
Parameterized Arabic font development for AlQalam

Ameer M. Sherif, Hossam A. H. Fahmy
Electronics and Communications Department
Faculty of Engineering, Cairo University, Egypt
ameer dot sherif (at) gmail dot com, hfahmy (at) arith dot stanford dot edu

http://arith.stanford.edu/~hfahmy

Abstract

We present new approaches to Arabic font development for AlQalam. In order to
achieve an output quality close to that of Arabic calligraphers, we try to model
the pen nib and the way it is used to draw curves as closely to the ideal as
possible using METAFONT. Parameterized fonts are also introduced for a more
flexible and dynamic combination of glyphs, to be used in forming ligatures and in
drawing whole words as single entities. Quality will improve if words are created
as single entities since the Arabic script is cursive. We compare our method to
the basic binding of glyphs using simple box and glue mechanisms and also to
currently existing font design technologies.

1 Introduction

The process of typesetting languages using the Ara-
bic script is more challenging and more complex
than typesetting languages using the Latin script.
Previous works [3, 4, 10] indicated the special needs
for high quality Arabic typesetting. This paper con-
centrates on just one special property of the Arabic
script, namely being cursive in nature, and presents
a way to model this property accurately.

Being a cursive script means that letters inter-
act with each other, and adjacent letters affect each
other in many ways. Arabic letters have many forms
depending on their position in a word: initial, me-
dial, ending and isolated. Early typesetting systems
stored glyphs for each character in each of these dif-
ferent forms and used them when required.

Another feature of the Arabic script is the pres-
ence of a large number of ligatures in any text, un-
like the Latin script which uses only a few ligatures.
Arabic ligatures usually include many letters, some-
times a whole word is one ligature. The longest ex-
ample the current authors have seen is a ligature of
seven consecutive letters. The issue of ligatures is
partially solved in contemporary systems by intro-
ducing glyphs for only a selected number of letter
combinations.

Current font design technologies still treat Ara-
bic glyphs as separate boxes. Advanced technologies
like OpenType do allow interaction between differ-
ent glyphs, through numerous layout features, how-
ever, there are still limitations that we discuss below.

Hence, we propose a different solution to give
us more quality and typesetting flexibility. Our so-

lution is based on accurately modeling the process of
writing Arabic, using the powerful, if underutilized,
language of METAFONT.

2 Modeling the calligraphic process

AlQalam was initiated with the intention of type-
setting Qur’anic and other traditional Arabic texts.
Our goal is to produce an output quality as close
as possible to a book written by a calligrapher (the
majority of Qur’ans in print today are offset im-
ages of hand-written pages). In other words we are
targeting the maximum achievable quality and type-
setting flexibility. In the past two decades, the ap-
proach to typesetting Arabic on computers has been
through simplifying the Arabic script for easier mod-
eling. Haralambous [5] discusses the typographical
simplifications applied to the Arabic script in these
past years. Most of these suggestions for simplifica-
tion failed over the years to gain any market accep-
tance. Nowadays, with the existence of more power-
ful computers and the advances in font technologies,
it makes sense to try to model Arabic writing more
accurately.

Letters have to be completely interactive with
neighboring ones; in fact, an Arabic writer looks at
a single word as one entity and all letters in it are
drawn accordingly, hence it is like one large liga-
ture. The calligrapher also decides the positioning
of the word above the reference line as a single entity,
not for each letter alone. Moreover, if the line has
a certain horizontal space remaining for one word,
the calligrapher will make use of additional ligatures
and compress letters together if space is short, or

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 79



Ameer M. Sherif, Hossam A. H. Fahmy

break some ligatures and extend some letters if ex-
tra space is available. Of course there are rules for
breaking and forming ligatures and also for extend-
ing or compressing letters. Some of these rules have
been documented in recent papers written in En-
glish [3, 4, 10]. Moreover, it is not acceptable to
justify the lines in Arabic only by varying the width
of the spaces between words as done in Latin.

We illustrate these ideas with examples scanned
from a widespread copy of the Qur’an printed in
Al-Madinah [1]. Breaking and forming ligatures is
evident in words as becoming , and also

becoming . Other examples show how the
kashida or tatweel (elongation stroke) is used to give
words extra length as in , , and . Note
that in the latter example, the letter haa’ can have
different lengths of tatweel, hence it does not make
sense to store all these different lengths as glyphs to
be substituted when needed.

In some cases, the calligrapher may need to ex-
tend more than one letter in a word, for example
extended to or even . Notice how the
second and third forms are almost 1.5 and 2 times
as wide as the first. This property of cursive Ara-
bic script, if made possible in computer typesetting,
would allow a higher flexibility in line justification,
much more than the unacceptable method of relying
only on inter-word spaces.

