,y-w)
..controls(x+d,y-r)..(x+1l,y-r)--cycle;
enddef;

In compound elements, the rendering of inter-
secting areas may depend on printer/viewer. There-
fore, removing overlap in Type 1 (and probably
also in OpenType) is required. We use the macro
find_outlines:

T

def whv(expr x,y)=

save pa,pb,pc; path pa,pb,pc;

r:=5; w:=40; b:=b; c:=20; d:=70;
pa:=pwh(200,x,y); pb=pwv(200,x+80,y+100);

find_outlines(pa,pb) (pc);
plnw] :=pcl;

Fill p[nw];

nw:=nw+l;

enddef;

Complete glyphs—that is, cuneiform signs—
are demonstrated in the following examples. Hori-
zontal /vertical wedges, composites or their groups
are also defined by macros; the arguments, for exam-
ple, denote their lengths and coordinates.

beginglyph(_mash.akk) ;
save p; path p[]l; nw:=0;
whv(0,120);
standard_exact_hsbw("mash.akk") ;
endglyph;
beginglyph(_sag.akk) ;
save p; path p[]l; nw:=0;
wh(240,0,160);
wh(160,80,80) ;
wv (240,220,240) ;
wv (240,300,240) ;
whhv (400,120) ;
standard_exact_hsbw("sag.akk");

endglyph;
=l

2.3 Generating Type 1

An intermediate Type 1 is generated from scratch:

FN=$1 # font file name
MT1=$2 # MetaTypel direction
mpost ’\generating:=0;’ input $FN.mp
gawk -f $(MT1)/mp2pf.awk \
-v CD=$(MT1)/pfcommon.dat -v NAME=$FN
gawk -f $(MT1)/packsubr.awk -v LEV=5 \
-v OUP=$FN.pn $FN.p
tlasm -b $FN.pn $FN.pfb

with some simplifications (intentional for cuneiform):
glyph design is simple; no kerning pairs are needed;
the characters occupy independent boxes; no hyphen-
ation; and no internal encoding in the intermediate
Type 1 is defined. Theoretically, we could use a
common Type 1 with several external encoding vec-
tors, but in practice, joining all the glyphs into one
OpenType font is a better and simpler solution.

3 FontForge and producing OpenType

Scripts in the FontForge scripting language read
Type 1, build data for OpenType (especially, define
the encoding) and then generate OTF and TTF files.
Here is a table showing the Unicode areas with which
we are concerned:

422 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Creating cuneiform fonts with MetaTypel and FontForge

Definition of encoding (Unicode)
Plane 0
U+0020-U+007F ASCII block
Plane 1
Cuneiform ranges “Standard” Unicode
U+10380-U+1039F Ugaritic
U+103A0-U+103D7 Old Persian
U+12000-U+123FF Cuneiform signs
U+12500-U+1277F Neo-Assyrian glyph container
(temporary “Private Area”)

To begin, we introduce a new Unicode font:

#!/usr/bin/fontforge

1.sfd, 2.names, 3.pfb, 4.otf, 5.ttf
New() ;Reencode ("UnicodeFull")
SetFontNames ($2,$2,$2)
#SetFontOrder(3); # cubic
#SetFontOrder(2); # quadratic
ScaleToEm(250)

Save($1)

Then we copy glyphs from Type 1 to OpenType:
we open and read a Type 1 font and access glyphs
by name (in Type 1) and copy them to appropriate
locations addressed by Unicode numbers:

Open($3) ;Select("ash.akk") ;Copy () ;Close();\
Open($1) ;Select ("ul2501") ;Paste();
Save($1) ;Close();

Open($3) ;Select("hal.akk") ;Copy () ;Close();\
Open($1) ;Select ("ul2502") ;Paste();
Save($1) ;Close();

Open($3) ;Select ("mug.akk") ;Copy () ;Close();\
Open($1) ;Select ("ul2503") ;Paste();
Save($1) ;Close();

A FontForge user command eliminates the repetition:

#!/usr/bin/fontforge # copy.pe

SF source font, SG source glyph

DF destination font, DG dest. glyph
Open($1) ;Select ($2) ;Copy () ;Close();
Open($3) ;Select ($4) ;Paste();
Save($3);

with references for the Neo-Assyrian block:

$SF is source font

$SFD temporary font (internal)
./copy.pe $SF "ash.akk" $SFD ul2501
./copy.pe $SF "hal.akk" $SFD u12502
./copy.pe $SF "mug.akk" $SFD ul2503

The Neo-Assyrian glyphs are allocated in the
container; existing glyphs are linked from the Cunei-
form range by references:

Select ("u12743") ;CopyReference();
Select("u12000") ;Paste();
Select ("ul264E") ;CopyReference();
Select ("u12009") ;Paste();

Select("u12580") ; CopyReference();
Select("ul200A") ;Paste();

This operation may also be executed using a
FontForge routine:

#!/usr/bin/fontforge # addref.pe

1. font, 2. glyph point in container
3. reference point

addref.pe $fontname.sfd ul2743 u12000
Open($1) ;Select ($2) ;CopyReference();
Select ($3) ;Paste() ;Save($1);

and then:

addref .pe $FN u12743 u12000
addref .pe $FN ul264E u12009
addref .pe $FN ul2580 ul200A

Generating OpenType itself completes step 2:
we can generate both OTF and TTF.

$4 is OTF, $5 is TTF
Open($1) ;Generate($4); # with options
Open($1) ;Generate($5); # with options

Unfortunately, the glyph repertoire does not
correspond to Unicode because, first, more than 300
glyphs do not have Unicode code points, and, on
the other hand, my fonts cover only about 20% of
the Unicode Sumerian-Akkadian cuneiform range
(cuneiform signs and numeric signs).

In the final OpenType fonts, PostScript glyph
names are omitted, the Akkadian glyph container
(OTF/a) contains all Neo-Assyrian glyphs (according
to Labat), partly defined by references in Unicode
cuneiform block (OTF/c). Here is a table showing
some of the correspondences:

PostScript OTF/a OTF/c
ash.akk 12501 ul2038
hal.akk 12502 ul212C
mug.akk 12503 ul222E
zadim.akk 12504
ba.akk 12505 ul12040
zu.akk 12506 ul236A
su.akk 12507 ul22E2
shun.akk 12508
bal.akk 12509 ul2044
adIl.akk 1250A
bulll.akk 1250B
tar.akk 1250C ul22FB
an.akk 1250D ul1202D
ka.akk 1250F ul2157
3.1 Hinting

The OpenType output was “satisfactory” as auto-
hinted with FontForge (Fig. 1); no hinting instruc-
tions are included in the TrueType fonts.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 423

Karel Piska

|
] [
| 15

Figure 1: Wedge design in three variants with
hinting.

4 Support for (pdf)BTEX and XHTEX

Old and simple IATEX macros for Type 1 fonts and
(pdf)WTEX were modified for XqETEX to bind sym-
bolic glyph names using their Unicode numbers.

\def\NAfontC#1{% xakkadian.sty
\font\NAC="[nacunc.ttf]" at #1pt
}
\def\NAfont{\NAfontC{10}} % default font
%
\def\AKK{%
\NAfont}
\def\ash{{\NAC\char"12501}}%
\let\dil\ash\let\tilIIII\ash\let\ttil\ash%
\let\rum\ash\let\ruIII\ash\let\ina\ash?,
\let\asIII\ash\let\azIII\ash}
\def\hal{{\NAC\char"12502}}\1et\buluh\hal¥%
\def\mug{{\NAC\char"12503}}/
\let\muk\mug\let\mug\mug\let\puk\mugy
\def\zadim{{\NAC\char"12504}}%
\def\ba{{\NAC\char"12505}}%
\let\palI\bay
\def\zu{{\NAC\char"12506}}%
\let\ssuII\zu%

The two following examples show font usage.
1. Glyph index, numbers correspond to Labat [1]:

a ¥ a: 579/1 (579-NAc67)

a’ & a1:397 (397-NAb141)

4 BAl a171:334 (334-NAbBT8)

a ™ a111:383 (383-NAb127) see pi

a, TV aT111:579/2 (582-NAc70) see am
a; W< aVII: 589 (589-NAc77) see ha

aa WY aa: 579/6 (587-NAc75)

ab 5 ab: 128 (128-NAal28)

4b = abTT:420 (420-NAb164) see lid

ablal IBT] ablal: 525 (525-NAcl3)
ad ¥E] ad: 145 (145-NAal45)
ad =TT ad171:10(10-NAal0)

2. Sample text in Akkadian (with transliteration):
T BIa T 5T [N]

\a\na \kur\nu\giITII \a \gag\galri [\ \la \tala\ri \]
a.na kur.nu.giy a qaq.qa.ri [la ta.a.ri]

SEPTsE Bt «CHTETER V[=191]

\DETd\innana\dumu\miII \DETd\sin \uII\zu\un\shaII \ [\ \ish\kun\]
dinnana.dumu.mi 9sin d.zu.un.84 [i.kun]

BT o T £ e B ot < I 2T [T]

\ish\kun\ma \dumu\miII \DETd\sin \uII\zu\un[\sha
i§.kun.ma dumu.mi 9sin d.zu.un.[3a]

T —<TEMT &Y G B ot S s
\a\na \eII \e\tte\e \shu\bat \DETd\ir\kal\la
a.na é e.te.e Su.bat dir kal.la

T =TT ET = T - 1E T BT

\a\na \eII \sha \e\rilbu\shuII \la \a\ssu\uIl
a.na é Sa e.ri.bu.8d la a.su.d

T < sk &1 5 BN T A 25T Y S T Ty~
\a\na \har\ra\ni \sha \a\lak\ta\shaII \la \tala\a\rat
a.na har.ra.ni $a a.lak.ta.$4 la ta.a.a.rat

TF T =BT =7 T te U = BT e ST 511

\a\na \eII \sha \e\ri\bu\shuIl \zu\um\mu\uII \nu\ulI\ra
a.na é $a e.ri.bu.8d zu.um.mu.d nu.d.ra

BRI Al o o @I -E e TET E e GHEA]
\a\shar \sahar\haII \bu\bulus\su\nu \a\kallshu\nu \ttilitt\ttu
a.8ar sahar.hd bu.bu.us.su.nu a.kal.Su.nu ti.it.tu

Line 1: Akkadian text using the cuneiform font
Line 2: The corresponding source input in the ISTEX command { \AKK source }
Line 3: Transliteration (dots and spaces added manually)

5 Conclusion

Both METAFONT and MetaTypel (ZMETHPOST)
are programmable. But METAFONT produces only
bitmaps, while in MetaTypel, we must not define
areas to fill or unfill with bitmap matrices which
would depend on the device (resolution, blacker and
other parameters). Rather, we are restricted to out-
lines:

e glyphs must be defined by closed curves, i.e.
sequences of splines;

e we produce the Type 1 format directly;

o the MetaTypel commands Fill/Unfill denote
the output of curves in the PostScript Type 1

424 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Creating cuneiform fonts with MetaTypel and FontForge

representation with proper path direction and
correct order of spline segments;

e final filling/unfilling is delegated to the Post-
Script/PDF rasterization systems.

Between PFB (Type 1) and OTF (PS/CFF fla-
vored OpenType) we can find only formal differences
in internal representation and organization; the math-
ematical outline curves and hints are identical. On
the other hand, OTF and TTF (TrueType flavored
OpenType) may differ in approximation of curve
segments, since the underlying representations use
cubic and quadratic polynomials, respectively. For
our simple cuneiform design of wedges, though, a
common approximation is workable. XfqKTEX can
read all font formats: TEX fonts, OTF, TTF, etc.;
OpenOffice 2.3 (on my computer) can work only with
TTF. (I can say nothing about MS Word because I
do not have this product.)

MetaTypel and FontForge give the advantage
of programmability with open source data. In Font-
Forge, the interactive approach in glyph design is
dominant; theoretically we could define glyph out-
lines in the FontForge scripting language but it would
be very difficult and inefficient. METAFONT /METR-
POST (MetaTypel) are more flexible and modular:
they allow for solving mathematical equations, com-
mon processing and maintenance of related fonts,
automatic calculation of parameters, and systematic
modifications.

A typical task for MetaTypel is to combine a
small number of components into many composite
glyphs uniformly. This is common for “special kinds
of fonts”: just as Latin Modern and TEX Gyre can
combine letters + accents, the cuneiform fonts can
combine wedges; operations to produce composite
glyphs can be defined and applied in a simple way,
and generation and maintenance can be repeated for
numerous fonts.

The older non-Unicode versions of cuneiform
fonts have been already referenced in the subsection
“External links / Fonts” in http://en.wikipedia.
org/wiki/Cuneiform_script (a web search for “cu-
neiform” should find it also). They have been already
used by scholars; e.g. for syllabaries and computer
transliteration of sample texts for students.

Now I plan to finish and publish the new “Uni-
code” version, by extending the glyph repertoire
to other glyphs and other shapes, corresponding to
other languages and their historical period. Prelimi-
nary experimental OpenType fonts are available on
my web site [11].

My final wish is that the MetaTypel package
would be extended to “MetaOpenType” to produce
OpenType font formats directly.

6 Acknowledgements

I want to thank the authors of MetaTypel, FontForge
(G. Williams) and other developers and maintainers
of free and open source software.

References

[1] René Labat. Manuel d’épigraphie akkadienne.
Troisieme édition. Imprimerie nationale, Paris,
1959.

[2] F. Thureau-Dangin. Le syllabaire accadien.
Librairie Orientaliste Paul Geuthner, Paris,
1926.

(3] The World’s Writing Systems. P.T. Daniels
and W. Bright, eds. Oxford University Press,
New York—Oxford, 1996.

[4] Karel Piska. Fonts for Neo-Assyrian
Cuneiform. Proceedings of the EuroTEX
Conference (Paperless TEX), Heidelberg,
Germany, September 20-24, 1999, Giinter
Partosch and Gerhard Wilhelms, eds. Gieflen,
Augsburg, 1999, ISSN 1438-9959, 142-154.
http://www-hep.fzu.cz/~piska/cuneiform.
html

[5] Cuneiform script (Wikipedia). http://en.
wikipedia.org/wiki/Cuneiform_script

[6] Bogustaw Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk. Programming PostScript
Type 1 fonts using MetaTypel: Auditing,
enhancing, creating. Proceedings of EuroTpEX
2003, Brest, France, 24-27 June 2003.
TUGboat 24:3, pp. 575-581, http://tug.org/
TUGboat/Articles/tb24-3/jackowski.pdf;
CTAN:fonts/utilities/metatypel;
ftp://bop.eps.gda.pl/pub/metatypel.

[7] Klaus Hoppner. Creation of a PostScript
Type 1 logo font with MetaTypel. Proceedings
of XVII European TEX Conference, 2007.
TUGboat 29:1, pp. 34-38, http://tug.org/
TUGboat/Articles/tb29-1/tb91hoeppner.
pdf.

[8] George Williams. Font creation with
FontForge. FuroTEpX 2003 Proceedings,
TUGboat 24:3, pp. 531-544, http://tug.org/
TUGboat/Articles/tb24-3/williams.pdf;
http://fontforge.sourceforge.net.

[9] Free Software Foundation. GNU awk,
http://www.gnu.org/software/gawk.

[10] Eddie Kohler. tiutils (Type 1 tools),
http://freshmeat.net/projects/tlutils.

[11] http://www-hep.fzu.cz/~piska/cuneiform/
opentype.html

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 425

Do we need a ‘Cork’ math font encoding?

Ulrik Vieth

Vaihinger Strafle 69

70567 Stuttgart

Germany

ulrik dot vieth (at) arcor dot de

Abstract

The city of Cork has become widely known in the TEX community, ever since it
gave name to an encoding developed at the European TEX conference of 1990.
The ‘Cork’ encoding, as it became known, was the first example of an 8-bit text
font encoding that appeared after the release of TEX 3.0, and was later followed
by a number of other encodings based on similar design principles.

As of today, the ‘Cork’ encoding represents only one out of several possible
choices of 8-bit subsets from a much larger repertoire of glyphs provided in fonts
such as Latin Modern or TEX Gyre. Moreover, recent developments of new TEX
engines are making it possible to take advantage of OpenType font technology
directly, largely eliminating the need for 8-bit font encodings altogether.

During the entire time since 1990 math fonts have always been lagging behind
the developments in text fonts. While the need for new math font encodings was
recognized early on and while several encoding proposals have been discussed,
none of them ever reached production quality or became widely used.

In this paper, we review the situation of math fonts as of 2008, especially in
view of recent developments of Unicode and OpenType math fonts such as the
STIX fonts or Cambria Math. In particular, we try to answer the question whether
a ‘Cork’ math font encoding is still needed or whether Unicode and OpenType

might eliminate the need for TEX-specific math font encodings.

1 History and development of text fonts
1.1 The ‘Cork’ encoding

When the 5th European TEX conference was held in
Cork in the summer of 1990, the TEX community
was undergoing a major transition phase. TEX 3.0
had just been released that year, making it possible
to switch from 7-bit to 8-bit font encodings and to
support hyphenation for multiple languages.

Since the ability to properly typeset and hy-
phenate accented languages strongly depended on
overcoming the previous limitations, European TEX
users wanted to take advantage of the new features
and started to work on new font encodings [1, 2, 3].
As a result, they came up with an encoding that
became widely known as the ‘Cork’ encoding, named
after the site of the conference [4].

The informal encoding name ‘Cork’ stayed in
use for many years, even after IXTEX 2 and NFSS2
introduced a system of formal encoding names in
1993-94, assigning 0Tn for 7-bit old text encodings,
Tn for 8-bit standard text encodings, and Ln for local
or non-standard encodings [5]. The ‘Cork’ encoding

was the first example of a standard 8-bit text font
and thus became the T1 encoding.

While the ‘Cork’ encoding was certainly an im-
portant achievement, it also introduced some novel
features that may have seemed like a good idea at
that time but would be seen as shortcomings or
problems from today’s point of view, after nearly
two decades of experience with font encodings.

In retrospect, the ‘Cork’ encoding represents
a typical example of the TEX-specific way of doing
things of the early 1990s without much regard for
standards or technologies outside the TEX world.

Instead of following established standards, such
as using ISO Latin 1 or 2 or some extended versions
for Western and Eastern European languages, the
‘Cork’ encoding tried to support as many languages
as possible in a single font encoding, filling the 8-bit
font table to the limit with accented characters at
the expense of symbols. Since there was no more
room left in the font table, typesetting symbols at
first had to be taken from the old 7-bit fonts, until
a supplementary text symbol TS1 encoding [6] was
introduced in 1995 to fill the gap.

426 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

When it came to implementing the T1 and TS1
encodings for PostScript fonts, it turned out that the
encodings were designed without taking into account
the range of glyphs commonly available in standard
PostScript fonts.

Both font encodings could only be partially im-
plemented with glyphs from the real font, while the
remaining slots either had to be faked with virtual
fonts or remain unavailable. At the same time, none
of the encodings provided access to the full set of
available glyphs from the real font.

1.2 Alternatives to the ‘Cork’ encoding

As an alternative to using the T1 and TS1 encodings
for PostScript fonts, the TeXnANSI or LY1 encoding
was proposed [7], which was designed to provide ac-
cess to the full range of commonly available symbols
(similar to the TeXBase1 encoding), but also matched
the layout of the 0T1 encoding in the lower half, so
that it could be used as drop-in replacement without
any need for virtual fonts.

In addition to that, a number of non-standard
encodings have come into use as local alternatives
to the ’Cork’ encoding, such as the Polish QX, the
Czech CS, and the Lithuanian L7X encoding, each of
them trying to provide better solutions for the needs
of specific languages.

In summary, the ‘Cork’ encoding as the first
example of an 8-bit text encoding (T1) was not only
followed by additional encodings based on the same
design principles for other languages (Tn), but also
supplemented by a text symbol encoding (TS1) and
complemented by a variety of local or non-standard
encodings (LY1, QX, CS, etc.).

As became clear over time, the original goal of
the ‘Cork’ encoding of providing a single standard
encoding for as many languages as possible couldn’t
possibly be achieved within the limits of 8-bit fonts,
simply because there are far too many languages and
symbols to consider, even when limiting the scope
to Latin and possibly Cyrillic or Greek.

2 Recent developments of text fonts
2.1 Unicode support in new TEX fonts

It was only in recent years that the development
of the Latin Modern [8, 9, 10] and TEX Gyre fonts
[11, 12] has provided a consistent implementation for
all the many choices of encodings.

As of today, the ‘Cork’ encoding represents only
one out of several possible 8-bit subsets taken from
a much larger repertoire of glyphs. The full set of
glyphs, however, can be accessed only when moving

Do we need a ‘Cork’ math font encoding?

beyond the limits of 8-bit fonts towards Unicode and
OpenType font technology.

2.2 Unicode support in new TEX engines

As we are approaching the TUG 2008 conference at
Cork, the TEX community is again undergoing a ma-
jor transition phase. While TEX itself remains frozen
and stable, a number of important developments
have been going on in recent years.

Starting with the development of PDFTEX since
the late 1990s the use of PDF output and scalable
PostScript or TrueType fonts has largely replaced
the use of DVI output and bitmap PK fonts.

Followed by the ongoing development of XqTEX
and LuaTgX in recent years the use of Unicode and
OpenType font technology is also starting to replace
the use of 8-bit font encodings as well as traditional
PostScript or TrueType font formats.

Putting everything together, the development
of new fonts and new TEX engines in recent years
has enabled the TEX community to catch up with
developments of font technology in the publishing
industry and to prepare for the future.

The only thing still missing (besides finishing
the ongoing development work) is the development
of support for Unicode math in the new TEX engines
and the development of OpenType math fonts for
Latin Modern and TEX Gyre.

3 History and development of math fonts

When TEX was first developed in 1977-78, the 7-bit
font encodings for text fonts and math fonts were
developed simultaneously, since both of them were
needed for typesetting mathematical textbooks like
The Art of Computer Programming.

When TEX 3.0 made it possible to switch from
7-bit to 8-bit font encodings, it was the text fonts
driving these new developments while the math fonts
remained largely unchanged.

As a result, the development of math fonts has
been lagging behind the corresponding text fonts for
nearly two decades now, ever since the development
of the ‘Cork’ encoding started in 1990.

In principle, a general need for new math fonts
was recognized early on: When the first implementa-
tions of ‘Cork’ encoded text fonts became available,
it was soon discovered that the new 8-bit text fonts
couldn’t fully replace the old 7-bit text fonts with-
out resolving the inter-dependencies between text
and math fonts. In practice, however, nothing much
happened since there was no pressing need.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 427

Ulrik Vieth

3.1 The ‘Aston’ proposal

The first bit of progress was made in the summer of
1993, when the TEX3 Project and some TEX users
group sponsored a research student to work on math
font encodings for a few months.

As a result, a proposal for the general layout
of new 8-bit math font encodings was developed

and presented at TUG 1993 at Aston University [13].

Unlike the ‘Cork’ encoding, which became widely
known, this ‘Aston’ proposal was known only to
some insiders and went largely unnoticed.

After only a few months of activity in 1993 the
project mailing list went silent and nothing further
happened for several years, even after a detailed
report was published as a IXTEX3 Project Report
[14].

3.2 The ‘newmath’ prototype

The next bit of progress was made in 1997-98, when
the ideas of the ‘Aston’ proposal were taken up again
and work on an implementation was started.

This time, instead of just discussing ideas or
preparing research documents, the project focussed
on developing a prototype implementation of new
math fonts for several font families using a mixture
of METAFONT and fontinst work [15].

When the results of the project were presented
at the EuroTEX 1998 conference [16], the project was
making good progress, although the results were still

very preliminary and far from ready for production.

Unfortunately, the project then came to a halt
soon after the conference when other activities came
to the forefront and changed the scope and direction
of the project [17, 18].

Before the conference, the goal of the project had
been to develop a set of 8-bit math font encodings
for use with traditional TEX engines (within the
constraints of 16 families of 256 glyphs) and also to
provide some example implementations by means of
reencoding and enhancing existing font sets.

After the conference, that goal was set aside and
put on hold for an indefinite time by the efforts to
bring math into Unicode.

4 Recent developments of math fonts
4.1 Unicode math and the STIX fonts

While the efforts to bring math into Unicode were
certainly very important, they also brought along a
lot of baggage in the form of a very large number of
additional symbols, making it much more work to
provide a reasonably complete implementation and
nearly impossible to encode all those symbols within
the constraints of traditional TEX engines.

In the end, the Unicode math efforts continued
over several years until the symbols were accepted [19,
20] and several more years until an implementation
of a Unicode math font was commissioned [21] by
a consortium of scientific and technical publishers,
known as the STIX Project.

When the first beta-test release of the so-called
STIX fonts [22] finally became available in late 2007,
nearly a decade had passed without making progress
on math font encodings for TEX.

While the STIX fonts provide all the building
blocks of Unicode math symbols, they are still lacking
TEX support and may yet have to be repackaged in
a different way to turn them into a usable font for
use with TEX or other systems.

Despite the progress on providing the Unicode
math symbols, the question of how to encode all
the many Unicode math symbols in a set of 8-bit
font encodings for use with traditional TEX engines
still remains unresolved. Most likely, only a subset
of the most commonly used symbols could be made
available in a set of 8-bit fonts, whereas the full range
of symbols would be available only when moving to
Unicode and OpenType font technology.

4.2 OpenType math in MS Office 2007

While the TEX community and the consortium of
scientific publishers were patiently awaiting the re-
lease of the STIX fonts before reconsidering the topic
of math font encodings, outside developments have
continued to move on. In particular, Microsoft has
moved ahead and has implemented its own support
for Unicode math in Office 2007.

They did so by adding support for math type-
setting in OpenType font technology [23, 24] and
by commissioning the design of the Cambria Math
font as an implementation of an OpenType math
font [25, 26, 27]. In addition, they have also adopted
an input language called ‘linear math’ [28], which is
strongly based on TEX concepts.

While OpenType math is officially still consid-
ered experimental and not yet part of the OpenType
specification [29], it is already a de facto standard,
not only because it has been deployed to millions
of installations of Office 2007, but also because it
has already been adopted by other projects, such as
the FontForge font editor [30] and independent font
designs such as Asana Math [31].

In addition, the next release of the STIX fonts
scheduled for the summer of 2008 is also expected
to include support for OpenType math.

428 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

4.3 OpenType math in new TEX engines

At the time of writing, current development versions
of XATEX have added some (limited) support for
OpenType math, so it is already possible to use
fonts such as Cambria Math in XATEX [32], and this
OpenType math support will soon become available
to the TEX community at large with the upcoming
release of TEX Live 2008.

Most likely, LuaTEX will also be adding support
for OpenType math eventually, so OpenType math
is likely to become a de facto standard in the TEX
world as well, much as we have adopted other outside
developments in the past.

4.4 OpenType math for new TEX fonts?

Given these developments, the question posed in the
title of this paper about the need for new math font
encodings may soon become a non-issue.

If we decide to adopt Unicode and OpenType
math font technology in new TEX engines and new
fonts, the real question is no longer how to design
the layout of encoding tables but rather how to deal
with the technology of OpenType math fonts, as we
will discuss in the following sections.

5 Future developments in math fonts
5.1 Some background on OpenType math

The OpenType font format was developed jointly
by Microsoft and Adobe, based on concepts adopted
from the earlier TrueType and PostScript formats.
The overall structure of OpenType fonts shares the
extensible table structure of TrueType fonts, adding
support for different flavors of glyph descriptions in
either PostScript CFF or TrueType format.!

One of the most interesting points about Open-
Type is the support for ‘advanced’ typographic fea-
tures, supporting a considerable amount of intelli-
gence in the font, enabling complex manipulations
of glyph positioning or glyph substitutions. At the
user level, many of these ‘advanced’ typographic fea-
tures can be controlled selectively by the activation
of so-called OpenType feature tags.

Despite its name, the OpenType font format
is not really open and remains a vendor-controlled
specification, much like the previous TrueType and
PostScript font formats developed by these vendors.
The official OpenType specification is published on
a Microsoft web site at [29], but that version may
not necessarily reflect the latest developments.

1 An extensive documentation of the OpenType format
and its features as well as many other important font formats
can be found in [33].

Do we need a ‘Cork’ math font encoding?

In the case of OpenType math, Microsoft has
used its powers as one of the vendors controlling
the specification to implement an extension of the
OpenType format and declare it as ‘experimental’
until they see fit to release it. Fortunately, Microsoft
was smart enough to borrow from the best examples
of math typesetting technology when they designed
OpenType math, so they chose TEX as a model for
many of the concepts of OpenType math.

5.2 The details of OpenType math

The OpenType MATH table One of the most
distinctive features of an OpenType math font is the
presence of a MATH table. This table contains a
number of global font metric parameters, much like
the \fontdimen parameters of math fonts in TEX
described in Appendix G of The TgXbook.

In a traditional TEX setup these parameters are
essential for typesetting math, controlling various
aspects such as the spacing of elements such as big
operators, fractions, and indices [34, 35].

In an OpenType font the parameters of the
MATH table have a similar role for typesetting math.
From what is known, Microsoft apparently consulted
with Don Knuth about the design of this table, so
the result is not only similar to TEX, but even goes
beyond TEX by adding new parameters for cases
where hard-wired defaults are applied in TEX.

In the X{TEX implementation the parameters
of the OpenType MATH table are mapped internally
to TEX’s \fontdimen parameters. In most cases this
mapping is quite obvious and straight-forward, but
unfortunately there are also a few exceptions where
some parameters in TEX do not have a direct cor-
respondence in OpenType. It is not clear, however,
whether these omissions are just an oversight or a
deliberate design decision in case a parameter was
deemed irrelevant or unnecessary.

Support for OpenType math in XHTEX still re-
mains somewhat limited for precisely this reason;
until the mapping problems are resolved, XHTEX
has to rely on workarounds to extract the necessary
parameters from the OpenType MATH table.

At the time of writing, the extra parameters
introduced by OpenType generalizing the concepts
of TEX have been silently ignored. It is conceivable,
however, that future extensions of new TEX engines
might eventually start to use these parameters in the
math typesetting algorithms as well.

In the end, whatever technology is used to type-
set OpenType math, it remains the responsibility of
the font designer to set up the values of all the many
parameters affecting the quality of math typesetting.
Unfortunately, for a non-technical designer such a

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 429

Ulrik Vieth

task feels like a burden, which is better left to a
technical person as a font implementor.

