264

Electronic Documents

Wikipublisher: A Web-based system to
make online and print versions of the
same content

John Rankin

Abstract

Web pages and print documents exist as two soli-
tudes: information created as a Web page may print
poorly; information created as a print document
may translate into an unappealing Web page. The
Wikipublisher system lets authors create content on-
line first, as Web pages, and lets readers turn in-
dividual pages or page collections into print docu-
ments. It uses wiki software as a lightweight and
extensible content management system, so any page
can be edited using any Web browser. It then uses
IXTEX as the typesetting engine, thus providing print
output of the highest quality. This paper examines
the reasons for developing Wikipublisher, techniques
and challenges faced in transforming Web content
into print, and some wishes for the future. The
project’s home is www.wikipublisher.org.

1 Web-centred text

Wikipublisher was born of frustration over the gap
between how I wanted to work and the capabilities
of the tools I was using. In discussing this with
like-minded colleagues, we came to the view that by
re-thinking how we created and published informa-
tion, we could be more productive and effective. We
expressed this aspiration as a set of principles which
underpin and inform every aspect of Wikipublisher’s
design:

Online first The World Wide Web enhances our
ability to communicate, so most of our work
ought to appear online first. Creating content
online first makes it instantly and widely ac-
cessible, and encourages linking to other online
resources. Yet most of our authoring tools are
“print first” and turning print documents into
HTML for publishing on the Web is hard to
do well. Too many long documents are sim-
ply posted to the Web as PDF files. The links
in an online document make it easy to navi-
gate, yet print first authoring tools do little to
encourage rich inter-document linking. So the
first requirement is a system with support for
the direct creation and editing of Web pages.

TUGboat, Volume 29 (2008), No. 2

Print still matters If a Web page is worth read-
ing, it is worth printing. The longer and richer
the content, the more likely the reader is to
print it. We may skim read a 50 page report
online, but if we want to study it, we print it.
If we want to deliver a printed and bound ver-
sion, it needs to look good and be laid out for
optimal readability. Yet few Web site designs
appear to care what the printed form of the
site looks like. Most appear to be designed as-
suming all the information on the site can be
chunked into short, easily digested pieces. As
readers, experience has taught us to have low
expectations of the printed Web page.

One authoritative source The most up-to-date
version is what appears on the Web page; the
typeset PDF is a snapshot taken at a point in
time. This means the printed page can never be
newer than the Web page. This is in direct con-
trast to most publishing systems, where there
are often 3 (and sometimes more) versions: the
word processing or other source, a PDF snap-
shot of the word processing source, and a col-
lection of Web pages generated (perhaps with
edits) from the source. The more frequently the
content changes and the more authors involved
in creating it, the more important it becomes
to have one source.

Wikipublisher is designed for people who write long,
complex, richly linked documents, who wish to pub-
lish these in an accessible form on the Web and in
print. The reader presses a “Typeset” button on the
Web page and the system returns a PDF. By us-
ing BTEX as the typesetting engine, Wikipublisher
produces printed output of the highest quality.

2 We built it because ...

My company, Affinity Limited, is a small IT manage-
ment consultancy. Like most professional services
firms, our document production systems, based on
Adobe FrameMaker, were geared to efficiently pro-
ducing print documents such as letters, proposals,
short papers, and reports. Our Web presence was
essentially an online brochure—who we are, what
we do, and how to contact us. Communication with
clients primarily used e-mail to send document at-
tachments back and forth. Several years ago, three
things happened:

e we decided to make our work processes Web-
centric wherever possible;

e open source wiki software became widely avail-
able, easy to install, and easy to use;

TUGboat, Volume 29 (2008), No. 2

e Adobe decided not to offer a Mac OS X version
of FrameMaker.

Apple’s switch to Intel processors meant that OS 9
was dead and with it FrameMaker on Mac. Either
we had to switch to Windows or find a replacement.
We concluded that the least-worst alternative was
to use LyX as a front-end to XTEX, and while this
would meet our print needs, it didn’t really advance
our aim to be more Web-centric. We had received
very positive comments from clients when we intro-
duced wiki software for some of our work. For ex-
ample, when writing up interview notes, it is much
easier and faster for everyone if we send a link to a
Web page of the write-up, which the interviewee can
edit using a Web browser. Wikis use simple textual
markup to describe a page, which gets translated
into HTML when the page is displayed. Each page
carries an Edit link, which when clicked displays the
content of the page as an editable Web form.