Completely flexible and dynamic fonts must be
available to provide this facility in typesetting pro-
grams. When we surveyed the available font design
technologies, we concluded that METAFONT is the
most suitable. We really need to describe the letters
in a very abstract way to make them more flexible,
i.e. we need not only design but meta-design the
Arabic letters — analogous to the Computer Mod-
ern typeface family. By METAFONT, here we mean
the language itself and not necessarily the output
bitmap formats.

3 The Computer Modern typeface family

The Computer Modern (CM) typeface family pro-
duced by Donald Knuth [8] was a main source of
motivation for this work. It is one of the landmarks
in producing parameterized fonts. Despite the dif-
ferences between Latin and Arabic characters, we
believe it is possible to apply the same concepts used
in designing the CM fonts to Arabic ones.

Each character or symbol of CM has a program
to describe it. The font glyphs are defined by spline
vectors, but unlike current outline fonts, these vec-
tors are defined in a clear mathematical way that
can be parameterized, allowing them flexibility.

Figure 1: Four different lowercase letter ‘a’ forms
generated by a single description program. From left
to right: roman, sans serif, typewriter, and bold.

The only drawback of this design technique is
its difficulty. Knuth described his work to produce
parameterized CM fonts to be “much, much more
difficult than [he] ever imagined”. He received help
from several of the world’s finest type designers, and
his job, as stated by himself, was “to translate some
of their wisdom into precise mathematical expres-
sions” [8].

His final design of the CM fonts uses 62 pa-
rameters delivered to the programs describing the
characters to produce 75 different standard fonts.
These numbers clearly indicate the extent to which
these fonts are meta-designed. Fig. 1 shows four of
the lowercase letter ‘a’ generated by the CM family.
These a’s and many more are output from a single
description program.

We aim to produce Arabic fonts that are as
meta-designed as CM. Of course parameters would
be very different, for example many parameters in
the CM fonts described the serifs. In Arabic there
are no serifs, but instead there will be other param-
eters for connecting glyphs and forming ligatures.

4 Current font technologies

OpenType is currently the de facto standard font
technology. It has a lot of features that support
a very wide variety of languages and scripts. It is
adopted by Microsoft and Adobe, and thus it is the
most supported standard format. It has glyph posi-
tioning (GPOS) and glyph substitution (GSUB) ta-
bles which allow kerning and ligatures in Arabic. It
also has other layout features that help in connecting
glyphs in cursive scripts like Arabic. Being the most
common current font standard has led to the exis-
tence of many editors and tools that help design the
glyph outlines. Some tools, such as Microsoft’s Vis-
ual OpenType Layout Tool (VOLT), provide simple
graphical interfaces for editing the GPOS and GSUB

tables, among other features. In general, we find
the main advantage of OpenType over METAFONT

to be the ease of design and the availability of tools.
Despite the many features provided by Open-

Type, including those dedicated to the Arabic script,
we see them as insufficient. The whole concept of
letter boxes connecting together via other boxes of

80 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Parameterized Arabic font development for AlQalam

Figure 2: An example of OpenType font problems
with junctions between glyphs. This word was
obtained from sample products by Tradigital, a sister
company of DecoType, with a typesetting system
developed by Thomas Milo. Note that this font
represents the highest quality in OpenType Arabic
fonts we have seen, and if viewed at its standard
original size, without enlargement, these imperfections
are not visible.

elongation strokes is not suitable for highest qual-
ity Arabic typesetting, as we show in the following
examples.

Outline fonts can be used to draw glyphs of
characters in different forms very well when these
glyphs are isolated. When connecting glyphs to one
another, the junctions rarely fit perfectly, since ad-
jacent letter glyphs usually have different stroke di-
rections at the starting and ending points. Although
this imperfection may not be visible for small font
sizes, it is quite clear in large font sizes. An ex-
treme example is the use of these fonts to write large
banners or signs. Even for small fonts, when it is re-
quired to add a tatweel, a ready made kashida of spe-
cific length is used to connect the glyphs together.
Of course, such a kashida will not match perfectly
with all the different glyphs. Fig. 2 shows examples
of problems at junctions. Two of those problems
are due to using kashidas. The junction after the
kaf has no kashida, but it shows the non-uniform
stroke width. It would be possible of course to edit
the outline of these two glyphs to obtain a match,
but this would certainly create a mismatch with yet
other glyphs.