For best results, it is essential to develop a good
understanding of the significance of the parameters
and how they affect the quality of math typesetting.
In [35] we have presented a method for setting up
the values of metric parameters of math fonts in TEX.
For OpenType math fonts, we would obviously have
to reconsider this procedure.

Font metrics of math fonts Besides storing the
global font metric parameters, the OpenType MATH
table is also used to store additional glyph-specific
information such as italic corrections or kern pairs,
as well as information related to the placement of
math accents, superscripts and subscripts.

In a traditional TEX setup the font metrics of
math fonts have rather peculiar properties, because
much of the glyph-specific information is encoded
or hidden by overloading existing fields in the TFM
metrics in an unusual or non-intuitive way [36].

For example, the width in the TFM metrics is
not the real width of the glyph. Instead, it is used to
indicate the position where to attach the subscript.
Similarly, the italic correction is used to indicate the
offset between subscript and superscript.

As another example, fake kern pairs involving a
skewchar are used to indicate how much the visual
center of the glyphs is skewed in order to determine
the position where to attach a math accent.

In OpenType math fonts all such peculiarities
will become obsolete, as the MATH table provides
data structures to store all the glyph-specific metric
information in a much better way. In the case of
indices, OpenType math has extended the concepts
of TEX by defining ‘cut-ins’ at the corners on both
sides of a glyph and not just to the right.

Unfortunately, while the conceptual clarity of
OpenType math may be very welcome in principle,
it may cause an additional burden on font designers
developing OpenType math fonts based on tradi-
tional TEX fonts (such as the Latin Modern fonts)
and trying to maintain metric compatibility.

In such cases it may be necessary to examine the
metrics of each glyph and to translate the original
metrics into appropriate OpenType metrics.

Font encoding and organization The encoding
of OpenType fonts is essentially defined by Unicode
code points. Most likely, a typical OpenType math
font will include only a subset of Unicode limited to
the relevant ranges of math symbols and alphabets,
while the corresponding text font may contain a
bigger range of scripts.

In a traditional TEX setup the math setup con-
sists of a series of 8-bit fonts organized into families.
Typically, each font will contain one set of alphabets
in a particular style and a selection of symbols filling
the remaining slots.

In a Unicode setup the math setup will consist
of only one big OpenType font, containing all the
math symbols and operators in the relevant Unicode
slots, as well as all the many styles of math alphabets
assigned to slots starting at U+1D400.

As a result, there will be several important con-
ceptual implications to consider in the design and
implementation of OpenType math fonts, such as
how to handle font switches of math alphabets, how
to include the various sizes of big operators, delim-
iters, or radicals, or how to include the optical sizes
of superscripts and subscripts.

Handling of math alphabets In a traditional
TEX setup the letters of the Latin and Greek alpha-
bets are subject to font switches between the various
math families, usually containing a different style in
each family (roman, italic, script, etc.).

In a Unicode setup each style of math alphabets
has a different range of slots assigned to it, since
each style is assumed to convey a different meaning.

When dealing with direct Unicode input, this
might not be a problem, but when dealing with
traditional TEX input, quite a lot of setup may be
needed at the macro level to ensure that input such
as \mathrm{a} or \mathit{a} or \mathbf{a} will
be translated to the appropriate Unicode slots.

An additional complication arises because the
Unicode code points assigned to the math alphabets
are non-contiguous for historical reasons [37]. While
most of the alphabetic letters are taken from one big
block starting at U+1D400, a few letters which were
part of Unicode already before the introduction of
Unicode math have to be taken from another block
starting at U+2100.

An example implementation of a ATEX macro
package for XHITEX to support OpenType math is
already available [32], and it shows how much setup
is needed just to handle math alphabets. Fortunately,
such a setup will be needed only once and will be
applicable for all Unicode math fonts, quite unlike
the case of traditional TEX fonts where each set of
math fonts requires its own macro package.

Handling of size variants Ever since the days
of DVI files and PK fonts, TEX users have been ac-
customed to thinking of font encodings in terms of
numeric slots in an encoding table, usually assuming
a 1:1 mapping between code points and glyphs.

430 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

However, there have always been exceptions to
this rule, most notably in the case of a math extension
font, where special TFM features were used to set up
a linked list from one code point to a series of next-
larger glyph variants representing different sizes of
operators, delimiters, radicals, or accents, optionally
followed by an extensible version.

In a traditional TEX font each glyph variant has
a slot by itself in the font encoding, even if it was
addressed only indirectly.

In an OpenType font, however, the font encod-
ing is determined by Unicode code points, so the
additional glyph variants representing different sizes
cannot be addressed directly by Unicode code points
and have to remain unencoded, potentially mapped
to the Unicode private use area, if needed.

While the conceptual ideas of vertical and hori-
zontal variants and constructions in the OpenType
MATH table are very similar to the concepts of char-
lists and extensible recipes in TEX font metrics, it is
interesting to note that OpenType has generalized
these concepts a little bit.

While TEX supports extensible recipes only in
a vertical context of big delimiters, OpenType also
supports horizontal extensible constructions, so it
would be possible to define an extensible overbrace
or underbrace in the font, rather than at the macro
level using straight line segments for the extensible
parts. In addition, the same concept could also be
applied to arbitrarily long arrows.

Optical sizes for scripts In a traditional TEX
setup math fonts are organized into families, each
of them consisting of three fonts loaded at different
design sizes representing text style and first and
second level script style.

If a math font provides optical design sizes, such
as in the case of traditional METAFONT fonts, these
fonts are typically loaded at sizes of 10 pt, 7 pt, 5 pt,
each of them having different proportions adjusted
for improved readability at smaller sizes.

If a math font doesn’t provide optical sizes, such
as in the case of typical PostScript fonts, scaled-down
versions of the 10 pt design size will have to make do,
but in such cases it may be necessary to use bigger
sizes of first and second level scripts, such as 10 pt,
7.6 pt, 6 pt, since the font may otherwise become too
unreadable at such small sizes.

In OpenType math the concept of optical sizes
from TEX and METAFONT has been adopted as well,
but it is implemented in a different way, typical for
OpenType fonts. Instead of loading multiple fonts
at different sizes, OpenType math fonts incorporate
the multiple design variants in the same font and

Do we need a ‘Cork’ math font encoding?

activate them by a standard OpenType substitution
mechanism using a feature tag ssty=0 and ssty=1,
not much different from the standard substitutions
for small caps or oldstyle figures in text fonts.

It is important to note that the optical design
variants intended for use in first and second level
scripts, using proportions adjusted for smaller sizes,
are nevertheless provided at the basic design size
and subsequently scaled down using a scaling factor
defined in the OpenType MATH table.

If an OpenType math font lacks optical design
variants for script sizes and does not support the
ssty feature tag, a scaled-down version of the basic
design size will be used automatically. The same will
also apply to non-alphabetic symbols.

Use of OpenType feature tags Besides using
OpenType feature tags for specific purposes in math
fonts, most professional OpenType text fonts also use
feature tags for other purposes, such as for selecting
small caps or switching between oldstyle and lining
figures. Some OpenType fonts may provide a rich
set of features, such as a number of stylistic variants,
initial and final forms, or optical sizes.

Ultimately, it remains to be seen how the use of
OpenType feature tags will influence the organization
of OpenType fonts for TEX, such as Latin Modern
or TEX Gyre, not just concerning new math fonts,
but also existing text fonts.

So far, the Latin Modern fonts have very closely
followed the model of the Computer Modern fonts,
providing separate fonts for each design size and each
font shape or variant.

While it might well be possible to eliminate
some variants by making extensive use of OpenType
feature tags, such as by embedding small caps into
the roman fonts, implementing such a step would
imply an important conceptual change and might
cause unforeseen problems.

Incorporating multiple design sizes into a single
font might have similar implications, but the effects
might be less critical if they are limited to the well-
controlled environment of math typesetting.

In the TEX Gyre fonts the situation is somewhat
simpler, because these fonts are currently limited to
the basic roman and italic fonts and do not have
small caps variants or optical sizes.

Incorporating a potential addition of small caps
in TEX Gyre fonts by means of OpenType feature
tags might well be possible without causing any in-
compatible changes. Similarly, incorporating some
expanded design variants with adjusted proportions
for use in script sizes would also be conceivable when
designing TEX Gyre math fonts.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 431

Ulrik Vieth

5.3 The impact of OpenType math

As we have seen in the previous sections, Open-
Type math fonts provide a way of embedding all the
relevant font-specific and glyph-specific information
needed for high-quality math typesetting.

In many aspects, the concepts of OpenType
math are very similar to TEX or go beyond TgX.
However, the implementation of these concepts in
OpenType fonts will be different in most cases.

Given the adoption of OpenType math as a
de facto standard and its likelihood of becoming an
official standard eventually, OpenType math seems
to be the best choice for future developments of new
math fonts for use with new TEX engines.

While XH{TEX has already started to support
OpenType math and LuaTgX is very likely to follow,
adopting OpenType for the design of math fonts for
Latin Modern or TEX Gyre will take more time and
will require developing a deeper understanding of the
concepts and data structures.

Most importantly, however, it will also require
rethinking many traditional assumptions about the
way fonts are organized.

Thus, while the topic of font encodings of math
fonts may ultimately become a non-issue, the topic
of font technology will certainly remain important.

5.4 The challenges of OpenType math

Developing a math font has never been an easy job,
so attempting to develop a full-featured OpenType
math font for Latin Modern or TEX Gyre certainly
presents a major challenge to font designers or font
implementors for a number reasons.

First, such a math font will be really large, even
in comparison with text fonts, which already cover
a large range of Unicode.? It will have to extend
across multiple 16-bit planes to account for the slots
of the math alphabets starting at U+1D400, and it
will also require a considerable number of unencoded
glyphs to account for the size variants of extensible
glyphs and the optical variants of math alphabets.

Besides the size of the font, such a project will
also present many technical challenges in dealing
with the technology of OpenType math fonts.

While setting up the font-specific parameters of
the OpenType MATH table is comparable to setting
up the \fontdimen parameters of TEX’s math fonts,
setting up the glyph-specific information will require
detailed attention to each glyph as well as extensive

2 In the example of the Cambria Math font, the math font
is reported to have more than 2900 glyphs compared to nearly
1000 glyphs in the Cambria text font.

testing and fine-tuning to achieve optimal placement
of math accents and indices.

Finally, there will be the question of assembling
the many diverse elements that have to be integrated
in a comprehensive OpenType math font. So far,
the various styles of math alphabets and the various
optical sizes of these alphabets have been designed
as individual fonts, but in OpenType all of them
have to be combined in a single font. Moreover, the
optical sizes will have to be set up as substitutions
triggered by OpenType feature tags.

6 Summary and conclusions

In this paper we have reviewed the work on math
font encodings since 1990 and the current situation
of math fonts as of 2008, especially in view of re-
cent developments in Unicode and OpenType font
technology. In particular, we have looked in detail
at the features of OpenType math in comparison to
the well-known features of TEX’s math fonts.

While OpenType math font technology looks
very promising and seems to be the best choice for
future developments of math fonts, it also presents
many challenges that will have to be met.

While support for OpenType math in new TEX
engines has already started to appear, the develop-
ment of math fonts for Latin Modern or TEX Gyre
using this font technology will not be easy and will
take considerable time.

In the past, the TEX conference in Cork in 1990
was the starting point for major developments in text
fonts, which have ultimately led to the adoption of
Unicode and OpenType font technology.

Hopefully, the TEX conference at Cork in 2008
might become the starting point for major develop-
ments of math fonts in a similar way, except that this
time there will be no more need for a new encoding
that could be named after the site of the conference.

Acknowledgements

The author wishes to acknowledge feedback, sugges-
tions, and corrections from some of the developers
of projects discussed in this review.

A preprint of this paper has been circulated
on the Unicode math mailing list hosted at Google
Groups [38] and future discussions on the topics of
this paper are invited to be directed here.

References

[1] Yannis Haralambous: TEX and Latin alphabet
languages. TUGboat, 10(3):342-345, 1989.
http://www.tug.org/TUGboat/Articles/tb10-3/
tb25hara-latin.pdf

432 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

2]

[10]

[11]

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Nelson Beebe: Character set encoding.
TUGboat, 11(2):171-175, 1990.
http://www.tug.org/TUGboat/Articles/tb11-2/
tb28beebe.pdf

Janusz S. Bien: On standards for CM font
extensions. TUGboat, 11(2):175-183, 1990.
http://wuw.tug.org/TUGboat/Articles/tb11-2/
tb28bien.pdf

Michael Ferguson: Report on multilingual
activities. TUGboat, 11(4):514-516, 1990.
http://wuw.tug.org/TUGboat/Articles/tb11-4/
tb30ferguson.pdf

Frank Mittelbach, Robin Fairbairns, Werner
Lemberg: KTEX font encodings, 2006.
http://www.ctan.org/tex-archive/macros/
latex/doc/encguide.pdf

Jorg Knappen: The release 1.2 of the Cork
encoded DC fonts and text companion fonts.
TUGboat, 16(4):381-387, 1995. Reprint from
the Proceedings of the 9th European TEX
Conference 1995, Arnhem, The Netherlands.
http://wuw.tug.org/TUGboat/Articles/tb16-4/
tb49knap . pdf

Berthold K. P. Horn: The European Modern
fonts. TUGboat, 19(1):62-63, 1998
http://www.tug.org/TUGboat/Articles/tb19-1/
tb58horn.pdf

Bogustaw Jackowski, Janusz M. Nowacki:
Latin Modern: Enhancing Computer Modern
with accents, accents, accents. TUGboat,
24(1):64-74, 2003. Proceedings of the

TUG 2003 Conference, Hawaii, USA.
http://wuw.tug.org/TUGboat/Articles/tb24-1/
jackowski.pdf

Bogustaw Jackowski, Janusz M. Nowacki:
Latin Modern: How less means more.
TUGboat, 27(0):171-178, 2006 Proceedings
of the 15th European TEX Conference 2005,
Pont-a-Mousson, France.
http://www.tug.org/TUGboat/Articles/tb27-0/
jackowski.pdf

Will Robertson: An exploration of the Latin
Modern fonts. TUGboat, 28(2):177-180, 2007.
http://wuw.tug.org/TUGboat/Articles/tb28-2/
tb89robertson.pdf

Hans Hagen, Jerzy B. Ludwichowski, Volker
RW Schaa: The new font project: TEX Gyre.
TUGhboat, 27(2):250-253, 2006. Proceedings
of the TUG 2006 Conference, Marrakesh,
Morocco.
http://www.tug.org/TUGboat/Articles/tb27-2/
tb87hagen-gyre.pdf

[12]

[13]

[17]

[18]

[19]

[20]

[21]

Do we need a ‘Cork’ math font encoding?

Jerzy B. Ludwichowski, Bogustaw Jackowski,
Janusz M. Nowacki: Five years after: Report
on international TEX font projects. TUGboat,
29(1):25-26, 2008. Proceedings of the 17th
European TEX Conference 2007, Bachotek,
Poland.
http://www.tug.org/TUGboat/Articles/tb29-1/
tb91ludwichowski-fonts.pdf

Alan Jeffrey: Math font encodings: A
workshop summary. TUGboat, 14(3):293-295,
1993. Proceedings of the TUG 1993 Conference,
Aston University, Birmingham, UK.
http://www.tug.org/TUGboat/Articles/tb14-3/
tb40Omathenc.pdf

Justin Ziegler: Technical report on math font
encodings. I¥TEX3 Project Report, 1993.
http://www.ctan.org/tex-archive/info/
1tx3pub/processed/13d007 . pdf

Math Font Group (MFG) web site, archives,
papers, and mailing list.
http://www.tug.org/twg/mfg/
http://www.tug.org/twg/mfg/archive/
http://www.tug.org/twg/mfg/papers/
http://www.tug.org/mailman/listinfo/
math-font-discuss

Matthias Clasen, Ulrik Vieth: Towards a new
Math Font Encoding for (IM)TEX. Cahiers
GUTenberg, 28-29:94-121, 1998. Proceedings
of the 10th European TEX Conference 1998,
St. Malo, France.
http://www.gutenberg.eu.org/pub/GUTenberg/
publicationsPDF/28-29-clasen.pdf

Ulrik Vieth et al.: Summary of math
font-related activities at EuroTEX 1998.
MAPS, 20:243-246, 1998.
http://www.ntg.nl/maps/20/36.pdf

Ulrik Vieth: What is the status of new math
font encodings? Posting to mailing list, 2007.
http://www.tug.org/pipermail/
math-font-discuss/2007-May/000068.html
Barbara Beeton, Asmus Freytag, Murray
Sargent III: Unicode Support for Mathematics.
Unicode Technical Report UTR#25. 2001.
http://www.unicode.org/reports/tr25/
Barbara Beeton: Unicode and math, a
combination whose time has come — Finally!
TUGboat, 21(3):174-185, 2000. Proceedings of
the TUG 2000 Conference, Oxford, UK.
http://www.tug.org/TUGboat/Articles/tb21-3/
tb68beet . pdf

Barbara Beeton: The STIX Project — From
Unicode to fonts. TUGboat, 28(3):299-304,
2007. Proceedings of the TUG 2007 Conference,

433

Ulrik Vieth

[25]

[26]

[29

434

San Diego, California, USA.
http://wuw.tug.org/TUGboat/Articles/tb28-3/
tb90beet . pdf

STIX Fonts Project: Web Site and Frequently
Asked Questions.

http://www.stixfonts.org/
http://wuw.stixfonts.org/STIXfaq.html
Murray Sargent II1I: Math in Office Blog.
http://blogs.msdn.com/murrays/default.aspx
Murray Sargent III: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/2006/
09/13/752206 . aspx

Tiro Typeworks: Cambria Math Specimen.
http://www.tiro.nu/Articles/Cambria/
Cambria_Math_Basic_Spec_V1.pdf

John Hudson, Ross Mills: Mathematical
Typesetting: Mathematical and scientific
typesetting solutions from Microsoft.
Promotional Booklet, Microsoft, 2006.
http://www.tiro.com/projects/

Daniel Rhatigan: Three typefaces for
mathematics. The development of Times
4-line Mathematics, AMS Euler, and Cambria
Math. Dissertation for the MA in typeface
design, University of Reading, 2007.
http://wuw.typeculture.com/academic_
resource/articles_essays/pdfs/tc_article_
47 .pdf

Murray Sargent I1I: Unicode Nearly Plain
Text Encodings of Mathematics. Unicode
Technical Note UTN#28, 2006.
http://www.unicode.org/notes/tn28/
Microsoft Typography: OpenType
specification version 1.5.
http://www.microsoft.com/typography/otspec/

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

George Williams: FontForge. Math typesetting
information.
http://fontforge.sourceforge.net/math.html

Apostolos Syropoulos: Asana Math.
www.ctan.org/tex-archive/fonts/Asana-Math/
Will Robertson: Experimental Unicode math
typesetting: The unicode-math package.
http://scripts.sil.org/svn-public/xetex/
TRUNK/texmf/source/xelatex/unicode-math/
unicode-math.pdf

Yannis Haralambous: Fonts and Encodings.
O’Reilly Media, 2007. ISBN 0-596-10242-9
http://oreilly.com/catalog/9780596102425/

Bogustaw Jackowski: Appendix G Illuminated.
TUGboat, 27(1):83-90, 2006. Proceedings

of the 16th European TEX Conference 2006,
Debrecen, Hungary.
http://www.tug.org/TUGboat/Articles/tb27-1/
tb86jackowski.pdf

Ulrik Vieth: Understanding the sesthetics of
math typesetting. Biuletyn GUST, 5-12, 2008.
Proceedings of the 16th BachoTEX Conference
2008, Bachotek, Poland.
http://www.gust.org.pl/projects/e-foundry/
math-support/vieth2008.pdf

Ulrik Vieth: Math Typesetting in TEX: The
Good, the Bad, the Ugly. MAPS, 26:207-216,
2001. Proceedings of the 12th European TEX
Conference 2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

Unicode Consortium: Code Charts for
Symbols and Punctuation.
http://www.unicode.org/charts/symbols.html
Google Groups: Unicode math for TEX.
http://groups.google.com/group/unimath

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

Ameer M. Sherif, Hossam A.H. Fahmy

Electronics and Communications Department
Faculty of Engineering, Cairo University, Egypt

ameer dot sherif (at) gmail dot com, hfahmy (at) arith dot stanford dot edu

http://arith.stanford.edu/ hfahmy

Abstract

In this paper we discuss how parameterized Arabic letters are meta-designed
using METAFONT and then used to form words. Parameterized Arabic fonts
enable greater flexibility in joining glyphs together and rendering words with
imperceptible junctions and smoother letter extensions. This work aims to produce
written Arabic with quality close to that of calligraphers. Words produced using
our parameterized font are compared to other widely used fonts in a subjective

test and results are presented.

1 Introduction

The Arabic script is used for a multitude of languages
and is the second most widely used script in the world.
However, due to the inherent complexity [3, 6] of
producing high quality fonts and typesetting engines,
the support for Arabic digital typography has been
very weak.

OpenType is currently the de facto standard font
technology. It has many features to support a wide
variety of scripts, yet has its limitations for Arabic [7].
The most significant limitations are probably the
following two.

1. The concept of letter boxes connecting together
via other boxes of elongation strokes is not
suitable for highest quality Arabic typesetting.
When connecting glyphs to one another, the
junctions rarely fit perfectly because adjacent
letter glyphs usually have different stroke direc-
tions at the starting and ending points.

2. The use of pre-stored glyphs for different liga-
tures is limiting. The number of possible lig-
atures is far greater than what can be made
available.

In order to achieve an output quality close to
that of Arabic calligraphers, we modeled [7] the pen
nib and its movement to draw curves using METR-
FONT. In this paper, we use the pen stroke macros
that we have defined to meta-design the primitive
glyphs needed for a good quality Arabic font. So
far, we are working with the Naskh writing style
and we provide a fully dynamic and flexible design
leading to smooth junctions between letters. We also
developed a simple algorithm to perform kerning
in the case of letters that do not connect to what

follows them. According to a survey we conducted,
our design surpasses the widely used fonts.

Our work is not yet finished. In the future, we
need to provide for the automatic placement of dots
and diacritic marks and complete the rest of the
required shapes.

2 Strokes in Arabic glyphs

The Arabic alphabet, although consisting of 28 dif-
ferent letters, depends on only 17 different skeletons.
The dots added above or below some of these skele-
tons are the means of differentiating one letter from
another. For example the letters gim (T) and ha’

(T) have the same shape as the letter ha’ (T), but
gom has a dot below, and ha’ has a dot above. When
we discuss a primitive we mention its use in the group
of letters having the same skeleton, not individual
letters, and this further simplifies our designs.

2.1 The Arabic measurement unit

Over a thousand years ago, Ibn-Muglah, one of the
early theorists of Arabic calligraphy, was probably
the first to make the choice of the nugta (Arabic for
dot) as a measurement unit for letter forms [3]. He
chose it in order to have some fixed measurements
between different letter forms. For example, in the
Naskh writing style, the height of “alif is 4 nugtas,
and the width of an isolated nun is 3 nugtas. The
nugta or dot we refer to is that made by the pen used
to write the letter, i.e., it is not a constant like the pt.
The horizontal width of the nugta in Naskh (where
the pen is held at an inclination of 70 degrees to the
horizontal) is approximately equal to the diagonal of
a dot drawn by the pen as shown in Fig. 1. Since the
dot is a square then the nuqta width is slightly less

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 435

Ameer M. Sherif, Hossam A.H. Fahmy

than the pen width multiplied by the square root
of 2. In our work we take it as 1.4 X pen width and in
our METAFONT programs it is simply abbreviated
as n.

Figure 1: The nugta as a measurement unit.

2.2 Stroke point selection

We define a calligrapher’s pen stroke as a continu-
ous movement of the pen. The location where the
calligrapher pauses defines the end of a stroke and
the start of a new one. Thus, a circular path may be
considered as only one stroke because the start and
end points are defined by the movement of the hand
and not by the appearance.

The first step in the process of meta-designing
any primitive or letter is to select the points through
which the pen strokes pass. This is not an easy
choice. When designing outline fonts, the solution is
usually to scan a handwritten letterform, digitize its
outline, then make the necessary modifications. We
did not adopt this approach because Arabic letters
do not have fixed forms but rather depend on the
calligrapher’s style. Since we are meta-designing, we
are more concerned with how the letter is drawn and
not just a single resulting shape. Hence, instead of
capturing the fine details of a specific instance of the
letter by one calligrapher, we wanted to capture the
general features of the letter. To help us accomplish
this, we based our design on the works of multiple
calligraphers.

The letter ’alif is shown in Fig. 2 with three
different possibilities of point selection. The leftmost
glyph requires the explicit specification of the tan-
gential angles at points 1 and 2. In the middle glyph,
just connecting the points 1-3-4-2 with a Bézier
curve can produce the same curve without explicitly
specifying any angles: z1..z3..z4..2z2.

Theoretically, we can specify the path using an
infinite number of points, but the fewer the points,
the better the design and the easier to parameterize
it. Adding more points that also lie on the same path
can be done as in the rightmost glyph, but point 5 is
redundant because the stroke is symmetric, and can
be produced without explicitly specifying any angles
or tension.

Figure 2: Selecting points to define the path of the
letter “alif .

This “alif example shows that the minimum num-
ber of points to choose for any stroke is two, and
their locations are at the endpoints of the stroke.
These are the easiest points to select. Intermediate
points are then chosen when curve parameters such
as starting and ending directions and tensions are
not enough to define the curve as needed for captur-
ing important letter features. Hence more points are
usually needed in stroke segments with sharp bends
or in asymmetric strokes.

2.3 Stroke point dependencies

In our design, we model the direction of the stroke as
it is drawn by the calligrapher, i.e., the stroke of the
letter “alif is drawn from top to bottom. The points
in our designs are numbered in order according to
the pen direction. So for the letter “alif , the stroke
begins at point 1 and ends at point 2.

However, a calligrapher chooses the starting
point of the ’alif stroke depending on the location
of the base line. This means that point 1 is cho-
sen relative to point 2, so we define 1 based on 2.
Since METAFONT is a declarative language, not an
imperative one, the two statements: z1 = z2 + 3;
and z2 = z1 - 3; evaluate exactly the same. Yet
we try to make the dependencies propagate in the
natural logical order, which then makes editing the
METAFONT glyph code an easier job; hence, the first
expression is the better choice.

3 Meta-designing Arabic letters

Several characteristics of the letter shapes discovered
during our design process were not mentioned explic-
itly in most calligraphy books. Calligraphers do not
measure their strokes with precise rulers and their
descriptions are only approximate. Detailed features
of the letters are embedded implicitly in their curves
as they learned them by practice. However, in our
design, we represent the stroke mathematically and
require accurate descriptions. The following sections
show a couple of examples.

We start by studying the letter shapes and not-
ing the fine variations that might exist between ‘sim-
ilar’ shapes. Then we select the stroke points, decide

436 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

on the pen direction at each point based on the let-
ter shape and stroke thickness, and finally draw the
strokes using our gstroke macro [7].

3.1 The concept of primitives

Meta-design enables us to break the forms of glyphs
into smaller parts, which are refered to as primitives.
These primitives may be whole letters or just parts
of letters that exist exactly as they are or with small
modifications in other letters. We can save design
time and increase meta-ness by reusing primitives.

In Knuth’s work on his Computer Modern (CM)
fonts [4], primitives were not explicitly defined as
black boxes and then reused. The use of primitives
requires more parameterization than what CM deals
with. There, the use of primitives was worthy only
in small and limited flexibility shapes such as serifs
and arcs, for which Knuth wrote subroutines. The
difference between his work and ours is that he pa-
rameterized letters to get a large variety of fonts,
while we parameterize primitives to make the letters
more flexible and better connected, not to produce
different fonts. Indeed, as mentioned earlier, our
current focus is the Naskh writing style only.

Our classification of Arabic primitives consists
of three categories:

e Type-1 primitives are used in many letters
without any modifications.

e Type-2 primitives are dynamic and change
shape slightly in different letters.

e Type-3 primitives are also dynamic but much
more flexible.

3.2 Type-1 primitives

This category includes diacritics and pen strokes
common in many letters. The nugta, kaf’s shara,
and the hamza are Type-1 primitives. Fig. 3 shows
the shara of the letter kaf and the hamza. These
glyphs are drawn using a pen with half the width
of the regular pen. Other diacritics like the short
vowels fatha and kasra are dynamic, and do change
length and inclination angle.

Figure 3: The shara of kaf and the hamza.

The ‘tail’ primitive is another example of a Type-
1 primitive. It is used as the ending tail in letters
like waw, ra’, and zay in both their isolated and
ending forms. Fig. 4 shows the tail designed using
METAFONT on the left and its use in waw and ra’
on the right.

Figure 4: The tail primitive.

Even in cases with kerning where the tail may
collide with deep letters that follow it, many calligra-
phers raise the letter as a whole without modifying
the tail’s shape. Fig. 5 shows an example of kerning
applied to letters with tails. We follow the same
approach in our design and the tail requires no flexi-
bility parameters.

57

Figure 5: Four consecutive tails in a word as written
in the Qur’an [1], [26:148]. Notice the identical tails
despite the different vertical positioning.

Listing 1 shows the code for the tail. The natural
direction of drawing is from point 3 to 4 to 5. But in
fact, the stroke is only between 3 and 4; the last part
of the tail is called a shazya and calligraphers usually
outline it using the tip of the pen nib then fill it
in. We use the METAFONT filldraw macro for that
purpose. We use filldraw instead of £ill in order
to give thickness to the shazya edge at point 5. Also
note the coordinate points dependencies: z4 depends
on z3 and z5 depends on z4 not z3. This makes
modification of the glyph much easier by separating
the definition of the stroke segment and that of the
shazya, i.e., if we modify the stroke, the shazya is
not affected, unlike if z5 was a function of z3.

z4 = 23 + (—1.7Tn, —2n);

z5 = z4 + (—2n, .36n);

path raa_body;

raa_body = zs{dir —95} ..
z4{dir —160};

gstroke(raa_body, 85, 100, 0, 0);

path shathya;

shathya = (x4, top ya){dir —160} ..
{dir 160}z5{dir —38} .. tension 1.3 ..
(7t bot z4){dir 15} - - cycle;

pickup pencircle scaled 1.2;

filldraw shathya;

tension 1.3 ..