However, we have to deliver the interview notes
as part of a printed and bound report, typically as an
appendix. We experimented with “printable views”
of the Web pages and quickly learnt that while the
quality is good enough for an appendix, HTML plus
CSS (cascading style sheets) produces printed out-
put of a quality far lower than that produced by
software such as FrameMaker or XTEX. We also felt
that it ought to be a lot easier to bundle up 10 in-
terview Web pages into a single printed document.
So we had succeeded in improving the doing part
of the process, but at the cost of lowering the final
output quality, and we still needed a solution for the
main body of our reports. We concluded that if we
were to make further advances in this direction, we
needed a way to turn a Web page or page collection
into a print document of at least the same quality
as one expects from a modern word processor, with
minimal manual intervention.

We decided to investigate the possibility of cre-
ating a report as a set of linked wiki Web pages
and using some form of typesetting engine to re-
purpose this into a printable document, complete
with cover page, table of contents, running head-
ers and footers, and other print-oriented structures.
With the help of a research and development grant
from New Zealand’s Foundation for Research, Sci-
ence and Technology (FRST), we teamed up with
the School of Mathematics, Statistics and Comput-
ing Sciences at Victoria University of Wellington to
carry out the project. The grant allowed us to hire
a graduate student on a part-time basis for just over
a year, while he worked on a MSc. After a further
round of enhancements and bug fixes, we can now
produce letters, articles, reports, presentations and

265

books, including images, tables, equations, citations
and bibliographies—in other words, it has become
a fully-fledged publishing system for Web and print
documents. We have released the source code (a
plug-in for the wiki engine and a separate typeset-
ting server) and discovered that a surprising (to us)
number of people find it useful.

3 TgXnical matters

Without TEX, the project would have been imprac-
tical. We considered using XSL-FO (formatting ob-
jects), but our not very scientific assessment found
that at the time, none of the books on FO had been
written using FO. We suspected that somewhere
between the beautiful examples in the books and
typesetting an arbitrary Web page, we would en-
counter impenetrable problems. TEX seemed to us
a low risk and proven approach. Various books and
PDF documents on TEX written with IXTEX gave
us confidence that any problems we might find would
have ready solutions.

3.1 Typesetting becomes a Web service

Wikipublisher works by re-purposing Web pages to
a form of XML designed to describe printed mate-
rial and then transforming the XML into WTEX for
typesetting. It builds on the following open source
projects.

PmWiki We chose the PmWiki engine! because it
is markup agnostic—that is, the administra-
tor can control the input markup for structur-
ing the content and the output markup the en-
gine produces. The wiki continues to gener-
ate HTML for normal browsing, but when the
reader requests a PDF document, we invoke a
Wikipublisher plug-in which causes the wiki en-
gine to generate Wikibook XML instead. The
wiki’s design means we can do this without any
changes to the original source code.

tbook The tbook project? is an XML-based sys-
tem designed to allow an author to create doc-
uments in XML and then transform these into
a variety of different formats, including IXTEX.
The original tbook system did not accommo-
date all the markup available in PmWiki, so
we have extended the XML syntax quite signif-
icantly. We call the revised DTD (document
type definition) “Wikibook” —any valid tbook
XML document is valid Wikibook, but Wiki-
book supports constructs not found in tbook.

1
2

www.pmwiki.org
sourceforge.net/projects/tbookdtd

266

When a reader issues a request for a PDF, this goes
to the Wikibook server, which asks the PmWiki
server to generate the requested page(s) as Wiki-
book XML. The Wikibook server transforms the
XML into I¥TEX and thence into a PDF, which it
returns to the reader. All an author or reader needs
is a Web browser and PDF viewer; everything else
happens on a Web server.

For sites requiring equations, we provide a plug-
in for PmWiki that lets authors write TEX equations
into a page, including automatically-generated equa-
tion numbers if required. On the Web, each equa-
tion is transformed into an image; in the PDF, the
equations are just part of the document. We use the
open source latexrender php library for this.

3.2 Headings determine structure

Authors generally use heading markup to structure
their pages. In HTML, there are no controls over
how headings are used. Wikipublisher assumes that
a page has sections, subsections and subsubsections;
whatever 3 kinds of heading it finds on the page, it
maps into this structure. In other words, it trans-
forms the absolute HTML and wiki heading levels
into relative section levels. This means different
headings on different pages can be rendered the same
way in print. PageA might start with <h2> while
PageB starts with <h3>: both become sections. It
also means the same heading might be rendered dif-
ferently in different print contexts. If a page is being
typeset as part of a list of pages, each page becomes
a section, so the first heading on the page now be-
comes a subsection.