Another limitation is the use of already stored
glyphs for different ligatures; since the number of
possible ligatures is very large, only a selected por-
tion can be made available. To model the Arabic
script more accurately, each word should be consid-
ered a ligature and hence we would have an almost
infinite number of ligatures, which is impossible to
prepare in advance. The Unicode standard has nu-
merous glyphs called presentation forms, each rep-
resenting a unique ligature form. Unicode version 5
includes around 500 codes for different glyphs, just
to describe different forms of only 28 Arabic charac-

Figure 3: Part of the character code tables indicating
code allocation to complicated ligatures, combining up
to 3 letters.

Figure 4: Optical scaling requires that stroke widths
become thinner at intersections, in order to give an
appearance of uniform blackness for a word at smaller
scale. Left-hand figure shows a letter ‘sad’ in its
medial form as it normally appears. When linearly
scaled and used in a word, a black blotch appears
at stroke intersections. The right-hand side shows
how the ‘sad’ should be changed in order to appear
properly at smaller size.

ters, not including additional codes for short vowels,
diacritics, and Qur’anic marks. Fig. 3 shows some
of the complex ligatures allocated codes. The provi-
sion of a code point for each ligature is an inefficient
and non-scalable design in our opinion. As indicated
earlier, each Arabic word can in fact be considered
one ligature, so following this method of code al-
location to cover all ligature forms would take up
every remaining free code (and more). The process
of selecting a ligature should instead be left to the
typesetting application.

A final feature that is more feasible to imple-
ment in METAFONT than in OpenType is the capa-
bility to program and embed information to be used
in scaling glyphs for different sizes in the fonts them-
selves. This additional information (called ‘hinting’
in the OpenType terminology) may be used to en-
able optical scaling instead of linear scaling. The
optical scaling is even more important when two
strokes meet, as in the medial form of the letter
‘sad’ in the left-hand side of Fig. 4. At a small scale
this stroke crossing produces a black blotch when it
is used in a word. Knuth [7] discussed this problem,
and its solution in METAFONT by decreasing the
thickness of the stokes as they intersect. This change
of thickness makes the words at small sizes appear
of uniform darkness; see the ‘sad’ in the right-hand
side of Fig. 4. This solution can be parameterized
such that, as the size decreases, the pen width at

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 81



Ameer M. Sherif, Hossam A. H. Fahmy

Figure 5: Various pen nib shapes in METAFONT.
From left to right: circle, inclined ellipse, square,
inclined rectangle, and a polygon created by the
makepen macro.

intersections decreases, thus giving a feel of uniform
darkness at all sizes.

These limitations in new font technologies led
us back to METAFONT, which has existed in its cur-
rent form since 1986. What new font technologies
are attempting (and sometimes failing) to achieve
has mostly been feasible using METAFONT since it
was created. It is only due to the complexity of the
task that it was not widely tried either with META-
FONT or with anything else. We think that the use
of the METAFONT language to produce high-quality
flexible Arabic fonts might be easier than the use
of current OpenType tools. In the next section we
discuss one of METAFONT’s most powerful features,
the notion of pens.

5 Modeling pens in METAFONT

The pens used in writing Arabic are of different
types and were previously discussed by Benatia et
al. [3]. In order to solve the problems of contempo-
rary outline fonts, we propose a better pen model to
achieve an output closer to the real writing of a cal-
ligrapher. We first discuss how pen nibs are defined
in METAFONT and how pen strokes are modeled.

5.1 Pen nibs in METAFONT

METAFONT provides two predefined pen nibs, for
circular and square pen nib shapes: pencircle and
pensquare, respectively. Each can be scaled, with
different scaling factors in each direction, allowing a
multitude of elliptical and rectangular shapes. The
nibs can be further transformed by rotation around
a specific axis. This is of extreme importance since
Arabic is written using the pen nib inclined at an
angle. Fig. 5 shows some of the nib shapes that can
be used in METAFONT.

The most important pen macro in METAFONT

is makepen. This macro enables the user to define
any custom pen nib shape required, as long as it
is a convex polygonal shape. The polygonal shape
is defined by a number of coordinates connected by
straight lines. The rightmost pen nib in Fig. 5 shows
a polygonal nib produced by makepen. Since Ara-
bic pens may not be purely rectangular or elliptical,

Figure 6: One path traced by two different pens [7].
The left-hand path was drawn using a circular pen,
and the right-hand path used an elliptical pen inclined
at 40 degrees from the x-axis.

Figure 7: Skeleton of the letter noon requires that
the pen rotates to achieve different widths. In the left
glyph (correct), the pen inclination from the x-axis
changes from 70 to 120 degrees as it moves from right
to left. In the right glyph (wrong), the same segment
is drawn with a pen of fixed inclination of 75 degrees.

makepen can be used for accurate modeling of the
pen nib.