Listing 1: METAFONT code for the tail primitive.

The code first defines the points in relation to
each other using the nugta (n) as the unit of measure-

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 437

Ameer M. Sherif, Hossam A.H. Fahmy

ment. Then a path variable is created which holds
the path definition of the stroked part of the tail.
The gstroke macro [7] is used to draw the stroke.
The second path defines the shazya outline.

3.3 Type-2 primitives

This class of primitives has few parameters that
enable only slight variations in the primitive’s shape
to facilitate its use in different letters. We will discuss
two primitives of this type: the ‘waw head’ and the
“alif stem’.

3.3.1 The waw head primitive

This primitive is a circular glyph used in the starting
and isolated forms of the letters waw, fa’, and qaf.
It consists of two parts: the head and the neck. In
most calligraphy books, the head is described as
being exactly the same in all three letters. However
small differences exist between the heads due to the
connections with different letter skeletons. Fig. 6
shows the letters fa’ and g¢af as drawn in three
books. Note how the circular head does in fact look
slightly different in both letters, yet none of these
books mention that there are variations in the head.

[24 °)‘)'u;'/
Q=9

')‘r‘

J &—) i G
———— e ccnravee
¢

oWy, st

@ e 9
A, (e

«—J'w\(yuwwv
o«
N L
& d
' r'ed

G0 U 30513

Figure 6: The letters fa’ and gaf as drawn by
three calligraphers, from top to bottom: Afify [2],
Mahmoud [5], and Zayed [8].

Fig. 7 shows that the waw head primitive con-
sists of 2 strokes, one between points 1-2, the other
between points 2-3-4. We approximate the differ-
ences between the waw, fa’, and gaf by altering
the 3-4 segment. Thus the same primitive may be
used for the three letters in their isolated form. This
same primitive is used in their ending forms by mov-
ing point 1 down and to the right, to connect to a
preceding letter or kashida.

3.3.2 The ’alif stem primitive

The stem of the ’alif (Fig. 2) is used in many letters:
lam (all forms), kaf (isolated and final forms), mim

Figure 7: The waw head primitive.

(final form), and ta’ (all forms). Most calligraphers
describe the straight stroke in the lam, kaf, and
ta’ as being identical to the ‘alif. Fig. 8 shows a
calligrapher’s description [5] stating that the form of
the vertical stroke in the different letters is exactly
the same as the “alif. This is a crude approximation
because there are differences in the thickness, cur-
vature, inclination, and height (in case of the ta’)
between the isolated “alif and the modified form used
in other letters.

c B s asp 3.l aWes,

L\n))’\‘y J(_ 4‘;}3*_\
(WL 7% L

,\L,\ B A
:\"‘ud\’»"
.\.,\,..,;,n\,\:\,l

Figure 8: Approximate directions in calligraphy books.

Fig. 9 shows our design: on the far right the
isolated ’alif and to its left the modified “alif that
is used in lam and kaf. The modified ’alif is thin-
ner with less curvature near the middle, or in other
words more tension, together with more overall in-
clination. Listing 2 shows that they both have the
same height and the thickness of the stem is achieved
by increasing the pen nib angle.

Figure 9: The ’alif primitve.

438 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

% Description for isolated ’alif

curve := —100; incline := 70; height := 4.5n;
zo = z1 + (0, —height);

path saag;

saaq = zi1{dir curve} .. tension 1.4 ..

zo{dir curve};
gstroke(saaq, incline, incline, 0, 0);

% Description for ’alif used in lam and kaaf

curve := —95; incline := 79; height := 4.5n;
zg = z1 + (0.3n, —height);

path saagq;

saaq = zi1{dir curve} .. tension 1.4 ..

zo{dir curve};
gstroke(saaq, incline, incline — 3, 0, 0);

Listing 2: METAFONT code for the ‘alif primitive.

3.4 Type-3 primitives

Type-3 primitives are glyphs that have a wider dy-
namic range, and greater flexibility. In this section,
we discuss the skeleton of the letter nun, called the
kasa (Arabic for cup) and the kashida. Calligraphers
often use the great flexibility of these primitives to
justify lines.

3.4.1 Kasa primitive

The body of the letter nan is used in the isolated
and ending forms of sin, $in, sad, dad, lam, qaf,
and ya’. Fig. 10 shows the kasa in five letters. The
kasa has two forms, short and extended. The short
form is almost 3 nugtas in width in the case of nun,
one nugta longer in ya’, and slightly shorter in lam.
This difference between the kasa of the lam and the
nun is not well documented in calligraphy books,
where most calligraphers mention that both are the
same and only few state that in the lam it is slightly
smaller.

An important property of the kasa is that it can
be extended to much larger widths. In its extended
form, it can range from 9-13 nugtas. Fig. 11 shows
the short form together with three instances of the
longer form generated from the same METAFONT
code. Note that its width can take any value be-
tween 9 and 13, not just integer values, depending
on line justification requirements. Also note how
the starting senn (vertical stroke to the right) of the
letter is shorter in extended forms.

3.4.2 Kashida primitive

Another very important primitive for justification,
the kashida is used in almost all connected letters. As
an illustrative example, Fig. 12 shows the letter ha’
in its initial form with two different kashida lengths,

Figure 10: The kasa primitive.

Figure 11: The letter nun shown with kasa widths of
3, 9, 10 and 13 nugtas.

differing by 3 nugtas. The parameter tatwil con-
trols this length by varying the distance between
points 3 and 4, both the horizontal and vertical com-
ponents, as shown in this line of code:

23 = z4+(1.74n, 0.116n)+(0.5tatwil, 0.025tatwil)*n;

As tatwil increases, point 3 moves further from
point 4 both to the right and upward. This vertical
change helps maintain the curvature in the kashida.
If no vertical adjustment is made, longer kashidas
look like separate straight lines with a sharp corner
at their intersection with the surrounding letters.
Calligraphers, on the other hand, draw curved lines
rather than straight ones producing aesthetically
better shapes. For these reasons, in our definition of
the stroke, the tangential direction at point 3 is left
free depending on the distance between 3 and 4. We
will see in the next section how kashidas are adjusted
to join letters together smoothly.

Figure 12: The initial form of the letter ha’ with two
different kashida lengths.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 439

Ameer M. Sherif, Hossam A.H. Fahmy

4 Forming words

The combination of primitives to form larger entities
is the final step towards producing Arabic script that
is as cursively connected and flexible as calligraphers’
writings. The parameterization of the glyphs allows
us to piece them together perfectly as if they were
drawn with just one continuous stroke.

4.1 Joining glyphs with kashidas

The most widely used glyph to connect other letters
is the kashida. In this section we will explain the
mechanism we use in order to make the junction
between letters as smooth as possible. In current
font standards, such as OpenType and TrueType,
kashidas are made into fixed glyphs with pre-defined
lengths, and are substituted when needed between
letters to give the feeling of extending the letter. But
because that design for the kashida is static, as are
the rest of the surrounding letters, they rarely join
well. It is evident that the word produced is made
of different segments joined by merely placing them
close to each other.

In our work, the kashida is dynamic and can
take continuous values, not just predefined or discrete
values. We believe that when a kashida is extended
between any two letters, it does not belong to just
one of them; instead, it is a connection between them
both. This belief is the result of experimenting with
different joining methods.

Let us take the problem of joining the two letters
ha’ and dal as an example to illustrate the kashida
joining mechanism we have developed. The solution
we propose is to pass the tatwil parameter to the
macros producing the two glyphs, and the kashida
length is distributed between both glyphs. This
enables us to fix the ends of the glyphs to be joined
at one angle, which is along the x-axis in the Naskh
style, since any kashida in that style must at one
point move in this direction before going up again.
To accommodate long kashidas, each glyph ending
point is moved further from its letter and slightly
downwards. Long kashidas need more vertical space
in order to curve smoothly, sometimes pushing the
letters of a word upwards.

Other than affecting the ending points, the pa-
rameter also affects the curve definition on both sides
by varying the tensions, while keeping the direction
of the curves at the intersection along the negative
x-axis (since the stroke is going from right to left).
The resulting word at many different kashida lengths
is shown in Fig. 13.

Figure 13: Placing a kashida between the letters ha’
and dal with different lengths: 2, 3, 5 and 7 nuqtas.

&

Figure 14: The word Mohammed as an example of
vertical placement (Thuluth writing style).

4.2 Vertical placement of glyphs

In written Arabic, the existence of some letter com-
binations may force the starting letter of a word to
be shifted upwards in order to accommodate for the
ending letters to lay on the baseline of the writing.
A very simple example of that property is the name
Mohammed when written with ligatures, where the
initial letter mim is written well above the baseline,
as shown in Fig. 14.

It is hence obvious that the starting letter’s
vertical position is dependent on the word as a whole.
It might then be thought that it is easier to draw the
words starting from the left at the baseline and then
move upwards while proceeding to the right. But
this has two problems: one is that the horizontal
positioning of the last letter depends on the position
of the first letter on the right and on the length of the
word, and the second is that a left to right drawing
would be against the natural direction of writing and
may result in an unnatural appearance.

The solution is then to walk through the word
till its end and analyze each letter to know where to
position the beginning letter vertically, and then start
the actual writing at the right from that point going
left. This process is what a calligrapher actually does
before starting to write a word. So, for a combination
of letters, we benefit from the declarative nature of
METAFONT. The following rules are applied:

e The horizontal positioning starts from the right,

e the vertical positioning starts from the left at
the baseline, and

e writing starts from the right.

To illustrate this better, see Fig. 15. The lig-
ature containing the letters sin, gim, and waw is
traced from left-to-right as shown, going through
points 1-2-3, the starting points of each glyph, until

440 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

r/\

LA

Figure 15: Tracing a word from left-to-right to know
the starting vertical position.

Do - ol

Shy g
3 ol

Figure 16: Kerning: letters with ‘tails’ need special
attention. The first line shows our output to the right
and the current font technologies to the left. The last
two lines show our output.

the vertical position of point 1 is known. The next
step is to start writing the word starting from point 1.
Isolated letters like dal are not taken into considera-
tion, because they do not affect the preceding letters
vertically.

4.3 Dealing with kerning

To imitate what calligraphers do as in Fig. 5, we
had to invent a special kerning algorithm. Fig. 16
shows our output. We raise the level of any ‘deep
letter’ following a ‘tail letter’ to kern correctly. Any
non-deep letter holds the level steady. The end of
the word restores the baseline.

4.4 Word lengths

In reality, word lengths are not selected by the cal-
ligraphers word by word, but instead, are chosen
based on the justification requirements of a whole
line. When a word length is decided according to the
line it exists in, this length should be passed to a main
macro that calls the glyph macros in order to form
the word. This main macro should decide the length
of kashidas to be added depending on the minimum
length of each letter. For example, that the word
under consideration is the one shown in Fig. 13, and
that the desired total length of the word is 10 nugtas.
In order to calculate the extension or the tatwil
parameter between the letters, it subtracts all the
minimum lengths of the individual letters. In our
example, the head of the ha’ is 4 nugtas wide, and
the base of the dal is 3 nugtas, hence the word has a
minimum length of only 7 nugtas. In order to stretch
it to 10, the added kashida is 3 nugtas wide.

4.5 A final example

This section describes a more illustrative example
shown in Fig. 17. This example, showing four in-
stances of the word sujud, demonstrates the many
properties and benefits of our parameterized font.
First, it shows flexibility in stretching and compress-
ing words for line justification purposes. This flexi-
bility is due to two capabilities of the font: dynamic
length kashidas and glyph substitution. For a very
small line spacing, the sin is written on top of the
ha’, and the kashida after the ha’ is almost zero.
When more space is available, the kashida after
the ha’ is stretched and the senn connecting the sin
and the ha’ is also made slightly longer. Further
elongation is made possible by breaking the ligature
between sin and ha’. And finally, the maximum
length is obtained by elongating the kashida between
the two letters. Theoretically, we could get more
stretching of this kashida and even add another one
after the ha’, but calligraphic rules ultimately limit

the stretching.
dg
39
Sy
Sy

Figure 17: The word sujud written with different
lengths ranging from 10.5 to 16.5 nugtas.

5 Testing the output
5.1 A GUI to simplify tests

To facilitate the task of testing our ideas, we made a
simple graphical user interface (GUI) to write words
using our METAFONT programs. This allows us to
make changes to parameters and draw words faster
than having to edit the code manually. Fig. 18 shows
the block diagram describing the operation of the GUI
and Fig. 19 shows the different window components
of the GUI.

First, the user types in a word or sequence of
words in the input word text box, then presses the
start button. This parses the input word(s) into a
string of letters, removing any space characters. Each
character can be selected from a list and its shape
determined from the letterform list at the bottom of
the screen. Also a length extension can be input in
the length text box (default is zero).

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 441

Ameer M. Sherif, Hossam A.H. Fahmy

List characters
(not including
space characters)

Read input
word(s)

Parse word(s) into stream
of characters

Y

A

Output files with selected Manual selection

letterforms, lengths, and of letterforms and
order in word(s) length

Run METAFONT
and DV| viewer [~

Figure 18: Block diagram describing the operations
of the graphical user interface.

=)

£+ Thumbnail

Enter word

‘ i i
i
]
Start

Figure 19: Screenshot of our simple GUI.

Lengh |2 it

When the write button is pressed, the letter-
forms selected and their extra lengths are written in
files, then METAFONT executes the glyph programs.
Finally, a DVI previewer opens the resulting output
as seen in Fig. 20.

Figure 20: Screenshot of the DVI previewer
displaying the output word.

5.2 The survey

In order to test if readers are comfortable with the
way our parameterized font looks as compared to
other Naskh fonts, we made a list of 16 words, each
written in four different Naskh fonts:

Simplified Arabic,
Traditional Arabic,
DecoType Naskh, and
AlQalam parameterized font.

For a more reliable and unbiased test, the order of
fonts used is varied in consecutive rows and all words
are set to approximately the same sizes although
nominal point sizes of the different fonts are not

exactly equivalent. We selected the 16 words to test
three main features:

e connections between letters,
e extension/tatwil of letters, and
e kerning.
Fig. 21 shows the first page of the test.

Ol

AU LS o gn o gllall Ll e B el O A LS e o ol Ol s
oty o GalS” ST B 50 e udie o i (S o e U) e e bl

a2 b 2SO o gy 82 5alSH O o dt Of Gt)

Ja Ja Ja Ja |
WAL GOm0 [MO0 | 5 Ween
BV. NV D D A A daia 2
GO WAL | HHEGOL | @3 QA
(5) (4) (3) (2 () (5) (4) (3) (2) (1 (5) (4) 3) () (1) (5) (4 (3) (2) (1)
. . . ‘ M
| i (RYY Ja |y
@R GH@W3RH2M | WD | ()W E @D
e £ ¢ s
o Osh ol gl s
@A H@WEHOO [WD | (G @We @O

Figure 21: First page of the test where we ask the
readers to rate their comfort.

We then surveyed 29 Arabic readers (14 males
and 15 females) with ages ranging from 10 to 70 years.
In the survey, readers were asked to evaluate and
rate words in terms of their written quality and how
comfortable they feel reading the words. A rating
of 1 is given to low quality and uncomfortable words,
and a rating of 5 is given to words of high written
quality and most comfort to the reader.

This test methodology is known as the Mean
Opinion Score (MOS), a subjective test often used to
evaluate the perceived quality of digital media after
compression or transmission in the field of digital
signal processing. The MOS is expressed as a single
number in the range of 1 to 5, where 1 is lowest
quality and 5 is highest quality. In our case, the MOS
is a numerical indication of the perceived quality of
a written word. Finally, the total MOS is calculated
as the arithmetic mean of all the individual scores.

442 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

Table 1 shows the MOS scores for individual words
of each font and the total average.

Table 1: MOS results for each font.

Line Simplified Traditional DecoType AlQalam
No. Arabic Arabic Naskh Parameterized
1 35 20 1.7 3.6
2 3.0 3.3 2.7 3.9
3 2.8 25 24 3.9
4 25 35 22 3.8
5 1.7 21 34 4.3
6 1.6 23 3.6 3.8
7 24 24 3.9 3.7
8 1.9 1.9 3.6 3.6
9 1.3 21 3.9 3.8
10 26 35 3.1 4.2
1 22 1.6 3.6 3.8
12 1.6 2.0 34 4.2
13 2.0 25 3.3 4.0
14 2.0 1.7 4.0 4.1
15 27 3.2 3.1 3.8
16 25 2.0 3.8 4.0
MOS 23 24 3.2 3.9

The results clearly show an increased comfort
with the parameterized font with respect to the other
popularly used fonts. One feature clearly distinguish-
ing the different fonts is kerning. This is very evident
in words 1, 3, 5, 6, 9, 11, 13, and 14 which had kern-
ing applied. The addition of smooth kashidas for
extension also results in a large difference in scores
as with words 7, 10, and especially 12 which contains
a long kashida. The results of word 15 show that the
use of complex ligatures is also an important feature
for the comfort of readers. We believe that more
work and collaboration with calligraphers can yield
even better results.

6 Conclusion

The work covered in this paper is just a small step
towards the realization of a system to produce output
comparable to that created by Arabic calligraphers,
and much more work is still needed. We need to com-
plete our design and finish all the required shapes.

There is a strong need for non-engineering re-
search on the readability and legibility of the different
kinds of Arabic fonts comparable to the many stud-
ies conducted on Latin letters. It is important to
categorize the different calligraphers’ writing styles
as well as the regular computer typefaces: are they
easy and fast to read in long texts, or not? Which
are better to use in titles or other ‘isolated’ materials,
and which are better for the running text?

By presenting our effort, we hope to open the
door for future exciting work from many researchers.

References

[1] The Holy Qur’an. King Fahd Complex for
Printing the Holy Qur’an, Madinah, KSA,
1986.

[2] Fawzy Salem Afify. ta‘leem al-khatt al-‘arabi
[Teaching Arabic calligraphy]. Dar Ussama,
Tanta, Egypt, 1998.

[3] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic text
justification. TUGboat, 27(2), January 2007.

[4] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[5] Mahdy Elsayyed Mahmoud. al-khatt al-‘arabi,
dirasah tafsiliya muwassa‘a [Arabic calligraphy,
a broad detailed study]. Maktabat al-Qur’an,
Cairo, Egypt, 1995.

[6] Thomas Milo. Arabic script and typography:
A Dbrief historical overview. In John D. Berry,
editor, Language Culture Type: International
Type Design in the Age of Unicode, pages
112-127. Graphis, November 2002.

[7] Ameer M. Sherif and Hossam A. H. Fahmy.
Parameterized Arabic font development for
AlQalam. TUGboat, 29(1), January 2008.

[8] Ahmad Sabry Zayed. ahdath al-turuq leta‘leem
al-khotot al-‘arabiya [New methods for learning
Arabic calligraphy]. Maktabat ibn-Sina, Cairo,
Egypt, 1990.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 443

Smart ways of drawing PSTricks figures

Manjusha Susheel Joshi
Bhaskaracharya Institute of Mathematics
Law College Road,

Pune 411004, India

manjusha dot joshi at gmail dot com
www dot bprim dot org

Abstract

We present a method of using PSTricks in conjunction with free software packages
for interactive drawing (Dr. Geo, Dia, Gnuplot, Xfig) to produce various types of
figures, via exporting as TEX and modifying the result.

1 Drawing geometric figures

In our institute, we arrange various training pro-
grammes for International Maths Olympiad compe-
tition, publish the journal Bona Mathematica, and
produce other mathematical study materials. For all
these we need to draw complex geometric figures.

1.1 Accuracy requirements

All the mathematical material is in ITEX format.
Faculties require .eps files to include in their ques-
tion papers, notes, books and articles.

In figures, the text used for labels, etc., must
all be in the same font. The material is widely dis-
tributed among students and others, so from the
printing point of view, the figures should be very
accurate.

We want to produce such exact figures while
not spending excessive amounts of time on draw-
ing them. Also, these figures must be usable in the
IATEX sources.

We want to minimize issues such as license, cost,
and support and therefore maximize availability of
the software. In general, use of free software is en-
couraged in the institute.

For drawing geometric figures, the free software
package Dr. Geo (home page http://www.gnu.org/
software/dr-geo) is well-suited for us. Figure 1
shows a typical session in progress. Other free soft-
ware GUI drawing programs include Dia for flow-

charts, among other purposes (http://www.gnome.

org/projects/dia), Gnuplot for function plotting
(http://www.gnuplot.info), and Xfig for general
drawing (http://www.xfig.org).

1.2 Convert figures directly to PostScript?

If a figure file is generated by another software pro-
gram, converted to ps or eps by an external utility,
and then inserted in the KTEX file, we have observed
that the font type and size of labels in the converted

444

& prE=se =orw

Fle Edit Animation Macro-constructions Windows Hel

) BE

L0
A

Figure 1
Free point: click on the plane or over a curve

Figure 1: Drawing a figure in Dr. Geo

file is different from that in the KTEX file, and the
sharpness of the figure may not be good.
Of course we wish to avoid such problems.

1.3 Export figures as TEX

As an alternative to PostScript export, software such
as the above supports exporting figures in TEX for-
mat. Advantages of this approach include:

e The ‘Export as TEX file’ options generate the
entire code for users.

e The resulting fig.tex file has PSTricks code
for the figure, which is editable.

e Users may not know every PSTricks command,
but they can easily modify the code in useful
ways knowing only a small set of commands.

e Users need not calculate (x,y) co-ordinates, as
they are already generated according to the fig-
ure. One important thing not to worry about.

1.4 Step by step

Here is our process, step by step.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

3%

.

K

3
ode el
XX
XXX
SRR

<D
9%

2
)
oS
3
3R
35
029,
038
&
&

0
<

5
o2
03059
%

O
e

\\
%0

Q
X
KR
ot
&5

Q

Q

2K
LRRKS

2

9
<
2R
9
9
R

5
038,
&

QXXX RRARLIIRRK
ARSI
LIRRIRIILERS
0202020002002 2020 20 %0 20 %0 2%
0020002020 2020202020 2% 2%

02002020 202002020 202020 %0502

JRRRRIRIERILIRIRIKKS

LRIRARRKS SRR

LRQRLRLR QLK%

KRR QX
5

X
&
S

y
%,
&5
&
&
038,

0
00,
9
X
R
O
0
900,
%fg

P XXX
DRI
XK X2
WX <X

9 Qﬁ‘

- v"

'.'32‘3‘.% RIS
P

RRIRIEIRIRN
RIS
RRRRRRAIIELRS
SRR
RS
SRR
LRIRHRRIRIKL
SRS

9.9.9.9.90.9,
0. 0:9.9.9.9.9.90.0.
LLRRRRK

5
&8
5
&
&S
&
&
%
35S
S
S
2RSS
0%
IS
%
SRR
35S
2K
KK
K5
RS

SIS
‘Qﬂﬂ“ﬂ“ﬂ“ﬂﬂ"\

Smart ways of drawing PSTricks figures

TR
Do %0 %% %%

R

00
2

XX

Figure 2: Nine point circle, drawn with modified PSTricks code

e Open a graphical tool for drawing geometric fig-
ures, e.g., one of those mentioned above. Draw
the figure.

Label the objects at appropriate places, as near
by as possible. Save.

Export as a TEX figure.

Open it in any editor or (M)TEX IDE to edit.
We often use Kile (kile.sourceforge.net).

Change all the labels in the figure to be in math
mode, i.e., enclosed in $...$, especially labels
of vertices.

If the positions of labels are not perfect, then
adjust the x and y coordinates as needed, in the
neighbourhood of the x and y which have been
calculated by Dr. Geo.

2 Sequence of drawing objects matters

Sometimes two objects will overlap, so that the ob-
ject drawn earlier becomes invisible. To see an ex-
ample, refer to Figure 2, a ‘nine point circle’.
Looking at the points of intersection at W7 and
W3, we can see the construction clearly, namely,
ZQZg 1 Z1W1 and Z1Z2 1 ZgWg. HOWGVGI‘, at
point W5, the red dot marker has obscured that
7173 L ZoWs. If the dot were drawn before the
lines, the lines would be visible, as they are at W;

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

and W3. (We intentionally left this discrepancy in
the figure for expository purposes.)

Drawing sequence is an issue with opaque colors.
With transparent colors, the sequence typically does
not matter.

3 Example

Figure 2 also serves as a general example showing
the success of our workflow. In the figure, nine red
points can be seen. These points are constructed
using Dr. Geo, i.e., Dr. Geo was responsible for cor-
rectly finding these nine intersecting points.

With PSTricks, one can use different colours
and textures to highlight points and regions, and
place labels at the appropriate co-ordinates and use
the same font as KTEX file in which figure will be
inserted. In this case, we wanted to use the figure
on the front page of a journal, and so we needed to
make it more colourful.

In a sense, Dr. Geo works here as a front end
for PSTricks. With the help of such a front end,
users can save considerable time in calculating the
co-ordinates for the figure.

To learn about the actual mathematics of the
nine point circle, see http://www.csm.astate.edu/
Ninept.html.

445

The MetaPost library and LuaTgEX

Hans Hagen
Pragma ADE
http://pragma-ade.com

Abstract

An introduction to the MetaPost library and its use in LuaTgX.

1 Introduction

If MetaPost support had not been as tightly inte-
grated into ConTEXt as it is, at least half of the
projects Pragma ADE has been doing in the last
decade could not have been done at all. Take for in-
stance backgrounds behind text or graphic markers
alongside text (as seen here). These are probably the
most complex mechanisms in ConTEXt: positions
are stored, and positional information is passed on
to MetaPost, where intersections between the text
areas and the running text are converted into graph-
ics that are then positioned in the background of the
text. Underlining of text (sometimes used in the edu-
cational documents that we typeset) and change bars
(in the margins) are implemented using the same
mechanism because those are basically a background
with only one of the frame sides drawn.

You can probably imagine that a 300 page doc-
ument with several such graphics per page takes a
while to process. A nice example of such integrated
graphics is the LuaTEX reference manual, that has
an unique graphic at each page: a stylized image of
a revolving moon.

Most of the running time integrating such
graphics seemed to be caused by the mechanics of the
process: starting the separate MetaPost interpreter
and having to deal with a number of temporary files.
Therefore our expectations were high with regards to
integrating MetaPost more tightly into LuaTEX. Be-
sides the speed gain, it also true that the simpler the
process of using such use of graphics becomes, the
more modern a TEX runs looks and the less prob-
lems new users will have with understanding how all
the processes cooperate.

This article will not discuss the application in-
terface of the MPlib library in detail; for that there is

the manual. In short, using the embedded MetaPost
interpreter in LuaTEX boils down to the following:

e Open an instance using mplib.new, either to

process images with a format to be loaded, or
to create such a format. This function returns
a library object.

e Execute sequences of MetaPost commands,
using the object’s execute method. This re-
turns a result.

e Check if the result is valid and (if it is okay)
request the list of objects. Do whatever you
want with them, most probably convert them
to some output format. You can also request
a string representation of a graphic in Post-
Script format.

There is no need to close the library object. As long
as there were no fatal errors, the library recovers well
and can stay alive during the entire LuaTEX run.

Support for MPlib depends on a few compo-
nents: integration, conversion and extensions. This
article shows some of the code involved in supporting
the library. Let’s start with the conversion.

2 Conversion

The result of a MetaPost run traditionally is a
PostScript language description of the generated
graphic(s). When PDF is needed, that PostScript
code has to be converted to the target format. This
includes embedded text as well as penshapes used
for drawing. Here is an example graphic:

Figure 1

draw fullcircle
scaled 2cm
withpen pencircle xscaled 1mm yscaled .5mm
rotated 30 withcolor .75red ;

Notice how the pen is not a circle but a rotated
ellipse. Later on it will become clear what the con-
sequences of that are for the conversion.

How does this output look in PostScript? In

446 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

abridged form, it looks like this:

%1PS-Adobe-3.0 EPSF-3.0
%/%BoundingBox: -30 -30 30 30
%%HiResBoundingBox: -29.62 -29.283 29.62 29.283
%hCreator: MetaPost 1.090
%%CreationDate: 2008.09.23:0939
%hPages: 1
% [preamble omitted]
%hPage: 1 1
0.75 0 O R 2.55513 hlw rd 1 1j 10 ml
q n 28.34645 0 m
28.34645 7.51828 25.35938
14.72774 20.04356 20.04356 c
14.72774 25.35938 7.51828
28.34645 0 28.34645 c
[...]
[0.96077 0.5547 -0.27734 0.4804 0 0] t S Q
P
WHEQF

The most prominent code here concerns the
path. The numbers in brackets define the transfor-
mation matrix for the pen we used. The PDF variant
looks as follows:

a
0.750 0.000 0.000 rg 0.750 0.000 0.000 RG
10.000000 M
1]
17
2.555120 w
a

0.960769 0.554701 -0.277351
0.480387 0.000000 0.000000 cm
22.127960 -25.551051 m

25.516390 -13.813203 26.433849
0.135002 24.679994 13.225878 c

22.926120 26.316745 18.644486
37.478783 12.775526 44.255644 c
[...]
h S
Qo
g 0G
Q

The operators don’t look much different from
the PostScript, which is mostly due to the fact that
in the PostScript code, the preamble defines short-
cuts like ¢ for curveto. Again, most code involves
the path. However, this time the numbers are differ-
ent and the transformation comes before the path.
In the case of PDF output, we could use TEX

itself to do the conversion: a generic converter is im-
plemented in supp-pdf .tex, while a converter opti-
mized for ConTEXt MKII is defined in the files whose
names start with meta-pdf. But in ConTEXt MkIV
we use Lua code for the conversion instead. Thanks
to Lua’s powerful Lpeg parsing library, this gives
cleaner code and is also faster. This converter cur-

The MetaPost library and LuaTgX

rently lives in mlib-pdf.lua.
Now, with the embedded MetaPost library, con-
version goes still differently because now it is possi-
ble to request the drawn result and associated infor-
mation in the form of Lua tables.
figure={
["boundingbox"]={
["11x"]1=-29.623992919922,
["11y"]=-29.283935546875,
["urx"]=29.623992919922,
["ury"]=29.283935546875,
},
["objects"]={
{
["color"]l={ 0.75, 0, O },
["linecap"]l=1,
["linejoin"]=1,
["miterlimit"]=10,
["path"]={
{
["left_x"]1=28.346450805664,
["left_y"]1=-7.5182800292969,
["right_x"]1=28.346450805664,
["right_y"]=7.5182800292969,
["x_coord"]=28.346450805664,
["y_coord"]=0,

1,

},
["pen"]={
{
["left_x"1=2.4548797607422,
["left_y"1=1.4173278808594,
["right_x"]1=-0.70866394042969,
["right_y"]=1.2274475097656,
["x_coord"]=0,
["y_coord"]=0,
1,
["type"]l="elliptical",
},
["type"]="outline",
1,
},
}

This means that instead of parsing PostScript
output, we can operate on a proper datastructure
and get code like the following:

function convertgraphic(result)
if result then
local figures = result.fig
if figures then
for fig in ipairs(figures) do
local 11x, 1lly, urx, ury
= unpack(fig:boundingbox())
if urx > 1lx then
startgraphic(llx, 1lly, urx, ury)
for object in ipairs(fig:objects()) do

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings 447

Hans Hagen

if object.type == "..." then

flushgraphic(...)
else

end
end
finishgraphic()
end
end
end
end
end

Here result is what the library returns when
one or more graphics are processed. As you can de-
duce from this snippet, a result can contain multiple
figures. Each figure corresponds with a beginfig

. endfig. The graphic operators that the con-
verter generates (so-called PDF literals) have to be
encapsulated in a proper box so this is why we have:

e startgraphic: start packaging the graphic

e flushgraphic: pipe literals to TEX

e finishgraphic: finish packaging the graphic
It does not matter what number beginfig was
passed, the graphics come out in the natural order.