In other words, different authors can use differ-
ent heading conventions (or the same author may
use different conventions at different times), and let
Wikipublisher sort it out and produce consistently
laid out print documents. An author can create a
long structured document using multi-level lists, like
this (each item is a separate wiki page):

e Section A
— Subsection A.1
— Subsection A.2
e Section B
— Subsection B.1

— Subsection B.2

And so on. On a page like Subsection A.1, the first
3 heading levels now become subsubsection, para-
graph and subparagraph. A list item can also be
designated as an appendix, which means it and sub-
sequent items are unnumbered.

3 ww. mayer.dail.pipex.com/tex.htm

TUGboat, Volume 29 (2008), No. 2

3.3 Adapt the output on demand

Suppose that some of the readers want output on
US letter paper while others need A4; some have
duplex printers while others do not; some prefer
indented paragraphs while others prefer space be-
tween paragraphs. Perhaps the author wishes to in-
clude a “draft” watermark. Wikipublisher provides
a <meta> XML element with name/value attribute
pairs to control these and other settings. An “op-
tions” button on the typesetting request form lets
the reader control the look of the finished docu-
ment, over-riding the default meta settings. A Cana-
dian reader with a duplex printer and an Australian
reader with a one-sided printer can each request the
output he or she prefers.

The print metadata capability does the simple
things like creating mirrored headers and footers on
odd and even pages for duplex printing, or making
all headings serif. It also does more sophisticated
things; for example, if a reader requests A5 paper, it
not only reduces the font size to compensate for the
shorter line length, it also makes sure any images are
shrunk, if they are too big to fit the smaller page.
Indeed, whatever the page size, it makes sure the
images fit the page.

While many of these print metadata settings
are common to all document classes, such as choos-
ing the fontset or watermark, some are class-specific.
For example, when typesetting a book, the reader
can choose the chapter heading style; when typeset-
ting a letter, the reader can include or omit a return
address; when typesetting an article, the reader can
choose whether or not to number the sections.

3.4 Citations and bibliographies

Because the wiki content is “online first”, we can-
not use any of the traditional bibliography tools like
natbib. The problem we face is that INXTEX bibliogra-
phy tools assume the author writes some variant of
\cite{key} and ETEX works out how to render the
reference and sort the bibliography. On the other
hand, to render a Web page with citations and a
bibliography from wiki markup, the wiki engine has
to solve these and other problems, then Wikipub-
lisher has to tell A TEX that we already know how
to typeset the result. The wiki way to add a new
entry to a bibliography is to cite it, just as the way
to create a new page is to link to it:

o if the cited key exists, the wiki links to that
entry in the page’s bibliography

e otherwise, it links to a ‘“new citation” form —
fill in the form and press Save

TUGboat, Volume 29 (2008), No. 2

The Wikibook XML we generate contains everything
IXTEX needs to know —the keys, the text of the link
(numbered or author—year), the items (labelled) in
the bibliography, sorted in the correct order. All
IXTEX has to do is typeset the data. For example,
the body text might contain:

<cite kind="sic" refid="Smith:2001">see

Smith (2001, p.6)</cite>

The corresponding bibliography entry text might be:

<item id="Smith:2001">Smith, A. 2001.
</item>

In the PDF, we want the <cite> to link to the
<item> and we want the item to print with a hang-
ing indent. To achieve this, we created a new IXTEX
command:

\citesic{see Smith (20017p.6)}{Smith:2001}

and a new kind of list environment for a preformat-
ted, presorted bibliography, containing:

\abibitem{Smith:2001} Smith, A.

The \citesic command uses the \hyperlink com-
mand and \abibitem uses \hypertarget from the
hyperref package. We use a similar approach for
numbered references, except the <item> includes an
attribute style="n" where n is the number of the
reference.

Finally, Wikipublisher invites URL addresses to
break on selected special characters, avoiding ugly
white space in bibliographies (or indeed in regu-
lar text) containing references to Web sites. We
achieve this by substituting <discy kind="x" />in
the URL link text, where x is: hyphen (-), full stop
(.), equals (=), underscore (_), or forward stroke (/);
and generating:

\discretionary{Hx}{x}

This means the hyphenation character starts the line
following the break point, thereby avoiding the am-
biguity of an address line ending in a hyphen, which
could cause a reader to wonder whether the hyphen
is part of the address or was inserted during text
hyphenation.