After defining the pen to be used in drawing,
we need to define the path to trace. In METAFONT

we define points in Cartesian coordinates and then
describe how the path passes through these points,
in what directions and angles. Bézier curves are
used by METAFONT to define the equations of these
paths. Again METAFONT gives unlimited flexibility
when defining paths.

5.2 Plain METAFONT drawing macros

Given the pen to be used and the path to trace,
we now have the last step, the drawing action itself.
The main drawing macros defined in plain META-
FONT are the draw, fill, and penstroke macros.

John Hobby [6] developed the algorithm defin-
ing the points traced by the pen. Fig. 6 shows a
path drawn using the draw macro but with differ-
ent pens. The limitation of the draw macro is its
use of a fixed pen inclination for the different paths
in the glyph. But in Arabic calligraphy, this is not
the case. Many letters require the calligrapher to
change the inclination of the pen while drawing. A
clear example is the skeleton of the letter noon in its
extended form; see Fig. 7. Its lower segment should
be thick at the middle and thin at the tips, and this
requires pen rotation while tracing.

The fill macro simply fills a closed contour. It
does not model a pen, but we will demonstrate later
how it can be used within other macros to do so.

The third drawing mechanism in plain META-
FONT allows rotation of the pen while tracing the
path. However, this mechanism does not use the

82 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Parameterized Arabic font development for AlQalam

Figure 8: A path drawn using the penstroke macro.
Note how the pen inclination changes as it moves
across the path, resulting in a different path thickness
at different parts.

Figure 9: The first problem with penstroke: razor
pen

defined pen nib, and instead approximates a stroke
produced by a razor pen (a pen with zero-width).
This makes the underlying algorithms used to de-
termine the shaded contour much simpler than if
a polygon pen was used. This drawing mechanism
uses two macros, penpos and penstroke. penpos
defines the width and inclination of the razor pen
at each coordinate pair. penstroke does the actual
drawing depending on the penpos at each point; see
Fig. 8. Tracing a 2-D path with a rotating polygonal
pen proves to be much more complex than the case
of no rotation as with the draw macro, and it was
not implemented in the plain METAFONT macros.

Although penstroke solves the problem of pen
rotation, the use of a razor pen leads to three other
problems while drawing Arabic letters. Most no-
tably, the zero width of the pen razor causes some
unwanted effects as shown in Fig. 9 when we try to
draw the letter baa’. Close observation of the re-
sulting glyph shows two defects directly. The first is
that the left tip of the letter is too thin, indicating
that the pen used has no width. The second flaw is
at the bottom of the rightmost tooth of the letter
intersecting with the base of the letter. This inter-
section is thinner than usual due to the same reason
related to the pen.

Yet, this is not the only issue with penstroke,
and not even the most prominent. There are two
other problems with this macro. These problems
are due to the way penstroke is defined in the plain
METAFONT file. First, when penpos is used at a co-
ordinate, METAFONT calculates the position of the
left and right ends of the razor pen at each coordi-
nate. It then forms two paths, right and left, con-
nects them at the endpoints with straight lines, then
fills the resulting contour. In fact the macro expands

Figure 10: The second problem with penstroke:
figure-8 shape.

Figure 11: The third problem with penstroke: bad
pen approximation.

to:
fill path .l -- reverse path .r -- cycle;

where path_.l is the path passing through all the
left points, and similarly for the right path.

This implementation causes the two problems.
The first is when we try to draw a shape like that
in Fig. 10. In this figure both paths intersect, re-
sulting in the contour dividing into two (and some-
times more) regions. METAFONT does not have the
capability to fill such complex regions that overlap
themselves, and hence produces errors. To draw
such a shape, a modification was done in our work
by detecting the crossing points of the paths, then
filling each region separately. Such crossings occur
frequently when drawing Arabic glyphs.

The definition of penstroke, with both left and
right paths evaluated independently, means that at
some points the distance between the two paths may
vary in a way that can not result from a fixed length
pen. It is not always easily perceptible, but in some
cases when there are sharp bends in a path or large
amounts of pen rotation, the resulting stroke be-
comes a very bad approximation of a razor pen, as
in Fig. 11. In drawing Arabic glyphs, such large
rotation in pen inclination rarely occurs, but this
extreme example shows that penstroke is not an
accurate model of a razor pen. Fig. 10 also shows
the same problem as a significant chunk of the stroke
is missing at the middle of the path.