A bit more than half a dozen different object
types are supported. The example MetaPost draw
command above results in an outline object. This
object contains not only path information but also
carries rendering data, like the color and the pen.
So, in the end we will flush code like 1 M which sets
the miterlimit to 1, or .5 g which sets the color
to 50% gray, in addition to a path.

Because objects are returned in a way that
closely resembles MetaPost’s internals, some extra
work needs to be done in order to calculate paths
with elliptical pens. An example of a helper func-
tion in somewhat simplified form is shown next:
function pen_characteristics(object)

local p = object.pen[1]

local wx, wy, width

if p.right_x == p.x_coord

and p.left_y == p.y_coord then
wx = abs(p.left_x - p.x_coord)

wy = abs(p.right_y - p.y_coord)

else -- pyth: sqrt(a™2 + b72)

wx = pyth(p.left_x - p.x_coord,

p.right_x - p.x_coord)
wy = pyth(p.left_y - p.y_coord,
p.right_y - p.y_coord)

end

if wy/coord_range_x(object.path, wx)

>= wx/coord_range_y(object.path, wy) then
width = wy

else
width = wx
end
local sx, sy = p.left_x, p.right_y
local rx, ry = p.left_y, p.right_x
local tx, ty = p.x_coord, p.y_coord
if width ~= 1 then
if width == O then
sx, sy =1, 1
else
rx, ry, sx, sy = rx/width, ry/width,
sx/width, sy/width

end

end

if abs(sx) < eps then sx = eps end

if abs(sy) < eps then sy = eps end

return sx, rx, ry, sy, tx, ty, width
end

If sx and sy are 1, there is no need to transform
the path, otherwise a suitable transformation ma-
trix is calculated and returned. The function itself
uses a few helpers that make the calculations even
more obscure. This kind of code is far from triv-
ial and as already mentioned, these basic algorithms
were derived from the MetaPost sources. Even so,
these snippets demonstrate that interfacing using
Lua does not look that bad.

In the actual MKIV code things look a bit dif-
ferent because it does a bit more and uses optimized
code. There you will also find the code dealing with
the actual transformation, of which these helpers are
just a portion.

If you compare the PostScript and the PDF code
you will notice that the paths looks different. This is
because the use and application of a transformation
matrix in PDF is different from how it is handled
in PostScript. In PDF more work is assumed to be
done by the PDF generating application. This is
why in both the TEX and the Lua based converters
you will find transformation code and the library
follows the same pattern. In that respect PDF differs
fundamentally from PostScript.

In the TEX based converter there was the prob-
lem of keeping the needed calculations within TEX’s
accuracy, which fortunately permits larger values
than MetaPost can produce. This plus the parsing
code resulted in a lot of TEX code which is not that
easy to follow. The Lua based parser is more read-
able, but since it also operates on PostScript code it
too is kind of unnatural, but at least there are fewer
problems with keeping the calculations sane. The
MPlib based converter is definitely the cleanest and
least sensitive to future changes in the PostScript
output. Does this mean that there is no ugly code
left? Alas, as we will see in the next section, dealing

448 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

with extensions is still somewhat messy. In practice
users will not be bothered with such issues, because
writing a converter is a one time job by macro pack-
age writers.

3 Extensions

In Metafun, which is the MetaPost format used with
ConTEXt, a few extensions are provided, such as:

cmyk, spot and multitone colors
including external graphics
linear and circular shades

texts converted to outlines

e inserting arbitrary texts

Until now, most of these extensions have been im-
plemented by using specially coded colors and by
injecting so-called specials (think of them as com-
ments) into the output. On one of our trips to a
TEX conference, we discussed ways to pass informa-
tion along with paths and eventually we arrived at
associating text strings with paths as a simple and
efficient solution. As a result, recently MetaPost was
extended by withprescript and withpostscript
directives. For those who are unfamiliar with these
new features, they are used as follows:

draw fullcircle withprescript "hello"

withpostscript "world" ;

In the PostScript output these scripts end up
before and after the path, but in the PDF converter
they can be overloaded to implement extensions, and
that works reasonably well. However, at the moment
there cannot be multiple pre- and postscripts asso-
ciated with a single path inside the MetaPost inter-
nals. This means that for the moment, the scripts
mechanism is only used for a few of the extensions.
Future versions of MPlib may provide more sophis-
ticated methods for carrying information around.

The MKIV conversion mechanism uses scripts
for graphic inclusion, shading and text processing
but unfortunately cannot use them for more ad-
vanced color support.

A nasty complication is that the color spaces in
MetaPost don’t cast, which means that one cannot
assign any color to a color variable: each colorspace
has its own type of variable.

color one ; one := (1,1,0) ; % correct
cmykcolor two ; two := (1,0,0,1) ; % correct
one := two ; % error

fill fullcircle scaled 1cm
withcolor .5[one,two] ; % error

In ConTEXt we use constructs like this:

\startreusableMPgraphic{test}
£fill fullcircle scaled 1lcm
withcolor \MPcolor{mycolor} ;

The MetaPost library and LuaTgX

\stopreusableMPgraphic
\reuseMPgraphic{test}

Because withcolor is clever enough to under-
stand what color type it receives, this is ok, but how
about:

\startreusableMPgraphic{test}

color c ;

¢ := \MPcolor{mycolor} ;

fill fullcircle scaled 1cm withcolor c ;
\stopreusableMPgraphic

Here the color variable only accepts an RGB
color and because in ConTEXt there is mixed color
space support combined with automatic colorspace
conversions, it doesn’t know in advance what type it
is going to get. By implementing color spaces other
than RGB using special colors (as before) such type
mismatches can be avoided.

The two techniques (coding specials in colors
and pre/postscripts) cannot be combined because a
script is associated with a path and cannot be bound
to a variable like c. So this again is an argument for
using special colors that remap onto CMYK spot or
multi-tone colors.

Another area of extensions is text. In previous
versions of ConTEXt the text processing was already
isolated: text ended up in a separate file and was
processed in a separate run. More recent versions of
ConTEXt use a more abstract model of boxes that
are preprocessed before a run, which avoids the ex-
ternal run(s). In the new approach everything can
be kept internal. The conversion even permits con-
structs like:
for i=1 upto 100 :

draw btex oeps etex rotated i ;
endfor ;

but since this construct is kind of obsolete (at least
in the library version of MetaPost) it is better to use:
for i=1 upto 100 :

draw textext("cycle " & decimal i) rotated i ;
endfor ;

Internally a trial pass is done so that indeed
100 different texts will be drawn. The throughput
of texts is so high that in practice one will not even
notice that this happens.

Dealing with text is another example of using
Lpeg. The following snippet of code sheds some light
on how text in graphics is dealt with. Actually this is
a variation on a previous implementation. That one
was slightly faster but looked more complex. It was
also not robust for complex texts defined in macros
in a format.
local P, S, V, Cs = lpeg.P, lpeg.S, lpeg.V,

lpeg.Cs

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings 449

Hans Hagen

local btex = P("btex")

local etex = P(" etex")

local vtex = P("verbatimtex")
local ttex = P("textext")
local gtex = P("graphictext")

local spacing = S(" \n\r\t\v")~0
local dquote = P(’"’)

local found = false

local function convert(str)
found = true
return "textext(\"" .. str ..

end

local function ditto(str)
return "\" & ditto & \""

end

local function register()
found = true

||\u)||

end

local parser = P {

[1] = Cs((V(2)/register

+ V(3)/convert + 1)70),
[2] = ttex + gtex,
[3] = (btex + vtex) * spacing

* Cs((dquote/ditto + (1-etex))~0)
* etex,

function metapost.check_texts(str)
found = false
return parser:match(str), found
end

If you are unfamiliar with Lpeg it may take
a while to see what happens here: we replace the
text between btex and etex by a call to textext,
a macro. Special care is given to embedded double
quotes.

When text is found, the graphic is processed
two times. The definition of textext is different for
each run. For the first run we have:
vardef textext(expr str) =

image (

draw unitsquare
withprescript "tf"
withpostscript str ;

)
enddef ;

After the first run the result is not really con-
verted, just the outlines with the tf prescript are
filtered. In the loop over the object there is code
like:
local prescript = object.prescript

if prescript then
local special = metapost.specials[prescript]

if special then
special(object.postscript,object)
end
end

Here, metapost is just the namespace used by
the converter. The prescript tag tf triggers a func-
tion:
function metapost.specials.tf (specification,

object)
tex.sprint(tex.ctxcatcodes,
format ("\\MPLIBsettext{/s}{%s}",
metapost.textext_current,specification))
if metapost.textext_current
< metapost.textext_last then
metapost.textext_current
= metapost.textext_current + 1
end

end

Again, you can forget about the details of this
function. What’s important is that there is a call
out to TEX that will process the text. Each snippet
gets the number of the box that holds the content.
The macro that is called just puts stuff in a box:
\def\MPLIBsettext#1#2J,

{\global\setbox#1\hbox{#2}}

In the next processing cycle of the MetaPost
code, the textext macro does something different :

vardef textext(expr str) =
image (
_tt_n_ := _tt_n_+1;
draw unitsquare
xscaled _tt_w_[_tt_n_]
yscaled (_tt_h_[_tt_n_] + _tt_d_[_tt_n_])
withprescript "ts"
withpostscript decimal _tt_n_ ;
)
enddef ;

This time the (by then known) dimensions of
the box storing the snippet are used. These are
stored in the _tt_w_, _tt_h_ and _tt_d_ arrays.
The arrays are defined by Lua using information
about the boxes, and passed to the library before
the second run. The result from the second Meta-
Post run is converted, and again the prescript is used
as trigger:
function metapost.specials.ts(specification,

object,result)

local op = object.path
local first, second, fourth

= op[1], op[2], opl4]
local tx, ty

= first.x_coord, first.y_coord
local sx, sy

= second.x_coord - tx, fourth.y_coord - ty

450 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

local rx, ry
= second.y_coord -
if sx == 0 then sx = 0.00001 end
if sy == 0 then sy = 0.00001 end
metapost.flushfigure(result)
tex.sprint(tex.ctxcatcodes,format(
"\\MPLIBgettext{/hf }{hf I {hE I {UEI{UEHUEH{UsI",
sX,rx,ry,sy,tx,ty,
metapost.textext_current))

ty, fourth.x_coord - tx

end

At this point the converter is actually convert-
ing the graphic and passing PDF literals to TEX. As
soon as it encounters a text, it flushes the PDF code
collected so far and injects some TEX code. The TEX
macro looks like:
\def\MPLIBgettext#1#2#3#4#5#6#TY,

{\ctxlua{metapost.sxsy (\number\wd#7,
\number\ht#7, \number\dp#7) }%
\pdfliteral{q #1 #2 #3 #4 #5 #6 cm}),
\vbox to \zeropoint{\vss\hbox to \zeropoint
{\scale[sx=\sx,sy=\syl{\raise\dp#7\box#71}/,
\hss}}/
\pdfliteral{Q}}

Because text can be transformed, it needs to be
scaled back to the right dimensions, using both the
original box dimensions and the transformation of
the unitsquare associated with the text.
local factor = 65536%*(7200/7227)

-- helper for text
function metapost.sxsy(wd,ht,dp)
commands .edef ("sx", (wd ~= 0 and
1/(wd /(factor))) or 0)
commands .edef ("sy",(wd ~= 0 and
1/ ((ht+dp)/(factor))) or 0)
end

So, in fact there are the following two processing

alternatives:

e tex: call a Lua function that processes the
graphic

e lua: parse the MetaPost code for texts and
decide if two runs are needed

Now, if there was no text to be found, the continu-
ation is:
e lua: process the code using the library
e lua: convert the resulting graphic (if needed)
and check if texts are used

Otherwise, the next steps are:

e lua: process the code using the library

e lua: parse the resulting graphic for texts (in
the postscripts) and signal TEX to process
these texts afterwards

e tex: process the collected text and put the

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

The MetaPost library and LuaTgX

result in boxes

e lua: process the code again using the library
but this time let the unitsquare be trans-
formed according to the text dimensions

e lua: convert the resulting graphic and replace
the transformed unitsquare by the boxes with
text

The processor itself is used in the MKIV graphic func-
tion that takes care of the multiple passes mentioned
before. To give you an idea of how it works, here is
how the main graphic processing function roughly
looks.

local current_format, current_graphic

function metapost.graphic_base_pass(mpsformat,str,
preamble)
local prepared, done
= metapost.check_texts(str)
metapost.textext_current
= metapost.first_box
if done then
current_format, current_graphic
= mpsformat, prepared
metapost.process (mpsformat, {
preamble or "",
"beginfig(1l); ",
"_trial_run_ := true ;",
prepared,
"endfig ;"
}, true) -- true means: trialrun
tex.sprint(tex.ctxcatcodes,
"\\ctxlua{metapost.graphic_extra_pass()}")
else
metapost.process (mpsformat, {
preamble or "",

"beginfig(1l); ",
" trial_run_ := false ;",
str,
"endfig ;"
)
end
end

function metapost.graphic_extra_pass()
metapost.textext_current = metapost.first_box
metapost.process(current_format, {

"beginfig(0); ",
" _trial_run_ := false ;",
table.concat (metapost.text_texts_data(),
" 5\n"),
current_graphic,
"endfig ;"
b
end

The box information is generated as follows:

function metapost.text_texts_data()

451

Hans Hagen

local t, n={3}, 0
for i = metapost.first_box, metapost.last_box
do
n=n+1
if tex.box[i] then
t[#t+1] = format(

Yott_w_ [%il:=%f;_tt_h_[%il:=%f;_tt_d_[%il:=%f;",
n,tex.wd[i]/factor,
n,tex.ht[i]/factor,
n,tex.dp[il/factor

)
else
break
end
end
return t
end

This is a typical example of accessing informa-
tion available inside TEX from Lua, in this case in-
formation about boxes.

The trial_run flag is used at the MetaPost
end; in fact the textext macro looks as follows:

vardef textext(expr str) =

if _trial_run_ :

% see first variant above
else :
% see second variant above

fi
enddef ;

This trickery is not new. We have used it al-
ready in ConTEXt for some time, but until now the
multiple runs took way more time and from the per-
spective of the user this all looked much more com-
plex.

It may not be that obvious, but in the case of
a trial run (for instance when texts are found), after
the first processing stage, and during the parsing of
the result, the commands that typeset the content
will be printed to TEX. After processing, the com-
mand to do an extra pass is printed to TEX also. So,
once control is passed back to TEX, at some point
TEX itself will pass control back to Lua and do the
extra pass.

The base function is called in:
function metapost.graphic(mpsformat,str,

preamble)
local mpx = metapost.format(mpsformat
or "metafun")
metapost.graphic_base_pass (mpx,str,preamble)
end

The metapost.format function is part of the
mlib-run module. It loads the metafun format, pos-
sibly after (re)generating it.

Now, admittedly all this looks a bit messy, but
in pure TEX macros it would be even more so. Some-

452

time in the future, the postponed calls to \ctxlua
and the explicit \pdfliterals can and will be re-
placed by using direct node generation, but that re-
quires a rewrite of the internal LuaTgX support for
PDF literals.

The snippets are part of the mlib-* files of
MKIV. These files are tagged as experimental and
will stay that way for a while yet. This is shown
by the fact that by now we use a slightly different
approach.

Summarizing the impact of MPlib on exten-
sions, we can conclude that some are done better
and some more or less the same. There are some
conceptual problems that prohibit using pre- and
postscripts for everything (at least currently).

4 Integrating

The largest impact of MPlib is processing graphics
at runtime. In MKII there are two methods: real
runtime processing (each graphic triggered a call to
MetaPost) and collective processing (between TEX
runs). The first method slows down the TEX run, the
second method generates a whole lot of intermediate
PostScript files. In both cases there is a lot of file
I/0 involved.

In MKIV, the integrated library is capable of
processing thousands of graphics per second, includ-
ing conversion. The preliminary tests (which in-
volved no extensions) involved graphics with 10 ran-
dom circles drawn with penshapes in random colors,
and the throughput was around 2000 such graphics
per second on a 2.3 MHz Core Duo:

In practice there will be more overhead involved
than in the tests. For instance, in ConTEXt informa-
tion about the current state of TEX has to be passed
on also: page dimensions, font information, typeset-
ting related parameters, preamble code, etc.

The whole TEX interface is written around one
process function:

metapost.graphic(metapost.format ("metafun"),
"mp code")
Optionally a preamble can be passed as the
third argument. This one function is used in sev-
eral other macros, like:

\startMPcode ... \stopMPcode
\startMPpage ... \stopMPpage
\startuseMPgraphic{name} ...
\stopuseMPgraphic

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

\startreusableMPgraphic{name}...
\stopreusableMPgraphic

\startuniqueMPgraphic
\stopuniqueMPgraphic

{name}...

\useMPgraphic{name}
\reuseMPgraphic{name}
\uniqueMPgraphic{name}

The user interface is downward compatible: in
MKIV the same top-level commands are provided as
in MKII. However, the (previously required) config-
uration macros and flags are obsolete.

This time, the conclusion is that the impact
on ConTEXt is immense: The code for embedding
graphics is very clean, and the running time for
graphics inclusion is now negligible. Support for text
in graphics is more natural now, and takes no run-
time either (in MKII some parsing in TEX takes place,
and if needed long lines are split; all this takes time).

The MetaPost library and LuaTgX

In the styles that Pragma ADE uses internally,
there is support for the generation of placeholders for
missing graphics. These placeholders are MetaPost
graphics that have some 60 randomly scaled circles
with randomized colors. The time involved in gen-
erating 50 such graphics is (on my machine) some
14 seconds, while in LuaTgX only half a second is
needed.

Because LuaTEX needs more startup time and
deals with larger fonts resources, pdfTEX is gener-
ally faster, but now that we have MPlib, LuaTgX
suddenly is the winner.

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings 453

Putting the Cork back in the bottle— Improving Unicode support in TEX

Mojca Miklavec

Faculty of Mathematics and Physics, University of Ljubljana

Arthur Reutenauer
GUTenberg, France
http://tug.org/tex-hyphen

Abstract

Until recently, all of the hyphenation patterns available for different languages in
TEX were using 8-bit font encodings, and were therefore not directly usable with
UTF-8 TEX engines such as XHIEX and LuaTEX. When the former was included
in TEX Live in 2007, Jonathan Kew, its author, devised a temporary way to use
them with XHTEX as well as the “old” TEX engines. Last spring, we undertook to
convert them to UTF-8, and make them usable with both sorts of TEX engines,
thus staying backwardly compatible. The process uncovered a lot of idiosyncrasies
in the pattern-loading mechanism for different languages, and we had to invent

solutions to work around each of them.

1 Introduction

Hyphenation is one of the most prominent features
of TEX, and since it is possible to adapt it to many
languages and writing systems, it should come as no
surprise that there were so many patterns created
so quickly for so many languages in the relatively
early days of TEX development. As a result, the files
that are available often use old and dirty tricks, in
order to be usable with very old versions of TEX. In
particular, all of them used either 8-bit encodings or
accent macros (\’e, \v{z}, etc.); Unicode did not
yet exist when most of these files were written.

This was a problem when X{TEX was included
in TEX Live in 2007, since it expects UTF-8 input by
default. Jonathan Kew, the X{TEX author, devised
a way of using the historical hyphenation patterns
with both XHTEX and the older extensions of TEX:
for each pattern file (hyph).tex, he wrote a file called
xu-(hyph).tex that detects if it is run with XfTEX
or not; in the latter case, it simply inputs (hyph).tex
directly, and otherwise, it takes actions to convert all
the non-ASCII characters to UTF-8, and then inputs
the pattern file.

To sum up, in TEX Live 2007, X4TEX used the
original patterns as the basis, and converted them
to UTF-8 on the fly.

In the ConTEXt world, on the other hand, the
patterns had been converted to UTF-8 for a couple of
years, and were converted back to 8-bit encodings by
the macro package, depending on the font encoding.

In an attempt to go beyond that and to unify
those approaches, we then decided to take over con-
versions for all the pattern files present in TEX Live
at that time (May 2008), for inclusion in the 2008
TEX Live release.

2 The new architecture

The core idea is that after converting the patterns
to UTF-8, the patterns are embedded in a structure
that can make them loadable with both sorts of TEX
engines, the ones with native UTF-8 support (XATEX,
LuaTEX) as well as the ones that support only 8-bit
input.!

The strategy for doing so was the following: for
each language (lang), the patterns are stored in a file
called hyph-(lang) .tex. These files contain only the
raw patterns, hyphenation exceptions, and comments.
They are input by files called loadhyph-(lang).tex.
This is where engine detection happens, such as this
code for Slovenian:

% Test whether we received one or two arguments
\def\testengine#1#2!{\def\secondarg{#2}}

% We are passed Tau (as in Taco or TEX,

% Tau-Epsilon-Chi), a 2-byte UTF-8 character
\testengine T!\relax

% Unicode-aware engines (such as XeTeX or LuaTeX)
% only see a single (2-byte) argument
\ifx\secondarg\empty

\message{UTF-8 Slovenian Hyphenation Patterns}
\else

\message{EC Slovenian Hyphenation Patterns}
\input conv-utf8-ec.tex

\fi

\input hyph-sl.tex

The only trick is to make TEX look at the Uni-
code character for the Greek capital Tau, in UTF-8
encoding: it uses two bytes, which are therefore read
by 8-bit TEX engines as two different characters; thus

1 A note on vocabulary: in this article, we use the word
“engine” or “TEX engine” for extensions to the program TEX,
in contrast to macro packages. We then refer to (TEX) en-
gines with native UTF-8 support as “UTF-8 engines”, and to
the others as “8-bit engines”, or sometimes “legacy engines”,
borrowing from Unicode lingo.

454 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Putting the Cork back in the bottle— Improving Unicode support in TEX

the macro \testengine sees two arguments. UTF-8
engines, on the other hand, see a single character
(Greek capital Tau), thus a single argument before
the exclamation mark, and \secondarg is \empty.

If we’re running a UTF-8 TEX engine, there is
nothing to do but to input the file with the UTF-8
patterns; but if we’re running an 8-bit engine, we
have to convert the UTF-8 byte sequences to a single
byte in the appropriate encoding. For Slovenian, as
for most European languages written in the Latin
alphabet, it happens to be T1. This conversion is
taken care of by a file named conv-utf8-ec.tex in
our scheme. Let’s show how it works with these three
characters:?

e ‘¢’ (UTF-8 (0Oxc4, 0x8d), T1 0xa3),
¢’ (UTF-8 (0xc5, Oxal), T1 0xb2),
o ' (UTF-8 (0xc5, Oxbe), T1 Oxba).

In order to convert the sequence (0xc4, 0x8d)
to 0xa3, we make the byte Oxc4 active, and define it
to output 0xa3 if its argument is 0x8d.?> The other
sequences work in the same way, and the extracted
content of conv-utf8-ec.tex is thus:*
\catcode"C4=\active
\catcode"C5=\active
%

\def~~c4#1{%

\ifx#1~~8d~~a3\else % U+010D

\fi}

%
\def~~c5#1{%

\ifx#1~~a1~"b2\else % U+0161

\ifx#1~~"be~~ba\else % U+017E

\fi\fi}

% ensure all the chars above have valid lccode’s:
\lccode"A3="A3 % U+010D

\lccode"B2="B2 % U+0161

\lccode"BA="BA % U+017E

As the last comment says, we also need to set
non-zero \lccodes for the characters appearing in
the pattern files, a task formerly carried out in the
pattern file itself.

The information for converting from UTF-8 to
the different font encodings has been retrieved from
the encoding definition files for KTEX and ConTEXt,
and gathered in files called (enc).dat. The converter
files are automatically generated with a Ruby script
from that data.

2 The only non-ASCII characters in Slovenian.

3 The same method would work flawlessly if the sequence
contained three or more bytes— although this case doesn’t
arise in our patterns—since the number of bytes in a UTF-8
sequence depends only on the value of the first byte.

4 Problems would happen if a T1 byte had been made
active in that process, but for reasons inherent to the history
of TEX font encodings, as well as Unicode, this is never the
case for the characters used in the patterns, a fact the authors
consider a small miracle. The proof of this is much too long
to be given in this footnote, and is left to the reader.

Here is a table of the encodings we support:

ConTEXt KTEX Comments

ec T1 “Cork” encoding
il2 latin2 ISO 8859-2

il3 latin3 ISO 8859-3

lmc 1lmc montex (Mongolian)
qx gx Polish

t2a t2a Cyrillic

2.1 Language tags: BCP 47 / RFC 4646

A word needs to be said about the language tags we
used. As a corollary to the completely new naming
scheme for the pattern files and the files surround-
ing them, we wanted to adopt a consistent naming
policy for the languages, abandoning the original
names completely, because they were problematic
in some places. Indeed, they used ad hoc names
which had been chosen by very different people over
many years, without any attempt to be systematic;
this has led to awkward situations; for example, the
name ukhyphen. tex for the British English patterns:
while “UK” is easily recognized as the abbreviation
for “United Kingdom”, it could also be the abbrevi-
ation for “Ukrainian”, and unless one knows all the
names of the pattern files by heart, it is not possible
to determine what language is covered by that file
from the name alone.

It was therefore clear that in order to name files
that had to do with different languages, we had to
use language codes, not country codes. But this was
not sufficient either, as can be seen from the example
of British English, since it’s not a different language
from English.

Upon investigation, it turned out that the only
standard able to distinguish all the patterns we had
was the IETF “Best Current Practice” recommenda-
tion 47 (BCP 47), which is published as RFC docu-
ments; currently, it’s RFC 4646.° This addresses all
the language variants we needed to tag:

e Languages with variants across countries or re-
gions, like English.

e Languages written in different scripts, like Ser-
bian (Latin and Cyrillic).

e Languages with different spelling conventions,
like Modern Greek (which underwent a reform
known as monotonic in 1982), and German (for
which a reform is currently happening, started
in 1996).

51In the past, it has been RFC 1766, then RFC 3066,
and is currently being rewritten, with the working title RFC
4646bis. RFC 4646 is available at ftp://ftp.rfc-editor.
org/in-notes/rfc4646.txt, and the current working ver-
sion of RFC 4646bis (draft 17) at http://www.ietf.org/
internet-drafts/draft-ietf-1tru-4646bis-17.txt.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 455

Mojca Miklavec and Arthur Reutenauer

A list of all the languages with their tags can
be found in appendix A.

3 Dealing with the special cases

There were so many special cases that one might say
that the generic case was the special one!

3.1 Pattern files designed for
multiple encodings

The first problem we encountered was with patterns
that tried to accommodate both the 0T1 and the T1
encoding in the same file.

The first language for which this had been done
was, historically, German, and the same scheme was
subsequently adopted for French, Danish, and Latin.
The idea is the following: in each of these languages,
there are characters that are encoded at different
positions in 0T1 and in T1; for German, it is the
sharp s ‘K’; for French, it is the character ‘ce’; etc. In
order to deal with that, each pattern that happened
to contain one of these characters was duplicated
in the file, with intricate macros to ignore them
selectively, depending on the font encoding used.

This would have been very awkward to repro-
duce in our architecture, if at all possible: it would
have meant that each word such as, say, “coeur” in
French would need to yield two different byte strings
in 8-bit mode, for 0T1 and T1 (c¢”"1bur and ¢~ "f7ur,
respectively). We therefore decided to put the du-
plicate patterns in a separate file called spechyph
-(lang)-ot1.tex that is input only in legacy mode,
after the main file hyph-(lang).tex.

The patterns packaged in this fashion should
therefore behave in the same way as the historical
files, enabling a few breakpoints with non-ASCII
characters in 0T1 encoding. We would like to stress,
though, that OT1 is definitely not the way to go for
these languages. We only supported this behaviour
for the sake of compatibility, but we doubt it is very
useful: if one uses 0T1 for German or French, one
would indeed have a few patterns with ‘K’ or ‘ce’,
respectively, but many more patterns, with accented
characters, would be missed. In order to take full
advantage of the hyphenation patterns, one needs to
use T1 fonts.

It has to be noted that in addition, we ended
up not using the aforementioned approach in the
case of German, because we wanted to account for
the ongoing work to improve the German patterns;
thus, we decided to use the new patterns with the
UTF-8 engines, but not with the 8-bit engines, for
compatibility reasons. In the latter case, we simply
include the original pattern file in T1 directly, with
no conversion whatsoever. For the three other lan-

guages, though (French, Danish and Latin), we used
a spechyph-(lang)-ot1.tex file.

3.2 Multiple pattern sets for the
same language

Another interesting issue was with Ukrainian and
Russian, where different complications arose.

First, the pattern files were also devised for mul-
tiple encodings, but in a different manner: here, the
encoding is selected by setting the control sequence
\Encoding before the pattern file is loaded. De-
pending on the value of that macro, the appropriate
conversion file is then input, that works in the same
way as our conv-utf8-(enc).tex files. There is of
course a default value for \Encoding, which for both
languages is T2A,° the most widespread font encod-
ing for Russian and Ukrainian, and the one used in
the pattern files; thus, no conversion is necessary if
\Encoding is kept to its default value.