3.5 Tables

Wikipublisher currently provides support for three
kinds of tables:

e simple tables float, their column widths are de-
termined automatically, and text in the cells
can be left justified, centred, or right justified;
the caption, if there is one, is numbered

e long tables are like simple tables, except that
they do not float and if the first row is headings
(the wiki markup for the HTML <th> tag), this

267

becomes a running header on the second and
subsequent pages

e complex tables can contain any wiki markup
the author deems it necessary to use (including
simple tables); to handle these, we wrap the
cell content in a I4TEX minipage environment,
set all cell text to ragged right, and hope; if
the author supplies percentage cell widths, we
use these, otherwise we make the columns equal
width

Authors are generally used to the fluid nature of
wiki and HTML tables, and tend to assume that
anything a Web browser can handle, the typesetting
engine ought to handle too. By changing HTML at-
tribute values, authors have fine control over table
ruling, shading, colouring, and spacing on a Web
page. There may also be site-wide table styles set in
an external CSS file. Wikipublisher ignores almost
all of these settings, and instead sets what we hope
are reasonable and consistent defaults. In essence, it
takes the structure of the table and ignores the style.
This can be a strength, rather than a weakness—
all the tables in a long document will look similar,
whereas the original Web tables may show a great
deal of stylistic variation.

We are investigating ways to handle rotated ta-
bles, especially long (multi-page) tables. The aspect
ratio of modern computer screens is typically greater
than 4:3 (the screen I am using at the moment is
1.6:1), so cell column widths which look fine through
a Web browser tend to be too narrow on a portrait
A4 page. Ideally, an author could assign a “wide”
class to a table and Wikipublisher would print it ro-
tated 90°, automatically splitting it across several
pages if necessary, with column widths calculated
from the available text height.

4 If we had a magic wand ...

And could make three wishes, what would we like
to improve? Most of the time, “it just works”; once
Wikipublisher is installed and configured, users can
forget it is there until they need it, and when they
need it, they get what they need, although this may
not be precisely what they think they want.

4.1 Colour cite links correctly

I wish we could tell the hyperref package that the
special \citesic{link text}{key} command we
have defined is just a variation on the \cite{key}
command, even though it invokes the \hyperlink
command. At the moment, if you run Wikipub-
lisher with the colorlinks option turned on, cita-
tion links come out in red (linkcolor) instead of
green (citecolor). There is probably a simple way

268

to modify the wikibib.sty file to check whether
colorlinks is on and if so, to use citecolor for
the colour of the generated hyperlink. Or preferably
to define the \citesic command in such a way that
hyperref recognises it as a citation link and colours
it correctly. Any reader thinking “Oh, that’s easy”
might like to contact me. The \citesic command
is defined as follows:

\newcommand\citesic[2]{\hyperlink{#2}{#1}}

4.2 Publish with style

I wish we had a general method for mapping the
wiki’s HTML style information into equivalent INTEX
print structures. Here are some of the things people
do with wiki styles which at the moment do not work
properly in Wikipublisher.

1. Define a style with a light green background,
a dotted dark green border, text aligned right,
with 0.5 em padding, applied to a paragraph.

2. Define styles for text decoration underline and
line-through, even though there is a perfectly
good structural markup to designate inserted,
deleted, and highlighted text.

3. Set up “zebra tables” where alternate rows or
columns are shaded. Combine alternate row
and column stripes to create “hatched tables”.
Define cell ruling and padding.

4. Float text around a table using the table at-
tributes align="1left" or align="right". Ap-
ply the rowspan="n" attribute to a table cell
(although colspan works, rowspan does not).

An author can use wiki markup to define a named
style consisting of any combination of HTML style
attributes, and apply this style to any block, line or
inline piece of text. Wikipublisher correctly handles
styles like text size and colour, background colour,
list item numbering and numbering style, and text
alignment. There is a project awaiting us to an-
alyse all the HTML style attributes, map these to
their BTEX equivalents (where these exist), and sys-
tematically define attribute transformations for any
validly-styled text.

4.3 Typeset any Web page

I wish we could typeset pages from MediaWiki,*
WordPress,” and other Web sites. In principle, if
we can transform wiki markup, we ought to be able
to transform HTML into Wikibook XML and then
on into IATEX. While this is superficially attrac-
tive, there are also some obvious problems. The