Although the draw and penstroke macros are
good attempts to simulate pens in action, they do
not fulfill the needs of Arabic pens. One does not
allow pen rotation, while the other uses a pen with
zero thickness. It is obvious that neither macro is
sufficient, and we need the best of both worlds: a
polygonal pen that traces a path while rotating. The
next section discusses some proposed solutions for
accurate modeling of pen strokes. These solutions

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 83



Ameer M. Sherif, Hossam A. H. Fahmy

Figure 12: The error resulting from left and right
paths crossing is resolved, even in the case of multiple
crossings.

make use of the previously mentioned plain META-
FONT macros in various ways.

5.3 Enhancements to plain METAFONT

drawing macros

In this section we describe four proposed methods
to provide better modeling of the pen nib tracing a
path while rotating, in order of their ascending qual-
ity. With the last being the most accurate drawing
method. The first method was proposed by Knuth
for his CM fonts, while we developed the other three
in the course of our work. But before we discuss
them we will briefly mention how the errors aris-
ing from penstrokes left and right paths crossing,
discussed in the previous section, are solved.

METAFONT does not fill a non-simple contour
that crosses itself. In order to solve this, we pro-
pose finding the crossing points and then dividing
the contour into segments, and filling each one sep-
arately. Since we do not know the number of cross-
ings beforehand we do a loop until there are no more
crossing points. Fig. 12 shows an example of a stroke
drawn by a pen that rotates 180 degrees from point 1
to 2 and then 180 degrees more from 2 to 3, hence
rotating 360 degrees in total. Such a stroke would
result in an error if the plain penstroke is used.

5.3.1 The filldraw stroke macro

This technique is used a lot in Knuth’s definition of
CM character glyphs. It fixes the problem of pen-
stroke having zero width at certain points of a con-
tour. Instead of just filling the penstroke contour,
filldraw fills the contour and then traces its outline
with a small circular nib pen, thus adding thickness
to very thin segments of the “virtual pen stroke”.
The reason we say it is ‘virtual’ is because Knuth’s
definition of a glyph like ‘e’ keeps the pen rotat-
ing in such a way that the left and right paths of
penstroke do not cross, and this is certainly differ-
ent from what a person would do while drawing the
‘e’, hence it is not a real pen stroke.

The stroke macro is defined in the CM base
file, and it merely defines the closed contour cre-
ated by penstroke without filling it. Fig. 13 shows
the letters e and baa’ with penstroke and then
with filldraw stroke. Note the thickness effect

Figure 13: First solution: filldraw. The letter ‘e’ is
shown on the top right as it is used in the CM fonts,
and on the left how it would look like if drawn using
penstroke instead of filldraw stroke. The top pair
of baa’ letters shows the skeleton of the letter, i.e.
the closed contour. The left contour is drawn with a
very fine pen nib, while on the right with a thicker
nib. The pair of baa’ letters at the bottom show the
contours after filling.

Figure 14: Second solution: astroke. penpos defines
four points for each coordinate pair, named l, r, n, and
m (see dot at top). astroke macro then produces four
penstrokes; the left figure shows two of these sides
(l–r) and (n–m).

and how Knuth used this method to give letter tips
round edges. The letter baa’ is shown with its con-
tour and after filling with penstroke on the left and
with filldraw stroke on the right.

5.3.2 The astroke macro

Another solution to the problem of zero-width pen,
is to model the pen nib with multiple penstrokes,
one for each side of the pen. For example, for a
rectangular pen nib, a macro is defined which essen-
tially breaks into four penstrokes, each to model
the area covered by one side of the rectangle. The
penpos macro also had to be modified in order to
evaluate the four corner points of the pen nib [l, r,
n, m] instead of only two (left and right). Fig. 14
shows in the left figure two of the four penstrokes

84 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Parameterized Arabic font development for AlQalam

Figure 15: Third solution of stroke modeling:
qstroke. It forms the pen stroke by drawing many
instances of the pen nib along the path. The pen nib
used can be any shape, not just rectangular as in the
astroke macro.

resulting from the pen nib shown. The pen nib is
enlarged for better understanding. The right fig-
ure shows all four penstrokes but with reasonable
pen nib dimensions. The resulting baa’ skeleton is
much better than the one produced using only one
penstroke, and slightly better than the one using
filldraw stroke. Note that this macro can only
model strokes for rectangular pen nibs.

A pen used to write Arabic is rarely moved in
the direction of the smaller side. Hence the need to
model the smaller sides of the pen is limited to tips
of the glyph. This means that it is also possible to
produce the same output with only two penstrokes
(l–r) and (n–m) together with two nib dots at the
start and end.