Then, both Russian and Ukrainian had several
pattern files, with different authors and/or hyphen-
ation rules (phonetic, etymological, etc.). Those were
selected with a control sequence called \Pattern, by
default as for Russian (by Aleksandr Lebedev), and
mp for Ukrainian (by Maksym Polyakov).

Both those choices could, of course, be overrid-
den only at format-building time, since the patterns
are frozen at that moment.

Finally, they used a special trick, implemented
in file hypht2.tex, to enable hyphenation inside
words containing hyphens, similar to Bernd Raichle’s
hypht1l.tex for T1 fonts.

Those three features had to be addressed in very
different ways in our structure: while the first one
was irrelevant in UTF-8 mode, it would have implied
fundamental changes in our loadhyph-(lang).tex
files for 8-bit engines, since the implicit assumption
that any language uses exactly one 8-bit encoding
would no longer be met. The second feature was eas-
ier to handle, but still demanded additional features
in our loadhyph-(lang).tex files. Finally, the third
feature, although certainly very interesting, seemed
more fragile than what we felt was acceptable.

Upon deliberation, we then decided to not in-
clude those features in the UTF-8 patterns before
TEX Live 2008 was out, but to still enable them in
legacy mode, in order to ensure backward compat-
ibility. And thanks to subsequent discussions with
Vladimir Volovich, who devised the way the Russian
patterns were packaged, and inspired the Ukrainian
ones, we could include a list of hyphenated compound
words which we put in files called exhyph-ru.tex

6 Actually t2a, lowercase.

456 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Putting the Cork back in the bottle— Improving Unicode support in TEX

and exhyph-uk.tex, respectively. The strategy we
used is thus:

e In UTF-8 mode, input the UTF-8 patterns, then
the ex- file.

e In legacy mode, simply input the original pat-
tern file directly.

Therefore, the only feature missing, overall, in
TEX Live 2008, is the ability to choose one’s favorite
patterns in UTF-8 mode: for each language, we only
converted the default set of patterns to UTF-8. Set-
ting \Pattern will thus have no effect in this case,
but it will behave as before in 8-bit mode. Now that
TEX Live 2008 has been released we intend to change
that behaviour soon, and to enable the full range of
features that the original pattern files had.

It should also be noted that in TEX Live 2007,
Bulgarian used the same pattern-loading mechanism,
but that there was actually only one possible encod-
ing, and only one pattern file, so there was no real
choice, and it was therefore straightforward to adapt
the Bulgarian patterns to our new architecture.

4 TgX Live 2008

The result of our work has been put on CTAN under
the package name hyph-utf8, and is the basis for
hyphenation support in TEX Live 2008. We don’t
consider our work to be finished (see next section),
and we welcome any discussion on our mailing-list
(tex-hyphen@tug.org). We also have a home page
at http://tug.org/tex-hyphen, to which readers
are referred for more information.

The package has been released in the TDS layout,
with the TEX files in tex/generic/hyph-utf8 and
subdirectories. The encoding data and Ruby scripts
are available in source/generic/hyph-utf8. Some
language-specific documentation has been put in
doc/generic/hyph-utf8.

5 And now ...

There still are tasks we would like to carry out: the
hyphtl.tex / hypht2.tex behaviour has already
been mentioned, and one of the authors has lots of
ideas on how to improve Unicode support yet more
in UTF-8 TEX engines.

We appeal to pattern authors to make contact
with us in order to improve and enhance our package;
many of them have already communicated with us,
to our greatest pleasure, and we’re confident that
our effort will be understood by all the developers
dealing with language-related problems.”

7 The acknowledgement section, had it been as long as the
authors would have wished it to be, would have more than
doubled the size of this article.

Among the immediate and practical problems
is, in particular:

5.1 ... for something completely different

Babel would need to be enhanced in order to enable
different “variants” for at least two languages. One is
Norwegian, for which two written forms exist, known
as “bokmal” and “nynorsk” (ISO 639-1 nb and nn,
respectively).® At the moment, Babel has only one
“Norwegian” language. The second is Serbian, which
can be written in both the Latin and the Cyrillic
alphabets; these possible variants which are not yet
taken into account in Babel.

6 Acknowledgements

First and foremost, we wish to thank wholeheartedly
Karl Berry, who supported the project from the
beginning and guided us with advice, as well as
Hans Hagen, Taco Hoekwater and Jonathan Kew,
for their technical help, and, finally, Norbert Preining,
who went through the trouble of integrating the new
package into TEX Live.

Appendix A List of supported languages

ar Arabic la Latin

fa Farsi mn-cyrl Mongolian

eu Basque mn-cyrl-x-2a Mongolian (new
patterns)

bg Bulgarian no Norwegian

cop Coptic nb Norwegian
Bokmal

hr Croatian nn Norwegian
Nynorsk

cs Czech zh-latn Chinese Pinyin

da Danish pl Polish

nl Dutch pt Portuguese

eo Esperanto ro Romanian

et Estonian ru Russian

fi Finnish sr-latn Serbian, Latin
script

fr French sr-cyrl Serbian, Cyrillic

script
de-1901 German, “old”
spelling

sh-latn Serbo-Croatian,
Latin script

de-1996 German, “new” sh-cyrl Serbo-Croatian,

spelling Cyrillic script
el-monoton Monotonic Greek sl Slovene
el-polyton Polytonic Greek es Spanish
grc Ancient Greek sv Swedish
grc-x-ibycus Ancient Greek, tr Turkish
Ibycus
encoding

hu Hungarian en-gb British English

is Icelandic en-us American

English
id Indonesian uk Ukrainian
ia Interlingua hsb Upper Sorbian
ga Irish cy Welsh

it Italian

8 The ISO standard also includes a code for “Norwegian”,
no, although this name is formally ambiguous.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 457

Writing Gregg Shorthand with METAFONT and ETEX

Stanislav Jan Sarman

Computing Centre

Clausthal University of Technology

Erzstr. 51

38678 Clausthal

Germany

Sarman (at) rz dot tu-clausthal dot de

http://www3.rz.tu-clausthal.de/ rzsjs/steno/Gregg.php

Abstract

We present an online system, which converts English text into Gregg shorthand,
a phonetic pen writing system used in the U.S. and Ireland.

Shorthand is defined [2] as a method of writing de-
rived from the spelling system and the script of a
particular language. In order to approximate the
speed of speech:
e The graphic redundancy of written characters
and ligatures derived from longhand letters is
reduced.

e Silent letters are ignored, and complex ortho-
graphic rules are simplified. The spelling only
serves as a reference system of what is largely
phonetic writing.

e Abbreviations are utilized.

Gregg shorthand was first published in 1888. In
the following three sections we want to show how its
inventor J. R. Gregg has applied the above general
principles in the creation of his shorthand system
and how the current system version, the centennial
edition [7], can be implemented in METAFONT [5].

1 Simplified writing
1.1 The alphabet of Gregg Shorthand

Signs of consonant phonemes® written forward:

& (@ @ O @ m &) @ (th)(Th)
A~ = s S
Signs of consonant phonemes written downward:
() () (£) () (sh) (ch) (jh) (s)(S)

///////)(

The signs of voiced consonant phonemes are larger
versions of their unvoiced opposites. As the “mini-
mal pairs”? of words with phonemes s vs. z, th vs.
dh and sh vs. zh are very rare, there are only the
unvoiced versions of these signs. On the other hand

! Phonemes are denoted in typewriter type, their signs
are parenthesized or bracketed.

2 such as face vs. phase, sooth vs. soothe, mesher vs. mea-
sure, pronunciations of which differ only in one place

two forms of signs exist for s and th: the right (s) /,
(th) /~ and the left () ¢, (Th) _/, respectively.
Blended consonant signs:

(1d) (nd) (rd) (tm) (tn)

S

can be thought of as built-in ligatures.
Vowel signs:

(td) (dd)

e

for sound(s) as in
at, art, ate O/

pit, pet, peat /

pot, port V , pour A./

(u) n tuck, took />, tomb
Elementary diphthong (triphone) signs:
for sounds as in
[ail] o© high &
[ace] @ client /\)/
[iie] @ create
When writing shorthand the curvilinear motion
of a pen in the slope of longhand traces ellipse or
oval-based curves. We shape these elementary short-
hand signs in METAFONT as continuous curvature
splines with zero curvature at the end points.
Half-consonants h, w, prefixes and suffixes are
realized as markers, e.g. a dot over o [i] such as
in “he”; & means preceding h; another dot under
(along) the sign (t) .~ such asin g~ denotes the
suffix -ing in “heating”.

[a] o
[el/[i]1 o

(o) v

1.2 Metaform

Gregg shorthand is an alphabetic system — written
words are combined together from elementary signs
by joining, so that in general the Gregg shorthand
glyphs have the following metaform:

{ dp.}C{usH | F-1Hp VL sH 3T
where V' are circular vowels, C' denotes (blended)
consonants and vowels u and o, optional p and s

458 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

stand for markers of semiconsonants, prefixes or suf-
fixes. In more detail:

Vi=ale|i|ailaee]iie

C:=bpld|dd... ofu

p::=h|w| over‘under...

s u=ing|ly] ...

Examples:

metaform

he -[h,i,] F}
heating -[h,i,](,t,ing) &~
need (m)-[i] (@ e
needed (n)-[i] (dd) _/
needing ()-[i1(,d,ing) _y”

The metaform corresponds directly to the META-
FONT program code, e.g.:

(n)-[i]1(,d,ing) < I(,n,); V(-1,,i,); C(,d,ing);
i.e. the shorthand glyph of this particular character
is initiated with (n), then the signs of right vowel
-[i] and the sign of consonant d with suffix ing are
appended.

1.3 Joining

We distinguish between joinings where circular signs
are involved and joinings without them.

1.3.1 CC Joinings

Examples of C'C joinings ordered by their connec-
tivity grade GO-G® follow:

continuous: .~ () @), ~ @®), A (&)(S)
(with turning point!)

tangent continuous: / + e = - £ Q)),
/ + o :(/ (p) (x), ﬂ+/ :7 () (p),

— +/ :7(g)(v)

curvature continuous: o + . = (1) (k)

The first two types of joinings are handled by META-
FONT means; G®@ continuous connecting can be
done only in special cases using Hermite interpo-
lation for Bézier splines, as follows.

If two endpoints z;, unit tangents d;, d;d;* =1
and curvatures k;, ¢ = 1,2 are given, the control
points zg' = zp + dodo, z; = z1 — 01d; have to be
determined from the following system of nonlinear
equations [3]:

(do x d1)do =
(do X d1)51 =
(a =21 — 20).

If the tangents are parallel, i.e. (dyxd;) = 0 and
the curvatures k; have opposite signs, the equations
(1)-(2) are trivially solvable, so that G(?) joining is
possible (here after some kerning):

(a x d1) = 3/or167 (1)
(do X CL) — 3/2:‘{058 (2)

Writing Gregg Shorthand with METAFONT and K TEX

K1 K1
) o)

(r) (k) (r) (k)

Figure 1: An example of a G® continuous
CC joining

1.3.2 Joinings with circular signs

The signs of consonants can be classified into seven
categories. Looped vowels before or after a conso-
nant are written within the curves or combined with
straight consonants as right curves, so that the fol-
lowing VC, CV prototype joinings can occur:

Ve |lppe g g 19

V| 2 J 6 J
Observe the realization of diphthongs as VC or
CV joinings, too:
for sounds as in

8 howé"

-[al (w)
(0)+[i] o toy A~
W g few A

All VC or C'V joinings are done in such a man-
ner that both components have identical tangents
and curvature equal to zero at the connection point.
As an example of G(® connecting of a consonant
sign with a vowel sign consider prepending the sign
o of -[a] before .~ (k) asin Pk

0
—1/r ‘\—ao

(k) -[al ~[al (k)
Figure 2: An example of a G continuous
VC joining

Here the spline approximation of (k) is such
that the curvature equals zero at the end points;
this is the case with other consonants, too. The
spline approximation of right circle with radius r
for the sign -[a] consists of 8 segments such that
the curvature x = 0 at the top point and xk =~ —1/r
at the other points. Let a be the angle of the tangent
in the zeroth point of (k). Placing the -[a] circle at
the point with distance r from the zeroth point of
(x) and rotating it by the angle of —« a curvature
continuous joining is obtained.

For a G® continuous spline approximation of
the unit circle with curvature k=0 in one point we

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 459

Stanislav Jan Sarman

use the traditional Bézier spline circle segment ap-
proximation for the segments 1-7 (see the 7" seg-
ment on the left) z(1k) = 1, so that §g = & =
4/stan(0/4) and k; = —(1 — sin*(6/4)). Using this
value as left point curvature of the 8" segment (see
on the right) and demanding k; = 0, the Hermite
interpolation with the equations (1)—(2) for the un-
knowns dp und d; can be solved for segments with
0 < 60°.

R1 = 0
20 2y 2
K1 =~ —1 a
21 20
Ro ~ 1
21
a
Z+
0
0
Zo®
Ry ~ -1

Figure 3: 7™ and 8™ segment (6 = 45°) of our unit
right circle spline approximation

For CVC joinings 7x7 cases are possible in
all—many of them can be transformed by reflection
and rotation into one another. All these joinings can
be made G continuous. It must be decided before
writing a right consonant, whether the loop is to be
written as a left or as a right loop, compare:
team (£)+[i] (m) vs. —” (@-[i]l(t) meet

_ -

- (g

cvce
e
o

7
/AL L
(
)

Technically speaking the shorthand glyphs are
realized as

e an array of G(©-G?) continuous METAFONT-
paths and

e an array of discontinous marker paths.

Slanting (default 22.5°) and tilting® of charac-
ters is done at the time of their shipping.

3G@) continuity is invariant under affine transformations.

2 Phonetic writing

Gregg shorthand uses its own orthography, which
must be acquired by the shorthand learner and in
a system such as ours, the pronunciation of a word
has to be known. We use the Unisyn multi-accent
lexicon* with about 118,000 entries [4] comprising
British and American spelling variants. The fields
of lexicon entries are: spelling, optional identifier,
part-of-speech, pronunciation, enriched orthography,
and frequency. Examples are:
owed;;VBD/VBN; { * ouw }> d >;{owel}>ed>;2588
live;1;VB/VBP; { 1 * i v } ;{live};72417
live;2;JJ; {1 * ae v } ;{live};72417}
Homonyma cases such as “live” above, in which
the pronunciation helps to identify word meaning
are much more rarer than the cases in which the
use of pronunciation yields homophones resulting in
shorthand homographs. Consider the very frequent
right, rite, wright, write: { r * ai t } with short-
hand glyph (r)+[ail (t) @ orthe heterophones

read;1;VB/NN/NNP/VBP; { r * ii d };{read};94567
read;2;VBN/VBD; { r * e d };{read};94567

both written as / (r)+[elil (d). Thus phonetic
writing may speed up the shorthand recording, but
the newly-created homographs complicate the deci-
phering of written notes.

The pronunciation of a word has to be trans-
formed to the above defined metaform, e.g.:
{nx*xiid?l}>I7d>> (-[i]1dd
needing: { n * ii d }.> i ng >= (n)-[1]1(,d,ing)

This major task consists of a number of trans-
formations done in this order:

needed:

e Elimination of minor (redundant) vowels such
as the schwa eor in
fewer: { £ y * iu }> @r r >.
There is a general problem with the schwas (@).
Which are to be ruled out and which of them are
to be backtransformed® to the spelling equiva-
lent? Consider
data: { d x ee . t == Q@ } = (d)-[al(t]-[a]
upon: { @ . p * on } = (u)(p)(n)
Both e are backtransformed, but stressed o is
cancelled.

e Finding of prefixes (un-, re-, ...), suffixes (-ing,
-ly, ...), handling of semiconsonants h, w.

e Creation of ligatures such as dd, parenthesizing
consonants and bracketing circular vowels.

e Finding the proper orientation of loops.

These tranformations are done through a series of
cascaded context dependent rewrite rules, realized

4 which itself is a part of a text-to-speech system
5 by a lex program

460 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

by finite state transducers (FSTs). An example of
such a rule is
CI7TC >0 LDt dT M E>r o do>n
which zeroes the string " I7" in the left context of
consonant t or d and the right context of "d >"; i.e.:
{n*xiid}>I7d>= {nx*xiid}.>dd >
Effectively this rule creates the ligature (dd) and
can be thought of as the reverse of the phonetic rule
me" > v I7TT L Lt d]l "I _md>,
which determines the pronunciation of perfect tense
suffix > e d > in the left context of t or d:
{n*xiid}>I7d><« {nx*xiid?l}.>ed>

3 Abbreviations

The Gregg shorthand, like every other shorthand
system since Tironian notes (43 B.C.), takes advan-
tage of the statistics of speaking® and defines about
380 so called brief forms. Here are the most com-
mon English words:

the and a to of was it in that

ro sz . 7 4% s_ o

(th) (nd) (a) (t) (o) (o) (W) (S) (£) (n) (th)-[al
Writing the most common bigrams together, e.g.:

of the in the to the on the to be

Ve C/(

(0) (th) (n) (th) (t) (o) (th) (0)(n) (th) (t) (D)
spares lifting the pen between words thus increasing
shorthand speed.

These bigrams are entries in the dictionary of
about 420 phrases as well as the following examples:

as soon as possible: -[al (s) (n) (8) (p): %

if you cannot: +[il(£) (u) (k) (n): 2/‘\-

if you can be: +[1](£) () (k) (b): 27

thank you for your order: (th) (U) (£) (u) (d): W
you might have: (u) (m)-[ail (t) (v):

The abbreviation dictionary is coded in lexc [1].

4 text2Gregg

Our text2Gregg software is an online system,” which
records input text as Gregg shorthand. IATEX input
notation is accepted.

Homonyma variants such as
latex;1,rubber; { 1 * ee

.teks}’}
latex;2,computing; { 1 * ee . t e k }/

6 The 15 most frequent words in any text make up 25%
of it; the first 100, 60%,

7 see project URL and also DEK. php for the German short-
hand DEK counterpart [6]

Writing Gregg Shorthand with METAFONT and K TEX

are entered in the form latex (i.e. latex#1) and
latex#2, respectively.

The task of the online conversion of given text
to shorthand notes is done in the following four
steps:

1. The input stream, stripped of IXTEX commands,
is tokenized.® There are two kinds of tokens:

e Punctuation marks, numbers and common
words for which a metaform entry in the
abbreviation dictionary of brief forms and
phrases exists and

e the other words.

2. At first for a word of the latter category its
pronunciation has to be found in Unisyn lex-
icon [4]. From this its metaform is built by a
program coded as the tokenizer above in the
XEROX-FST tool xfst [1].

3. In a mf run for each of the tokens using its
metaform a shorthand glyph (i.e. a METAFONT
character) is generated on-the-fly.

4. Then the text is set with I/ TEX, rendered in the
pipeline — dvips — gs — ppmtogif and sent
from the server to the browser.

PDF output with better resolution can be generated.
Also a djvu-backend exists, which produces an anno-
tated and searchable shorthand record. PostScript
Type 3 vector fonts can be obtained, too.

References

[1] Kenneth R. Beesley and Lauri Karttunen. Finite
State Morphology. CSLI Publications, Stanford,
2003.

[2] Florian Coulmas. Blackwell Encyclopedia of
Writing Systems. Blackwell Publishers, 1999.

[3] C. deBoor, K. Hollig, and M. Sabin. High accu-
racy geometric hermite interpolation. Computer
Aided Geometric Design, 4:269-278, 1987.

[4] Susan Fitt. Unisyn multi-accent lexicon,
2006. http://www.cstr.ed.ac.uk/projects/
unisyn/.

[5] Donald E. Knuth. The METAFONTbook, vol-
ume C of Computers and Typesetting. Addison-
Wesley Publishing Company, Reading, Mass.,
5th edition, 1990.

[6] Stanislav Jan Sarman. DEK-Verkehrsschrift
mit METAFONT und KTEX schreiben. Die
TeXnische Komddie, to be published.

[7] Charles E. Zoubek. Gregg Shorthand Dictionary,
Centennial Edition, Abridged Version. Glencoe
Divison of Macmillan/McGraw-Hill, 1990.

8 Care has to be taken for proper nouns, which are under-
lined in Gregg shorthand.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 461

The LuaTgX way: \framed

Hans Hagen
Pragma ADE
http://pragma-ade.com

Abstract

ConTEXt’s \framed macro has many flexible options for typesetting a paragraph.
This short note discusses its reimplementation in Lua for ConTEXt MKIV.

1 \framed and its width

One of the more powerful commands in ConTEXt
is \framed. You can pass quite a few parameters
that control the spacing, alignment, backgrounds
and more. This command is used all over the place
(although often hidden from the user) which means
that it also has to be quite stable.

Unfortunately, there is one nasty bit of code
that is hard to get right. Calculating the height of a
box is not that complex: the height that TEX reports
is indeed the height. However, the width of box is
determined by the value of \hsize at the time of
typesetting. The actual content can be smaller. In
the \framed macro by default the width is calculated
automatically.

\framed

[align=middle,width=fit]

{Out beyond the ethernet the spectrum spreads

\unknown}

this shows up as (taken from ‘Casino Nation’ by
Jackson Browne):
Out beyond the ethernet
the spectrum spreads . . .

Or take this quote (from ‘A World Without Us’
by Alan Weisman):
\hsize=.6\hsize
\framed [align=middle,width=fit]
{\input weisman }

This gives a multi-line paragraph:
Since the mid-1990s, humans
have taken an unprecedented

step in Earthly annals by

introducing not just exotic

flora or fauna from one

ecosystem into another, but
actually inserting exotic genes
into the operating systems of
individual plants and animals,
where they're intended to do
exactly the same thing: copy

themselves, over and over.

Here the outer \hsize was made a bit smaller.
As you can see the frame is determined by the widest
line. Because it was one of the first features we
needed, the code in ConTEXt that is involved in de-
termining the maximum natural width is pretty old.
It boils down to unboxing a \vbox and stepwise grab-
bing the last box, penalty, kern and skip. That is,
we unwind the box backwards.

However, one cannot grab everything; or, in
TEX speak: there is only a limited number of
\lastsomething commands. Special nodes, such as
whatsits, cannot be grabbed and make the analyzer
abort its analysis. There is no way that we can solve
this in traditional TEX and in ConTEXt MKII.

2 \framed with LuaTEX

So how about LuaTEX and ConTgXt MKIV? The
macro used in the \framed command is:

\doreshapeframedbox{do something
with \box\framebox}

In LuaTEX we can manipulate box content at
the Lua level. Instead of providing a truckload of ex-
tra primitives (which would also introduce new data
types at the TEX end) we delegate the job to Lua.

\def\doreshapeframedbox
{\ctxlua{commands.doreshapeframedbox
(\number\framebox) }}

Here \ctxlua is our reserved instance for Con-
TEXt, and commands provides the namespace for
commands that we delegate to Lua (so, there are
more of them). The amount of Lua code is far
smaller than the TEX code (which we will not show
here; it’s in supp-box.tex if you want to see it).

function commands.doreshapeframedbox(n)
if tex.wd[n] ~= O then
local hpack = node.hpack
local free = node.free
local copy = node.copy_list
local noflines, lastlinelength, width = 0,0,0
local list = tex.box[n].list
local done = false
for h in node.traverse_id('hlist',list) do
done = true

462 TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings

local p = hpack(copy(h.list))
lastlinelength = p.width
if lastlinelength > width then
width = lastlinelength
end
p.list = nil
free(p)
end
if done then
if width ~= O then
for h in node.traverse_id('hlist',list) do
if h.width ~= width then
h.list = hpack(h.list,width, 'exactly')
h.width = width
end
end
end
tex.wd[n] = width
end
-- we can also work with lastlinelength
end
end

In the first loop we inspect all lines (nodes with
type hlist) and repack them to their natural width
with node.hpack. In the process we keep track of
the maximum natural width. In the second loop

The LuaTEX way: \framed

we repack the content again, this time permanently.
Now we use the maximum encountered width which
is forced by the keyword exactly. Because all glue is
still present we automatically get the desired align-
ment. We create local shortcuts to some node func-
tions which makes it run faster; keep in mind that
this is a core function called many times in a regular
ConTEXt job.

In looking at ConTEXt MkIV you will find quite
a lot of Lua code and often it looks rather complex,
especially if you have no clue why it’s needed. Think
of OpenType font handling which involves locating
fonts, loading and caching them, storing features and
later on applying them to node lists, etc.

However, once we are beyond the stage of de-
veloping all the code that is needed to support the
basics, we will start doing the things that relate more
to the typesetting process itself, such as the previous
code. One of the candidates for a similar Lua-based
solution is for instance column balancing. From the
previous example code you can deduce that manipu-
lating the node lists from Lua can make that easier.
Of course we’ll be a few more years down the road
by then.

TUGboat, Volume 29 (2008), No. 3— TUG 2008 Conference Proceedings 463

Advanced features for publishing mathematics, in PDF and on the Web

Ross Moore

Mathematics Department, Macquarie University, Sydney, Australia

ross@maths.mqg.edu.au
http://www.maths.mq.edu.au/staff/ross.html

Abstract

Increasingly, mathematical, scientific and technical information is being dis-
tributed by electronic means, but having a high-quality paper printout remains
important. We show here examples of techniques that are available for having
both high-quality typesetting, in particular of mathematics, as well as useful
navigation features and text extraction within electronic documents.

For HTML, we show some aspects of the use of jsMath within webpages;
e.g., for mathematics journals or conference abstracts. With PDF, as well as
the usual bookmarks and internal hyperlinks for cross-references and citations,
advanced features include: (i) metadata attachments; (ii) copy/paste and search-
ing for mathematical symbols or the underlying TEX coding; (iii) pop-up images
of (floating) figures and tables; (iv) mathematical symbols within bookmarks;

(v) bookmarks for cross-referenced locations.

A further feature, particularly useful with mathematics papers, is the ability
to make batched searches of the American Math. Society’s MathSciNet database,
allowing hyperlinks to be generated for most bibliography entries.

1 Introduction

The nature of scientific publication is changing: it is
becoming increasingly common for articles to be ac-
cessed and read on-line, without the need for print-
ing. However, many researchers still prefer to print
out an article, having first obtained it as a PDF file,
say. Thus it is necessary to produce the PDFs in such
a way as to cater for both online and printed for-
mats. For online reading, one needs navigation aids
that give quick and easy access to cross-references,
citations, metadata, and such. However, with retro-
born versions of books and journal articles, the ad-
dition of such aids must not have an effect on the
original pagination. Furthermore, for long-term dig-
ital archiving, accurate metadata and links to access
cited materials become especially important.

There are effects that are possible with current
web-based and PDF technologies, but which hith-
erto have not been widely used with scientific ar-
ticles. The effects were programmed for process-
ing with pdf-IATEX, along with extra packages and
coding to adjust the output produced by ETEX in-
ternal macros. Almost no further adjustments were
made to the body of files used to produce the original
printed version of each paper, apart from the imposi-
tion of \label and \ref commands where they had
not formerly been used with cross-references. Where
papers had been submitted using ApS-TEX, or even
Plain TEX, then some extra markup was needed also

with sectioning commands and other environments.

Here such effects are presented in a graphical
way, as figures with extensive captions. Some ex-
tra text explains aspects that are not immediately
apparent from seeing the images alone, along with
a short outline of how these were implemented in
KTEX, in terms of which (internal) macros needed
to be patched, and what extra resources were used.

The HTML examples in Section 3 show use of
Davide Cervone’s jsMath software,! which can be
linked to any website to provide proper typeset-
ting of mathematics, as well as high-quality print-
ing. This solves many of the problems that ac-
company other methods of displaying mathematics
within webpages.

2 PDF files of full articles

The author has produced retro-born versions of all
articles from a complete journal volume? as part of a
feasibility trial to move from print-only to online ac-
cess. Bearing in mind the considerations mentioned
above, and with pdf-TEX and Unicode support be-
coming more widely available, much care was taken
to incorporate navigational aids that are available

! jsMath homepage: http://www.math.union.edu/~dpvc/
jsMath/ .

2 Bulletin of the Australian Mathematical Society, Vol-
ume 72 (2005); freely available online at http://www.austms.
org.au/Bulletin.

464 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Advanced features for publishing mathematics, in PDF and on the Web

with PDF documents. Several new techniques were
developed to make these documents as useful as pos-
sible to researchers. These are now described briefly.

a. Copy and Paste of blocks of text which include

mathematical symbols (see Figure 1).
This is achieved by adding a character map (CMap)
resource® to each of the fonts that TEX uses, for
typesetting the text and the mathematics. Such re-
sources do not affect the appearance of the type-
set material, but associate each (perhaps accented)
letter and mathematical symbol with its Unicode
code-point. In this way symbols are given a unique
identity which can be used for copy/paste to other
applications, and for searching within the PDF itself.
Currently the actual result of a copy/paste action
may depend on the particular software being used;
that is, the PDF-browser used to view the article,
and the text-editor, or other software, into which
the content is pasted.

The author has produced CMap resources for
the following old-style TEX font encodings: OT1,
OML, OMS, OMX. Articles in the journal volumes!
also used symbols from the AMS fonts MSAM and
MSBM, Euler Fraktur fonts, and a few other char-
acters, so CMap resources have been made for their
‘U’ (Unknown) encodings; namely files umsa.cmap,
umsb.cmap, ueuf.cmap, uveufb.cmap, ulasy.cmap, and
upzd.cmap (Zapf Dingbats) and upsy.cmap (Adobe
Symbol). Resources have also been created for LY1
(Lucida) and LMR (Lucida Bright Math symbols)
encodings.

In the case of the OML encoding, as used with
the cmmi math-italic font family, the ordinary let-
ters A, B, ..., a,b, ...,z are associated with “math
alphanumeric symbols” in Unicode Plane 1. Such
symbols can be seen as the M, P, x and L within
the TextEdit window in the middle image of Fig-
ure 1. However, bold symbols from cmmib fonts
use the same OML encoding. Thus CMap resources
have been constructed that are specific to the font
face and style, rather than just to the encoding.
Similarly files omlmit.cmap and omlbit.cmap, sup-
port the cmmi and cmmib font families respectively.
Similarly there is OT1-encoded support for normal,
italic, sans-serif (medium and bold) and typewriter
alphabets used with mathematics.