4
5

www.mediawiki.org
wordpress.org

TUGboat, Volume 29 (2008), No. 2

HTML syntax makes no provision for semantic ele-
ments such as:

e figure captions

e footnotes

e marginal notes

e citations and references

e chapters, sections, subsections, appendices and
other parts of a book

It also includes the widely used (and meaningless)
<div> and tags. In practice, one would have
to rely on inferring structure from site-specific con-
ventions for how class attributes are used. For ex-
ample, if an image has alt text (as images should),
use that as the caption. However, as more Web sites
become database-driven, rather than using hand-
crafted HTML, we can envisage developing different
handlers (sets of rules) for different kinds of content
management software, controlling the actions of a
general-purpose HTML to Wikibook conversion en-
gine. For example, suppose a university publishes
an online journal in HTML or if TUGboat were to
publish online first. A reader could choose articles
of interest, from several online volumes, and request
these as a single typeset PDF file. Potentially, high
quality “print runs of one” become economic, per-
haps with the ability to use a wider choice of KTEX
document classes than those currently supported.
We plan to seek some research and development
funding to pursue this proposal. Unfortunately for
us, FRST allocated almost all its 2007/08 grants
budget in the first three months of the financial year
and is only funding big companies at the moment.
We have to wait until the 2008/09 financial year to

apply.
5 Summing up

This article has described an open source software
project which combines easy-to-use wiki software
with the typesetting capabilities of I4TEX to cre-
ate a simple, flexible, and powerful collaborative au-
thoring and publishing system. Before the project
started, I was an absolute IXTEX beginner; I have
learnt how it works by looking at what the tbook
XSL transformation did and watching how Donald
Gordon, our part-time developer, enhanced this to
handle the PmWiki markup set.

How does a small business justify investing this
level of effort, when it would be easier to use Mi-
crosoft Word like almost everyone else? It is said
that businesses change direction out of fear, greed,
or boredom. It is true that we have won additional
business as a result of the work, but not as much
as we had hoped. It is also true that our clients see

TUGboat, Volume 29 (2008), No. 2

the project as innovative and pretty cool, so it has
enhanced our reputation. As a research and devel-
opment project it was a success, but commercialis-
ing the investment has been problematic. Currently,
it is not generating revenue for us, but it has never
been boring, it makes our working lives simpler, and
it is a lot more fun than many of the things I get
paid to do.

The project has taught us three important and
in hindsight self-evident lessons.

Publishing online first alters the rules Like
most other project-based consultancy practices,
we write regular progress reports to our clients.
These used to be paper letters; now they are
wiki Web pages which can be typeset as letters.
The shift from “documents” to “pages” creates
a new perspective on the content. For exam-
ple: they can contain links to related materials;
the client can annotate them with comments;
the entire history of the project is instantly ac-
cessible and searchable; and we can take print
snapshots to store in a document management
system or bind for physical distribution.

Open beats closed Using open source (free) soft-
ware reduces the barriers to entry, allowing us
to stand on the shoulders of giants. Open stan-
dards, especially the XML set of standards, en-
able interoperability between disparate systems
like PmWiki and BTEX. Open means that when
we strike a problem, Google knows the solution:
someone will have seen the problem before and
left a trail on the Web for us to follow. The
wiki markup and file format specifications are
open and fully documented, so long term con-
tent curation and preservation are simply not
a problem. In contrast, when we replace our
last PowerPC-based Mac, a decade’s worth of
documents, stored in FrameMaker’s proprietary
format, will become inaccessible, unless we first
convert them to a format like rtf.

Most people are not interested It is a minority
of people who share our enthusiasm for what

269

Wikipublisher can do. People who are familiar
with HTML often do not see the point of trans-
forming Web content into ITEX to create a high
quality print document. They see print as a
disposable afterthought and consider that gen-
erating a printable page view using CSS is good
enough. I find it surprising that people who pay
careful attention to accessibility and readabil-
ity principles for Web sites are happy to ignore
these for printed material. On the other hand,
most authors are comfortable with their word
processor and see no reason to change their
practice. If what they are writing will be pub-
lished on a Web site, converting the document
to HTML is someone else’s problem. When their
document is finished, they toss the dead sheep
over the fence into the next paddock and forget
about it.

The success of Microsoft Office in bringing typeset-
ting to the mass market has had the unfortunate
side-effect of entrenching typographic mediocrity in
our culture. Most people are unaware of, and hence
do not value, the correct use of ligatures, text justi-
fication algorithms, inter-paragraph separation, and
the many other details which TEX looks after on our
behalf. Competitors such as OpenOffice and Google
Office are often judged by how well they replicate the
layout of Word documents. So in a sense, Wikipub-
lisher is over-engineered —it does a better job than
it needs to.

If you are interested in Wikipublisher, you can
try it online at www.wikipublisher.org, using any
Web browser, or download the software and install
it on any Unix or Linux server. I have PmWiki and
the Wikibook PDF server running on my Apple Mac-
Book. If you have any questions, you can contact me
via the web site or the address below.

¢ John Rankin
Affinity Limited, Wellington, New Zealand
john dot rankin (at) affinity dot co dot nz