5.3.3 The qstroke macro

This macro solves the problem of penstroke being
just an approximation of a razor pen traced path.
The glyph is simply created by drawing footprints
of the pen nib with different inclination angles at
many consecutive locations along a path. The angle
of the pen at each location is an interpolation of the
segment’s starting and ending inclination angles. At
a given finite resolution, a finite number of pen dots
gives the effect of a continuous pen stroke. As the
distance of the path increases more pen footprints
are needed. Also, since the path times in META-
FONT are not linearly distributed, more instances
are needed. Finally, when the pen rotation is large
in a specific segment more instances are needed as
well. Fig. 15 shows an example letter baa’ drawn
with the macro.

5.3.4 The envelope macro

For high resolutions, the qstroke macro needs to
draw many dots to yield a smooth stroke. A refine-
ment of this idea is to compute the exact envelope of
the razor pen and then fill it. This envelope macro
moves along the path at small intervals, evaluating

Figure 16: Fourth solution of stroke modeling:
envelope.

at each point two equidistant corresponding points
on the left and right paths, depending on the pen
inclination. The output is a more accurate model of
a razor pen than penstroke; see Fig. 16. Applying
four of this new envelope stroke as in the astroke
solution produces the most accurate glyph.

Of course, more accurate models require more
calculations and hence more computing resources.
For nominal resolutions, the qstroke macro will
produce a final output as good as the more accu-
rate but more complex macro, envelope, hence it is
preferred.

Now that we have obtained a satisfactory model
of the pen nib and the way it is used to draw strokes,
we will explore in the next section how parameter-
ized glyphs are designed.

6 Arabic font meta-design

With the satisfactory pen nib models of the last
section, we now discuss their usage to mimic the
way calligraphers draw the different letters. Our
main approach is to make the writing as dynamic
as possible, while obeying the traditional rules of
calligraphy [2, 9]. This enables us to simulate the
cursive nature of the Arabic script. In order to do
that we started to design a font that is parameter-
ized in many ways. This parameterization comes in
two forms: parameterization of coordinates and of
curves.

Parameterization of coordinates means that our
points in the x–y plane are not given fixed locations.
Any point location either depends on parameters
or is related to another point in the plane some-
times also through parameters. Parameterization of
curves, on the other hand, means that either the
tangential direction of a curve at some points or the
tension on a curve segment is dependent on param-
eters, or sometimes both together. This complete
parameterization of the glyphs will enable us to join
letters better together, extend them easily, and op-
tically scale the font.

This process of designing the glyphs is then bet-
ter described as meta-designing, since we not only
design the shape of the letter, but describe how it is
to be drawn, which is more difficult. Outline vector

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 85



Ameer M. Sherif, Hossam A. H. Fahmy

Figure 17: The letter noon shown with kasa widths
of 3, 9, and 13.

fonts like TrueType can be created by merely scan-
ning a handwritten sample and then digitizing it by
converting it to vectors. The more meta-designed
the glyph, the more difficult and more time it takes
to describe it to the computer, but on the other
hand, the better the final results become.

The Arabic alphabet, although consisting of 28
different letters, depends on only 17 different basic
‘skeletons’. Dots added above or below these skele-
tons differentiate one letter from another. For ex-
ample the letters haa’, jeem, and khaa’ all have the
same shape as haa’, but jeem has a dot below, and
khaa’ has a dot above. The separation of the dots
from the skeletons as well as breaking some complex
skeletons to smaller parts enables us to reduce the
amount of design required by considering only some
primitive shapes that are repeated and used in many
letters. The construction of individual letters by as-
sembling smaller parts is the traditional method of
teaching Arabic calligraphy as well.

For example, the body of the letter noon, called
the kasa, is used as a part of the isolated or end-
ing forms of many Arabic letters: seen, sheen, saad,
daad, lam, and yaa’. An important property of
the kasa is that it can be extended to much larger
widths. Its nominal width is 3 nuqtas (Arabic dots),
and when in its extended form, it can range from 9–
13 nuqtas. Fig. 17 shows several instances of the
longer form. Note that its width can take any real
value between 9 and 13, not just integer values.

Another example of a meta-designed primitive
that is used in justification is the kashida. Kashidas
can be used in almost all connective letters. Here
we illustrate the kashida in use with the letter haa’.
Fig. 18 shows the letter haa’ in its initial form with
two different kashida lengths, which differ by almost
3 nuqtas. A parameter is input to the program de-
scribing the letter in order to decide on the position

Figure 18: The initial form of the letter haa’ with
two different kashida lengths.

of point 4 in relation to 3. For a longer kashida
point 4 is moved to the left and also to the bottom.
We will see in the next section how kashidas are set
to join letters together smoothly.