A IMTEX package, called mmap.sty, is now avail-
able at CTAN.* This package provides these .cmap
files and coding that causes the CMap resources to
be included when the appropriate font is loaded for

3 See Adobe CMap and CID specifications at http://www.
adobe.com/devnet/font/pdfs/5014.CIDFont_Spec.pdf .

4 . ..in the directory location .../tex-archive/macros/
latex/contrib/mmap/.

use with mathematics. Similar support for the full
set of Euler fonts is planned, and other symbol fonts
also can be supported.

b. Images of figures and tables which pop up (see
Figure 2) near the place in the text where the
figure/table has been referenced.

This feature allows figures and tables to be viewed

without changing the PDF page that is displayed.

It requires JavaScript® (or ECMAScript) to be en-

abled within the PDF browser. If the toggled image

pops up in a place that is inconvenient for further
reading, then it can be shifted to elsewhere on the
page. With further developments of the PDF specifi-
cations and browser software, the means to move the
image could be redesigned to become more intuitive.

(Indeed, it would be nice if browsers had a ‘cross-

reference spy-glass’ feature, providing a small-sized

view of a different part of the same PDF, in response
to clicks on the cross-reference anchors.%)

In the event that JavaScript has been disabled
in the PDF browser, so that the pop-up mechanism
won’t work, the toggle button should not appear
and the underlying cross-reference hyperlink should
work as usual. Unfortunately, not all PDF browsers
implement this properly.” Even worse, Xpdf and
eVince, prior to the v0.8.3 release (4 June 2008) of
the Poppler library, would not even load documents
built with pdfTEX containing form fields; when built
with more recent versions of the library, these now
work as intended.

Implementing this pop-up feature was done by
altering the expansion of the standard TEX macros
\figure and \table, thus changing the way that
float contents are handled, and of \ref for build-
ing the toggle buttons. The first run of the KTEX
job is largely unchanged, apart from recording the
number of floats encountered as the expansion of a
macro \hasfloats within the .aux file, followed by
a macro \testforfloats. On the next BTEX run,
as the .aux file is read \testforfloats is encoun-
tered, triggering code that reads the number of floats
and causes extra packages to be loaded, such as
pdftricks.sty, insdljs.sty for inserting JavaScript cod-
ing into a PDF, and pdfpopup.sty which has coding

5 See http://en.wikipedia.org/wiki/JavaScript .

6 In fact the Skim browser for Macintosh (Mac OS X) has
such a feature, providing an extra window to be opened, fo-
cusing on that portion of a document surrounding the target
of a cross-reference hyperlink. This tool could be improved by
respecting any destination view that may have been specified
within the PDF.

7 For example, Apple’s Preview browser, at least up to
version 3.0.9, neither supports JavaScript, nor respects the
button flags. Hence not only do pop-up images fail to work,
but also the underlying hyperlink cannot be accessed.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 465

Ross Moore

Reader File IZHI View Document Tools Window Help
r

Select All
Deselect All

Check Spelling

Special Characters...

7 | T 721-5019-LoPo.pdf
ST o | (7of18) | @ B ® 01.7% |- Find
Ve WOTLIT TIEE TO PTove VAEDY TY

d be an an arbitrary surface, and the lines would be closed subsets which are 1-
folds, conneeted or not. We roughly got as far as showing that every point is on the
idary of sume (RB?, R)-subplane, but we would need that every point actually belongs

s A leh a subplane.

T ¥#A
2. ProoF oF THE THEOREM

>
We think of the point set M as the real projective plane P minus one point co, even

Look Up "We"

- [geometry is not pointwise coaffine. We depict P as a circular disk, whose boundary
S e s are identifed in antipodal pairs, that i, 2] < 1 holds for all potnts, aud = —
earc - - - - - - o :

= 1. The b o will always be ted by the pair {(0,1), (0, -1
Search Results » Ll _— L {O1,0,-1}, s 1n

Bince lines are closed subsets L C M, their closure T in the ene-point compactifica-
"F will always be homeomorphie to a eircle. This circle contains the point oo if and

only if L is not compaet.
.' TextEdit File Edit Format Window Help
Fr_li alals) (Anoee "] 721-5019-LoPo.pdf
®06e Untitled Bl 19 (70of18) @ B ® o1 o
Styles [v) [= == Spacing [v] Lsts T+ Pe o ¥ ¥

» would be an an arbitrary surface, and the lines would b

fo Iz Ta

Te

lg T1g T12 T14 l1g

£
(0,1}, (0-1)
}

,asin
Figure 1.

only if L is not compact.

We think of the point set Al as the real projective plane Pminus ane point=, even

if our geometry is not pointwise coaffine. We depict as a circular disk, whose boundary
points are identified in antipodal pairs, that is, Il < 1 holds for all points, and © = -x

iflzl = 1. The paoint == will always be represented by the pair

Since lines are closed subsets L C A, their closure £ in the one-point compactification
Pwill always be homeomaorphic to a circle. This circle contains the paint = if and

‘manifolds, conneeted or not. We roughly got as far as shos
boundary of some (B2, Rj-subplane, but we would need the
to such a subplane.

2. Proor or THE THEORE!

We think of the point set M as the real projective pla
if our geometry is not pointwise coaffine. We depict P asa
Buiiits are identified in antipodal pairs, that is, 2] < 1 ko
F |z| = 1. The point cc will always be mpresmfad by tl
Figure 1.

Since lines are closed subsets L € M, their closure T
tion P will always be homeomorphic to a circle. This circ
enly if L is not compat.

'.ﬁ 721-5019-LoPo.pdf (18 pages) (o] - 5
™ ™ =]) = o e I)
1 [$] b= — R R EEmoia El=) @=
i Previous Next Page Back /Forward Zoom In Zoom OQut Tool Mode -
to the one represented in Figure 10 or 11. In particular, two compact lines together 20 cccurrances
bound an open disk in M. poace [Resksl
18 ... one point oe, even
Note that the closure of the open disk bounded by two compact lines is a closed disk 18 ... The point = will a
with two boundary points identified. 18 ... the point ifand
19 ...osition of e relati
‘We turn to pairs of noncompact lines K, L. Here the situation is more complicated 19 .. H:whether eaisin ||
because the two circles Cy, Cy, have the points oo, —o00 in common and may have one ;g B 5°’.':;?i”’ ;;:Th
A5 2 wi oo, Seny;
more antipodal pair of intersection points. We prefer to look at the picture in M, rep- 33 Lt i e denot)
resenting K as the boundary circle. The case of disjoint lines is easily dealt with (see 0 23 ..er copy of e} some
Figure 16 below). The case where there is an intersection point @ € M splits into four ;: : Bl ‘“’:“ B
o Blxx, + as a
subcases depending on whether the intersections at z and oo are transversal or not. If 24 msit:’(n if :l gl
both intersections are of the same kind, then we get the configurations in Figures 12 L ...the points o, — oo ifgy
and 13, and we see that L is inessential. I 250 palnts e inidoy

Figure 1: Copy/Paste of mathematical content: the middle image shows the result of pasting the contents

that have been selected and copied, as shown in the upper image. The actual result of a copy/paste action may
depend on the particular software being used; that is, the PDF-browser used to view the article. The lower image
shows how searching for mathematical symbols is done, with suitably enabled PDF viewers.

466

TUGDboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

to M. Es which occurs on page 21

Advanced features for publishing mathematics, in PDF and on the Web

Each of the two cases splits into subcases depending on the position of oo relative
to L: whether oo isin L or not in L, and in the latter case, which of the complementary
components of L contains co. The resulting five possibilities are depicted in Figures 2
thr-m_lg]1@|7
The ¢jick to ;how_fhide_image of ﬁgu_re g Ponents of the complement of & line relative

int set M; their complement is a punctured

disk or an intact disk depending on whether the line is compact or not. An inessential

the pair formed by the real projective plane and one of its lines. In this case, the line L

1 be called essential. The complement P\ L is an open disk.

A similar procedure (needing extra cory
ay be applied in the case of two disjoint
homeomorphic to the pair formed by th
se, the line L will be called inessential. |
an open disk and an open Moebius strij
essential lines do not oecur (Proposition |

Each of the two cases splits into subcy

oo
v = =
'
," llre \
., !
= L
¥ g

Shift-click image then move mouse to shift image;
click again (no Shift) anchors at destination.

L: whether oo isin L or not in I, and i Figure 6: A ;

_ L= " (requires Adobe Reader 7.0 or later). |
mponents of I contains 0. The resulting five possibilities are depieted i Figires 2 |
rough

The figures also show the connected components of the complement of a line relative

M. Essential lines do not separate the point set M; their complement is a punctured

map, or 7 (L) is a single circle C = —C, and 7 restricted to € is the unique two-fold

C

t
0
1]
C
td

W

Figure 6: A compact inessential line of second type.

m of Schoenflies [9] to each of the
ary, we obtain a homeomorphism
sphere. The two homeomaorphisms
such that they agree on C' and are
t the pair (P, L) is homeomorphic
of its lines. In this case, the line L

open disk.

A similar procedure (needing extra corrections on the annulus defined by €' and —(C')

may be applied in the case of two disjoint circles and results in a proof that (P, L) then

is homeomorphic to the pair formed by the real projective plane with a conic. In this

case, the line L will be called inessential. The complement of L in P is a disjoint union

of an open disk and an open Moebius strip in this case. Our first aim is to show that

inessential lines do not oceur (Proposition 5).

Each of the two cases splits into subcases depending on the position of oc relative

to L: whether oo is in L or not in L, and in the latter case, which of the complementary

components of I contains ~o. The resulting five possibilities are depicted in Figures 2
through[6]

The figures also show the connected components of the complement of a line relative

Figure 2: Pop-up figures & tables: the images show how when the mouse hovers over a reference to a figure,
it highlights a button to toggle showing and hiding a floating image. This image is moveable in case its natural
position is inconvenient; e.g., obscuring where you wish to read.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

467

Ross Moore

for building buttons to show and hide the pop-up
images.

Now when a float is encountered, the full con-
tents of the environment is written out into a file,
named according to the figure or table number, as
part of a new KTEX job which includes a preamble
loading most of the same packages as in the main
job. This subsidiary job is run, using KTEX fol-
lowed by dvips/ps2eps/epstopdf to get a single-page
PDF with correct bounding box. The file is loaded
back into the main job using \pdfrefximage within
a \setbox, and its PDF object reference number
is recorded for later use in placing the image on a
JavaScript button field, when an appropriate \ref
occurs. The object reference is also written into the
.aux file as the expansion of a macro having its name
derived from the figure number. This allows the ref-
erence to be used on the next run, with any \ref
command that occurs before the float has been en-
countered, and also allows checking to see whether
the reference number has changed, in which case a
message is written to the .log file warning that an-
other KTEX run is required. Finally, the tokens for
the float environment are recovered and processed
normally.

On subsequent IXTEX runs, the image files do
not need to be rebuilt, but are loaded from the PDF
images created on an earlier run. If editing of the
main document source changes the order of floats,
the toggle buttons may become associated with the
wrong images. Simply delete those images from the
current directory; the correct ones should be gener-
ated afresh on the next IATEX run. In case the con-
tent of a float contains \ref and \eqref commands
or citations, the subsidiary job that creates an im-
age also loads a copy of the .aux file from the main
job, which copy was made at the end of the previ-
ous run. It’s possible that cross-references have not
fully stabilised, so simply delete any affected image;
after two more runs it will have been regenerated
and included.

If browser software had a ‘cross-reference spy-
glass’ feature (as suggested in the first paragraph of
this item), then not only would there be no need for
the PDF to contain JavaScript coding for the extra
buttons, but also there would not be doubling-up of
the information contained in figure and table floats.
Furthermore, such a pop-up-like feature would ‘just
work’ also for cross-references to section headings,
numbered equations, etc., as well as to the floats,
and perhaps also for citations and ‘back-references’
from the bibliography (see Figure 7, for example).
This is surely the way that such a feature ought
to be implemented; ideally it should not be nec-

essary for a scientific document to include explicit
programming which controls how its content be dis-
played, but just have declarations of which browser-
supplied functions are to be used. The implemen-
tation presented here is mainly to demonstrate the
usefulness and practicality of such a ‘pop-up’ feature
for cross-referenced material, so that browser ven-
dors might be encouraged to incorporate a similar
feature within their own publicly-available software.
However, there are certainly other, simpler uses for
pop-ups to show extra images that are not found
elsewhere among the usual pages of a document.

c. Extended use of bookmarks (see Figure 3), ...
Use of bookmarks is quite common for the major
sections of a document; this is automatic when using
\usepackage{hyperref} with a ETEX document.
This is here extended further to creating bookmarks
for definitions, Theorems, Lemmas, etc., and also
for figures, tables, and some equation displays. To
avoid the bookmark window becoming too cluttered,
only those equations that have actually been cross-
referenced within the document are given their own
bookmark.®

Having such bookmarks means that there are
named destinations with the PDF at all the impor-
tant places for the structure and content of the doc-
ument. Furthermore these names are available in a
separate file, so potentially this can be used to con-
struct hyperlinks directly to these important places.
This could be extremely useful in the context of a
digital archive.

For figures and tables, a meaningful string to
be the textual anchor in the ‘Outline’ window is ob-
tained as the first sentence in the caption. This is
obtained by reading the caption from the .lof or .lot
file and parsing to locate the first full stop (‘.”). With
Theorems, Lemmas, Propositions, etc., the anchor-
text uses the appropriate numbering, as seen in Fig-
ure 3. The limiting of bookmarks to only those refer-
enced is achieved by patching the \@setref internal
macro to implement a ‘memory’ of referenced labels.
A line is written into the .aux file; this defines a
macro, with name derived from the label. The cod-
ing for placing equation numbers is patched so that
\df@tag now also places an anchor, and a bookmark
for this anchor when the memory indicates that the
equation has been referenced — which is known on
the 2° and subsequent BTEX runs.

8 It can be argued that if an equation is not referenced
then it doesn’t need an equation number. However, many
articles have been written where the author has not followed
this maxim. For creation of bookmarks, this maxim has been
programmed-in.

468 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Advanced features for publishing mathematics, in PDF and on the Web

(7of18) | @

& ® [121% -5 [E E [frna -

[E] Copyright Statement
[E] information for Authors
[E] Editoriat Policy

[E] index of Volume 72 No. 1

¥ [E| Unear geometries on the Moebius strip: a

thearem of Skornyakov type
¥ [E L intreduction
[E] Theorem.
¥ [E] 2. Proof of the Theorem
] [Figure 1: The joebius strip.
[E] proposition 1.
[£] Proposition 2.
[E] Figure 2: Two noncempact essential lines.

—+0C

~

—o

F1curg 1: The Moebius strip.

Consider the two-sheeted covering 7 : Sy — P and the inverse image 7 Y(I) of
one of these circles. This set is a covering of L, and there are two possibilities: either
] Figure 3: Two noncompact inessential fines. ﬂ’l(Z) consists of two disjoint circles C, —C' which are interchanged by the antipodal

MG & b0 @13 | @

* &

® & 10m-§§ﬁiﬁjg\jm;|na -

x

Options =

E ' (o

¥ [E] cover Pages
[E] Australian Mathematical Society
[E] The Bulletin: Editors
[E] copyright Statement
[E] information for Authors
[E] Editorial Policy
[E] index of velume 72 No. 1
¥ [E] Astrong excision theorem for generalised Tate cohomology
¥ [L introduction
[E] Theorem 1.
¥ [E] 2. Tate cohomology of orbits of T and U

9 ™

[E] Proposition 1.

| [Figure A part'bfmiﬁ;l'cninp‘ié!llu.lﬂl & C{UfH), H finite. |
[E] Equation (1}

[¥] Figure 2: A part of the bicomplex Z[u,u1] ® C(T/H), H<T.

[E] Proposition 2.

El Figure 3: A part of the bicomplex Z[u,u"1] ® C(U/H), dim
H>0.

¥ [E] 3. Tate cohomology of orbits of general compact Lie groups
[E] Proposition 3.
¥ [E] 4. Proof of the excision theorem
[E] Lemma 1.
] corallary 1.
[E] References

| |
0 — 1800) « u'le o)
|
0 — 18G0) — 0
|
0~ 1e00) ~— 0
| |
0~ u@C(0) « 18CO) ~—— 0

|

0 — a®C(AQ) ~— 0

Figure 1: A part of the bicomplex Zu, u~'] ® C(U/H), H finite. The vertical arrows
are d and the horizontal arrows are J — u ®J().

It follows that on eohomology

kg @ Db | qos| @ s ®

%

Options ~

ﬁ-

¥ [E] cover Pages
[} Australian Mathematical Society
o [E] The Bultetin: Editors
[E] copyright Statement
[E] information for Authors
[E] Editorial Policy
[E] incex of Volume 72 No. 1
¥ [E] On the Ky Fan inequality and related inequalities Il
¥ [E] 1. introduction and Notation
[Equation (1.1)
[E] Equation (1.2)
¥ [Equation (1:10)
[E] Equation (1.12)
[E] Equation (1.14)
[E] Equation (1.16)
¥ [2. Lemmas
E Lemmaz.1.
[E] Property ()
[E] Equation 2.1)
[Equation (2.2)
[E] property (i)
[Equation (2.3)
[E] Equation (2.4)

E Lemmaza.
[= PRSI

Figure 3: Bookmarks: these three images, taken from different articles, illustrate various aspects of the

= & E @i -

107 -
< AX,w) € My(X, w)
(p = 1) where
n el
(1.11) M (X, w) = (Ew‘:) R
G{X,w), p=0

is the weighted power mean of order p of X € R}. Some of the means which appear
in (1.10) satisfy the Ky Fan type inequalities. For instance, Séndor and Trif [22] have
proven that
X, _ HXw) _ AlX.w)
= < .

GX,w) T X, w) T AX w)
(See also [21] for a special case of (1.12]).

Let the letters G, L, and A stand for the unweighted geometrie, logarithmic, and
arithmetic means, respectively, of two positive numbers z and y. Recall that

1.12)

I—Y
sy mat
L=L{z,y)={ Inz/y)
By =y
In [16] the anthers have proven that
G L A
. g 2
(1.13) FSTET

(r,y < 1/2). In addition to these nequalities, results involving differences of the recip-
rocals of means have been obtained. The following result

1 _ 1 =2 1 _ 1
(114) H'(X,w) H(Xw) L’();,w) L(X;,w)

S Xw AXD

automatically created ‘bookmarks’. These provide easy access to the important parts of the document, including
front-matter as well as sections of the mathematical article itself; such as definitions, theorems, proofs, remarks
and figures. The middle image shows that mathematical symbols can be used within bookmarks, while from the
lower one it can be seen that a bookmark is not produced for every numbered equation, but only for those that

are cross-referenced within the article itself.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

469

Ross Moore

B &

P 17-30: Rainer Lowen and Burka ter
on the Moebius strip: a theorem of
Skorny

http: waw emis. dej'cgv bm/zmen/ZMA'rH/en/fun hcmw
qtp=1&fld: =L
farmat_(umplete

Figure 4: Cover page: this includes hyperlinks to
recover the embedded metadata attachments, in
various formats. Also there are links to the websites
of the Mathematical Reviews and Zentralblatt Math
reviewing agencies, where this article has been
reviewed. The large button enclosing the title links
directly to the start of the article proper.

d. ... including support for mathematical symbols
and some super-/subscripts.

The identifying strings displayed in the bookmarks
window allow for the full range of Unicode code-
points. This means that mathematical symbols can
appear, which is most appropriate for figure cap-
tions, and mathematics is used with (sub-)section
titles and theorem names, say. Even though the
Unicode specification does not allow for complete
alphabets of super-scripted and sub-scripted letters,
an attempt is made to make good use of those that
are available. Some further work is needed on this
aspect of bookmarks.

e. Inclusion of attachments (see Figure 4), contain-
ing metadata for the article, in various useful for-
mats.

The metadata for a scientific paper is important

for various purposes, not least of which is citation

within future works. By distributing a document
with its own metadata, common difficulties can be
avoided, such as the incorrect spelling of an au-
thor’s name, or wrong affiliation, etc., or just getting
the page numbers wrong. These PDFs come with
text-file attachments containing various amounts of

BIL“'.[UL e)l‘ thc. .-\!Lst-ru.llan h'larb('lu:mrxd Sm—it"y m

A note on the lattice of density preserving maps
Sejal Shah and T.K. Das e ww am ws v L
A strong excision theorem for genen]ne\:l Tute cohomology
N. Mramor Kosta
T LR e &knmynkm !ype
Rainer Léwen and Burkhard Polster e 17
Div-curl type theorems on upacmu domains
Zengjian Lo B &
A iosliienr map fo idpsint lncally unllhrmly e,
8. Lajara and A1 Pallarés .. http: [fwww.austms.org.au/Publ/Bulletin/V72P1/
A remarkable contimied fraction index.htm#31 I

Davil Angell and Micharl D, Hirschliorn ... e —— 1w 1
A new variational method for the p(x)-Lapl quntmn
Marek Galewski B OWE RN M R HD WY 53

Figure 5: Index page: containing links to the
Australian Mathematical Society’s website, for
accessing each of the articles from the same journal
issue.

metadata in useful formats: (i) a BIBTEX entry suit-
able for adding to a .bib file; (ii) a short HTML-
formatted entry, suitable for an RSS feed; (iii) an
extensive metadata file in XML format, which in-
cludes the complete bibliography of the article, as
well as its own publishing details.

Each of these metadata files is generated “on-
the-fly” by suitable TEX macro coding, using the
information provided for typesetting the PDF doc-
ument itself. Thus, barring mistakes in the various
format translations required for this, the metadata
is guaranteed to be consistent with what appears in
print.? Access to these files is made easy by anchors
on the cover page (see Figure 4) located above the
white text of the article title and authors, which it-
self anchors a hyperlink to the start of the article
proper.

When available, database codes for reviews of
the article are included with the BIBTEX and XML
metadata files. In this case, the cover page has fur-
ther anchors, for hyperlinks which give direct access
to the review at Math Reviews!'® and Zentralblatt-
MATH.!! The same typesetting run that produces
the PDF also builds an HTML webpage for the ar-
ticle.'? This presents all the metadata and has the
same hyperlinks, and more. Some format transla-
tions are also required when building such webpages.

Part of the metadata for an article is the con-
text in which it has been published; namely, the
complete journal issue. For this, we have chosen to

9 This is a useful feature for freshly published articles,
but is not really appropriate for a digital library or preprint
archive, which would presumably have its own database of
metadata already prepared and checked for the documents
that it serves.

10 A subscription to MathSciNet is required to make use of
this hyperlink.

I Unregistered users have reduced access to the features
available at this site.

12 nttp://www.austms . org.au/Publ/Bulletin/V72P1/
721-5019-LoPo/index.shtml

470 TUGDboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Advanced features for publishing mathematics, in PDF and on the Web

\:.-[IJ IJl_l TFind

Since x is a point of a stable plane, there are convex neighbourhoods U of z, see [12,

2 bl 22 | (2of18) | @ = ® oox - =

31.22]. Here, convex means that the intersection of any line with I/ is connected. This
implies that the set of points covered by By is a neighbourhood of £z in the disk Pn
further implies that the order on B has no gaps, that is, between any two half lines with
end point £z there lies another one having the same end point 4. Finally, we see that

‘MM [9] MHA. Newman, Elements of the topology of plane sets of points, (reprinted by
Publications, New York, 1992) (Cambridge University Press, New York, 1961).

"M [10] H. Salzmann, ‘Topological planes’, Adv. Math. 2 (1967), 1-60.
"M [11] H. Salzmann, ‘Geometries on surfaces’, Pacific J. Math. 29 (1967), 397-402.

‘%‘M [12] H Salzmann, D. Betten, T. Grundhdfer, H. Hihl, R. Léwen and M. Stroppel, C
projective planes (de Gruyter, Berlin, New York, 1995).

“ [13] A Schenkel, Topologische Minkowski-Ebenen, Dissertation (Erlangen-Nirnberg,

“M (2] H. Alzer, “The inequality of Ky Fan and related results', Acta Appl. Math. 38 (1905),
305-354.
™ [3] E.F. Beckenbach and R. Bellman, Inequalities (Springer-Verlag, New York, 1065).
" [4] B.C. Carlson, Special functions of applied mathematics (Academic Press, New York
1977).
“7"M [5] F.Chan, D. Goldberg and S. Gonek, ‘On extensions of an inequality among means', Proc.
Amer. Math. Soc. 42 (1974), 202-207.
"M [6] E. FLNewsihi and F. Proschan, ‘Unified treatment of some inequalities among means’,
Proc. Amer. Math. Soc. 81 (1981), 385-300.

“'M [7] L Gavrea and T. Trif, ‘On Ky Fan's inequality’, Mefh. Inequal. Appl. 4 (2001), 223-230.

Figure 6: Back-reference hyperlinks: the middle
image indicates how the caret (*) in the left margin is
the anchor for an active hyperlink, which jumps to the
location where the particular reference has been cited.
The upper image shows the resulting change of focus.
As there can be several citations of the same item, the
carets are right-aligned, with up to eight in a row, as
in the lower image.

include the complete front-matter that would ap-
pear in the printed version of the journal. The im-
ages of Bookmarks in Figure 3 show the kind of
material that is included: Editors, Copyright State-
ment, Information for Authors, etc. Of course the
Index page (see Figure 5) lists all other articles ap-
pearing within the same issue. For each article there
is an active hyperlink, using the page number as
the visible anchor, that directs a web browser to
the public page at the Australian Mathematical So-
ciety’s website where the article’s abstract can be
read, and its metadata (including references) exam-
ined. Also, the name of the article itself is the an-
chor for another hyperlink to the start of the article
proper.

f. Hyperlinking from the bibliography to the place
within the text (i.e. back-referencing) where the
citation occurred (see Figure 6), and to reviews
at MathScilNet (see Figure 7).

Including back-references is not new, nor is having

hyperlinks within the bibliography, when such are

supplied by the article’s author. However, for arti-
cles where the original printed version did not have
these features, there is the problem of how to include
the extra information without upsetting the pagina-

"M [5] H. Groh, ‘Topologische Laguerreebenen I, Abh. Math. Sem. Univ. H
11-22.

‘Q{)[G] T. Grundhifer and R. Léwen, ‘Linear topological geometries’, (Chapte
£ of inpidence aeometry (North Holland. Amsterdam_ 1995), pp. 1255
-y http:/ fwww.ams.org/msnmain?

| in stable plane
fn=130&pg3=MR&s3=MR136073B&fmt=hl&|=1&r=1&dr=all >0 ¢ PHLE

T R RS RS AR ST R e TR e ves FERRETREr T Eaen Tlodianta MR

Figure 7: Hyperlinks to MathSciNet: the small raised
M is the anchor for a hyperlink that connects to the
American Mathematical Society’s website. It links

to the review of this cited bibliography item. It is
possible to have multiple such links, as can be seen in
entry [9] in the middle image of Figure 6.

tion. Figure 7 shows an elegant solution that places
the hyperlink anchors discreetly into the left mar-
gin. The caret-accent character has been chosen to
be suggestive of an upward link; that is, to the ma-
terial preceding the bibliography, which is the main
body content.

The second problem, which is perhaps the more
difficult one, is that of how to automate the col-
lection of data required to build hyperlinks to re-
viewing services, such as MathSciNet and Zentral-
blatt-MATH, or other online archives of scientific ma-
terial. For these PDFs the author made use of a
small program called bmref, which is essentially a
‘batched’ version of MathSciNet’s Mref tool.'® Pro-
vided by Patrick Ion (Associate Editor of Math-
ematical Reviews, AMS), this short Perl program
sends a carefully constructed XML file as a query
to the MathSciNet database, as an HTTP ‘POST’
tohttp://www.ams.org/batchmref . The result re-
turned is an XML file containing the same data, but
with extra fields added for (i) the number of matches
found, (ii) the reference numbers (MR-number) of
found matches, and (iii) full bibliographic informa-
tion, for each bibliographic item included in the orig-
inal submission.

This allows the MR-numbers to be obtained for
all items in the bibliography (well, all those that
have been reviewed), with a single submission. Each
MR-number is sufficient to build the desired hyper-
link. Of course this is not 100% reliable, and some
searching at MathSciNet can uncover MR-numbers
for items that were not found in the automated
search; but the bulk' of the job is done automat-
ically. TEX coding was developed to analyse the
author-supplied bibliography prior to constructing
the XML file for use with bmref. Taking advantage of

13 See http://www.ams.org/mathscinet-mref .

14 Of 516 separate cited items from 51 papers, 67 were not
found automatically; 19 of these were found with some man-
ual searching. The remainder were to journals not covered at
MathSciNet, or to unpublished theses, etc.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 471

Ross Moore

J. Aust. Math. Soc. 82 (2007), 395-402
A note on the boundedness of
Bergman-type operators on mixed
norm spaces

Zengjian Lou
Department of Mathematics
Shantou University
Shantou Guangdong 515063
P. R. China

zjlou@stu.edu.cn

Abstract

‘We prove the boundedness of Bergman-type operators on
mixed norm spaces £>(a for o <4 <1 and o < » < of functions on
the unit ball of ¢- with an application to Gleason's problem.
Download the article in PDF format (size 91 Kb)

Australian Mathematical Publishing Association Inc.

© Australian MS

Member login
AustMS Home ANZIAM Contact

é‘«e,_,’u < us
Marugyameny
| About us | Membership | Publications | Resources | Careers | News | Events | |

J. Aust. Math. Soc. 83 (2007), no. 2, pp. 181-216.

The block structure of complete lattice
ordered effect algebras

Gejza Jenca

Department of Mathematics

Faculty of Electrical Engineering and Information Technology
Ilkovigova 3

812 19 Bratislava

Slovakia

gejza.jenca@stuba.sk

IS

Received 4 May 2005; revised 28 June 2006
Communicated by M. Jackson
This research is supported by grant VEGA G-1/3025/06 of MSSR. This work was
supported by the Slovak Research and Development Agency under the contract No.
APVV-0071-06.

Abstract

We prove that every for every complete lattice-ordered effect algebra
Ethere exists an orthomodular lattice O(E) and a surjective full
morphism qsb. : O(E) —» Ewhich preserves blocks in both directions:
the (pre)image of a block is always a block. Moreover, there isa (,1-
lattice embedding ¢, : E — O(E)

Figure 8: jsMath in webpages: the image at right illustrates the high quality and proper scaling of mathematical
expressions within a webpage that uses the jsMath applet software. This contrasts starkly with the image at left,
displaying poorer quality and lack of scalability in the static images, used with older web technologies.