7 The formation of words

After modeling the pens and meta-designing indi-
vidual letters, the next logical step is to join these
glyphs together to form complete words. The pa-
rameterization of the glyphs allows perfect junction
points as if these glyphs were drawn with just one
continuous stroke.

In the most widely used font technologies, like
OpenType and TrueType, kashidas are made into
ready glyphs with pre-defined lengths, and are sub-
stituted when needed between letters to give the
feeling of extending the letter. But since the kashida
is static, as is the rest of the surrounding letters,
they rarely join well, and it is evident that the word
produced is made of different segments joined by
merely placing them close to one another.

In our work, the kashida is dynamic and can
take continuous values, not just predefined or dis-
crete values. Our experiments with different ways of
joining various letter combinations lead us to think
that when a kashida is extended between any two
letters, it is neither a separate entity nor does it be-
long to only one of the two letters. Instead it is a
connection belonging to both.

Consider for example the simple joining of the
two letters, haa’ and dal (Fig. 19). Each letter is de-
signed in a separate macro and when used to form
the word, the elongation parameter of the kashida in
between is passed to both macros, and the kashida
is distributed on both glyphs. The two glyphs then
meet at the point where the pen stroke moves ex-
actly horizontally (parallel to the x-axis). This junc-
tion point is not necessarily at the middle of the dis-
tance between both letters. The ending point of each
glyph is moved further from its letter, and in order to
accommodate long kashidas, these points are moved

86 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Parameterized Arabic font development for AlQalam

Figure 19: Placing a kashida between the letters
haa’ and dal with different lengths 2, 3, 5 and 7 dot
lengths.

Figure 20: Placing kashidas using TrueType fonts
available in Microsoft Office 2003.

slightly downwards. Long kashidas need more ver-
tical space in order to curve smoothly, sometimes
pushing the letters of a word upwards.

Other than affecting the ending points, the pa-
rameter also affects the curve definition on both
sides by controlling the tensions of the paths. The
resulting word at many different kashida lengths is
shown in Fig. 19, which can be compared with the
adding of kashidas using the TrueType fonts avail-
able in Microsoft Office 2003 as shown in Fig. 20.

Further examples of joining words can be seen
in Fig. 21. This figure shows the word ‘yahia’ writ-
ten using different fonts. Notice how the TrueType
fonts connect the ligatures with a straight line, and
how the OpenType font (bottom left) corrects this
by placing curved kashidas. But unfortunately the
curved kashidas of this OpenType font are static
and do not join well. In the word produced by our
parameterized font (bottom right), the letters join
perfectly together, and there is also the possibility
of freely extending the length between the haa’ and
the yaa’ by any value as done in Fig. 19.

8 Future work

This paper presented new font design ideas that will
enable computers to produce Arabic texts of similar
quality to the works of calligraphers. The proposed
parameterized font will also enable better typeset-
ting, by providing better flexibility to the words.
The work covered here is just the beginning and a
small step towards the realization of such a system
that produces output comparable to writings of hu-
mans writing Arabic, and much remains to be done.

Figure 21: The word ‘Yehia’ as it is written
using four fonts. From top left to bottom right:
TrueType simplified (no ligatures), TrueType
traditional, OpenType Tradigital Naskh, and our own
parameterized font.

The proposed idea of producing such an out-
put using computers opens a very vast opportunity
for further research in the topic. We classify this
possible future work into two categories, research
within the font technology itself using METAFONT,
and within the typesetting system, TEX.

First, regarding the font design:

• Finalize meta-design of all possible letter forms.
Some letters like seen and baa’ have a very large
variety of forms.

• Develop algorithms and method for placement
of dots and diacritics, keeping in mind that
their placement may, in some cases, force the
calligrapher to move letters or words to free
space for them. Also it should be kept in mind
that this placement should not impede the leg-
ibility of the text, especially since its use is to
improve legibility and understanding. Some di-
acritics, especially short vowels like fat-ha and
kasra change their lengths and inclination, and
hence are dynamic.

• Decrease the computational complexity of the
current pen modeling techniques.