TEX’s \write18 feature to run external commands
and await the reply, the whole process can be fully
automated and integrated with the typesetting run:
craft the XML file, send to MathSciNet, analyse the
result, extract the MR-numbers, then make these
available for creation of hyperlinks. After a success-
ful result of one such run, there is no need for the
same tasks to be repeated on subsequent typesetting
runs.

The bibliographic information returned can be
requested to be in any of the usual formats: bibtex,
amsrefs, TeX, html or as an HTML hyperlink. Thus
this information could be used to check the biblio-
graphic details provided by the author, or could even
replace it altogether. This was not done with these
tests, due to the desire to have the online content be
the same as what was printed; however, if any fac-
tual errors were noticed (such as incorrect Volume
or page numbers) then these were corrected.

In the hope of finding capabilities comparable
to bmref, the author also searched Zentralblatt-MATH
and other journal archives, for the availability of on-
line tools for batched searches — unfortunately with-
out success. Searches for a single article could be
automated, but with fuzzy-matching this would re-
sult in multiple hits, requiring significant extra pro-
cessing to determine whether the sought-after article
actually had been located at that site.

In the context of a digital library or preprint
archive, there may well be a large database of meta-

472

data readily available which could be easily searched
instead. Indeed then it might be possible to include
links not just to reviews of an article, but to the ar-
ticle itself. Some appropriate icon or symbol would
then be used to indicate the kind of information to
be found at the target of the hyperlink.

3 HTML pages for abstracts, etc.

At the end of 2007, the Australian Mathematical
Society made a complete change in the hosting ar-
rangements of its website,'® as well as a change in
the publication arrangements for its journals. There
were still several journal issues'® that were not cov-
ered by the new arrangements, for which PDFs were
still to be served from the Society’s site. This ne-
cessitated the need for abstract pages which were
publicly available, having hyperlinks to the PDFs
which are accessible only with a subscription. The
job of creating these pages fell to the current author,
in the role of web-editor for the Society.

The same techniques that were used for the Bul-
letin PDFs were used for this task, only now there
was no full article PDF being produced. Thus the
principal outputs were the HTML pages and meta-
data files. MR-numbers were obtained in the same

15 Australian Mathematical Society’s website:
http://www.austms.org.au/ .

16 J. Austral. Math. Soc., Vol. 83 (1) & (2): http:
//www.austms.org.au/Publ/JAustMS/, and ANZIAM
Journal, Vol. 49 (1) & (2): http://www.austms.org.au/
Publ/ANZIAM/ .

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Advanced features for publishing mathematics, in PDF and on the Web

tice-ordered effect aigebra E there exists an
full morphism ¢ : O(E) — E which preserves
‘ a block is always a block. Moreover, there is a

jsMath v3.4f (Tex fonts) [help]

6 Kb))
Sy Shget Check for jsMath Updates
) « Missing Fonts
rimary 06C15; seconc « Printing Issues Hi-Res Font T
= Home Page
= Documentation Print Go Global

= User Community

« Known Bugs Retoad

= Report a Bug
= License

Options) { Done

mmetric effect algebi
Click the jsMath button or ALT-click on mathematics to recpen this

al and scale effect al¢

A
| ihsath | v

dpen an:ﬂathtqmrurl VPanelr‘

tice-ordered effect algebra E there exists an

Fiall cnroblem A - FY 4 B iihick crocomoe

jsMath Options [heip)

M Autoselect best font

¥ Show font warnings

Use image alpha channels
Print image-font help

! Always use hi-res fonts

Scale all mathematics to 120 %

@ Use native TeX fonts {download)
_ Use image fonts (_ scalable)
_ Use images for symbols only

_ Use native Unicode fonts
Show progress messages

_| Force asynchronous processing
_| Don't show page until complete
™ Show jsMath button

Use Global mode ~ when requested | &

Enable tex2math plug-in (Back LI Done

i
JsMath| ¥

A

Figure 9: Help, Options & fonts with jsMath: the image at right shows how to bring up the jsMath control
panel, displaying the ready availability of options and help features. In the Options panel, shown at right, one
sees the great flexibility in the way different fonts or images may be used to construct the mathematics. Best
quality is obtained by downloading and installing the jsMath fonts, or using local Unicode fonts.

way as described above, only now the reference data
was presented in a different way, as IMTEX-formatted
.bbl files. There were other differences in the meta-
data too, requiring some minor adaptations of cod-
ing used previously.

A significant addition however, was the choice
to use jsMath for the mathematical expressions that
appeared in titles, abstracts and occasionally within
the names of cited papers. Davide Cervone’s jsMath
software! is a JavaScript applet that is effectively
a cut-down version of a TEX compiler that does
proper typesetting of stand-alone!” mathematical
expressions. The author had used this before with
the ~ 5000 abstract submissions for the ICTAMOT7'®
Congress, and had made several suggestions for bug-
fixes and other improvements that Cervone willingly
implemented. As well as providing a better qual-
ity presentation of mathematics within webpages,
jsMath also gives proper printing using fonts rather
than images, and solves the problem of rescaling
the mathematics to suit a web-surfer’s choice of font
size. Figure 8 displays this, by giving a comparison
with a page produced using older methods.

A lot of help is readily available, as Figure 9
shows. The jsMath ‘Options’ panel allows various
choices of fonts to use with the mathematics being
shown. Specially prepared TEX fonts can be down-
loaded. When installed in the local OS, these can
be used with pages from any website that employs
jsMath. This not only gives the best possible quality
of image (since it leverages font-rendering machinery
on the local operating system), but also speeds up

7 It doesn’t do full pages, nor handle counters, cross-
referencing, citations, etc.

18 Browse at the ICTAMO7 timetable: http://wuw.
iciamO7.ethz.ch/timetable/ .

processing since less information needs to be down-
loaded from that site. Alternatively, a local Uni-
code font could be used for similar speed gains, but
the resulting layout of complicated mathematical ex-
pressions might not be as finely tuned as with the
jsMath TEX fonts. Now Copy/Paste and searching
refer to the Unicode code-points for mathematical
symbols, whereas otherwise these operations would
use the position in traditional TEX encodings.

Conclusion

Here we have described several advanced features
applicable in particular to the electronic publication
and presentation of mathematical papers, but which
have much wider utility. The emphasis is more on
the nature of these features rather than on any spe-
cific means of implementation, since various forms of
implementation can be possible appropriate to the
particular circumstances of distribution and produc-
tion. The existence of example documents? is “proof
of concept” that these are achievable with current
TEX software. Indeed these can serve as a test bed
for some of the features where there are inconsis-
tent levels of support within current browsers; e.g.,
Copy/Paste and searching with regard to mathe-
matical symbols, handling of overlaid annotations,
spy-glass views, etc.

Hopefully, in the near future, some of these
ideas will become standard practice, with consistent
support across browser software, for the benefit of
academics and researchers in mathematics and of
the scientific community generally.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 473

Multidimensional text

John Plaice

School of Computer Science and Engineering
The University of New South Wales

UNSW SYDNEY NSW 2052, Australia
plaice (at) cse dot unsw dot edu dot au

Blanca Mancilla

School of Computer Science and Engineering
The University of New South Wales

UNSW SYDNEY NSW 2052, Australia
mancilla (at) cse dot unsw dot edu dot au

Chris Rowley

Mathematics and Statistics

The Open University in London

1-11 Hawley Crescent, Camden Town
London NW1 8NP, UK

c.a.rowley (at) open dot ac dot uk

Abstract

The standard model of text, based on XML and Unicode, assumes that docu-
ments are trees whose leaves are sequences of encoded characters. This model is
too restrictive, making unnecessary assumptions about documents, text and the
processing applied to these.

We propose instead that text and documents be encoded as tuples, i.e., sets
of dimension-value pairs. Those dimensions used for content are split into the
property dimensions, which are named by elements of an unstructured set, and
the indexing dimensions, which form a structured set, often enumerated.

Using our approach allows natural solutions for a wide range of encoding
requirements: encoding of documents at multiple levels of abstraction (glyph,
character, word, stem-declension pair, compound word, etc.); encoding by linear,
tree, DAG and multidimensional structures. Our model is upwardly compatible

with existing approaches.

1 Introduction

In this article, we present a new model for manip-
ulating documents in which every structure is en-
coded as a tuple, a set of dimension-value pairs. The
simpler elements are ordinary tuples encoding basic
information, while more complex elements encode
mappings from structured index sets towards sim-
pler elements.

The advantage of this new model is that it al-
lows documents to be encoded in many different
ways, taking into account logical structure, visual
structure and linguistic analysis. Furthermore, the
proposed model is upwardly compatible with exist-
ing practice.

This model is one result of a research project

into the nature of text initiated by authors Plaice
and Rowley [5, 6]. The current standard computer
model of documents assumes that the structure of
a text is a tree—mnormally encoded using XML —
whose leaves are sequences of Unicode characters
and where the intermediate nodes contain sets of
attribute-value pairs to define properties. The con-
clusion of the aforementioned research was that the
current model makes the assumption that text is
simply something to be shuffled around, possibly
chopped up for rendering purposes, but that it has
no structure of its own; furthermore, the origin of
the view of a document as some form of stream
of bytes can be traced directly back to the near-
simultaneous invention of the typewriter and the

474 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

telegraph. The relatively recent distinction between
“character” and “glyph”, where character is an ab-
straction from glyph, still makes the assumption
that the visual presentation of text is the key, de-
spite the fact that, for example, English, Amharic
and Chinese are normally encoded at, respectively,
the letter, syllable and (sub)word levels.

As large collections of documents are brought
together, so that they can be searched, it is clear
that this “standard” model leaves something to be
desired. Searching through a multilingual database
of texts requires substantial linguistic support, and
here it becomes essential that the different languages
be handled at similar levels. Moreover, in linguis-
tics, texts are often encoded using parse trees and
attribute-valued matrices, often DAGs (directed acy-
clic graphs) or digraphs (directed graphs).

As for the structure of documents containing
text, the tree structure itself is not always appro-
priate. Although it is true that a two-dimensional
table can be encoded as a tree, this is only true
by imposing ordering on its two dimensions (either
by rows or by columns); they are not naturally en-
coded by a purely hierarchical structure but by its
antithesis, a completely crossed structure. More-
over, two-dimensional tables are often used to visu-
alize multidimensional data, whose encoding truly
requires a multidimensional data structure such as
those investigated in a different context by one of
the authors [1], not just to capture and simplify the
semantics, but to ensure an efficient and tractable
storage mechanism.

Importantly, what distinguishes the electronic
document from all previous forms of document is
that it is recreated every time that it is read, lis-
tened to, studied or processed. As a result, with a
slight change of parameters, it can be recreated dif-
ferently from any previous occasion. The standard
model completely breaks down for these kinds of
situations: it must resort to programming the docu-
ment and, in so doing, loses the possibility of having
the document being properly indexed for searchabil-
ity. (See [4] for further discussion.)

The tuple structure that we are proposing al-
lows us, as shall be shown below, to define a num-
ber of different structures, including ordered streams
and trees, DAGs and multidimensional structures.
For example, a sentence in a document can be en-
coded as a sequence of characters, as a parse tree
with words as leaves, or as a “feature structure”
from linguistics known as an attribute-valued ma-
trix. Indeed, it could easily be encoded as all of the
above, with appropriate link structures connecting
the components.

Multidimensional text

The structure of this paper is as follows. We
present a brief analysis of, and show the current lim-
itations of, various existing models for the encoding
of texts and documents in §2. We follow with a pre-
sentation of our new model (§3) using an extended
example. We then (§4) describe some features of its
use to declined word-stem sequences, parse trees, hi-
erarchical document structure, attribute-value ma-
trices and tables. We conclude with a discussion of
future work.

2 Existing models

We examine in this section three approaches to deal-
ing with text. Although not exhaustive, it does pro-
vide us with indications of where a more complete
model should be heading.

2.1 XML documents

An XML document is typically encoded as a tree. In
some sense, this is all there is to say, but a proper
understanding of XML requires examining not just
the obvious tree structure, but also the structures of
the nodes and the leaves in these trees.

For each element in an XML document, there
is a possibly empty list of attribute-value pairs, and
a possibly empty list of child elements. The leaves
of the tree consist of PCDATA (Parsed Character
Data) or CDATA (Character Data), in both cases
sequences of characters from the Unicode or some
other character set, with PCDATA being parsed by
the XML parser.

Therefore XML, often presented as a simple en-
coding, actually requires four data structures to de-
scribe a document:

e the tree;

e the list of elements;

e the attribute-value list; and
e the character sequence.

In addition, there are arbitrary restrictions on at-
tributes which limit their usability: attributes can-
not contain multiple values, nor can they contain
tree structures.

Our model includes such XML tree-based docu-
ments but it can also handle non-hierarchical struc-
tures that do not necessarily have any natural XML
encoding.

2.2 Linguistics AVMs

In linguistics, it is common to model written lan-
guage using structures consisting of a tree and an as-
sociated attribute-value structure [3, p.16]. For ex-
ample, here is the parse tree for the sentence “Mary
seems to sleep.”:

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 475

John Plaice, Blanca Mancilla and Chris Rowley

[Si: [NPy: Mary
VPi: [Vi: seems
VP3: [Auxs: to
VP3: [Vs:sleep 1111]

The associated structure, called an attribute-value
matrix (AVM), is presented below.

Note: The subscripts in the parse tree correspond
to the nodes in the AVM. Node 2 appears twice
in the AVM, being the subject of both node 1 and
node 3.

pers 3rd
. agr
subj num sg
pred mary
_subj
comp pred sleep
tense mnone
pred seem
| tense pres]

Because of such shared structures, AVMs are
often considered to be DAGs. Howewer, it is possible
to have cyclical structures in an AVM: Consider the
noun phrase “the man that I saw”, whose parse tree
is here:

[NP;: [Det: the
N’: [N: man
S’2: [Comp: that
S: [NP: I
VP: [V:saw 111111

In the following AVM, a cyclical structure is needed
to describe the “filler-gap” dependency in the rela-
tive clause [3, p. 19]:

[def +

pred man

pred saw
comp subj {pred pro}
obj

Our model naturally encodes both such parse
trees and these AVMs.

2.3 Tables

Xinxin Wang and Derick Wood [7] developed a gen-
eral model for tables, in which a table is a map-
ping from a multidimensional coordinate set to sets
of contiguous cells. For them, the two-dimensional
format commonly used to present a table is not the
internal format. Here is an example of the use of a
3-dimensional coordinate set from their paper:

Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
1991
Winter 85 80 60 75 75
Spring 80 65 | 75 60 70 70
Fall 80 85 55 80 75
1992
Winter 85 80 75 75
Spring 80 80 70 75 75
Fall 75 70 65 60 80 70

It appears that, in 1991 alone, Assignment 3 was
identical across the three terms but for 1992, we
can see no such simple explanation of the larger box
since it seems to amalgamate this assignment with
an examination.

In this example and using their notation, the
three dimensions and their value sets are as follows:

Year = {1991,1992}
Term = {Winter, Spring, Fall}
Assignments - Assl,
Assignments - Ass2,
Marks — Assignments - Ass3,

Examinations - Midterm,
Examinations - Final,
Grade

A small change of syntax would transform this into
an example of our model.

3 The new model

In this section we present an extended descriptive
illustration of the model, using an example, rather
than a detailed formal model.

There is only one basic structure in this model:
the tuple, which is defined as a set of dimension-
value pairs. This is not a new data structure, and
it has many different names in different formalisms:
dictionary in PostScript, hash-array in Perl, map
in C++, association list in Haskell, attribute-value
list in XML, and tuple in Standard ML and Linda.

We begin by proposing a possible encoding for
the sentence “ITEX 2¢ is neat.”

[type: sentence
numberWord: 3
endPunctuation: [type: unichar, code: 002E]
0: [type: TeXlogo
TeXcode: "\LaTeX\thinspace2\lowerlpt
\hbox{\smallε}}"
SimpleForm: [type: digiletters
unicharstring: "LaTeX2e" 1]
1: [type: word
numberChar: 2
0: [type: unichar, code: 0069]

476 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

1: [type: unichar, code: 0073] 1]
2: [type: word
numberChar: 4
2: [type: unichar, code: 0061]
1: [type: unichar, code: 0065]
0: [type: unichar, code: O0O6E]
3: [type: unichar, code: 0074]]]
In this example, there are 12 tuples:
e 1 sentence,
e 1 TEX logo,
e 1 character string consisting of a “word and dig-
its”,

2 words, and

7 Unicode characters.

The different dimensions in the example play
different roles. In fact, there are three categories of
dimensions:

e The typing dimensions allow one to distinguish
the different kinds of tuple. Thus all tuples
must have a typing dimension. In the exam-
ple, a special dimension, called type, provides
the information. This is the standard solution,
although we do not exclude the use of further
special dimensions, say subtype or version, for
further clarification.

e The property dimensions are used to store any
type of information about the tuple. In the ex-
ample, these dimensions are:

— numberWord and endPunctuation, for
tuples of type sentence;

— TeXcode and SimpleForm, for the
TeXlogo tuples;

— unicharstring for digiletters tuples;!

— numberChar for word tuples;

— code for unichar tuples.

e The indexing dimensions are used to access the
substructures of a tuple (the content of the tu-
ple) via an indexing mechanism or structure.
The set of all the indexing dimensions available
to a given type of tuple can be very large, con-
ceptually infinite, and will often carry a com-
plex structure.

In the following sections we will extensively
develop examples of how the structure of these
indexing dimensions can be used to encode com-
plex systems. In the example, both the sen-
tence and word tuples use the natural num-
bers (N) to enumerate their content; thus the
indexing dimensions available are the natural

1 This could be replaced by a more formal tuple of type
digiword that is like word: being an indexed collection of
unichar tuples that can also contain digits.

Multidimensional text

numbers, whose structure is the unique count-
able well-ordering.

More precisely, the property dimensions form
an unstructured set, whilst the indexing dimensions
form a subset of a structured set. We can, for exam-
ple, write a tuple of type typespec that defines the
sets needed for the dimensions in sentence tuples:

[type: typespec
tupletype: sentence
typedim: {type}
propdim: {numberWord, endPunctuation}
indexdim: N
]

Note that, although the set of possible index dimen-
sions N is the infinite set of all natural numbers, any
given tuple will use only a finite number of numbers
as indices. Also, it is important that, for example,
the order of the characters in a word is defined by
the ordering of their indexing dimensions as natural
numbers, not the order in which they appear in the
written form of the “word tuple”. In this example
we write the characters in the order of the numbers
of their Unicode slots (such an ordering may be very
efficient for certain applications).

In all of these sets, of dimensions and possible
values, both equality and membership must be com-
putable. In all usable examples, of course, equality-
testing and other necessary set operations should be
at worst of polynomial time complexity for reason-
ably sized sets.

The tuples used as values may be of any type,
thus, for example, they could include strings, files,
programs, and so on.

There can be other interesting interplays be-
tween dimensions and values. Consider, for exam-
ple, the Unicode character tuple:

[type: unichar, code: 002E]

Here the value 002E is a value used to index the Uni-
code character database and, as Bella [2] has shown,
that database can be understood as a single tuple
indexed by the natural numbers whose entries are
themselves tuples containing various kinds of infor-
mation about each Unicode character.

The tuples used in this model are conceptual:
they can be implemented —both as data structures
in running programs and as sequentialised files on
disk —in many different ways. Depending on the ex-
act applications, algorithms and programming lan-
guages and environments, some solutions are more
appropriate than others.

4 Examples

We hope it is now clear that our tuple structure

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 477

John Plaice, Blanca Mancilla and Chris Rowley

can encode any sort of simple record or entry. In
this section, we indicate with a few more examples
how the tuple structure can encode different kinds
of data structure.

As was described in the previous section, there
are typing, property and indexing dimensions in a
tuple. If we restrict ourselves to the indexing di-
mensions, then the tuple can be considered to be a
(partial) function from an index set (the structured
set of indexing dimensions) to a set of values, which
are in general themselves tuples, interpreting a sin-
gleton value as a type of tuple singleton and in-
dexing set of size 1 {0}. If, in the sense of datatypes,
these singleton values are strongly typed, then these
singleton values will need a datatype property di-
mension.

e Declined word-stem sequences: To enhance doc-
ument search or to effect grammatical analy-
sis, it is common to stem words, separating the
stem and the prefixes or suffixes of the words.
We would then end up with entries such as:

[type: verb
language: English
stem: carry
mood: indicative
tense: present perfect
voice: active
person: 3rd
number: singular
unicharstring: "has carried"]

or

[type: noun
language: French
stem: pomme
gender: feminine
number: plural

unicharstring: "pommes"]

Should the system not be able to parse such
a word/phrase, then it will store only its uni-
charstring until it is appropriately updated.

e Parse trees: The result of the natural language
parsing of a sentence is a richer text structure
that is often encoded in a tree structure.

Below is a possible parse tree for the sentence

“Mary seems to sleep.”, first presented in the
section on AVMs (§2):

[type: sentence

NP: Mary
VP: [type: verbPhrase
V: seems
VP: [type: verbPhrase
Aux: to
VP: [type: verb
V: sleep 111]

o Hierarchical document structure: The traditio-

nal book with frontmatter, chapters, sections
and subsections is a typical example of a doc-
ument tree. This hierarchy can be extended
downwards to paragraphs, sentences, phrases,
words and characters.

Attribute-value matrices: As explained in §2,
these contain shared structures. Below is the
AVM for the last example sentence.

[type: AVMentries
numberEntries: 3
1: [type: AVM
subj: 2
comp: 3
pred: seem
tense: pres]
2: [type: AVM
agr: [type: AVM
pers: 3rd
num: sg]
pred: mary]
3: [type: AVM
subj: 2
pred: sleep
tense: none]]

e Tables: The encoding of tables by Wang and

Wood is our final example of the model. Here
is a possible encoding, where the dimensions are
allowed to range over a set of possible values in
order to encode the boxed values.

[type: WWtable
[type: WWindex
year: 1991
term: Winter
mark: Assignments.Assl
] : 85

[type: WWindex
year: 1991
term: Winter..Fall
mark: Assignments.Ass3
] :75

type: WWindex

year: 1992

term: Winter..Spring

mark: Assignments.Ass3..Midterm

[B

] : 70

[type: WWindex
year: 1992
term: Fall
mark: Grade

] : 70

478 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

5 Conclusions

The model introduced in this paper, based on gen-
eral tuples, is as simple as possible whilst being flex-
ible enough to encode a large range of different ap-
proaches to the study and manipulation of text in
all of its forms, as well as to support the encoding
and linguistic tools such as language dictionaries.

However, the real power of the model is the idea
of the index, built right into the model, which pro-
vides access to any piece of data, thereby support-
ing the specification of algorithms and hypertext-
like links between document components.

The infinite index sets correspond to iterators
into containers, as used, for example, in the C++
STL (Standard Template Library) for generic pro-
gramming. Furthermore, using these sets it is even
possible that certain tuples are, conceptually, count-
able infinite (like lists in a functional programming
language), with the components being evaluated in
a lazy manner, on-demand.

In future papers we shall show how this unifying
data model makes it easy to combine in a single sys-
tem myriad ways of editing, storing, manipulating
and presenting text and to manipulate all of these
together.

Multidimensional text

References

[1] R.A. Bailey, Cheryl E. Praeger, C. A. Rowley,
and T.P. Speed. Generalized wreath products
of permutation groups. Proc. Lond. Math. Soc.,
$3-47(1):69-82, July 1983.

[2] Gébor Bella. Modélisation du texte numérique
multilingue: vers des modéles générauz et exten-
sibles fondés sur le concept de texteme. PhD the-
sis, Télécom Bretagne, Brest, France, 2008.

[3] Mark Johnson. Attribute-Value Logic and the
Theory of Grammar. Center for the Study of
Language and Information, Stanford University,
1988.

[4] Blanca Mancilla and John Plaice. Possible
worlds versioning. Mathematics in Computer
Science, 2008. In press.

[5] John Plaice and Chris Rowley. Characters are
not simply names, nor documents trees. In Glyph
and Typesetting Workshop, East Asian Center
for Informatics in Humanities, Kyoto University,
2003. http://coe2l.zinbun.kyoto-u.ac.jp/
papers/ws-type-2003/009-plaice.pdf.

[6] Chris Rowley and John Plaice. New directions in
document formatting: What is text? In Glyph
and Typesetting Workshop, East Asian Center
for Informatics in Humanities, Kyoto University,
2003. http://coe2l.zinbun.kyoto-u.ac.jp/
papers/ws-type-2003/001-rowley.pdf.

[7] Xinxin Wang and Derick Wood. A concep-
tual model for tables. In Ethan V. Munson,
Charles K. Nicholas, and Derick Wood, editors,
PODDP, volume 1481 of Lecture Notes in Com-
puter Science, pages 10-23. Springer, 1998.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 479

Data mining: Role of TEX files

Manjusha Susheel Joshi
Bhaskaracharya Institute of Mathematics
Pune 411004, India

manjusha dot joshi (at) gmail dot com
http://www.bprim.org

1 Background

In a recent data mining project, I was trying to un-
derstand how to extract important words from a doc-
ument. I realised that while writing a document, an
author usually emphasizes important words by us-
ing italics, bold face, underlining, or quotes. This is
a general observation for electronic documents.

While working on the project to try to find out
appropriate information from the document set, I
was looking for a better file format. In this regard,
the TEX file format attracted my attention.

Nowadays most research journals accept TEX
files from authors. Journals then put pdf files of the
articles or abstracts on the web site, or submit them
for printing.

TEX) PDF
Authors = research journals = User

At present, the research journals typically clas-
sify papers by the year of publication or volume of
the issue in which a given paper is published.

Almost always, users have access only to PDF
files, and the journals do not publish the TEX sources
of the articles in any way.

2 Situation

Journals mostly have their own style files that take
care of their abstract formatting, section heading
style, headers, footers, and so on. They generally
support keywords, citation, index, content, etc. All
these features make the TEX file a very special doc-
ument —special in the sense that one can extract
‘feature words’ from the document relatively easily.

Specifically, words in the index, abstract, sec-
tion headings, and emphasized words in the docu-
ment body are words which we can call feature words
of the document. So for such TEX files, these feature
words can be extracted, and submitted along with
the TEX file to the journal’s website.

Now, suppose we have available a collection of
such TEX files for a year. Then from all the fea-
ture words associated with the TEX files, a program
can collect feature words, understand which word
is from which group and make groups of these doc-

uments based on clustering techniques (http://en.

wikipedia.org/wiki/Data_clustering).

When users access the particular year of the
journal, they can also see the overall topics easily,
and a large set of keywords to help navigate through
the articles. Even though authors provide keywords
now, they usually merely highlight the topic or main
theme of the article. Here we are considering more
feature words from the document.

If a user asks for some particular keyword, since
all the articles are already grouped according to their
topics, a search program can show the user corre-
sponding articles, by looking at the feature word
data. Thus, searches can be faster and better when
TEX documents are available.

Query
User = Journal website = Specific paper

3 Why TEX files and not PDF in general?

1. PDF files are rather heavy in size, while TEX
files are light.

2. One can collect feature words when the file is in
TEX format. TEX files are plain text, so rules
to process them are fairly easy to design. For
instance, we can find boldface words in the TEX
file with the rule ‘Search for the pattern '{\bf '
and save words until the matching }. Another
example: ‘lgnore words starting with \’. Ulti-
mately we can collect the actual content of the
document. Once collection is over, we do not
need to process the TEX file again.

3. Text extracted from PDF files often doesn’t un-
derstand ‘fi’ or ‘ff’ ligatures properly; moreover,
Greek letters «, ,... are not understood by
present text extractors.

4. For figures, text extractors typically find ASCII
codes instead of text; many times we have ob-
served garbage when a figure is present in the
text file.

5. Submission of the feature word file along with
the PDF file is possible. In fact, each PDF
file can be represented by the collection of fea-
ture words for that file. When a user makes
a query, instead of searching in the entire PDF
file, searching can be done in only these key-
word collections, which would be considerably
faster and produce more relevant results.

480 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

4 Why TgX files and not other markup?

Consider HTML files: for line breaks, paragraphs,
even for extra space, explicit commands are required,
which makes the source full of commands which do
not hold any information with respect to the content
of the article.

On the other hand, if we look at a typical TEX
file, it uses fewer formatting commands in compari-
son to an HTML file. For example, paragraphs are
indicated simply by blank lines. Thus, there is less
disturbance when extracting text from the source.

5 User wishes

Suppose a user wants to search for a general concept
in a repository. This would usually require a full text
search, which is time-consuming. To speed up the
search, what if the documents were already clustered
by subject or concepts?

If we can classify documents beforehand, the
search process could be more like this:

e Do we have the query results already saved? If
so, return them.

e If not, the query is made against the ‘cluster
representatives’, described below, to return the
appropriate documents.

6 Challenges

This leads to the question of how to form such con-
cepts or clusters beforehand, without knowing the
query. How should such clusters be represented, and
how do we find the representatives?

In a document source file, the author highlights
words with additional, perhaps invisible, markup.
These words presumably help to represent the doc-
ument. How do we capture these representatives?

From a PDF file, text extraction is not simple,
as we have seen. Another common format, RTF (rich
text format), is even less straightforward.

HTML format is somewhat better, although the
additional commands mentioned above complicate
the job.

Data mining: Role of TEX files

There are many commands with which the TEX
compiler collects important information from the
TEX file to highlight in the output file. Some well-
known examples:

e For emphasis, M TEX uses commands such as
{\bf ...}, \textbf{...}. So we can identify
emphasized words fairly easily.

e To add a word to an index: \index{word}.

e For section headings: \section{...}.

So we are assuming that the (IM)TEX compiler
understands that some words are to be highlighted
for some reason. We are interested in these words
given some special importance by the author. Thus,
the general picture looks like this:

TEX

| word extractor | compiler

Y

| file of feature words |

Suppose there is a file of 2000 words, out of
which we found say 300 words that are special words.
Clearly we can increase speed of searches.

7 Looking ahead

We can cluster documents based on their feature
words. For example, we might try this rule:

If documents have more than 70% of the fea-
ture words in common, group them together.