• Research the possibility of generating output
from METAFONT other than the resolution lim-
ited bitmapped glyphs for high quality print-
ing or screen viewing. Otherwise, to embed
the METAFONT sources within new file formats
such as pdf and extend the current pdf view-
ers to read these sources and use them to pro-
duce the correct resolution for the screen or the
printer on the fly.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 87



Ameer M. Sherif, Hossam A. H. Fahmy

• Design of other writing styles besides Naskh,
like Thuluth and Riq‘ah, with minimal changes
to the already meta-designed font.
Second, the work done in this paper together

with the points mentioned above aims at the goal
of providing the typesetting system with more flex-
ibility. The typesetting engine needs some work as
well:
• The selection of the most suitable glyph to be

placed in a word is a very complicated task.
Each letter may have many alternative forms
in its specific location in the word, and these
alternatives have different widths and heights.
Hence, the selection of a certain form is based
on many factors; most importantly, justifica-
tion, and placement of dots and diacritics con-
flicting with ligatures. The form of the letter
may be affected not only by its closest neigh-
bors, but in some cases a letter’s form may be
changed depending on the fifth or sixth follow-
ing letter.

• Line-breaking algorithms are a very rich topic.
The flexibility in the Arabic script adds to the
complexity of this task. Rules have to be added
to decide whether an alternative form should be
used, a ligature is to be used or broken (includ-
ing which ligatures are more important than
others), or where a kashida is to be added.

References

[1] The Holy Qur’an. King Fahd Complex for
Printing the Holy Qur’an, Madinah, KSA.

[2] Fawzy Salem Afify. ta‘aleem al-khatt al-‘arabi
[Teaching Arabic calligraphy]. Dar Ussama,
Tanta, Egypt, 1998.

[3] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic
text justification. TUGboat 27(2):137–146,
November 2006. Proceedings of the 27th

Annual Conference of the TEX Users Group,
Marrakesh, Morocco.
http://tug.org/TUGboat/Articles/
tb27-2/tb87benatia.pdf.

[4] Hossam A. H. Fahmy. AlQalam for
typesetting traditional Arabic texts.
TUGboat 27(2):159–166, November 2006.
Proceedings of the 27th Annual Conference of
the TEX Users Group, Marrakesh, Morocco.
http://tug.org/TUGboat/Articles/
tb27-2/tb87fahmy.pdf.

[5] Yannis Haralambous. Simplification of the
Arabic script: Three different approaches
and their implementations. In EP ’98/RIDT

’98: Proceedings of the 7th International
Conference on Electronic Publishing, held
jointly with the 4th International Conference
on Raster Imaging and Digital Typography,
volume Lecture Notes 1375, pages 138–156,
London, UK, 1998. Springer-Verlag.
http://omega.enstb.org/yannis/pdf/
arabic-simpli98.pdf.

[6] John Douglas Hobby. Digitized Brush
Trajectories. Ph.D. dissertation, Department
of Computer Science, Stanford University,
Stanford, CA, USA, June 1986. Also
published as report STAN-CS-1070 (1985).
http://wwwlib.umi.com/dissertations/
fullcit/8602484.

[7] Donald E. Knuth. The METAFONTbook,
volume C of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[8] Donald E. Knuth. Computer Modern
Typefaces, volume E of Computers and
Typesetting. Addison-Wesley, Reading, MA,
USA, 1986.

[9] Mahdy Elsayyed Mahmoud. al-khatt
al-‘arabi, derasa tafseelyya mowassa‘a [Arabic
calligraphy, a broad detailed study]. Maktabat
al-Qur’an, Cairo, Egypt, 1995.

[10] Thomas Milo. Arabic script and typography:
A brief historical overview. In John D.
Berry, editor, Language Culture Type:
International Type Design in the Age of
Unicode, pages 112–127. Graphis, November
2002. http://www.decotype.com/
publications/Language_Culture_Type.pdf.

88 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

http://tug.org/TUGboat/Articles/tb27-2/tb87benatia.pdf
http://tug.org/TUGboat/Articles/tb27-2/tb87benatia.pdf
http://tug.org/TUGboat/Articles/tb27-2/tb87fahmy.pdf
http://tug.org/TUGboat/Articles/tb27-2/tb87fahmy.pdf
http://omega.enstb.org/yannis/pdf/arabic-simpli98.pdf
http://omega.enstb.org/yannis/pdf/arabic-simpli98.pdf
http://wwwlib.umi.com/dissertations/fullcit/8602484
http://wwwlib.umi.com/dissertations/fullcit/8602484
http://www.decotype.com/publications/Language_Culture_Type.pd
http://www.decotype.com/publications/Language_Culture_Type.pd

	Introduction
	Modeling the calligraphic process
	The Computer Modern typeface family
	Current font technologies
	Modeling pens in Metafont
	Pen nibs in Metafont
	Plain Metafont drawing macros
	Enhancements to plain Metafont drawing macros
	The filldraw stroke macro
	The astroke macro
	The qstroke macro
	The envelope macro


	Arabic font meta-design
	The formation of words
	Future work