Now clusters will be defined according to their
common feature words, 70% in this case. The re-
maining 30% of words for each document in the clus-
ter can be a secondary representative of the cluster.

To handle a query, we can search in the pri-
mary representation of the clusters and if not found,
search in secondary representations. This will make
our search even faster.

Journals can provide this facility to their users,
and it would be useful for other areas where TEX
files are in use.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 481

Abstracts

Editor’s mote: Many of the conference presenta-

tions are available at http://www.river-valley.

tv/conferences/tug2008 in video form, thanks to
Kaveh Bazargan and River Valley Technologies.

— — % — —

MathTran and TEX as a web service
Jonathan Fine

In 2006/7 1 developed and set up the public MathTran
web service www.mathtran.org. This was done with fund-
ing from JISC and the Open University. It provides
translation of TEX-notation formulas into high-quality
bitmaps. In April 2008 it served 48,000 images a day for
a growing range of sites. After tuning, the server could
provide about 2 million images a day. It takes about 10
milliseconds to process a small formula.

MathTran images contain rich metadata, including
the TEX source for the image and the dvi and log outputs
due to that source. This makes it straightforward to
edit and resize such images, or convert them to another
format, such as SVG or PostScript.

MathTran, used with JavaScript, makes it consid-
erably easier to put mathematics on a web page. In
particular, the author of the page does not need to in-
stall any special software, and does not have to store
thousands of image files.

The MathTran project is now focussed on the au-
thoring of mathematical content. It has produced a
prototype instant preview document editor. Funded by
the 2008 Google Summer of Code, Christoph Hafemeister
is developing JavaScript to provide autocompletion for
commands and analysis of TEX errors, all integrated with
an online help system embedded in the web page. Sepa-
rate work is focussed on developing MathTran plugins
for WYSIWYG editor web-page components.

This talk will present progress and prospects. It
will also discuss some of the broader implications for the
TEX community and software, such as

e People using TEX without installing TEX on their
machine.

Help components for web pages.

Integration with third-party products.

Standards for TEX-notation mathematics.
Learning and teaching TEX.

Why we need BTEX3
Jonathan Fine

The ATEX3 project started in 1992. Since then, much
has changed. XML has replaced SGML and along with
X/HTML has become the dominant markup language.
CSS has replaced explicit style attributes in HTML pages,
and is now a widely understood and used language for
specifying design. Internet access is considerably more
widespread, the web has gone from 1.0 to 2.0, Microsoft
has replaced IBM, Linux went from nothing in 1991 to an

open-source standard, and Google is on track to replace
Microsoft.

In 1997 the B'TEX3 project said that KTEX3 would
provide:

e A new input document syntax, that aligns with
SGML/XML.

e A new class file interface, that aligns with
SGML/XML.

e A new style-designer interface that can work with a
visually-oriented, menu-driven specification system.

e An effective interactive help system for document
authors.

o Thoroughly documented and modular source code.

These goals are still worth achieving. This talk will focus
on some recent progress, and in particular:

Use of key-value syntax within tags.
Separation of parsing from processing.
An improved development environment.
On-line interactive help systems.

LuaTgX, MPlib, and random punk
Hans Hagen

We use new LuaTgX and MPlib features to generate
random characters from Donald Knuth’s punk font. This
was the ‘surprise’ talk on the TUG’08 program. The full
paper will appear in a future issue of MAPS.

Image handling in LuaTgX
Hartmut Henkel

The Lua language allows for defining new variable types,
and LuaTgEX uses this concept for types like ‘node’ and
‘font’. In this talk an image library as part of the LuaTEX
engine is presented, built around a new ‘image’ type, giv-
ing extended image handling and embedding capabilities.
The image primitives inherited from pdfTEX are still fully
functional for compatibility.

First the process of image embedding and its limi-
tations using the pdfTEX primitives is described. Then,
after a short introduction about Lua libraries, the ‘image’
type of LuaTgX is presented together with the set of
new Lua functions for image handling, and their use is
illustrated by examples. As work is still ongoing, possible
future extensions are discussed as well.

LuaTgEX: what has been done, and
what will be done
Taco Hoekwater

At TUG 2007 in San Diego, the first beta version of
LuaTEX was presented. This year the team presents a
version where significant parts of the TEX-Lua API are
stable. This talk will give an overview of the components
that make up LuaTEX: what libraries do we have and
what callbacks are available. The team has some ideas
about the next stages of development and these will be
presented as well.

482 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

The galley Module or: How I Learned to Stop
Worrying and Love the Whatsit
Morten Hggholm

TEX has a well-deserved good reputation for its line break-
ing algorithm, which has found its way into other software
over the years. When it comes to inter-paragraph ma-
terial such as penalties, skips and whatsits, things start
getting murky as TEX provides little help in this area,
especially on the main vertical list where most of the
action is.

This article describes the galley module which seeks
to control line breaking as well as taking care of inter-
paragraph material being added at the right time. In
other words, galley can assist packages such as breqgn,
whose goal is to construct paragraph shapes on the fly
while taking current ones into account as well as ensuring
the output routine doesn’t get tricked by penalties, skips
and whatsits appearing in places where they could allow
breakpoints where none are intended.

Minion Math: The design of a new
math font family
Johannes Kiister

“Minion Math” is a set of mathematical fonts I have
developed over the past 6 years. Designed as an add-on
package to Adobe’s Minion Pro font family, it consists of
20 OpenType fonts (4 weights, times 5 optical sizes). In
future releases it will cover the complete Unicode math
symbols, and more.

In the design I tried to remove constraints and to
avoid flaws and shortcomings of other math fonts, with
the aim of creating the most comprehensive and versatile
set of math fonts to date.

Here I present the main design principles of Minion
Math, and the most important design decisions I took. I
will show samples of the fonts and will compare the fonts
to other math fonts as well.

Trademark attribution: Minion is either a trade-
mark or registered trademark of Adobe Systems Incor-
porated in the United States and/or other countries and
used under license.

Multiple simultaneous galleys:
A simpler model for electronic documents
Blanca Mancilla, John Plaice, Toby Rahilly

We present a general model for electronic documents
supporting parallel containers of content, tied together
through link components. This model is usable for a wide
range of documents, including simple textual documents
with footnotes and floats, complex critical editions with
multiple levels of footnotes and critical apparatus, maps
with multiple layers of visual presentation, and music
scores.

This model is inspired from the C++ Standard Tem-
plate Library, whose basis is that Containers + Iterators
+ Algorithms = Programs. In our approach, the ‘iter-
ators’ are pointers into the parallel containers, keeping
track of callouts for notes, floats, and parallel links.

Abstracts

The data structures required for this model are
remarkably simple, and will allow the rapid development
of many different kinds of algorithms.

Windows of opportunity: A (biased) personal
history of two decades of BTEX development —
Are there lessons to be learned?

Frank Mittelbach

Looking back at twenty-odd years involvement in ETEX
development and maintenance the author highlights the
(in his opinion) most important milestones and pitfalls.

e What are significant events that came at the right
moment?

e Which important events came at the wrong mo-
ment?

e What were the biggest failures and why?

From this data the article attempts to draw conclusions
as to how the future of ETEX could be shaped in a
way beneficial to everybody involved and what needs to
happen to make this possible.

A pragmatic toolchain: TEX and friends and
friends of friends
Steve Peter

In this talk, we present the toolchain used to produce
the award-winning Pragmatic Bookshelf titles (http://
www.pragprog.com) and examine some of the pleasures
and pitfalls encountered using TEX, XML, XSLT, Ruby
and other open technologies.

Parallel typesetting
Toby Rahilly, John Plaice, Blanca Mancilla

We present the general mechanism by which logical con-
tent, arranged in multiple interacting containers, can
be typeset into a set of visual substrates. The overall
algorithm is iterative, with the successive iterations re-
fining a multidimensional context that parameterises the
behavior of the algorithm.

Each iteration consists of three parts. First, each
visual substrate is informed which parts of which logical
containers are to be placed thereon. Second, in parallel,
the content placed in the substrates is typeset. Third, the
resulting layout in each substrate is assessed for goodness,
thereby resulting in the refinement to the overall context.

In the talk, we will present the theory and the
practice behind this algorithm.

Three typefaces for mathematics
Daniel Rhatigan

This paper examines the issues involved in the design of
typefaces for mathematics. After a brief discussion of
some of the typographic and technical requirements of
maths composition, three case studies in the development
of maths types are presented: Times 4-line Mathematics
Series 569, a complement to the Times New Roman text
types as set with Monotype equipment; American Math-
ematical Society Euler, an experimental design intended

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 483

Abstracts

to contrast against non-mathematical typefaces set with
TEX; and Cambria Math, designed in concert with a new
text face to take advantage of new Microsoft solutions
for screen display and maths composition.

In all three cases, the typefaces were created to show
the capabilities of new technological solutions for setting
maths. The technical advances inherent in each font
are shown to be as central to its function as its visual
characteristics.

By looking at each typeface and technology in turn,
and then comparing and contrasting the issues that are
addressed in each case, it becomes apparent that even
though certain challenges are overcome with technical
advances, the need to consider the specific behaviours of
type in a maths setting remains constant.

See http://www.ultrasparky.org/school for the
complete paper and other typographical items.

Medical pedigrees with TEX and PSTricks:
New advances and challenges
Boris Veytsman, Leila Akhmadeeva

A medical pedigree is an important tool for researchers,
clinicians, students and patients. It helps to diagnose
many hereditary diseases, estimate risks for family mem-
bers, etc. Recently we reported a comprehensive package
for automatic pedigree drawing. Since then we have

extended the algorithm for a number of complex cases,
including correct drawing of consanguinic relationships,
twins and many others.

In this talk we review the facilities of the current ver-
sion of the program and the new challenges in computer-
aided drawing of medical pedigrees.

We try to make the talk interesting to TEXnicians
by discussing the experience of design a TEX-based ap-
plication working in a “real world”.

Observations of a TEXnician for hire
Boris Veytsman

Several years ago the author was tempted by extremely
cheap rates for TUGboat advertisements, and declared
urbi et orbi he was a TEX consultant. This audacious
step led to many interesting experiences. Some results of
this work were published on CTAN and listed at http://
borisv.lk.net/latex.html (the list includes both com-
missioned packages and the ones I wrote for my own
purposes).

In this talk I report on my past projects, big and
small, and discuss the lessons learned from my journeys
in the fascinating world of publishers, editors and authors.
I describe writing book and journal styles, communica-
tion with customers and other issues relevant for TEX
consulting.

TUG
Institutional
Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc.,
Midland Park, New Jersey

Banca d’Italia,
Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario, Canada

CSTUG,
Praha, Czech Republic

Florida State University,

School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mezico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

Moravian College,

Department of Mathematics and
Computer Science,

Bethlehem, Pennsylvania

MOSEK ApS,
Copenhagen, Denmark

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

Université Laval,
Ste-Foy, Québec, Canada

Universiti Tun Hussein

Onn Malaysia,

Pusat Teknologi Maklumat,
Batu Pahat, Johor, Malaysia

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashuwille, Tennessee

484 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

TUGDboat, Volume 29 (2008), No. 3

485

Calendar

2008 2009

Sep 16-19 ACM Symposium on Document Jan 8-10 College Book Art Association
Engineering, Sao Paolo, Brazil. Biennial Conference, “Art, Fact, and
www.documentengineering.org Artifact: The Book in Time and

Sep 17-21 Association Typographique Internationale Place”, University of Iowa Center
(ATypl) annual conference, for the Book, Iowa City, lowa.
“The Old - The New”, St. Petersburg, uicb.grad.uiowa.edu/uicb-cbaa-conference
Russia. www.atypi.org Apr 29— BachoTEX 2009: 17" BachoTEX

Oct 4-5 Oak Knoll Fest XV, “Celebrating a May 3 Conference, Bachotek, Poland.
‘Hot Metal Man’”, honoring For information, visit
Henry Morris and his 50th anniversary www.gust.org.pl/BachoTeX/2009
in printing, New Castle, Delaware. May 15— “Marking Time”: A traveling juried
www.oakknoll.com/fest Aug 15 exhibition of books by members

Oct 6 Journée GUTenberg & Assemblée of the Guild of Book Workers.
générale, “XML et TEX”, Minnesota Center for Book Arts,
Centre FIAP, Paris, France. Minneapolis. Sites and dates are listed at
WWW.gutenberg.eu.org/manifestations palimpsest.stanford.edu/byorg/gbw

Oct 10-12 American Printing History Association Jun 22—-25 Digital Humanities 2009, Association of
2008 annual conference, “Saving the Literary and Linguistic Computing /
History of Printing”, Grolier Club Association for Computers and the
and Columbia University, New York, Humanities, University of Maryland.
New York. www.printinghistory.org www.mith2.umd.edu/dh09

Oct 16—18 Guild of Book Workers, Jun 23-27 SHARP 2009, “Tradition & Innovation:
Standards of Excellence The State of Book History”, Society for
Annual Seminar, Toronto, Ontario. the History of Authorship, Reading &
palimpsest.stanford.edu/byorg/gbw Publishing, Toronto, Ontario.

Oct 18 GulT meeting 2008 (Gruppo www . sharpweb. org
utilizzatori Italiani di TEX), Pisa, Italy. Jun 24-27 DANTE: Exhibitor at LinuxTag, Berlin,
WWw.guit.sssup.it/guitmeeting/2008 Germany. www.dante.de

Oct 18 NTG 42°¢ meeting, Dordrecht, Netherlands.
www.ntg.nl/bijeen/bijeend2.html TUG 2009

Oct 21 “Glasgow 501: Out of Print”, an University of Notre Dame, Notre Dame, Indiana
illustrated talk at St Bride Library, Jul 28—31 The 30" annual meeting of the TEX
London, England. stbride.org/events Users Group. www.tug.org/tug2009

Oct 25-27 The Sixth International Conference
on the Book, Catholic University Aug 3—-7 SIGGRAPH 2009, “Network Your
of America, Washington, DC. Senses”, New Orleans, Louisiana.
b08.cg-conference.com www.siggraph.org/s2009

Nov 7 “Letterpress: a celebration”, conference Aug 24-28 FEuroTgX 2009 and grd ConTEXt meeting,
at St Bride Library, London, England. The Hague, The Netherlands.
stbride.org/events www.ntg.nl/EuroTeX2009

Dec 8-10 XML-in-Practice 2008, Arlington, Virginia.

www.idealliance.org/xm12008

Status as of 15 September 2008

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at www.tug.org/calendar.

University of Notre Dame AN
Notre Dame, IN 46556 USA o

July 28-31, 2009

Sponsored by the TgX Users Group,
Notre Dame Journal of Formal Logic,
and the University of Notre Dame

USERS
..... GROUP

http://tug.org/tug2009

TUGDboat, Volume 29 (2008), No. 3

487

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html.

Khalighi, Vafa

4/34 Sorrell Street

Parramatta NSW 2150 / Australia

+006 1420969496

Email: m.aicart (at) menta.net

Web: http://www.vafakhalighi.com
I am a professional and experienced INTEXacker/
IATEXnician and have been using TEX and mates for
10 years. I typeset English, Persian, Arabic and
mathematics typesetting in those languages as well as
drawing any diagrams (mathematics diagrams, physics
diagrams, game diagrams, musical notes and chemistry
diagrams). My favourite language for drawing is
PSTricks, however I am also familar with xy-pic and
MetaPost.

Martinez, Merce Aicart

Tarragona 102 4° 2¢

08015 Barcelona, Spain

+34 932267827

Email: m.aicart (at) menta.net

Web: http://www.edilatex.com
We provide, at reasonable low cost, TEX and IATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Peter, Steve

310 Hana Road

Edison, NJ 08817

+1 732 287-5392

Email: speter (at) dandy.net
Specializing in foreign language, linguistic, and
technical typesetting using TEX, IATEX, and ConTEXt,
I have typeset books for Oxford University Press,
Routledge, and Kluwer, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. I have
extensive experience in editing, proofreading, and

writing documentation. I also tweak and design fonts.
I have an MA in Linguistics from Harvard University
and live in the New York metro area.

Shanmugam, R.
No.38/1 (New No.65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam (at) yahoo.com
As a Consultant I provide consultation, technical
training, and full service support to the individuals,
authors, corporates, typesetters, publishers,
organizations, institutions, etc. and I also
support to leading BPO/KPO/ITES/Publishing
companies in implementing latest technologies
with high level of automation in the field
of Typesetting/Prepress/Composition,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc. I have sound knowledge in creating
Macros/Styles/Templates/Scripts and Conversions
with automation using latest softwares in industry.

Sievers, Martin

Max-Planck-Str. 6-8, 54296 Trier, Germany

+1 49 651 81009-780

Email: Martin (at) TeXBeratung.com

Web: http://www.TeXBeratung.com
As a mathematician I offer TEX and IATEX services
and consulting for the whole academic sector and
everybody looking for a high-quality output. From
setting up entire book projects to last-minute help,
from creating citation styles to typesetting your math,
tables or graphics — just contact me with information
on your project.

Veytsman, Boris

46871 Antioch PL

Sterling, VA 20164

+1 703 915-2406

Email: borisv (at) lk.net

Web: http://borisv.lk.net
TEX and IATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom IATEX packages, conversions and
much more. I have about twelve years of experience in
TEX and twenty-five years of experience in teaching &
training. I have authored several packages on CTAN
and published papers in TEX related journals.

488

2009 TEX Users Group Election

Barbara Beeton
for the Elections Committee

The positions of TUG President and of eight mem-
bers of the Board of Directors will be open as of the
2009 Annual Meeting, which will be held in July
2009 at the University of Notre Dame, Notre Dame,
Indiana.

The current President, Karl Berry, has stated his
willingness to stand for re-election. The directors whose
terms will expire in 2009 are: Steve Grathwohl, Jim
Hefferon, Klaus Hoppner, Dick Koch, Arthur Ogawa,
Steve Peter, and Dave Walden. One additional direc-
tor position is currently unoccupied. Continuing direc-
tors, with terms ending in 2011, are: Barbara Beeton,
Jon Breitenbucher, Kaja Christiansen, Susan DeMeritt,
Ross Moore, Cheryl Ponchin, and Philip Taylor.

The election to choose the new President and
Board members will be held in Spring of 2009. Nom-
inations for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG Presi-
dent/to the Board by submitting a nomination pe-
tition in accordance with the TUG Election Proce-
dures. Election ... shall be by written mail ballot
of the entire membership, carried out in accordance
with those same Procedures.” The term of President
is two years.

The name of any member may be placed in
nomination for election to one of the open offices by
submission of a petition, signed by two other mem-
bers in good standing, to the TUG office at least
two weeks (14 days) prior to the mailing of ballots.
(A candidate’s membership dues for 2009 will be ex-
pected to be paid by the nomination deadline.) The
term of a member of the TUG Board is four years.

A nomination form follows this announcement;
forms may also be obtained from the TUG office, or
via http://tug.org/election.

Along with a nomination form, each candidate must
supply a passport-size photograph, a short biography,
and a statement of intent to be included with the bal-
lot; the biography and statement of intent together may
not exceed 400 words. The deadline for receipt at the
TUG office of nomination forms and ballot information
is 1 February 2009.

Ballots will be mailed to all members within 30 days
after the close of nominations. Marked ballots must be
returned no more than six (6) weeks following the mail-
ing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
part of the TUG organization. The results of the election
should be available by early June, and will be announced
in a future issue of TUGboat as well as through various
TEX-related electronic lists.

TUGDboat, Volume 29 (2008), No. 3

2009 TUG Election— Nomination Form

Only TUG members whose dues have been paid for 2009
will be eligible to participate in the election. The sig-
natures of two (2) members in good standing at the
time they sign the nomination form are required in ad-
dition to that of the nominee. Type or print names
clearly, using the name by which you are known to TUG.
Names that cannot be identified from the TUG member-
ship records will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

0 TUG President

0 Member of the TUG Board of Directors
for a term beginning with the 2009 Annual Meeting,
July 2009.

Members supporting this nomination:

1.

(please print)

(signature) (date)

(please print)

(signature) (date)

Return this nomination form to the TUG office (FAXed
forms will be accepted). Nomination forms and all re-
quired supplementary material (photograph, biography
and personal statement for inclusion on the ballot) must
be received in the TUG office no later than 1 February
2009." It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
incomplete applications be accepted.

O nomination form
O photograph
O biography/personal statement

TEX Users Group FAX: +1 206 203-3960
Nominations for 2009 Election
P.O.Box 2311
Portland, OR 97208-2311
U.S.A.
1 Supplementary material may be sent separately from

the form, and supporting signatures need not all appear on
one form.

lume 29, Number 3— TUG 2008 Conference Proceedings 2008

TUGBOAT Volume 29 (2008), No. 3
Table of Contents (ordered by difficulty)

Introductory
418 Dave Crossland / Why didn’t METAFONT catch on?
* personality types, METAFONT’s interface, and font vs. typeface design
352 Peter Flynn / TUG 2008: TEX’s 30th birthday
* general review of the TUG 2008 conference
444 Manjusha Joshi / Smart ways of drawing PSTricks figures
* using GUI programs with PSTricks for geometric figures
362 Jonathan Kew / TEXworks: Lowering the barrier to entry
* report on a new TEX front end focused on ease-of-use and simplicity
Intermediate
380 Taco Hoekwater / MetaPost developments: MPlib project report
« translation of MetaPost functionality to a re-usable library
480 Manjusha Joshi / Data mining: Role of TEX files
* extracting feature words from TEX files to improve searching
356 Niall Mansfield / How to develop your own document class— our experience
* practical techniques for creating custom classes and styles
376 Joe MC€Cool / A newbie’s experiences with Lilypond, Lilypond-book, IATEX and Perl
* producing nicely typeset traditional Irish music
421 Karel Piska / Creating cuneiform fonts with MetaTypel and FontForge
 development process and results for a cuneiform font collection
413 Chris Rowley / Vistas for TEX: liberate the typography! (Part I)
* extracting core TEX typesetting functionality for reuse
372 Joachim Schrod / Xindy revisited: Multi-lingual index creation for the UTF-8 age
* introduction to and rationale for xindy’s main features
Intermediate Plus
383 Hans Hagen / The TEX—Lua mix
* introduction to the combination of TEX and the embedded scripting language Lua
365 Jéréme Laurens / Direct and reverse synchronization with SyncTEX
* synchronizing between TEX input and output via modifying the base engine
454 Mojca Miklavec and Arthur Reutenauer / Putting the Cork back in the bottle— Improving Unicode support
in TEX
* recasting hyphenation patterns to support both UTF-8 and 8-bit encodings
464 Ross Moore / Advanced features for publishing mathematics, in PDF and on the Web
* using PDF and JavaScript to improve mathematics presentation and navigation
392 Krisztian Pécza, Mihaly Biczé and Zoltan Porkolab / docx2tex: Word 2007 to TEX
¢ free XML-based conversion software from Word 2007 (OOXML) to TEX
435 Ameer Sherif and Hossam Fahmy / Meta-designing parameterized Arabic fonts for AlQalam
» using METAFONT to render Arabic with calligrapher-level quality
426 Ulrik Vieth / Do we need a ‘Cork’ math font encoding?
* review of OpenType and Unicode math features, subsuming 8-bit encodings

Advanced

462 Hans Hagen / The LuaTEX way: \framed
* generalizing paragraph manipulation in LuaTEX
446 Hans Hagen / The MetaPost library and LuaTEX
* using the new standalone MetaPost library from LuaTEX and ConTEXt
401 Jean-Michel Hufflen / Languages for bibliography styles
* language comparison of bst, nbst, Perl, DSSSL, XSLT, etc.
474 John Plaice, Blanca Mancilla and Chris Rowley / Multidimensional text
* a theoretical underpinning of documents as generalized tuples
458 Stanislav Jan Sarman / Writing Gregg Shorthand with METAFONT and IATEX
* an online system converting English text to Gregg shorthand
Reports and notices
350 TUG 2008 conference information
351 TUG 2008 conference program
482 Abstracts (Fine, Hagen, Henkel, Hoekwater, Hogholm, Kiister, Mancilla et al., Mittelbach, Peter,
Rahilly et al., Rhatigan, Veytsman & Akhmadeeva, Veytsman)
484 Institutional members
485 Calendar
486 TUG 2009 announcement
487 TEX consulting and production services
488 TUG 2009 election

TUG 2008

IATEX
Software & Tools

Dreamboat

Fonts

Graphics

Philology

Macros

Electronic Documents

Abstracts

News

Advertisements

TUG Business

350
352

356

362
365
372
380
383
376
392
401

413

418
421
426
435

444
446

454

458
462

464
474
480

482

485
486

487

484
488

TUGBOAT

Volume 29, Number 3 / 2008
TUG 2008 Conference Proceedings

Conference program, delegates, and sponsors
Peter Flynn / TUG 2008: TEX’s 30" birthday

Niall Mansfield / How to develop your own document class — our experience

Jonathan Kew / TEXworks: Lowering the barrier to entry

Jérome Laurens / Direct and reverse synchronization with SyncTEX

Joachim Schrod / Xindy revisited: Multi-lingual index creation for the UTF-8 age
Taco Hoekwater / MetaPost developments: MPlib project report

Hans Hagen / The TEX-Lua mix

Joe MCCool / A newbie’s experiences with Lilypond, Lilypond-book, IATEX and Perl
Krisztian Pécza, Mihaly Biczé and Zoltan Porkoldb / docx2tex: Word 2007 to TEX
Jean-Michel Hufflen / Languages for bibliography styles

Chris Rowley / Vistas for TEX: liberate the typography! (Part I)

Dave Crossland / Why didn’t METAFONT catch on?
Karel Piska / Creating cuneiform fonts with MetaTypel and FontForge
Ulrik Vieth / Do we need a ‘Cork’ math font encoding?

Ameer Sherif and Hossam Fahmy / Meta-designing parameterized Arabic fonts
for AlQalam

Manjusha Joshi / Smart ways of drawing PSTricks figures
Hans Hagen / The MetaPost library and LuaTgX

Mojca Miklavec and Arthur Reutenauer / Putting the Cork back in the bottle —
Improving Unicode support in TEX

Stanislav Jan Sarman / Writing Gregg Shorthand with METAFONT and IATEX
Hans Hagen / The LuaTEX way: \framed

Ross Moore / Advanced features for publishing mathematics, in PDF and on the Web
John Plaice, Blanca Mancilla and Chris Rowley / Multidimensional text
Manjusha Joshi / Data mining: Role of TEX files

Abstracts (Fine, Hagen, Henkel, Hoekwater, Hagholm, Kiister,
Mancilla et al., Mittelbach, Peter, Rahilly et al., Rhatigan,
Veytsman & Akhmadeeva, Veytsman)

Calendar
TUG 2009 announcement

TEX consulting and production services

TUG institutional members
TUG 2009 election

TUGBOAT Volume 29 (2008), No. 3
Table of Contents (ordered by difficulty)

Introductory
418 Dave Crossland / Why didn’t METAFONT catch on?
* personality types, METAFONT’s interface, and font vs. typeface design

352 Peter Flynn / TUG 2008: TEX’s 30th birthday
* general review of the TUG 2008 conference
444 Manjusha Joshi / Smart ways of drawing PSTricks figures
* using GUI programs with PSTricks for geometric figures
362 Jonathan Kew / TEXworks: Lowering the barrier to entry
* report on a new TEX front end focused on ease-of-use and simplicity
Intermediate
380 Taco Hoekwater / MetaPost developments: MPlib project report
« translation of MetaPost functionality to a re-usable library
480 Manjusha Joshi / Data mining: Role of TEX files
* extracting feature words from TEX files to improve searching
356 Niall Mansfield / How to develop your own document class— our experience
* practical techniques for creating custom classes and styles
376 Joe MC€Cool / A newbie’s experiences with Lilypond, Lilypond-book, IATEX and Perl
* producing nicely typeset traditional Irish music
421 Karel Piska / Creating cuneiform fonts with MetaTypel and FontForge
* development process and results for a cuneiform font collection
413 Chris Rowley / Vistas for TEX: liberate the typography! (Part I)
* extracting core TEX typesetting functionality for reuse
372 Joachim Schrod / Xindy revisited: Multi-lingual index creation for the UTF-8 age
* introduction to and rationale for xindy’s main features
Intermediate Plus
383 Hans Hagen / The TEX-Lua mix
* introduction to the combination of TEX and the embedded scripting language Lua
365 Jéroéme Laurens / Direct and reverse synchronization with SyncTEX
e synchronizing between TEX input and output via modifying the base engine
454 Mojca Miklavec and Arthur Reutenauer / Putting the Cork back in the bottle—Improving Unicode support
in TEX
* recasting hyphenation patterns to support both UTF-8 and 8-bit encodings
464 Ross Moore / Advanced features for publishing mathematics, in PDF and on the Web
« using PDF and JavaScript to improve mathematics presentation and navigation
392 Krisztian Pécza, Mihaly Biczé and Zoltan Porkolab / docx2tex: Word 2007 to TEX
« free XML-based conversion software from Word 2007 (OOXML) to TEX
435 Ameer Sherif and Hossam Fahmy / Meta-designing parameterized Arabic fonts for AlQalam
» using METAFONT to render Arabic with calligrapher-level quality
426 Ulrik Vieth / Do we need a ‘Cork’ math font encoding?
 review of OpenType and Unicode math features, subsuming 8-bit encodings

Advanced

462 Hans Hagen / The LuaTEX way: \framed
* generalizing paragraph manipulation in LuaTEX
446 Hans Hagen / The MetaPost library and LuaTEX
* using the new standalone MetaPost library from LuaTEX and ConTEXt
401 Jean-Michel Hufflen / Languages for bibliography styles
* language comparison of bst, nbst, Perl, DSSSL, XSLT, etc.
474 John Plaice, Blanca Mancilla and Chris Rowley / Multidimensional text
* a theoretical underpinning of documents as generalized tuples
458 Stanislav Jan Sarman / Writing Gregg Shorthand with METAFONT and IATEX
* an online system converting English text to Gregg shorthand
Reports and notices
350 TUG 2008 conference information
351 TUG 2008 conference program
482 Abstracts (Fine, Hagen, Henkel, Hoekwater, Hogholm, Kiister, Mancilla et al., Mittelbach, Peter,
Rahilly et al., Rhatigan, Veytsman & Akhmadeeva, Veytsman)
484 Institutional members
485 Calendar
486 TUG 2009 announcement
487 TEX consulting and production services
488 TUG 2009 election

